d1dVd JLIHM

ASNOdSdd ALIINIAS DJLINVINAS

’ symantec.

When Malware
Meets Rootkits

Elia Florio
Symantec Security Response, Dublin

Originally published by Virus Bulletin, December 2005. Copyright held by Virus Bulletin, Ltd., but is made
available free of charge by permission of Virus Bulletin. For more information on Virus Bulletin, please
visit http;//virusbtn.com/

White Paper: Symantec Security Response

When Malware
Meets Rootkits

Contents

ADSEFACT. ...ttt ettt sttt ettt e e st et s 4
Introduction - the art of hiding expressed in many forms..........cccocooeeeeiieeiieciiieee e, 4
Ghost processes iNthe SYSTEM...........voiiiiiee et eeraaee e 8
Worms using \Device\PRYSICAIMEMOIY.........c.coouiiuiiiiiiiceeeeecee ettt 7
A closer look at the rootkit code used by Fanbot................ooooriiiieeeee, 8
Rootkit technologies iINthe Wild...............oooo e 11
REFEIENCES. ...ttt ettt et st s b st e saeesaeesbeesaeens 13
ADBOUL the AUTRON..... ..ottt sttt e st 14

When Malware Meets Rootkits

Abstract

There was a time when Windows rootkits were just stand-alone applications, but today it’s very common
to find advanced rootkit technologies used in worms and Trojans — and sometimes even in non-malicious
programs. Although Windows rootkits were introduced only few years ago, the number of programs that
currently use stealth technology, or that will use it in the future, is growing very quickly, sometimes with
unexpected consequences. This article will not cover all the techniques of rootkits, since the topic is huge.
For information on rootkits and how they work on Windows operating systems, refer to [1]. This paper
deals only with a specific rootkit technique known as ‘DKOM using \Device\PhysicalMemory’. This
technique was observed recently in the worm W32/Fanbot.A@mm [2], which spread worldwide in October
2005. The paper will also present some data on rootkit usage in malicious threats.

Introduction — the art of hiding expressed in many forms

Rootkits are usually divided in two categories: user-mode rootkits that work in Ring 3 mode, and kernel-
mode rootkits that operate in Ring0. The latter represents a more sophisticated piece of code, which
requires a lot of programming knowledge and familiarity with the Windows kernel.

Kernel-mode techniques are very powerful and the most advanced rootkits are able to subvert the
Windows kernel [3] and hide files, folders, registry keys, ports and processes. This type of rootkit needs to
operate as a system driver to manipulate the kernel because this interaction requires Ring0 privileges,
which are not available for normal executables in userland space.

The major drawback of this implementation is that the rootkit always comes with two different binaries
(one SYS driver and one EXE that installs the driver) and this fact raises some barriers to the practical
integration of this type of threat into real applications. Even if the SYS driver can hide everything
(including itself), it needs to keep static structures installed in kernel memory which can be detected [4].
Moreover, the installation process requires interaction with the Windows Service Control Manager (SCM),
or alternatively uses the undocumented APl ZwSetSystemInformation. Both methods can create some
evidence of the threat’s presence or can be blocked during the installation phase.

Ghost processes in the system

For these reasons, the next generation of rootkits started to approach the Windows kernel in a different
way, avoiding the need for a SYS driver and system hooks. This goal is achieved by mixing the idea
introduced by the FU rootkit (known as DKOM, Direct Kernel Object Manipulation) with another technique
that involves the manipulation of the \Device\PhysicalMemory object and does not require any additional
driver. The method of ‘playing’ with the physical memory object was imported from the Linux world,
where another (in)famous rootkit known as ‘SucKIT’ [5] is gaining a lot of popularity.

DKOM rootkits are able to manipulate kernel structures and can hide processes and ports, change
privileges, and fool the Windows event viewer without many problems. This type of rootkit hides

When Malware Meets Rootkits

processes by manipulating the list of active processes of the operating system, changing data inside the
EPROCESS structures. This method is well documented and was first implemented by the FU rootkit [6].

