
Sybil attacks as a mitigation strategy against the
Storm botnet

Carlton R. Davis∗, José M. Fernandez∗, Stephen Neville†, John McHugh‡
∗École Polytechnique de Montréal,

Email: {carlton.davis, jose.fernandez}@polymtl.ca
†University of Victoria,

Email: sneville@ece.uvic.ca
†Dalhousie University,

Email: mchugh@cs.dal.ca

Abstract—The Storm botnet is one of the most sophisticated
botnet active today, used for a variety of illicit activities. A
key requirement for these activities is the ability by the botnet
operators to transmit commands to the bots, or at least to
the various segmented portions of the botnet. Disrupting these
command and control (C&C) channels therefore becomes an
attractive avenue to reducing botnets effectiveness and efficiency.
Since the command and control infrastructure of Storm is based
on peer-to-peer (P2P) networks, previous work has exploredthe
use of index poisoning, a disruption method developed for file-
sharing P2P networks, where the network is inundated with false
information about the location of files.

In contrast, in this paper we explore the feasibility of Sybil
attacks as a mitigation strategy against Storm. The aim here is to
infiltrate the botnet with large number of fake nodes (sybils), that
seek to disrupt the communication between the bots by inserting
themselves in the peer lists of “regular” bots, and eventually re-
reroute or disrupt “real” C&C traffic. An important differen ce
with index poisoning attacks is that sybil nodes must remain
active and participate in the underlying P2P protocols, in order
to remain in the peer list of regular bot nodes. However, theydo
not have to respond to the botmaster’s commands and participate
into illicit activities. First, we outline a methodology for mounting
practical Sybil attacks on the Storm botnet. Then, we describe
our simulation studies, which provide some insights regarding
the number of sybils necessary to achieve the desired level of
disruption, with respect to the net growth rate of the botnet. We
also explore how certain parameters such as the duration of the
Sybil attack, and botnet design choices such as the size of a bot’s
peer list, affect the effectiveness of the attack.

I. I NTRODUCTION

The Storm botnet is currently one of the most sophisticated
botnet infrastructures. It has been garnering much attention
both in the anti-virus research community and electronic media
[1]–[6]. Estimates of the number of computers infected by
the Storm malware vary widely and range from 40,000 to 2
million [7]–[10]. Storm covers a wide geographical region:
the authors of [7] reported that they found Storm bots in
over 200 countries. Disinfection efforts by Microsoft have
had some success in removing the Storm malware from large
number of computers. Microsoft claims that in the last four
months of 2007, its Malicious Software Removal Tool (MSRT)
disinfected more than 526,000 personal computers plagued
with the Storm malware [11]. This prompted personnel repre-
senting Microsoft to claim that the corporation has succeeded

in crushing Storm [11]. Researchers agree that the size of the
botnet has reduced compared to its size in mid 2007 [12]–
[14]. However, some researchers believe that the reductionin
size is due to the botnet operators’ design choices rather than
due to Microsoft disinfection efforts [15]. Storm continues to
recruit new bots, likely at a higher rate than bots are being
disinfected. IronPort reported that Storm infects and re-infects
about 900,000 computers monthly [9]. The botnet operators
however, appear to be leaving large number of bots dormant
for given time periods and rotate the activities of the botnet
between sets of bots so that the bots can take turns being
dormant and active in ways that minimise the detection of
their activities.

It is becoming increasingly evident that the main goal of
Storm creators and operators is to generate revenue from illicit
activities perpetuated through the botnet. The illicit or criminal
activities for which it is being used include email spams,
phishing attacks, instant messaging attacks, “pump-and-dump”
stock scams, marketing and sales of counterfeit pharmaceu-
ticals, etc. It also appears that the operators of Storm have
partitioned the botnet by assigning unique encryption keysto
different segments, and rent out these segments individually
(in part or in their entirety) to other criminals entities to
use in their own illicit activities. A key requirement for this
“business model” is that the botnet operators must be able
to transmit commands to the bots, so that they may perform
the tasks that they have been hired to do. Disrupting these
command and control (C&C) channels therefore becomes
an attractive avenue to reducing botnets effectiveness and
efficiency. Previous generations of botnets, some still being
currently used, employ IRC to disseminate commands to
bots that are “listening in” to designated botnet C&C chat
rooms. These botnets are relatively easy to detect and disrupt
once the server is identified. Probably for that reason, newer
botnets including Storm, use more resilient peer-to-peer (P2P)
networks in order to disseminate commands to the bots.

In previous work [16], we have investigated the effective-
ness of collaborative disinfection schemes against P2P-based
botnet C&C infrastructures, where information regarding the
connectivity of a botnet is used in the actual disinfection
process. Our simulation studies revealed that this approach

works well for scale-free networks such as Barabási-Albert
networks [17] and unstructured P2P overlay networks such as
Gnutella [18], and to a lesser extent, even for Erdős-Rényi
random networks [19]. The gain in effectiveness is, however,
minimal for structured P2P overlay networks such as Overnet
[20], precisely the network architecture Storm utilises. The
resilience of Overnet against targeted attack —where selected
nodes are removed following a deliberate method— can be
attributed to the fact that the protocol stipulates an upperbound
for the number of nodes that can be connected to any given
node. Even if collaborative disinfection has been shown to be
significantly more effective compared to random disinfection,
owing to the large geographical area that Storm bots resides
in, the implementation of these disinfection schemes is limited
due to the jurisdiction issues involved.

