
W
H

ITE
P

A
P

E
R

:S
Y

M
A

N
TE

C
S

E
C

U
R

IT
Y

R
E

S
P

O
N

S
E

When Malware
Meets Rootkits

Elia Florio
Symantec Security Response, Dublin

Originally published by Virus Bulletin, December 2005. Copyright held by Virus Bulletin, Ltd., but is made
available free of charge by permission of Virus Bulletin. For more information on Virus Bulletin, please
visit http://virusbtn.com/

White Paper: Symantec Security Response

CCoonntteennttss

AAbbssttrraacctt...4

IInnttrroodduuccttiioonn –– tthhee aarrtt ooff hhiiddiinngg eexxpprreesssseedd iinn mmaannyy ffoorrmmss...4

GGhhoosstt pprroocceesssseess iinn tthhee ssyysstteemm...8

WWoorrmmss uussiinngg \\DDeevviiccee\\PPhhyyssiiccaallMMeemmoorryy..7

AA cclloosseerr llooookk aatt tthhee rroooottkkiitt ccooddee uusseedd bbyy FFaannbboott..8

RRoooottkkiitt tteecchhnnoollooggiieess iinn tthhee wwiilldd...11

RReeffeerreenncceess...13

AAbboouutt tthhee AAuutthhoorr.. 14

3

WWhheenn MMaallwwaarree
MMeeeettss RRoooottkkiittss

When Malware Meets Rootkits

AAbbssttrraacctt
There was a time when Windows rootkits were just stand-alone applications, but today it’s very common
to find advanced rootkit technologies used in worms and Trojans – and sometimes even in non-malicious
programs. Although Windows rootkits were introduced only few years ago, the number of programs that
currently use stealth technology, or that will use it in the future, is growing very quickly, sometimes with
unexpected consequences. This article will not cover all the techniques of rootkits, since the topic is huge.
For information on rootkits and how they work on Windows operating systems, refer to [1]. This paper
deals only with a specific rootkit technique known as ‘DKOM using \Device\PhysicalMemory’. This
technique was observed recently in the worm W32/Fanbot.A@mm [2], which spread worldwide in October
2005. The paper will also present some data on rootkit usage in malicious threats.

IInnttrroodduuccttiioonn –– tthhee aarrtt ooff hhiiddiinngg eexxpprreesssseedd iinn mmaannyy ffoorrmmss
Rootkits are usually divided in two categories: user-mode rootkits that work in Ring 3 mode, and kernel-
mode rootkits that operate in Ring0. The latter represents a more sophisticated piece of code, which
requires a lot of programming knowledge and familiarity with the Windows kernel.

Kernel-mode techniques are very powerful and the most advanced rootkits are able to subvert the
Windows kernel [3] and hide files, folders, registry keys, ports and processes. This type of rootkit needs to
operate as a system driver to manipulate the kernel because this interaction requires Ring0 privileges,
which are not available for normal executables in userland space.

The major drawback of this implementation is that the rootkit always comes with two different binaries
(one SYS driver and one EXE that installs the driver) and this fact raises some barriers to the practical
integration of this type of threat into real applications. Even if the SYS driver can hide everything
(including itself), it needs to keep static structures installed in kernel memory which can be detected [4].
Moreover, the installation process requires interaction with the Windows Service Control Manager (SCM),
or alternatively uses the undocumented API ZwSetSystemInformation. Both methods can create some
evidence of the threat’s presence or can be blocked during the installation phase.

GGhhoosstt pprroocceesssseess iinn tthhee ssyysstteemm
For these reasons, the next generation of rootkits started to approach the Windows kernel in a different
way, avoiding the need for a SYS driver and system hooks. This goal is achieved by mixing the idea
introduced by the FU rootkit (known as DKOM, Direct Kernel Object Manipulation) with another technique
that involves the manipulation of the \Device\PhysicalMemory object and does not require any additional
driver. The method of ‘playing’ with the physical memory object was imported from the Linux world,
where another (in)famous rootkit known as ‘SucKIT’ [5] is gaining a lot of popularity.

DKOM rootkits are able to manipulate kernel structures and can hide processes and ports, change
privileges, and fool the Windows event viewer without many problems. This type of rootkit hides

4

When Malware Meets Rootkits

processes by manipulating the list of active processes of the operating system, changing data inside the
EPROCESS structures. This method is well documented and was first implemented by the FU rootkit [6].

Essentially, the Windows operating system maintains two different lists of all process and thread
information (PID, name, token, etc.). Every process has an associated EPROCESS structure, which is linked
to the previous and the following process (double-linked list) using some pointers. Figure 1 shows, with a
simplified diagram, how EPROCESS structures are interconnected.