Essentially, the Windows operating system maintains two different lists of all process and thread
information (PID, name, token, etc.). Every process has an associated EPROCESS structure, which is linked
to the previous and the following process (double-linked list) using some pointers. Figure 1 shows, with a
simplified diagram, how EPROCESS structures are interconnected.

FS[0x124] | ETHREAD
KTHREAD
KAPC STAIE
Ox44 *EPROCESS
EPROCESS w EPROCESS
PCB PCB PCB
(KPROCESS) (KPROCESS) (KPROCESS)
| "UniqueProcessID | | "UnigueProcessID | | "UniqueProcessiD |
ActiveProcessLinks ActiveProcessLinks ActiveProcessLinks
LIST ENTRY { LIST ENTRY { LIST ENTRY {
FELIMK] MK P MK
"BLIMNK I "BLINK I TBLINK I
*"Token		*Token		"Token
ImageFileName[ImageFileName]		ImageFileMName]
PEB		PEB		PEE

Figure 1: Windows EPROCESS structures are connected to each other by a double-linked list.

However, many people don’t realize that processes don’t run; only threads run. The Windows operating

5

When Malware Meets Rootkits

system uses a pre-emptive, priority-based, round robin method of scheduling threads, swapping the
active status from one thread to another (process structures are not involved in the switch).

Considering this fact, DKOM rootkits exploit a very simple trick: they unlink their own EPROCESS from
this list, connecting the pointers of the previous and of the next EPROCESS in a way that will skip the
‘ghost’ process.

FS:[0x124] | ETHREAD

KTHREAD

KAPC STATE

Oxd4 *EPROCESS

EPROCESS

PCB
(KPROCESS)

EPROCESS

PCB
(KPROCESS)

| "UniqueProcessID | | *UniqueProcessiD |

ActiveProcessLinks ActiveProcessLinks

LIST ENTRY { LIST ENTRY {
*FLINK *ELINK
*BLINK F e "BLINK }
\
| *Token | | *Token |

| ImageFileMName] | [ImageFileMame] |

| PEB | | PEE |

Figure 2: To hide a process the DKOM rootkit simply unlinks it from the list, linking its previous process
with the next one. It’s just a swap of a few pointers.

When Malware Meets Rootkits

With this simple change, a process become invisible to the task manager and other common process
manager tools, but it still runs in the system as all its threads are still active. Only advanced tools (e.g.
KProcCheck [7]) can detect the presence of the hidden process by traversing the handle table list or the
scheduler thread list.

This kind of threat (DKOM rootkit that uses \Device\PhysicalMemory) is quite hard to code because it
requires the following abilities:

1. The ability to obtain read/write access to the \Device\PhysicalMemory object.

2. The ability to manipulate the EPROCESS/ETHREAD structure correctly (these structures differ
greatly between Windows 2000, XP and 2003).

3. The ability to locate the ‘System’ process in kernel memory and patch it.

4. The ability to translate the virtual address of a process to a physical address in memory.

While there have been good examples of the first three steps [8] in the past, the last step is the most
difficult as the Windows addressing scheme is based on a complex layer of multiple arrays. Contiguous
virtual addresses of a process may have different physical addresses mapped into kernel memory [9].

Worms using \Device\PhysicalMemory

It was surprising to find a practical (and well written) implementation of this rootkit technique inside the
W32/Fanbot.A@mm code. W32/Fanbot.A is not the only worm that uses the DKOM and
\Device\PhysicalMemory technique. The first worm that tried to achieve this was W32/Myfip.H. However,
the routine observed in this worm was a little buggy and did not work well under XP and 2003 systems as
it used a simplified memory model (the trick introduced in [8]) to map logical addresses to physical
addresses.

W32/Myfip.H tried to ‘emulate’ the kernel APl MmGetPhysicalAddress by checking if the virtual address
was in the range (0x80000000 - 0XxA0000000) and applying to it an AND mask of Ox1FFFFO00. However,
MmGetPhysicalAddress changes a lot from Windows 2000 to XP, so the correct way to translate the virtual
address is to use the page tables of the specific process that owns the virtual address to be translated.

Instead, W32/Fanbot.A implements a good algorithm for address translation that considers the Page
Directory and the Page Table (including tests for large pages).