There is therefore the need to explore other mitigation
schemes which can be used in combination with disinfection
efforts to attenuate the threat of the Storm botnet. In this paper,
we present our findings pertaining to a feasibility study we
conducted on the effectiveness of theSybil attack[21] as a
mitigation strategy against Storm. The main contributionsof
the paper are the following:

1) We provide some pointers regarding sybil population
size —compared to the botnet growth rate— that are
necessary to achieve desired level of disruption of the
botnet C&C.

2) Our results give some indications about how the duration
of the Sybil attack affects the degree of effectiveness
of the attack. These findings can be used to fine-tune
attacks to maximise efficiency.

3) We present results which indicate that botnet operator
design choices, such as the size of bots’ peer-list, do not
seem to have any significant effect on the effectiveness
of Sybil attacks.

The rest of the paper is structured as follows. Section II
starts with background information about the Storm botnet,
the Overnet P2P overlay network that it uses for its C&C
infrastructure, and how it uses it. We present related worksin
Section III, and outline how our work differs from previous
research efforts. Toward the end of this section, we outline
how a practical Sybil attack can be mounted on Storm. In
Section IV, we give detail about the simulation setup and the
performance measures we used to assess the effectiveness of
Sybil attacks. We present the simulation results in SectionV,
and in Sections VI and VII, we discuss the significance of the
results, summarise the findings and present ideas for future
work.

II. BACKGROUND

Storm uses a modified Overnet P2P protocol for its com-
munication architecture. We present an overview of Overnet
below.

A. Overview of Overnet

Overnet is a popular proprietary file sharing overlay network
protocol which implements a distributed hash table (DHT)

algorithm called Kademlia [22]. Each node participating inan
Overnet network generates a 128-bit ID for itself when it first
joins the network. The ID is transmitted with every message
the node sends. This permits recipients of messages to identify
the sender’s existence, as required.

Each node in an Overnet network stores contact information
about some of the other nodes in the network, in order
to appropriately route query messages. This information is
organised inlists of 〈IP address, UDP port, ID〉 triplets, where
each lists contains those nodes whose distance is between
2i and 2i+1 from itself, where0 < i < 128; thus there
can be potentially up to 128 such lists. Here, the distance
d(x, y) between two IDsx and y is defined as the bitwise
exclusive or (XOR) ofx andy interpreted as an integer,i.e.,
d(x, y) = x ⊕ y.

These lists are also referred to ask-buckets as they contain
at mostk nodes, wherek is a configurable parameter. Records
in a k-bucket are kept sorted by time last seen, ordered by
least-recently seen at the head and the most recently-seen at
the tail. When a node (the recipient) receives a message from
another node (the sender), the recipient updates thek-bucket
corresponding to the sender (i.e. the one corresponding to the
distance between itself and the sender) as follows:

• If the sender is already in the recipient’sk-bucket, the
sender’s triplet gets moved to the tail of thek-bucket.

• If the sender’s triplet is not in the correspondingk-bucket

– If there is room left in thek-bucket, the sender’s
triplet is simply added to the tail of thek-bucket.

– Otherwise, the recipient pings the noden that is
at the head of the appropriatek-bucket (the least-
recently seen node),

∗ If n does not respond, it is evicted from thek-
bucket and the recipient adds the sender to the
tail of the appropriatek-bucket.

∗ If n does respond, the recipient movesn’s triplet
to the tail of thek-bucket and the sender’s contact
is discarded. (This provides a measure of protec-
tion against denial-of-service attacks, since only
inactive nodes are forced out of k-buckets.)

The Kademlia protocol (which Overnet implements) pro-
vides the four message types outlined below:

• PING: This message is use to probe a node to determine
if it is on-line.

• STORE: This message instructs a node to store a
〈key, value〉 pair for later retrieval; key is a 128-bit
quantity (e.g. the hash of a file identifier) and value is the
entity (e.g. the location of an audio or video file) being
search for. If a node wishes to publish a〈key, value〉 pair,
it locates thek closest nodes to the key and send them a
STORE message.

• FIND_NODE: This allows a node to search for
a node ID (a 128-bit quantity). When a node
receives a FIND_NODE message, it returns the
〈IP address, UDP port, ID〉 triplet of thek nodes it knows
about that are closest to the ID. This procedure is thus

recursive.
• FIND_VALUE: A node can issue a search for a

〈key, value〉 pair via theFIND_VALUE message. When
a node receives aFIND_VALUE message, if it has the
value, it returns it; otherwise, it returns the
〈IP address, UDP port, ID〉 triplet of thek nodes it knows
of that are closest to the key.

A noden wishing to join an Overnet network must have the
〈IP address, UDP port, ID〉 triplet of at least one node which
participates in the network. To join the network,n inserts its
contact(s) in itsk-buckets, then does a lookup for its own ID
by sending the node(s) it knows of aFIND_NODE message
to find nodes that are closest to its ID. The new noden can
then populate itsk-buckets based on messages it receives.

B. Storm C&C Infrastructure

The main difference between the Storm infrastructure and
the Overnet P2P network is that Storm nodes XOR encrypts
their messages using a 40-bit encryption key; whereas the
regular Overnet nodes do not encrypt their messages. After
the Storm binary installs itself on a victim’s machine, the
binary generates a 128-bit ID, and initialises its peer-list file
(this file is called spooldr.ini in some versions of the binary
[23] and it is the equivalent of Overnet’sk-buckets) with a
list of 100 to 300 (depending on the version of the binary)
〈ID, IP, port〉 triplets for peers which are hard-coded in the
binary. The triplets are in the form<ID>=<IP><port>00,
where<ID> is the 128-bit node ID and<IP><port>00 is
the IP address and UDP port in hexadecimal format with 00
appended [24]. For example, for the string

008052D5853A3B3D2A9B84190975BAFD=53855152054A00

the 128-bit node ID is

008052D5853A3B3D2A9B84190975BAFD ,

the IP address is 83.133.81.82 (the decimal format of
0x53855152), and the UDP port is 66890 (the decimal
equivalent of0x054A).

