
AFL++
Combining Incremental Steps
of Fuzzing Research

Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, Marc Heuse

@andreafioraldi, @domenuk

{andrea, dominik}@aflplus.plus

https://twitter.com/andreafioraldi
https://twitter.com/domenuk

American Fuzzy Lop

American Fuzzy Lop

● A legendary tool that proved its effectiveness

● A baseline for a wide range of academic and

industrial research

● No new features after 2017

American Fuzzy Lop

● A legendary tool that proved its effectiveness

● A baseline for a wide range of academic and

industrial research

● No new features after 2017

 Fork it!

A lot of
Research

Based on AFL

● AFLFast

● AFLSmart

● AFL LAF-Intel

● AFL MOpt

● kAFL

● …
● Whatever-AFL

Works On Fuzzer Scheduling

● Seed scheduling [AFLFast]

⇒ How much time should we fuzz a test case?

● Mutation scheduling [MOpt]

⇒ Probability for each mutational operator

Works On Bypassing Roadblocks

● Feedback for comparisons [LAF-Intel]

⇒ Split multi-byte comparisons

● Input-to-state replacement [Redqueen (kAFL)]

⇒ Guess the input bytes that affect a

comparison and replace it with the extracted

token

Structured Mutators

● Take input structure into account [AFLSmart]

○ Avoid to generate almost always invalid inputs

○ Stress more deep paths

Speed Enhancements

● Reduce the number of instrumented program points

while maintaining the same coverage [Instrim]

● Get rid of fork() and fuzz with snapshots

[Opt-AFL]

● Inline instrumentation and re-enable TB linking

in QEMU mode [abiondo-AFL]

What if I Want to Use X AND Y?

● Orthogonal techniques not easy to combine

● Research fuzzers often unmaintained

● Some techniques are not implemented on top of the

original AFL

I created Z AND I want X

● If you peak one of the derived fuzzers as

baseline you may be incompatible with other

orthogonal techniques

● Hard to evaluate techniques without the relation

with others (e.g. a new type of coverage without

having a roadblock bypassing technique)

Here comes

The AFL++ Project

● Integrates and reimplements fuzzing techniques in

a single framework, AFL++

● Ongoing research and new insights about fuzzing

using such framework

● We improve the state of the art combining

techniques and tuning the implementations

Usability

● All techniques are integrated in afl-fuzz

● Best-effort defaults

● Users familiar with AFL benefit from cutting-edge

research without pain

Extensibility

● To enable further research to do

cross-comparisons with a reduced effort, we

defined a set of API to extend AFL++, the Custom

Mutator API

Custom Mutator API
afl_custom_fuzz

afl_custom_post_process

afl_custom_trim

afl_custom_havoc_mutation

afl_custom_havoc_mutation_probability

afl_custom_queue_get

afl_custom_queue_new_entry

INSTRUMENT ALL THE THINGS

● We extended techniques to work with other

instrumentation backends.

● For Example: QEMU & Unicorn modes can split

comparisons in a similar way to LLVM LAF-Intel

● Currently supported instrumentations are LLVM,

QEMU, Unicorn, QBDI, GCC plugin, afl-gcc

Runs on Everything

● AFL++ builds and runs on GNU/Linux, Android,

iOS, macOS, FreeBSD, OpenBSD, NetBSD, IllumOS,

Haiku, Solaris

● It is packaged in popular distributions like

Debian, Ubuntu, NixOS, Arch Linux, FreeBSD, Kali

Linux, ...

Cross
Evaluations
Using AFL++ as baseline

gives you immediate access

to cross evaluation of

your technique combined

with pre-existing works

Examples:

● [Default]

● Ngram4

● MOpt

● Redqueen

Cross-Evaluations (libpcap)
● Redqueen

● Redqueen+MOpt

● MOpt

● Ngram4

● Ngram4+Rare

● [Default]

Cross-Evaluations (bloaty)
● Redqueen

● Redqueen+MOpt

● MOpt

● Ngram4

● Ngram4+Rare

● [Default]

Optimal Configuration

● Observe several runs of AFL++ in different

configuration on the same target for a while

● Try to catch blind spots and select the best

combination of features

● Profit

Future work

● Static analysis for optimal fuzz settings

● Multicore linear scaling

● Plugin system (executors, queues, feedbacks, …)

● Collision-free instrumentation

Conclusion

● AFL++ enhances comparability of research

● We further improve the state-of-the-art with

speed, usability, new features

● AFL++’s custom mutator API can be used to

implement novel research in a maintainable way

AFL++ is FOSS!

https://aflplus.plus/

https://github.com/AFLplusplus

https://aflplus.plus/
https://github.com/AFLplusplus

Thank you for
your attention.