FFiigguurree 11:: WWiinnddoowwss EEPPRROOCCEESSSS ssttrruuccttuurreess aarree ccoonnnneecctteedd ttoo eeaacchh ootthheerr bbyy aa ddoouubbllee--lliinnkkeedd lliisstt..

However, many people don’t realize that processes don’t run; only threads run. The Windows operating

5

When Malware Meets Rootkits

system uses a pre-emptive, priority-based, round robin method of scheduling threads, swapping the
active status from one thread to another (process structures are not involved in the switch).

Considering this fact, DKOM rootkits exploit a very simple trick: they unlink their own EPROCESS from
this list, connecting the pointers of the previous and of the next EPROCESS in a way that will skip the
‘ghost’ process.

FFiigguurree 22:: TToo hhiiddee aa pprroocceessss tthhee DDKKOOMM rroooottkkiitt ssiimmppllyy uunnlliinnkkss iitt ffrroomm tthhee lliisstt,, lliinnkkiinngg iittss pprreevviioouuss pprroocceessss
wwiitthh tthhee nneexxtt oonnee.. IItt’’ss jjuusstt aa sswwaapp ooff aa ffeeww ppooiinntteerrss..

6

When Malware Meets Rootkits

With this simple change, a process become invisible to the task manager and other common process
manager tools, but it still runs in the system as all its threads are still active. Only advanced tools (e.g.
KProcCheck [7]) can detect the presence of the hidden process by traversing the handle table list or the
scheduler thread list.

This kind of threat (DKOM rootkit that uses \Device\PhysicalMemory) is quite hard to code because it
requires the following abilities:

1. The ability to obtain read/write access to the \Device\PhysicalMemory object.
2. The ability to manipulate the EPROCESS/ETHREAD structure correctly (these structures differ

greatly between Windows 2000, XP and 2003).
3. The ability to locate the ‘System’ process in kernel memory and patch it.
4. The ability to translate the virtual address of a process to a physical address in memory.

While there have been good examples of the first three steps [8] in the past, the last step is the most
difficult as the Windows addressing scheme is based on a complex layer of multiple arrays. Contiguous
virtual addresses of a process may have different physical addresses mapped into kernel memory [9].

WWoorrmmss uussiinngg \\DDeevviiccee\\PPhhyyssiiccaallMMeemmoorryy
It was surprising to find a practical (and well written) implementation of this rootkit technique inside the
W32/Fanbot.A@mm code. W32/Fanbot.A is not the only worm that uses the DKOM and
\Device\PhysicalMemory technique. The first worm that tried to achieve this was W32/Myfip.H. However,
the routine observed in this worm was a little buggy and did not work well under XP and 2003 systems as
it used a simplified memory model (the trick introduced in [8]) to map logical addresses to physical
addresses.

W32/Myfip.H tried to ‘emulate’ the kernel API MmGetPhysicalAddress by checking if the virtual address
was in the range (0x80000000 – 0xA0000000) and applying to it an AND mask of 0x1FFFF000. However,
MmGetPhysicalAddress changes a lot from Windows 2000 to XP, so the correct way to translate the virtual
address is to use the page tables of the specific process that owns the virtual address to be translated.

Instead, W32/Fanbot.A implements a good algorithm for address translation that considers the Page
Directory and the Page Table (including tests for large pages).

It also follows all the basic memory management rules: it extracts PDindex from the virtual address, gets
the correct PDE, locates the corresponding PTE, and finally calculates the correct physical address. The
only limitation of the W32/Fanbot.A code is that it does not work on Windows versions with PAE (Page
Address Extension), because it makes the assumption of four-byte entries for PD and PT.

7

When Malware Meets Rootkits

FFiigguurree 33:: TThhee MMyyffiipp..HH vvaarriiaanntt iimmpplleemmeenntteedd aa DDKKOOMM rroouuttiinnee ppaattcchhiinngg pphhyyssiiccaall mmeemmoorryy oobbjjeecctt,, bbuutt iitt uusseess
aa ssiimmpplliiffiieedd ttrraannssllaattiioonn aallggoorriitthhmm ffoorr aaddddrreesssseess..

AA cclloosseerr llooookk aatt tthhee rroooottkkiitt ccooddee uusseedd bbyy FFaannbboott
W32/Fanbot.A@mm is a worm that has all the typical mass-mailing techniques. This variant comes
packed with NsPack and installs itself as a service. It can spread by email, copy itself into P2P folders, and
exploit the universal plug-and-play vulnerability (MS05-039).