The newly infected node uses the list of contacts to join
the Storm botnet and the list is updated as necessary when
the Storm node receives messages from other storm nodes.
Communication within the botnet proceeds as follows: each
Storm node generates 32 different 128-bit keys each day using
a function of the formf(d, r), which takes as input the current
day (d) and a random number between 0 and 31 (r) [7]; and
sendsFIND_VALUE search queries to their contacts for these
keys. Reverse engineering analysis performed by the authors
of [24], reveals that the value associated with these keys are of
the form “*.mpg;size=*;”, where the asterisks are 16-bit
hexadecimal numbers which are presumably used to compute
the URL for a re-director —in the Storm fast-flux network
[25]— which points to a machine where binary updates and
commands for the bots are stored.

C. Methodology for mounting practical Sybil attacks

The information presented in the previous sections above,
can be used to mount practical Sybil attacks on Storm botnet
as follows. The Storm search keys for a given day can be
ascertained by capturing the communication traffic from a
Storm bot, as outlined in [7]. Similarly, the encryption key
can also be ascertained by reverse engineering a Storm binary.
Sybils can then be generated with distinguishable 128-bit IDs.
Furthermore, a single IP address can be associated with several
thousands Sybil IDs, and thus several thousands of sybils
can be run from the same machine. First, with knowledge
of the encryption key, the sybils can then infiltrate the Storm
network by sending search queries for their own keys, or by
sending numerous and unnecessaryPING, FIND_NODE and
FIND_VALUE messages to non-sybil nodes, in order to get
their IDs in thek-buckets of as many of these nodes. Second,
with knowledge of the Storm search keys for the given day, the
sybils can then reply with appropriate false information about
the corresponding values; this is calledindex poisonningin
the P2P research literature1. Other alternate disruption strate-
gies are possible. For example, a “silent denial-of-service”
attack is possible where the sybils simply do not reply to
furtherFIND_NODE andFIND_VALUE queries after having
infiltrated the network, thus reducing its performance. Finally,
the insertion of completely passive sybils complying with the
Overnet protocol but not necessarily with commands issued,
while not directly disrupting the C&C infrastructure, would
reduce botnet effectiveness and hurt the botnet operator’s
business by providing a false sense of botnet size.

III. R ELATED WORK

Sybil attacks have already been used in the context of botnet
mitigation. Holz, Steiner, Dahl, Biersack and Freiling [7]
presented a case study showing how to use sybils to infiltrate
the Storm botnet. The authors used an Overnet crawler which
runs on a single machine. It issues route requests in a breadth-
first search manner in order to find peers currently participating
in the Overnet or Storm network. The two main goals of their
study were: (a) determine the number of active Storm nodes by
infiltrating the botnet with sybils and use the sybils to “spy” on
the Storm network; and (b) determine the effect of pollution
attacks (index poisoning) by posting polluted values associated
with Storm search keys. The authors evaluate the effectiveness
of the pollution attack by simultaneously polluting the value
of a key used by Storm, and crawling the Storm network and
search for that key. Their experiment showed that by polluting
the keys that Storm uses, they were able to disrupt the botnet
communication.

Our work is complementary to that of Holzet al.’s work.
However, it can be differentiated in several ways. First of all,
we wish to study the effect of sybil attacks on C&C as a whole,
not just that of the index poisoning attacks. As mentioned

1Note however that in the botnet research literature, the term index
poisoning is used more specifically to refer to attacks that try to fool the
bots into going to the wrong URL for getting new code and commands.

earlier, other disruption strategies are possible. Second, we
wish to quantitatively study how the size of the sybil popula-
tion relative to that of the botnet affects C&C effectiveness.
Finally, we wish to know what design parameters chosen by
the botnet master could potentially reduce the effectiveness of
such attacks; in other words, we want to find out how resilient
such attacks are against botnet adjustments used as counter-
counter-measures.

Beyond Holz et al.’s work, there is an abundant line
of research focused on disrupting non-botnet P2P overlay
networks. The typical scenario for such attacks would be that
of representatives of the Recording Industry Association of
America (RIAA), or like organisations, attempting to disrupt
P2P networks, presumably in order to thwart or to discourage
the download of copyright digital files. In this context, in
addition to poisoning the indexes (i.e. the DHT) with wrong
values (pointing to incorrect addresses),pollution attackscan
also be considered where fake or bogus content is inserted into
the system, with the indexes being polluted with the additional
extra 〈key, value〉 pairs pointing to this bogus content. This
reduces performance and renders more difficult the localisation
by users of the legitimate content, i.e. thegoodputof the P2P
file sharing system. We now provide a quick overview of some
of the related research work in this area, and where necessary,
indicate how our work differ from the work in question.

Dumitriu, Knightly, Kuzmanovic and Stoica [26] presented
analytical modelling and simulation studies involving the
Gnutella [18] P2P system. Their studies investigated the effect
of file-targeted attacks and network-targeted attacks. In the
former, attackers put large number of corrupted versions of
a single file on the network; whereas in network-targeted
attacks, attackers respond to network queries for any file with
erroneous information. Their results indicate that success of
file-targeted attacks depend on the clients behaviour and that
the attack succeeds over the long term only if the clients are
unwilling to share files and they are slow to remove corrupt
files from the machine. The network-targeted attacks, however,
are effective in decreasing the system goodput.

