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For my mother,
who gave me computers and games
that are now retro





Preface

I’m not very good at playing computer games. However, through sheer luck I
happened to be alive, using computers and playing games, at more or less the right
time to have experienced the retrogame era. I also happened to learn programming
and study computer science at a time when there was a strong emphasis on low-
level work, when getting a program working sometimes meant being clever enough
to sidestep all kinds of limitations.

Now, fast-forward several decades. After reading two compelling books – Mont-
fort and Bogost’s Racing the Beam and Maher’s The Future Was Here1 – it finally
dawned on me that I could use my training and good fortune to dig into the guts of
old games, to seek and showcase game authors’ implementation marvels that lurked
under the hood. In Ian Bogost’s book How to Do Things with Videogames, he wrote2

‘We need more media entomologists and media archeologists overturning rocks and
logs to find and explain the tiny treasures that would otherwise go unseen.’ I wanted
to become a retrogame archeologist.

What I found surprising in my research was that many retrogame implementation
techniques had modern applications, and not only in games. I won’t go so far as to
say that retrogames were the first to use these techniques or that modern uses are
directly inspired by retrogames, but I will claim that retrogames are an interesting
way to learn about them. Furthermore, having taught computer science students in
university for many years, I think it’s fair to say that modern programmers aren’t
always exposed to these techniques nor to the constraints that precipitated their use.
This book is an attempt to fix that.

The material in these pages tends to be fairly low-level and technical by its na-
ture, so a full understanding of the content will undoubtedly require at least some
proficiency in programming. However, my hope is that I’ve made the explanations
clear enough to be appreciated at some level by nonprogrammers, retrogame enthu-
siasts, historians, and researchers in game studies.

I should also say something about the retrogame screenshots: a few years ago
I read a book about modern art and was disappointed that more images weren’t

1 MIT Press, 2009 and 2012, respectively.
2 University of Minnesota Press, 2011, p. 148
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included. I understand now. The time and effort for me to get copyright permission
to use the images that appear here has literally ranged from minutes to months,
and that’s only for the cases where an identifiable copyright holder still exists. In
other cases, companies have gone defunct or been absorbed through a long chain
of acquisitions, or unfortunately, people who would have held the copyrights have
passed away. Static images also don’t really capture all nuances of an interactive
medium like computer games; I encourage you to watch retrogame walkthrough
videos on the Internet to complement your reading.

Thank you to all the people who were kind enough to take the time to respond to
my random emailed questions, namely Scott Adams, Shahid Ahmad, Mike Austin,
Bill Budge, Melanie Bunten, David Crane, Don Daglow, John Darragh, Andrew
Davie, Dale Dobson, Jim Dramis, Randy Farmer, Ira Goldklang, Roland Gustafs-
son, Paul Hagstrom, Alex Handy, Wendell Hicken, Paul Hughes, Mike Lake, Peter
Langston, Al Lowe, Kirk McKusick, Kem McNair, Alan McNeil, Steve Meretzky,
Jeff Minter, Chip Morningstar, Dan Oliver, Dave Platt, Eric S. Raymond, Jon Rit-
man, John Romero, Roger Schrag, Manuel Schulz, Michael Schwartz, Stefan Ser-
bicki, Paul Urbanus, Bruce Webster, Ken Wellsch, Wayne Westmoreland, Robert
Woodhead, and Don Worth. Parts of the copy protection and code obfuscation chap-
ters have benefited greatly, directly and indirectly, from people whom I know only
via Twitter: @a2_4am, @antoine_vignau, @D5AA96, @dosnostalgic, and
@yesterbits. I apologize if I accidentally omitted anyone!

This work would not have been possible without the multitude of emulators and
tools that are freely available. I would especially like to thank all the contribu-
tors to ADTPro, B-em, Catakig, DASMx, DCC6502, defedd, DOSBox, FreeDOS’
DEBUG, Frotz, Fuse, GMQCC, LensKey, the Level 9 interpreter, MAME, MESS,
NAGI, OpenEmulator, qcc, ScottFree, ScummVM, SIMH, Stella, VICE, xtrs, ZILF,
and Ztools, as well as the authors of some online emulators in JavaScript: Jan Bo-
browski’s Qaop/JS, Matt Dawson’s VIC-20 emulator, and Will Scullin’s Apple II
emulator. The efforts of people and organizations like the Internet Archive to pre-
serve material and make it widely available have been invaluable too.

Closer to home, I’d like to thank John Brosz for helping with the visualization
studio I used for some analyses, Rob Furr for letting me sit in on his game history
class, Darcy Grant for loaning the camera equipment, Ben Stephenson for solder-
ing up a data transfer cable for the Apple IIc, and Dean Yergens for giving me
access to a working Commodore 64 system. Jeff Boyd and Tyson Kendon provided
me with dual-tape cassette decks for experiments. The students in my inaugural
CPSC 599.82 class on retrogames were both eager and patient with me as we went
through this material on its maiden voyage, for which I am eternally grateful. I am
also hugely indebted to the people who took time to help proofread this book: Jörg
Denzinger, Peter Ferrie, Paul Hagstrom, Nigel Horspool, and Jim Uhl.

Finally, a special thank you to both Darcy Grant, who suffered through lengthy
detailed descriptions of my game analysis du jour, and Kathryn Kawalec for her
loving, unwavering support throughout the long research and writing process.

Calgary, Canada John Aycock
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Chapter 1
Introduction

What is a retrogame? It seems like a simple question, but it turns out to be
surprisingly difficult to answer. It is an important question to answer, though,
because it’s hard to study something that can’t be clearly identified.

One approach would be to say that a retrogame is a game from someone’s child-
hood, one that evokes a sense of nostalgia. This may work perfectly for any one
person, but it’s a very subjective definition and doesn’t scale: no two people will
share the same childhood, or the same nostalgic yearnings.1 Ideally what we want is
an objective test. In other words, given an arbitrary game, which of its characteristics
could we use to unambiguously decide whether it’s a retrogame or not?

As a starting point, we could define “retrogame” to simply mean an old game.
In fact, a number of writers do just that. One author talks about ‘computer games
from the 80s (so-called retrogaming)’ [50]; another puts ‘games from the 1980s, and
even early 1990s’ into the ‘retro’ camp [39, p. 29]. We already have a problem, in
that there is no clear year that divides retro and non-retro. Or perhaps it’s a relative
measure, and after a certain number of years have passed by, a game magically
transforms into a retrogame like a butterfly emerging from a cocoon. But how many
years? Will Halo (2001) eventually be a retrogame, or maybe it is already? What
about a game produced in 2015, or 2050?

If when doesn’t conclusively make a game a retrogame, we could look at what
instead. One tangible characteristic that games have even prior to startup is their
computing platform. This would certainly include hardware; software, such as an
operating system or even something as rudimentary as code in a system ROM,
was not always present in old games. This avenue seems more promising, because
there would probably be general agreement that games running on systems with
8-bit CPUs would be retrogames: this would include the Atari 2600, the Apple II,
the Commodore 64, and many others. Then we would also have to include as ret-
rogames anything running on a 16-bit CPU, since 8- and 16-bit CPUs overlapped
in time early on, with the 16-bit Intellivision and TI-99/4 both released in 1979.

1 Although we do not pursue nostalgia further, it has been explored in relation to games, e.g.,
[23, 50].

© Springer International Publishing Switzerland 2016
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2 1 Introduction

We would also start needing to consider 32-bit processors, because companies like
Apple, Atari, and Commodore began releasing computers in the mid-1980s based
on the (arguably) 32-bit Motorola 68000 CPU, while the 8-bit machines were still
in production. 32-bit CPUs still were going strong many decades later, meaning that
this hardware-based characterization also becomes fuzzy for classifying retrogames.

Further adding to the confusion with hardware are two tricky cases. First, a philo-
sophical case: if running on 8-bit hardware (for example) makes a retrogame, then
is an 8-bit game for the Atari 2600 still a retrogame if it is played via emulation on
modern hardware? Second, less common but more practical, is where a new, modern
game is created that runs on old hardware. This includes new original games, and
also remakes of new games for old platforms, called demakes. For instance, a ver-
sion of Halo was created for the Atari 2600, Halo 2600 (2010),2 and Doom (1993)
has been recreated for a number of old platforms, including vicdoom (2013) for the
Commodore Vic-20.

Maybe the key to retrogame classification is not the hardware the game runs
on, but something else the player can touch, the interface. Many early games had
simple gameplay controls – the one-button Atari 2600 joystick is practically iconic.
However, the contemporary Intellivision controller had a disk to press for direction
in place of a joystick, along with a keypad and multiple buttons.3 The arcade version
of Defender (1981) had controls that were notoriously complex for the time [4, 16,
30], and text adventure games aspired to use the most challenging gameplay controls
of all, human language. Figure 1.1 shows the beginning of a text adventure game and
how the user interacted with it.4 Clearly the simplicity of a game’s interface isn’t the
deciding retrogame factor.

Or, is the telling part of the interface not what the player touches, but what
the player sees, namely the graphics. Blocky graphics are surely the hallmark of
a bygone era. This definition falls apart quickly, even ignoring the fact that not all
retrogames had graphics to begin with, like text-only adventure games. A graphics-
based definition would see Doom be a retrogame with its chunky stylings, but
Myst (1993) was released the same year with much better graphics. Both Doom and
Myst are 3D, and even the extra dimension doesn’t separate old from new: promi-
nent arcade games like Night Driver (1976), Battlezone (1980), Q*bert (1982), and
Zaxxon (1982) were all dabbling in the third dimension early on [20, 55]. Insisting
on 2D and blocky graphics is no help, either. The game shown in Fig. 1.2 would
then be retro at a casual glance, were it not for the fact that the image belongs to
VVVVVV (2010).

Having now gone to the trouble of pointing out the many flawed ways to define
retrogames, this book uses one of the first and easiest that was mentioned – age. The
game examples used here span the range 1973–1993, with one outlier in 1996 and
a suspiciously large concentration of examples from the 1980s. This is not a book

2 The game’s author, Ed Fries, posted a fascinating account of its development [24].
3 I can attest that it was, and is, ghastly to use.
4 As nearly as I was able to determine, this text is from Dave Platt’s 1979 version of Adventure,
based on source code comparison and [43, 52]. Apart from involving lowercase characters, the text
here is almost identical to that in the source for Crowther’s original version in 1976.
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Fig. 1.1 Playing a text adventure game; user input is in bold

on game history, and the game examples are not necessarily the first, or the best, or
the most influential. A few games mentioned here are downright obscure. However,
they have been chosen because some aspect of their implementation is notable.

1.1 Constraints

One theme that runs throughout this book is the idea of constraints. Retrogame pro-
grammers were limited in ways that would be nearly incomprehensible to a modern
programmer. And yet, these same limitations can drive creativity – necessity is the
mother of invention. David Braben, co-author of Elite (1984), had this to say when
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Fig. 1.2 Retro, or not retro? (Image by Terry Cavanagh – http://thelettervsixtim.es/, used under
CC BY-SA 3.0 license [11])

asked about a particular limitation in an interview [17]: ‘I think that what it has done
is very much focus us. In a sense, any limitations, and there are always limitations,
do help. It’s just part of the creative process.’

The same idea is echoed by other game authors and designers. 1980s game dev-
eloper Tom Griner remarked on the Commodore VIC-20 [28] ‘The limitations all
seemed like a fun challenge.’ More recently, Halo 2600 author Ed Fries argued for
using constraints to spur creativity [22, 41, 42], and problems were observed in the
lack of constraints on the Sony Playstation 2 [30, p. 568–569].

Interestingly, this constraint-creativity sentiment is shared by people in other cre-
ative fields. The composer Igor Stravinsky, for example, said [49, p. 87] ‘my free-
dom will be so much the greater and more meaningful the more narrowly I limit my
field of action and the more I surround myself with obstacles. Whatever diminishes
constraint, diminishes strength.’

But what were the constraints in retrogames? That there were technical con-
straints probably comes as no surprise, but before turning to those, we look at ret-
rogame constraints in two other areas: constraints on the player, and constraints on
the developer.

http://thelettervsixtim.es/
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1.1.1 Player Constraints

Retrogames on larger computing systems would impose constraints on the players at
times, particularly with respect to running games. Big computers would have been
enormously expensive, and funded by institutions or research grants; it’s easy to see
why a dim view was taken of gaming.

Adventure (1977)5 imposed limits in the form of ‘prime time’ hours when the
game’s setting, Colossal Cave, was closed. Running the game during those times
would present the player with

I’M TERRIBLY SORRY, BUT COLOSSAL CAVE IS CLOSED.

along with a display of the “hours of business” that were internally represented with
integers. Weekday hours, for instance, had the octal value 00777400, and the cave
was closed if the bit corresponding to the hour of the day was set; here, the cave
was closed for ten hours during the weekday, from 8am–6pm. The cave hours were
followed by the message

ONLY WIZARDS ARE PERMITTED WITHIN THE CAVE RIGHT NOW.

Undoubtedly with a nod to Adventure, Rogue (1980)6 checked the system to see
if there were too many users, or if the system was too busy (i.e., the load average).
If a hardcoded threshold was exceeded, a hapless player running the game might see

Sorry, aycock, but the system is too loaded now.
Try again later. Meanwhile, why not enjoy a
slime-mold?

followed by an unceremonious exit from the game. . . unless the player happened to
be the game author. Later versions added a special message for the latter case:

However, since you’re a good guy, it’s up to you

1.1.2 Developer Constraints

Early developers had a bewildering assortment of platforms to choose from. By way
of illustration, consider the January 1980 issue of Byte magazine [9], which had been
publishing for over four years by that time. Its editorial headline assures readers that
‘The Era of Off-the-Shelf Personal Computers Has Arrived,’ and the advertisements
in that issue give a sense of the landscape:

Cromemco Z-2H (‘11 megabytes of hard disk and 64 kilobytes of fast RAM in a Z80A
computer for under $10K’); TI 99/4; North Star Horizon; Ohio Scientific’s Challenger III

5 This is from the source code for the Crowther and Woods version of the game; the code for
Crowther’s original version didn’t have this feature. It is also backed up by the analysis in [29].
6 Based on Rogue source code (version 3.6), and also code for the 4.2 and 4.3 BSD versions.
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series; Intertec Data Systems’ SuperBrain; Heathkit (‘The easy way to learn about comput-
ers: BUILD ONE’); Atari 400 and 800; Smoke Signal Broadcasting’s Chieftain (!); Apple,
featuring the old rainbow logo; Compucolor Corporation’s Compucolor II; Radio Shack’s
TRS-80 Model II; Commodore’s PET 2001 (‘FREE SOFTWARE & PET DUST COVER’).

This is only a glimpse of the computing market, and doesn’t take into account
game consoles. The first issue of Electronic Games magazine in 1981 mentions the
Atari 2600, Intellivision, Odyssey2, and Channel F;7 more would join them soon.
Even this view ignores the computer systems embedded in arcade machines of the
time.

This embarrassment of riches may seem like the opposite of a constraint, with so
much choice. In fact, most of these systems would have been mutually incompatible.
Even systems with the same CPU gave no assurances that code for one would work
in any meaningful way on another, given that games required programming many
things that were system-specific, like video, audio, and I/O. For example, the Atari
2600, Commodore 64, Apple II, and Nintendo NES all used (some variant of) the
6502 CPU, but they were very different creatures to program.

Furthermore, the programming tools that developers had at their disposal were
rudimentary if not nonexistent. Beginning with editors for writing code, some early
game programmers coded using line editors. For example, Bill Budge used a line
editor to write Pinball Construction Set (1983) [8]; David Crane (e.g., Pitfall!, 1982)
used a line editor [13]8; Carol Shaw used one to write games at Atari (e.g., 3D
Tic-Tac-Toe, 1979) [19].

To illustrate what this means, consider a programmer wanting to write a short
program in C:

int main()
{

printf("Hello, world!\n");
}

Using a typical programming environment circa 2015, a programmer would have
multiple large color screens, and a graphical development environment that would
show the program in its entirety, along with a window showing the structure of
the files in the programming project the code belongs to, another window show-
ing warning and error messages from the compiler, and yet another displaying the
output from running the program. There would easily be enough screen real estate
remaining to have a web browser showing documentation or vital social media up-
dates. Any edits to the program would be shown immediately on screen and, in fact,
not all of it would need to be typed in: the editor, upon seeing the opening “{” brace
entered, would automatically insert the closing “}” and position the cursor between
them, indented perfectly to receive the printf.

2 This is not a footnote. The console happened to have the superscripted “2” as part of its name.
7 This issue also featured a question-and-answer section that led off with ‘Do videogames damage
television sets?’ [21, p. 24].
8 The use of line editors at Activision was also mentioned by Carol Shaw [19].
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Fig. 1.3 Line editor usage example

By contrast, a retrogame programmer in line-editor days would likely have a
monochrome text-only display, able to show a modest amount of text – the display
used for writing Pitfall! could show at most 24 lines of 80-column text [13, 31].
Entering the short example program with a line editor is shown in Fig. 1.3, using
the ed line editor; this editor was developed prior to the first release of Unix in
1971 [47] and, for better or worse, is still present in largely unchanged form on
Unix-derived systems. Similar line editors, like EDLIN for MS-DOS [18], existed
for other systems.

Upon starting ed at the $ prompt (line 1), what is immediately striking is the
lack of feedback. There is not even a user prompt. Line 2 is the i command to insert
text into the currently-empty file, and after typing a skeletal program (lines 3–5),
line 6’s period is the command to exit text entry mode. The printf is missing, and
the 2a at line 7 says to append after the second line in the file. It’s reasonable to
ask how the programmer would know what line number to specify, and the answer
is simply “by counting manually.” After the printf is added (line 8, with the end
of text entry at line 9), line 10 prepends int before main. At no point does the
programmer see the up-to-date edited code. Line 11 is a command to print the entire
file, finally, followed by writing the file to foo.c (line 16, with the number of bytes
written printed by ed at line 17), and a quit command to exit the editor.

Obviously, the retrogame development environment demanded a radically dif-
ferent working style, and an excellent mental model of the code. David Crane
elaborates [13]:

It was not unusual to make dozens of changes before looking back at what was done. And
the printers of the day were so slow that we would only print every second or third day.
In that case we printed the entire program and kept the one copy for all editing going for-
ward. Only when the printout was covered with deletions and change notations, or when the
printout no longer represented the actual program would we bother to make a new listing.
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Placing code into a file presupposes that there were appropriate tools to com-
pile or, more likely, assemble the code into binary form. At times, tools would be
constructed by the game programmers themselves, like debuggers [26] and cross-
assemblers [3, p. 143].9 Infocom built an entire compiler, assembler, and interpreter
toolchain for their text adventure games [32, 24:18]. A few programmers would
shun assemblers altogether, astoundingly, using limited “mini-assemblers” or trans-
lating their assembly instructions into binary form manually.10

Fig. 1.4a Assembly code Fig. 1.4b Mini-assembler code

Fig. 1.4c Binary (hexadecimal) code

As a comparison of the different ways of writing code, the same program is
shown expressed three different ways: in assembly code for an assembler (Fig. 1.4a),
using a mini-assembler on the Apple II (Fig. 1.4b), and in a binary form that hand
assembly would have to produce (Fig. 1.4c). All of these programs are equivalent,
at least in terms of their operation, but there are obvious differences even without
understanding the code. All of the helpful semantic information in the assembly
code – comments, meaningful label names and expression values – is lost imme-
diately when writing in the mini-assembler; moving to a binary representation, all
mnemonic information is gone completely. Working at these lower levels for any
program of nontrivial size would definitely be an impressive feat.

Not only would retrogames have to run on technically-constrained machines,
but it was not unusual for computer game developers (as opposed to console game

9 Bill Budge, reflecting back, laments not having written his own assembler [7, 46:43].
10 John Romero tells how Nasir Gebelli used the mini-assembler in the Apple II [3, p. 11], which
is confirmed by Gebelli in an interview [46, 1:12]; several other game programmers used VIC-
MON [5, 6] that was substantively similar [1, 12]. Sandy White hand-assembled his Z80 code for
Ant Attack (1983) [44, 53, 54]. The Apple mini-assembler was also used for creating some games’
copy protection [25], a topic I return to in Chap. 7.
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developers) to be doing their programming on the same constrained machines they
were developing for. John Harris wrote the Atari version of Frogger (1982), whose
development was immortalized in the book Hackers [34], on an Atari 800 [26].
Apple II games developed on the Apple II included Pinball Construction
Set [8], The Bilestoad (1982) [27], and both of Karateka (1984) and Prince of
Persia (1989) [36].

1.1.3 Technical Constraints

Throughout this book we’ll see ways that retrogame programmers managed the
technical constraints of machines; those constraints are outlined here to give an ini-
tial high-level view. Not all of them would apply to any one game, barring incredible
misfortune, but handling any of these constraints well could be challenging.

Beginning outside the machine, input and output (I/O) could involve slow dis-
plays, with potentially huge variation in how a program needed to command them.
Secondary storage, for its part, could be slow and small. For example, some
retrogames were loaded from cassette tape, whose players did not read programs
any faster than they played Top 40 music. The Apple II’s 5 1

4
′′

floppy disks held a
whopping 140K of content.11

Costs for integrated circuit (IC) chips were at a premium. This played itself out
three main ways. First, there was a push to build computers (which includes game
consoles and arcade games) with fewer chips in general: in an economy of scale,
one less chip on a shipping system could save a company $100K [30, p. 71], also
keeping in mind that fewer chips represent fewer components to wire in and fewer
components to fail. Second, expensive hardware would result in design decisions
that shifted work into cheaper software, meaning extra effort for a programmer.
Third, even where chips were necessary, such as for memory, smaller and less ex-
pensive memories would be attractive.

To give a rough idea of cost,12 the Atari 2600 was released in September 1977.
An advertisement in the September 1977 issue of Byte magazine [10] touts the
‘World’s Lowest IC Prices’ and lists the price of a ‘74S200’ as $2.95. (Apparently
there was some truth to their claim, as a later ad in the same issue had the same part
listed at $6.95.) The 74S200 was a RAM chip offering 256 bits of memory [48]. An
engineer aspiring to the wanton luxury of having 256 bytes would require eight of
those, and the total price of almost $24 would be a sizeable chunk of the already-
high $199 debut price of the Atari 2600 [38]. Fortunately the 2600 could get by with
less memory than that.

11 Using DOS 3.3 [56].
12 This is only a first-order approximation, of course. A company like Atari would have gotten a
volume discount on parts.
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The CPUs for retrogames could be highly constrained too. A slow clock rate
and limited instruction set – such as not being able to multiply or divide – would
naturally influence programming decisions. Along with this, some common ret-
rogame CPUs had few registers, 8 bits wide, with at most 16 address lines giving
216 = 65536 bytes of addressable memory space.

Example 1.1 (Atari 2600). The Atari 2600 has been politely described as having
‘humble capabilities’ [35, p. 186]. It has also been described as ‘a wood-paneled
console that had more joystick ports than onscreen pixel capacity and sounded like
a vuvuzela attached to an elephant dying of flatulence’13 which is less polite but not
entirely inaccurate.

The 2600 contained only three chips of note:14 a combination RAM-timer-I/O
chip, a custom chip for video and sound, and a 6507 CPU.

Of the three, the CPU had the least number of pins. The 6507 is a cut-down ver-
sion of the 6502 CPU that has only 13 address lines, making it able to only address
8 K of space. There was little to address, anyway. The 2600 had a meager 128 bytes
of RAM, which had to suffice for all of a game’s temporary storage including any
stack requirements. There was no ROM in the system, until a game cartridge was
plugged in, because the ROM chips were located inside the cartridges.

The lack of RAM meant that there was no memory for a video framebuffer.
On most systems, then and now, there is memory called a framebuffer devoted to
holding the contents of what is shown onscreen.15 The 2600 didn’t provide a frame-
buffer, essentially leaving the programmer responsible for drawing each individual
line displayed on the screen. This task had to be performed in addition to managing
sound, player input, and updating the positions of all game elements. And it had
to be done using a relatively slow CPU before the display’s electron beam swept
across the screen to render a line’s contents – programming the Atari 2600 was thus
referred to as “racing the beam” [37]; effectively, the 2600’s design imposed a soft
real-time constraint on its programmers. Getting the timing correct entailed count-
ing the number of clock cycles each CPU instruction in the critical screen update
code would take. Those instructions needed to be carefully chosen, because each
scan line equated to 76 of the 6507’s clock cycles, and the fastest 6507 instruction
occupied 2 cycles, with the majority taking three cycles or more. The reference man-
ual for the 2600’s graphics chip helpfully observes that the number of usable cycles
is ‘actually less becuase [sic] the microprocessor must be ahead of the raster’ [57].

Technical constraints indeed.

13 From [14, 1:10]. Copyright Defy Media, LLC, used with permission.
14 Information for this section is from [2, 45, 57].
15 In fact, this was done long prior to the 2600. A 1971 research article describing a video system
with a framebuffer (although it was not called that at the time) cavalierly talks about the mem-
ory requirements [40, p. 148]: ‘allocation of 5080 words, or some similar order of magnitude of
the computer’s core storage, does not seem unreasonable in terms of foreseeable technological
advances.’
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1.1.4 Meet the 6502

This brings us to the 6502 CPU, which was widely used in many retrogame systems.
Other CPUs will show up later in the book, that can be seen in terms of how they
differ from the baseline 6502.16

P c

PC

SP

Y

X

A accumulator
index register

index register

stack pointer

program counter

status register
(contains carry bit)

8bits 8bits

Fig. 1.5 Registers in the 6502 CPU

As shown in Fig. 1.5, the 6502 has six registers. The accumulator (A) is the one
used for most arithmetic and logical operations. There are two index registers (X , Y )
that are often used as counters and offsets, and a stack pointer (SP); the stack is
hardwired to the memory locations $100. . . $1ff.17 (The “$” is used to denote a hex-
adecimal, or base 16, number.) A program counter (PC) keeps track of the location
of the instruction currently being executed, and there is also a status register (P) that
contains bits indicating various conditions, like whether or not the last instruction
resulted in a value of 0. Most of these bits won’t be referred to directly except for
the carry bit, denoted c. All registers except the program counter are 8-bit registers.

The 6502 has a few relevant characteristics of note:

• It is a little-endian CPU, meaning that it expects to find 16-bit values like add-
resses stored with their bytes reversed. For example, the address $1234 would
be stored in two consecutive bytes as $34 $12. A big-endian CPU, by contrast,
would store it as $12 $34.

• The addressable space of the CPU is 64K. The address range from $00. . . $ff is
called “zero page,” and is prime memory real estate, because instructions access-
ing it are both shorter in terms of bytes, and take fewer cycles to execute. Having
the low part of memory spoken for by zero page and the stack, 6502 systems
usually locate any ROM in high memory.

• For anyone familiar with more recent CPUs, the 6502 has no restrictions on data
or instruction alignment. Code and data may be mixed freely, and self-modifying
code is possible.

16 6502 information in this section is drawn mostly from memory, as well as [33, 51].
17 The Atari 2600 quietly maps this into $00. . . $ff, a fact that will prove useful later.
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Assembly code shown here for the 6502, as well as for later CPUs, will be written
in an abstracted pseudo-assembly code notation for consistency and clarity. There is
significant variation in assembly languages between processors, and even between
different assemblers for the same processor. Furthermore, some assembly instruc-
tions have operands that are implied and not explicitly stated, not to mention having
to divine whether “add R1,R2” means R1 = R1 + R2, R2 = R1 + R2, or
something else entirely.

The basic pseudo-assembly syntax is inspired by C/C++/Java, and one line of
pseudo-assembly corresponds to one line of assembly code. Memory accesses are
represented like accesses to an array M, which is written Mw when a word is fetched
(as opposed to a byte). Some instructions operate on values that are effectively con-
catenated together, which is denoted with a ‖ symbol. For example, the 6502’s rotate
left instruction rotates nine bits rather than eight bits, by rotating through the carry
bit. Rotating the accumulator left one bit would therefore be written as

c‖A = rotateleft(c‖A)
Figure 1.6 shows how the assembly code in Fig. 1.4a would be represented using
pseudo-assembly code. The $800: is a label indicating the address where the in-
struction is located, and loop: is another label used for control flow whose precise
address is not important to show. More operations will be gradually introduced as
we proceed through different code examples.

Fig. 1.6 Pseudo-assembly
code example

Programmers reading this may wonder why code is expressed one way when
there is a seemingly obvious, shorter alternative. For instance, why would a pro-
grammer not have written X = X + 2 instead of one of

A = X X = X + 1
A = A + 2 X = X + 1
X = A

Many of the CPUs discussed here were far from being orthogonal, meaning that
it was not generally possible to perform all operations using all registers. Additi-
onally, there may be programming considerations involving the instruction’s size,
or how long it takes to perform. Having analyzed great quantities of assembly code,
it was rare to find obvious inefficiencies; retrogame programmers were masters of
their craft.
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1.2 Present Day

Another theme in this book is that the techniques used in the implementation of
retrogames have modern applications. Many if not most of the techniques described
here have echoes in present-day games, but there is a danger when choosing modern
games as examples, because it may appear that these are only game techniques. In
actuality, these are general techniques useful in non-game areas and, to empha-
size this, I have deliberately chosen application examples outside games. These
examples are set apart from the retrogame material by being enclosed in boxes,

like this.

1.3 Boring Academic Stuff

In one of his books, famed computer scientist Edsger Dijkstra wrote [15, p. xvii]
‘For the absence of a bibliography I offer neither explanation nor apology.’ I men-
tion this because this book has no ludography, or game bibliography; I’ll follow
Dijkstra’s lead insofar as I won’t apologize, but I will offer an explanation. Even for
early games, identifying authorship could be difficult, and the actual date a game
was produced could vary from the release date, which itself could vary depending
on geographic location. Rather than offer information which would be both incor-
rect and incomplete, the first mention of a game in a chapter gives its year as nearly
as I could determine, for use as a rough reference point. The specific platform of the
game is given either explicitly in the text or implicitly by its context, when relevant.

The references I used are cited, of course, being a good academic. The nature
of some retrogame information is such that it is duplicated and scattered widely on
the Internet. For materials like this without an obvious One True Location, I have
supplied enough reference information to locate at least one copy with a search
engine. There was also a lot of original research that went into this book, and I have
made every effort to verify technical claims. I think this latter point is especially
important, because people’s memories can fade or play tricks over time, and an
offhand comment made in an interview may not accurately reflect the reality of
code written long ago. Footnotes throughout the book document how I have verified
material, which will hopefully be useful information for future researchers.

As final pedantic notes, I’ve used computer game in preference to video game,
because some games are text-based and could even be played on teletypes [34].
Atari’s popular console is referred to as the Atari 2600 consistently throughout
to avoid confusion, even though it was originally called the Atari VCS. Units are
denoted using the symbols prevalent at the time, e.g., ‘K’ for kilobyte, rather than the
newer standardized binary prefixes for consistency with the original source material.
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Chapter 2
Memory Management

Not only do the memory management techniques used in retrogames underlie those
seen in modern operating systems, but memory and its management continues to
be an issue, like fitting data into caches for efficiency, and trading space for time in
programs. The techniques used in retrogames can be grouped into three categories:
handling too much memory, handling not enough memory, and (ab)using memory
for keeping track of a program’s state.

2.1 Too Much Memory

It may seem paradoxical that retrogames needed to handle the situation of having too
much memory. Given the comparatively small memory sizes and sky-high memory
costs back then, this would appear to be the last thing programmers would need to
concern themselves with. However, as time went on, memory grew larger and its
price fell. The problem became one of addressability: it’s not possible to directly
refer to 128K of memory, for instance, with a CPU that is not physically capable of
specifying more than 64K unique addresses.
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Enter bank switching. The basic idea is to have more than one “bank” of RAM or
ROM responding to the exact same memory address. Hardware addressing circuitry
is used to ensure that only one of the banks, the currently-selected one, responds to
any requests from the CPU. Figure 2.1 illustrates the process. The CPU requests the
value at memory address $1234, when ROM #1 is initially selected and responds
with the appropriate value. Then a bank switch occurs, which is typically performed
by the programmer coding an instruction to access a special “soft switch.” The value
written to or read from the soft switch is irrelevant; it is the reference to the switch’s
address that changes its state. Once the bank switch is done – here, resulting in
ROM #2 being selected instead of ROM #1 – the CPU can request the exact same
address, but this time sees a value from ROM #2, which can be completely different
from the value in the other ROM. The CPU is oblivious to one bank of memory
being exchanged for another.

Bank switching is still seen on smaller systems, such as embedded systems
and microcontrollers [24, 30]. Banked memory has the additional benefit that
unused memory banks may be placed into a low-power mode to conserve
electricity and prolong battery life [31].

We will explore how bank switching was handled in increasingly elaborate ways
by looking at examples from the Atari 2600 and various home computers from the
retrogame era.

Example 2.1 (Atari 2600). The Atari 2600 had a wide range of bank switching
schemes in use. More precisely, the cartridges for the 2600 did, because these mech-
anisms were not part of the 2600 console’s hardware proper. Any bank switching
hardware needed to be located inside a game cartridge. We will focus primarily on
the “F8” bank switching scheme that allowed a cartridge to have 8K of ROM, i.e.,
two banks of 4K apiece.1 F8 soft switches were located at $1ff8 to switch to Bank 0,
and $1ff9 to switch to Bank 1.

It is necessary to fully embrace the concept of mirroring in order to understand
code in the Atari 2600. Mirroring is when some component like RAM or ROM
appears to be in many different memory locations simultaneously, and it is caused
by incomplete hardware decoding of address information. With the 6507 processor
neglecting to run three address lines outside the CPU, there was no opportunity to
distinguish between many 16-bit memory addresses used inside the CPU; the 2600
had more mirroring than a carnival fun house. In other words, the ROM and soft
switches were nominally located between $1000. . . $1fff, but in fact would appear
to be at any address whose most significant bits were xxx1 (where “x” means “don’t
care”). The ROM and F8 soft switches thus appeared at $1000. . . $1fff, as well as
$3000. . . $3fff and so on, all the way to $d000. . . $dfff and $f000. . . $ffff.

1 Information for this section is from [20] unless otherwise noted.
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Fig. 2.2 Bank switching in Asteroids

With that in mind, Fig. 2.2 shows the bank switching code for Asteroids (1981).2

To call code in a different bank, the programmer would load the destination address
in $f7. . . $f8, then go to $dff0. The first instruction there toggles the appropriate soft
switch to change ROM banks, and as a result the CPU actually fetches the goto
instruction from the other bank. The Mw[$f7] means that the CPU fetches the
16-bit address (word) placed in $f7 and $f8 and uses that as the destination address
to jump to.

A more unusual method of bank switching in the Atari 2600 involves dynamic
code generation. In modern systems, dynamic code generation would be used by
just-in-time compilers to provide a speed advantage. However, some games for the
2600 dynamically generated code into RAM to perform bank switching – an unex-
pected find, given how scarce a resource RAM was on that platform.3

Fig. 2.3 Bank switching
with dynamic code generation
in E.T.

1 A = $48
2 M[$87] = A
3 A = $f5
4 M[$88] = A
5 A = $ad
6 M[$83] = A
7 A = $f9
8 M[$84] = A
9 A = $ff

10 M[$85] = A
11 A = $4c
12 M[$86] = A
13 goto $83

Figure 2.3 shows what the code for this looked like in the infamous game
E.T. (1982).4 Lines 1–4 are storing the destination address in RAM, lines 5–10 cre-
ate an instruction in RAM to toggle a soft switch, and lines 11–12 place the opcode
for a goto instruction. Line 13 jumps to the code that was just generated in RAM
at location $83, which looks like:

$83: A = M[$fff9]
goto $f548

2 Verified in-emulator.
3 Thanks to David Crane for the tip-off [15, 42:12].
4 These dynamic code generation examples were verified in-emulator, and all are F8 cartridges.
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This code also appears in Raiders of the Lost Ark (1982), and both it and E.T.
were programmed by Howard Scott Warshaw, so this commonality is perhaps not
surprising.5 Substantially similar code from different programmers is in Congo
Bongo (1983). Structurally, arranging the code so that the address was put into
memory first allowed the tail of this code (lines 5–13) to be reused with different
addresses.

While not bank switching per se, one last method of handling too much memory
on the Atari 2600 was to cram it into cartridges. The memory in question was not
ROM, though, but RAM. The problem is not straightforward, because the 2600’s
cartridges were not supplied with a read/write signal that would normally be neces-
sary for RAM chips. There was no need, given the assumption that cartridges would
only consist of ROM. The Atari ‘Super Chip’ (a.k.a. Sara) solved the problem by
dedicating separate address ranges for reading and writing [20, 34]. A write to the
extra 128 bytes of on-cartridge RAM the Super Chip provided would be at $f000,
but the address $f080 would be used to read that same location. Effectively, one of
the address lines was used as a read/write signal.

The Apple II series used a full-fledged 6502 processor as opposed to its more
limited 6507 cousin in the Atari 2600, but its ability to access a full 64K didn’t
absolve it of the need for bank switching.

Example 2.2 (Apple II). The Apple II had an optional 16K RAM card whose func-
tionality came standard by the time of the Apple IIe.6 With 12K of ROM abutted
by space for memory-mapped I/O, there was no clean way to bank 16K into high
memory. Instead, the 12K ROM was banked with 12K of RAM, and 4K of it could
be bank switched with another 4K RAM bank. Figure 2.4 illustrates.

Soft switches located at $c080. . . $c08f allowed selection of a veritable potpourri
of memory bank configurations, including arrangements where reads were from
ROM, but writes went to RAM. A programming note in the Apple reference manual
dramatically cautions that ‘Careless switching between RAM and ROM is almost
certain to have catastrophic effects’ [4, p. 69].

Commodore computers, meanwhile, moved from basic bank switching hardware
to something more complex.

Example 2.3 (Commodore 64 and 128). Like the Apple II, the Commodore 64 also
had a variety of ways to slice and dice memory banks. One interesting configuration
mapped all 64K as RAM, using four 16K banks. A programmer doing this might
seem to have painted themselves into a corner, as it were, because soft switches
located in some memory-mapped I/O space would be inaccessible. There would be
no way to switch to any other memory configuration. The solution is based on the

5 In fact, after finding this code in E.T., a hunch led me to check Warshaw’s other games. The code
is also present in a 1984 prototype on which Warshaw was a co-author.
6 Information for this section is from [4, 28, 29].
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Fig. 2.4 Bank switching on the Apple II

particular variant of the 6502 CPU that the Commodore 64 used, the 6510. This
CPU had an I/O port hardwired to address $0001 that was used to control (among
other things) bank switching [14].

The Commodore 128 upped the ante by incorporating a memory management
unit (MMU) that gave more sophisticated options to the programmer. The MMU
still allowed memory configurations to be set directly, and up to four memory arr-
angements could be pre-configured and flipped to by toggling soft switches. In
addition, the stack and zero page could be re-mapped to other locations [1, 13].

Finally, the Tandy Color Computer 3 had a 6809 CPU. The architectural differ-
ences between it and the 6502 are not as relevant here as one similarity: the 6809
could also only address 64K of memory directly.

Example 2.4 (Color Computer 3). A relative latecomer with a 1986 release, the
Color Computer 3 had an MMU with a well-structured method to select between
8K banks of RAM [27, 33]. As illustrated in Fig. 2.5, the upper three bits of the
6809’s 16-bit address (A15, A14, and A13) were fed into the MMU, which would
replace them with three bits stored in the MMU’s configuration registers, and add
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A18 A17 A16 A15 A14 A13 A12 ··· A1 A0

from CPU

added/replaced by MMU

Fig. 2.5 Memory mapping in the Color Computer 3

three more bits on to the address, extending it into a 19-bit address that could refer-
ence 512K locations. The six bits from the MMU, in essence, acted as a bank select
for 8K RAM banks.

Memory management units are now commonplace on commodity proces-
sors, and are used by operating systems to provide virtual memory support
as well as memory protection. In other words, programs can address much
more memory than is physically present in the system, and one (accidentally
or maliciously) misbehaving program can’t affect other programs or crash the
entire system. Normally.

2.2 Not Enough Memory

The case of retrogames not having enough memory seems more intuitive. Program-
mers in early games bumping into a memory limit would need to design their
programs such that not all the code was needed in memory at any one time, and
swap one large hunk of game code for another. Each hunk was referred to as an
overlay.

