AFL++

Combining Incremental Steps
of Fuzzing Research

Andrea Fioraldi, Dominik Maier, Heiko EiRfeldt, Marc Heuse

@andreafioraldi, @domenuk

{andrea, dominik}@aflplus.plus


https://twitter.com/andreafioraldi
https://twitter.com/domenuk

American Fuzzy Lop

american fuzzy lop 0.47b (readpng)

overall resu]ts
cycles done : 0
total paths : 195

— process timing
run time : 0 days, 0 hrs, 4 min, 43 sec
last new path : 0 days, O hrs, 0 min, 26 sec

last uniq crash : none seen yet uniq crashes : 0
Tast uniq hang : 0 days, 0 hrs, 1 min, 51 sec uniq hangs : 1
— cycle progress map coverage
now processing : 38 (19.49%) map density : 1217 (7.43%)
paths timed out : 0 (0.00%) count coverage : 2.55 bits/tuple

— stage progress findings in depth

now trying : interest 32/8
stage execs : 0/9990 (0.00%)
total execs : 654k

exec speed : 2306/sec

favored paths :
: 85 (43.59%)
: 0 (0 unique)
total hangs :

new edges on
total crashes

— fuzzing strategy yields
bit flips
byte flips
arithmetics
known ints
havoc

trim

: 0/1804, 0/1786 1/1750

: 34/254k, 0/0

: 2876 B/931 (61.45% gain)

88/14.4k, 6/14.4k, 6/14.4k

- 31/126k, 3/45.6k, 1/17.8k
: 1/15.8k, 4/65.8k, 6/78.2k

128 (65.64%)

1 (1 unique)
path geometry
levels : 3
pending : 178
pend fav : 114
imported : 0
variable : 0

latent : 0




American Fuzzy Lop

e A legendary tool that proved its effectiveness
e A baseline for a wide range of academic and

industrial research

e No new features after 2017



American Fuzzy Lop

e A legendary tool that proved its effectiveness
e A baseline for a wide range of academic and

industrial research

e No new features after 2017

Fork it!



A lot of
Reseaxrch
Based on AFL

AFLFast
AFLSmart

AFL LAF-Intel
AFL MOpt

KAFL

Whatever-AFL



Works On FUZZGI SChedU]_iﬂg

e Seed scheduling [AFLFast]
= How much time should we fuzz a test case?
e Mutation scheduling [MOpt]

= Probability for each mutational operator



wrks on BYpassing Roadblocks

e Feedback for comparisons [LAF-Intel]
= Split multi-byte comparisons
e Input-to-state replacement [Redqueen (KAFL)]

= Guess the input bytes that affect a
comparison and replace it with the extracted
token



Structured Mutatozrs

e Take input structure into account [AFLSmart]
o Avoid to generate almost always invalid inputs

o Stress more deep paths



Speed Enhancements

e Reduce the number of instrumented program points
while maintaining the same coverage [Instrim]

e Get rid of fork() and fuzz with snapshots
[Opt-AFL]

e Inline instrumentation and re-enable TB linking

in QEMU mode [abiondo-AFL]



What 1f I Want to Use X AND Y?

e Orthogonal techniques not easy to combine
e Research fuzzers often unmaintained
e Some techniques are not implemented on top of the

original AFL



I

created Z AND I want X

If you peak one of the derived fuzzers as

baseline you may be incompatible with other

orthogonal techniques
Hard to evaluate techniques without the relation

with others (e.g. a new type of coverage without

having a roadblock bypassing technique)



Here comes




The AFL++ Project

e Integrates and reimplements fuzzing techniques in
a single framework, AFL++

e Ongoing research and new insights about fuzzing
using such framework

e We improve the state of the art combining

techniques and tuning the implementations



Usability

e All techniques are integrated in afl-fuzz

® Best-effort defaults

e Users familiar with AFL benefit from cutting-edge

research without pain



Extensibility

e To enable further research to do
cross-comparisons with a reduced effort, we
defined a set of API to extend AFL++, the Custom
Mutator API



Custom Mutator API

afl custom fuzz

afl custom post process

afl custom trim

afl custom havoc _mutation

afl custom_havoc mutation probability
afl custom queue get

afl custom _queue new_ entry



INSTRUMENT ALL THE THINGS

e We extended techniques to work with other
instrumentation backends.

e For Example: QEMU & Unicorn modes can split
comparisons in a similar way to LLVM LAF-Intel

e Currently supported instrumentations are LLVM,

QEMU, Unicorn, QBDI, GCC plugin, afl-gcc



Runs on Everything

AFL++ builds and runs on GNU/Linux, Android,
i0S, macOS, FreeBSD, OpenBSD, NetBSD, I1llumOS,
Haiku, Solaris

It is packaged 1in popular distributions like

Debian, Ubuntu, NixO0S, Arch Linux, FreeBSD, Kali

Linux,



Cross
Evaluations

Using AFL++ as baseline
gives you immediate access
to cross evaluation of
your technique combined
with pre-existing works

nng

Examples:
[Default]
Ngram4
MOpt

Redqueen



Cross-Evaluations (libpcap)

@® Redqueen

—
b
t
e

@ Redqueen+MOpt

MOpt

<P}
a0
2
Z
ah
— 750
=]
S
-~

Ngram4
Ngram4+Rare

[Default]

Time




Cross-Evaluations (bloaty)

5500

@® Redqueen

5250

0 5000

@ Redqueen+MOpt

4750

4250

ge covera

—
-,
5]
-
=
=
o
b
-
=

Ngram4

4000

Ngram4+Rare

[Default]

Time




Optimal Configuration

e Observe several runs of AFL++ in different
configuration on the same target for a while

e Try to catch blind spots and select the best
combination of features

e Profit



Future work

e Static analysis for optimal fuzz settings
e Multicore linear scaling
e Plugin system (executors, queues, feedbacks,

@ Collision-free instrumentation

)



Conclusion

e AFL++ enhances comparability of research

e We further improve the state-of-the-art with
speed, usability, new features

e AFL++’s custom mutator API can be used to

implement novel research in a maintainable way



AFL++ 1s FOSS!

https://aflplus.plus/

https://github.com/AFLplusplus



https://aflplus.plus/
https://github.com/AFLplusplus

Thank you for
your attention.