Christin, Weigend and Chuang [27] conducted a measure-
ment study in content availability for four (Gnutella, eDonkey,
Overnet and FastTrack) P2P overlay networks. Their work
investigated the impact of pollution and poisoning on content
availability in file sharing networks. Their results indicate that
in order for pollution and poisoning to be effective in reducing
content availability of popular files in the P2P networks they
considered, the polluted versions of the files need to be injected
in the network on massive scales.

Liang, Naoumov and Ross [28] presented a methodology
for estimating index poisoning levels and pollution levelsin
structured and unstructured file sharing networks.

Singh, Ngan, Druschel and Wallach [29] studied the impact
of Eclipse attacks in P2P overlay networks. In an Eclipse
attack, a set of malicious colluding nodes arrange for targeted
correct nodes to be paired with only member of the mali-
cious coalition. If successful, the attackers can mediate and
ultimately control the traffic intended for the correct nodes,

and in so doing “eclipse” the nodes from the rest of the
network. Their work indicates that known defences are limited
in preventing Eclipse attacks. Nonetheless, Holzet al. [7]
do show that whereas Eclipse attacks are feasible in Kad —
a Kademlia-based [22] distributed hash table (DHT)— it is
infeasible in Overnet, because Overnet keys are distributed
throughout the entire hash table space, rather than be restricted
to a particular zone.

Naoumov and Ross [30] show how index poisoning and
routing poisoning can be used to create denial-of-service en-
gines out of P2P systems. With index poisoning, the attackers
insert bogus records into the P2P index system. These bogus
records indicate that a popular file is located at the targeted
IP address and port number. This can result in large amount
of traffic which can overwhelm to the targeted node. In the
case of routing poisoning, the attackers attempt to make the
targeted node a neighbour of a large number of P2P nodes.
This can result in the targeted node receiving large amount of
maintenance traffic and hence be the victim of a bandwidth
DDoS attack. The emphasis of our work is not on denial-of-
service attacks.

Finally, Steiner, En-Najjary and Biersack [31] indicate how
Kad, a Kademlia-base [22] DHT, can be used and misused.
The authors shows how Sybil attacks can be used to perpet-
uate Eclipse and denial-of-service attacks in Kad. They also
presented a centralised solution scheme for preventing sybils
from gaining access to Kad.

IV. PERFORMANCE MEASURES AND ASSESSMENT

For our simulation studies, we performed discrete event
simulations which captured key features of the Overnet P2P
overlay network. Our simulations address the following ques-
tions:

1) What effects do Sybil attacks have on the botnet com-
mand and control (C & C) structure when the sybil birth
rate (the rate of which sybils are added) is equal to: (a)
the net growth rate (the rate at which new bots are added
minus the attrition rate), (b) half the net growth rate and
(c) twice the net growth rate?

2) What effects do time duration of Sybil attacks have on
the degree of success in disrupting the botnet commu-
nication?

3) Do botnet design choices such as the size of the peer-
list have any bearing on the effectiveness of the Sybil
attacks?

In our simulation, the sybils play the following role: (a)
they sendPING, FIND_NODE andFIND_VALUE messages
to non-sybil nodes in attempt to get their IDs in the peer-
list of the nodes; (b) they respond toFIND_NODE and
FIND_VALUE queries with false information. They always
respond to these queries by sending the IDs of other sybils to
the sender of the messages; suggesting that these nodes (the
sybils) will likely point the senders to the value they search.

Each simulation run starts with an initial number of 20,000
nodes (bots). The per time-step growth rate of the botnet is
assumed to be 2% of the initial 20,000, i.e. 400 nodes at each

time step, with the attrition rate being 1% of the initial number
of nodes, i.e. 200 nodes at each time step; thus resulting in a
net growth rate of 1% or 200 nodes per time-step. The growth
and attrition rates are kept constant for each simulation run,
whereas, the sybil birth rate varies from 0.5, 1 and 2 times the
net botnet growth rate, i.e. 0.5%, 1%, and 2%. Simulations
with the above parameters are compared when the duration
of the simulation (∆t) equals 10, 20 and 30 time-steps.
Also, simulations with∆t = 20 and the sybil birth rate as
indicated above, are compared when the size of a node’s peer-
list (l) equals 100, 200 and 300. Each simulation experiment
is repeated 20 times and the average of the simulation data
computed.

To assess the effectiveness of the Sybil attack in disrupting
the botnet C&C infrastructure, we use the reachability measure
we introduced in a previous paper [16]. Consider the directed
graph G = (V, E), where the vertices inV are the nodes
in the botnet, and an edge(u, v) is in E if v is in one of
u’s k-buckets, i.e. in its peer-list. Reachability from a given
nodeu is the number of nodes that can be reached within a
given shortest-path distance from that node. More precsiely,
let Γr(u) denote the set of nodes at distancer from a nodeu
in a graphG = (V, E).

Γr(u) = {v ∈ V : d′(u, v) = r},

whered′(x, y) represents the length,i.e., number of hops, of
the shortest path between nodeu and v (not to be confused
with the XOR distance between node IDs, introduces in
Section II). LetNr(u) represent the set of nodes at distance
at mostr from u, i.e. its neighbourhood of radiusr, i.e.

Nk(x) =

k⋃

i=0

Γi(x) .

Then, ther-reachability of a nodeu is simply the cardinality
of its r-radius neighbourhood divided by the total number of
nodes, i.e.|Nr(u)|/|V |.