It also follows all the basic memory management rules: it extracts PDindex from the virtual address, gets
the correct PDE, locates the corresponding PTE, and finally calculates the correct physical address. The
only limitation of the W32/Fanbot.A code is that it does not work on Windows versions with PAE (Page
Address Extension), because it makes the assumption of four-byte entries for PD and PT.

When Malware Meets Rootkits

-text:00408364F SE
-text:0A4683650 5B
-text:08483651 C9
-text:00483652 C2 B4 B0
-text:po483652
-text:pO4B3655
-text:9o483655
-text:8a483655
-text:90483655
-text:80483655
-text:po483655

-text: 004083655
-text:88483655
-text:80483655
-text:90483655
-text:88483655 55
-text:p0483656 8B EC
-text:004683658 8B 45 B8
-text:B804683658B 3D 60 60 06 88
-text:00483668 72 18
-text:00483662 3D 68 60 680 A8
-text:00483667 73 B89
-text:00403669 25 80 FO FF 1F
-text:00468366E C9
-text:80408366F C2 B84 BB
-text:90483672
-text:00483672
text:po483672
text:pO403672

* .text:@B403672 BE 00 06 08 0A
* .text:@884083677 C9

* .text:08403678 C2 04 88
-text:00483678
text:po483678
-text:D040367B
-text:8048367B
-text:0048367B
-text:0048367B
-text:0048367B
-text:pO48367B
-text:0048367B

pop esi
pop ebx
leave

retn 4

; END OF FUNCTION CHUNK FOR patch_SecurityInfo_DACL
P SUBROUT I NE DI
; Attributes: bp-based frame

translatePhysical AND_1FFFFB88 proc near
; CODE XREF: DKOM_rootit+1A}

arg_8a = dword ptr &
push ebp
nov ebp, esp
mov eax, [ebp+arg_A]
cmp eax, BEABBAABBH
jb short not _in range
cmp eax, 0n h
inb short not in range
| and eax, 1FFFFBBBh I
Teave
retn 4
not_in_range: ; CODE XREF: translatePhysic
; translatePhysical_AHD_1FFF
mov eax, A
leave
retn 4

translatePhysical AND_1FFFFO88 endp

PN SUBRODUTINE Jpp b iiiiiiiiiinininintiin
; Attributes: noreturn bp-based frame

DKOM_rootit proc far ; CODE XREF: sub_483BCO6+68Lp

Figure 3: The Myfip.H variant implemented a DKOM routine patching physical memory object, but it uses
a simplified translation algorithm for addresses.

A closer look at the rootkit code used by Fanbot

W32/Fanbot.A@mm is a worm that has all the typical mass-mailing techniques. This variant comes
packed with NsPack and installs itself as a service. It can spread by email, copy itself into P2P folders, and
exploit the universal plug-and-play vulnerability (MS05-039).

Once unpacked (276 KB of code), it’s possible to locate the DKOM routine by searching for the Unicode
string ‘\Device\PhysicalMemory’ and tracing its reference back to the virtual address Ox40F8A5, where
the rootkit code begins. The nice thing (for malware writers) is that the rootkit routine of the worm is
written in a modular way so that it can easily be extracted and reused in any other malware.

First, the worm loads the NTDLL.DLL library and gets the APIs that are necessary to operate
(RtlinitUnicodeString and ZwOpenSection).

8

When Malware Meets Rootkits

Next, it checks the OS version and uses an interesting technique to locate the PDB (Page Directory Base)
of the ‘System’ process. DKOM rootkits need to locate the System process in order to get its PDB (which is
necessary for physical address translation). For example, the FU rootkit tries to locate System by iterating
all the EPROCESS structures and looking for the ‘System’ string in the name. Other rootkits find the
System process by checking UniqueProcessID, because on Microsoft systems the following assumption is
usually true:

» Windows NT / 2000 => ‘System’ PID = 8
» Windows XP / 2003 => ‘System’ PID = 4

However, W32/Fanbot.A uses a completely different method: it does not scan for a string or PID - it only
checks the OS version and locates the PDB of the System process directly using one of the following
offsets (as explained in [10]):

* Windows 2000 => ‘System’ PDB = 0x30000
e Windows XP => ‘System’ PDB = 0x39000

At this stage the worm is ready to open ‘\Device\PhysicalMemory’ using ZwOpenSection. If it fails (usually
because the current user has no rights to manipulate this object) then it uses the trick (described by
Crazylord) of changing ACLs (adding Read/Write permissions) for the physical memory.