The management of overlays was initially manual and left to the program-
mer. Between having to manage the overlays and having slow I/O devices to read
overlays into memory from, it is not surprising that manual overlays tended to
be fairly coarse-grained. For example, Trek73 (1973) was a text-based Star Trek
game, programmed in BASIC. The game code was divided into six parts, which
were explicitly loaded as necessary by the programmer using BASIC’s “CHAIN”
command, e.g.,7

CHAIN "TREK0"

7 Verified in source code, using [19] to interpret the BASIC of the time.
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would overlay the BASIC code currently in memory with the BASIC code in the
“TREK0” file. Variables in the program declared as “common” would be preserved
across the chain loading, allowing game state to persist between different program
files. Elite (1984) brought in an overlay for trading and generating textual location
descriptions when the player’s spaceship was docked; when undocked, that overlay
was exchanged for an overlay that produced the graphics for flying [10, 39:12].

swapedit: X = 0
call swapsectors
goto $9500

swapwire: X = 1
call swapsectors
goto $9513

swapdisk: X = 2
call swapsectors
goto $9510

swapuser: X = 3
goto swapsectors

...
swapsectors: A = count[X]

M[sectorcount] = A
A = sector[X]
M[temp] = A
A = track[X]
X = M[temp]
goto readsectors

count: byte $39,$0a,$08,$0a
track: byte $0b,$0c,$0d,$0e
sector: byte $08,$09,$07,$09

Fig. 2.6 Simplified overlay code for Pinball Construction Set

A game’s code didn’t need to be overlaid in its entirety. A clear example of
this is in Pinball Construction Set (1983), where core game code would always
be memory-resident (including the code to load overlays), but other pieces would
be loaded into a memory area for overlays as need be [12, 33:41]. The simplified
code for this is shown in Fig. 2.6.8 Each overlay has a corresponding code stub
that loads a different value into X and calls the code that reads in the overlay from
disk. Once loaded, the stub jumps to the entry point for the overlay’s code. The
disk parameters are found by indexing into byte arrays using the value of X . For
instance, the “wire” overlay would be 10 sectors located on disk starting at track 12,
sector 9 ($0a, $0c, and $09 respectively).

8 Based on the real source code.
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2.2.1 Fine-Grained Memory Overlays

The programmer obviously needed to do a fair bit of work to manage overlays man-
ually. This did not remain the case, however. The game Beyond the Titanic (1986) is
interesting in this regard because it’s written using Turbo Pascal, and has a number
of procedures in the code declared using the “overlay” keyword, such as9

overlay procedure Initialize;

What this represents is a shift in labor: instead of the programmer having to manage
overlays, the compiler and run-time system do the work.

Early versions of Turbo Pascal had a comparatively limited overlay mechanism.
Keep in mind that there was no hardware assistance, and the overlays had to be
implemented in software only.10 Figure 2.7 illustrates how overlays worked in Turbo
Pascal 3, released roughly the same time as Beyond the Titanic. Space to load the
code for overlays was reserved in the program’s memory, sized to contain the code
of the largest overlay procedure or function. The bottom of the figure shows what
happens when overlay code is loaded: overlay B is the largest overlay, and occupies
the entire overlay area. Overlay D, when loaded, leaves lots of extra space free in the
overlay area, but it goes to waste. This early overlay support loaded only one overlay
at a time, and came with a litany of restrictions the programmer had to observe – for
example, one overlay routine could not call another one, because they couldn’t both
occupy the same overlay space.

The overlay support for later versions of Turbo Pascal was considerably more
advanced, but yet still condemned to provide support only through software. As
Fig. 2.8 shows, the overlay area was relocated to reside between the program’s stack
and heap memory areas, whose direction of growth is indicated in the figure. An
overlay file itself could still be separate from the executable file, but there was the
option to append it onto the executable, no doubt to simplify software distribution
for the programmer.

The overlay area could now be quite a lot larger than the code for any one over-
lay, and for good reason. The overlay area has become a ring buffer that can hold
multiple overlays’ code at once; as overlays are required, they are loaded at the head
of the buffer, with code at the tail of the ring buffer being ejected from memory to
make room.11

Figure 2.9 shows how overlay buffer management works conceptually. The ar-
row beside each buffer diagram represents the order of overlays in the ring buffer.
Initially, the buffer is empty, and as overlays A, E, and D are called, they are loaded
in at the head of the buffer. Overlay B being called presents a problem, because the
buffer does not have enough free space left to hold it. Overlays A and E, the “oldest”

9 Verified in the source code.
10 Details in this section regarding version 3 are from [7], and later versions’ behavior is from [8, 9,
11]. In particular, Figs. 2.7 and 2.9 are based on examples in [7, 9]. . . but really, how many distinct
ways can you show a ring buffer in action?
11 This is a simplified explanation. The full buffer management algorithm is FIFO with second-
chance, to avoid removing old but frequently-used overlays [32].
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Fig. 2.7 Overlay mechanism in Turbo Pascal 3.0

ones at the tail of the ring buffer, are discarded and overlay D – the new buffer tail –
is shifted in the buffer to make room. Another call to A requires it to be reloaded at
the head of the buffer, in a different location than it previously occupied.

The overlay management code thus needs to be able to perform three tasks reli-
ably. First, all calls to overlay code must be intercepted to allow the overlay manager
to load the overlay if it is not already in memory. Second, overlay code may need to
be removed from memory. Third, overlay code may be shifted to a different location
in memory. What makes the second and third tasks nontrivial is that the code sub-
jected to this cup-and-ball trick may be in the midst of use, with return addresses on
the stack pointing to the code. Moving or removing the code carelessly could result
in the ‘catastrophic effects’ formerly reserved for bank switching.
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The solution is a familiar one for programmers. Or, to put it another way, ‘Any
problem in computer science can be solved with another level of indirection.’12 Calls
to overlay code pass through an indirection layer as shown in Fig. 2.10. All calls to
overlay B, for instance, go instead to a stub that initially calls the overlay manager.

12 Attributed to David Wheeler [22].
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After B loaded
Initial state at address S1234

A: call overlaymanager
B: call overlaymanager
C: call overlaymanager
...

A: call overlaymanager
B: goto $1234
C: call overlaymanager
...

Fig. 2.10 Loading overlay code on demand

Once B is loaded, the stub’s instruction is replaced with a direct jump to B’s code.
The initial use of the call is important, because it results in the return address
being pushed on the stack; the overlay manager uses that stack information to find
out which stub entry to patch.

Unloading and relocating overlay code is a bit messier. The overlay manager
needs to walk through the stack and find all the return addresses that refer to the
overlay code in question, rewriting each to point to the manager for appropriate
repair later.

2.2.2 Paging and Virtual Memory

The overlays discussed so far have mapped well into a logical view of a game’s code.
Procedures and functions in higher-level languages; manually-selected, functionally
cohesive code in lower-level languages. An alternative is to blindly slice code into
uniformly-sized pages.

Infocom created the “Z-machine,” a virtual machine underlying their text adven-
ture games like Zork I (1980), with the goal of shoehorning an extensive game into
a small amount of memory.13 We will return to it in more detail in Chap. 4, but for
now the Z-machine can be thought of as providing a layer of abstraction on top of
the CPU, giving an instruction set defined and implemented completely in software.

Z-machine games divided the computer’s memory into three parts:

1. Mutable memory represented the current state of the game that would change as
the game was played. Saving a game or restoring a saved game only involved this
area.

2. Immutable resident memory contained code and data that always remained in
memory, but was never altered. A frequently-used game element like the dictio-
nary would be an obvious choice to place in this memory area.

3. Immutable nonresident memory could also not be changed, and all of it was not
present in the computer’s physical memory at once. Pages of this memory were
read in from disk as required; in operating system parlance, this is called demand
paging [32].

13 This section is mostly based on [6] with details of the ‘segment table’ from [26].
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It is this last memory area that is of interest here. The Z-machine’s layer of ab-
straction from the real CPU meant that it could effectively monitor every memory
access made by the game. A request that mapped to an already-loaded page could
proceed; otherwise, the Z-machine would load the appropriate page from disk, creat-
ing room if necessary by overwriting another page of immutable nonresident mem-
ory. Taken together, the Z-machine was transparently providing the game with vir-
tual memory, a memory address space larger than the physical memory the machine
possessed. It may seem that the combination of virtual machine and reading from
disk would present a substantial performance impediment, but text adventure games
were not fast-paced to begin with. Infocom’s own internal documentation says [26,
p. 5] ‘The design goal also requires no more than a few seconds response time for a
typical move.’

As the games got larger over time and pictures joined the text, one game no longer
equaled one disk, and the disks needed to be managed in addition to the memory.
The Z-machine kept track of page-to-disk mappings using what Infocom called a
‘segment table,’ shown in Fig. 2.11. The final layer of swapping sometimes fell to
the human, however, because discovering the disk number and location on disk was
irrelevant if there was only one disk drive, and the wrong disk was in it.

Paging and virtual memory, with hardware support, are mainstays of modern
commodity operating systems. Overlays were an evolutionary predecessor of
virtual memory, and still have niche applications [18, 23].

2.3 Memory for State Information

Finally, we look at something contained in memory that is very important for games:
state information. This is not the game code, but the game data that describes, for
instance, where the player is located, what objects they’re carrying, what the score
is, where enemies are currently located, and so on. Obviously this will differ consid-
erably depending on the game, and the ability to save and restore in-progress games
must capture all or part of the state information.

From the programmer’s point of view, game state is either statically or dynam-
ically allocated. Static game state variables and structures are declared in the code
and are assigned locations by the compiler, assembler, or linker. This is easy to
program, albeit inflexible. Dynamic allocation defers allocation of space until the
game is running, which gives more flexibility at the cost of more code to perform
allocation and deallocation, and more space for allocation’s bookkeeping overhead.

Approaches vary. It would be very surprising to find an Atari 2600 game that
could afford the extra code or space to dynamically allocate its pittance of RAM.
Even Infocom text adventures, for their seeming complexity, did not perform
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dynamic allocation [6]. The Commodore 64 client for Habitat (1986), by contrast,
had a best-fit dynamic memory allocator complete with garbage collection, all imp-
lemented in assembly language.14

If game state had to be saved on one platform and restored on a different plat-
form, then the state information would have to convey the same meaning on both,
regardless of how it was allocated. This is hampered by the fact that platforms may
not share the same data representations; for example, the 6502 CPU stores 16-bit
values in little-endian format with the low byte first, whereas the 6800 CPU is big-
endian and would expect the same value with the high byte first. Pointers in data
structures also present a problem, even on the same platform, because the pointers’
memory addresses may no longer be valid when data is reloaded. The usual solu-
tion is to save data in a canonical form that is platform-neutral, a process called
serialization.15

Fig. 2.12 XML data
representation

<tuple>
<string>abc</string>
<integer>42</integer>
<float>123.45</float>
<boolean>False</boolean>

</tuple>

14 Mentioned in [25, p. 76], and verified in the source code.
15 Discussion of game data formats, including serialization and XML, may be found in [17].
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As an example, consider the Python data

(’abc’, 42, 123.45, False)

This is a 4-tuple containing a string, an integer, a floating-point number, and a
Boolean value, in that order. Figure 2.12 shows how this might be represented in
XML format, textual and verbose. Figure 2.13 illustrates a more concise format that
Python uses,16 taking 27 bytes instead of the 123 bytes the XML occupies; each
box in the figure shows the contents of one byte, where typewriter font indicates an
ASCII character value used. Most lengths are converted into four-byte long little-
endian values, even on machines where this is not the native representation.

2.3.1 Static Allocation: Saving and Restoring

Platform-agnostic game state representations were not the norm except as an occa-
sional side effect. A virtual machine like Infocom’s, abstracted from the real hard-
ware, could impose a common representation across platforms.17 The Z-machine
design decision to corral dynamic game state into the one mutable memory area
certainly made game saving and restoration easier, a fact they were well aware of:
‘To “save” the game situation just requires writing this part of storage onto a disk or
tape, and to “restore” is the opposite’ [6, p. 87].

If the game state consists of statically-allocated structures and variables (without
pointers), an alternative approach can be seen used by retrogames in BSD Unix
distributions. An abstracted view of the key data structure behind this approach is
in Fig. 2.14. This C code defines an array of structures, each with the address and
the size of a piece of game state to save (and later, restore), that is initialized with
a pointer to each structure and variable worth saving. It is a simple matter to write
code that traverses each entry of this array in order and writes the indicated state to
a file. This technique was used in 1983 for Trek, and by the last release of BSD Unix
in 1993, others like Adventure had been rewritten to use this method as well.18 The
underlying assumption is that the saved game will be restored on exactly the same
platform as the one on which it was saved, therefore blasting the data out in native
binary form doesn’t present any cross-platform compatibility issues.

16 Python 2.6.6, using the marshal module, format version 0. Python is used here for expository
reasons, but in fact the language dates back to 1991.
17 An early paper claims that the Z-machine’s integers are 16 bits, with ‘the normal bit-level rep-
resentation used by the hardware’ [6, p. 83], but a much later reference with the advantage of
hindsight notes that integers are in fact big-endian [36], which I verified on a Zork I game file.
18 Confirmed in source. Adventure changed to this method between 4.3BSD-Reno (1990) and
4.4BSD (1993). Rogue in 4.3BSD-Reno is conceptually similar, but hardcoded a sequence of
writes for saving rather than using the more elegant array-based approach here.
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Fig. 2.13 Python serialized data representation

struct {
void *address;
unsigned int size;

} saveme[] = {
&structure1, sizeof(structure1),
&structure2, sizeof(structure2),
...
&variable1, sizeof(variable1),
&variable2, sizeof(variable2),
...
NULL, 0

};

Fig. 2.14 An agenda for saving static state

2.3.2 Dynamic Allocation: Saving and Restoring

Dynamically-allocated game state presents a few more complications. Now, dyn-
amic memory allocation is presented as an abstraction to the programmer: ask for
memory, and ye shall receive. Memory allocation and deallocation (possibly via
automatic garbage collection) is a “black box” whose details are hidden away. This
was not always the case, though, and to understand how some retrogames saved and
restored their state, we need to look more closely at dynamic memory allocation.

With dynamic allocation, the programmer requests memory of size N, and the
allocator finds and reserves space of at least size N. The allocated memory resides
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in the heap,19 an area of memory usually situated after the program and growing
towards high memory. This arrangement is hinted at in Fig. 2.8.

Example 2.5 (Apple Pascal). For the Apple II, the first instalments of Wizardry (1981)
were written in Apple Pascal,20 as was Sundog: Frozen Legacy (1984).21 They all
made use of Apple Pascal’s dynamic allocation facilities.

Apple Pascal’s dynamic allocation support [2] had a NEW procedure for the pro-
grammer to request memory, but had no corresponding procedure to free memory
later. The ability to explicitly allocate but not deallocate might imply that the lan-
guage performed garbage collection; Apple Pascal did not. What it did provide were
procedures called MARK and RELEASE. Before allocating memory, the programmer
would call MARK to bookmark the current top of the heap. Allocation could then
be done repeatedly using NEW, and to deallocate dynamically-allocated memory,
the programmer would call RELEASE with the previously-obtained “bookmark”
from MARK. Apple Pascal’s RELEASE simply assigned that value to the top-of-heap
pointer, deallocating en masse all the memory obtained from NEW.

This dynamic allocation scheme may seem crude, but does have advantages.
Allocation is cheap, merely a matter of moving the top-of-heap pointer, and mass
deallocation is a simple assignment to the top-of-heap pointer. Admittedly deallo-
cation has coarse granularity, and a stack discipline is imposed on allocation and
deallocation, but this is still useful in some applications. For instance, the data for
a game level follows this pattern – allocate then deallocate at the end of the level –
and is amenable to using this kind of “stack allocator” [17].

Arguably MARK and RELEASE forced a programmer to consider the heap
directly and violate the abstraction layer built atop it by dynamic memory allo-
cation. Now consider the approach to saving and restoring used in a 1987 version
of Trek73; the same technique was employed as early as 1981 by Rogue.22 This
approach treated abstraction layers with all the subtlety of high explosives.

Figure 2.15 illustrates how it worked. The programmer declared a global variable
with version information, knowing that the compiler and linker would allocate it
statically in the game’s data section, a part of the executable and memory used to
store preinitialized data. More importantly, because of where they declared it in the
code, the programmer expected it to be situated at the beginning of the data section.
Gameplay would proceed normally, complete with any dynamic memory allocation.
Later, to save the game state, the programmer would request the current top-of-heap

19 This is not to be confused with heap data structures. The use of “heap” here only refers to a
general memory area and doesn’t imply anything about its structure or organization.
20 Mentioned in [5, p. 72] for Wizardry, and verified in-emulator for Wizardry, Wizardry II (1982),
and Wizardry III (1983). Later releases may use Apple Pascal too, but Wizardry III was so annoying
to run that I’m finding it hard to care.
21 Verified in-emulator. Use of Apple Pascal’s dynamic allocation facilities by the games’ P-code
was checked with guidance from [3, 21] and a Wizardry III decompilation [16].
22 Verified in source: the version of Trek73 posted to the Usenet newsgroup
comp.sources.games in 1987 (whose comments suggest the code in question was ac-
quired from Berkeley in 1982) and Rogue 3.6.
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Fig. 2.15 Saving statically
and dynamically allocated
data

code
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address and write out all memory contents from the version variable’s location in
the data section to the top of the heap. This captured contents of both statically and
dynamically allocated memory, including anything the C language libraries might
have placed there. Restoring a game was the reverse: setting the top-of-heap pointer,
then reading saved data over top of everything from the version variable to the top
of the heap.23 The number of assumptions that had to pan out in order for this to
work is breathtaking.

Why stop at the data and heap sections? Crowther & Woods’ 1977 version of
Adventure for the PDP-10 reminded an exiting player to ‘SAVE YOUR CORE-
IMAGE’ which, in other words, means saving the entire address space of the game
including the code, that could be resumed later. This was carried through into
later implementations. The Adventure in 4.2BSD Unix retained much of the struc-
ture of the original Fortran code, despite being rewritten in C.24 Its manual page
remarks [35] ‘Saving a game creates a large executable file instead of just the inf-
ormation needed to resume the game.’ In this latter version’s game code, a new exe-
cutable was constructed for the player from four pieces: the original executable’s
file header, with some low-level modifications; the original executable’s code; the
current in-memory contents of the data section and heap; the message data for the
game, appended onto the end of the executable. Retrogame programmers clearly
needed to be conversant with more than just blocky pixels.

23 In Unix, sbrk(0) gets the current top-of-heap location (cf. MARK) and brk() sets the top-of-
heap location (cf. RELEASE).
24 Make of that statement what you will. Claims about both Adventures’ properties in this regard
were verified in source, and the core image saving on the PDP-10 was tried in-emulator.
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The Emacs text editor still uses this dump-and-restore technique,25 although
the details of modern virtual address spaces and executable file formats like
ELF are insanely complicated. However, this allows Emacs Lisp code (an
extension language in Emacs), that might otherwise be slow to load, to be
preloaded and captured for quick startup later [37]. In a very real way, users
of Emacs are running a core dump.
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Chapter 3
Slow, Wildly Incompatible I/O

Retrogames that ran on home computers and game consoles gave the computer
running the game code a direct, fast connection to user input devices (keyboard,
joystick) and output display devices (monitor or television). This was not the case
for all retrogames. Some ran on much larger computers, and the player played the
game using a “dumb terminal,” a text-based device with a monitor and keyboard
whose sole purpose was this communication. The dumb terminal ran no game code;
every player keystroke had to be transmitted from the terminal to the remote com-
puter for processing by the game, and every character of the game shown on the
dumb terminal’s screen had to make the reverse journey.

There was a vast range of data transfer speeds to and from dumb terminals that
somehow needed to be supported. It is a difficult notion to convey properly in the
static text of a book, except through reader participation. With a stopwatch or count-
down timer running, read every part of the passage below, quoted from [8]:

Quo usque tandem abutere, Catilina, patientia nostra? Quam diu etiam furor iste tuus eludet?
Quem ad finem sese effrenata jactabit audacia? Nihilne te nocturnum praesidium Palatii,
nihil urbis vigiliae, nihil timor populi, nihil concursus bonorum omnium, nihil hic munitis-
simus habendi senatus locus, nihil horum ora vultusque moverunt. Patere tua consilia non
sentis? Constrictam omnium horum scientia teneri conjurationem tuam non vides? Quid
proxima, quid superiore nocte egeris, ubi fueris, quos convocaveris, quid consilii ceperis,
quem nostrum ignorare arbitraris? O tempora, O mores! senatus haec intellegit, consul
videt; hic tamen vivit. Vivit? immo vero etiam in senatum venit, fit publici consilii par-
ticeps, notat et designat oculis ad caedem unum quemque nostrum. Nos autem, viri fortes,
satis facere rei publicae videmur, si istius furorem ac tela vitemus. Ad mortem te, Catilina,
duci jussu consulis jam pridem oportebat, in te conferri pestem istam.

Reading the passage in 26s corresponds to a data transfer rate of 300baud, 6s cor-
responds to 1200baud, and less than a second is 9600baud or higher. This particular
text is almost exactly the same number of characters as half of an 80×24 screen. In
other words, to redraw the full screen contents for a commonly-sized dumb terminal
at a given baud rate would take twice as long as it did to read the quote. Updating
the display of a game by completely redrawing the screen contents was clearly out
of the question.

© Springer International Publishing Switzerland 2016
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Fortunately dumb terminals were not quite that dumb. Many had the capability to
clear the screen, or position the cursor at a particular location, or clear to the end of
a line, for example. The problems were threefold. First, the terminals didn’t always
have the same capabilities. Second, the terminals’ features were triggered by the
computer sending special codes, but they weren’t the same codes for each terminal
type. Third, there were a lot of different types of terminals.

ca|adm3a|3a:0177440:0000332:li#24:co#80:\
:cl=ˆz:ho=\036:nd=ˆl:up=ˆk:am:bs:ca

terminal
name(s)

numeric
attributes

string
attributes

Boolean
attributes

Fig. 3.1 ttycap entry for ADM-3A terminal, c. 1977, from 1BSD Unix

But before games come tools to make games, which is where the story starts.
Around 1977 at Berkeley, a person named Bill Joy was building a full-screen editor
called vi for dumb terminals, a descendant of which I am using to write this text.
Faced with the dumb terminal problems above, one programming solution would be
to hardcode support for each and every terminal into the editor. Joy took a differ-
ent path. He extracted the information about these terminals into a separate system
database of sorts, and programmed a library to access and use this information,1 a
library that could be used by vi and any other program that might need to perform
elaborate feats with dumb terminals. The resulting database was called ttycap, an
example entry of which is shown in Fig. 3.1 for the ADM-3A terminal. The terminal
name and any aliases it went by came first. Numeric attributes, here the number of
lines and columns, could be specified. String-valued attributes were commands
that, if sent to the terminal, would cause it to perform a specific function such as
clear the screen or move the cursor to the home position. The string attributes
could be written for greater readability, like “ˆz” for Control-Z and “\036” for
the character having octal value 36. Finally, Boolean attributes could be present that
acted as flags; “ca,” for example, means that the terminal’s cursor can be moved,
but doesn’t give any information as to how that might be accomplished.

By 1979, ttycap had become termcap,2 a database that is still present on
some modern Unix systems. Figure 3.2 shows termcap entries for the ADM-3A
(for comparison) and the much more elaborate DEC VT100 (still a widely-emulated
terminal type). More features could be specified in termcap: for the ADM-3A

1 Verified in 1BSD source. Historical aspects are from [23, 26], although they omit mention of the
ttycap evolutionary step. The actual ttycap entry for the ADM-3A was a single line, but Joy’s
library code supported the line continuations shown in the figure.
2 Verified in 2BSD source.
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adm3a|3a|lsi adm3a:\
:am:do=ˆJ:le=ˆH:bs:cm=\E=%+ %+ :cl=1ˆZ:co#80:ho=ˆˆ:\
:li#24:ma=ˆKˆP:nd=ˆL:up=ˆK:

vt100|dec-vt100|vt100-am|vt100am|dec vt100:\
:do=ˆJ:co#80:li#24:cl=50\E[;H\E[2J:sf=2*\ED:\
:le=ˆH:bs:am:cm=5\E[%i%d;%dH:nd=2\E[C:up=2\E[A:\
:ce=3\E[K:cd=50\E[J:so=2\E[7m:se=2\E[m:us=2\E[4m:\
:ue=2\E[m:md=2\E[1m:mr=2\E[7m:mb=2\E[5m:me=2\E[m:\
:is=\E[1;24r\E[24;1H:if=/usr/share/tabset/vt100:\
:rs=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h:ks=\E[?1h\E=:\
:ke=\E[?1l\E>:ku=\EOA:kd=\EOB:kr=\EOC:kl=\EOD:kb=ˆH:\
:ho=\E[H:k1=\EOP:k2=\EOQ:k3=\EOR:k4=\EOS:pt:sr=2*\EM:\
:vt#3:xn:sc=\E7:rc=\E8:cs=\E[%i%d;%dr:

Fig. 3.2 termcap entries for ADM-3A and VT100 terminals, from 4.4BSD Unix; see
Appendix A for legal information

\E = %+ %+

ESC = # %

+3 +5

row 3 column 5 — parameters

— cm string attribute

— characters sent to terminal

Fig. 3.3 Parameter usage in termcap entries; indicates a space character

entry, the clear screen command has become “1ˆZ” where the “1” adds a 1ms
delay when issuing that command. Cursor motion commands could now be speci-
fied, albeit in a curious fashion. The “cm” entry for cursor motion allowed parame-
ters to be given for the row and column, and the “%+” incorporated each parameter
value by adding it to the character value after the “%+”, namely the space (Fig. 3.3).

The vt100 entry, besides showcasing how elaborate termcap descriptions can
get, has even more involved string attributes. On the last line, the “cs” attribute uses
the command “%i” that adds one to a parameter’s value, and “%d” formats a param-
eter as C’s printf would. Terminal descriptions are essentially expressed using a
small, terse, domain-specific programming language, and any program wanting to
employ them needed code to appropriately select and use terminal attributes from
the database.

The accompanying termcap manual page confesses that its use at the time was
for editors and support programs [30]: ‘Termcap is a data base describing terminals
used primarily by ex (UCB) and vi (UCB), and also by tset (UCB).’ This was about
to change.
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3.1 Curses

Fig. 3.4 Moving the cursor
from point A to point B

A

B

A library called “curses” was created by Ken Arnold that leveraged the termcap
database along with, quite literally, some of Bill Joy’s editor code for efficient cur-
sor motion [4]. Cursor motion was ‘The most difficult thing to do properly’ [4, p. 5]
and, to understand why, consider the diagram in Fig. 3.4. Say the cursor is at point
A and it needs to be moved to point B. What is the optimal way to do this in terms
of time and the number of characters sent to the terminal?

• Move the cursor up, then left.
• Move the cursor to the top of the screen, then down.
• Move the cursor to the leftmost column of the line, up one line, then tab in.
• Issue a direct cursor movement command.

Now, recall that all terminals won’t have all the above capabilities, and some may
have delays required for certain commands, and the complexity of this seemingly
simple problem becomes apparent. A dumb terminal only places characters where
its cursor is, making the cursor’s location of paramount interest. Less than optimal
cursor motion would be painfully obvious to a user watching the cursor plod along
their terminal screen at a low baud rate.

______
| |

yxvtlheba:desseuGO|
| /|\

1:#droW||
000.6:egarevAtnerruC/|
000.0:egarevAllarevO_____|__

| |___
|_________|

Word: --ea-e-y
Guess:

Fig. 3.5 Hangman on BSD Unix, emboldened for legibility, with cursor shown at bottom; see
Appendix A for legal information
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+-----------------------------------------------------------+ Directions:
|+++|

uky|@+|
/|\|++|

| + | h- -l
| | /|\

njb|+|
| |
| | Commands:

|+|
| | w: wait for end
| | t: teleport

tiuq:q|++|
neercswarder:Lˆ|+++|

|+|
| + | Legend:
| |
| + | +: robot
| | *: junk heap
| + | @: you

|+|
| + | Score: 102
| | Wait bonus: 2
+-----------------------------------------------------------+

Fig. 3.6 Robots on BSD Unix, emboldened for legibility; see Appendix A for legal information

What the curses library did for the programmer was to hide all this detail and
more. The result was a high-level interface to command different terminals that was,
and is, very easy to use from a programming standpoint.3 Now full-screen games
could be written for dumb terminals. Figure 3.5 shows Hangman (1983), which has
cursor motion between the input prompt, the word, the letters guessed, and parts of
the ill-fated stickman on the gallows. Robots (1980) has more cursor activity, with
the player (@) and all the robots (+) moving each turn; see Fig. 3.6. Rogue (1980)
was another game that reaped the benefits of curses.

Figure 3.7 gives an example curses program. Line 4 tells curses to initialize itself.
Line 5 clears the screen, and text is placed at specific rows and columns by the
two pairs of lines at 7–8 and 9–10. For reasons explained below, no screen updates
happen until the call to refresh at line 11. In fact, if that line is missing, this
program will run and have no visible output at all. Finally, line 13 tells curses to
shut down and restore the screen to a sensible state if necessary. Notice that there is
no code that deals with specific terminals, or even the name of the terminal type –
curses handles it all.

To make screen updating better overall, screen update commands issued to curses
are not reflected on the terminal immediately. This allows curses freedom to perform
more global optimization of cursor movement and updates. In Robots, for instance,
a naive approach to moving all the robots is to send the terminal’s cursor to each
one and update them individually. However, there will be a number of consecutive
+ characters once the robots cluster together, and a global view of the screen data
can spot that and move the cursor only once to update many robots.

3 A visualization I wrote to help analyze a retrogame for this book used curses on a visualization
wall that provided 1580 columns and 356 rows of text.
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1 #include <curses.h>
2

3 int main() {
4 initscr();
5 clear();
6

7 move(10, 7);
8 addstr("Hello");
9 move(13, 15);

10 addstr("world!");
11 refresh();
12

13 endwin();
14 return 0;
15 }

Hello

world!

Fig. 3.7 A sample curses program and its output

Curses thus keeps two in-memory representations of the screen. One is curscr,
an internal representation of what the terminal screen’s contents should be. This
may or may not be accurate, but a program has no way to know the actual state of
a dumb terminal’s screen; there may be transmission errors, or output from other
running programs may have been blasted on the terminal’s screen. Many full-screen
programs for dumb terminals include an option so the user can request a screen
redraw for this reason (see ˆL in Fig. 3.6). Besides curscr, curses has stdscr,
its internal representation of what the screen should be changed to upon the next
call to refresh. These two screen representations are used by curses to compute
the differences, i.e., the smallest set of screen updates it can find to change stdscr
into curscr. The goal is to minimize cursor motion and characters output to the
terminal.

Abstracting away details, pseudocode for the screen refresh algorithm used by
early versions of curses is given in Fig. 3.8.4 Differences were looked for only bet-
ween corresponding lines, a search optimized by keeping track of the first and last
characters on a line that had changed. The nested loop in updateline may seem
redundant, but there could be multiple sequences of changed and unchanged char-
acters within a single line. The algorithm also watches for opportunities to take
shortcuts, such as clearing to the end of the line rather than outputting numerous
spaces.

As an example, say that a line in curscr contains (showing spaces explicitly):
HELLO WORLD

and the same line in stdscr is updated to instead read
HELP!

4 Based on 4.2BSD Unix source; the update algorithm was fairly similar between 4BSD and
4.3BSD.
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foreach line j in stdscr:
if stdscr[j] changed:

updateline(stdscr[j], curscr[j])
mark stdscr[j] unchanged

def updateline(stdline, curline):
i = first changed character in stdline
last = last changed character in stdline
while i ≤ last:

if curline[i] �= stdline[i]:
move cursor to that spot on the line
while curline[i] �= stdline[i] and i ≤ last:

if rest of stdline is blank:
output clear-to-end-of-line code
change rest of curline to blank
return

else:
output stdline[i]
curline[i] = stdline[i]
i = i + 1

else:
i = i + 1

Fig. 3.8 Pseudocode for curses’ screen update algorithm

A refresh would leave the HEL alone, move the terminal’s cursor right after it to
write P!, followed by the terminal’s code to clear to the end of the line.

Curscr

The
quick

Stdscr

The
quick

=
=

lines match

Curscr

The
quick

Stdscr

The
brown
quick

=�=
=

line insertion

Curscr

The
quick
brown

Stdscr

The
brown

=�=
=

line deletion

Curscr

The
quick
fox

Stdscr

The
brown
fox

=�=
�=

intra-line changes

Fig. 3.9 Line insertion and deletion cases

This algorithm’s view is limited to changes within individual lines, and does
nothing to capture entire lines moving around. While this is probably sufficient for
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Rogue and Robots, it can be improved.5 Many dumb terminals are able to insert and
delete whole lines, and to take advantage of that the refresh algorithm would need
to spot whole-line differences. As Fig. 3.9 shows, there are four cases to consider,
assessing each line from top to bottom of the screen. The first case is where the lines
match. (In practice, each line would have a hash value or other unique identifier for
efficient comparison, rather than comparing lines character by character.) Second
comes insertion: when corresponding lines don’t match, stdscr’s later lines can
be searched for the line in question, which also reveals how many lines need to
be inserted. Third, if the insertion check fails, there may have been one or more
lines deleted. The mismatching line from stdscr is searched for in curscr to
discover if this is the case. Fourth, if neither insertion nor deletion is detected, then
the algorithm reverts to making intra-line updates as before.

Fig. 3.10 Insertion troubles
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Formally, transforming one screen into another can be seen as a variant of the
string-to-string correction problem [11], the success of which can be measured in
terms of the “edit distance,” roughly the number of editing steps it takes to change
one string into another [31]. Besides screen updates, this same formal problem crops
up in areas like file comparison and spelling correction [18], in addition to areas
as seemingly far-flung as computational biology [12]. Any algorithm can poten-
tially have worst-case behaviors, however, and the line insertion and deletion algo-
rithm just described has some bad failure cases. Figure 3.10 gives one: the algorithm
would find a mismatch on the first line, then search for an insertion point to resyn-
chronize, to locate one at the very bottom of stdscr. The net result is a six-line
insertion and needless redrawing of five lines, all for what is actually a one-line
change. Newer versions of curses address this by keeping track of lines in stdscr
as they are moved, rather than trying to guess how lines have moved after the fact.6

Efficient screen updates might seem like a historical curiosity, but as a general
principle, it can often be much less work or consume much less bandwidth to per-
form updates with differences rather than using a new, updated version in its entirety.
This idea was applied beyond dumb terminals within the retrogame era.

Example 3.1 (Keen Dreams, 1992). Kushner’s story of Id Software, the people that
eventually produced Doom (1993), recounts a watershed moment in their game tech-

5 This discussion is based on the cases from [9, pp. 102–104].
6 For example, ncurses 5.9.
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nology [19, p. 49]: ‘What if, Carmack thought, instead of redrawing everything, I
could figure out a way to redraw only the things that actually change?’ Exploiting
differences found its way into Id’s pre-Doom offering, the Commander Keen series
on MS-DOS. By keeping an array of flags tracking bitmap tiles that required updat-
ing, their graphics code could limit copying ‘from the master screen to the current
screen’ to only those tiles. The array also gave an easy way to separate single-tile
copying from multi-tile copying by peeking ahead to the next flag, allowing different
optimized code to be invoked for each case.7

Depending on the computing capability of the device on the receiving end of
differences – dumb terminals had none, of course – differences can be combined
with compression for even more gains.

Compressed differences, or “deltas,” are used for updates by operating sys-
tems [10] and anti-virus software [5, 17], for example. In the case of binary
executables, computing the differences between two binaries and then com-
pressing the difference information can be many orders of magnitude smaller
than compression alone [25, 27].

3.2 Flexibility via External Data

Ttycap and termcap are examples of another general principle, that of gaining
flexibility by using external data. “External data” could, in this case, be thought of as
the programmer externalizing or factoring out data from a game that would normally
be hardcoded or built in. This gives us a design spectrum for game code, one that
is not linked to age or game evolution, but is indicative of different program design
choices. Four models, points along the design spectrum, are illustrated in Fig. 3.11.

3.2.1 Model A: Monolithic

Not much needs to be said about Model A, as it is in some ways the “natural” way to
consider implementing a game. This first model is where the game code and its data
are a monolithic, inseparable entity. The perfect embodiment of this in retrogames,
both physically and conceptually, is the game cartridge that contains code and data
as a single discrete unit.

7 As seen in Keen Dreams source code, quote from comments in both id rf a.asm and
id vw ae.asm.
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Fig. 3.11 A game code design spectrum

3.2.2 Model B: Interchangeable Data

Model B moves away from being strictly monolithic, with at least part of a game’s
data being factored out. One hunk of game data becomes interchangeable with
another hunk of game data; the game code uses the data but does little if anything
in terms of interpreting the data, compared to later models. Changing data around
can be done without recompiling or reassembling game code, underscoring the ind-
ependence of the two.

Example 3.2 (Ttycap). The ttycap database factored information about dumb
terminals out from code into a single system-wide repository, but there was no
meaningful interpretation of the collected information beyond that.8 Numeric and
Boolean attributes held information for the program; string attributes were com-
mands the program would send to the terminal verbatim to perform specific func-
tions. The big implementation advantage was that a single program could work with
many different terminals, including terminals that did not exist when the program
was written and compiled, without having to hardcode special cases for each one
into the program.

A program working with externalized data must have some way to select it, a
database key. For ttycap, there were two: the terminal name to choose a ttycap

8 Verified in ttycap library manual page and source code.
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entry, and then the two-character names of individual attributes within the entry.
Doom generalized this notion, making its database akin to a simple read-only
filesystem.

Example 3.3 (Doom). Game data in Doom was stored in external “WAD” files,
e.g., DOOM1.WAD. It has been suggested that WAD stands for “Where’s All the
Data?” [13, 19] but this is a backronym – it was simply an off-the-cuff answer to the
question ‘what’s a bunch of lumps?’ [14, 4:56] where a lump was the name used for
a hunk of game data in their previous games.9

Fig. 3.12 WAD file structure
in Doom

lump
name offset

size

...

lump
name offset

size

lump
name offset

size

...

directory offset
number of lumps
magic number

file
header

directory

lumps

The structure of a WAD file is shown in Fig. 3.12. A file header contained three
parts: a “magic number” identifying the file type, in this case one of the four-byte
ASCII sequences IWAD or PWAD; the number of total lumps (pieces) of data in
the WAD file; the file offset to the WAD’s directory information. The directory was
an array of structures, one structure per lump, each containing an eight-byte lump
name, the lump’s size, and the lump’s offset within the WAD file. This suggests that
Doom used the lump names as keys, but this was only partially true – level data, for
example, was expected to have lumps in a certain order, and as a result some lump
names were effectively ignored and were not unique. In these cases, a zero-length
“pseudo-lump” name acted as a marker to locate the start of a level’s lumps in the
directory, e.g., E1M1 to locate episode 1, map 1.10

9 Confirmed in Keen Dreams source code.
10 From Doom source code analysis and construction of a WAD dumping tool.
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Separating game data from the game code makes the game code transition into
more of a generic game “engine” and facilitates game modification, or modding,
where players can alter aspects of a game. The Doom developers encouraged this
through their design [19], and there are Doom game level editors galore, but they
were certainly not the first to provide level-editing functionality.

Fig. 3.13 Lode Runner on the Apple II (Image c©Tozai, Inc., used with permission; see
Appendix A for additional legal information)

Example 3.4 (Lode Runner, 1983). Lode Runner was an early retrogame that came
with a level editor. On the Apple II disk, each level’s data was padded out to be 256
bytes, the size of one disk sector, making individual levels easy to access using the
level number as the key.

Figure 3.13 is a screenshot of the first level of Lode Runner. The objective is for
the player (the figure at center bottom) to collect the gold (squares) and avoid being
captured by the non-player characters, or NPCs (the three figures higher up on the
screen). The grid for each level is 28 columns by 16 rows, and each grid cell can
contain one of ten items; that means that each cell’s contents can be encoded in a
nibble,11 and two cells’ contents can be stored in one byte. In total, one level’s data
fits in 224 bytes.