In order for bots to get a new version of the code or updated
commands, the operator must seed new〈key, value〉 pairs in
the P2P network, pointing to the appropriate URL. As per the
Kademlia algorithm, if a new pair is seeded at a nodex, thenx
will sendSTORE messages to thek nodes with IDs closest to
the key. This is done by first sending aFIND_NODE with the
key, to (a subset of) thek closest nodes to the key, amongstx’s
k-buckets. Each of those nodes will then reply with its known
k closest nodes, amongst itsk-buckets. The seeding nodex
will now have knowledge of thek closest nodes known to all
of its neighbours, which is the same as to say thek closest
within N2(x). In the next iterations,x will sendFIND_NODE
messages to the knownk closest nodes so far, until no closer
nodes thatk closest known are found. Thus, we have shown
that at thei-th step (the 1st step being the internalk bucket
lookup), the initiatorx knows the closestk nodes to the target
ID within its neighbourhoodNi(x).

Similarly, when any given boty queries the P2P network for
one of the 32 Storm search keys for the day, it will initiate a

node search with aFIND_NODE message to thek nodes with
closest ID to the searched key within itsk-buckets. Again,y
will have found the searched key and value afteri iterations,
if and only if one of the storing nodes lies within itsi-radius
neighbourhood, i.e. withinNi(y). Note that due to the caching
features of Kademlia, the storing nodes for that key do not
necessarily include only the initialk nodes to which thex
sentSTORE messages.

The diameter of the graph (maximum length of any shortest
paths) is an upper bound on the number steps it will take for
the lookup process to converge and terminate. It is thus directly
related to the speed at which new command information is
disseminated and at which bots can retrieve it when they
decide to look for it. However, if the lookups are time-limited
or if the number of iterations are limited to a fixed value
(e.g. in order to minimise the number of message footprint and
increase stealth), then reachability within small radii becomes
a better measure of C&C effectiveness. In general, thus, having
large neighbourhoods with a small radiusr for a large fraction
of “centre” nodesx is advantageous for botnet operators,
because this will guarantee that that with high probabilitythe
k nodes chosen for storage will be a) thek nodes with closest
ID to the search key and b) that other bot nodes can obtain
the correct values from them.

In the context of Sybil attacks, however, since the sybil
nodes cannot be counted upon to reliably transmit information
on node queries, nor to store values, one must measure
effectiveness without taking them in consideration. In other
words, one must only consider the reachability within the
subgraphG′ ⊂ G xcontaining only non-sybil nodes.

In our simulations, we utilised the igraph C library [32]
to construct and handle graph objects representing the Botnet
C&C infrastructure. Home-made coded using igraph was used
for all aspects of the simulation: generating the initial graphs,
simulating the birth and death process for the regular bots
and the sybils, and finally for measuring non-sybil node
reachability. To do this, the sybil nodes are removed from
the graph and reachability is calculated within the resulting
subgraphs.

V. SIMULATION RESULTS

Because of the relatively large size of the peer-list, all
simulation results indicate that neighbourhoods of radius2
(r = 2) or larger contain the whole graph. In other words,
100% of the nodes are reachable within paths of length 2. We
therefore only report results onr = 1 radius reachability.

Fig. 1 shows the reachability histogram (forr = 1 radius)
for the simulation when the number of time-steps (∆t) is 20
and the peer-list size (l) is fixed to 200; and the sybil birth
rate (SBR) varies from 0 to 2 times the net botnet growth
rate (BGR). As indicated in Section IV, the net botnet growth
rate is assumed to be 1% of the initial 20,000 nodes, i.e. 200
nodes per time-step. Therefore, at the end of the 20 time-steps,
the total number of nodes (excluding the sybils) is 24,000.
When SBR = 0.5BGR, a total of 2,000 sybils are generated
during the 20 time-steps. The insertion ratio of sybils in the

peer-lists (IR) is the total occurrences of sybils (SI) in the
peer-lists divided by the product of the final number of nodes
(N) and the peer-list size (l), i.e., IR = SI

(N∗l) . The average
insertion ratio for the 20 simulation runs is 7.88%, with the
standard deviation being 0.6078%. WhenSBR = BGR, 4,000
sybils are generated and the average insertion ratio is 14.34%
and the standard deviation 0.6668%. WhenSBR = 2BGR,
8,000 sybils are generated; the mean insertion ratio for the20
simulation runs is 24.82% and the standard deviation 1.0678%.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 n

od
es

Reachability percentage

SBR = 0
SBR = 0.5 * BGR

SBR = BGR
SBR = 2.0 * BGR

Fig. 1. Reachability histogram for∆t = 20 and l = 200

Fig. 1 also indicates that the number of nodes whose
radius 1 neighbourhood include 10% of the nodes in the
botnet, decreases by 27% whenSBR = 2BGR compared
to the case whereSBR = 0. Whereas, whenSBR = BGR

and SBR = 0.5SBR the decrease in the reachability is 16%
and 9%, respectively. This suggests that there is an inverse
relationship betweenSBR and the reachability. Therefore,
intuitively, the potency of a sybil attack will likely increase
asSBR increases.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 n

od
es

Reachability percentage

SBR = 0
SBR = 0.5 * BGR

SBR = BGR
SBR = 2.0 * BGR

Fig. 2. Reachability histogram for∆t = 10 and l = 200

Fig. 2 shows the reachability histogram (forr = 1 radius)
for the simulation when the number of time-steps (∆t) is 10
and the peer-list size (l) is 200; and as in the previous figure,
SBR varies from 0 to2BGR. The number of nodes (N) at the
end of the 10 time-steps is 22,000. WhenSBR = 0.5BGR,
1,000 sybils are generated, the average insertion ratio forthe
20 simulation runs is 4.22%, the standard deviation being
0.5123%. WhenSBR = BGR, twice as many sybils are
generated and the insertion ratio is 8.34%, the standard de-
viation being 0.5293%. Whereas, whenSBR = 2BGR, 4,000
sybils are generated, the average insertion ratio is 15.43%and

the standard deviation is 0.8730%. The plot shows that when
SBR = 2BGR, the number of nodes that can reach 10 percent
of the nodes in the botnet within radius 1 decreases by 17%
compared to whenSBR = 0; whereas, whenSBR = BGR and
SBR = 0.5BGR, where the decrease is 10% and 5% percent,
respectively.