Once the worm has located the System page directory, it reads the PDB from memory and keeps a copy of
it for all the address translations. The rootkit routine follows this procedure:

1. Locate the current running ETHREAD structure at OxXFFDFF124 (FS:0x124).

2. From ETHREAD jump to EPROCESS, using the pointer at offset 0x44 of the structure.

3. Read FLINK and BLINK from ActiveProcessLinks of the current EPROCESS structure (these
offsets change from 2000 to XP).

4. Unlink the current EPROCESS from the ActiveProcessLinks list by connecting the previous
process with the next one (just a swap of a few DWORDS!).

The Fanbot worm works under Windows 2000 and XP because the author implemented all the necessary
checks for different OS versions, and because it uses the right offsets to handle the EPROCESS structures
correctly, according to the following table:

When Malware Meets Rootkits

Table 1: Some important offsets of the EPROCESS structure that change for different Windows versions.
After the end of the rootkit routine, the worm executable is completely hidden and disappears from the
process list.

Windows 2000 Windows XP Windows 2003
PID offset 0x94 0x9C 0x84
FLINK offset 0xAO 0x88 0x88
BLINK offset O0xA4 0x8C 0x8C

After the end of the rootkit routine, the worm executable is completely hidden and disappears from the
process list.

-text:0B4BF626 var_4 = dword ptr -4
-text:BB4BF626
* .text:0048F626 55 push ebp
* .text:8B48F627 89 ES mov ebp, esp
* .text:8848F629 83 EC 24 sub esp, 24h
* .text:0048F62C 56 push esi
* _text:@8848F62D 57 push edi
* .text:08848F62E C7 05 14 9C 42 @9 94 @@+ mov ds:UersionInformation.dwDSVersionInfoSize, 148
* .text:BB4BF638 68 14 9C 42 89 push offset VersionInformation ; lpVersionInformation
* .text:@848F63D E8 32 1C 88 09 call GetUersionExA
* .text:0040F642 83 3D 18 9C 42 06 85 cmp ds:UersionInformation.dwHajorVersion, 5 ;
.text:0046F642 ; duMajorVersion=5 for WinZK/XP/.HET
* .text:8848F649 74 07 jz short goodVersionForRookit_calculatePDBoffset
* .text:BB4BF64B 31 CA Hor eax, eax
* _text:0040F64D E9? ED 00 00 00 jmp exit
-text:B8B84BF652 H
.text:0B4BF652
-text:B048F652 goodUersionForRookit_calculatePDBoffset:
_text:APpUBF652 ; CODE XREF: getAccessToPhysHem and_map_PDB_of_SYSTEM+23Tj
* _text:B8B840F652 A1 1C 9C 42 060 nov eax, ds:UersionInformation.dwHinorUersion
* _text:@B848F657 89 CA ar eax, eax ; dulinorUersion=8 for WinNT/2K
-text:0040F657 ; dwMinorVUersion=1 For WinXP/.HET
* .text:8B4BF659 74 87 jz short case_WINZK_PDBRE3BOBAH
* .text:BB40F65E 83 F8 01 cmp eax, 1
* _text:0040F65E 74 OB jz short case_WINXP_PDBE39O0G
* .text:0040F668 EB 12 jmp short exit_EAX_8

-text:00468F662
-text:0046F662

_text:0040F662 case_WIN2K_PDBE30000: ; CODE XREF: getAccessToPhysHem_and_map_PDB_of_SYSTEM+33Tj
* .text:@@48F662 C7 45 DC 68 0@ 083 88 nov [ebproffset_of_PageDirectoryBase],
* .text:0048F669 EB 18 jmp short open_PhysHen