The data representing this first level is given in Fig. 3.14. When represented in
hexadecimal, the two digits of each byte’s value shows its two nibbles, making the
encoding fairly straightforward to see – the player and NPCs are highlighted in the

11 One nibble, also written nybble, consists of four bits. It can hold 24 = 16 different values.
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$00 $00 $00 $00 $00 $00 $00 $00 $00 $06 $00 $00 $00 $00
$00 $00 $07 $00 $00 $00 $00 $00 $00 $06 $00 $00 $00 $00
$11 $11 $11 $31 $11 $11 $11 $01 $00 $06 $00 $00 $00 $00
$00 $00 $00 $30 $44 $44 $44 $44 $44 $06 $00 $70 $00 $00
$00 $00 $00 $30 $00 $00 $11 $03 $00 $11 $11 $11 $31 $11
$00 $00 $00 $30 $00 $00 $11 $03 $00 $00 $00 $00 $30 $00

$00 $00 $80 $30 $00 $00 $11 $03 $00 $00 $00 $87 $30 $00

$11 $13 $11 $11 $00 $00 $11 $11 $11 $11 $13 $11 $11 $11
$00 $03 $00 $00 $00 $00 $00 $00 $00 $00 $03 $00 $00 $00
$00 $03 $00 $00 $00 $00 $00 $08 $00 $00 $03 $00 $00 $00
$11 $11 $11 $11 $31 $11 $11 $11 $11 $11 $03 $00 $00 $00
$00 $00 $00 $00 $30 $00 $00 $00 $00 $00 $03 $00 $00 $00
$00 $00 $00 $70 $30 $44 $44 $44 $44 $44 $03 $00 $07 $00
$00 $00 $13 $11 $11 $01 $00 $00 $00 $00 $11 $11 $11 $31
$00 $00 $03 $00 $00 $00 $00 $09 $70 $00 $00 $00 $00 $30
$11 $11 $11 $11 $11 $11 $11 $11 $11 $11 $11 $11 $11 $11

$00 $00 $80 $30 $00 $00 $11 $03 $00 $00 $00 $87 $30 $00

$00 $00 $08 $03 $00 $00 $11 $30 $00 $00 $00 $78 $03 $00
NPC wall gold/NPC

ladders
0 = empty space 4 = bar 7 = gold
1 = normal brick 5 = trapdoor 8 = NPC
2 = solid brick 6 = escape ladder 9 = player
3 = ladder

Fig. 3.14 Decoding Lode Runner level data, with player and NPCs in bold

data as reference points. The seventh row, the row on the screen with two NPCs, has
the encoding broken down. Each byte’s nibbles are actually swapped to arrive at the
cell order onscreen, and then each nibble’s value can be mapped to the cell contents
with the values shown at the bottom of the figure.12

3.2.3 Model C: Partial Interpretation

With Model C, we see some of the code morph into data. The majority of the game
code stays intact and implemented in a traditional manner, such as in assembly code
or C. However, some of the responsibilities that would have formerly been hard-
coded the same way are factored out from the game code proper in this model. The
factored code is expressed in a new language that is interpreted and, for this reason,

12 I used an analysis of Commodore 64 Lode Runner level data as a guide [6], and verified it on
the Apple II version with a program I wrote that extracted and reconstructed the levels.
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the game code must be enhanced with an interpreter that can make sense of the new
language. This model is not frequently seen in most retrogame genres; interpreta-
tion adds overhead that would be intolerable for game code already struggling to
keep up.

Example 3.5 (Termcap). Termcap expands on ttycap by performing rudimen-
tary interpretation of the string attributes in dumb terminals’ termcap entries [30].
The interpreter itself was not directly part of any termcap-based retrogames; it
was located in the termcap library routines.13 Besides implementing padding
delays specified in string attributes, parameters (e.g., row and column numbers)
could be substituted into strings, have limited arithmetic operations applied to them,
or be part of simple conditional expressions.

One game genre that does see partial interpretation is the niche of programming
games, where the player plays the game vicariously by writing programs to act
on their behalf. This genre has a long history even by retrogame standards. The
programming game Darwin was played in 1961 on an IBM 7090 mainframe, for
example [3, 22]. (Game history aficionados will note that that places it earlier than
Spacewar (1962), an example invariably raised when discussing early games.)

Example 3.6 (RobotWar, 1981). Set in the ‘future’ of 2002 [24], the program-
ming game RobotWar for the Apple II had the player write programs to control
robots that battled one another for supremacy in a game arena the game simulated.
A robot program’s source code was assembled into ‘object code’ that was inter-
preted. Figure 3.15 gives an example of robot source code for a robot that employs a
“run-and-gun” strategy, randomly and continuously moving while it scans for other
robots, firing at any it finds.14 The minutia of controlling robots is less of interest
than the language design, which owes a lot to BASIC. In particular, the GOTO and
GOSUB are drawn directly from it, with ENDSUB acting as a RETURN statement.
The TO is an assignment of a value to a variable, and also hints at a possible COBOL
influence. There is a fairly direct mapping of program statements into object code;
this example assembles into 30 low-level object code instructions.

Of course, as computers became faster, this allowed on-the-fly partial interpreta-
tion to be added to faster-paced games.

Example 3.7 (Quake, 1996). Quake admittedly pushes the envelope of the span of
years we’re claiming for retrogames. However, it is instructive to see what such a
language would look like. Figure 3.16 gives an example of Quake’s language,15

called QuakeC, which was compiled to instructions that were then interpreted.
At first glance, a lot of the syntax is drawn directly from C: the comments, the use of
braces, and various statement types. Lines 5–8, however, are actually directives that

13 Confirmed in 2BSD termlib source code.
14 Placing 4–5 of these in the arena has the visual effect of a drunken, heavily-armed ballet troupe.
15 Created based on QuakeC language documentation [29], and run through two different QuakeC
compilers to check for errors.
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Fig. 3.15 Robot source code
for RobotWar

] 200 TO RANDOM
]LOOP
] GOSUB MOVE
] GOSUB SCANFIRE
] GOTO LOOP
]MOVE
] RANDOM - 100 TO SPEEDX
] RANDOM - 100 TO SPEEDY
] ENDSUB
]SCANFIRE
] 0 TO AIM
]SCANLOOP
] AIM TO RADAR
] IF RADAR < 0 GOTO FIRE
] AIM + 90 TO AIM
] IF AIM = 0 ENDSUB
] GOTO SCANLOOP
]FIRE
] 0 - RADAR TO SHOT
] ENDSUB

could be embedded into QuakeC source files for a Quake utility program, making
this an embedded language inside an embedded language. Lines 10–19 show some
syntactic sugar in QuakeC, a shorthand way to express transitions between frames
(here, a three-frame cycle) and associated per-frame code to execute. A more tradi-
tional computation is illustrated in lines 26–30, to demonstrate the slightly unusual
function declaration syntax. The integer Fibonacci function uses floating point num-
bers here because QuakeC had a selection of data types specialized for the game,
and floats were used in place of integers and Boolean values.

3.2.4 Model D: Full Interpretation

The final step along the design spectrum is Model D, where the entire game is imple-
mented in an interpreted language. All that remains in native code is an interpreter
and, compared to Model C, the native code base shrinks substantially. Previously the
focus has been on being able to swap data for other data, and certainly that is still the
case – one native interpreter engine can be re-used for different games’ interpreted
code. A notable difference is that the interpreter can be changed for another one
too, yielding a very flexible design.

Example 3.8 (Infocom). Infocom’s Z-machine games are an excellent example of
Model D and its advantages. Many different games (all expressed as interpreted
Z-machine code) could run on the same Z-machine interpreter for a platform, and
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1 /*
2 * Commands for model definitions
3 */
4
5 $cd /quake/models/super
6 $origin 0 42 0
7 $scale 2
8 $frame frm_super1 frm_super2 frm_super3
9

10 void() super1 = [ $frm_super1, super2 ] {
11 if (random() < 0.1) {
12 // whistle annoyingly at max volume
13 sound(self, CHAN_VOICE,
14 "sounds/whistle.wav",
15 1.0, ATTN_NORM);
16 }
17 };
18 void() super2 = [ $frm_super2, super3 ] { };
19 void() super3 = [ $frm_super3, super1 ] { };
20
21 /*
22 * Everyone needs to compute Fibonacci numbers
23 * during a deathmatch, obviously
24 */
25
26 float(float n) fib = {
27 if (n == 0) return 0;
28 if (n == 1) return 1;
29 return fib(n - 1) + fib(n - 2);
30 };

Fig. 3.16 QuakeC source code example

creating a Z-machine interpreter for a new platform allowed Infocom’s library of
games to run on it. This gave their games a high degree of portability,16 which was
especially important given the diversity of platforms in the early retrogame era. For
Infocom games and others that took a similar approach, time has shown this to be
a future-proof strategy too, as decades-old game data files can be resurrected to run
using modern interpreters.

As we started seeing with Model C, once interpretation is added, there is a shift
in focus to the interpreted language as more of the game code moves into this form.
How would game programmers express themselves in the interpreted game lan-
guage? It is rare to see this view, because these languages tended to be internal and
proprietary. There are numerous cases where it’s widely known that an interpreted

16 They mentioned this early on with respect to Zork [7, 20].
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language was used, and there are modern tools to run the games’ interpreted code
(i.e., the compiled version of it that was distributed with the game), but no one
knows what the code looked like to the programmers.

Example 3.9 (Platt’s Adventure, 1979). Dave Platt’s re-implementation of Adven-
ture introduced a domain-specific language that was compiled into an interpreted
‘A-code.’ Figure 3.17 contains the source code in this language for a very simple
game that will be used as a running example. The game consists of one location (a
phone booth), one object (a phone), and one verb (look); its stimulating gameplay
is shown in Fig. 3.18.

The source may appear lengthy for such a limited game, but a lot of this is inf-
rastructure that, once in place, can be easily added to with richer game content.17

Lines 1–3 are declarations, followed by the location and its textual description
(lines 5–6), the messages the game outputs (lines 8–11), and the object and its des-
cription (lines 13–14). Lines 16–18 define how to respond to the player looking at
the phone, which can be expressed more generally for more complex games with
many objects. Looking about the current location is handled by lines 19–26: HERE
is a reference to the current place, so “SAY HERE” prints out the current place’s
description. The ITOBJ is the start of a loop that iterates over game objects, and the
IFNEAR conditional filters out only those objects that are near to the player (i.e., in
the current location). Using NAME as opposed to SAY for output allows parameter
substitution – the object’s name is filled in at the string’s “#” placeholder.

The entry point for the game’s code is INITIAL at line 28. Line 29 moves
the phone object into its starting location, and line 30 moves the player into their
location. Finally, lines 32–38 are repeated indefinitely to get the input (which is
parsed to identify nouns and verbs) and dispatch to an appropriate handler (line 34).

Example 3.10 (Infocom’s ZIL). It may seem odd that Infocom appears a second time
as a Model D example, but their language warrants its own separate look. Info-
com games were implemented in an in-house language known as ZIL, for Zork
Implementation Language, that was derived from a more elaborate language named
MDL [7]. Figure 3.19 shows what the phone booth game would look like in ZIL.
The language’s Lisp heritage [7, 21] is plainly apparent with the abundance of paren-
theses and angle brackets, especially on line 16. GO is the entry point for the code,
and this routine establishes the current location and the whereabouts of the player
(lines 18–19), does the initial LOOK on line 20, then goes to the main game loop.
This loop (lines 14–16) repeatedly calls the parser and, if there are no errors, in-
vokes code to perform the player’s command. The phone booth “room” (lines 1–4)
has a description to print and various other attributes, like the fact that the room is
lit. Lines 6–11 define the phone: it has both short and long descriptions (the latter is

17 More elaborate games’ source unfortunately doesn’t easily fit into a smallish figure. I developed
and ran them all through a modern A-code interpreter for verification.
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1 VARIABLE I
2 SYNON 14,VERB
3 VERB LOOK
4
5 PLACE BOOTH
6 You are in a telephone booth.
7
8 TEXT WHAT?
9 Huh?

10 TEXT THEREISA
11 There is a # here.
12
13 OBJECT PHONE
14 The phone is a robust contraption with a rotary dial.
15
16 ACTION LOOK PHONE
17 SAY PHONE
18 QUIT
19 ACTION LOOK
20 SAY HERE
21 ITOBJ I
22 IFNEAR I
23 NAME THEREISA,I
24 FIN
25 EOI
26 QUIT
27
28 INITIAL
29 APPORT PHONE,BOOTH
30 GOTO BOOTH
31 REPEAT
32 INPUT
33 BIT ARG1,VERB
34 CALL ARG1
35 ELSE
36 SAY WHAT?
37 FIN
38 QUIT

Fig. 3.17 Phone booth game code

printed when the player looks directly at the phone), and the synonym and adjective
attributes permit more freedom in expression. A player can “look at the phone” as
well as “look at the rotary telephone,” for instance.18

18 Constructing accurate ZIL examples is tricky because no full game source has ever been re-
leased, only an internal ZIL training manual [16]. I have written this example as faithfully as
possible to that specification, and checked it using a modern ZIL compiler and Z-code interpreter.
LIGHTBIT should actually be ONBIT, but the modern ZIL system uses LIGHTBIT and it makes
more sense semantically, so I have retained that one incompatibility.
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? xyzzy
Huh?
? look
You are in a telephone booth.

There is a phone here.
? look phone
The phone is a robust contraption with a rotary dial.
?

Fig. 3.18 Playing the phone booth game; user input is in bold

1 <ROOM PHONE-BOOTH
2 (LOC ROOMS)
3 (DESC "You are in a telephone booth.")
4 (FLAGS LIGHTBIT)>
5
6 <OBJECT PHONE
7 (LOC PHONE-BOOTH)
8 (DESC "phone")
9 (SYNONYM PHONE TELEPHONE)

10 (ADJECTIVE ROTARY)
11 (LDESC "The phone is a ... with a rotary dial.")>
12
13 <ROUTINE MAIN-LOOP ()
14 <REPEAT ()
15 <COND (<PARSER>
16 <PERFORM ,PRSA ,PRSO ,PRSI>)>>>
17 <ROUTINE GO ()
18 <SETG HERE ,PHONE-BOOTH>
19 <MOVE ,PLAYER ,HERE>
20 <V-LOOK>
21 <MAIN-LOOP>>

Fig. 3.19 Phone booth game code in ZIL

Finally, we discover more Model D examples if we extend the notion of program-
ming language into a more generalized idea, that of a system for game development.

Example 3.11 (Scott Adams). Scott Adams’ text adventure games interpreted data
files that were akin to other Model D games’ interpreted object code. Figure 3.20
gives an excerpt of the data file for the phone booth game.19 (Suggestions of move-
ment commands in the data file might seem odd for a game that has no movement,
but certain elements were mandatory in Adams’ data files.) This would be a daunting

19 I wrote infrastructure code allowing me to produce this and other games whose operation was
verified on a modern interpreter. Decoding of the data file format was guided by [1, 2, 28].
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0 0 0 19 1 1 1 0 3 0 1 1

2857
0 0 0 0 0
150 0

"AUT"
"ANY"
"G"
"NOR"
"*GO"
"SOU"
"*WAL"
"EAS"
"*RUN"
"WES"
...
"LOO"
" "

0 0 0 0 0 0 "holding room for objects"
0 0 0 0 0 0 "telephone booth."

""
"The phone is a robust contraption with a rotary dial."

"phone/PHONE/" 1

""

0 0 0

Fig. 3.20 Sample data file for a Scott Adams game

task to produce manually. Adams used a menu-driven program written in BASIC to
produce these data files, and the programmer’s view of game creation is shown in
Fig. 3.21.20

20 The code for this was kindly supplied by Scott Adams.
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MENU:
1-EDIT ITEMS 2-BUILD ITEMS. MAX 60
3-EDIT COMMANDS 4-BUILD COMMANDS. MAX 151
5-EDIT ROOMS 6-BUILD ROOMS. MAX 33
7 EDIT VOCAB 8-BUILD VOCAB. MAX 59
9-EDIT MESSAGES 10-BUILD MESAGES. MAX 71
11 SAVE FILE 12-VERIF Y FILE 13-STRING SPACE USED/LEFT
14 LIST ADVENTURE 15 CHANGE ADVENTURE NUMBER NOW 2
16-EXIT
17-XREF
18-CHANGE TABLE SIZES / VERSION: 0
19-RUN ADVENTURE.
?

Fig. 3.21 Programmer view of a Scott Adams game

All of these design models see use by modern programs in general, not just
games. Model B is used by internationalized programs that have their strings
extracted out to allow one language to be exchanged for another. A program
refers to output strings using unique database keys like numbers (e.g., POSIX
NLS) or strings (e.g., GNU gettext); translation data is specified in sep-
arate files that are “compiled” into binary format data files that the program
uses. This separation of program resources for localization can be seen as far
back as Apple Macintosh development in 1981 [15]. Model C manifests itself
frequently in game and non-game programs as embedded languages, from
extension languages in office application suites to general-purpose languages
like Lua, Python, and Tcl embedded in programs. Arguably the most suc-
cessful language embedding of all time is HTML and JavaScript in modern
web browsers. As for Model D, many widely used (scripting) programming
languages are implemented using interpreters, the topic of the next chapter.

References

1. Adams, S.: An adventure in small computer game simulation. Creative Comput. 5(8), 90–97
(1979)

2. Adams, S.: Pirate’s adventure. Byte 5(12), 192–212 (1980)
3. ℵ0: Darwin. Softw. – Pract. Exp. 2, 93–96 (1972)
4. Arnold, K.C.R.C.: Screen updating and cursor motion optimization: a library package.

4.2BSD documentation (1980). 4.2BSD had a 1983 release, but the cited parts are located
in files dated 1980

5. Aycock, J.: Computer Viruses and Malware. Springer, New York/London (2006)
6. Bätzler, T.: Lode Runner decoded. http://baetzler.de/c64/games/loderunner/
7. Blank, M.S., Galley, S.W.: How to fit a large program into a small machine, or how to fit the

Great Underground Empire on your desk-top. Creative Comput. 6(7), 80–87 (1980)

http://baetzler.de/c64/games/loderunner/


58 3 Slow, Wildly Incompatible I/O

8. Cicero, M.T.: First Oration of Cicero Against Catiline. Copp Clark (1886). Annotated by
J. Henderson, Project Gutenberg #24967

9. Finseth, C.: The Craft of Text Editing: Emacs for the Modern World. Springer, New York
(1991)

10. Gkantsidis, C., Karagiannis, T., Rodriguez, P., Vojnović, M.: Planet scale software updates.
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Chapter 4
Interpreters

What is an interpreter? An interpreter takes the place of a CPU, in some sense; it
executes a program that is written in a language. This sounds vague, but the concept
of interpretation is very general and widely applicable, and as a result “program”
and “language” are used broadly here on purpose. For example, an interpreter could
directly interpret a program expressed in a human-readable programming language.
Or, that same program could be interpreted, but in a “tokenized” representation
where each formerly human-readable statement is abbreviated into a more compact
format.

As entered (26 bytes)

10 PRINT "HELLO" : GOTO 10

Tokenized form(15bytes)

$0a $00 $ba " H E L L O " : $ab 1 0 $00

line number
as binary
(little-endian)

end of
statement

PRINT token GOTO token

Fig. 4.1 BASIC program and its tokenized representation

Example 4.1 (Applesoft BASIC). Richard Garriott’s Akalabeth (1980) was imple-
mented using the Applesoft BASIC that came standard on the Apple II. Figure 4.1
shows how this BASIC stored a human-readable program the programmer entered
in tokenized form.1 Each box shows the value of one byte, and a typewriter font ind-
icates an ASCII character value. This particular program, when run, prints HELLO

1 Verified in-emulator, cross-checked using [6, 24].
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in an infinite loop. The reserved words PRINT and GOTO are each reduced to a sin-
gle byte, the line number 10 is converted into binary form (but not the line number
used by the GOTO statement, interestingly), and all spaces have vanished. Listing the
program reconstitutes it from this tokenized representation and gives the program-
mer back their program in a canonicalized form in terms of layout and spacing,
regardless of whether the programmer had written the statement as in the figure, or
as 10PRINT"HELLO":GOTO10.

Tokenization is a fairly lightweight transformation of the programmer’s code. In
other cases, the human-readable language might be compiled or assembled into a
lower-level virtual machine language, and this new program in the virtual machine
language would be interpreted. This was the approach used by Infocom, compiling
human-readable ZIL code into low-level Z-machine instructions for their interpreter.
Whatever the language being interpreted, it is typically comprised of instructions
that the CPU cannot execute directly.2 This could be extended in the retrogame
context to say “instructions that a CPU cannot execute directly anymore,” as running
old games on modern machines requires emulators to interpret once-native game
code.

The reasons to use an interpreter are compelling. We have seen many of these
in passing already, and portability to different platforms is high on the list. This
platform-independence abstracts away from the native CPU, enabling the inter-
preter to perform memory management tricks such as paging and virtual memory
with software alone. A game-specific or game-genre-specific interpreted language is
really a domain-specific language, and expressing a game’s functionality in this way
can yield code that is much more concise (read: fewer bytes, an important retrogame
consideration) than the equivalent in native code. The darker side to interpretation
is that a substantial speed impact is incurred, making interpreters unusable for fast-
paced retrogames or retrogames with real-time constraints such as those imposed
by the Atari 2600. Also, not all platform-specific details can be abstracted away.
For example, different platforms may have different graphics resolutions, and while
the lowest common denominator can be targeted, the visual results would likely be
suboptimal on the better platform.

Many interpreters encountered in the wild are ones that interpret an assembly-
like virtual machine code, and express code in an imperative style, as a sequence of
instructions to be performed in order. We will be focusing on those shortly, but it is
also interesting to consider more diverse examples and whether or not they might fit
a broad definition of an interpreter.

Example 4.2 (Lode Runner, 1983). In the last chapter, Lode Runner was categorized
as Model B, which allowed exchanging one hunk of data for another – level data, in
Lode Runner’s case – but deferred more involved interpretation to Model C. Perhaps
another look is warranted, though: James Bratsanos, an early contributor to the game
that would become Lode Runner, was quoted as saying ‘I felt it was logical at the

2 There are applications where it’s necessary to interpret CPU X’s instructions on CPU X itself,
however [8].
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time to build an engine that could interpret a game level’ [27, p. 21]. The game data
included a level’s composition and the initial position of gold, NPCs, and the player,
but no explicit instructions as to how the game was played. It could not therefore
be considered imperative. An argument could be made that the level data provided
a declarative description, expressing what the level consisted of but not how the
level was played. Other declarative languages like HTML or Prolog have the same
property; for example, a web page’s HTML description can label text according to
its logical structure, but gives no guidance as to exactly how the page will be laid
out.3 In a declarative way, Lode Runner could indeed be seen as an interpreter.

The argument that the game code is an interpreter of a level’s data can be ext-
ended to other retrogames as well.

0
1
...

12

· · ·

13
ro

w
s

16 columns 16 columns 16 columns

screen
window

Fig. 4.2 Level data in Super Mario

Example 4.3 (Super Mario Bros., 1985). Super Mario on the Nintendo Entertain-
ment System (NES) was a side-scrolling game with what amounted to 32 levels
(eight ‘worlds’ with four levels each). The level specification is an interesting coun-
terpoint to Lode Runner, where a level was small and placed on screen in its entirety.

Levels in Super Mario are fixed in height with 13 rows of graphical tiles, but
the horizontal width of a level is bounded only by how far Mario can travel before
the level’s timer elapses. It would be prohibitive to specify an absolute horizontal
position for elements in a level, because of the large number of bits that would
be required for wide levels. Furthermore, the level data needs to be arranged for
efficient access as Mario moves to the right (a level never scrolls back to the left).

This is solved by dividing the level data into pieces, each 16 columns of tiles
wide.4 The screen the player sees can be thought of as a moving window on this
level data, one that is 13 rows high and 16 columns wide, although it will not always
be precisely aligned to the level data’s columns because the window moves with a

3 Expressing aesthetically offensive, ill-sized page layouts is a task left to CSS.
4 Level data information from static and dynamic game analysis, with help from [17]; analysis
confirmed by experimentation, using a program I wrote to inject new level data into Super Mario.
When finalizing the files for this book, I discovered that the recently-published [5] discusses the
level data too; while it was not one of my sources, I point it out here an alternative viewpoint.
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finer granularity. This arrangement is illustrated in Fig. 4.2. Onscreen elements are
each described in two bytes, and they are arranged in order of appearance, making
it relatively easy and efficient for the game engine to determine which elements can
and can’t be displayed. Certain level attributes are set globally in a two-byte level
header, like the level’s timer value and the background type, avoiding the need to
continuously specify them throughout the level.5

Looking closer at the two bytes describing a game level element, the first byte
contains the row and column coordinates of the element. With only 13 rows, the row
number can easily fit into a four-bit nibble, and the extra values left over are used
to signal special element types. Dividing the level into 16-column pieces means that
the column number fits into four bits as well. The high bit of the second byte is set
if the column number should be interpreted as part of the next 16-column piece;
this clever encoding scheme allows the column coordinate to grow arbitrarily large
while consuming only five bits. The remaining seven bits in the second byte specify
the element type along with any necessary parameter.

A complete example is given in Fig. 4.3. The two level header bytes specify,
among other things, no background and the two-tile high ground throughout the
level. All other game elements are described by two-byte pairs. For elements A–E,
the starting column and row numbers can be seen in the first byte’s nibbles; element
D’s high bit is set, making it and future elements’ column numbers to be taken
relative to the second 16-column piece of the level data. Notice that A and E are
specified with exactly the same byte values, but end up in different places because
of D’s high bit. Element F’s row is the invalid row number $f, which is used to
select special element types, the stairs in this case, that are anchored to the ground
making the vertical position implied. All the elements’ length and height arguments
are decreased by one, because zero-length elements make no sense, and this allows
the arguments’ range to extend by one extra value. Finally, the value $fd acts as a
sentinel to mark the end of the level data.

Although the level data is stored differently than Lode Runner, the idea is the
same: the level data declaratively describes the level, and the game engine interprets
the data according to the game rules. Super Mario can thus also be seen as using an
interpreter.

The last stop before plunging into more traditional imperative interpreters is a
system where the interpreted specification is neither declarative nor imperative by
itself, but its data plugs in to a decidedly imperative framework.

Example 4.4 (Scott Adams). Scott Adams’ series of games, such as Adventure-
land (1978), were text adventure games with a relatively simple input structure that
ran on multiple platforms. The interpreter would read a line of input from the user,
e.g., TAKE AXE, and split it into a verb and noun. The interpreter would then run
through a set of guarded statements – in other words, statements executed only if
a set of conditions are true. The “program” that Adams’ interpreter executed spec-
ified the conditions and actions, and by doing so provided the overall structure of

5 Although most global attributes can be changed on the fly via special types of elements in the
level data.
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12
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A

B

C

D

E
F

$fd

$b f 0 stairs 3

$6 7 0 brick
row 2

$3 2 1 brick
row 0

$d5 0 brick
row 3

$6 3 0 coin
row 4

$6 7 0 brick
row 2

$50 $01

end of data marker

level header

A: 3-brick row at column 6, row 7

B: 5-coin row at column 6, row 3

C: 4-brick row at column 13, row 5

D: 1-brick “row” at column 3(+16), row 2

E: 3-brick row at column 6, row 7

F : 4-high stairs at column 11

Fig. 4.3 Super Mario level data example

the game.6 Figure 4.4 shows the conceptual structure of one of Adams’ guarded
statements, along with what portions were drawn from the interpreter’s program (in
italic). Up to five Boolean conditions and four actions could be given, the nature
of which was not free-form but selected from the palette of conditions and actions
that the interpreter supported. Some conditions were, for instance, “item #k carried,”
“not in room #k,” and “flag #k set,” where the exact value for each k was given by the
programmer as an argument in the data file. Actions were similarly limited, and had

6 As before, this is based on my interpreter-tested code, with information from [1, 2, 33].
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if verb = "verb" and noun = "noun" and
condition1 = True and
condition2 = True and
condition3 = True and
condition4 = True and
condition5 = True:

action1
action2
action3
action4

Fig. 4.4 Guarded statement structure of Scott Adams games

side effects: an action could print out a message, where each message corresponded
to a different action number; two other example actions were “set flag #k to True”
and “exit game.”

4.1 Interpreter Design

Looking at interpreters for low-level, assembly-like imperative code, there are a
number of designs and variants thereof that have been used over the years. Not
all of them use consistent terminology, to make matters even more confusing. In
this section we examine three of these designs to show their range and some key
differences between them.

4.1.1 Classical Interpreters

The first interpreter design’s origins are lost in the mists of time, and even a 1981
paper called this method ‘so old and so ubiquitous’ [21, p. 967].7 A classical inter-
preter mirrors a real CPU’s operation, mimicking the steps the CPU performs.

1. Opcode fetch from memory. “Opcode” refers to the type of the instruction.
2. Instruction decode. Once fetched, a determination is made as to what type of

instruction it is, typically resulting in the interpreter transferring control to code
that implements that operation.

3. Operand fetch. An “operand” is a parameter required for the instruction. Some
instructions won’t require any operands, whereas others will require one or

7 Specifically, Klint was referring to the variant of this interpretation method using the opcode as
an index into a table of addresses. We follow him in calling a non-threaded interpreter design a
‘classical’ interpreter.
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more operands. Depending on the instruction encoding, information about the
operands – or even the operand values themselves – may be encoded in the same
byte(s) as the opcode.

4. Execution. Once the operands are available, the operation can be performed.
5. Result storage. Operations that compute results will need to write them to the

appropriate location.

1 pc = 0
2 while (True) {
3 opcode = program[pc]
4 pc = pc + 1
5 switch (opcode) {
6 case instr_1:
7 ...
8 case instr_2:
9 ...

10 }
11 }

program: instr 2
instr 1
instr 1

...

Fig. 4.5 Pseudocode for a classical interpreter and its interpreted program

This is very easy to implement, even in a high-level language. Figure 4.5 shows
how this would look in C-like pseudocode. The interpreter’s “program counter,”
or pc, is first initialized to the index of the first instruction in the program being
interpreted. This program is stored as an array in memory, and because opcodes’
encoding can often fit into a byte, interpreted code is generically referred to as byte-
code. Line 2 starts the program interpretation loop. The opcode fetch is performed
at line 3, the instruction decoding is done by the switch at line 5, and execution
would occur at lines 7 and 9 (that code would fetch operands and store results as
needed).

A good compiler will translate the switch into an efficient jump table if it can
detect that the cases’ values are densely clustered together [10, 29]. The opcode
value then becomes an index into an array of addresses, each entry pointing to
the code to implement an operation. The low-level implementation, whether out-
put from a compiler or written by hand, would resemble the pseudo-assembly in
Fig. 4.6. Here, the opcodes for instr_1 and instr_2 need to be 0 and 1, respec-
tively, to select the correct addresses from the jump table.

Example 4.5 (Meteor, 1979). Meteor was a (physical) pinball game that used a
Motorola 6800 CPU. Internally, the software used a system called PIGS, the ‘Pinball
Interpretive Game System’ [23] which had the structure of a classical interpreter.8

8 PIGS’ author called this a ‘token threaded interpreter’ [23], and it corresponds to a ‘tokenized
encoding’ in [15].
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pc = 0
loop: opcode = program[pc]

pc = pc + 1
address = jumptable[opcode]
goto address

instr_1: ...
goto loop

instr_2: ...
goto loop

jumptable:
word &instr_1
word &instr_2

Fig. 4.6 Pseudo-assembly code for a classical interpreter

The design allowed assembly code to be freely mixed with interpreted code.9

A programmer used the 6800’s software interrupt (SWI) instruction in their assem-
bly code to start the interpreter. The interpreter loop read byte-sized opcodes from
memory immediately following the SWI instruction, using the opcode as an index
into a jump table to locate the address of the opcode’s handling routine. Opcode
handlers were invoked with a subroutine call, meaning that they could simply end
with a one-byte return instruction rather than a three-byte goto. Once the inter-
preter loop finished (it watched for a flag byte to be zero), execution of assembly
code would resume following the end of the interpreted instructions.

One last design question is where operands are placed relative to the instruction
opcodes. Most interpreters, including PIGS, simply placed operands inline follow-
ing the opcode. The code implementing an operand is then responsible for advancing
pc accordingly so that it indexes the next instruction to be interpreted by the time
control returns to the interpreter loop.

4.1.2 Direct Threaded Interpreters

An alternative to a classical interpreter is a direct threaded interpreter, often simply
called a threaded interpreter, and the code that it interprets is referred to as threaded
code.10 Threaded code is a sequence of addresses. A threaded code address acts as
an opcode; each one is a pointer to the code that implements the operation. In its
purest form there is no interpreter loop, and every operation’s code is responsible

9 Based on static analysis of Meteor disassembly, with 6800 information from [22].
10 This section on threaded code is based on [9, 21] unless stated otherwise. Threaded code is
equivalent to Debaere and Van Campenhout’s ‘pointer based encoding’ [15], although the imple-
mentation they suggest is the one with centralized dispatch at the end of this section.
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for advancing the program counter and dispatching the next interpreted instruction.
This creates ‘interpretive code which needs no interpreter’ [9, p. 371], that by all
accounts was the fastest type of interpreter [9, 21, 28].

1 start:
2 pc = 0
3 address = program[pc]
4 pc = pc + 1
5 goto address
6

7 instr_1:
8 ...
9 address = program[pc]

10 pc = pc + 1
11 goto address
12

13 instr_2:
14 ...
15 address = program[pc]
16 pc = pc + 1
17 goto address

program: &instr 2
&instr 1
&instr 1

...

Fig. 4.7 Pseudo-assembly code for a threaded interpreter and its interpreted program

A threaded code interpreter is hard to express using high-level languages, even in
standard C unless extensions are used [19]. Figure 4.7 gives a pseudo-assembly imp-
lementation, however. There is no longer a loop, and the interpreter’s starting code
just dispatches the first interpreted instruction (line 5). The interpreted instruction
implementations each have their own dispatch code (lines 9–11 and 15–17), and the
interpreted program’s representation is now an array of addresses.

pc = 0
loop: address = program[pc]

pc = pc + 1
goto address

instr_1: ...
goto loop

instr_2: ...
goto loop

Fig. 4.8 Pseudo-assembly code for a threaded interpreter with central dispatch

The code duplication at the end of each routine to perform the next instruction
dispatch is apparent. For some architectures the dispatch could be implemented with
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a single instruction, like the PDP-11 [9] or the Motorola 6809 [28]. Where that was
not possible, it made more sense to instead jump to one central dispatch routine – as
Fig. 4.8 shows, this edges the design back towards the classical model but without
the compact opcode representation.

Example 4.6 (Sea Wolf II, 1978). The arcade game Sea Wolf II used a Z80 CPU
and had a threaded code interpreter [23]. To fully understand everything happening
in the interpreter, we need to step back and examine the Z80 along with a specific
programming language, Forth.

? ?

2

?

2

3

?

2

3

5

?

2

15

?

17

?

2 3 5 * + .

st
ac

k

time
print 17

Fig. 4.9 Forth example

Forth [11] is a stack-based language whose programs are written in postfix, or
reverse Polish, notation. For example, a statement like “print 2 + 3” would be
written in Forth as

2 3 + .

which means, in this order: push 2 on the stack; push 3 on the stack; pop the top two
numbers off the stack, add them together, and push the result back on the stack; pop
the topmost item off the stack and print it (.). Similarly, “print 2 + (3 * 5)”
becomes

2 3 5 * + .

with the order of arithmetic operations controlled by the programmer. Here, 3 and
5 are at the top of the stack when the multiplication is performed; this leaves 2 and
15 at the top of the stack when the addition operator is encountered (Fig. 4.9). This
stack-based language design lives on in the PostScript page description language [3]
and ‘superficially’ in the omnipresent PDF file format [4]. In fact, Forth has a dual-
stack computation model. There is a “data” stack for arguments, computation, and
return values; a “return” stack is used for return addresses.

Sea Wolf II did not just have a threaded code interpreter. It had a threaded Forth
interpreter, implying that there was a way to implement one on the Z80 CPU that
was efficient enough for use in an arcade game. Like the 6502, the Z80 was a little-
endian, 8-bit CPU with a 16-bit address space (i.e., it could address a maximum
of 64 K).11 The Z80 had a lot more registers, though: Fig. 4.10 contains only a subset

11 Z80 information in this section is from [36], and game details are from static and dynamic
analysis.



4.1 Interpreter Design 69

PC

SP

IY

IX

H L

D E

B C

A

program counter

stack pointer

index register

index register

general-purpose registers

general-purpose registers

general-purpose registers
accumulator

8 bits 8 bits

Fig. 4.10 (Partial) registers in the Z80 CPU

of the available registers. Certain 8-bit register pairs could be used separately or
taken together to form 16-bit registers, e.g., registers B and C could become BC, or
B‖C in pseudo-assembly notation.

The register assignments that Sea Wolf II used to implement Forth dedicated
register pairs to specific tasks. BC pointed to the threaded code addresses, IX was the
return stack pointer, and SP was the data stack pointer. Using the native CPU’s stack
for the data stack allowed use of native push and pop instructions for Forth’s stack-
heavy processing. IY, the other index register, always held the value $0043. While
the Z80 had more registers than the 6502, they were still high-demand resources, and
it may seem extremely odd to devote a register to a single constant value. However,
$0043 was the address of the interpreter’s central dispatch routine, and consequently
threaded code routines could end with the two-byte instruction goto IY instead
of goto $0043, saving one byte per threaded code routine.

Fig. 4.11 Threaded code
dispatch in Sea Wolf II

$0043: A = M[B‖C]
B‖C = B‖C + 1
L = A
A = M[B‖C]
B‖C = B‖C + 1
H = A
goto H‖L

The central dispatch loop’s pseudo-assembly code is shown in Fig. 4.11. It loads
the two-byte code address pointed to by BC into HL, one byte at a time. BC is
incremented along the way to point to the next code address, and finally the dis-
patch routine jumps to the address now stored in HL. As Sea Wolf II’s code shows,
threaded code dispatch on the Z80 was far from a one-instruction affair.
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A disadvantage of threaded code is size, in general. On retrogame machines, an
address was at least two bytes, and on modern machines it is substantially more. Not
only is this representation larger than that of a classical interpreter, but requiring an
address precludes cramming additional information (about operands, for instance)
into spare opcode bits.

4.1.3 Indirect Threaded Interpreters

One last interpreter design is the indirect threaded interpreter, that ‘requires less
space’ [16, p. 330] with the addition of an extra layer of indirection.12 It is proba-
bly obvious that this design tradeoff comes with a performance cost from the extra
memory reference required.

123
&push
· · ·
123
&push
· · ·
123
&push

program:

push
code

Direct threaded code

· · ·
· · ·

program:

Indirect threaded code

push
code

123
&push

Fig. 4.12 Direct versus indirect threaded code

Figure 4.12 compares direct threaded code with indirect threaded code. Whereas
a direct threaded program might repeat code/value pairs (assuming inline operands)
multiple times throughout the code, an indirect threaded representation factors the
repeated values into a common place.

Example 4.7 (Hat Trick, 1987). The hockey game Hat Trick on the Atari 7800
was implemented in Forth and used indirect threaded code.13 The instruction set
of the Atari 7800’s 6502 CPU was not terribly well suited to double indirec-
tion, and pseudo-assembly for the central dispatch code is shown in Fig. 4.13.

12 This section is based on [16, 21], but their space-saving argument for indirect threaded code
– that every variable needs its own specialized compiler-generated code to access it – is rather
specious given direct threaded code using inline operands.
13 Confirmed with source code; other information from static and dynamic analysis.
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Fig. 4.13 Hat Trick’s indirect
threaded code dispatch

1 Y = 1
2 A = M[Mw[$f8] + Y]
3 M[$fc] = A
4 Y = Y - 1
5 A = M[Mw[$f8] + Y]
6 M[$fb] = A
7 c = 0
8 A = M[$f8]
9 c‖A = A + 2 + c

10 M[$f8] = A
11 if c = 0 goto L
12 M[$f9] = M[$f9] + 1
13 L: goto $fa

Lines 1–6 are copying the two-byte address pointed to by $f8. . . $f9 (the indirect
threaded code’s pc) to $fb. . . $fc. Then, lines 7–12 are incrementing the program
counter by two, leaving pc pointing to the next instruction’s address. Line 13 per-
forms the dispatch at last, or so it would seem. In fact, it is jumping to an indirect
jump instruction located in the 6502’s zero page – lines 1–6 were actually filling in
the address into the indirect jump. The net result of the dispatch code in Fig. 4.13
plus the indirect jump is the indirect threaded interpreter’s instruction dispatch.

4.2 Instruction Set Design

Intertwined with interpreter design is the design of the instruction set being
interpreted. In some cases, such as interpreting/emulating a pre-existing CPU’s ins-
tructions, there is no flexibility in the instruction set design. In other cases, and in
particular for retrogames, the instruction set for interpretation could start from a
blank slate. A primary consideration for retrogames would have been balancing the
design to yield both a small program size and also ease of expressing the program.
The latter has ripple effects on the complexity of generating the interpreted code
in the first place, as well as the complexity (and size) of the interpreter itself. In
general, any of these decisions will have tradeoffs.

4.2.1 Alignment

Normally within the purview of hardware-based instruction sets, requiring data or
interpreted code to be aligned at a specific boundary has uses for software-defined
interpreted instruction sets too. The number of bits within an instruction that are
devoted to describing a data or code address will be finite and fixed, meaning that
only a finite, fixed range of addresses can be specified. Alignment restrictions extend
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the range of addresses that can be specified with the same number of bits, at the cost
of occasionally wasting a few bytes to pad out data and code to the correct boundary.