Once unpacked (276 KB of code), it’s possible to locate the DKOM routine by searching for the Unicode
string ‘\Device\PhysicalMemory’ and tracing its reference back to the virtual address 0x40F8A5, where
the rootkit code begins. The nice thing (for malware writers) is that the rootkit routine of the worm is
written in a modular way so that it can easily be extracted and reused in any other malware.

First, the worm loads the NTDLL.DLL library and gets the APIs that are necessary to operate
(RtlInitUnicodeString and ZwOpenSection).

8

When Malware Meets Rootkits

Next, it checks the OS version and uses an interesting technique to locate the PDB (Page Directory Base)
of the ‘System’ process. DKOM rootkits need to locate the System process in order to get its PDB (which is
necessary for physical address translation). For example, the FU rootkit tries to locate System by iterating
all the EPROCESS structures and looking for the ‘System’ string in the name. Other rootkits find the
System process by checking UniqueProcessID, because on Microsoft systems the following assumption is
usually true:

• Windows NT / 2000 => ‘System’ PID = 8
• Windows XP / 2003 => ‘System’ PID = 4

However, W32/Fanbot.A uses a completely different method: it does not scan for a string or PID – it only
checks the OS version and locates the PDB of the System process directly using one of the following
offsets (as explained in [10]):

• Windows 2000 => ‘System’ PDB = 0x30000
• Windows XP => ‘System’ PDB = 0x39000

At this stage the worm is ready to open ‘\Device\PhysicalMemory’ using ZwOpenSection. If it fails (usually
because the current user has no rights to manipulate this object) then it uses the trick (described by
Crazylord) of changing ACLs (adding Read/Write permissions) for the physical memory.

Once the worm has located the System page directory, it reads the PDB from memory and keeps a copy of
it for all the address translations. The rootkit routine follows this procedure:

1. Locate the current running ETHREAD structure at 0xFFDFF124 (FS:0x124).
2. From ETHREAD jump to EPROCESS, using the pointer at offset 0x44 of the structure.
3. Read FLINK and BLINK from ActiveProcessLinks of the current EPROCESS structure (these

offsets change from 2000 to XP).
4. Unlink the current EPROCESS from the ActiveProcessLinks list by connecting the previous

process with the next one (just a swap of a few DWORDS!).

The Fanbot worm works under Windows 2000 and XP because the author implemented all the necessary
checks for different OS versions, and because it uses the right offsets to handle the EPROCESS structures
correctly, according to the following table:

9

When Malware Meets Rootkits

Table 1: Some important offsets of the EPROCESS structure that change for different Windows versions.
After the end of the rootkit routine, the worm executable is completely hidden and disappears from the
process list.

WWiinnddoowwss 22000000 WWiinnddoowwss XXPP WWiinnddoowwss 22000033

PID offset 0x94 0x9C 0x84

FLINK offset 0xA0 0x88 0x88

BLINK offset 0xA4 0x8C 0x8C

After the end of the rootkit routine, the worm executable is completely hidden and disappears from the
process list.

FFiigguurree 44:: TThhee rroooottkkiitt rroouuttiinnee ooff WW3322//FFaannbboott..AA wwoorrmm iiss aabbllee ttoo wwoorrkk uunnddeerr WWiinnddoowwss 22000000 aanndd XXPP,, aass iitt
kknnoowwss aallll tthhee ccoorrrreecctt ooffffsseettss ooff sseevveerraall kkeerrnneell ssttrruuccttuurreess..

10

When Malware Meets Rootkits

RRoooottkkiitt tteecchhnnoollooggiieess iinn tthhee wwiilldd
The recent Sony digital rights management case is evidence of how mature rootkit technology has become
a commercial entity ([11] and p.11). This rootkit has caused general consumer uproar as can be seen
simply on Amazon’s feedback pages for several Sony CDs that ship with the rootkit (see
http://www.amazon.com/). But if rootkits have gained this much popularity in the software industry,
what’s been happening in the ‘malware industry’? A process of rootkit integration has already started and
many examples of different rootkit techniques can be seen in Trojans, worms, and now also in spyware
and adware programs. Malware writers have learned the lesson and they know that the hardest enemy to
fight is the one that nobody can see!

Table 2: List of malware and security risks that use rootkit techniques to hide files, processes or registry
keys. In some cases it is possible to observe completely different rootkit techniques used by variants of
the same family (e.g. Backdoor/Graybird). Some malware, like W32/Loxbot.A@mm, contain a modified
copy of FU rootkit (msdirectx.sys) embedded in their code.

a - Data refers to the threat family, not just an individual threat.