-text:B04BF66B H

-text:0040FG6E

-text:0040F66E case_WINHXP_PDBE39006: ; CODE XREF: getAccessToPhysHem_and_map_PDB_of_SYSTEW+38Tj
* .text:0O4OF6G6B C7 45 DC 0@ 98 B3 06 nou [ebproffset_of_PageDirectoryBase], [39808n]
* .text:8848F672 EB 07 imp short open_PhysHem

-text:0040F67 4 H

-text:0040FG74

-text:0040F674 exit_EAX_8: ; CODE XREF: getAccessToPhysMem_and_map_PDB_of_SYSTEW+3ATj
* .text:8848F674 31 CA xor eax, eax
® .text:808408F676 E9 C4 08 00 08 jmp exit

-text:0040F67B H

-text:0040FG7B

-text:B84BF67B open_PhyskHem: ; CODE XREF: gEtn|:[:ESSTuPhy§Mem_and_map_PDB_uF_SVSTEM+h31‘j

Figure 4: The rootkit routine of W32/Fanbot.A worm is able to work under Windows 2000 and XP, as it
knows all the correct offsets of several kernel structures.

10

When Malware Meets Rootkits

Rootkit technologies in the wild

The recent Sony digital rights management case is evidence of how mature rootkit technology has become
a commercial entity ([11] and p.11). This rootkit has caused general consumer uproar as can be seen
simply on Amazon’s feedback pages for several Sony CDs that ship with the rootkit (see
http://www.amazon.com/). But if rootkits have gained this much popularity in the software industry,
what’s been happening in the ‘malware industry’? A process of rootkit integration has already started and
many examples of different rootkit techniques can be seen in Trojans, worms, and now also in spyware
and adware programs. Malware writers have learned the lesson and they know that the hardest enemy to
fight is the one that nobody can see!

Table 2: List of malware and security risks that use rootkit techniques to hide files, processes or registry
keys. In some cases it is possible to observe completely different rootkit techniques used by variants of
the same family (e.g. Backdoor/Graybird). Some malware, like W32/Loxbot. A@mm, contain a modified
copy of FU rootkit (msdirectx.sys) embedded in their code.

Name Threat Category Rootkit Characteristics
Wgrm Backqoor Adware/ DLL/!AT SDT/I.DT DKOM Usg SYS| Use “Physical
/Virus /Trojan |Spyware hooking hooking driver Memory”

Adware/Elitebar X X
Adware/CommonName X X X
Spyware/Search X X X
Spyware/Elpowkeylogger X X X
Spyware/Apropos.C X X X X
Backdoor/Graybird @ X X X
Backdoor/Haxdoor @ X X X
Backdoor/Darkmoon @ X X X
Backdoor/Berbew @ X X X X
Backdoor/Ryejet @ X X X
Trojan/Drivus X X X
PWSteal/Raidys X X X
W32/Spybot.NLX X X X
W32/Theals.A@mm X X
W32/Tdiserv.A X X X
W32.Mytob.AR@mm X X
W32.Loxbot. A@mm X X X
W32.Myfip.H@mm X X X
W32.Fanbot.A@mm X X X

a - Data refers to the threat family, not just an individual threat.

11

When Malware Meets Rootkits

'S|00} piepue)s

Buisn (paj| pue) pajodlap aq jouued pue j}si| yse} wou sieaddesip Ajjejo} ssasolid joqued :G ainbi4

BAREEEEE |J4442180
LAUTO4ATLUIA] NPOL: "SNHATEEM 135440 |380LERAR mu__uINme

sassasoad Jo Joqunu Tejo]je

axa s yoayyaoagy
axat 150 Ins
axa-joyshaa
HEA " DHIATIO
HEA"HINHSDISN
axa-upniu

axa - uea aydn
axa - 103U IN
axa-zemaaobu

XL 922
143 Ud pazzoddns
30U anlssE4 STR
T35S WM YY S
[S8 PH-PH-PZ1*
IH T3] NTadWE]
SrgEreeriinsiln

Aaniat £ 120 $5 B2 95 28 ZE B0 HA 24 59 92 22 59 £2 B2 £L

4UtEUT.T453p0a] Un)
31UT734"U0] 30350

sassasoad jo

[AMI~=D]

120U 33843 250]
P I [WO3UEY4] "