For example, an instruction set that reserves 8 bits for a function address – say,
the target of a call instruction – will only be able to call 28 = 256 different
code addresses. If the functions being called must start at a four-byte boundary,
then the same eight bits (bbbbbbbb) can now effectively call 210 = 1024 addresses,
because every aligned code address has its lower two bits implied: bbbbbbbb00.

Example 4.8 (Infocom). Infocom’s Z-machine required strings and functions to be
aligned.14 The exact alignment restrictions increased over time as Infocom’s games
and the machines they ran on grew in size. Early versions of the Z-machine dem-
anded two-byte alignment; late versions increased this to four-byte alignment, plus
adjustment by an offset given in the game’s data file header. This header offset was
itself a reference to an eight-byte boundary, thus two separate alignment restrictions
were used simultaneously. For example, given a header function offset15 of $1000
and an instruction containing a function address of $42, the function’s actual mem-
ory address would be

$42×4+$1000×8

= $108+$8000

= $8108

extending the range of an in-instruction address considerably.

4.2.2 Operand Type

A discussion of operand type might be better thought of as describing the number
of operands that interpreted instructions usually have. At the coarsest granularity,
the design choice is binary: a stack-based instruction set versus a register-based ins-
truction set. A pure stack-based computation would need no operands, because the
location of operands is implied, i.e., on the top of the stack like Forth. A register
model would instead allow operands to explicitly refer to specific “registers” or, as
would be more apropos for retrogame interpreters, specific variables. Stack-based
instruction sets tend to give smaller code [31], and would therefore seem to be a nat-
ural fit for size-conscious retrogames; register-based ones are arguably more flexible
in terms of expressing code, however. In practice, as we’ll see, the distinctions ret-
rogames made were not always so clear-cut.

14 From [26], which gives an internal view of a late Z-machine version, and the more longitudinal
information in [34, section 1.2.3].
15 This field was called FOFF internally.
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Diving deeper into the register-based instruction sets, the following examples
illustrate how the number of operands could vary.

Example 4.9 (Quake, 1996). QuakeC is an extreme example, both in its release date
and also the number of operands, but again it provides a useful reference point
as computers’ resources became less constrained. QuakeC’s instructions are three-
operand, where the instruction’s opcode plus all three operands occupied “short”
integers – in other words, every instruction was a fixed-size eight bytes in length.16

The advantage to three-operand instruction sets is the ability to issue instructions
like c = a + b where a, b, and c are all distinct. Any judgment on this design
should be tempered by John Carmack’s comments accompanying the compiler’s
source code characterizing it as [sic] ‘basically rather embarassing crap’ and the
generated code as [sic] ‘horribly nieve and space ineficient’ [13].

Fig. 4.14 Example AGI in-
structions

assign
variable

0 1 v0 = v1

add
variable 0 1 v0 = v0 + v1

opcode
(1 byte)

operands
(1 byte each)

Example 4.10 (AGI engine). Sierra On-Line had a game interpreter, AGI, that was
used for a number of retrogames, among them King’s Quest (1984). It had 256
eight-bit global variables as part of its game state that acted as registers, from an
instruction set design point of view.17 Its design favored a two-operand approach;
Fig. 4.14 shows two example AGI instructions manipulating global variables (there
were separate instructions to add or assign a number to a variable). For the addi-
tion instruction in particular, one of the source operands had to be the destination
operand.

Example 4.11 (RobotWar, 1981). RobotWar’s interpreted code was exclusively one-
operand, with the exception of the ENDSUB (return) instruction.18 Robot code could
refer to any of 34 global registers, some of which had special semantics related to
robot control. The instructions made heavy use of an internal accumulator register,
and an addition like a = b + c would need three instructions: load accumula-
tor with b; add c to accumulator; store accumulator to a. For each of these three
instructions, the use of the accumulator was implied and not explicitly specified.

16 Verified in source code.
17 Information here cross-checked in the source code for two different, modern AGI interpreters.
18 This example’s information is from [25], along with reverse engineering of (and writing a dis-
assembler for) the object code files.
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Fig. 4.15 Format of a
RobotWar instruction

v y y y y y y y yx x x x y y y

opcode byte operand byte

opcode bits operand bits

0 = operand is a register number
1 = operand is a two’s complement number

One quirk of the instruction set encoding was where an operand was placed rela-
tive to the instruction. Figure 4.15 shows the instruction format that RobotWar used.
The two bytes of the instruction were split apart: if the opcode byte was at address i,
the operand byte would be at address 256+ i (object code programs were limited to
a maximum of 256 instructions). This was likely because numbers and labels could
then be used interchangeably, and this design trivially gave each instruction a known
location and avoided having to convert a number into an instruction address.

4.2.3 Case Study: Level 9

Level 9 was a UK company that produced text adventure games, like Colossal Ad-
venture (1983). Their games were implemented with an interpreted ‘A-code’ (not
to be confused with Dave Platt’s A-code). Their interpreted architecture was little-
endian and had 256 global variables that could be referenced, each of which could
hold a 16-bit value.19 In addition, there were so-called “lists” which were in fact
one-dimensional data arrays. An internal call stack existed but wasn’t referenced
directly from A-code programs; this was not a stack-based interpreter.

Opcode bytes were in one of two formats, shown in Fig. 4.16. The c and a bits
were only used when warranted: for example, a variable-variable assignment would
use neither of them, but a variable-constant assignment would use the c bit. Operand
byte(s), if needed, were placed inline following the opcode byte.

Operations supported by the A-code interpreter are listed in Tables 4.1 and 4.2.
Words in italic indicate operands that follow the opcode byte. Some, but not all,
instructions have variants for constant and variable operands, and the range of arith-
metic operations is very limited. Opcode 6 permits the instruction set to be extended
indefinitely and gradually without altering the existing instruction format (some-
thing that would potentially require extensive modification of the interpreter and
toolchain).

19 Information gleaned statically and dynamically from the Level 9 interpreter, plus writing and
using a framework to construct and inject interpreted programs into existing games.
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Fig. 4.16 Level 9 opcode
formats

1 x x 0 L L L L

opcode list number

List operation (high bit = 1)

Non-list operation (high bit = 0)
opcode

0 c a x x x x x

selects 1-byte relative offset
or 2-byte absolute address

selects 1-byte or
2-byte constant

Table 4.1 Selected Level 9 non-list opcodes

Opcode Operation

0 goto address
1 call address
2 return
3 print number in variable
4 print message whose number is in variable
5 print message number constant
6 call function n, where n is

1 quit game
2 variable = random number
3 save game
4 restore game

7 input variable1 variable2 variable3 variable4
8 variable = constant
9 variable1 = variable2
10 variable1 = variable1 + variable2
11 variable1 = variable1 - variable2
14 dispatch via jump table with index variable
16 if variable1 = variable2 goto address
17 if variable1 �= variable2 goto address
18 if variable1 < variable2 goto address
19 if variable1 > variable2 goto address
24 if variable = constant goto address
25 if variable �= constant goto address
26 if variable < constant goto address
27 if variable > constant goto address

Opcodes 7 and 14 are essential to a game’s input loop. The input instruction reads
user input and parses it, returning up to three word values in the first three registers
specified (the fourth is used to return the word count). Words are mapped to values
using an internal dictionary, part of which is shown in Fig. 4.17. The typewriter font
indicates an ASCII character, and the characters in gray boxes have their high bits
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Table 4.2 Level 9 list opcodes

Opcode Operation

0 L[constant] = variable
1 variable = L[variable]
2 variable = L[constant]
3 L[variable] = variable

N O R T H $1 $2 $2N E A S T N O R T H E A S T

Fig. 4.17 Level 9 dictionary structure

set to flag the end of the word. The value in the byte immediately following a word
is the value the parser returns; note that this scheme allows synonyms, like NEAST
and NORTHEAST in the figure. Once the input is parsed, the verb number is used in
conjunction with opcode 14 to jump to the appropriate handler for a verb.

Overall, the A-code interpreter presents a fairly clean design. Obviously it was
tailored for the genre of games Level 9 was producing, and was not intended for
general computation.

4.2.4 Case Study: Infocom

Infocom’s Z-machine, by comparison, has a general enough design that it has been
used as the target of a C compiler.20 There were multiple versions of the Z-machine
over Infocom’s lifetime, but the core design remained much the same.21 It was a
big-endian machine, with 240 global variables, up to 15 local variables, and it had
the ability to use a stack. All variables could hold 16-bit values.

A good way to tour the Z-machine’s design is by examining its instruction for-
mats, of which there were four types where the most significant bits were ‘arranged
to make decoding easy’ [26, p. 6]. This was not empty rhetoric: the easy-decoding
structure is reflected in the Z-machine interpreter code, which also reveals it to be a
classical interpreter.22

20 No, really: [20].
21 Unless otherwise stated, information in this section is from [26, 34] with examples and statistics
based on disassembly with txd. For examples, I have used the Infocom instruction format names
and mnemonics along with txd’s more readable assembler syntax.
22 As seen in a third-party annotated disassembly of Infocom’s Apple II Z-machine [32, pp. 1-26–
1-27] and, using that as a guide, verified firsthand in the Apple II Zork I disassembly.
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Fig. 4.18 Infocom Z-machine
0-operand instruction format

1 0 1 1 x x x x

opcode

The first instruction format is the 0-operand one. As Fig. 4.18 shows, it was a
straightforward affair supporting up to 16 operations. Even a few 0-operand instruc-
tion examples begin to hint at how the Z-machine was inclined both towards text
adventure games and code size reduction. CRLF outputs a newline sequence, and
is the harbinger of many other text output instructions that would be needed for
these games. RFALSE and RTRUE return the values 0 and 1, respectively, and here
we already see some specialization as opposed to only having a generic “return”
instruction requiring an operand (which existed as well). The PRINTI instruction
printed an inline string that followed the opcode byte; it was classified as 0-operand
because, as will become apparent, the 1-operand instructions had a much different
format. As a last example combining output and specialization, PRINTR behaved
like PRINTI, but was followed by an implied CRLF and RTRUE, thus abbreviating
this common instruction sequence by two bytes.

Fig. 4.19 Infocom Z-machine
1-operand instruction format

1 0 mm x x x x

opcode

0 0 long constant (16-bit)
0 1 short constant (8-bit)
1 0 variable

The 1-operand instruction format (Fig. 4.19) included two bits, mm, to describe
the type of operand that accompanied the instruction. Excluding the bits mm = 11,
which couldn’t be used due to overlap with 0-operand encoding, the operand could
be a one- or two-byte constant value, or a variable. The latter is of particular in-
terest, because a variable was specified in one byte that married both stack and
register operands. A “variable” value of 0 used the top of the stack, values from 1
to 15 referred to local variables, and values 16 and up referenced global variables
(explaining why there were only 240 global variables). 1-operand instructions in-
cluded an unconditional JUMP, and more text output instructions: PRINTB to print
a string at the operand’s (unadulterated) address, and PRINT to print the string at
the operand’s address (adjusted for alignment).
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Fig. 4.20 Infocom Z-machine
2-operand instruction format

0 m m x x x x x

opcode

0 0 short constant, short constant
0 1 short constant, variable
1 0 variable, short constant
1 1 variable, variable

In the 2-operand instruction format (Fig. 4.20), besides allowing up to 32 opera-
tions, the 2 bits of operand type must now describe two operands and not only one.
The sacrifice is long constants – any ostensibly two-operand instructions needing
greater constant range must use extended format instructions instead. Examples of
2-operand instructions include the arithmetic operators, like ADD, SUB, MUL, DIV,
and MOD. At first glance, this would suggest that one source operand doubled as a
destination, but in fact “2-operand” only includes input operands. A one-byte vari-
able specification following the input operands gave the destination where the result
should be stored.

p t y y y y y y

branch if test succeeds = 1
branch if test fails = 0

1 = yyyyyy is a positive offset, + 2
0 = yyyyyy are high-order bits of a two’s

complement offset with following byte, + 2

Fig. 4.21 Infocom Z-machine predicate format

Another thing that did not count as a source operand was a predicate specifica-
tion. For example, the 2-operand EQUAL? instruction had the semantics

if operand1 = operand2 then predicate

A predicate specification was very elaborate and could take one to two bytes. As
Fig. 4.21 shows, the sense of the test could be flipped using the predicate’s high
bit, and its neighboring bit selected between two kinds of offset used to specify the
destination address. The shorter one-byte predicate form only allowed a positive
(forward) offset, reflecting a bias in ZIL programs, where loops were infrequent,
but there were often forward branches to handle special cases. Jump offsets 0 and
1 were reserved to mean RFALSE and RTRUE respectively. To help illuminate this
complex scheme, some example instructions from Zork I (1980) are deconstructed
in Fig. 4.22. The first example is a test for inequality, because the test is negated
by the predicate. The byte encodings for the two local variables are each offset
by one (e.g., L01 is encoded as $02) to compensate for the value $00 referring to
the stack. Similarly, the offset encoded as 5 ends up being an offset of 3, to adjust
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for the RTRUE and RFALSE special cases. Example (b) uses the RFALSE special
case for its equality test, and also employs a global variable ($87 – 16 gives 77
in base 16) and a short constant value. Example (c) is another inequality test, but
pops the top-of-stack value as its first operand, and its predicate holds a long branch
value – as a two’s complement number, the branch offset is −11, and subtracting 2
to adjust it yields the −13 final offset.

EQUAL? L02,L01 [FALSE] L0001
(i.e., �=)

$61

0 11 00001

opcode

variable,variable

$03

L02

$02

L01

$45

0 1 000101

negate
test

short format
positive offset
of +3 bytes

EQUAL? G77,#$ee [TRUE] RFALSE
(i.e.,=)

$41

0 10 00001

opcode

variable, short constant

$87

G77

$ee

constant

$c0

1 1 000000

no
negation

short format
RFALSE

EQUAL? (SP)+,L00 [FALSE] L0001
(i.e., �=)

$61

0 11 00001

opcode

variable,variable

$00

(SP)+

$01

L00

$3f

0 0 111111

negate
test

long format

$f5

11110101

offset
of -13 bytes

a

b

c

Fig. 4.22 2-operand instruction examples from Zork I

Last, in the extended instruction format (Fig. 4.23), the bits describing operand
types migrate to a separate byte, making room for up to four operands to be speci-
fied. A special “end of operand” code flags when no more operands are to be found.
Figure 4.24 has an example from Zork I. Two operands are supplied: the first is the
address of the function to be called, the second is the constant argument to pass to
the function. The final $00 byte indicates that the function’s return value should be
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1 1 x x x x x x m1m1 m2m2 m3m3 m4m4

opcode 0 0 long constant
0 1 short constant
1 0 variable
1 1 end of operands

· · ·

Fig. 4.23 Infocom Z-machine extended instruction format

pushed on the stack; notice that this output operand’s presence is not reflected in the
input operand encoding, as was mentioned for 2-operand instructions.

CALL R0235 (#$a3) -> -(SP)

$e0

11 100000

opcode

extended format

$1f

00 01 11 11

end of operands
short constant
long constant

$48

address of R0235

$5d $a3

constant

$00

result on
stack

Fig. 4.24 Extended format instruction example from Zork I

The Z-machine certainly possesses an intricate design. To assess whether or not
it paid off, we can look at how well it optimized for the common case. Here a
static analysis suffices, because optimizing for size was the goal. Statically, Zork I
had 6797 instructions, employing 59 distinct opcodes. The most frequent instruction
was RTRUEwith 205 appearances. Of the 2083 predicates, 1793 were only one byte,
which includes 436 special-case returns (jump offsets 0 and 1). The numbers were
similar for Zork II (1981), Zork III (1982), and Planetfall (1983). It does appear that
the extravagant Z-machine design admirably captured common usage.

Interpreters are widely used to implement popular programming languages
today, for some of the same reasons that retrogames used them: portability is
still a concern, and a basic interpreter is easy to construct. Building an efficient
interpreter is another matter entirely, and is an area of ongoing research even
now (e.g., [12, 35]). What lies beyond interpretation? Once a language has
sufficient momentum and resources, interpretation may give way to just-in-
time compilation [7] for the sake of speedier program execution. Alternately,
a language may be compiled into another language that already has a just-in-
time compiler, in order to leverage the nontrivial effort that goes into building
one.
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On modern CPUs, interpreters with centralized instruction dispatch can fare
noticeably worse because of branch misprediction [14, 18]. This by itself sug-
gests some advantage in returning to a threaded interpreter model with multi-
ple dispatch points, as in Fig. 4.7. Threaded code is seeing a Renaissance for
quite a different reason, however. “Return-oriented programming” is a recent
development in terms of attacks on computer security [30], but it is really a
variant on threaded code where the program’s threaded code addresses are
placed in the stack, the stack pointer acts as the pc, and instruction dispatch
is done with return instructions. This approach allows certain security de-
fenses to be bypassed.
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Chapter 5
Data Compression

It is almost inevitable that data compression would arise in the context of retrogames.
With limited memory space combined with limited secondary storage space (like
floppy disks), space was at a premium for retrogames in multiple dimensions.
We would expect to see compression schemes in retrogames that strike a balance
between the size of the resulting data and the complexity of the encoding, for two
reasons. First, the effectiveness of compression depends not only on how small the
data gets, but on how large the decompression code needs to be. Any data can be
trivially shrunk to zero bytes in size, after all, given decompression code of a gigan-
tic print statement that blindly regurgitates the original data. An overly complex
compression scheme demanding elaborate decompression code would not have been
a good choice for a retrogame. Second, some retrogame platforms and types of ret-
rogame had timing constraints, and decompression that took too long to run on slow
CPUs would not have been viable either.

The last chapter was already quietly looking at compression methods, because
interpreters specialized for a game or a game genre could represent game code
more concisely than generic native code for a CPU. In this chapter, we shift the
focus to data rather than code, and use a selection of retrogames to lead an explo-
ration through techniques for compressing text, static images, and moving images
(i.e., video).

Some techniques could be quite subtle. As a general rule, seemingly odd things
in retrogame implementations were often done for speed or size. For instance, why
would game data values be multiplied by strange amounts like 150 and 20?

Example 5.1 (Scott Adams). Each guarded statement in Scott Adams’ game inter-
preter needed 16 pieces of data to be stored: the verb and noun; five conditions, each
with an argument; four actions.1 All of these were represented as positive numbers
and, in the TRS-80 BASIC that Adams started with, integers were the most natural
fit to store these values in. The integers in BASIC were 16-bit, though, meaning that

1 Game database information from [1, 2, 30]. The use of TRS-80 BASIC is mentioned in [2], and
its data types and memory requirements are detailed in [21].

© Springer International Publishing Switzerland 2016
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each guarded statement would consume 32 bytes of precious memory. Adams cut
this by half. The verb and noun were packed together in one integer by multiplying
the verb number by 150 and then adding the noun number; both values individually
were comfortably less than 150.2 This can be seen as treating the values as two digits
of a base 150 number, or it can be viewed as a way of packing two values together in
lieu of bit-shifting operators in BASIC. The exact same scheme was used to encode
the four actions into two integers. A condition and its associated argument became
one integer, with the argument value multiplied by 20 and added to the condition
number (there were only 20 condition types provided).

5.1 Text Compression

Text-heavy retrogames like text adventures clearly had reason to consider ways to
squeeze as much text as possible into limited memory.

Example 5.2 (Infocom). The case study of Infocom’s Z-machine in the last chapter
shied away from discussing text encoding, because their method lies firmly in the
realm of data compression.3

String encoding in the Z-machine was based conceptually on pre-ASCII Baudot
codes used for teletypes [9], but we can also see it as a furtherance of the Z-machine
design optimizing for the common case. For an (English) text adventure game,
the common case in strings would be lowercase alphabetic characters, of which
there are 26. The encoding of a single “common” character would therefore fit into
five bits, and leave six extra encoding values to spare. Other, less-frequently used
characters were separated into different “banks” that the extra encoding values could
select, similar to using the shift key on a keyboard before typing an uppercase letter
or a punctuation symbol. The net result is that each visible character in a string takes
approximately 5.5 bits to encode [9].

The fact that five bits, much less five and a half, don’t divide nicely into a conve-
nient byte boundary has probably not gone unnoticed. In practice, a two-byte word
in the Z-machine held three character codes, with one bit to spare that was used
as a flag to indicate the end of the string (EOS). Figure 5.1 shows three examples.
For “the,” the EOS bit is set indicating that the string does not continue beyond the
three codes in the word, i.e., seeing EOS does not cause decoding to stop immedi-
ately. The default character set contains lowercase alphabetic characters, which are
arranged in alphabetic order starting at 6, explaining why e has the code 10 even

2 In theory, this could have risen to 181 before exceeding the maximum positive 16-bit integer
value but, as confirmed in Adams’ game editor source code and [2], these values were wired fairly
deeply into the game infrastructure.
3 This section is based on [20, 34] unless otherwise noted, along with constructing a strings
program for Z-machine data files. Some minor details are omitted for clarity; we focus on version
3 of the Z-machine for the same reason.
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Fig. 5.1 Text encoding in the
Z-machine

1 11001 01101 01010

t h e

1 if end of string (EOS)

16-bit
“the”

1 00100 01101 01010

shift H e
EOS

“He”

1 00100 00110 00101

shift A shift used
as pad

EOS

“A”

a

b

c

though it is not the tenth character in the alphabet. In the second example, “He”
uses one of the shift codes – code 4 shifts into the bank of uppercase characters
temporarily – and apart from this context, the code for H is identical to the code
for h. The third example shows what happens when a 16-bit word has extra codes
left over. “A” only needs two codes, one to shift into uppercase and one for the letter
itself; extra shift codes, which have no visible effect, are used to pad out the string.
The space character is code 0 in all character sets.

At this point, of the 32 possible five-bit codes, 26 are taken by alphabet charac-
ters, two are shift codes, and one is the space character. That only accounts for 29
codes. . . what about the other three?

Z-machine games supplied three groups of what Infocom called ‘frequent words’
but a better name is probably ‘abbreviations.’ The three extra codes 1, 2, and 3 signal
that the next code refers to an abbreviation Z-string in the corresponding group. The
abbreviations were decoded starting in the default lowercase character set, and they
could not use abbreviations themselves, meaning that recursion when decoding was
limited.

Table 5.1 shows a brief sample of the abbreviations from Zork I (1980). The
spaces, shown explicitly with the symbol, were part of the abbreviations. Because
abbreviations all decoded started in lowercase, we see both the and The , and
you and You . It may also seem unusual that two-character strings like I and
A are abbreviations, but in fact they would take three codes otherwise: one to shift
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0 00011 00101 00010

group 3 A group 2
not
EOS

“A thief !”

1 00011 00101 10100

thief shift to
punctuation

!
EOS

Fig. 5.2 Z-machine text encoding using Zork I abbreviations

Table 5.1 Sample of Zork I abbreviations

Abbreviation
group

Abbreviation number
within group

Abbreviation

1 0 the
1 1 The
1 2 You
1 3 ,
1 4 your
1 5 is
1 6 and
1 7 you

· · ·
2 2 his
2 3 thief
2 4 It

· · ·
2 27 I

· · ·
3 5 A

into uppercase, one for the letter, and one for the space. The abbreviations were auto-
matically chosen at game build time [18], and they were different for each game rel-
eased.4 Figure 5.2 has a more extensive example that includes abbreviations; there
is no way to suppress or delete the space that ends many abbreviations, explaining
the extra space before the exclamation mark in this example.

Put together, Infocom’s text encoding scheme could give some substantial space
savings. Consider the following text, that shows (Zork I) abbreviations using angle
brackets:

<You ><are ><in ><the >bed<room >when<, ><with >
a <grating >sound<, >a secret <door ><in ><the >
<north ><wall >opens <and >a <troll >appears.

4 It is unclear if the metric for choosing abbreviations was word frequency, as internal Infocom doc-
umentation suggests [20, p. 62], or abbreviations that would result in the most space savings [18],
although there would be a natural overlap. The different abbreviations per game were observed by
comparing Zork I, Zork II (1981), Zork III (1982), and Planetfall (1983); I suspect the automated
abbreviation output was ordered, given that the , The , and You always made the top five.
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An abbreviation could be used, when appropriate, as only part of a word, as in
bed<room >. Ignoring the EOS indicator, a straightforward encoding of this
text using one byte per ASCII character would consume 109 bytes. In contrast,
a Z-machine encoding using Zork I abbreviations would take 72 five-bit codes or
45 bytes, again ignoring EOS bits.

Infocom games did have one technical advantage in that their target systems
included floppy drives. While floppy storage was not capacious by any stretch of
the imagination, it did mean that not everything had to be in RAM all at once. On
the other hand, other producers of text adventures had to load their game and data
fully into memory once, from cassette tape.

Example 5.3 (Level 9). Level 9 was one of these lucky companies: its primary audi-
ence was the cassette-happy UK market [23]. Non-dictionary text in Level 9 games
was encoded and compressed using easy-to-manipulate bytes.5 The value $01 was
the EOS indicator. Byte values from $03. . . $5d represented ASCII values from
$20. . . $7a, which includes space, digits, upper- and lowercase letters and all but
the most obscure punctuation.6

That left the byte values from $5e. . . $ff. These served as references to entries in
an abbreviation table. As with Infocom games, the abbreviations were automatically
selected at game build time [23] but Level 9’s compressor could select fragments of
words and phrases, as Table 5.2 shows. What is not obvious from the table is that
the encoding was fully recursive, and abbreviations could include other abbrevia-
tions. Figure 5.3 illustrates how the abbreviation the was recursively encoded;
this saved two bytes in the abbreviation table over a non-recursive representation,
keeping in mind that the abbreviations used recursively would also have been used
by other strings and abbreviations.

Fig. 5.3 Recursion in Level 9
abbreviations

e $48 $03 $01
e EOS

he $4b $70 $01

h abbreviation EOS

the $57 $73 $01

t abbreviation EOS

5 Information gleaned by writing a program to print the strings and abbreviations in Colossal
Adventure (1983), using the Level 9 interpreter as a guide.
6 The temptation is overwhelming to include an ASCII table here, like nearly every single computer
reference manual from the 1970s and 1980s.
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Table 5.2 Sample of Level 9’s Colossal Adventure abbreviations

Abbreviation byte
encoding in string

Abbreviation

$5e a
$5f !
$60 ’s
$61 ,
$62 -west
$63 .
$64 0 feet
$65 A
$66 Hall of
$67 It
$68 Mists
$69 Please
$6a The
$6b You are
$6c as
$6d be
$6e ch
$6f d
$70 e
$71 f
$72 g
$73 he
· · ·
$85 ze of twisty little passages, all

Text compression was not only a consideration for text adventures. Games in
other retrogame genres hit the upper limits of memory capacity and had to condense
their text too.

Example 5.4 (Elite, 1984). It is probably fair to characterize Elite’s text compression
as more of an ad hoc affair. The scheme only needed to work for the one game, and
the phrasing of text in the game was even manually tweaked to reduce the byte count
under compression [11, 38:28].

The strings in Elite were NUL-terminated, i.e., the EOS indicator was a $00
byte.7 All other bytes in the string were exclusive-ORed with 35, and then inter-
preted as shown in Table 5.3. The ability to interpolate certain game state val-
ues into a string was a nice feature, potentially avoiding extra subroutine calls to
achieve the same effect. The range of ASCII values that could be directly encoded
was comparatively restricted and did not include lowercase letters; the game deter-
mined which letters to convert to lowercase at run time. Elite did not keep a sep-
arate abbreviation table, and any string could recursively include any other string,

7 Information here is from reverse engineering the source code statically (after writing a program
to reformat and increase legibility of the dense BBC BASIC plus 6502 assembly) and dynamically
in-emulator, then writing a program to reconstruct the text from the game.
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Table 5.3 Elite’s text encoding

Byte value in
string (n)

Interpretation

$00. . . $0d Include value from game state, e.g.,
$02 present system’s name
$03 hyperspace system’s name
$04 commander’s name

$0e. . . $1f Recursively include string n + $72
$20. . . $5f ASCII value of character
$60. . . $7f Recursively include string n
$80. . . $9f Include digram, using n & $7f as index into digram table
$a0. . . $ff Recursively include string n−$a0

which were numbered from 0. . . 145. Finally, any of a select set of 32 digrams –
two-letter combinations – could be specified. The digrams were an arrangement of
convenience and were present for an entirely different reason that we revisit later.

$20 $95

LA

$53

S

$90

ER

EOS

$50

P

$55

U

$4c

L

$53

S

$45

E

$bb
string

EOS

$45

E

$58

X

$54

T

$94

RA

$20 EOS

$66
string

$67
string

$53

S

EOSEXTRA PULSE LASERS

Fig. 5.4 Example Elite string encoding

Figure 5.4 shows a complete example. For simplicity, the byte values given have
been exclusive-ORed already.

One commonality with all these text compression methods is that they replace
long, often-repeated sequences by shorter codes that represent the sequences, thus
saving space. This is a theme we will see often repeated for other types of media in
retrogames.
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5.2 Static Image Compression

As a bridge between text compression and static image compression, we begin with
static images rendered using text.

Fig. 5.5 Spook House screenshot (Image copyright Roger Schrag, used with permission)

Fig. 5.6 TRS-80 graphic
characters producing a
stepped line

$83 $8c $b0

Example 5.5 (Spook House, 1982). Figure 5.5 shows a screenshot of Spook House
for the TRS-80. The TRS-80, along with other home computers of the time, had ext-
ensions to ASCII that provided a graphic character set, meaning that text characters
could be used to draw low-resolution pictures.8 The angled line in the upper left
corner of the screenshot, for example, is comprised of the three graphic characters
shown in Fig. 5.6.

8 Graphic character set information is from [21]; game information is from reverse engineering the
image format and writing a program to reconstruct the images from the game data.
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RLE ×5

$00 $20 $05 $83 $8c $b0

RLE ×48

$00 $20 $30 $a0 $98 $86 $81

RLE ×12

$00 $20 $0c $97

RLE ×46

$00 $83 $2e $ab $81

RLE ×15

$00 $20 $0f

· · · $ff

spaces wrap from
line 1 to line 2

spaces wrap from
line 2 to line 3

Fig. 5.7 Decoding Spook House’s RLE data

The text-based images in Spook House were 64×12 characters, or 768 bytes in
total per image. With 52 screens in total, the uncompressed size would be almost
40,000 bytes, but the game stored it in under 9000 bytes using run-length encoding
(RLE). The idea behind RLE is to replace repeated sequences of the same value, a
repeated byte value in this case, with an abbreviated code that only stores the byte
value to repeat and the number of times it does so. Spook House’s RLE decompres-
sor thus went through the bytes of the compressed images looking for three cases.
First, a $ff byte signaled the end of the image. Second, a $00 byte indicated RLE
data: the following two bytes were the byte value and the repeat count, respectively.
Third, any value besides $00 and $ff was taken as a literal byte value to be copied
directly into the image being decompressed. Figure 5.7 partially decodes the data
for the image in Fig. 5.5.

Other retrogames also compressed images by representing the image data in
shorter form, but a shorter form that allowed the images to be not so much de-
compressed as reconstituted. Hearkening back to the last chapter, retrogames would
store images as instructions to be interpreted that would reproduce the images at run
time.

Example 5.6 (Mystery House, 1980). The images in Mystery House were all line-
based drawings, as illustrated by a screenshot (Fig. 5.8). The Apple II’s high-
resolution graphics mode (leaving the four lines on the bottom in text mode) was
280×160.9 Or, to put it another way, a vertical coordinate would easily fit in a byte,
and a horizontal coordinate could be slightly larger than a byte, slight enough that
the excess 24 pixels could be safely ignored by the game.

Each image was a sequence of byte pairs, with $ffff marking the end of the image.
It is easiest to imagine their scheme in terms of paper and a physical pen that can
be either up off the paper (moving but not drawing) or down on the paper (moving

9 Resolution from [4]. The image information here is from reverse engineering, and then writing
a program to reconstruct the images from the game data. Levy’s Hackers hints at the method, but
gets the technical details incorrect [17, p. 298].
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Fig. 5.8 Mystery House screenshot

Fig. 5.9 Drawing Mystery House images

and drawing). The byte pair $0000 says to lift the pen up; the byte pair $xxyy moves
the pen to the given (absolute) coordinate and put the pen down if it is not already
down. This can be seen as optimizing for the common case of a continuous line, and
storing only the next endpoint’s coordinate rather than the two coordinates needed
to fully describe an arbitrary line. Figure 5.9 shows the rendering of the screenshot,
where the dashed lines indicate movement with the pen up.
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In Mystery House, there was no explicit instruction set for drawing images, but
other retrogames went to this extent, especially once the complexity of images ex-
panded beyond line drawings.

Fig. 5.10 Emerald Isle screenshot (Image copyright Mike and Pete Austin, used with permission)

Example 5.7 (Emerald Isle, 1984). Level 9’s Emerald Isle was a text adventure game
that incorporated static images to add to the textual gameplay. Figure 5.10 shows one
of the game images, which graphically is a fairly typical example of image-enhanced
text adventures of the era. The most striking addition is color, that in many adventure
games would seem to be an afterthought, because the player would see the outlines
of the image rendered onscreen before the color was flood-filled into place. This
hints at how the image was stored, however.

In the case of Level 9 games, their interpreted game instruction set had an addi-
tional instruction not mentioned in Table 4.1: draw an image whose number was sup-
plied in a variable. Images were described using a different interpreted instruction
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set. Structurally, their interpreted graphics instruction set had subroutine calls that
allowed graphics routines to be reused, but otherwise included no conditionals or
other control flow.10

Table 5.4 Selected Level 9 interpreted graphics instructions

Bit encoding Bytes Interpretation

00 xxx yyy 1 Draw line to Δxxx,Δyyy from current position
01 xxx yyy 1 Movea from current position by Δxxx,Δyyy
10 nnnnnn 1 Call graphics routine #nnnnnn (0. . . 63)

11000 xxxxxx yyyyy 2 Draw line to Δxxxxxx,Δyyyyy from current position
11001 xxxxxx yyyyy 2 Movea from current position by Δxxxxxx,Δyyyyy
11100 ccc 1 Flood fill current location
11101 nnnnnnnnnnn 2 Call graphics routine #nnnnnnnnnnn

11111011 xxxxxxxx yyyyyyyy 3 Move to absolute location
11111111 1 Return from subroutine

aWithout drawing

Table 5.4 gives a sampling of the graphics instructions. There were three different
formats, distinguished by the most significant two to five bits. The design supports
keeping the image descriptions small through graphics subroutine re-use: the small-
est drawing and moving commands are relative to the current drawing location,
allowing an object to be drawn in multiple locations using the same code, and there
are one-byte call and return instructions. Curved lines in images are actually com-
posed of short line segments, explaining the one-byte move and draw instructions.
And of course, there is an instruction to fill an area with color.

Emerald Isle has 405 graphics routines occupying 7597 bytes in total, with a
median routine size of 13 bytes. A subroutine call analysis shows that over 64 % of
the routines are called by other ones, suggesting a fairly high degree of re-use. In the
screenshot, for example, all the rocks are drawn by one routine; that routine is also
called by 14 other game images. In turn, it directly calls three routines – one draws
the three round rocks together, one draws a chipped rock (called twice), and one
draws a flat-top rock (called three times, and revealing that the graphics instruction
set also had scaling operators).

What is striking when comparing graphical text adventure retrogames is that their
static images had a substantively similar look, platform differences apart. And yet at
the implementation level, there were a number of different ways of describing how
the images were drawn, even considering an element as simple as a line.

10 Information from Level 9 interpreter source, which I used to write a program that partially
reconstructs game images and also performs call analysis.



5.2 Static Image Compression 95

Fig. 5.11 ZX Spectrum color
attribute granularity

Example 5.8 (The Hobbit, 1982). The Hobbit drew its images in the ZX Spectrum’s
standard graphics mode, which boasted 256×192 resolution.11 Each of those pixels
could be turned on or off individually, but the foreground and background colors
could only be set for 8× 8 blocks, leading to odd color clashes extensive enough
that some Spectrum games were monochrome to sidestep the issue.12 It is hard to
show the full effect in print, but Fig. 5.11 illustrates the difference in granularity: the
screen’s background was originally black, and then a circle was drawn in black on
a gray background, a clear contrast between the pixels and the blocks.

This information about the Spectrum is not an idle digression; elements of the
Spectrum’s graphics echo throughout The Hobbit’s image format. Each of the 22
game images began with a two-byte header setting global image properties. The first
byte’s low three bits controlled the screen’s border color, and was blasted verbatim
into a memory-mapped I/O port. The second byte became the default initialization
value for the image background.

From there, the image was described using an interpreted instruction set. Table 5.5
shows the full set of instructions, with several of note. The end of image and flood fill
are self-explanatory, of course, and a coordinate fit perfectly in a byte with the max-
imum horizontal resolution of 256. The movement instruction changed the current
position, but was co-opted at times for a different purpose entirely. Some images’
data “fell through” onto other images to save space; this was implemented by plac-
ing a dummy $08 move instruction opcode at the end of one image, which would
cause the header bytes of the second image to be harmlessly treated as coordinates.

11 The Spectrum’s technical specifications are nicely contextualized by Collins [12]. Game infor-
mation is from reverse engineering, starting with a partial disassembly [36] (which unfortunately
didn’t tackle any of the graphics code), and then writing a program to reconstruct the images from
the game data.
12 Kindly confirmed by Spectrum retrogame programmers Jon Ritman (Batman, 1986; Head over
Heels, 1987) [24] and Shahid Ahmad (Chimera, 1985) [3]. Ahmad observes that any color clashes
are worse in isometric games because the color blocks don’t align with the coordinate axes as they
would in 2D games.
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Table 5.5 Interpreted graphics instructions from The Hobbit

Bit encoding Bytes Interpretation

00000000 1 End of image
00001000 xxxxxxxx yyyyyyyy 3 Move to new x, y position without

drawing
01000 ccc xxxxxxxx yyyyyyyy 3 Flood fill color #ccc starting at x, y
00100 ccc aaaaaaaa aaaaaaaa 4+ Set background color attributes

nnnnn dd . . . 11111111
1 rrrr z1z2z3 rr nnnnnn 2 Draw line from current x, y position

set back-
ground 4 $58 $f3

starting address $58f3

2 0

3×up 5×right 5×down

4 1 4 2 3 3

4×left

4×up 3×right

3 0 2 1 2 2

3×down

1 3

2×left

1 0

2×up

0 1

1×right

1 2

2×down

$ff

Fig. 5.12 Setting background color in The Hobbit

The background color instruction demands a close inspection. The best way to
imagine its operation is as a set of instructions describing directions to apply a con-
tinuous stroke of paint. The two aaaa. . . bytes are an absolute address in the Spec-
trum’s color attribute memory to begin at (given in big-endian order despite the
Spectrum’s little-endian Z80). What followed was a list of bytes, terminated by the
value $ff, each of which contained a direction dd (0. . . 3 stood for up, right, down,
and left respectively) and the number of 8×8 color blocks to paint the background
of while moving in that direction (−1, because a repeat count of 0 would make lit-
tle sense). This instruction is thus arguably using run-length encoding rather than
separately specifying each color block.

Figure 5.12 shows an example setting the background color. In The Hobbit’s
opening game image, the player is in a room with a green door. The green (color #4)
appears courtesy of the background color instruction in the figure, and the figure’s
diagram shows the length and movement described by the individual bytes in the
list. (The color blocks have been separated in the diagram for exposition, but would
fit snugly together in the game image.)

Last and definitely not least is the line-drawing instruction. The slope of a line
between two endpoints can be described in terms of Δy and Δx, and it may be
expressed equivalently in terms of rise and run (Fig. 5.13). The latter maps nicely
into physical reality: when walking up a hill, how much vertical elevation gain (rise)
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run

rise line slope =
D y
D x or rise

run

Fig. 5.13 Describing a line

occurs for a given amount of horizontal travel (run)? In The Hobbit, the rise of a line
is always fixed to 1 and therefore does not need to be specified in the instruction.
However, there is still a need to describe the line’s direction, which is where three
control bits come in.

1 z1z2z3r r r r r r n n n n n n

run - 1

line length - 1control bits

D x=
+1 if z1 = 0
-1 if z1 = 1

D y = +1 if z2 = 0
-1 if z2 = 1 run iny if z3 = 1

run inx if z3 = 0

Fig. 5.14 The Hobbit’s line-drawing instruction

The format of the line-drawing instruction is broken down in Fig. 5.14. The run
and line length values are both decreased by 1 to get slight additional range, since
zero values again wouldn’t be useful. Together, this information says how many total
steps to move in the “run” direction (line length), and how many “run” movements
(run) to make before a “rise” movement. The drawing of a line can be seen as a side
effect of the movement.