 0
 100
 200
 300
 400
 500
 600
 700
 800

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 n

od
es

Reachability percentage

Sybil birth rate: 0
SBR = 0.5 * BGR

SBR = BGR
SBR = 2.0 * BGR

Fig. 3. Reachability histogram for∆t = 30 and l = 200

Fig. 3 shows the reachability histogram (forr = 1 radius)
for the simulation when∆t = 30 and l = 200; and SBR

varies between 0 and2BGR. At the end of the 30 time-steps,
N=26,000, and the mean insertion rate for the 3,000, 6,000 and
12,000 sybils generated whenSBR equals0.5BGR, BGRand
2BGR, respectively, are 10.53%, 18.67% and 30.94%; and the
standard deviation 0.5422%, 0.6922% and 1.2172%, respec-
tively. The plot shows that whenSBR = 2BGR, the number
of nodes that can reach 10% of the nodes within radius 1
decreases by 37% compared to the case whereSBR = 0.
whereas, whenSBR equalsBGR and 0.5BGR, the decrease
is 20 percent and 11 percent, respectively. Comparison of
Figures 1, 2 and 3 indicates that when the duration of the
Sybil attack increases by 3 folds, the effectiveness of the
attack in disrupting the communication channel increases by
approximately 2 folds.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 n

od
es

Reachability percentage

SBR = 0
SBR = 0.5 * BGR

SBR = BGR
SBR = 2.0 * BGR

Fig. 4. Reachability histogram for∆t = 20 and l = 100

Fig. 4 shows the reachability histogram when∆t is 20,
l is 100 and SBR varies between 0 and2BGR. At the
end of the 20 time-stepsN=24,000, and the average inser-
tion ratio for the 2,000, 4,000 and 8,000 sybils generated
whenSBR equals0.5BGR, BGR and2BGR, respectively, are
7.62%, 13.94% and 24.74%, while the standard deviation are
0.8577%, 1.2987% and 1.6265%, respectively. The plot shows

that whenSBR = 2BGR, the number of nodes having 10%
of the nodes within their radius 1 neighbourhood decreases by
25% compared to the case whenSBR = 0. Whereas, when
SBR equalsBGR and 0.5BGR, the decrease in reachability
are 14% and 8%, respectively.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 n

od
es

Reachability percentage

SBR = 0
SBR = 0.5 * BGR

SBR = BGR
SBR = 2.0 * BGR

Fig. 5. Reachability histogram for∆t = 20 and l = 300

Fig. 5 shows the reachability histogram wherel = 300 and
∆t, SBR and N are the same as for Fig. 4. The average
insertion rates for the sybils are 7.88%, 14.35% and 24.83%
whenSBR equals0.4BGR, BGR and2BGR, respectively; and
the standard deviation 0.6050%, 0.9602% and 0.7827%. The
plot indicates that the number of nodes with 10% reachability
for radiusr = 1 decreases by 27% compared to the case where
BGR = 0. Whereas, the reachability drops by is 16% and 9%
whenSBR equalsBGR and0.5BGR, respectively. Figures 1,
4 and 5 indicate that there are no significant difference in the
reachability measures whenl changes from 100 to 300. This
suggests that the size of the bots’ peer-list does not have any
bearing on the effectiveness of this kind of Sybil attack.

VI. D ISCUSSION

SBR/BGR Reachability No. Sybils in Diff.
l = 100 Decrease (%) Botnet (%) (%)

0.5 8.0 8.33 0.33
1.0 14.0 16.67 2.67
2.0 25.0 33.33 8.33

TABLE I
IMPACT OF SYBIL ATTACK ON REACHABILITY ∆t = 10.

Tables I-III summarises the results obtain in Section IV for
peer list sizesl ∈ {100, 200, 300} and ∆t ∈ {10, 20, 30}.
From these tables it is apparent that for low sybil attack birth
rates, (i.e., SBR/GBR = 0.5), computing the percentage of
sybils within the botnet provides a fairly accurate indication
of the expected impact on ther = 1 reachability measure
across all∆t’s and all peer list sizes. As the sybil attack birth
rate increases toSBR/GBR = 2.0 then this coarse estimate
of the expected effect begins to overestimate, with the worst
estimate error occurring for∆t = 20 and l = 300.

The explanation for this result arises from how the Storm
botnet and, more precisely, how Overnet-based peer-to-peer
networks are structured with respect to the core command

SBR/BGR Reachability No. Sybils in Diff.
l = 100 Decrease (%) Botnet (%) (%)

0.5 5.0 4.54 -0.46
1.0 10.0 9.09 -0.91
2.0 17.0 18.18 1.18

SBR/BGR Reachability No. Sybils in Diff.
l = 200 Decrease (%) Botnet (%) (%)

0.5 9.0 8.33 -0.67
1.0 16.0 16.67 0.67
2.0 27.0 33.33 6.33

SBR/BGR Reachability No. Sybils in Diff.
l = 300 Decrease (%) Botnet (%) (%)

0.5 11.0 11.5 0.05
1.0 20.0 23.07 3.07
2.0 37.0 46.15 9.15

TABLE II
IMPACT OF SYBIL ATTACK ON REACHABILITY ∆t = 20.