1115H

it aXa s Ins e .
——[UBPPTHI-- 1 ZEh axa- joyshoed 153 and p
9% AS[UONS - wHd ST :
ol e wmwwwmmmwmz N Ve i R i |l
wmw.mw.ﬂaﬁaxﬁ axa 2D I as01g $371ThE0 AN Zon 10| @eaesice £3 ¢ |[obed
PT axa-upaiu =raoy [E8FTEF] 250 ¥ld 080M0_HSNd |seck+128 Scdd ° | [5+ed
axe TBuassaa axa-ueagaydn A7zen szsapnon sus i | dasiauei g - ||5eed
wmw”amw”—wnm axa a0 Uy dN B.&._ 153 Hand 5 - ||aseaen
3s0yIns axa-ggniaku ZEIH 103 Hsnd 25 *||2ged
axa-3soyans axa- AsToods SESABFAA SNHATZER 110 | 44443464 53 E
-as = 3 HENd :
sxa3soqans axa- ansofufs +4H3 agd bo BISE 3
wmw. amwmw o axa-aadodxa Emmm uxmmm 23 A 3
S3ITAIBS axa-Fept 1 5
ax2: uoBoTuT e hptoso0 Wil o
axa" s3d3a axa~3soyans d7gan 00248080 SHH 50 TIHI [44443414 N EEEE
wmw.wumwmmmm axar3soyans e 252800 | oeeceats S8 ¢ ||35cdan
axarasoyans %33 *HH3 noH 2062 |[3T6dE0
axa " pufl axat3s0yons REER] 2268 |[2163ak
axa-BTe axa-ssesT 20248b06 BHH"ZEN TIH3 | 44443460 53 ¢ ||216d0k
axa* U -s s ek (] et
axa- U axat380TAdas 98 °%H3 004 [seeoE@ss T16dap
Ui axa-uoBoTuTA 133 "4H3 (oK 2088 |[doed
washg punpiepugey BEEABEEA *SHHATZEN THOHS M 12 86
N TUCATIE7P1550 H1d OHONT dD |BezrasaT s
- - & - e axa“aIngDEAd S WH3 123 noH 92 PEES
ISTTATYRLA[PUeH o Tesdanedd) fif IST] S522044 axa- ssus g 'd53_00H a8 +I28 * ||1@sa
axa- puosy 4zem 20246460 SHHSEE0 1109 &3 E
0"A3TANDAS " HBN) Z OIS fig 1dasuo)—Jo— yooad NMU&& Z @ UOTSIan HI9YIoIgy axa-bre e oA o £
0— axa yIaYDIoIJH[ANIN:D] axa- jugp P ERE R 2068 i
axa- Juf, ERGER 29EE |[z3838E
N 20246460 SHHSZEN 1180 | 44443393 53 ¢ ||03cdek
waysfhig 03 HEd - |23z
s B = R |
s S5 s SIT s8 Ere
SHUTTTSS3I0AJINTIIY FO Tesdane.d] mﬂ 3ISTT SS23204]) wmmumvms SNHATZEN 1H0HS ZHr Iz EECEE
@*[2T062¢150 Hld Odomd 44 (emzra607 OggE © ||J023@w
—wmum-—ﬂ-mu..naﬂ_dn-@muq.:.—q.—v 2.018% mﬂ HQUU:OU|&QI%OO-.H Zelaq—-Z @ UoTsSJ3af HIIYDHI0AJY Xam umw MMM . mm ” MMMH P
. - E:1
d- examoaypaoady[ANIN=D 1 s 0248680 SHA 2N D | 4444458 23 ¢ |[Zozadee
TEIH 03 HEnd + ||7ozaer
gt vk 0258 | [3530k
EEROERT 2268 ||3953ak
[EEEEEEEE NI IERLEA g5 = R R e | SEAERED" wuﬂmummu nwmw MMMM&MWM - Mwmw w
956.454EA *SHHATZEN 95640408 J13 esedobongliEd 2all 3 | eedoocse peab~ (| 3353
E:1
SEaE I STO4EPE0 " GHYS Zoil 1D | 44420495 53 - ||Sdzdae
RS B E5EAmtna - GHHS Ze 3¢ |oeREnare poda~: ||JHEm0
SEREE oI BEERER alea ¢ ||3eeder
Ao g FObAEPEA SMHE EEN 1100 | 44437421 &3 ¢ ||5HEdek
. 103 Ksnd 2 2HE3ER
$2H57440°11P3U $2B5IALL HO3 153 Reng 5 SH JAp
BI095422 " 11Pay gI095422 w33 Hend Ee Bt
10000000 ¥ H134 Bovo 21 [|ZuEamb
% Thad) S1a3s1 433 dod THz b
=I5 B [B Belin (U< (Dl ol
XI&E= disH mopuFs suofdo suBnid Bngsd melh aid _M_