The control bits, meanwhile, provide the amounts to change x and y by, and
whether the run is done on the x or y coordinate. Their values have a big impact.
Figure 5.15 shows the result of three line-drawing instructions, all starting at
(100, 50) with a run of 3 and a length of 10. The only difference is in how the
control bits are set.

Between Emerald Isle and The Hobbit, we see two markedly distinct instruction
set designs. Subroutines versus no subroutines, many instruction types versus few
instruction types, one line representation versus another. For this final example we
move even further afield as we transition from the line as the atomic drawing unit to
jigsaw puzzle pieces: tiles.

Example 5.9 (Return to Pirate’s Isle, 1983). In an interview, Scott Adams said of
Return to Pirate’s Isle (henceforth RPI) ‘Getting a full graphic adventure into a
TI-99/4A game cartridge was an amazing feat’ [22, p. 39], and it was indeed an
interesting scheme.13

13 Information here is from reverse engineering the image format and writing a program to recon-
struct the images from game data.



98 5 Data Compression

(103,60)

(110,53)

(90,47)

(100,50)
Control bits 000
(D x= D y=+1,
run inx)

Control bits 001
(D x= D y=+1,
run iny)

Control bits 110
(D x= D y= −1,
run inx)

run of 3

rise of 1

Fig. 5.15 Line control bits in The Hobbit

Game images were comprised of 8×8 tiles, arranged in 12 rows of 32 columns
each. Unlike the Spectrum’s 8×8 color blocks, this was not a hardware-based limi-
tation; the use of square tiles was essential to RPI’s image representation, and choos-
ing a width of eight bits meant that a tile’s entire bitmap (without color) fit in eight
consecutive bytes. Under normal circumstances, the tile granularity was not starkly
apparent.

Figure 5.16 shows a screenshot fragment of the same area under both normal
and abnormal circumstances. RPI started with the player not wearing glasses, and
the images were distorted until the player located and donned their glasses. The
effect was cleverly achieved. Without glasses, the game started reading the image
two bytes after its actual start address, offsetting tiles in an almost-but-not-quite
recognizable manner, and the way that color was applied enhanced the effect. This
simple implementation also meant that the player could remove their glasses at any
point in the game and the image would be similarly distorted – it wasn’t limited to
the one image.

It is hardly a surprise at this point to learn that images in RPI were described
by a set of interpreted instructions. All the details of the 16-bit instructions and
their interpretation are not terribly enlightening, but a higher-level view is. The 384
tiles of an image were produced one by one, starting at the upper left corner. There
was thus always an implicit “current tile” destination location that did not need to
be stored in image data, a location that was advanced automatically as instructions
produced tiles for the image.

The basic instruction format is shown in Fig. 5.17. The first two fields mutually
influenced one another’s interpretation:

• Count = 0. Function selects one of a small set of operations, such as ending
the image data or supplying the eight bytes of a nonstandard tile. In the latter
instance, argument is treated as the first byte of tile data, and the instruction is
followed by the remaining seven bytes.
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Fig. 5.16 Return to Pirate’s Isle image excerpt, without glasses (top) and with glasses (bottom)

function count argument

3 bits 4 bits 9 bits

tile data

tile numberonscreen tile
number

Fig. 5.17 Return to Pirate’s Isle image instruction format

• Count > 0 and function �= 6. Nonstandard tiles implies that there is such a thing
as standard tiles, and in fact that is what underlies RPI’s scheme. This instruction
field interpretation takes count as a repeat count for the given function, a separate
set of operations from the count =0 case above. These operations fall roughly into
two categories. First, tiles that have already been placed onscreen can be copied
to the destination location; all nine bits of the argument may be used to identify
an onscreen starting tile. Second, one of a set of 64 standard tiles can be placed
at the destination location. Here, eight bits of the argument are used: six bits
give the standard tile’s number, and the remaining two say how many clockwise
rotations to apply to it, allowing a small set of standard tiles to become many
more.

Figure 5.18 shows how the top of the ship’s wheel (Fig. 5.16) is constructed
from standard tiles with rotations. Tile #6, in particular, gets reused in this short
sequence; more subtly, the presence of tile pairs #8 and #11, and #9 and #10,
reveals that the instruction set has no operation to flip a tile horizontally.
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• Count > 0 and function = 6. In this last instruction field combination, count
becomes a (sub-)function specifier itself. This batch of operations allows more
extensive tile manipulations, where tiles are not output immediately, but may be
ANDed, ORed, and exclusive ORed with other tiles first.

Tile #11 Tile #8 Tile #9 Tile #6Tile #6 Tile #10

(1 rotation) (1 rotation) (2 rotations) (2 rotations) (2 rotations) (0 rotations)

Fig. 5.18 Tile usage in Return to Pirate’s Isle

Following the rendering instructions was the color data. It was stored run-length
encoded as a sequence of two-byte pairs, each a repeat count and a color value to
repeat, where an all-zero pair signaled the end of data. Each repeated color value
byte (one nibble foreground color, one nibble background color) was applied to an
entire 8×8 block, reducing the amount of color data that needed to be stored. There
was a way to override the mechanism to supply color values for all eight bytes of a
block individually, however.

The static image compression schemes here are for retrogames where space is
important, but performance less so: a bit of extra time spent producing an image
when the player moves from one location to another in a text adventure can be
ignored. The same principle applies to static images in faster-paced games, though,
where a static image appears after an arbitrarily-long level loading process, or dur-
ing a pause as the player moves from one screen to another. Moving pictures are
different.

5.3 Video Compression

With CD-ROM drives came a wave of full-motion video retrogames. The problem,
at least for the first retrogames to make use of them, is that the drives at the time
were really no different than those playing audio CDs; these drives were optimized
for delivering Bananarama to humans, not high-speed data transfers to a computer.
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While maximizing storage capacity would be a concern, it was secondary compared
to getting video data from the CD-ROM to the computer in time to play it. And here
time is definitely at issue, because media playback has soft real-time requirements.

Early CD-ROM retrogames had to run on the least common denominator of
equipment available, meaning what would now be derisively called a 1× speed
CD-ROM, able to transfer 150 K per second [27]. An extremely modest frame rate is
15 frames per second, and a single uncompressed 640×320 black and white image
is 25 K. To transfer 15 of these every second is already well past the capability of
a 1× drive, not to mention the extra data requirements of audio and color. Clearly
some data compression was at work.

Example 5.10 (The 7th Guest, 1993). It seems fitting to examine retrogame video
compression by delving into one of the pioneering CD-ROM games, The 7th
Guest.14

...

GJD file

...

filename size
offset

filename size
offset

filename size
offset

RL file

di
re

ct
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y

file header

still image

sound
animation

sound

animation
...

VDX file

Fig. 5.19 Container file structure in The 7th Guest

One of the first questions, when creating a game with literally thousands of an-
imation sequences, is how to organize them all. The 7th Guest had container files
similar to Doom WADs, except the directory information was broken out into sep-
arate files. There was quite a size discrepancy: “GJD” files containing data had a
median size of over 30M, whereas the median size was just over 2K for the “RL”
directory files indexing into GJD files.15 Figure 5.19 shows how the files related to

14 Game information based on writing a program to list GJD file contents, reconstruct still images
from VDX files, and visualize VDX animation deltas, using information from [31–33].
15 Through a remarkable coincidence, “RL” and “GJD” happen to be the initials of The 7th Guest
developers Rob Landeros and Graeme J. Devine, respectively [32].
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one another. Each RL directory entry was a fixed size, with 12 bytes for the filename
(enough for an MS-DOS-like 8+ 3 filename format) and a four-byte offset and size
pinpointing a location in the GJD file.

Each entry in the GJD file, in turn, was a “VDX” file, and it is here that the jour-
ney into video compression begins. Following an unexciting VDX file header, the
VDX file consisted of a sequence of blocks. Each block possessed its own header,
identifying the block type, its size, and whether or not the block’s data was com-
pressed; after the block header came the block’s (possibly compressed) data. As
Fig. 5.19 shows, the block types included still frames – static images – as well as
sound and animation data. Setting sound aside, The 7th Guest’s video was produced
by the combination of still frames and animation data.

A video sequence began with a still image, which was the only complete rep-
resentation of one of the 640× 320 full-color images. The fact that this happened
at the start of a sequence, often in response to a player action, also allowed some
timing slack in case the still image took extra time to load. From that point, the mov-
ing portion of the video sequence was described by animation blocks. These were
shorter (read: faster to load) blocks that simply described the differences, or deltas,
between the last video frame and the current video frame.

Fig. 5.20 Heat map (log scale) showing change frequency for inanimate object

That The 7th Guest exists substantiates the idea that this video compression was
effective, but how effective was it for full-motion video? We can get some sense of
this using (grayscale) heat maps showing the frequency that areas in a video clip
changed, where white means no changes and progressively darker colors indicate
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Fig. 5.21 Heat map (log scale) showing change frequency for two people

more changes.16 Figure 5.20 shows the heat map for an inanimate object, an eight-
second video clip of a clock whose hands and mechanism are moving to show
the passage of time (the clock hands are faintly visible in the 11:00 position). The
changes in the video are both small in proportion to the whole image, and restricted
to certain areas. This can also be true for animate objects: Fig. 5.21 shows the change
heat map for a 14-second clip of two actors and, even here, small focused changes
occur. On average, animation deltas changed barely over 20 % of the total image,
and the largest changes in the game’s animation deltas corresponded not to animate
or inanimate objects’ movement, but to camera motion.

We are seeing two types of compression at work for video. First, each still or ani-
mation block may be compressed with the “LZSS” algorithm – more on this below
– that applies compression to each individual point in time. Second, there is com-
pression across time through the use of deltas that only store differences between
frames. The deltas themselves are expressed in a way that returns to an underlying
theme: they are commands in a simple interpreted instruction set.

Instead of seeing yet another interpreted instruction set, the LZSS algorithm that
The 7th Guest uses for blocks needs a closer look. Throughout this chapter, there
have been many game-specific compression methods but few generic methods apart
from run-length encoding. Furthermore, run-length encoding is restricted in scope
to a local sequence of bytes. LZSS, on the other hand, is generic enough to apply
to all types of data and operates with a more global view to spot better compression
opportunities.

16 Both still frames and animation deltas in The 7th Guest are decomposed in terms of 4 × 4
squares, explaining the chunky look of the heat maps. The color of each pixel within a square
could be individually set, however.
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LZSS stands for Lempel-Ziv-Storer-Szymanski and is an improvement to Lem-
pel and Ziv’s 1977 compression algorithm ([37], usually called LZ77) by Storer and
Szymanski described in a fairly impenetrable journal paper [28].17 LZSS is a so-
called ‘adaptive dictionary’ scheme [25]. Whereas the text compression schemes
discussed earlier would have a static, unchanging set of abbreviations – i.e., a
dictionary – LZSS’ dictionary references refer to a window of the most recent
decompressed output. The dictionary thus adapts with the data being decompressed
over time and can take advantage of redundancy with a broader view than run-length
encoding.

Fig. 5.22 Sixteen-bit LZSS
dictionary reference from The
7th Guest offset length - 3

Like the text compression methods, LZSS has a mix of literal bytes and dic-
tionary references. Literal bytes are stored as bytes, true to their name; dictionary
references are two bytes long and encode an offset into recently-decompressed data
along with the length to copy from that location. The division of bits between these
two fields in a dictionary reference is controlled by a parameter which, in The 7th
Guest, is located in a VDX block’s header. The parameter value could (and did) vary
on a per-block basis. Figure 5.22 shows an example dictionary reference from the
game, with five length bits specified in the VDX block header. The length value is
adjusted by 3 to get additional range, because lengths of 0, 1, and 2 cannot exist
(two bytes is the break-even point for a two-byte dictionary reference, therefore a
length of at least three bytes is needed for compression).

Dictionary references are distinguished from literal bytes by expending one more
bit. LZSS uses the eight bits of a “flag byte” to identify the disposition of the fol-
lowing compressed data. In The 7th Guest, a 1 bit in the flag byte means a literal
byte, and a 0 bit is a dictionary reference; the least significant bit in the flag byte
regulates the first compressed value following the flag byte, i.e., the bits in the flag
byte are read backwards.

Figure 5.23 shows an example from some of The 7th Guest’s compressed data.
The bits in the flag byte (backwards) tell the decompressor to expect four literal
bytes, a dictionary reference, a literal byte, a dictionary reference, and a literal byte.
The dictionary references are stored in little endian format, and need to be byte-
swapped before splitting into an offset and length; in this example, there are four
length bits. Notice that the initial $16 $16 sequence, although a repeated byte value,
falls below the compression threshold and is left as two literal bytes.

17 Bell provides a mercifully more coherent description [6].
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$af $16 $16 $30 $16 $10 $00 $3d $50 $00 $6b $f7 . . .

literal bytes literal byte literal byte

next
flag byte

flag byte
0000101000000000000010000000000011110101

dictionary
reference

dictionary
reference

Fig. 5.23 LZSS example from The 7th Guest

Table 5.6 traces through the decompression process. Steps 1–4 are just literal byte
copies. At step 5, the first dictionary reference is reached: offsets are applied back-
wards in the decompressed output (the copy source is highlighted) and the stored
length of 0 has 3 added to it. Effectively, because the −1 offset selects the last
decompressed output byte, LZSS becomes run-length encoding for this first dictio-
nary reference. For the second dictionary reference (steps 9–11) the offset is −5,
and LZSS shows its ability to refer back to earlier parts of the decompressed output.

Table 5.6 Decompressing the LZSS example

Step Decompressed output Explanation

1 $16 Literal byte
2 $16 $16 Literal byte
3 $16 $16 $30 Literal byte
4 $16 $16 $30 $16 Literal byte
5 $16 $16 $30 $16 $16 Offset −1, 3 left to copy
6 $16 $16 $30 $16 $16 $16 Offset −1, 2 left to copy
7 $16 $16 $30 $16 $16 $16 $16 Offset −1, 1 left to copy
8 $16 $16 $30 $16 $16 $16 $16 $3d Literal byte
9 $16 $16 $30 $16 $16 $16 $16 $3d $16 Offset −5, 3 left to copy
10 $16 $16 $30 $16 $16 $16 $16 $3d $16 $16 Offset −5, 2 left to copy
11 $16 $16 $30 $16 $16 $16 $16 $3d $16 $16 $16 Offset −5, 1 left to copy
12 $16 $16 $30 $16 $16 $16 $16 $3d $16 $16 $16 $6b Literal byte

Data compression is a continually ongoing concern. The amount of data gen-
erated now is astronomical and, while network throughput has increased dra-
matically over the years, it invariably lags behind demand. Data still needs to
be compressed for storage and for moving from one place to another.



106 5 Data Compression

It may seem as if there are sufficiently good generic compression methods
now, and that the data-specific techniques that dominate this chapter are anti-
quated. In program optimization, often the biggest gains result from effective
choices of data structures and algorithms [7], not fiddling with compiler op-
tions: a good programmer can understand and take advantage of properties
that a good but generic compiler cannot discern or safely take advantage of.
Similarly, while generic compression schemes can perform some transforma-
tions of their input to improve compression (e.g., Burrows-Wheeler or move-
to-front coding [25]), these are superficial transformations that are dependent
on the original input byte sequence; they have no understanding of what those
bytes mean. A good data-specific technique still has the potential to win out
over a generic method. Arguably, the lossy JPEG algorithm applies this prin-
ciple by carefully considering the input (images) and how it will eventually be
perceived (by humans with limited perceptual capability). Other more special-
ized application areas exist where a deep understanding of input data yields
better compression (e.g., [5, 29]), possibly in concert with an existing generic
method.

The generic methods mentioned here, and relatives thereof, are still in ac-
tive use. Run-length encoding is an easy-to-implement compression method
when data indicates its use, and it is found buried inside bzip2 [26] and
JPEG [35]. LZSS’ siblings on the LZ77 family tree see extensive use. In par-
ticular, LZ77-based DEFLATE [15] is used by gzip [16], PNG [10], and
zip [8] (and by extension Java’s JAR files [19]).

One last application introduces one last constraint: a physical one. Related
to modern “autocomplete” functionality, predictive compression models can
be applied to generate likely text input sequences as assistive technology for
people who would otherwise have difficulty typing [13, 14]. How some ret-
rogames generated content is the topic of the next chapter.
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Chapter 6
Procedural Content Generation

Procedural content generation (PCG), using algorithms to produce game content, is
in some ways the limit case of data compression. At one extreme is uncompressed,
pre-existing game data, which was completely satisfactory for many retrogames.
Not all. Hence data compression, but what if the game data is still too big? Instead
of having compressed, pre-existing data along with code to decompress it, a ret-
rogame could have next to no data and have code to generate the necessary content
on demand as the game was played. Obviously this would be an attractive option
when memory or storage space was tight.1 An ideal PCG result should approach
what a human game designer would create, and not just be a jumble of random
things in random locations.

PCG does imply the use of randomness to give scalability and diversity, though,
and that’s where we begin. There must be a source of random numbers for a ret-
rogame to use. Computer games often channel the late interior decorator Dorothy
Draper, who declared ‘If it looks right it is right’ [34]. While applications like cryp-
tography have very stringent requirements for randomness [32], games can get away
with “random-ish” or “random enough” numbers so long as the end result appears
random to the player.

One source of randomness in retrogames was bytes that were not random at all;
just the opposite, in fact. These particular bytes were chosen with painstaking pre-
cision: the bytes of the game code.

Example 6.1 (Yar’s Revenge, 1981). As Fig. 6.1 clearly shows, the object of the
game was for Yar to destroy the Qotile with the Zorlon Cannon [2].2 The inter-
esting thing about Yar’s Revenge from an implementation point of view is not the
gameplay or the comic book that accompanied its release, but the colorful vertical

1 There have been complementary treatments of procedural content generation whose focus is on
the state of the art rather than history. See, for example, [18, 33].
2 I’m being facetious, of course. Yar’s Revenge frequently finds itself on lists of the best games for
the Atari 2600, and its gameplay holds up extremely well decades after its release.

© Springer International Publishing Switzerland 2016
J. Aycock, Retrogame Archeology, DOI 10.1007/978-3-319-30004-7 6

109



110 6 Procedural Content Generation

Fig. 6.1 Yar’s Revenge on the Atari 2600 (Image c©Atari Interactive, Inc., used with permission)

strip near the middle of the screen. This is the ‘Neutral Zone’ [2], and its seemingly-
random color and fluctuating pattern are derived from the game’s code bytes being
treated as data.

dcba efghijkl tsrqponm dcba efghijkl tsrqponm

sc
re

en

PF0 PF0PF1 PF2 PF1 PF2

PF0 PF1
a b c d e f g h i j k l m n o p q r s t

PF2

reversed
reversed

Fig. 6.2 Conceptual view of the Atari 2600 playfield

The placement of the Neutral Zone is a reflection of the Atari 2600’s hardware.
The ‘playfield’ basically consists of foreground objects that do not correspond to
the player, NPC, and any shooting activity they may be engaged in; the Atari ref-
erence manual describes it as ‘walls, clouds, barriers, and other seldom moved
objects’ [41]. Conceptually, the screen is divided in half, and the playfield contents
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within the left half-screen are controlled by 20 bits spread over three graphics chip
registers: PF1, PF2, and half of PF0 (Fig. 6.2).3 A playfield bit set in one of those
registers results in an (elongated) pixel in the corresponding playfield area onscreen;
the right half-screen is a copy of the left half. In practice, the programmer was res-
ponsible for setting the graphics chip registers for each individual scan line on the
screen, meaning that the playfield’s bit patterns could change from one line to the
next. Here, the Neutral Zone’s bit pattern is derived from code bytes and placed in
PF2; the color is similarly set. Figure 6.1 depicts the Neutral Zone with seven bits
because the value has been ANDed with $fe prior to being stored in PF2 (since
PF2’s bits are reversed, the remaining seven bits are right-aligned with the center of
the screen).

Fig. 6.3 Code as “random”
data in Yar’s Revenge

1 A = M[Mw[$e9] + Y]
2 M[PF0] = A
3 M[PF1] = A
4 M[PF2] = A
5 M[COLUPF] = A

The purest expression of code as data in Yar’s Revenge is the full-screen explo-
sion seen when the player succeeds in destroying the Qotile. Figure 6.3 shows the
pseudo-assembly code. Line 1 reads a (code) byte from memory, which is blasted
into the memory-mapped PF0, PF1, and PF2 registers (lines 2–4) and finally into
the playfield’s color register at line 5.

Interestingly, for both the explosion and the Neutral Zone, a code byte used as
data could be drawn from the exact location being executed. This allowed the player
to glimpse a representation of the currently running instruction, if only for an instant.

Yar’s Revenge was not the only Atari 2600 game using its code as data. Dan
Oliver’s Laser Gates (1983) used “random” code bytes to color force fields (Fig. 6.4).
It would be easy to label his use of the technique as being derivative, had he
not used code bytes to produce random sounds in a game two years earlier:
Space Cavern (1981).4

A different approach to randomness in retrogames would be to use some physi-
cal, real-world event that occurs unpredictably to generate random numbers; this is
an approach used by random number generators that have security aspirations.5 For
games, the time a game was started, the movement and button presses on a joystick,
or the delay between keystrokes on a keyboard are all unpredictable enough to be

3 Atari 2600 technical information in this chapter is from [41]. Game information for Yar’s Re-
venge was obtained through dynamic analysis and cross-checked where possible with Montfort
and Bogost [25].
4 Information for Oliver’s games from dynamic analysis, with the tip-off regarding Space Cavern
from [15].
5 Eastlake et al. [13] has a good general discussion, and [21] itemizes how the entropy pool is filled
on Linux.
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Fig. 6.4 Laser Gates on the Atari 2600 (Image c©Activision Publishing, Inc., used with
permission)

used for randomness. A related method is for a game to sample some physical event
that changes predictably, but frequently enough that its value will appear random.

1 random: A = M[FRMCNT]
2 c‖A = A + M[RNDM] + c
3 c‖A = A + M[RNDM+1] + c
4 push A
5 A = M[RNDM]
6 M[RNDM+1] = A
7 pop A
8 M[RNDM] = A
9 return

Fig. 6.5 Dig Dug’s random number generator

Example 6.2 (Dig Dug, 1987). On the Atari 7800 port, Dig Dug had a FRMCNT
variable whose one-byte value was incremented once every display frame,6 which
would equate to 60 times a second for NTSC and 50 for PAL/SECAM. The pseudo-
assembly code for the random number generator itself is shown in Fig. 6.5. The
two-byte random value in RNDM and RNDM+1 is updated using FRMCNT, some-
what unpredictably: at line 2, the state of the carry flag is unknown and it is added

6 Usage observed in source code; increment rate confirmed in emulator.
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anyway (a normal sequence of addition instructions on the 6502 would clear the
carry flag first). Lines 4–8 swap the two random bytes around before returning the
most-changed byte as the random number.

A typical usage of a returned random number is to mask off some number of
bits. At one point in Dig Dug, the random value is ANDed with 1, and that single
remaining bit is used to decide rock placement. It may therefore not be sufficient for
the random number as a whole to appear random – the changes in individual bits of
the random number from one call of the random number generator to the next may
need to occur randomly as well.

Table 6.1 PRNG seeding and output

Action Random number sequence produced

Seed PRNG with 42 64, 2, 27, 22, 74, 68, 90, 8, 42, 3, . . .
Seed PRNG with 1234 97, 44, 0, 92, 94, 58, 67, 8, 77, 23, . . .
Re-seed PRNG with 42 64, 2, 27, 22, 74, 68, 90, 8, 42, 3, . . .

Other approaches to randomness would technically be called pseudo-random.
A pseudo-random number generator (PRNG) is a deterministic algorithm which,
given the same initial seed value as input, produces the exact same sequence of
random numbers.7 Table 6.1 briefly illustrates seeding and re-seeding a PRNG, and
the random number sequences it produces. Retrogames could use PRNGs in two
ways. First, PRNGs happen to be a good way to produce random numbers, and
some retrogames would use them in PCG to produce a vast amount of unrepeated
content. Second, because PRNGs can reproduce the same random number sequence
given the same seed, they can be used in PCG to concisely regenerate the same
content over and over. We will see both types – and different PRNG algorithms – as
we progress through examples of procedural content generation.

6.1 Name Generation: Elite (1984)

Elite uses a pseudorandom number generator based on Tribonacci numbers.8 Unlike
Fibonacci numbers, where the nth term in the series is based on the previous two
terms, Tribonacci numbers use the previous three terms:

T (n) = T (n−1)+T (n−2)+T (n−3)

7 Strictly speaking, pseudo-random numbers. These terms will be used interchangeably here to
avoid excessive awkwardness. Table 6.1 is using random.randint(0,100) from Python
2.7.5.
8 Game information here is based on reverse engineering as mentioned previously, and cross-
checked against [5]. Their PRNG is usually only loosely described as Fibonacci-based [7, 35].
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But, unlike the formal mathematical definition of the Tribonacci sequence [39], Elite
doesn’t start with the initial values F(0) = F(1) = 0 and F(2) = 1.

C D E F A+C
+E

B+D
+F

A B C D E Fbefore
PRNG called

after
PRNG called

Fig. 6.6 Pseudo-random number generation in Elite

The three 16-bit values are stored in six bytes that change from one call of the
PRNG to the next as shown in Fig. 6.6 (the addition’s carry is handled correctly but
not shown in the figure). By extracting bits from these six bytes in various ways,
this gives enough information to produce and deterministically reproduce all the
characteristics of eight galaxies, each with 256 planets.

Fig. 6.7 Name generation in
Elite

1 N = 4
2 A

F

if bit 6 of is 0:
3 N = N - 1
4 while N > 0:
5 index = AND $1f
6 if index �= 0:
7 output digram[index]
8 call PRNG
9 N = N - 1

Elite’s algorithm for name generation is shown in Fig. 6.7. It uses six bits of the
six bytes that the PRNG shuffles around, along with the set of digrams mentioned
in Chap. 5. The maximum number of digrams in a name is four (N, line 1), although
that can be decreased at the outset (lines 2–3) and digrams can be skipped (line 6,
if index is 0). Special cases aside, the low five bits of F are used as an index into
the digram table, relevant parts of which are shown in Table 6.2. Elite’s code skips
question marks in digrams such as the one at index 15, allowing some generated
names to have an odd number of characters.

Figure 6.8 illustrates how some names used in Elite are generated. RIEDQUAT
produces the full four digrams; LAVE, the starting location, has only three di-
grams, one of which is skipped due to a digram index of 0. Finally, USZAA has
an odd number of characters because its generation uses the specially-handled A?
digram.
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Table 6.2 Elite digram table excerpt

Index Digram Index Digram

1 LE 16 ER
2 XE 17 AT
3 GE 18 EN
4 ZA 19 BE
5 CE 20 RA
6 BI 21 LA
7 SO 22 VE
8 US 23 TI
9 ES 24 ED
10 AR 25 OR
11 MA 26 QU
12 IN 27 AN
13 DI 28 TE
14 RE 29 IS
15 A? 30 RI

Elite’s name generation is directly related to the generation of random, but
pronounceable words for passwords, which can be traced back to the mid-
1970s [16], and the same ideas can be applied now to generate passwords and
other “words” like usernames and CAPTCHA challenges. There are a number
of different approaches to pronounceable word generation, varying in quality
and scalability. Good results can be obtained by learning the probability with
which one syllable follows another in a dictionary, and using that as a guide
to generate words [11].

One modern application of name generation is a malicious one. Malicious
software wanting to “phone home” to get new commands or send stolen data
to its creator needs an address to connect to, like a domain name or a network
IP address. If the malicious software is preprogrammed with one address, or
a small set of addresses, then defenders can block access to those locations or
even take control of the malicious software. The solution is procedural content
generation, which is called “domain flux” in this context [37]. Malicious soft-
ware produces a large number of domain names using a domain generation
algorithm and attempts to connect to them all; there are too many for defend-
ers to block, and yet the malicious software’s creator need only register one
of these domain names temporarily to control their progeny. Malicious soft-
ware can up the ante by incorporating an unpredictable element like closing
stock prices or social media trends as an input to the domain generation algo-
rithm [23, 38], meaning that knowing the algorithm is insufficient to know in
advance what domain names will be generated.
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$44 $db $19

QU AT

index=30 index=24 index=26 index=17

bit 6 = 1

$9c $1d

LA VE

index=21 index=22 index=0

bit 6 = 0

$04 $2d

$fa $b5 $44 $03 $db $be $19 $78 $38 $3a $2c $71

$38 $ad $9c $14 $1d $15 $f1 $d6 $aa $00

$18 $99 $04 $03 $2d $48 $49 $e4 $7a $2f

US

RI ED

ZA A

index=8 index=4 index=15

bit 6 = 0

Fig. 6.8 Elite name generation examples

6.2 Room Wall Generation: Berzerk (1980) and Frenzy (1982)

Rooms in the arcade game Berzerk and its sequel Frenzy used essentially the same
algorithm for procedural generation of the walls within rooms, and they used exactly
the same PRNG to do it with.9

The PRNG in question is an instance of a linear congruential generator, the gen-
eral form of which is [22]

Xn+1 = (aXn + c) mod m

It is not immediately obvious that this maps to the PRNG in Berzerk, however,
looking at the Z80 pseudo-assembly code in Fig. 6.9. The constant c and its value
of $3153 can be spotted easily enough; the “mod m” doesn’t appear at all, but there
is an implied modulo 65,536 thanks to the 16-bit arithmetic. The Z80’s lack of a

9 Frenzy game information is from the source code, Berzerk information is from disassembly
guided by [29]. The algorithm given here simplifies by blending the two games: Frenzy had more
pillars, Berzerk had an extra call to the PRNG.
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Fig. 6.9 Pseudo-assembly
code for Berzerk’s PRNG

1 RANDOM: push H‖L
2 H‖L = Mw[Seed]
3 D = H
4 E = L
5 H‖L = H‖L + H‖L
6 H‖L = H‖L + D‖E
7 H‖L = H‖L + H‖L
8 H‖L = H‖L + D‖E
9 D‖E = $3153

10 H‖L = H‖L + D‖E
11 Mw[Seed] = H‖L
12 A = H
13 pop H‖L
14 return

multiplication instruction requires some cleverness when it comes to a. The value
of a is 7, and it is incrementally computed by the additions in lines 5–8, adding
values to themselves to multiply by two:

2× (2× seed+ seed)+ seed

= 2× (3× seed)+ seed

= 6× seed+ seed

= 7× seed

Equipped with this PRNG, Berzerk generates walls using the algorithm in Fig. 6.10,
which is simple and gives good results. A 4×2 grid of pillars is conceptually located
in the room, and each is considered in turn. Two bits from the PRNG’s value are used
at each pillar to determine which direction to draw a wall in. A full example is given
in Fig. 6.11, showing the pillars as dots; the pillar being processed is circled. Notice
that it is possible for a single wall to be generated two ways, as the example shows,
although this does no harm to the end result.

How random is random? Great batteries of tests exist to check statistical prop-
erties of PRNGs [22, 30]. Given a common usage of PRNG output in retrogames
was extracting a handful of bits, one concern is that all bits may not be equally
random. Knuth points out, for example, that linear congruential generators using
the machine’s word size for m have right-hand bits that are ‘much less random’
[22, p. 13]. Berzerk, of course, uses this m = 216 optimization along with the two
least-significant bits of the PRNG’s output.

Another measure of a PRNG is its period, the number of times it may be called
before the same sequence of output numbers is repeated. Of three tests for a linear
congruential generator to have a period of length m [22], Berzerk’s PRNG passes
two of them, the ramifications of which are that it only has a period of 16,384 reg-
ardless of its initial seed.



118 6 Procedural Content Generation

NROWS = 2
NCOLS = 4
for row in 1...NROWS:

for col in 1...NCOLS:
r = RANDOM() AND 3
if r = 0:

up()
else if r = 1:

down()
else if r = 2:

right()
else:

left()

Fig. 6.10 Pseudocode for wall generation in Berzerk

$ad AND 3 = 1
(down)

$c0 AND 3 = 0
(up)

$4f AND 3 = 3
(left)

$b2 AND 3 = 2
(right)

$c2 AND 3 = 2
(right)

$d7 AND 3 = 3
(left)

$c8 AND 3 = 0
(up)

$ee AND 3 = 2
(right)

Fig. 6.11 Berzerk wall layout example

The linear congruential generator in Prince of Persia (1989),10 by contrast, does
pass all three period tests with its computation of seed = (5× seed+23) mod 256.
This is probably a good thing, given that it is only an eight-bit PRNG to begin with.
Figure 6.12 shows its 6502 pseudo-assembly for the Apple II, where it makes use
of left shifts to multiply by two (adding a register’s value to itself was not an option
on the 6502, in contrast to the Z80). Having a full-length period does not necessar-
ily translate into good randomness by itself, though. The least-significant bit output
by Prince of Persia’s PRNG just alternates back and forth incessantly between 1
and 0. At one place in the code, the PRNG is called twice in a row and the two low-
order bits are used for a random star. Unfortunately the double call doesn’t make
the PRNG output more random: with one call, the two least-significant bits cycle

10 Verified in source code. Empirical testing of the PRNGs in Berzerk and Prince of Persia was
done using separate programs I wrote.
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Fig. 6.12 Pseudo-assembly
code for Prince of Persia’s
PRNG

RND: A = M[RNDseed]
c‖A = shiftleft(A)
c‖A = shiftleft(A)
c = 0
c‖A = A + M[RNDseed] + c
c = 0
A = A + 23
M[RNDseed] = A
return

through the four-value sequence 3,2,1,0,3,2,1,0,. . . , whereas only two values alter-
nate predictably with a double PRNG invocation. It’s enough to make a programmer
go berserk.

Returning to Berzerk, the PRNG seed was very deliberately chosen, as program-
mer Alan McNeil explains in an interview [14, p. 114]: ‘I used the XY coordinate
of the room as a 16bit [sic] number to seed my random number generator. That way
you could exit, run back and see the same room.’ In other words, the PRNG was
used for both its usefulness for random number generation but also its ability to
deterministically regenerate a random number sequence. The example in Fig. 6.11,
for instance, corresponds to the actual PRNG output Berzerk uses when seeded with
x = 104 and y = 63.

This repeatability trick was used by other retrogames. One example of this was
Telengard (1982) on the Commodore PET, a “dungeon-crawling” game that would
regenerate the same dungeon each game (thus avoiding the space needed to save
the dungeon data) by seeding its PRNG with the player’s (x,y,z) coordinates.11 Of
course, Telengard was not the only dungeon crawler.

6.3 Dungeon Generation: Rogue (1980)

Procedural dungeon generation for dungeon-crawling games conjures up an entire
family of games, modern and retro, but the grandfather of them was Rogue, so much
so that games of this ilk are referred to as ‘roguelikes.’ One of the selling points is
the lack of repeatability: each game sports a different randomly-generated dungeon.
But first we prorogue Rogue to discuss a roguelike that was pre-Rogue.

Beneath Apple Manor (1978) for the Apple II had classic roguelike characteris-
tics, despite its earlier appearance.12 Figure 6.13 shows a screenshot of the game
and one of its generated dungeons. This is a top-down view; the larger squares
and rectangles are rooms, and the spidery tentacles connecting them are corridors.

11 Mentioned in an interview with Telengard’s author [4], and verified in the source code with
guidance from [6, 8].
12 Game information from static analysis and a visualization I constructed.
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Fig. 6.13 Beneath Apple Manor screenshot

The handful of differently-colored blocks represent doors, treasure chests, the
player, and the wandering monster accosting the player, but those are incidental
to this discussion and will be ignored.

The dungeon was generated in a series of steps whose progression was pointedly
marked by the game – the PCG code was written in BASIC, making this a non-
instantaneous process. The user selected the number of rooms per dungeon level at
the start of the game (five was recommended) and an entry into a new/lower dungeon
level was heralded by an incremental display of:

CONSTRUCTING A DUNGEON LEVEL
NOW BUILDING:
ROOMS
CORRIDORS...1 2 3 4
DOORS
MONSTERS AND TREASURE
MAGIC ITEMS

We will focus on the first two. The requisite number of rooms were produced by
randomly selecting a location and a (bounded) size and checking to see if those
map cells were unoccupied. If not, new random values were chosen, and this rep-
eated indefinitely until a suitable placement was found. In practice, the room size
bounds were small enough that this task was not onerous. Figure 6.14 shows what
this intermediate stage would look like, along with room numbers.
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Fig. 6.14 Example room layout in Beneath Apple Manor

The random room placement obviously can scatter the rooms in no particu-
lar order. The second step, corridor generation, does treat the rooms in order and
ensures that all rooms are reachable. The overall goal is to connect consecutively-
numbered pairs of rooms: room 0 to room 1, 1 to 2, 2 to 3, and so on, hence the
numbers following the CORRIDORS... message above.

It is easiest to illustrate corridor layout with an example, and the connection
of room 2 to room 3 is a good one. A room’s location is represented internally
by its upper-left corner and, starting at the upper-left corner of room 2, the target
is the upper-left corner of room 3. In the absence of other rooms, there are two
options. Either move horizontally until directly over room 3’s corner then down,
or move vertically until directly to the left of 3’s corner then right. The corridor
layout algorithm randomly chooses one of these options and starts mapping out the
corridor’s path cell by cell in the chosen direction. If another room is encountered,
directly or in an immediately adjacent cell to the growing corridor, the layout restarts
from that room’s upper-left corner.

Figure 6.15 shows this play out when connecting room 2 to room 3. At room 2,
horizontal movement is randomly chosen and eventually runs into room 0 (a), and
the algorithm is now trying to connect room 0 to room 3. Vertical movement is
randomly chosen, which passes beside room 4 (b); the goal is now to connect room 4
to room 3. An initial vertical movement is again chosen randomly (c), and the final
corridor routing is shown in Fig. 6.15d.

Rogue took a more intricate approach to its dungeon level generation.13 A dun-
geon level had nine rooms, always. This sounds less than random, but it was done

13 Based on Rogue 3.6, game information from static source code analysis and construction of
an algorithm visualization. Empirical PRNG testing was done with a separate program I wrote.
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Fig. 6.15 Corridor layout in Beneath Apple Manor

for good reason: the screen was conceptually divided into a 3×3 grid, and each box
on the grid contained one room, whose size and placement within its box was ran-
dom. Up to three randomly-selected rooms were labeled as “gone,” meaning they
would be assigned a location but would otherwise be treated as points rather than
full-fledged rooms; their usefulness came later. Figure 6.16 shows an example room
layout. The grid is represented by dashed lines, and rooms 1, 2, and 8 are gone
rooms.

The next step is creating corridors. Connectivity is randomly made between
immediately adjacent rooms – for instance, room 6 can be connected to room 3
and room 7, but not any others. Two rooms may be connected unidirectionally or
bidirectionally, which makes no difference in gameplay, but results in the rooms
being connected by two corridors that may be routed differently due to randomness.

Other parts of level generation were straightforward, like placing items randomly, making room
and corridor layout the most interesting part to examine.
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Room 6
Room

7

Room 3 Room 4 Room 5

Room 0

Fig. 6.16 Example room layout in Rogue

Fig. 6.17 Example room
connectivity

0 1 2

3 4 5

6 7 8

Also, gone rooms are included in connectivity, because corridors to and from (non-
visible) gone rooms look like interesting winding corridors in the finished level.
Figure 6.17 shows the connectivity generated for the running example.

Once the connectivity is decided, the corridors are created. Each pair of con-
nected rooms is sorted such that there are only two cases to consider. Either a corri-
dor is being created from one room above another in the grid, or from one room to
the room in the grid cell on its right. In other words, the corridor layout is moving
down, or moving right. Breaking down the corridor creation in this way makes rea-
soning about the process straightforward. For example, it is now apparent that for a
downward layout, a door will need to reside on the bottom of one room along with
one on the top of the other room.

Figure 6.18 illustrates the two cases, overlooking a minor exception for handling
gone rooms. Locations for doors (denoted ×), the start and end points of the cor-
ridor, are chosen randomly on the appropriate walls. Each corridor is composed of
three segments: one straight out from the start location; one perpendicular to that
segment, possibly of zero length; one straight from the perpendicular segment to
the end location. The final corridor layout is shown in Fig. 6.19. The gone rooms
have become connection points for corridors, and of the bidirectionally connected
rooms, rooms 1 and 4 simply retraced the same corridor twice, whereas rooms 3
and 6 ended up with two separate corridors.
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Down

turn spot
(randomly
chosen)

Right

turn spot
(randomly chosen)

Fig. 6.18 The two corridor layout cases in Rogue

Room 6
Room

7

Room 3 Room 4 Room 5

Room 0

Fig. 6.19 Final Rogue room and corridor layout

The PRNG that Rogue uses is again a linear congruential generator. It computes
seed = (11,109× seed+13,849) mod 65,536 and shifts the result right by one bit,
perhaps to help mitigate Knuth’s ‘much less random’ problem. Indeed, without the
shift, the rightmost bit simply alternates between 0 and 1. Obviously choosing a
PRNG, or values to use for a PRNG, has its pitfalls, but there are other algorithms
for generating pseudorandom numbers.