SBR/BGR Reachability No. Sybils in Diff.
l = 300 Decrease (%) Botnet (%) (%)

0.5 9.0 8.33 -0.67
1.0 16.0 16.67 0.67
2.0 27.0 33.33 6.33

TABLE III
IMPACT OF SYBIL ATTACK ON REACHABILITY ∆t = 30.

Generic Node Initiating

its Command Search

Sybils

Normal Botnet nodes

Fastest Response Path

Fig. 6. The effectiveness of sybil attacks is innately constrained by the fastest
responding paths.

search operation. For any given node initiating a search
activity, the search will terminate once the node receives the
first correct response to the search from one of thek (or more)
storing nodes with closest node ID to the searched key. Hence,
all sybils located further away from the closest storing node,
in a response time sense, will have zero impact on the botnet’s
ability to propagate commands, with respect to that given
node’s query as per Fig. 6. On average, therefore, the impactof
sybil attacks is constrained by the likelihood that sybils will be
positioned such that they are on average closer than the closest
responding non-sybil storing node. This implies that as the

sybil injection ratio grows, more of the botnet becomes sybils
within a given∆t, but these additions will be unlikely to affect
this critical path since most sybils will be injected beyond, in
a response time sense, the fastest responding non-sybil storing
node. Note that this whole discussion depends heavily on
whether nodes will cache〈key, value〉 pairs information, even
if their ID is not necessarily close to the key (something that
some Kademlia implementations do).

The Sybil attack process, of course, could be improved
through incorporating knowledge of estimated path response
times in order to take advantage and win such race conditions.
But such knowledge would need to be continually updated
to reflect the network dynamics, as introduced through birth
and death processes, and would, in the general case, require
near global knowledge of the botnet, given its random nature.
If such knowledge were available then the botnet could be
disabled directly without needing to resort to a Sybil attack.
Additionally, it would be fairly trivial to incorporate fault tol-
erance into the botnet structure,i.e., though voting, to reduce
the effectiveness of the modelled uninformed sybil attacks,
thereby introducing an added requirement that sybils existon
majority of responding paths leading to storing nodes, where
the number of paths is set through the voting scheme (similarly
as theα concurrency parameter defined in Kademlia). Such
an approach would also most likely require that the botnet
commands themselves be injected at multiple points within
the botnet. This may or may not be desirable from the botnet
operator perspective due, primarily, to the associated increased
risks of detection and attribution.

VII. C ONCLUSIONS ANDFUTURE WORK

This work has presented the initial results of a simulation
study of the effects of Sybil attacks on botnet command and
control infrastructures which utilise Overnet-based peer-to-
peer network solutions. Overall, these results indicate that
substantial and sustained Sybil attacks are required to cause
significant degradations in such botnets. The core constraint
on the effectiveness of Sybil attacks has been shown to be
the probability that injected sybils will be, on average, on
the first responding path to nodes storing the answers to the
search queries. Hence, uninformed sybil attacks result in the
introduction of significant numbers of sybil nodes which have
near-zero impact on the botnet’s operation. In particular,for
l = 300, ∆t = 20, and SBR/GBR = 2.0 sybils approach
almost half of the nodes in the botnet but only produced a
slightly larger than 1/3rd impact on the radius 1 reachabil-
ity, with all reachability measures past radius 1 remaining
unaffected at 100%. The random nature of Overnet-based
peer-to-peer networks provides fairly strong protection against
uninformed sybil attacks, while sybils remain in the minority
of botnet nodes. Informed sybil attacks could potentially be
more effective but are more impractical due to the requirement
for near global information regarding path response times;
even then such informed sybil attacks could likely be mitigated
by the introduction of fault tolerant approaches, such as voting,
within Overnet’s structure.

These results suggest that if sybil attacks are to be used in
practice to disable Overnet structured peer-to-peer botnets then
it would be prudent to explore Quality of Service approaches,
in conjunction with service providers, to ensure that the
responses from injected sybils have a high probability of
existing on the fastest response paths to search queries. In
this manner, significant reductions in the numbers of sybils
required should be achievable. Fault tolerant voting schemes
could, of course, be used to counter such approaches, though
at the cost of both trading-off the responsiveness of the botnet
and reducing its stealthiness through the requisite increase in
generated network traffic. Additionally, the need to have sybils
become dominant within the botnet in order to disable it is
fairly clear and, hence, must exceed the background birth/death
rates. Not explored in this work is the question of whether such
high sustained sybil injection rates themselves become, by
their very nature, easily detectable by the botnet operators, in
which case the botnet could be shutdown and moved, negating
the effect of the deployed sybils.

Exploring such questions innately requires richer simulation
studies of peer-to-peer botnet behaviours and, more particu-
larly, simulation studies which take into account actual packet-
level network behaviours, inclusive of reasonable background
traffic models, and at the scales at which botnets known to
exist in the real-world. This is an area which the authors
are actively pursuing through the use of finer-grained dis-
crete event simulation environment (i.e. OMNet). Of course,
the result of this work only pertains to those aspects of
the botnet which are effected by the reachability measure,
other unmeasured aspects of botnet performance may show
less resilience to sybil attacks. As the network-level at-scale
simulation environment comes on-line it will be used to more
thoroughly explores such issues.