11

NNaammee TThhrreeaatt CCaatteeggoorryy RRoooottkkiitt CChhaarraacctteerriissttiiccss

Worm
/Virus

Backdoor
/Trojan

Adware/
Spyware

DLL/IAT
hooking

SDT/IDT
hooking

DKOM
Use SYS

driver
Use “Physical

Memory”

Adware/Elitebar X X

Adware/CommonName X X X

Spyware/Search X X X

Spyware/Elpowkeylogger X X X

Spyware/Apropos.C X X X X

Backdoor/Graybird a X X X

Backdoor/Haxdoor a X X X

Backdoor/Darkmoon a X X X

Backdoor/Berbew a X X X X

Backdoor/Ryejet a X X X

Trojan/Drivus X X X

PWSteal/Raidys X X X

W32/Spybot.NLX X X X

W32/Theals.A@mm X X

W32/Tdiserv.A X X X

W32.Mytob.AR@mm X X

W32.Loxbot.A@mm X X X

W32.Myfip.H@mm X X X

W32.Fanbot.A@mm X X X

When Malware Meets Rootkits

12

Fi
gu

re
 5

: F
an

bo
t p

ro
ce

ss
 to

ta
lly

 d
is

ap
pe

ar
s

fr
om

 ta
sk

 li
st

 a
nd

 c
an

no
t b

e
de

te
ct

ed
 (a

nd
 k

ill
ed

) u
si

ng
st

an
da

rd
 to

ol
s.

When Malware Meets Rootkits

RReeffeerreenncceess
[1] Patrick Runald, ‘The trouble with rootkits’, Virus Bulletin, September 2005, p.4.
[2] Description of W32/Fanbot.A@mm, http://securityresponse.symantec. com/avcenter/venc/data/
w32.fanbot.a@mm.html.
[3] Greg Hoglund and Jamie Butler, Rootkits: Subverting the Windows Kernel, Addison-Wesley
Professional, 2005.
[4] ‘modGREPER’, a hidden module detector created by Joanna Rutkowska,
http://invisiblethings.org/tools/ modGREPER/modGREPER-0.2-bin.zip.
[5] Sd and Devik, ‘Linux on-the-fly kernel patching without LKM’, Phrack #58, Article 7,
http://www.phrack.org/show.php?p=58&a=7.
[6] FU Rootkit, http://www.rootkit.com/ project.php?id=12.
[7] ‘Win2K Kernel Hidden Process/Module Checker’ KprocCheck by SIG^2 http://www.security.org.sg/
code/kproccheck.html.
[8] Crazylord, ‘Playing with Windows /dev/(k)mem’, Phrack #58, Article 16, http://www.phrack.org/
show.php?p=59&a=16.
[9] Pankaj Garg, ‘Windows Memory Management’, http://www.intellectualheaven.com/Articles/
WinMM.pdf.
[10] Mark Russinovich and David Solomon, Microsoft Windows Internals, Fourth Edition, Microsoft Press,
2004.
[11] XCP (eXtended Copy Protection), the digital audio protection used by Sony which makes use of
rootkit technology http://www.xcp-aurora.com/.

13

When Malware Meets Rootkits

AAbboouutt tthhee AAuutthhoorr
Elia Florio is a software engineer with the Symantec Security Response team, based in Dublin, Ireland.
Elia graduated from the University of Calabria (UNICAL), Italy with a Bachelor of Computer Engineering in
2003. Elia previously worked for Value Partner and for Accenture on a variety of projects, including
security-related consulting. Elia has written several articles for industry magazines and has contributed to
a number of vulnerability announcements.

14

AAbboouutt SSyymmaanntteecc
Symantec is the global leader
in information security, providing
a broad range of software,
appliances, and services designed
to help individuals, small and
mid-sized businesses, and large
enterprises secure and manage
their IT infrastructure.
Symantec’s Norton™ brand of
products is the worldwide
leader in consumer security and
problem-solving solutions.
Headquartered in Cupertino,
California, Symantec has
operations in 35 countries.
More information is available
at www.symantec.com.

Symantec has worldwide
operations in 35 countries.
For specific country offices and
contact numbers, please visit
our Web site. For product
information in the U.S., call
toll-free 1 800 745 6054.

Symantec Corporation
World Headquarters
20330 Stevens Creek Boulevard
Cupertino, CA 95014 USA
408 517 8000
800 721 3934
www.symantec.com

Symantec and the Symantec logo are U.S. registered trademarks of Symantec
Corporation. Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.
Other brand andproduct names are trademarks of their respective holder(s). Any
technical information that is made available by Symantec Corporation is the
copyrighted work of Symantec Corporation and is owned by Symantec
Corporation. NO WARRANTY. The technical information is being delivered to you
as-is and Symantec Corporation makes no warranty as to its accuracy or use. Any
use of the technical documentation or the information contained herein is at the
risk of the user. Copyright © 2005 Symantec Corporation. All rights reserved.
04/05 10406630