6.4 Jungle Generation: Pitfall! (1982)

A number of retrogames used an alternative approach for pseudorandom number
generation, the linear feedback shift register.14 Given a bit-shift operation in hard-
ware or software, there is a one-bit vacuum that must be filled, and the value that
fills that empty location changes the nature of the operation.

14 Information on linear feedback shift registers is from [28].
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b3 b2 b1 b0

b2
XOR
b0

b3

0 b3 b2 b1

b3 b3 b2 b1

b2 b1

Before right shift After right shift

Fig. 6.20 Nature abhors a bit vacuum

For example, Fig. 6.20 demonstrates three different ways that the high bit may be
populated after the (one-bit) right shift of a four-bit value. Always setting the high
bit to 0 corresponds to a logical shift operation that divides an unsigned integer value
by two. Duplicating the old high bit’s value as the new high bit’s value – essentially
a form of feedback – results in an arithmetic shift, dividing a signed integer by
two.15 The feedback preserves the sign of the two’s complement result. Finally, if
the high bit always becomes a specific linear combination of previous bit values,
then the shifting results in what is called a linear feedback shift register (LFSR).
The bit positions that are combined are referred to as taps, making b2 and b0 taps in
this example. This idea is not restricted to right shifting, either, and works equally
well in the other direction. Among other applications, an LFSR can have all or part
of its value interpreted as a pseudorandom number.

On now to the game. While Pitfall!’s PCG has been well described in Montfort
and Bogost [25] and by the game author himself [9], they have nonetheless failed to
capture all the subtle nuances of how cleverly this scheme functioned.16

Figure 6.21 shows a screenshot from Pitfall!, the code for which coinciden-
tally was written using a line editor on one of the ADM-3A terminals mentioned
in Chap. 3 [10]. Pitfall!’s jungle had 255 screens, the content of which was procedu-
rally generated. It might seem odd to do PCG on the Atari 2600, where the CPU was
occupied ‘racing the beam,’ but to store 255 screens’ worth of information would
have been prohibitive in a 4K cartridge. The mechanism needed to be lightweight
in terms of both size and processing requirements, however.

The game contained not one, but two LFSRs. The simpler one produced an
eight-bit value in a memory location we’ll call R2, and that LFSR provides a nice
introduction to how they were implemented on the 6502. Figure 6.22 gives the
pseudo-assembly for this LFSR (writing M[R2] as R2 for simplicity) along with

15 With caveats about rounding [36].
16 Game information from static and dynamic analysis, with much assistance from [19].
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Fig. 6.21 Pitfall! on the Atari 2600 (Image c©Activision Publishing, Inc., used with permission)

a diagram showing the information flow. The net result sees R2’s bits shifted left,
and its leftmost bit replaced with the XOR of two original bits; this is an LFSR with
taps b6 and b7. The key idea is to align the tap bits together, combine them with
XOR (other bit combinations are created as a side effect), and then move the final
combination into the carry bit, enabling it to be rotated into place in R2. Despite all
the activity, at each stage there is really only one bit position that holds the value of
importance: the gradually-building XOR combination for the LFSR.

With that in mind, we turn to the second LFSR in Pitfall!, which we’ll call R1.
It too is an eight-bit value, initialized to $c4 at the start of a game. Figure 6.23
shows the pseudo-assembly code for this LFSR, and traces in condensed form the
progression of the XORed bit through the computation.

This LFSR’s design has two important properties. First, the LFSR is bidirec-
tional, meaning that it is possible to move forward and backward through the se-
quence of pseudorandom numbers. To understand how this is possible, consider the
final value of R1 in Fig. 6.23 versus the initial value. Seven of the original bits are di-
rectly present in R1’s final value; the only one missing is b7. However, b7 is present
in XORed form, and because of how XOR works, the original value of b7 can be
retrieved. In particular, (a XOR b) XOR a= b: taking an XORed value and XORing
it again by one of its original operands yields the other operand. Extending this to
the situation at hand:
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A = R2

c‖A = shiftleft(A)

A = A XOR R2

c‖A = shiftleft(A)

c‖R2 = rotateleft(c‖R2)

Fig. 6.22 One of Pitfall!’s LFSRs

(b3 XOR b4 XOR b5 XOR b7) XOR b3 XOR b4 XOR b5

= (b3 XOR b3) XOR (b4 XOR b4) XOR (b5 XOR b5) XOR b7

= 0 XOR 0 XOR 0 XOR b7

= b7

Different code (not shown) is needed to implement this, obviously, but it is feasible
to move either direction in the PRNG sequence.

The second important property R1 has is that it is a maximal-length LFSR. Mov-
ing in one direction through the PRNG sequence, all 255 values will be produced by
the LFSR before returning to the original seed value. (There are 255 values and not
256 because an LFSR value with all zeroes cannot occur.) This is the reason why
R1 has so many taps compared to R2. Not all taps are created equal, and there are
a small number of tap combinations that will result in a maximal-length sequence.
R2, by contrast, does not use a maximal-length set of taps, and its PRNG sequence
repeats after only 63 values.

How is this used? Pitfall! has 255 screens, after which the player finds themself
back at the starting screen. Now it is apparent that this number is not coincidental
at all. Pitfall! performs PCG using the value of R1 to produce the contents of each
screen in a repeatable fashion. The appropriate LFSR code is called to advance R1
either forwards or backwards through the PRNG sequence depending on whether
the player moves offscreen to the left or to the right.
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Fig. 6.23 Left-shifting LFSR in Pitfall!

Bits of R1 are carved out to perform the PCG, as shown in Fig. 6.24. At a glance,
not all screen combinations are possible: blue quicksand cannot appear in conjunc-
tion with the swinging vine, for example. On the topic of vines, vine control shifts
to b1 on a crocodile screen, but the remainder of the object type bits are ignored.
This may seem like an odd bit choice – why b1 instead of b0, for instance? – but
the object type’s value is stored directly into the Atari 2600’s graphics ENABL reg-
ister to enable the vine, which ignores all bit positions except b1 [41]. The efficient
implementation of Pitfall!’s PCG is thus intimately linked to the Atari 2600.

Other bits are multiply used or otherwise repurposed. For the two screen types
having holes, b7 is used to locate an underground wall on those screens, the left side
if b7 =0 and the right side otherwise. Treasure screens look to b1–b0 to determine
the type of treasure: the four possible combinations select one of a money bag, a
ring, a silver bar, or a gold bar.

While the presence of treasure and its type are produced using PCG, game
screens don’t restock. Pitfall! therefore needs to keep track of which treasures have
been picked up by the player, and this bookkeeping involves one last clever usage
of the LFSR. There are 32 treasures in total, and they are tracked using a four-
byte bitmap, one bit per treasure. To index this bitmap, b7–b6 of R1 select one
of the four bytes, and the three object type bits choose one bit within that byte.
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R1b7 b6 b5 b4 b3 b2 b1 b0

tree
pattern

screen
type

object
type

000 = one hole 000 = one rolling log
001 = three holes 001 = two tightly-spaced rolling logs
010 = tarpit with vine 010 = two rolling logs
011 = swamp with vine 011 = three rolling logs
100 = crocodiles 100 = one stationary log
101 = treasure and black quicksand 101 = three stationary logs
110 = black quicksand with vine 110 = fire
111 = blue quicksand (no vine) 111 = snake

Fig. 6.24 Pitfall!’s jungle generation scheme

This uniquely tracks each treasure. On a treasure screen, the screen type bits are
always 101, and the remaining five bits of R1 (b7–b6 and b2–b0) must assume all
the possible 25 = 32 values exactly once because the LFSR is maximal-length.

Using PCG for an application leaves the programmer at the mercy of the PCG
algorithm they devised and the PRNG that drives it, to a certain extent. Instead of
a programmer directly controlling their code and data, they must indirectly steer
their algorithm. Pitfall!’s author, David Crane, observed this with relation to game
design. He had to vet the 255 generated screens to decide on the best initial LFSR
seed from the gameplay point of view, picking a seed that would start the player at
screens where they could learn gameplay skills gradually [9, 27:34].

Pitfall!’s PCG extended beyond the Atari 2600. Crane’s port of Pitfall! to the
Intellivision was extremely faithful, and in fact the same eight-bit LFSR algorithm
can be found in the code.17 This would be fairly unremarkable, except that the In-
tellivision had a 16-bit CPU and a dazzling eight general-purpose registers, r0–r7;
the 16-bit processor had to be made to implement an eight-bit algorithm.

The pseudo-assembly code in Fig. 6.25 shows how this was accomplished; this
Intellivision LFSR code corresponds to the Atari 2600 code in Fig. 6.23. The byte
at $150 holds the value of R1, and the same sequence can be seen at lines 3–8:
shift, XOR, shift, XOR, shift, shift, XOR. Line 7 takes advantage of a feature of
the Intellivision’s CPU, where it could shift by either one or two bits in a single
instruction. Lines 9–10 handle setting the carry bit in the same way that the 6502’s
left shift would. Retaining only the low-order eight bits (line 9), line 10 subtracts
the value $80 so that the carry reflects the subtraction’s borrow, which is precisely
the carry bit value required here. Line 11 finally rotates the carry bit into place just
as the eight-bit version did.

17 Game information from static and dynamic analysis, with Intellivision’s CP1600 CPU informa-
tion from [17, 40].
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1 r0 = M[$150]
2 r1 = r0
3 r0 = shiftleft(r0)
4 r0 = r0 XOR r1
5 r0 = shiftleft(r0)
6 r0 = r0 XOR r1
7 r0 = shiftleft(r0) ; r0 = shiftleft(r0)
8 r0 = r0 XOR r1
9 r0 = r0 AND $ff

10 if r0 < $80 c = 0 else c = 1
11 r1 = rotateleft(c‖r1)
12 M[$150] = r1

Fig. 6.25 Pitfall!’s LFSR on the Intellivision

6.5 Riverbank Generation: River Raid (1982)

River Raid was a vertically scrolling game (Fig. 6.26) whose riverbanks and islands
were generated using PCG.18 Like Pitfall!, it had two LFSRs, although they were
different ones. One of River Raid’s LFSRs was eight-bit, with taps b4 and b7, and
the other was a 16-bit LFSR that was used for PCG.

The reason River Raid scrolls vertically is related to yet another feature of the
Atari 2600’s graphics hardware. The 2600 could be set to mirror the left half of
the playfield’s contents on the right side, explaining the symmetry in River Raid.
Figure 6.27 illustrates how this worked conceptually; the ordering on the right-hand
side is flipped compared to the playfield’s earlier appearance in Yar’s Revenge (see
Fig. 6.2, page 110).

Regardless of how wide the river becomes, there is always a thin strip of river-
bank present, which corresponds to the four bits of PF0 always being set. From the
20 playfield bits on one half of the screen, that means at most 16 bits remain to de-
scribe the rest of the riverbank’s width on any given line, minus a few bits of width
to allow the player’s plane to fly through. Now imagine having a set of riverbank
tiles to choose from with widths from 0. . . 13. Figure 6.28 shows how these tiles,
randomly selected, could be placed to make a crude riverbank of sorts.

The problems with this are twofold. First, an aesthetic problem: it’s ugly. Second,
the maneuvering capability of the plane is limited, and the player would not be able
to turn sharply enough to avoid any approaching riverbank, nor could they direct
the plane into the riverbank’s extreme crevices. There needs to be a taper from tile
to tile. River Raid’s riverbank tiles are thus defined to taper up to, and down from,
their maximum width. The PCG code must offset its pointers into the tiles to ensure
a smooth taper when they are adjoined.

There is one extra complication. The 16 bits of playfield width for the riverbank
are spread across two of the 2600’s graphics registers, PF1 and PF2, and as a result

18 Game information from static and dynamic analysis, assisted by [20], along with writing a
program to reconstruct the riverbank generation algorithm.
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Fig. 6.26 River Raid on the Atari 2600, with riverbank outlined for clarity (Image c©Activision
Publishing, Inc., used with permission)
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Fig. 6.27 Conceptual view of the Atari 2600 playfield, with mirroring

the tiles need to be pieced together both vertically and horizontally. In other words,
there is no such thing as a tile of width 11; it is the combination of a width-8 tile
and a width-3 tile.

The PCG algorithm manages these constraints by choosing a random riverbank
width to aspire to (“current”), and comparing it to the previous width (“previous”)
to distinguish each individual case. Figure 6.29 shows the tree of checks that are
performed, and result in values for PF1 and PF2 being chosen. Because PF2’s bits
are reversed, however, some tiles need to be stored reversed in the game’s ROM. For
example, to make a width-11 riverbank, the two tiles required are shown in Fig. 6.30.
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Fig. 6.28 A rough random
riverbank
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Fig. 6.29 River Raid tile selection algorithm

Although none appear in the screenshot, the other feature of River Raid’s water-
way is the occasional island, and this is the final bit of cleverness. Thanks to the
tile arrangement and the Atari 2600’s hardware, to make an island simply requires
exchanging the PF1 and PF2 values around (Fig. 6.31).

6.6 Intermezzo: Strange Pseudorandom Number Generators

Several retrogames had PRNGs unusual enough to justify a closer look.19

As previously mentioned, Telengard seeded its PRNG with the player’s (x,y,z)
coordinates. How those coordinates are manipulated is rather mysterious, how-
ever. In an interview, game author Daniel Lawrence described Telengard’s PCG
this way [4]: ‘Take your character’s X/Y/Z position, do some math involving prime

19 Unless otherwise stated, game information here is from static analysis, with Integer BASIC’s
RND code isolated using [31].
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Fig. 6.31 Islands in the stream

numbers, pick out a few internal bits of the result and there you have a description
of the current location!’ One would therefore expect to see prime numbers as part
of the PRNG. One would be disappointed.

There are three floating-point constants defined in Telengard’s code, specified to
four decimal places and used in the calculation of a floating-point number Q:

XO = 1.6915

YO = 1.4278

ZO = 1.2462

Q = x×XO+ y×YO+ z×ZO+(x+XO)× (y+YO)× (z+ZO)
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Q’s fractional part is then taken and scaled, to yield an integer between 0. . . 4693.
This computation has the appearance of a hash function rather than a PRNG, and
insofar as both hash functions and PRNGs take their input and scramble it into a
new value, there is some similarity. It may not be overdramatic to say that the exact
nature of Telengard’s PRNG may be a secret taken to the grave; Daniel Lawrence
unfortunately passed away in 2010.

Fig. 6.32 Pseudo-assembly
code at the heart of Woz’
PRNG

1 A = M[RNDH]
2 c‖A = shiftleft(A)
3 c = 0
4 c‖A = A + $40 + c
5 c‖A = shiftleft(A)
6 M[RNDL] = rotateleft(c‖M[RNDL])
7 M[RNDH] = rotateleft(c‖M[RNDH])

Beneath Apple Manor used the PRNG in Apple’s Integer BASIC, which was
written by none other than master engineer Steve Wozniak himself. At the core of
Integer BASIC’s PRNG is the pseudo-assembly code in Fig. 6.32. It bears tantalizing
hints of being a 16-bit LFSR – the shifts, the rotates – but there is no XOR to be
seen.

Binary addition is intimately linked with binary logic. As Table 6.3 shows, the
least-significant bit resulting from the addition of two bits is exactly the same as
the XOR of the bits. Notice too that when y = 1, the most-significant bit of x+ y
always has the same value as x. With this in mind, Table 6.4 shows how this applies
to Integer BASIC’s PRNG. The addition of $40 potentially affects b6 and b7 of
A. That addition causes 1 to be added to b6, meaning the most-significant bit of
that addition, the value added to b7, is really just b6’s original value. And, because

Table 6.3 Binary addition and XOR

x y x + y x XOR y

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 0

Table 6.4 Integer BASIC’s addition, deconstructed

b7 b6 b6 + 1 b7 + MSB(b6 + 1) b7 XOR b6

0 0 0 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 1
1 1 1 0 1 0 0



6.7 Maze Generation 135

that being added to b7 is the same as XOR, line 4 of the pseudo-assembly code is
revealed to be a sneaky way to XOR b6 and b7 together, leaving the result in b7.
Integer BASIC’s PRNG is indeed based on an LFSR.

The PRNG for the last retrogame example, Fort Apocalypse (1982) for the
Atari 800, has all the hallmarks of a locked room mystery.20 Its source code defines
a location called RANDOM, and the assembly code contains multiple instructions
that read from that location. Observing the code running, RANDOM offers differing
values when read, and yet no code ever changes the location. No need to alert Sher-
lock Holmes, however: the Atari 800 hardware used LFSRs for audio generation,
and eight bits of a 17-bit LFSR are readable at $d20a – the location RANDOM was
defined as in Fort Apocalypse’s source code.

A point worth reiterating is that the pseudorandom number generation methods
discussed in this section, and throughout this chapter, must be taken in the context of
retrogames. Recall that games’ randomness requirements are not necessarily strong
ones, and PRNG algorithms exist that are much better suited for use in critical app-
lications like security and science.

6.7 Maze Generation

Finally, we indulge in some comparative retrogame archeology by exploring three
different maze generation algorithms used by three different games. The ability to
compare different PCG algorithms was alluded to in dungeon generation, and here
we have multiple algorithms all with the same intent, but with quite distinct results.
It will surely astound and amaze.

def maze(row, column):
directions = [UP, DOWN, LEFT, RIGHT]
repeat 10 times:

20% chance of swapping pairs of
entries in "directions" list

MAP[row][column] = TUNNEL
for direction in directions:

if canmove(direction):
newrow, newcolumn = row, column adjusted

to reflect direction
maze(newrow, newcolumn)

Fig. 6.33 Pseudocode for Rogue maze generation

20 Game information from static analysis of source code along with dynamic analysis. Atari hard-
ware information is from [1, 26]; they use the term ‘polynomial counter’ which is an LFSR.
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Later versions of Rogue, like the 1993 edition that shipped with 4.4BSD, had the
ability to include randomly-generated mazes in dungeons.21 The mazes were created
using a recursive depth-first search process, pseudocode for which is in Fig. 6.33.
The algorithm was initially passed a starting row and column position along with
rectangular bounds to fill in the dungeon MAP, which was a 2D array indexed by
row and column numbers.

Fig. 6.34 Deciding where to
move in Rogue

?

?

?

?

When can the algorithm move and dig a portion of tunnel in a given direction?
The details are abstracted away in the function canmove. The idea is to avoid
moving to a spot that would cause an accidental connection to an existing TUNNEL.
Figure 6.34 shows the locations in the map that must be checked for a move to the
right, for instance; the current location is denoted × and the checked locations with
question marks. If a tunnel is found in any of those locations, the move cannot be
made.

Fig. 6.35 Rogue mazes with direction randomization (left) and without (right)

The rounds of scrambling that the algorithm did on the ordered direction list were
essential to the final look of the maze. Figure 6.35 compares two mazes generated
with the algorithm, where one omits this step. Starting at the lower right corner, the
unrandomized algorithm is at the mercy of the direction list’s ordering: moving up
until blocked at the top right corner, then left until downwards movement becomes
possible, and so on, forming a snakelike tunnel. The version with randomized direc-
tions exhibits far more variety, although the underlying movement structure is still
apparent.

Especially compared to Rogue’s depth-first-generated mazes, the mazes in 3D
Labyrinth (1982) for the Commodore VIC-20 looked good and seemed to have a

21 Game information from static analysis and building an algorithm visualization.
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Fig. 6.36 Maze generated the 3D Labyrinth way

much more random, irregular look (Fig. 6.36).22 Pseudocode for the maze-generation
algorithm is given in Fig. 6.37, which performs gradual modifications to a map area
that starts with half walls and half open space.

It would be reasonable to ask why this algorithm always results in a solvable
maze, with a path between the two randomly-chosen entry and exit points. It doesn’t.
The game had a selection of 18 mazes that could be randomly generated; a curious-
looking string in the code, 18 characters long, acted as a lookup table:

"[BFK?TV$YL1/P>Q37<"

Each maze corresponded to one ASCII character in the string, whose value was used
as a PRNG seed to generate that maze.

Already there is a notable difference in these algorithms’ approaches and their
results, from the regimented depth-first generation to a more ad hoc PCG. The final
maze generation algorithm takes a third approach.

Amazing Maze (1978) on the Bally Astrocade composed mazes using the set of
four tiles shown in Fig. 6.38, which can be thought of as having attributes describing
what movements they permit.23 Overall, the object of the game is for player 1 to
move from their randomly-located door on the left side of the maze to player 2’s
door on the right side of the maze, before player 2 makes the opposite trek. Maze

22 Game information from static analysis and building an algorithm visualization. The game author,
Jeff Minter, kindly pointed out the nature of the mystery string [24].
23 Game information based on static analysis of disassembly [12], plus writing an algorithm visu-
alization. This is the tileset from the game’s ‘easy’ setting.
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initialize maze to all walls
randomly select entry and exit points
erase walls in every other row
foreach row excluding borders:

repeat 6 times:
pick a random even-numbered column
put a blank at that row and column
place a wall square relative to the blank:

blank

wall

2
3 chance

blank

wall

1
3 chance

Fig. 6.37 3D Labyrinth maze generation algorithm

Tile 0
(neither down

nor right)

Tile 1
(right only)

Tile 2
(down only)

Tile 3
(down or right

movement)

Fig. 6.38 Maze tileset from Amazing Maze

generation in this game is interesting to watch, because the Astrocade’s video RAM
was also used as scratch space, and the temporary data used for maze construction
is visible as random-looking colored pixels while the generation algorithm runs.

The generation method used by Amazing Maze is a variant of the ‘hunt and kill’
algorithm [27]. The code is a bit more extensive than the other maze generators
and is perhaps best understood starting at the main generation routine in Fig. 6.39.
Each (x,y) location in the maze has a tile number associated with it, along with
a flag indicating whether or not that location has been marked as being visited by
the generation algorithm. Initially, the algorithm tries to find a path from player 1’s
door across to the right side of the maze, with some built-in assistance to transform
a right-edge contact point into player 2’s door location. The else clause at lines 6–
10 is what happens when this search hits a dead end: give up and start anew if the
right side hasn’t been reached (line 8), or hunt for a new place to resume the path
creation (line 10). The latter option is what eventually fills in the whole maze area
once a valid path across it has been discovered.
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1 initialize()
2 while not all cells marked visited:
3 directions = getdirections(x, y)
4 if len(directions) > 0:
5 x, y = pickdirection(directions, x, y)
6 else:
7 if p2door not found:
8 initialize()
9 else:

10 x, y = hunt(x, y)

Fig. 6.39 Pseudocode for Amazing Maze’s main maze generation

There are four subroutines that lend assistance to the process:

• initialize(). This sets all maze locations to Tile 0 and clears all “visited”
flags. The initial (x,y) location is set to a random location on the maze’s left-hand
side that serves as player 1’s door, and this location is marked as visited.

• getdirections(x,y). Returns a list of directions from (x,y) to adjacent
unvisited locations. If (x,y) is on the right-hand edge of the maze and player 2’s
door has not been found yet, the subroutine quietly adds “right” into the direction
list.

• hunt(x,y). Starting at (x,y), this scans subsequent columns and rows, wrap-
ping around if necessary, until a previously-visited location is found; its (x,y)
location is returned.

• pickdirection(directions,x,y). This is the most complex of the
four. A direction is chosen at random from the directions list, and updates
occur as shown in Table 6.5. The new location is marked as visited and its (x,y)
is returned.

Table 6.5 Handling movement in Amazing Maze

Direction Add to current (x,y)
tile attribute

Δx to
apply

Δy to
apply

Add to new (x,y)’s tile
attribute

Up – 0 −1 Down
Down Down 0 +1 –
Left – −1 0 Right
Right Right +1 0 –

Figure 6.40 shows one run of the algorithm at three points. First, a dead end is
reached, forcing a reinitialization; visited locations are marked in gray. Second, a
path across the maze is found, but the remainder has yet to be visited. Third, the
final form of the maze once all locations have been completely visited.
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Fig. 6.40 Three snapshots of Amazing Maze’s generation algorithm

Fig. 6.41 Tile movement
attribute lattice

down or right

neither down
nor right

right
only

down
only

Does this algorithm always work and, if so, why? The process loops con-
tinuously until a path across the maze is discovered; it will eventually succeed.
That path is not destroyed during the hunt that follows, despite the changes made by
pickdirection, because the tiles’ movement attributes form a lattice (Fig. 6.41).
Alterations to the maze tiles’ attributes can only move locations up the lattice, serv-
ing to open the maze walls up more, not block any existing paths. This retrogame’s
PCG algorithm must therefore always work.
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At the beginning of this chapter, procedural content generation was initially
presented as an extreme form of data compression, but in fact it is much more.
Compression implies that the content all exists to begin with, whereas it is
now clear that PCG can be employed to produce an always-differing variety
of content that may never all exist, or use pseudorandomness to concisely
make a large amount of content that is always the same.

Repeatable PCG content can be viewed within the broader context of lazy
computation: only computing something (in this case, producing content)
when it is actually required. Even in a modern environment, it is not always
feasible or efficient to compute things, nor is it always possible to precompute
and store massive amounts of data. Modern environments do still have limits,
even if they are much higher limits than existed during the retrogaming era.

As an example, we built a simulator that would simulate a million domains’
worth of Internet content on a single computer [3]. It was neither possible nor
necessary to store all of the simulated web pages. Instead, a request for a web
site in the simulator passed through two PCG stages. The first stage used the
hash of the web site’s domain name to seed a PRNG, which was used to gen-
erate the web site’s hierarchy of web pages, so it would be consistent through-
out the entire simulated web site. The second stage re-seeded the PRNG with
the hash of the full URL requested and randomly generated the web page’s
content using the first stage information. This approach also guaranteed the
repeatability of the content across simulated web site visits, a requirement of
the application.

Experience with this and other examples has shown that procedural content
generation is far from a trivial undertaking, then or now. Good PCG results
can involve endless repeated tweaking and experimentation; seeing simple,
elegant PCG algorithms such as the ones in these retrogames – especially
operating under tight constraints – may belie tremendous effort that went into
them.
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Chapter 7
Protection

(Copyright 2008, Penny Arcade, Inc., http://www.penny-arcade.com, used with permission.)

Protection is a broad term that covers unauthorized access to software, guarding
against software copying and cracking, and preventing unauthorized software from
running on a platform. Because retrogames were a favorite target for copying and
cracking, we begin with copy protection.

No copy protection method is foolproof. Given sufficient motivation, and some-
times sufficient technology, all the methods described here can be broken. The chal-
lenge is to raise the bar high enough to keep the inevitable illegitimate copies to
an acceptably low level, yet hopefully not inconvenience legitimate users. Some
methods strike this balance better than others.

Computer security has studied user authentication extensively, and it provides a
helpful lens through which to view copy protection. Basic authentication tradition-
ally relies on one of three methods to validate a user’s identity to the computer,1 and

1 See, for example, [48]. There are at least two more methods, where you are and who you know,
but they are less well known.
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in the context of copy protection this task can be seen as validating that the user has
a legitimate, properly authorized copy of the software.

The first authentication method is what you know. In user authentication terms,
this implies a password; in retrogame terms, a registration code to unlock the
full functionality of a “shareware” game (or at least silence nagging registration
prompts) acted as a password.

Example 7.1 (Scorched Earth, 1991). Scorched Earth was an artillery game for
MS-DOS. Any doubts about its shareware status were dispelled up front, because
running the game caused some initial text to appear that read in part:

Scorched Earth is shareware. If you enjoy playing Scorch,
you are encouraged to take part in its developement by
registering with the author! To register, send $10 to:

This was a typical example of shareware software. Registering (via physical mail)
would yield a registration code that could be entered into the game at a prompt that
notably said ‘Please enter your password.’

Technically, the game author’s generation of the registration code and its veri-
fication by the game would seem to need sophisticated cryptographic algorithms.
The actual mechanism used by Scorched Earth relied more on psychology and the
relative difficulty of spreading information in the retrogame era: there was a pass-
word, but everyone got the same one [23]. The password was hardcoded into the
game for verification purposes, although the characters were not all located together
as a single string – that would have been too easy to find in the binary. The indi-
vidual password characters were checked, one at a time, with separate comparison
instructions for each character.2 Most password characters were subject to light obf-
uscation prior to comparison so, for example, a password character of X might be
incremented twice and instead compared with Z.

The second user authentication method is what you have. In security terms, this
could mean a physical door key or possessing a mobile phone with a specific num-
ber. Much the same idea carries through to retrogames that would ship with physical
objects, and having a copy of the software alone would be insufficient to run it past
a certain point. As a simple example, a game could challenge a user to enter the
word appearing in a certain place in the game’s physical instruction manual. King’s
Quest IV (1988) would issue demands like ‘On page 3, what is the third word in the
second paragraph?’ even before deigning to show the Sierra splash screen.3

Infocom famously bundled physical ‘feelies’ with their games that could be used
for this purpose, but there was no need for a blatant copy-protection challenge: solv-
ing the mystery in Deadline (1982) was ‘aided by evidence packaged with the com-
puter disk’ [52] that was ‘vital to the success of the investigation’ [9]. There were
other copy protection methods using physical objects too.

2 Game information from static and dynamic analysis. I’ll leave finding the password as an exercise
for the interested reader.
3 Verified on, and quote taken from, the DOS version in-emulator.
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Fig. 7.1 Lenslok

Fig. 7.2 Lenslok prisms

Example 7.2 (Lenslok). Lenslok was a copy-protection device that involved holding
an exotic device containing vertically-aligned plastic prisms against the screen to
reveal the secret distorted code displayed by the software. The size of Lenslok was
such that it would comfortably fit in software’s cassette tape boxes [15]. Figure 7.1
shows one of these devices for ACE (1986) sitting atop a Lenslok instruction sheet,
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Fig. 7.3 Scrambled and unscrambled Lenslok code for Elite

and Fig. 7.2 gives a close-up view of its prisms. As as example, Fig. 7.3 shows how
the code “OK” would be seen with and without Lenslok.4 This particular code was
shown for calibration before the program would issue the real code challenge to
the user. It was critical, as part of the calibration process, for the user to adjust the
size of the Lenslok image appropriately: the ideal on-screen image width, cleverly,
matched the unfolded length of the physical Lenslok device.

Deployment of Lenslok for retrogames and other software was not without inci-
dent. Correct display of Lenslok images required the user to calibrate the software
to the television [15]. A release of Elite had Lenslok instructions that were ‘less
than perfect’ to the extent that the publisher offered updated instruction sheets [57].

4 I wrote a program to generate the encoded images, using the prism data from LensKey, and
verified the images using LensKey and real Lenslok devices; for clarity, the generated image does
not include any extra obfuscating blocks that a real Lenslok implementation could add.
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Later games had not only the Lenslok instructions proper but ‘Lenslok hints’ that
included gems like [36] ‘Slightly moving the Lenslok, or your head, can make the
characters more recognisable.’ Computer magazine letter columns of the time are
brimming with vitriol:

As for the LensLok, it took me 35 minutes, 5 reloads, 80% eye strain and 80% guess work
to start the game. [50, p. 45]

The larger scale resolution of the family 23in TV, coupled with the need to hold the Lenslok
device on the screen whilst operating the keyboard and working against the clock, make for
an interesting challenge, though not the one I thought I was purchasing. [60, p. 16]

Example 7.3 (Code wheels). A code wheel is similar in nature to a secret decoder
ring that children might once have found in cereal boxes. With this copy protection
scheme, the software would present a challenge to the user in the form of words or
symbols present on the code wheel. The user would need to align the code wheel
accordingly and enter the revealed code into the software for verification. Figure 7.4
shows the code wheel for the Amiga’s SideShow (1989), a game that a reviewer
says [6, p. 68] ‘can get on your nerves [. . . ] You must enter codes from a copy-
protection wheel several times.’ This particular code wheel had three layers, and if
the game’s challenge was POPCORN-RINGMASTER-HIPPOS, then aligning those
words in the wheel would yield the response code HCIO, as shown in Fig. 7.4a.
Figure 7.4b shows the bottom layer of the code wheel separated, revealing its sin-
gle ring of response letters; Fig. 7.4c shows the discs of the top two layers, whose
response rings have both letters and physical holes.

Also for the Amiga was F/A-18 Interceptor (1988) that needed the correct res-
ponse from a code wheel before embarking on a mission [27]. This too is a three-
layer wheel, and Fig. 7.5a shows that a variety of response codes could result from
aligning 1-F-C. Figure 7.5b shows the bottom layer separated, and that it held many
response codes as opposed to SideShow’s single ring; Fig. 7.5c highlights the holes
in the second layer.

While production of the code wheel added additional cost for the retrogame pub-
lisher, it was partially offset by alleviating the need for other protection. Pool of
Radiance (1988) for the Commodore 64/128 came with a beautifully designed two-
layer code wheel; it is partially shown in Fig. 7.6 along with the instructions the user
was supplied for its use. Here, the game’s ‘Quick Start Card’ explicitly encouraged
copying all four of the game’s disks and playing the game using the backup copies.

Example 7.4 (Dongles). A dongle is a physical device that plugs in to one of the
computer’s ports, like a cassette port, parallel port, serial port, joystick port, or (now)
a USB port. The theory behind basic dongles is that resistors or other circuitry inside
the dongle provide a “secret” or at least hard-to-duplicate value that copy protection
code can read and verify for correctness. The dongle’s casing would be sealed and
tamper-resistant to discourage casual physical inspection, but of course the value
from the dongle could be read by other software equally well [42].
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Fig. 7.4 SideShow code wheel and component layers
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Fig. 7.5 F/A-18 Interceptor code wheel and component layers
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Fig. 7.6 Pool of Radiance code wheel and instructions

Figure 7.7 shows some pictures of one of the first dongles, which plugged into the
Commodore PET’s cassette port. The anti-tampering sealing resin is clearly visible
in the end view. This particular dongle contained a parallel-load shift register,5 the
eight-bit value of which could be shifted in a bit at a time via the cassette interface
and verified. The values these dongles produced could vary from one to the next,
interestingly; their production was farmed out, effectively forming a small cottage
industry, and the people wiring up the shift register would choose randomly which
of the chip’s eight inputs to wire to the supply voltage (resulting in a 1 bit) and
which to wire to ground (0). This would appear to wreak havoc with the verification
code, unless each dongle’s value was checked, and each shipped copy of the soft-
ware was modified accordingly – not a scalable prospect. Instead, the first time the
software was run by the user, the dongle value would be read and embedded into the
software at that time, making the software unusable thereafter unless that particular
dongle was attached.

Dongles did not find their way into retrogames frequently. One example is Robo-
Cop 3 (1992) for the Amiga, which came with a dongle that plugged into one of the
Amiga’s joystick ports (Fig. 7.8) – a sticker on the game box said ‘FOR YOUR SE-

5 There seems to be no available authoritative source for dongle history. Information here is from
Wikipedia [66] that I have verified with one of the dongle’s creators [35]; chip information is
from [61]. Figure 7.7 is a composite image created from pictures taken by Mike Lake.
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Fig. 7.7 One of the first dongles created

CURITY, THIS GAME IS PROTECTED WITH AN ELECTRONIC KEY.’ Another
example is the dongle for Leaderboard Pro Golf Simulator (1986) on the Com-
modore 64. This spartan dongle (Fig. 7.9 shows front and back views) plugged into
the cassette port; the program itself was on floppy disk. Because this dongle simply
grounded the “cassette sense” pin, it was possible to bypass security by connecting
a Commodore cassette player to the computer and playing a tape when the game
checked the dongle.6

The third user authentication method is what you are, which typically refers to
biometrics like fingerprints or iris recognition, properties inherent to humans. This
initially seems inapplicable to copy protection; no retrogame would have demanded
a DNA sample of the player prior to running.7 But insofar as a game’s protection
code was trying to spot illegitimate copies, it would take advantage of properties

6 Thanks to numerous Internet forums for the tip; verified with game on real hardware.
7 Actually, a few retrogame authors might have considered that, but they wouldn’t have been seri-
ous about it.
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Fig. 7.8 RoboCop 3 dongle

Fig. 7.9 Leaderboard Pro Golf Simulator dongle

inherent to the game’s storage medium and common methods of duplication. The
game collectively treated the user and the media as the “you” in “what you are,” in
essence. With that framing, we will examine protection specific to different media
types.

7.1 Cassette Tapes

Conceptually, protection options for cassette tapes would seem to be fairly limited.
A magnetic signal on the tape saunters linearly past a stationary read head, the same
technology as found in audio cassette tape players. In fact, some computers of the
time like the Apple II and the ZX Spectrum assumed that a commodity audio cas-
sette player would be used [2, 67].

Certainly code obfuscation was a possibility to deter cracking, as was wearing
down the patience of someone trying to monitor the tape loading process by loading
in many parts. Freeload, a tape loader for the Commodore 64, could load a game in
fourteen parts.8

8 Hughes [26], confirmed in cassette mastering source code.
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(Would-be software pirates were not the only people whose patience was tried
by tape loading. Mastertronic’s 1988 release of Ghostbusters for the Commodore
64 went so far as to have a mini-game to play while the real game was loading.
Early in the loading process, a screen would appear saying ‘JUST WHEN YOU
THOUGHT IT WAS SAFE TO MAKE A CUP OF TEA. . . IT’S. . INVADE-A-
LOAD!’ and a clone of Space Invaders could be played to pass the time.9 Other
tape loading mini-games existed at that time but were unreleased due to licensing
concerns [24, 26].)

The copying problem still remained: tape-to-tape copies were trivially possible,
especially given the prevalence of dual-cassette players with dubbing capability built
in. One approach to make tape copying more challenging took advantage of the
“what you are” notion. As the Apple tape loading documentation notes, [2, p. 4]
‘Cassette tape recorders in the $40 – $50 range generally have ALC (Automatic
Level Control) for recording from the microphone input. This feature is useful since
the user doesn’t have to set any volume controls to obtain a good recording.’ A tape
copy protection mechanism for the Commodore 64 was to insert a loud tone in
between parts of the program on tape; the goal was to trick the ALC circuit in a
would-be copier’s tape recorder into lowering the recording volume temporarily,
hopefully to the level where the following data was too quiet to be re-read properly
on the tape copy [25, 26].10

7.2 Cartridges

For a cartridge-based retrogame, the cartridge is implicitly “what you have.” It is
possible, for example, to copy a cartridge’s contents from its ROM into a writable
EPROM, but as it requires the proper equipment, skills, and knowledge, it raises the
copying bar substantially [42]. A similar argument can be made for cartridges that
contain additional components besides ROM, like the Atari Super Chip.

Computer systems that accepted cartridges and had banked RAM behind the
cartridge address space (e.g., the Commodore 64 [8] and Atari 400/800 [47]) had
another option. A cartridge’s contents could be copied onto tape or disk, and later
restored into the RAM to run without the cartridge present. Countering this, some
cartridge’s code would copy garbage into its own memory addresses: this would
have no effect on the cartridge’s code in ROM, but a copy in RAM would be
corrupted [42, 56].

9 Verified in emulator.
10 While this technique sounds plausible, and I have no reason to doubt it, it has been hard to verify.
I acquired a working Uridium (1986) on cassette for the Commodore 64 (which should have this
protection [26]) and two dual-tape decks; copies from one deck worked, copies from the other
didn’t. The only firm conclusion is that tape-to-tape copies of retrogames didn’t always work.
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Example 7.5 (Star Ranger, 1983). Star Ranger on the Commodore 64 uses this pro-
tection scheme.11 For example, the game code contains a set of subroutine add-
resses, and a store instruction writes the value $ff to the high byte of one of these,
located at $878d in the cartridge’s address space. This write has no effect if the game
is running from the cartridge ROM, and when the game uses the subroutine address,
it goes to the original address of $8045. On the other hand, if the game code has
been copied to RAM, execution finds its way to $ff45 instead.

The net effect of this and similar writes to cartridge addresses is that the game
shows blocky lines on the screen, plays the brief level starting tune (a distinctly
funereal piece), and hangs if run from RAM.

Example 7.6 (Pole Position, 1983). The Atari 400/800 version of Pole Position con-
tains a number of code sequences that write to the cartridge’s address space, of the
form:

A = $60
M[$ae5a] = A

Different sequences write to different memory locations, all of which correspond to
the start of subroutines in the game code. The value $60 happens to be the opcode for
a return instruction, meaning that an in-RAM copy of the game code is surgically
altered. The resulting changes create what amounts to a demo version of the game,
where the player drives down a perpetually straight road.12

End users’ copying was not the only thing that concerned game producers when
it came to protection; other game producers making their own cartridges could be a
threat as well. Cartridge production can provide a revenue stream for a game com-
pany, and the ability to control licensing of game titles for a platform provides both
revenue and the ability to perform quality control (dubious game quality being a fac-
tor in the North American video game market crash of the 1980s) [46]. How does
a computer verify that a cartridge plugged into it is permitted to run? With read-
ily available Internet access, a modern game console could periodically download
a “whitelist” with cryptographic hashes of allowed cartridges, for instance, but that
would not have been broadly feasible in the retrogame era. Some other mechanism
was called for.