REFERENCES

[1] P.-M. Bureau and A. Lee, “Malware storms: a global climate change,”
Virus Bulletin www.virusbtn.com, November 2007.

[2] D. Fisher, “Storm, nugache lead dangerous new botnet barrage,” Search-
Security.com, December 2007.

[3] J. Stewart, “Storm worm ddos attack,” http://www.secureworks.com/
research/threats/storm-worm, February 2007.

[4] “Expert: Botnets no. 1 emerging Internet threat,” CNN Technology news,
www.cnn.com/2006/TECH/internet/01/31/furst/, January2006.

[5] “The botnet trackers,” Washington Post Technology news,
www.washingtonpost.com/wp-dyn/content/article/2006/02/16/
AR2006021601388.html, February 2006.

[6] “Attack of the zombie computers is growing threat,” The New York
Times Technology news, nytimes.com, January 2007.

[7] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measurements
and mitigation of peer-to-peer-based botnets: A case studyon storm
worm,” in Proceedings of the1st USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET’08), April 2008.

[8] C. Kanich, K. Levchenko, B. Enright, G. Voelker, and S. Savage,
“The heisenbot uncertainty problem: Challenges in separating bots from
chaff,” in Proceedings of the1st USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET’08), April 2008.

[9] CISCO and IronPort, “2008 internet malware trends: Storm and the
future of social engineering,” www.ironport.com/malwaretrends, 2008.

[10] MessageLabs, “Storm significantly weekens & web-
based malware on the rise,” MessageLabs Intelligence:
www.messagelabs.com/mlireport/MLIReport April 2008.pdf, April
2008.

[11] G. Keizer, “Microsoft didn’t crush storm, counter researchers,” http:
//www.computerworld.com, April 2008.

[12] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting, and disrupting botnets,” inProceedings of the
Steps to Reducing Unwanted Traffic on the Internet on Steps toReducing
Unwanted Traffic on the Internet SRUTI’05, July 2005.

[13] P. Wang, S. Sparks, and C. C. Zou, “An advanced hybrid peer-to-
peer botnet,” inProceedings of the1st Workshop on Hot Topics in
Understanding. Botnets (HotBots 2007), April 2007.

[14] R. Vogt, J. Aycock, and J. M. J. Jacobson, “Army of botnets,” in Pro-
ceedings of the14th annual Network and Distributed System Security
Symposium (NDSS 2007), March 2007.

[15] G. Keizer, “Microsoft: We took out storm botnet,” http://www.
computerworld.com, April 2008.

[16] C. Davis, S. Neville, J. Fernandez, J.-M. Robert, and J.McHugh,
“Structured peer-to-peer overlay networks: Ideal botnetscommand and
control infrastructures?” inTo appear in the13th European Symposium
on Research in Computer Security (ESORICS’08), 2008.

[17] A. L. Barabási and R. Albert, “Emergence of scaling in random
networks,”Science, vol. 286, pp. 509–512, 1999.

[18] “Gnutella,” http://www.gnutella.com, March 2001.
[19] P. Erdös and A. Rényi, “On random graphs I,”Publ. Math., vol. 15, pp.

290–297, 1959.
[20] K. Kutznet and T. Fuhrmann, “Measuring large overlay networks the

overnet example,” inKiVS, May 2006.
[21] J. Douceur, “The sybil attack,” inProceedings of the1st International

Workshop on Peer-to-Peer Systems, March 2002, pp. 251–260.
[22] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-

tion system based on the xor metric,” inRevised Papers from the1st

International Workshop on Peer-to-Peer Systems (IPTPS ’02), March
2002.

[23] F. Boldewin, “Peacomm.c - cracking the nutshell,” http://www.
reconstructer.org, September 2007.

[24] P. Porras, H. Saidi, and V. Yegneswaran, “A multi-perspective analysis
of the storm (peacomm) worm,” Technical report, Computer Science
Laboratory, SRI Internatal, October 2007.

[25] “Know your enemy: Fast-flux service networks,” Honeynet Project,
www.honeynet.org/papers/honeynet, July 2007.

[26] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, andW. Zwaenepoel,
“Denial-of-service resilience in peer-to-peer file sharing systems,”ACM
SIGMETRICS Performance Evaluation Review, vol. 33, pp. 38–49, June
2005.

[27] N. Christin, A. Weigend, and J. Chuang, “Content availability, pollution
and poisoning in file sharing peer-to-peer networks,” inProceedings of
the6th ACM conference on Electronic commerce, June 2005, pp. 68–77.

[28] J. Liang, N. Naoumov, and K. Ross, “The index poisoning attack in
p2p file sharing systems,” inProceedings of25th IEEE International
Conference on Computer Communications (INFOCOM 2006), April
2006.

[29] A. Singh, T.-W. Ngan, P. Druschel, and D. Wallach, “Eclipse attacks on
overlay networks: Threats and defenses,” inProceedings of25th IEEE
International Conference on Computer Communications (INFOCOM
2006), April 2006, pp. 1–12.

[30] N. Naoumov and K. Ross, “Exploiting p2p systems for ddosattacks,” in
Proceedings of the1st international conference on Scalable information
systems (INFOSCALE 2006), May 2006.

[31] M. Steiner, T. En-Najjary, and E. Biersack, “Exploiting kad: possible
uses and misuses,”ACM SIGCOMM Computer Communication Review,
vol. 37, pp. 65–70, October 2007.

[32] G. Csárdi, “The igraph library,” http://cneurocvs.rmki.kfki.hu/igraph,
2005.