T&T=

j urews - nda] -

12

When Malware Meets Rootkits

References

[1] Patrick Runald, ‘The trouble with rootkits’, Virus Bulletin, September 2005, p.4.

[2] Description of W32/Fanbot.A@mm, http://securityresponse.symantec. com/avcenter/venc/data/
w32.fanbot.a@mm.html.

[3] Greg Hoglund and Jamie Butler, Rootkits: Subverting the Windows Kernel, Addison-Wesley
Professional, 2005.

[4] ‘modGREPER’, a hidden module detector created by Joanna Rutkowska,
http://invisiblethings.org/tools/ modGREPER/modGREPER-0.2-bin.zip.

[5] Sd and Devik, ‘Linux on-the-fly kernel patching without LKM’, Phrack #58, Article 7,
http://www.phrack.org/show.php?p=58&a=7.

[6] FU Rootkit, http://www.rootkit.com/ project.php?id=12.

[7]1 ‘Win2K Kernel Hidden Process/Module Checker’ KprocCheck by SIG>2 http://www.security.org.sg/
code/kproccheck.html.

[8] Crazylord, ‘Playing with Windows /dev/(k)mem’, Phrack #58, Article 16, http://www.phrack.org/
show.php?p=59&a=16.

[9] Pankaj Garg, ‘Windows Memory Management’, http://www.intellectualheaven.com/Articles/
WinMM.pdf.

[10] Mark Russinovich and David Solomon, Microsoft Windows Internals, Fourth Edition, Microsoft Press,
2004.

[11] XCP (eXtended Copy Protection), the digital audio protection used by Sony which makes use of
rootkit technology http://www.xcp-aurora.com/.

13

When Malware Meets Rootkits

About the Author

Elia Florio is a software engineer with the Symantec Security Response team, based in Dublin, Ireland.
Elia graduated from the University of Calabria (UNICAL), Italy with a Bachelor of Computer Engineering in
2003. Elia previously worked for Value Partner and for Accenture on a variety of projects, including
security-related consulting. Elia has written several articles for industry magazines and has contributed to
a number of vulnerability announcements.

14

About Symantec

Symantec is the global leader

in information security, providing
a broad range of software,
appliances, and services designed
to help individuals, small and
mid-sized businesses, and large
enterprises secure and manage
their IT infrastructure.
Symantec’s Norton™ brand of
products is the worldwide

leader in consumer security and
problem-solving solutions.
Headquartered in Cupertino,
California, Symantec has
operations in 35 countries.

More information is available

at www.symantec.com.

Symantec has worldwide
operations in 35 countries.

For specific country offices and
contact numbers, please visit
our Web site. For product
information in the U.S., call
toll-free 1 800 745 6054.

Symantec Corporation

World Headquarters

20330 Stevens Creek Boulevard
Cupertino, CA 95014 USA

408 517 8000

800 721 3934
www.symantec.com

Symantec and the Symantec logo are U.S. registered trademarks of Symantec
Corporation. Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.
Other brand andproduct names are trademarks of their respective holder(s). Any
technical information that is made available by Symantec Corporation is the
copyrighted work of Symantec Corporation and is owned by Symantec
Corporation. NO WARRANTY. The technical information is being delivered to you
as-is and Symantec Corporation makes no warranty as to its accuracy or use. Any
use of the technical documentation or the information contained herein is at the
risk of the user. Copyright © 2005 Symantec Corporation. All rights reserved.
04/05 10406630