Example 7.7 (Sega Genesis III). Starting in 1990 with the Genesis III, Sega’s Gen-
esis game consoles had protection measures to guard against unlicensed game car-
tridges running on their platform.13 First, the console looked for the string SEGA at a
specific location in a cartridge’s ROM. This would be fairly unremarkable by itself,
but the other part to this (patented) technique was that the console would automat-
ically display a copyright message in response to finding the string. The reasoning
is elaborated in the patent [58]:

11 Tip from [70], behavior verified in emulator.
12 Not unlike traveling through the Canadian province of Saskatchewan. Game behavior found and
verified in emulator.
13 The legal bunfight between Sega and Accolade over Sega’s protection measures is interesting
reading but outside the scope of this book; for details, see [32, 46].
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The unauthorized vendor must, therefore, not only breach the security system, but also
publish a misrepresentation that its work is authorized and that the copyright resides in the
authorized vendor [. . . ] the vendor of unauthorized units will have misrepresented to the
user that he is an authorized vendor, thus subjecting such vendor to risk of violation of the
law respecting copyright and/or unfair competition or illegal trade practices.

Presciently, the patent provides assembly source code for its implementation on the
Vectrex, which contains the inline comment ‘DISPLAY LEGAL MESS.’ A legal
mess did indeed result from the Genesis III’s ‘PRODUCED BY OR UNDER
LICENSE FROM SEGA ENTERPRISES LTD’ [43, 65] message, and illustrates
that protection need not be purely technical.

A second protection method used by Genesis consoles built on the above by also
requiring the game code to write the value SEGA to a particular memory location
in the video display processor [43]. Taken together, Sega’s protection measures can
be viewed as authenticating a cartridge based on what it is (the static signature) and
what it knows (the video display processor code).

From a security point of view, having a hardcoded static signature seems like an
extremely weak protection mechanism to rely on. Any technical judgment on Sega
should take into account that the Intellivision II beat them to it by about eight years,
though.

if bit 6 of M[$500c] is 0:
y = last two digits of copyright year in cartridge
if y < 78 or y > 82:

X: goto X

Fig. 7.10 Intellivision II authentication pseudocode

Example 7.8 (Intellivision II). As a review of the Intellivision II put it [39, p. 82]:
‘For some reason, the game cartridges currently manufactured by Coleco Industries
do not work with the Intellivision II.’ It has been alleged that this was a very delib-
erate effect, and that the Intellivision II’s ROM code had been modified specifically
to prevent third-party games from running [4, 29]. While no definitive proof of the
rationale seems to exist, the fact remains that some Coleco games don’t work on the
platform. For example, Donkey Kong (1982) and Mouse Trap (1982) both show only
a blank, avocado green screen when run on the Intellivision II.14 The culprit is some
code in the Intellivision II whose pseudocode is shown in Fig. 7.10: the combination
of a flag bit not being set in the cartridge and the last two digits of the year being
outside a narrow range results in an infinite loop. (The code in question implements
the year check in two parts, each with its own infinite loop, making it hard to dismiss
this as an inadvertent bug.) The bit and year values, taken together, act as a static
signature for authentication.

14 Verified in emulator. Technical information from static and dynamic analysis.
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Fig. 7.11 Cartridge design for the Nintendo Entertainment System, from [74]

Authentication that uses a combination of different methods is referred to as
multi-factor authentication. For instance, the Sega protection can be seen as two-
factor authentication for cartridges. The Nintendo Entertainment system had
two-factor authentication as well.

Example 7.9 (Nintendo NES). The Nintendo NES’ cartridge protection began with
a very distinctive patented design (Fig. 7.11) that provided some physical and legal
protection as to what cartridges could be inserted into the console [45, 46]. Addi-
tional protection came in the form of the ‘10NES,’ a small four-bit microprocessor.
One of these chips was placed in the NES itself, and another in each cartridge; the
processors did some arithmetic operations with the same timing, and a mismatch in
the results would reset the console’s CPU [44, 45]. The 10NES’ calculate-and-check
cycle could be repeated indefinitely throughout execution of the game [44, 45]. As
with the Sega protection, this can again be seen as cartridge authentication based on
what it is (physical design) along with what it knows (10NES).
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7.3 Floppy Disks

Floppy disks offered an enormous amount of flexibility when it came to protec-
tion.15 It was not uncommon for software to have very direct control over the
floppy drive’s operation, and lack of memory protection meant that the operating
system did not enjoy exclusive access to the floppy drive’s hardware. Depending on
the platform, the disk operating system may have been read from the floppy disk
when booted anyway, making it a simple matter to modify or replace for protection
purposes.

Some floppy protection methods relied on using “what you are” authentication
with the floppy disk itself to distinguish between an original disk and a copy.

Example 7.10 (Physical damage). There seems no end to the stories about copy
protection methods that involved intentional physical damage to the disk surface.
The general principle [5, 19, 68] is that randomly-chosen areas on the disk surface
are damaged, and the exact locations of those areas are discovered and stored on the
damaged disk, along with the copy protection code and the program being protected.
The copy protection code will attempt to write to the damaged areas when run and,
in an appropriately 1984 way, success is failure and failure is success. If the write
fails, the disk is the original damaged one and the copy protection check succeeds;
if the write succeeds, the disk is a copy and the check fails.

How was the physical damage created? It is here that the story takes on the feel
of an urban legend. Various sources claim pinpricks [42], a hole punch [19, 56],
scratching or scraping [18, 19, 68], heating [18], cutting [18], radiation [18],
lasers [51, 64], and drops of acid.16 Regardless of the means of destruction, indirect
evidence suggests that this protection method was successful. An advertisement for
a board to create ‘ARCHIVAL BACKUPS OF PROTECTED SOFTWARE!’ says
that it ‘can easily backup almost all protected diskettes for the IBM PC (except
those “protected” by physical disk damage)’ [7], and Defendisk – holder of some
of the patents on this technique – ran a contest offering to ‘pay $10,000 to the first
person to defeat our system’ [12, emphasis theirs].

Other protection methods we encounter later extend “what you are” to the floppy
drive, specifically the ability of expensive disk duplicating equipment to write in
ways that low-cost commodity drives could not mimic [68]. However, not all soft-
ware publishers used such equipment: Brøderbund disks were duplicated on stock
Apple II drives connected in parallel to write two disks at once [20]. Even in this
case, the floppy drives had certain physical limitations that could be (and were)
exploited for copy protection.

15 Unfortunately, there are too many creative floppy protection schemes to cover in full. This
section’s sampling tries to give a flavor of the variety of methods used without getting too lost in
the weeds.
16 I recall hearing in the 1980s that someone had done this with acid as a science fair project.
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There is a natural overlap here with “what you know” authentication. Protec-
tion that did nonstandard things might slow down copying and cracking efforts, but
booting a protected floppy required the boot code on disk to know the secrets of
reading the data. Ultimately this is the Achilles heel that allowed such protections
to be broken.

Example 7.11 (Moving the directory). Apple floppy disks had 35 tracks, concentric
circles on the disk surface where data would reside; the floppy drive’s read/write
head would be positioned at a track’s location to read or write its magnetically
encoded signal as the floppy drive rotated the disk’s surface underneath the head.
The disk directory was located at track 17, in the middle of the disk to minimize the
head movement required to access it.17 As a very simple “protection” method, the
directory could be moved to another track, and the DOS on disk suitably modified
to locate it. Standard DOS would not be able to list a protected disk’s directory, not
knowing this secret, and the protected floppy would have to be booted (and its modi-
fied DOS loaded) to access the contents. Beyond this inconvenience, the technique’s
value is mostly didactic – nothing prevented a DOS disk with a relocated directory
from being copied.

Tracks on a disk were logically divided into sectors. On the Apple II, for exam-
ple, DOS 3.3 and ProDOS disk tracks contained 16 sectors, each holding 256 bytes
of data [71, 72]. The space occupied by a sector on disk is not solely devoted to
storing the sector’s data; a certain amount of overhead is necessary.18 The data is
sandwiched between meta-data: a sector prologue preceding the data would store
the sector and track number; an epilogue would hold a data checksum for verifi-
cation. Furthermore, expendable gap bytes are placed to buy time for the CPU to
process the prologue information – the spinning disk presents a soft real-time con-
straint – and also “wiggle room.” Due to physical variance even on the same disk
drive, a modified and rewritten sector was unlikely to be written to the precise phys-
ical location as the old data, and the gap bytes provided padding that could be over-
written to compensate for this. Even for sectors, however, the formatting could be
programmer-controlled if desired.19

Example 7.12 (RW18). Prince of Persia (1989) for the Apple II used Roland Gustafs-
son’s “RW18” disk routines, which managed to cram the equivalent of 18 sectors
onto each disk track instead of only 16.20 Cracked versions of Prince of Persia in
standard Apple DOS format were forced to use one additional floppy to store the

17 This example is based on DOS 3.3; information from [71]. There’s one slight simplification
here, in that some drives would support more than 35 tracks [72].
18 The exact details vary with the system, of course. References used are [28] (Commodore 64)
and [71] (Apple II).
19 This assumes the more common “soft sectored” disks. Hard sectored disks, by contrast, had
physical index holes denoting the start of sectors.
20 RW18 information from [16, 21, 53]; some of the RW18 source code appears in the released
Prince of Persia code, and a commented disassembly of the 5 1

4
′′

RW18 code [17] was used for
verification.
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extra data; a 16-sector version occupying the same number of disks as the original
game did not appear until a quarter century later [14].

RW18 optimized for the common (retrogame) case of reading. Assuming that
a disk track was written in its entirety, i.e., when creating the game disk, meant
that no gap byte allowances needed to be made for sector writes. In addition, larger
768-byte sectors reduced the amount of per-sector overhead required, with the result
that RW18’s six sectors per track could hold 512 more data bytes than a standard
16-sector track.

A programmer’s control over the floppy disk could also extend to the bit encoding
within the track.

Tracks 1–17:
21 sectors/track Tracks 18–24:

19 sectors/track

Tracks 25–30:
18 sectors/track Tracks 31–35:

17 sectors/track

Fig. 7.12 Zones on a standard Commodore 64 floppy disk

Example 7.13 (Changing bit rates). Commodore 64 disk drives spun at a constant
speed, but the hardware allowed the rate at which bits were clocked in and out
to be changed. This permitted more bits, and ultimately sectors, to be stored on
areas of the disk that were further out and thus had more physical space. A standard
floppy would be divided into “zones” based on the track number, where each zone
held a different number of sectors (Fig. 7.12) [28]. One protection method involved
changing tracks’ bit density to nonstandard values [56, 59] in an attempt to throw
off copy programs.

Finally, the programmer could even control the physical positioning of drive el-
ements like the read/write head. The location of tracks was not a requirement of
the floppy disk’s media itself; their location was a reflection of the disk drive head
positioning mechanism, physical drive limitations on reading and writing, and con-
vention. Commodore 64 disk drives, for instance, could have their read/write head
stepped in half-track increments [28]. This ability to read and write half tracks was
used for copy protection on the Commodore 64 [56, 59], but since the same tricks
(and more) were possible on Apple II drives, we will focus on them instead.

Apple II drives have four electromagnets controlling head stepping: phase 0,
phase 1, phase 2, and phase 3.21 The magnets, when energized, attract cogs on a

21 This discussion is based on [30, 54], and Fig. 7.13 was inspired by the representation in [54,
Figure 9.4].
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rotor that moves the drive head when the rotor turns. Cogs being aligned with an
even-numbered phase correspond to a whole-track head position, and odd-numbered
phases are half-track positions.

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

a b c

d e f

Fig. 7.13 Disk drive read/write head stepping on the Apple II

Figure 7.13 illustrates the sequence of steps required to move the head from
one whole track to the next. From the initial state with no magnets energized (a),
phase 1 is turned on (b) and the head eventually moves to the half-track position
(c). Energizing phase 2 (d) continues the head movement, which results in the head
positioned on the next whole track once phase 1 is shut off (e). Finally, after allowing
sufficient time for the head to arrive, phase 2 can be shut down as well (f).

Whole track and half-track positioning was clearly possible. Positioning the head
on quarter tracks was also possible, albeit not with complete accuracy. If both phases
are shut down after step (d) above – essentially the two phase magnets are partici-
pating in a tug-of-war with the rotor cog – then the head will roughly be positioned
in between two half tracks.

Fig. 7.14 Writing track N,
et al.
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The catch to using half tracks and quarter tracks for protection is that writing
on floppy drives is not a precision operation. When writing data, the magnetic field
bleeds onto adjacent physical locations: as Fig. 7.14 shows conceptually, the data
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from writing track N also appears in the quarter tracks beside track N. Adjacent half
tracks will pick up some of the content of track N, but also receive cross-talk from
the data written to adjacent whole tracks. The net result is that writes of adjacent
tracks must be separated by at least a track’s width. However, this does not preclude
writing on fractional tracks, so long as this constraint is met, and it does also not
require that tracks be written in their entirety; this opens up interesting protection
options.

From a disk copying point of view, a copy program that is not privy to knowledge
of which track positions are in use will fail. For example, a copy program that only
copies whole tracks, when part of the floppy uses half tracks, will duplicate the
noisy crosstalk instead of the actual data. Protection results from the combination
of “what you know” along with the physical writing limitations of floppy drives.
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Fig. 7.15 Track read plot of Choplifter boot

Example 7.14 (Choplifter, 1982, and Lode Runner, 1983). Choplifter combined the
use of half tracks with partial track writes, a scheme that made a straightforward
copy challenging: it required the ability to copy half tracks and know when to skip
from one half track to the next.22 Figure 7.15 plots the location of disk reads when
Choplifter is booted, showing that it steps by whole tracks at first, then graduates to
half-track stepping starting at track 12.

22 Emphasis on straightforward – at least one set of copy program parameters does this [41].
However, [30, 62] assert that this scheme can be copied by reading and writing quarter tracks, and
a different set of copy program parameters follows that advice [41]. I gathered data for the disk
read plots from a specially-instrumented emulator.
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Fig. 7.16 Track read plot of Lode Runner boot

Lode Runner extended this idea, by bouncing back and forth between bands of
whole and half tracks. The net effect, when plotted (Fig. 7.16), is reminiscent of a
castle’s battlements.

This technique of using part of a track, then stepping the disk head a half track,
using part of that track, stepping the head another half track, and so on is referred
to as track arcing [30, 41, 56] or spiral tracking [62, 68].23 The terminology is apt,
because track arcing causes the movement of the disk head to trace out a spiral pat-
tern on the rotating disk’s surface. One notable drawback to this protection scheme
is loss of storage space on an already space-challenged medium; to avoid interfer-
ence between data on adjacent half-tracks, only a quarter to a third of the normal
track capacity can be written before moving the heads [30, 62]. When the disk hard-
ware permits, there is no reason to limit track arcing’s steps to half-track increments,
and an extreme form of track arcing would use quarter tracks instead.

Example 7.15 (Spiradisc). The story of the Spiradisc protection scheme was cap-
tured in the book Hackers [38].24 Only a handful of programs are known to be
protected using this scheme, like an early release of Frogger (1982) [31, 40]. One
of the programs protected with Spiradisc was Maze Craze Construction Set (1983),
and its disk read plot during boot is shown in Fig. 7.17. The Spiradisc track arcing
activity in quarter-track increments is clearly visible.

23 Some sources suggest that the data is read and written as the disk heads are moving (e.g., [68])
but this may be platform-dependent: as Sather notes [54, p. 9–8], ‘phase-1 must be turned off after
head positioning or writing to the disk is impossible.’
24 Levy misspelled it as “Spiradisk,” however, which is incorrect according to the protection code’s
own banner message [40], a fact that I confirmed on a Spiradisc-protected Frogger image.
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Fig. 7.17 Track read plot of Maze Craze Construction Set boot

Access to high-end disk duplication equipment allowed other protection methods
involving cross-talk between written track data. Electronic Arts, for example, cre-
ated disks containing what was variously called track imaging [30], wide tracks [68],
or fat tracks [22, 51]. A band of adjacent fractional tracks would contain exactly the
same data, an effect which was simply not possible to create with commodity drives.
The protection code would then compare the data on that band at half-track intervals
to ensure that it was error-free [22, 30].25

A related family of protections relied on having the data on adjacent tracks posi-
tioned relative to each other in certain ways. Commodity disk drives would not have
easily performed these feats of inter-track synchronization when copying disks.

Example 7.16 (Video Vegas, 1985). The protection on this game is initially deceiv-
ing: the disk is copyable using standard copy programs, but the resulting copy won’t
boot.26 The reason is that the copy protection required that the first eight tracks be
aligned in a particular way. Starting at track 0, sector 0, the protection code would
step to track 1 and compare the first sector number it found with the “correct” value,

25 This check is apparent on the disk read traces for failed boots that I’ve gathered for some Elec-
tronic Arts games, like Archon (1983), Pinball Construction Set (1983), and Skyfox (1984). For
extra verification, I was able to boot all three non-booting game images in-emulator by copying the
track data samples verbatim from one track in the band to all fractional tracks in the band.
26 Information for this example is based on [1, 63]. I hand-aligned the track data on a non-booting
image track by track until the image booted in-emulator, then verified that it was only reading the
sector’s address field and that the sector numbers matched the protection code.
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then step to track 2 and repeat the process, up to and including track 7. All of the
sector numbers found had to match exactly to pass the test and boot the game. This
sort of protection could be created using standard disk drives, but duplication would
need more precise machinery.

7.4 Sidestepping Protection

Attempting to copy a retrogame directly was equivalent to a frontal assault on the
copy protection. However, there were other methods for working around protection
to produce a serviceable – or outright cracked – copy of the software.

Some games were “single-load” games that were read completely into memory,
passing any copy protection checks in the process, and never accessing the storage
media again. This would be an appealing design for slow-loading cassette-based
games, but was encountered in floppy-based games too. Unfortunately this meant
that the game code and data were sitting unprotected in the computer’s memory,
if only there were a way to get at it. Typical game protection would guard against
typical ways to wrest control from a running program; for example, pressing the
RESET key might reboot the machine rather than return the user to a command
prompt they could examine memory from. More elaborate hardware devices and
modifications presented challenges, though.

Example 7.17 (Wildcard Plus). The Wildcard Plus for the Apple II was representa-
tive of a variety of hardware add-on devices for copying, also referred to as “NMI
cards” or “freeze cartridges” depending on platform. It was an expansion card that
plugged into the Apple II with a button at the end of a cable that snaked out of
the Apple II’s case. Pushing the button generated a non-maskable interrupt (NMI)
that resulted in the victim program being suspended. Control was transferred to the
Wildcard’s menu, where the contents of memory could be saved to disk such that it
could later be restored and the victim program resumed where it left off.27

From a more technical point of view, the NMI could not be ignored by the CPU,
and the CPU would fetch the interrupt handler address from $fffa. . . $fffb, normally
in the Apple II’s ROM. The Wildcard could inhibit those ROMs and respond using
its own, effectively forcing a bank switch and thus taking control of execution.

At first glance, these hardware-based copying devices would seem to present
an insurmountable obstacle for copy protection. What could software possibly do
to protect itself from hardware? One hint exists in an advertisement for another
Apple II NMI-based device, the Senior PROM.

The Senior PROM arguably demanded considerably higher technical skills of
its users than the Wildcard. Installation required the Apple IIe’s ROM chips to be
removed from the motherboard and replaced with the Senior PROM board, and a

27 Memory of Wildcard Plus jogged by [13], with additional material from [54, 55].



7.4 Sidestepping Protection 167

‘Micro-Probe’ to be attached ‘to pin 6 of the 6502 Microprocessor chip’ [11, p. 6]
without it touching any surrounding pins – this is the CPU’s NMI pin [54]. Installa-
tion aside, the Senior PROM offered comparable capabilities to the Wildcard Plus,
but one of its selling features was ‘Undetectable by any software or hardware’ [10].

The reason why this was an important feature was that, without it, copy protec-
tion code could look for signatures in memory, i.e., particular checksums or byte
sequences. One approach was to look for known copy devices this way; if the copy
protection code found such a device, it could scramble the game’s memory to thwart
successful capture.28 Alternately, copy protection code could look for known-good
configurations. In addition to (or instead of) hardware copying devices, software
crackers would use replacement ROMs with additional capabilities, like allowing
an aspiring cracker to break into a machine language monitor whilst preserving
volatile memory values [34]. As a blanket defense, copy protection code could look
for a signature of one of the Apple II’s stock ROMs, and refuse to proceed unless the
signature matched, a technique which is unfortunately not future-proof. Choplifter’s
ROM checks, for instance, refused to let the game run on the later Apple IIc.29

Other copy protection tricks used against hardware copying devices targeted how
they operated. One method was to preemptively disable the motherboard ROMs [11]
to prevent the NMI ROM swap from succeeding. Another method was where the
copy protection code triggered, but did not acknowledge, its own NMI.30 Because
one NMI could not interrupt another [37], a later NMI from a copying device would
have no effect.

Another key method of sidestepping copy protection is boot tracing.31 As men-
tioned in passing several times, a platform obviously needed to know how to load
in a retrogame’s code from storage media and where to start its execution. Boot
code tracing involved monitoring this loading process and studying a retrogame’s
loading/protection code along the way.

Example 7.18 (Apple II floppy disk). The Apple II’s floppy disks were plugged into
a disk controller card, that in turn was plugged into an expansion slot on the Ap-
ple’s motherboard. Each expansion slot was allocated a small chunk of the memory
address space, and in the disk controller’s case that 256 bytes held ROM code to
boot from the floppy disk. At minimum, the controller’s boot code would: recali-
brate the disk’s read/write head to a known location32; find and read in 256 bytes
from track 0, sector 0 to RAM at location $800; jump to address $801. This newly-
loaded second-stage boot code could then reuse the primary boot code from the

28 The Freeload loader source contains a signature check for the Expert cartridge on the Com-
modore 64 along with countermeasures. Other signatures were included in different versions of
Freeload [25].
29 Sather mentions the use of ROM checksums for copy protection [54, p. 5-31]. The Choplifter
issue on the Apple IIc is noted by [69] and backed up by a disassembly that also reveals the
signature method to be byte sequences [49].
30 Mentioned in [25, 26], and present in Freeload source.
31 This is described in many sources. The “KRAKOWICZ’S KRACKING KORNER” series of
articles, starting with [34], is an excellent reference.
32 By repeatedly stepping the head out until it beat mercilessly against the outside of the drive,
creating the distinctive floppy booting sound the Apple II made.
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disk controller to load more sectors from the disk, leading in multiple stages to a
disk operating system and/or game being loaded and run.33

To begin boot tracing a floppy, it was a simple matter to copy the disk controller’s
code to RAM and patch it to enter the machine language monitor instead of jump-
ing to $801. Running this patched code would result in the second-stage boot code
sitting in RAM, vulnerable to inspection.

While boot tracing is possible, copy protection code did not have to make it easy.
There is a certain amount of intellectual gratification to boot tracing protected pro-
grams, like solving a puzzle where the puzzle pieces can move and transmute them-
selves. More practically speaking, there were two end goals in mind. First, tracing
might be done to understand how and where the data was stored (particularly on
disk), with an eye to making a working copy with a disk copying program. Second,
and more likely, tracing would be done to remove copy protection and produce a
cracked and easy-to-copy version of the game.

For a single-load game, key questions to answer through tracing were where the
game was loaded in memory, and what its start address was. That would allow just
those portions of memory to be saved in a cracked version; with excess fat trimmed,
multiple cracked single-load games could easily be distributed on one disk. Games
that required repeated media access required more surgery, but were not impossible
to trace and crack. More insidious copy protection could also detect shenanigans,
but lie dormant. Prince of Persia, for example, had multiple delayed effects up to
and including the final scene [14]; one of them, appropriately, is controlled in the
source code by a variable called timebomb.34

Viewing software protection as computer security authentication allows
schemes past, present, and future to be classified and understood. Software
copying is still a concern, and some of these methods used for retrogame pro-
tection are still with us in some form, like software license keys and dongles.

A modern analogue to sidestepping protection is the side-channel attack,
that gleans sensitive information by watching subtle physical side effects of
a computation, like timing [73] or power consumption [33]. While plugging
a copy card into a computer may be out of vogue, identifying an emulated
or otherwise hostile environment is a technique used by malicious software
to evade detection, and signature detection is one tool used by anti-malware
software [3] (the known-good signature is really a type of “whitelisting”).

One lingering question, for protection that relies on secret knowledge, is
how those secrets are protected; the answer lies in obfuscation, one of the
topics of the next chapter.

33 An excellent description of the DOS boot process is in [71], with hardware details from [54].
34 As seen in the source code, in case it wasn’t apparent. This is for the delayed Level 7 effect
Ferrie refers to [14].
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Chapter 8
Obfuscation and Optimization

Techniques used for retrogame protection and for making retrogames possible to
run at all can be deeply intertwined. There are two topics here. First is obfuscation,
efforts to make code and data more difficult to understand. The topic of manual code
optimization is second; these can be optimizations done for space (a continuation
of an ongoing retrogame theme) but also optimizations for speed. At times the line
between this pair of topics is extremely hard to distinguish. For example, is code
obfuscated to make it more challenging to crack, or to make it small enough to
work?

Example 8.1 (Pac-Land, 1988). Pac-Land for the Commodore 64 was constrained
for space even with 64K of memory to work with. As developer Alan Ogg rec-
alled [5, p. 73], they ‘were even using the 6502 stack for running code in [. . . ] Even
the tape loader over-wrote its own code at the end of the load.’ Furthermore, the tape
loading code used run-length encoding to compress data: a bitmap with one bit per
target page controlled whether to decompress or whether to copy data literally.1

The motivation for Pac-Land was space, but these optimizations certainly didn’t
make boot tracing any easier either. Similar optimization surprises awaited in other
retrogames.

CPUs like the 6502 and the Z80 had their official instruction sets, but lurking
within them were undocumented instructions too – upon encountering these, the
CPU would not register an illegal instruction fault as a modern processor would,
but would instead gamely try to execute the “instruction.” Results varied. Undocu-
mented instructions could be more bizarre than useful, and there was no guarantee
that they would exist from one version of a CPU to the next. Formerly undocu-
mented instructions could be assigned new meanings, too: for instance, the 65C02
added new instructions to the 6502, and any Apple II software that relied on those
formerly undocumented opcodes could fail on the Apple IIc and later Apple IIe
models that incorporated the 65C02.

1 I verified the claims from the interview quote, and analyzed the compression code, statically and
dynamically.
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Example 8.2 (Jack the Nipper, 1986). Undocumented instructions could enable pro-
grammers to perform feats not possible with official CPU instructions. Jack the
Nipper on the ZX Spectrum was one such case: as the programmer explained in
an interview [21, p. 46], ‘I had to use illegal Z80 instructions because I ran out of
registers.’ Specifically, the Z80’s index registers were normally only accessible as
indivisible 16-bit values, but Jack the Nipper used undocumented instructions to
directly address the upper eight bits of the IX index register.2

8.1 Code and Data Obfuscation

Copy protection code is a rich source of deliberate code obfuscation examples.
While we will continue to focus on Apple II retrogame protection for consistency,
these same techniques were no stranger to other platforms.3 In fact, a 1985 treatise
on undocumented Z80 instructions for the ZX Spectrum notes [40, p. 51] ‘you’ll
find that they’re being used more and more in many commercial games [. . . ] these
instructions are a very neat way of fooling the hacker.’ And obfuscations using und-
ocumented instructions are a good place to begin.

Example 8.3 (Pac-Man, 1984). There were several releases of Pac-Man for the
Apple II, and the Datasoft version’s copy protection condenses a number of obf-
uscation techniques into the 256-byte boot block of the floppy disk.4

Fig. 8.1 Datasoft Pac-Man
initial boot code disassembly

0801- 74 ???
0802- 85 B0 STA $B0
0804- 58 CLI
0805- 6A ROR
0806- EA NOP
0807- 73 ???
0808- 4B ???

Recall that the Apple II’s disk controller code would load a disk’s boot block into
memory at address $800 and then jump to $801. A would-be cracker disassembling
that code from the Apple II monitor would be presented with a rather confusing
display, the first part of which is shown in Fig. 8.1. The column in bold normally
shows the disassembled 6502 instructions, and the important thing to observe is the
question marks indicating the disassembler’s failure to translate an opcode into an
assembly instruction. In other words, the very first instruction executed from the
Pac-Man disk is a complete mystery.

2 Found and verified in code trace with undocumented Z80 information from [40].
3 See, for example, [22] regarding self-modifying Atari code, and [28] for use of undocumented
opcodes and encryption on the Commodore 64.
4 Thanks to 4am for the initial tip. I did an independent analysis of the boot code and verified
against [1]. Apple IIc boot verified in-emulator.
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On the 6502, opcode $74 is an undocumented instruction that acts as a NOP
instruction with an (ignored) argument. This is also an instance where an undocu-
mented opcode became documented: on the 65C02, this is interpreted as the instruc-
tion M[$85+X] = 0. The change in semantics luckily makes no difference in this
case, as the game still boots on an Apple IIc.

Fig. 8.2 Datasoft Pac-Man
initial boot code trace

1 $0801: nop
2 $0803: if c = 1 goto $85d
3

4 $085d: A = $ca
5 $085f: M[$89d] = A
6 $0862: if c = 1 goto $895
7

8 $0895: A = X
9 $0896: push A

10 $0897: Y = $98
11 $0899: A = M[$800+Y]
12 $089c: A = A XOR $ca
13 $089e: M[$700+Y] = A
14 $08a1: Y = Y - 1
15 $08a2: if Y != 0 goto $899
16 ...
17 $08b3: goto $705

To understand more of the code and its execution, Fig. 8.2 gives a trace of pseudo-
assembly instructions in the boot code as it runs. After the undocumented nop in
line 1, there is a conditional branch based on the value of the carry bit at line 2.
Normally a conditional branch like this would follow an instruction that sets the
state of the carry bit, and thus this can be viewed as an attempt to obfuscate the
code’s control flow, because it is not immediately obvious that the carry bit is always
set by the disk controller’s code upon entry to $801.

Lines 4–5 are an example of self-modifying code. Here, this changes the bold
value at line 12 from its initial value of $aa. Neither of these two instructions
changes the carry bit, and therefore line 6 acts as an unconditional branch to $895.

The next section of note in the trace occurs at lines 10–15. This loop decrypts
152 bytes of the boot code’s 256 bytes by exclusive-ORing each byte with the
value $ca,5 and stores the decrypted bytes starting at address $701. The code self-
modification from earlier is now seen to be changing the decryption key, an attempt
at misdirection that led at least one code analyst temporarily astray [1].

5 This usage of “decrypt” is common in the anti-malware community, and does not necessarily
imply strong cryptography.
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Fig. 8.3 Pac-Man boot code execution, seen as text

Finally, line 17 shows the code jump to the decrypted code at $705. What is inter-
esting about this particular region of memory that the code is decrypted into is that it
corresponds to memory-mapped text data. For a brief moment, the user sees a visual
representation of the code being executed (Fig. 8.3), just as in Yar’s Revenge (1981)
mentioned earlier. Address $705 is the location immediately following >O:R on the
first line of apparent garbage.

Unsurprisingly, self-modification was not only applied to the operands of instruc-
tions as in Pac-Man. Modifying the actual instructions to confuse humans trying to
analyze the code was also fair game.

Example 8.4 (Cannonball Blitz, 1982). Someone trying to boot trace Cannonball
Blitz would eventually wind up seeing the disassembly shown in Fig. 8.4.6 Again,
the 6502 instruction mnemonics are not important; what is of note is the number
of question marks where the disassembler was confused. The only instructions cor-
rectly disassembled in this sequence are the first and last ones, in bold, and all this
was caused by minor self-modifying changes to only two bytes.

Figure 8.5 shows how the pseudo-assembly version of this code changes as it
executes, with PC denoting the instruction being executed and the two emboldened
instructions from Fig. 8.4 in bold as reference points. The first instruction’s execu-
tion modifies what becomes the opcode for the next instruction, whose execution

6 Information from [16], partially corroborated by [9]. Verified statically and dynamically in-
emulator.



8.1 Code and Data Obfuscation 177

Fig. 8.4 Cannonball Blitz
obfuscated code disassembly

59E4- CE E7 59 DEC $59E7
59E7- CF ???
59E8- EA NOP
59E9- 59 EF EA EOR $EAEF,Y
59EC- 59 AD 51 EOR $51AD,Y
59EF- C0 AD CPY #$AD
59F1- 54 ???
59F2- C0 AD CPY #$AD
59F4- 57 ???
59F5- C0 AD CPY #$AD
59F7- 52 ???
59F8- C0 20 CPY #$20
59FA- 60 RTS
59FB- 5B ???
59FC- 20 C5 5B JSR $5BC5

PC → $59e4: M[$59e7] = M[$59e7] - 1
$59e7: ???
$59e8: nop
$59e9: A = A XOR M[$eaef+Y]

...

$59e4: M[$59e7] = M[$59e7] - 1
PC → $59e7: M[$59ea] = M[$59ea] - 1

$59ea: ???
$59eb: nop

...

$59e4: M[$59e7] = M[$59e7] - 1
$59e7: M[$59ea] = M[$59ea] - 1

PC → $59ea: M[$59ea] = M[$59ea] + 1
$59ed: A = M[$c051]
$59f0: A = M[$c054]
$59f3: A = M[$c057]
$59f6: A = M[$c052]
$59f9: call $5b60
$59fc: call $5bc5

Fig. 8.5 Cannonball Blitz execution and deobfuscation

modifies the instruction opcode after it – it is at this point when the correct dis-
assembly for the code is finally visible. This is only temporary, however: when the
instruction at $59ea is executed, the instruction modifies its opcode to be obfuscated
once again.
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Presenting a disassembler with invalid or undocumented instructions was one
thing, but it was also possible to trick a disassembler into creating a false disassem-
bly. A false disassembly would obfuscate the control flow of the code in a robust,
portable way (unlike undocumented instructions) and if carefully constructed could
present itself as normal assembly code without the disassembler’s telltale question
marks.

Fig. 8.6 Frogger initial boot
code with false disassembly

1 $0801: M[$a] = X
2 $0803: M[$a001] = X
3 $0806: M[$a01a] = X
4 $0809: if c = 0 goto $883
5 $080b: if X != 0 goto $80e
6 $080d: A = M[$9c20]
7 $0810: push P

Fig. 8.7 Frogger initial
boot code without false
disassembly

1 $0801: M[$a] = X
2 $0803: M[$a001] = X
3 $0806: M[$a01a] = X
4 $0809: if c = 0 goto $883
5 $080b: if X != 0 goto $80e
6 $080d: byte $ad
7 $080e: call $89c

Example 8.5 (Frogger, 1982). Spiradisc protected Frogger, and false disassembly
protected Spiradisc.7 While there are examples of false disassembly later in Frog-
ger’s loading process [20], we do not need to look beyond the code in its boot sector.

Figure 8.6 shows the pseudo-assembly for the beginning of Frogger’s boot code.
As with Pac-Man, some obfuscation derives from knowledge of the CPU state on
entry to $801. None of the instructions in lines 1–3 change the carry flag from its
entry value of 1, and therefore the conditional branch at line 4 is never taken. The X
register’s value is always nonzero on entry, the branch at line 5 is taken, and this is
the false disassembly. Notice that the branch target is $80e, yet there is no instruction
in the disassembly that begins at $80e. An additional byte has been added at $80d
to cause this false disassembly, and the branch at line 5 neatly jumps over it when
executed. The rewritten version of this code in Fig. 8.7 (with changes in bold), while
not what the disassembler would produce, more clearly shows what the code does.

7 False disassembly is covered in [16], and I found the example used here in both Frogger and
Maze Craze Construction Set (1983).
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The hidden call $89c instruction is present the entire time, unlike self-modifying
code that would need to be run; the disassembler is simply misguided by the extra
$ad byte.

Another method of hiding control flow counterintuitively relies on a frequent
method for overtly changing control flow, the return instruction. The return
instruction, on the 6502 and many other processors, retrieves the address to go to
from the stack, normally placed there by a corresponding call instruction. It is
possible to use return as a goto by priming the stack with the destination address
and then, at some later point in the code, executing a return. The separation of
the stack manipulation and the return adds to the obfuscation, as does the fact
that the return address the 6502’s call stores is off by one; the return adds 1 to
the stored value before transferring it to the program counter.

Fig. 8.8 Prelude to a return
in Pest Patrol

A = $b4
push A
A = $bd
push A
goto $b47a

Example 8.6 (Pest Patrol, 1982). Pest Patrol sets up the stack for a later return
fairly blatantly.8 As the pseudo-assembly in Fig. 8.8 shows, two constant values are
pushed on to the stack and followed by an unconditional branch. A return exe-
cuted later would transfer control to $b4be, taking the +1 adjustment into account.

Other examples of control flow obfuscation using return were far more subtle.

Fig. 8.9 Lode Runner boot
code excerpt

1 $0828: Y = 0
2 $082c: A = M[$850+Y]
3 A = A XOR $a5
4 M[$60+Y] = A
5 Y = Y + 1
6 if Y != 0 goto $82c
7 X = $ff
8 SP = X
9 return

8 This example is drawn from [8]. While it is an excellent, plausible first example of this technique,
I have pointedly not verified it for reasons I return to in Chap. 9.
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Example 8.7 (Lode Runner, 1983). The boot sector for Lode Runner contains a few
obfuscations; the important parts are distilled in Fig. 8.9’s pseudo-assembly.9

Similar to Pac-Man, the code at lines 1–6 is a decryption loop, storing decrypted
code and data starting at address $60 and continuing into page 1, where the 6502’s
stack is located. Then lines 7–8 set the stack pointer to $ff, the maximum value pos-
sible, which happens to be an area of the stack untouched by the earlier decryption.
In that context, the return at line 9 is a clever obfuscation. The 6502 increments
the stack pointer before fetching the return address, and because the stack pointer
already contained the maximum value, it wraps around to fetch the first byte of
the return address from the start of the stack page (at $100). The decryption loop
did place values at that location, surreptitiously setting up the control transfer via
return.

Exclusive OR has featured in several retrogame examples already, but always
in the context of decryption. It could also be used for checksums to guard against
unauthorized code modification, possibly in conjunction with other obfuscations
that would prevent the checksum from being trivially bypassed.

Fig. 8.10 Cannonball Blitz
checksum-based obfuscation

1 $5a91: A = 0
2 Y = A
3 $5a97: A = A XOR M[$2700+Y]
4 Y = Y + 1
5 if Y != 0 goto $5a97
6 M[$10] = A
7 A = $20
8 $5aa4: A = A XOR M[$2700+Y]
9 Y = Y + 1

10 Y = Y + 1
11 if Y != 0 goto $5aa4
12 A = A XOR $b7
13 push A
14 A = M[$10]
15 A = A XOR $11
16 push A
17 if A != 0 goto $5ab8
18 (false disassembly)
19 $5ab8: return

Example 8.8 (Cannonball Blitz). Figure 8.10 shows pseudo-assembly for a check-
sum sequence in Cannonball Blitz, with some extraneous instructions and obfusca-
tions removed for clarity.10

9 Information from static and dynamic analysis, verified in part against [19, 33].
10 Example from [16], verified statically and dynamically. The presentation here differs from
Krakowicz: among other things, it retains the original memory addresses and corrects an error.
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This code performs a double checksum on the page of code at $2700. Lines 1–5
compute the first checksum, exclusive-ORing each byte together starting from the
value 0; the result is saved in memory at line 6. Lines 7–11 calculate another check-
sum over that same region starting from the value $20, exclusive-ORing every
second byte.

A simple comparison of the computed checksums to the correct values could be
easily sidestepped, and instead the checksum is combined with a return-based
obfuscation. Lines 12–16 push both checksums on the stack, exclusive-ORing each
with a different constant value first. Presented this way, a return instruction is the
likely conclusion, but a final misdirection at lines 17–18 sows some doubt. Because
the branch is based on a checksum result and the false disassembly byte (not shown)
is the opcode for a goto instruction, it is easy to be misled to the goto’s destination
rather than the return hidden inside the goto instruction.

boot
sector
code

3rd-stage
boot
code

256
encrypted

bytes

two
encrypted

bytes

full
game
code

XOR
checksum
(verified)

XOR
decrypted

start
address

XOR
decrypted

page 2
data

XOR
checksum

XOR
checksum

Fig. 8.11 Sneakers checksums

Example 8.9 (Sneakers, 1981). Cannonball Blitz used checksums, but Sneakers em-
bodied them on a completely different level.11 The easiest way to understand all the
activity taking place is in a diagram: see Fig. 8.11.

A combined exclusive-OR checksum of the boot sector code (i.e., second-stage
boot code, after the disk controller’s first-stage boot code) and the third-stage boot
code is computed by the code. This, in turn, is used as a decryption key for 256 bytes
of low memory data and the game’s start address. The intent is clearly to use this

11 Information from [2], verified statically and dynamically in-emulator. This is a slightly simpli-
fied view, and there is even more checksumming done by the code.
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dependency chain to guard against boot code changes as well as obfuscate the lo-
cation of the start address. An exclusive-OR checksum of the game code proper is
calculated separately and verified.

One last obfuscation technique is, effectively, to change the language that the
code is written in. This technique has appeared in earlier chapters, but not for pur-
poses of obfuscation: interpretation. Whereas before, interpreters gave advantages
in terms of size and portability, they also transform code into an unfamiliar form for
an outsider trying to analyze the program.

Example 8.10 (Hard Hat Mack, 1983). The boot code for Hard Hat Mack contained
an interpreter for a 12-instruction virtual machine.12 The interpreted instruction set
was fairly minimalist, with most instructions centering around an eight-bit accumu-
lator along with the ability to call 6502 code from the interpreted program. Even the
accumulator-based instructions were limited. For example, there was an instruction
for subtraction but not addition, and the interpreted code for Hard Hat Mack added
1 to the accumulator at one point by subtracting $ff. All operands to the virtual
machine instructions were exclusive-ORed with constants to make their values less
apparent in memory.

Normally these retrogame obfuscations are seen only through reverse engineer-
ing, after the fact. It is interesting, if rare, to see this from the source code side –
how would the programmer create these obfuscations?

Sometimes the answer is simply “without ceremony.” For instance,13 the source
code for Fort Apocalypse (1982) on the Atari 800 has several subroutines to compute
checksums, with no comments or documentation apart from the names of the rou-
tines themselves, e.g., DO.CHECKSUM2. A failed checksum leads to a line which
contains not a mnemonic assembly instruction, but

byte $12

This is an undocumented 6502 instruction that halts the processor. Or, since it
appears without any comments in the source code, it is an undocumented undoc-
umented instruction. Obfuscations in other games could fare the same or better in
terms of their explanation.

Example 8.11 (Prince of Persia, 1989). The Apple II source code for Prince of Per-
sia contains several obfuscated copy protection routines.14

12 Thanks to 4am for the tip about this protection. Information from reverse engineering and writ-
ing a disassembler for the virtual machine code. An analysis for the later Skyfox (1984) on the
Commodore 64, also an Electronic Arts release, reveals a similar virtual machine but with a more
complicated instruction set [13].
13 Example from static analysis of source code. The example is presented here as pseudo-assembly.
14 Information from static source code analysis. The code here and in later examples has been
converted into pseudo-assembly and lightly reformatted, but the human-readable identifiers and
comments (and lack thereof) have been retained verbatim.
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1 ; Note: first byte of next junk must be $60 (rts)
2 PURPcode: byte $60,$38,$60,$18,...,$63,$be,$20
3

4 ; Routine to decode code
5

6 byte $20
7

8 PURPsub: M[4] = Y
9 M[5] = A

10 Y = 0
11 X = PURPlen
12 L0: X = X - 1
13 A = M[PURPcode+X]
14 M[Mw[4] + Y] = A
15 Y = Y + 1
16 if Y != 0 goto L0
17 return
18

19 byte $2c
20

21 PURPjmp: goto Mw[4]

Fig. 8.12 Prince of Persia “purple” protection

The first one, “purple,” had a blob of hexadecimal bytes in the source file
(Fig. 8.12, line 2), corresponding to the bytes of protected code stored in reverse
order. The PURPsub routine was called first, with the destination location for the
unprotected code in the A and Y registers, to unreverse the bytes in the blob; then,
PURPjmp would be invoked to go to the newly-decoded area. Lines 6 and 19 are
never executed, because they are the way that false disassembly has been added to
the source code, guarding the entry points for both routines. $20 is the opcode for
a call instruction that would swallow up line 8’s instruction in the disassembly,
and $2c is a bit-test instruction whose disassembly would claim 2/3 of the bytes of
line 21’s instruction.

A second piece of copy protection code, “yellow,” also has a chunk of hexadec-
imal bytes embedded in its source code, although these are encrypted. Yellow’s
identically-commented ‘Routine to decode code’ decrypts the bytes using exclusive
OR, with a constant-valued decryption key that is computed at run time rather than
stored overtly in the code. Again there is false disassembly inserted, although here
the bytes’ meaning is illuminated with inline comments:

byte $20 ;jsr
...
byte $a9 ;lda #imm

Before moving to code optimizations, we note that obfuscation was not restricted
to code, and data in retrogames could be obfuscated as an anti-cheating measure.
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Sometimes this came for free as a side effect of data representation: Infocom’s
Z-machine strings, for instance, would appear obfuscated to a casual viewer [37].

Many examples of deliberate data obfuscation involved exclusive OR, the most
straightforward application of which would be to exclusive-OR with a constant
value. Elite (1984) exclusive-ORed string bytes with 35, as mentioned in Chap. 5.15

In the 1977 PDP-10 version of Adventure, a comment in the code states ‘WORDS
ARE GIVEN A MINIMAL HASH TO MAKE READING THE CORE-IMAGE
HARDER’ and the minimal hash is an exclusive-OR with the value PHROG (five
characters could fit in one 36-bit word on that architecture).

unencrypted
data

b1 b2 b3 b4 b5 b6 b7 b8 · · ·

key string a b c a b c a b · · ·

encrypted
data

b1
XOR
a

b2
XOR
b

b3
XOR
c

b4
XOR
a

b5
XOR
b

b6
XOR
c

b7
XOR
a

b8
XOR
b

· · ·

Fig. 8.13 Encryption and decryption data obfuscation with the constant string abc

Instead of constant values, some retrogames would obfuscate data by encrypt-
ing it with a constant string. Data bytes would be exclusive-ORed with consecutive
bytes of the constant string, which would “wrap around” when all its bytes were
exhausted (Fig. 8.13). This method was used, for example, by the 1987 Trek73,
Adventure in 4.2BSD Unix, and AGI-interpreted games like King’s Quest (1984).
Normally the constant string would look like random gibberish, like Adventure’s

"Ax3F’tt$8hqer*hnGKrX:!l"

but the AGI interpreter used the curious string ‘Avis Durgan.’ This choice had sen-
timental rather than technical value: that was the name of AGI programmer Jeff
Stephenson’s wife [18].

Moving away from constant values and strings, the later 4.4BSD Adventure
would checksum data to be saved, and use the checksum to seed a pseudo-random
number generator. Each data byte written out was exclusive-ORed with a different
random value from the generator (the seed would need to be written out unencrypted
to properly re-seed the PRNG and decrypt the data later).

15 Elite information from reverse engineering, Adventure(s), Trek73, and AGI from source code.
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8.2 Manual Code Optimizations

“Optimization” has several meanings in computer science. In some circles it is a pre-
cise technical term, an assertion that something is optimal and cannot be improved
upon. Here, the word is taken in the more colloquial sense: optimization is done
to make improvements that make a program better in some way, but there is no
guarantee that the result is perfectly optimal.

In the context of retrogames and their platforms, two general types of optimiza-
tions were of interest. First, optimization for space, where the goal would be to
make a game smaller to fit and work in a constrained amount of memory or sec-
ondary storage. Second, optimization for time; here the idea would be to make a
game run at a playable speed. At times the two optimization types are complemen-
tary, such as smaller code happening to run faster, but often there is a tradeoff to be
made – more speed with a solution that requires more memory consumption, or a
smaller memory footprint with more code overhead.

We have seen these tradeoffs in earlier chapters. Compression and interpreted
code both optimize for space, but impose a cost in terms of speed because decom-
pression and interpretation become necessary. Here, we look at even finer-grained
optimizations, some of which serve double duty as unintentional obfuscations to the
uninitiated observer.

8.2.1 Space Optimizations

We begin with space optimizations for code that were machine-independent in the
respect that they would be usable across different platforms, although the exact de-
tails would vary.

(3 bytes) call foo
(1 byte) return

goto foo (3 bytes)

goto GETMODE ;GETMODE IS A SUBR
; return

Fig. 8.14 Tail call optimization and use in Dig Dug

• Tail call optimization. When a subroutine ends in a subroutine call followed by
a return, a space savings can be achieved by replacing the call–return
pair with a goto [39, 12:44]. Formally, this is referred to as tail call optimiza-
tion [23], and yields savings from the instruction change, with additional space
savings in stack usage. Figure 8.14 shows the general form of this optimization,
and how it appears in the source code for Dig Dug (1987): the inline comment,
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occasionally retaining the commented-out return, served as a reminder to the
programmer that this optimization had been performed.16

TT68: call TT27
A = ’:’
call TT27
return
...

TT27: X = A
...

TT68: call TT27
A = ’:’

TT27: X = A
...

Fig. 8.15 Reusing common code in Elite

• Reusing common code. Related to tail call optimization, this space optimization
relied on code placement combined with the ability in assembly code for one
subroutine to fall through into another. For example, Fig. 8.15 shows this tech-
nique being used in the Elite code. The left side shows how this excerpt could be
coded, but wasn’t, in favor of the space-optimized code on the right side.17

• “Conditional” branches. With obfuscations, there were examples of conditional
branches used to express control flow in hard-to-analyze ways, where the branch-
ing conditions had been set much earlier in the execution. Just as those condi-
tional branches acted unconditionally for obfuscation, conditional branches were
used the same way for optimization. For example, the Elite source code in one
spot has the sequence

A = 119
if A != 0 goto TT27

In this setting, the technique is not an obfuscation: the value of A is clearly set
just the line prior. A goto instruction would occupy three bytes on the 6502,
however, whereas the conditional branch instruction used only two, making it a
space optimization.18

Other space optimizations could depend more heavily on particular CPU instruc-
tions, and were thus less portable. The 6502’s brk instruction was one of these.19

As an instruction, brk was both long and short. It took a long time – at seven
cycles it was one of the slowest 6502 instructions – but only occupied one byte.
Executing a brk caused a software interrupt, pushing the status register P on the

16 From Atari 7800 source code. The “X IS A SUBR” appeared a number of times beside goto
instructions, although the commented-out return was usually absent.
17 From Elite source. A similar trick was used in the Motorola 6800 code of Meteor (1979) to
implement two variants of the same interpreted instruction in a space-efficient manner.
18 From Elite source code. The 65C02 finally introduced a two-byte unconditional branch [17] that
rendered this optimization moot.
19 brk information from [30]. Its use in Lord of the Rings was mentioned in [29], credited to M.
Lesser and T. Jentzch; I verified that in-emulator and found the Winter Games use.
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stack along with the return address, then jumping to an interrupt handler. While
6502 documentation stated ‘the most typical use for the break instruction is dur-
ing program debugging’ [30, p. 144], the fact that it saved a return address on the
stack meant that brk could be pressed into service as a one-byte call instruction.
The interrupt handler would add additional code space overhead, but with frequent
enough use of the brk-as-callmechanism, the cost would eventually be recouped.

Example 8.12 (Winter Games, 1987, and Lord of the Rings prototype, 1983). Both
of these Atari 2600 games used the brk as a call, although in slightly different
ways. Winter Games’ code passed the number of the subroutine to invoke in the
Y register and an argument to that subroutine in the X register. For instance, the
sequence

X = $17
Y = $7
brk

would print “Winter” onscreen, and setting X to $18 would instead print “Games.”
The Lord of the Rings prototype, by contrast, passes a one-byte argument inline

following the brk instruction, so the above example might be expressed as:

brk
byte $17

Only one routine is ever invoked via brk in this game, so there is no need to spec-
ify the subroutine number. Arguably this is a better match with the semantics of
the 6502’s brk, because the return address it saves on the stack is actually PC+2,
meaning that by default it skips the brk instruction plus the byte following it.

The inline argument of Lord of the Rings mixes code and data together, but each
is a separate entity. Going one step further leads to space optimizations that overlap
code with data, data with data, and code with code. As simple examples, River
Raid (1982) overlapped a data table with the low byte of the reset vector, and the
last byte of a color table was actually the first byte of an instruction, the opcode of
which happened to correspond to a dark blue color on the Atari 2600.20

Dig Dug’s source code left little doubt that space optimization was intended.21

A ten-line-high file header comment announced ‘PUT RANDOM ARRAYS HERE
SO THEY CAN BE OVERLAPPED TO SAVE ROOM.’ What would also not be
known without the source code is the way the optimizations were documented, leav-
ing an audit trail and a visual cue behind so that a later programmer (or the same
programmer at a later date!) didn’t inadvertently make changes to the code that
would introduce bugs. In this excerpt, the overlapped byte’s value is commented out
but retained in the code, and both arrays are flagged with comments indicating that
this optimization has been performed:

20 Carol Shaw mentioned one overlap in an interview [10]; both verified in-emulator.
21 From Atari 7800 source code. The most interesting overlap was one that was reconsidered
and commented out, that had a return instruction overlapped with a data array, and that array
overlapped with the array following it.
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TLISTSIZ: byte 5,5,5,5,5,5,5,5,5,13,5,5,33,33,5
; byte 5 ;OVERLAPS
NUMBYTES: byte 5,1,1,0,0,1,2,0 ;OVERLAPS

Space-saving code-code overlaps can be viewed as an extreme form of reusing
common code. Figure 8.16 shows part of the Freeload tape loader source for Rain-
bow Islands (1990) on the Commodore 64. On the left is an unoptimized version
of the code, two routines that set a flag to either 1 or 0. On the right lies the space-
optimized version that appeared in the code. The two common instructions are com-
mented out, leaving an audit trail, and replaced with the one-byte skw instruction.
Even seasoned 6502 programmers may not recognize this instruction, because it is
undocumented, and can be interpreted as offering a nop that takes a two-byte argu-
ment and ignores it.22 At the beginning of the source code, skw was clearly defined
using an assembler macro to be the value $0c along with the comment ‘Skip Word
instruction.’ The net result is that SCROLL_ON loads A with 1, the skw swallows
up the two bytes of the A=0 instruction, and execution falls through onto the two
common instructions.

SCROLL_ON:
A = 1
M[SCROLL_TRIGGER] = A
return

SCROLL_OFF:
A = 0
M[SCROLL_TRIGGER] = A
return

SCROLL_ON:
A = 1

; M[SCROLL_TRIGGER] = A
; return

skw

SCROLL_OFF:
A = 0
M[SCROLL_TRIGGER] = A
return

Fig. 8.16 Overlapping code with code in the Rainbow Islands loader

Dragonfire (1982)’s 6502 source code contains a sequence of seven bytes that
is a brilliant example of overlapping code. The bytes were implementing a delay:
depending on where the code jumped in to the sequence, a different number of
cycles would be consumed. What is astounding is that the bytes could be entered
at any point, and they all corresponded to legal, overlapping 6502 code that would
carry out the different delays. Figure 8.17 shows the seven bytes along with the code
overlaps and delays.23

22 Some sources indicate that the two bytes are taken as an absolute address and fetched [36]; this
might cause problems if the two bytes happened to coincide with the address of some memory-
mapped soft switch. Further illustrating the dangers of undocumented instructions, $0c became
defined on the 65C02 [17]. Example from Freeload source.
23 From Dragonfire source code, verified with instruction timing information from [17]. This code
sequence was well-commented, but a visual representation seems more apropos here.
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$a9 $a9 $a9 $a9 $ad $a5 $ea

A = $a9 A = $a9 A = M[$eaa5] 8 cycles

A = $a9 A = $ad A = M[$ea] 7 cycles

A = $a9 A = M[$eaa5] 6 cycles

A = $ad A = M[$ea] 5 cycles

A = M[$eaa5] 4 cycles

A = M[$ea] 3 cycles

nop 2 cycles

Fig. 8.17 Dragonfire’s magical seven bytes of code-code overlap

Despite instances of code overlapping data and other code, all the optimization
techniques to this point have treated the code as inviolate. Certainly code in ROM
would have been immutable, but code located in RAM would be subject to another
optimization that also appeared as an obfuscation, self-modification.

X = OPACITY
A = M[OPCODE+X]
M[L80] = A

+

OPCODE:
byte $31 ;and (oper),Y
byte $11 ;ora
byte $91 ;sta

+

L80:
??? M[Mw[BASE]+Y]
M[Mw[BASE]+Y] = A

=

L80:
A = A AND M[Mw[BASE]+Y]
M[Mw[BASE]+Y] = A

L80:
A = A OR M[Mw[BASE]+Y]
M[Mw[BASE]+Y] = A

L80:
M[Mw[BASE]+Y] = A
M[Mw[BASE]+Y] = A

Fig. 8.18 Self-modifying code in Prince of Persia

Example 8.13 (Prince of Persia). Self-modifying graphics code may be found in
Prince of Persia. An image byte in the A register could be combined with a byte of
existing screen image data in several different ways, which the code referred to as
‘opacity.’24 The combination methods reduced to three cases: ANDing A with the

24 The Prince of Persia source actually had more combination methods, but I’m only using the
three ‘general’ methods for simplicity.
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existing data; ORing A with the data; replacing the existing data with A. Regardless,
the screen data would need to be updated with the new A value in the end.

One way to implement this would be to have one separate piece of code for each
combination method, but this would require code duplication and unnecessary space
usage. Self-modifying code to the rescue: the mechanism on the left-hand side of
Fig. 8.18 creates one of the three different variants of the byte-combination code
shown on the right side of the figure. The OPACITY type is used as an index into
the OPCODE table to extract the appropriate instruction opcode value, which is writ-
ten to the first byte at L80 to transmute the instruction there. That first instruction
becomes an AND, OR, or store instruction through the self-modification, and it is
followed by an (unmodified) store to write the updated value to the screen data. Note
that one type of opacity results in an extra, but harmless, store to the same memory
location to maintain consistency.

This Prince of Persia code example can also be seen as an optimization called
run-time code specialization, because the operation becomes hardcoded and cus-
tomized through self-modification, eliminating the need to check the type of oper-
ation each time through a loop. From this perspective, self-modifying code is not
only a space optimization; it can also be used to improve performance.

8.2.2 Time Optimizations

Continuing the exploration of self-modifying code, Fig. 8.19 compares some
Apple II graphics code that was self-modified in Prince of Persia and Pinball Con-
struction Set (1983); the modified bytes are in bold. This comparative view gives
some insight into the conventions programmers would employ in their code to in-
dicate that self-modifying code was being used: Prince of Persia source uses the
label s[elf-]mod[ifying] in several places, for instance.25 Areas of self-modifying
code in Pinball Construction Set could be located in part through the $ffff address
placeholders, but a better indicator was a definition like the one shown for UNWND1,
which defined a label pointing to the byte where self-modification occurred. (The
code in Fig. 8.19 notwithstanding, many of these labels in Pinball Construction Set
incorporated the string MOD.)

Returning to what the code does, both excerpts are located in loops, where time
tends to be a consideration. On the left, for instance, the Prince of Persia code
belongs to a routine that clears the hi-res graphics screen. It is possible to perform
this same task without self-modifying code, or using only one store instruction,
or both. The version without self-modifying code would have to use a different
addressing mode, however, making that instruction take one more CPU cycle to

25 The information regarding these two games is from the source code, naturally. Habitat (1986)
used a similar convention, with labels suffixed by selfmod.
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Prince of Persia

loop:
M[$2000+Y] = A

smod:
M[$3000+Y] = A
Y = Y + 1
...

Pinball Construction Set

UNWND1 = ZAPBW + 1
ZAPBW:
M[$ffff+X] = A
M[$ffff+X] = A
M[$ffff+X] = A
M[$ffff+X] = A
M[$ffff+X] = A
M[$ffff+X] = A
X = X + 1
...

Fig. 8.19 Self-modifying code, a comparison

execute. Having two store instructions rather than one consumes extra space, but
the loop only needs to iterate half as many times, saving time on loop overhead.
Both of these are thus time optimizations.

The latter optimization with the duplicated store instruction is a simple example
of an optimization called loop unrolling, where the main body of a loop’s code is
repeated multiple times to reduce loop overhead [23]. The Pinball Construction Set
excerpt unrolls its loop more, hinting at the technique with the label UNW[i]ND1.

Fig. 8.20 A heavily-unrolled
loop in Horizon V

$1400: Y = $27
A = 0

$1404: M[$2328+Y] = A
M[$2728+Y] = A
M[$2b28+Y] = A
M[$2f28+Y] = A
. . . 60 more omitted . . .
Y = Y - 1
if Y < 0 goto $14ca
goto $1404

$14ca: return

Loop unrolling can be used even without self-modifying code. Horizon V (1982)
on the Apple II had a speed-critical loop to clear a portion of the hi-res graphics
screen, shown in Fig. 8.20 in all its unrolled glory.26 The odd jump-over-jump at the
end is used because the loop was unrolled so much that a conditional branch had
insufficient range to goto the top of the loop.

26 And there was another one just like it to clear out the same portion of the second hi-res graphics
screen. The game used double buffering, and had a scrolling horizon that needed continual erasing
and redrawing. From static and dynamic analysis.
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All these manual optimization examples might seem to imply that Apple II
graphics presented some hurdles, and this is not an incorrect impression. One prob-
lem was how the memory-mapped graphics addresses corresponded to locations on
screen. As Sather put it, ‘If the Apple isn’t famous for the encrypted nature of its
screen memory addressing, it should be’ [27, p. 5–7].

A hint of this was given in Fig. 8.3 (p. 176). There, even though the Pac-Man
boot code was decrypted into consecutive addresses in the text screen’s memory,
the lines of text did not appear consecutively. Hi-res graphics had the same issue.
To save a chip, the Apple II design spaced out consecutive lines in memory [27];
the code in Fig. 8.20 is actually clearing adjacent hi-res lines, despite the addresses
being 1024 bytes apart.

While the correct base address for each hi-res line could be computed when
needed, retrogames would trade space for time, and contain a lookup table that
mapped the logical hi-res line number into the base address in memory for that
line. Indexing into the table to retrieve the address values was a much faster process
than performing the arithmetic to calculate the values, at a space cost of 384 bytes.
Prince of Persia contained its hi-res lookup table hardcoded in the source code,
whereas Pinball Construction Set computed its table (once) at run-time;27 these dif-
ferent approaches also suggest that the space being traded for speed may or may not
have included space on secondary storage.

More generally, these lookup tables are an example of using precomputation for
time optimization. Precomputation was also used to circumvent CPU limitations in
a time-efficient way, and a lookup table could compensate for processors like the
6502 that had no multiplication and division instructions. As examples, Dig Dug
precomputed a “division by 3” table, and Pinball Construction Set precomputed
the quotients and remainders of numbers divided by 7. The Commodore 64 Elite
contained logarithm tables, allowing multiplications to be performed using addition
instead [7, 26:06]. In terms of the process for hardcoding precomputed tables in the
game, as opposed to calculating them at the start of the game, an Atari 800 retrogame
programmer recalled ‘The general method was often to write BASIC programs to
generate the lookup tables which you dumped into the [. . . ] assembler’ [12].

Retrogame programmers did know their platforms intimately, and it would not
do them justice to focus solely on optimizations that were generic enough to use
anywhere, or even across one widely-used processor like the 6502. We conclude this
look at time optimizations with a closer look at two examples of highly platform-
dependent techniques.

Example 8.14 (Parsec, 1982). Parsec had very ornate scrolling ground features
(Fig. 8.21) that included a great deal of variety and scrolled at different rates dep-
ending on the speed of the player spaceship.

27 All the precomputation examples from Dig Dug, Pinball Construction Set, and Prince of Persia
are from the source code.
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Fig. 8.21 Parsec on the TI-99/4A (Image courtesy Texas Instruments)

At the core of the TI-99/4A was a 16-bit processor with a 16-bit address bus
and a 16-bit data bus whose instructions could access 16 general-purpose registers
– it even had multiply and divide instructions.28 Being able to access 16 registers
and having 16 registers are not the same thing, however, and the general-purpose
registers were not on-chip, but located in 256 bytes of ‘scratchpad’ RAM. This
RAM was small but relatively fast; it had access to the full 16-bit data bus. Any
other memory references (such as to a game cartridge ROM) had to be decomposed
into two 8-bit accesses. 16K of video RAM existed, but could only be accessed via
the video display unit, and then only through a single one-byte memory address. In
other words, the scratchpad RAM was the only quickly-accessible memory resource
for a retrogame on the TI-99/4A.

Parsec made the ground scroll measurably faster by exploiting the scratchpad
RAM: code for two loops was copied into RAM and run from there. The first loop,
which overlapped with four general-purpose registers, read in a vertical strip of
30 bytes from the video RAM into scratchpad RAM (30 bytes was the height of the
scrolling ground). The strip’s bytes occupied consecutive addresses in video mem-
ory to take advantage of the video display unit’s ability to automatically increment
the address of the byte being fetched. Two adjacent strips’ worth of bytes resided in
scratchpad RAM at once, 60 bytes in total. The second loop shifted those bytes to

28 CPU and platform information from [31, 32], with game information from static and dynamic
analysis, a visualization I built, and help from [35]. Strictly speaking, there was some system ROM
on the 16-bit data bus too, but it isn’t relevant in this context.
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create the scrolling, taking advantage of the TI-99/4A CPU’s ability to shift up to
16 bits in a single instruction, and wrote the bytes back out to the video memory. In
total, slightly over 1

3 of the scratchpad was used for the scrolling ground.

TI-99/4A programmers were not alone in making good use of a precious RAM
resource. Dark Chambers (1988) on the Atari 2600, for instance, dynamically gen-
erated code into the zero page RAM because it ‘HAD TO TURN ON AND OFF
THE PF [playfield] COLOR, LOAD SIX LOCATIONS AND STORE THEM AT
THE APPROPRIATE TIMES. IT IS MADE TO BE SELF MODIFYING AND IT
IS THE ONLY WAY IT WOULD WORK.’29 The key phrase there is ‘appropriate
times,’ and some ingenious methods were used to make the 6502 achieve seemingly
impossible timings on the 2600.

Fig. 8.22 A road receding
into the distance

Example 8.15 (Pole Position, 1983). In Pole Position, the player drives on a race-
track that recedes into the distance, shown conceptually in Fig. 8.22.30

On the 6502, the fastest instruction takes two CPU cycles, and for every CPU
cycle, three clocks occur for the video display; in other words, one CPU cycle cor-
responds to three pixels onscreen, and no instruction can be performed in one CPU
cycle anyway – the CPU was at a considerable disadvantage when racing the beam.
The CPU did not have to set a screen line’s pixels one by one, but instead Atari 2600
games created the contents of each line using five movable objects. These five ob-
jects, although named ‘player’ (two objects), ‘missile’ (two objects), and ‘ball,’
could be repurposed to represent any object on a line. It would be entirely too easy
to program a game if the horizontal position of these five objects could be assigned
directly, however. Instead, each object has an associated soft switch, or ‘strobe.’
When a strobe is accessed, the horizontal position of the corresponding object is set
to wherever the screen’s electron beam happens to be in the line. Taken together, all
this is summarized by the Atari 2600 programming guide in restrictive terms [38]:

29 Apologia from the source code. Zero-page execution and self-modifying code verified
in-emulator.
30 And if you want to play a game of ‘Guess Which Screenshot I Couldn’t Get Permission to Use,’
go right ahead. The objects don’t quite appear evenly spaced by the time they’re rendered due to
other effects like applying horizontal movement to the objects.
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Since there are 3 color clocks per machine cycle, and it can take up to 5 machine cycles to
write to a register, the programmer is confined to positioning the objects at 15 color clock
intervals across the screen.

Pole Position uses three objects to create the racetrack. The ball and one missile
are the edges of the road, and the other missile is the center line. To get the objects
impossibly close at the road’s vanishing point, the 6502’s stack pointer is set to $14
(recall that the Atari 2600 maps the usual 6502 stack page into zero page), and at
a precise horizontal location in the middle of screen line 127, a brk instruction is
executed. There is no change in control flow, because the game’s brk vector is set to
point to the next instruction after the brk. As the 6502 attempts to push the status
register and return address on the stack, it does so in three consecutive machine
cycles to three consecutive bytes: $14, $13, and $12, which are the locations of the
strobes for the ball and the two missiles. This trick positions the three objects at
horizontal screen positions three apart from one another, something that no normal
6502 instruction sequence would allow.31

8.2.3 Anti-optimizations

It may seem that faster and smaller programs would always be laudable goals for a
retrogame programmer, but there were instances where it was inappropriate to op-
timize. These practices were clearly engrained into programmers of the time to the
point where obvious cues would need to be left to prevent optimizations from being
performed. In the Habitat (1986) source code,32 for instance, a call immediately
followed by return seems the perfect set-up for tail call optimization, were it not
for the jarring all-uppercase comment accompanying the lowercase assembly code:
‘DO NOT PUT A JMP HERE ARIC.’

The Atari 2600’s paltry RAM size and challenging display requirements would
hardly be the place to find an anti-optimization. Or would it? River Raid has bytes
in RAM that are always zero,33 and whose zero values are loaded into registers at
various points in the game code. There is no space advantage, as the 6502 instruction
to load a register with the constant 0 takes two bytes, as does the instruction to load a
value from zero page memory. However, the memory-based version takes one extra
CPU cycle.

Precise timing was paramount on the 2600 to get the screen display correct, and it
is not unusual in Atari 2600 game source code to see time-critical areas adorned with
inline comments keeping track of the aggregate number of cycles each instruction

31 6502 information from [17, 30], Atari information from [38]. Initial Pole Position tip from [29],
credited to E. Strolberg, and verified with additional details gathered in-emulator.
32 From Commodore 64 client source code.
33 An observation made in [14], verified in-emulator.
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took. Without access to River Raid’s source code, however, it is difficult to know
whether the intent was timing-related. Indeed, anti-optimizations could be made
explicit in source code through comments: the code for the Atari 2600 Dragon-
fire (1982) has a load of A from a zero page location followed immediately by
another load of A, making the first one redundant; the first instruction sports the
comment ‘WASTE 3 MC,’ i.e., waste three machine cycles.34

Anti-optimizations could have unintended side effects, too. In Chap. 1, the
unusual practice of some retrogame programmers using mini-assemblers was men-
tioned. Because a mini-assembler gives limited support – none, really – for moving
and relocating code, programmers would need to plan ahead for the growth of their
subroutines. Just as BASIC programmers would leave gaps in line numbering to
accommodate later line numbers being inserted in between, programmers using a
mini-assembler could leave excess unused bytes in between subroutines for later
use if needed [6]. This practice flies in the face of space optimization, obviously,
and the gaps turned out later to be useful to third parties.

Creating a cracked version of Firebird (1981) on the Apple II required adding
some routines to the game code, and the cracker observes ‘Throughout much of this
code, you will find small gaps of blank memory between routines which can be used
for other short routines. There are so many places our routines can be stored’ [34].
Firebird’s byline credits none other than ‘Nasir,’ or Nasir Gebelli, one of the pro-
grammers known to use a mini-assembler for game development [4, 26]. Analysis
of the game code confirms this: many routines were followed by a gap, leaving sub-
sequent code to start at 16-byte boundaries where the low nibble of the hexadecimal
address was zero.35 Adopting this mini-assembler programming practice actually
facilitated cracking the game.

8.3 The Story of Mel

It seems fitting to conclude a discussion of obfuscation and optimization in ret-
rogames with the story of Mel, an anecdotal account of the artful and extreme opti-
mization in an old computer blackjack game.36

34 The Dragonfire information is from the source code, which also contains cycle-counting com-
ments and the overlapping-code space optimization (whose delays can now be seen as a speed
anti-optimization).
35 Information from analyzing the Firebird disassembly. The practice can be seen more clearly in
Gebelli’s Gorgon (1981) and Horizon V.
36 As told by the late Ed Nather in 1983 and included in the (public domain) Jargon File [24].
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A recent article devoted to the macho side of programming
made the bald and unvarnished statement:

Real Programmers write in FORTRAN.

Maybe they do now,
in this decadent era of
Lite beer, hand calculators, and “user-friendly” software
but back in the Good Old Days,
when the term “software” sounded funny
and Real Computers were made out of drums and vacuum tubes,
Real Programmers wrote in machine code.
Not FORTRAN. Not RATFOR. Not, even, assembly language.
Machine Code.
Raw, unadorned, inscrutable hexadecimal numbers.
Directly.

Lest a whole new generation of programmers
grow up in ignorance of this glorious past,
I feel duty-bound to describe,
as best I can through the generation gap,
how a Real Programmer wrote code.
I’ll call him Mel,
because that was his name.

I first met Mel when I went to work for Royal McBee Computer Corp.,
a now-defunct subsidiary of the typewriter company.
The firm manufactured the LGP-30,
a small, cheap (by the standards of the day)
drum-memory computer,
and had just started to manufacture
the RPC-4000, a much-improved,
bigger, better, faster – drum-memory computer.
Cores cost too much,
and weren’t here to stay, anyway.
(That’s why you haven’t heard of the company,
or the computer.)

I had been hired to write a FORTRAN compiler
for this new marvel and Mel was my guide to its wonders.
Mel didn’t approve of compilers.

“If a program can’t rewrite its own code,”
he asked, “what good is it?”

Mel had written,
in hexadecimal,
the most popular computer program the company owned.
It ran on the LGP-30
and played blackjack with potential customers
at computer shows.
Its effect was always dramatic.
The LGP-30 booth was packed at every show,
and the IBM salesmen stood around
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talking to each other.
Whether or not this actually sold computers
was a question we never discussed.

Mel’s job was to re-write
the blackjack program for the RPC-4000.
(Port? What does that mean?)
The new computer had a one-plus-one
addressing scheme,
in which each machine instruction,
in addition to the operation code
and the address of the needed operand,
had a second address that indicated where, on the revolving drum,
the next instruction was located.

In modern parlance,
every single instruction was followed by a GO TO!
Put that in Pascal’s pipe and smoke it.

Mel loved the RPC-4000
because he could optimize his code:
that is, locate instructions on the drum
so that just as one finished its job,
the next would be just arriving at the “read head”
and available for immediate execution.
There was a program to do that job,
an “optimizing assembler,”
but Mel refused to use it.

“You never know where it’s going to put things,”
he explained, “so you’d have to use separate constants.”

It was a long time before I understood that remark.
Since Mel knew the numerical value
of every operation code,
and assigned his own drum addresses,
every instruction he wrote could also be considered
a numerical constant.
He could pick up an earlier “add” instruction, say,
and multiply by it,
if it had the right numeric value.
His code was not easy for someone else to modify.

I compared Mel’s hand-optimized programs
with the same code massaged by the optimizing assembler program,
and Mel’s always ran faster.
That was because the “top-down” method of program design
hadn’t been invented yet,
and Mel wouldn’t have used it anyway.
He wrote the innermost parts of his program loops first,
so they would get first choice
of the optimum address locations on the drum.
The optimizing assembler wasn’t smart enough to do it that way.
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Mel never wrote time-delay loops, either,
even when the balky Flexowriter
required a delay between output characters to work right.
He just located instructions on the drum
so each successive one was just past the read head
when it was needed;
the drum had to execute another complete revolution
to find the next instruction.
He coined an unforgettable term for this procedure.
Although “optimum” is an absolute term,
like “unique,” it became common verbal practice
to make it relative:
“not quite optimum” or “less optimum”
or “not very optimum.”
Mel called the maximum time-delay locations
the “most pessimum.”

After he finished the blackjack program
and got it to run
(“Even the initializer is optimized,”
he said proudly),
he got a Change Request from the sales department.
The program used an elegant (optimized)
random number generator
to shuffle the “cards” and deal from the “deck,”
and some of the salesmen felt it was too fair,
since sometimes the customers lost.
They wanted Mel to modify the program
so, at the setting of a sense switch on the console,
they could change the odds and let the customer win.

Mel balked.
He felt this was patently dishonest,
which it was,
and that it impinged on his personal integrity as a programmer,
which it did,
so he refused to do it.
The Head Salesman talked to Mel,
as did the Big Boss and, at the boss’s urging,
a few Fellow Programmers.
Mel finally gave in and wrote the code,
but he got the test backwards,
and, when the sense switch was turned on,
the program would cheat, winning every time.
Mel was delighted with this,
claiming his subconscious was uncontrollably ethical,
and adamantly refused to fix it.

After Mel had left the company for greener pa$ture$,
the Big Boss asked me to look at the code
and see if I could find the test and reverse it.
Somewhat reluctantly, I agreed to look.
Tracking Mel’s code was a real adventure.
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I have often felt that programming is an art form,
whose real value can only be appreciated
by another versed in the same arcane art;
there are lovely gems and brilliant coups
hidden from human view and admiration, sometimes forever,
by the very nature of the process.
You can learn a lot about an individual
just by reading through his code,
even in hexadecimal.
Mel was, I think, an unsung genius.

Perhaps my greatest shock came
when I found an innocent loop that had no test in it.
No test. None.
Common sense said it had to be a closed loop,
where the program would circle, forever, endlessly.
Program control passed right through it, however,
and safely out the other side.
It took me two weeks to figure it out.

The RPC-4000 computer had a really modern facility
called an index register.
It allowed the programmer to write a program loop
that used an indexed instruction inside;
each time through,
the number in the index register
was added to the address of that instruction,
so it would refer
to the next datum in a series.
He had only to increment the index register
each time through.
Mel never used it.

Instead, he would pull the instruction into a machine register,
add one to its address,
and store it back.
He would then execute the modified instruction
right from the register.
The loop was written so this additional execution time
was taken into account –
just as this instruction finished,
the next one was right under the drum’s read head,
ready to go.
But the loop had no test in it.

The vital clue came when I noticed
the index register bit,
the bit that lay between the address
and the operation code in the instruction word,
was turned on –
yet Mel never used the index register,
leaving it zero all the time.
When the light went on it nearly blinded me.
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He had located the data he was working on
near the top of memory –
the largest locations the instructions could address –
so, after the last datum was handled,
incrementing the instruction address
would make it overflow.
The carry would add one to the
operation code, changing it to the next one in the instruction set:
a jump instruction.
Sure enough, the next program instruction was
in address location zero,
and the program went happily on its way.

I haven’t kept in touch with Mel,
so I don’t know if he ever gave in to the flood of
change that has washed over programming techniques
since those long-gone days.
I like to think he didn’t.
In any event,
I was impressed enough that I quit looking for the
offending test,
telling the Big Boss I couldn’t find it.
He didn’t seem surprised.

When I left the company,
the blackjack program would still cheat
if you turned on the right sense switch,
and I think that’s how it should be.
I didn’t feel comfortable
hacking up the code of a Real Programmer.

The need for modern programmers to perform micro-optimizations on their
code is now rare, not to mention that it is extremely difficult to gauge their
efficacy on modern systems performing parallel, concurrent, and speculative
execution. Many sophisticated optimizations are performed by modern com-
pilers, and just-in-time compilers perform run-time code generation. This does
not obviate the need for programmers to know about these optimizations, how-
ever; compilers err on the side of correctness, and part of the programmer’s
job can be providing unambiguous signs that certain optimizations are possi-
ble and safe. Especially for modern dynamically-typed languages, there may
be limits on what compiler tools can discover about a program, leaving the
onus on the programmer to perform optimization still. Higher-level optimiza-
tion concepts, like time/space tradeoffs, are part of the very fabric of computer
science and were, are, and will continue to be important.
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Obfuscation is still used to deter (or more pragmatically, slow down)
reverse engineering for intellectual property protection. Obfuscation is int-
eresting, though, because it is a “dual use” technology; it can be used for
legitimate or illegitimate purposes. Malicious software uses obfuscation in an
attempt to avoid detection – ironically, making itself more obvious by some
measures – and also to make its analysis more difficult. Ultimately the prob-
lem with reliance on obfuscation is that the code eventually must run and thus
can be analyzed. Or can it? The underlying assumption with most software is
that it should run on all compatible platforms, but malicious software can be
targeted. Parts of code can be encrypted with strong cryptography [11, 25]
or produced at run time using cryptographic hash functions [3], based on
keys that are externally supplied or derived from the target environment. This
leverages cryptographic guarantees: code protected this way cannot be run
or seen except under the conditions an attacker intended, barring incredible
good fortune. This technique is not widespread, but has been used by mali-
cious software [15].
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Chapter 9
Endgame

Nothing exists in isolation, and retrogame archeology is no exception. There are
existing areas of inquiry that consider games and historical games in whole or part,
and it is useful to position retrogame archeology with respect to them. This is not
to disparage these other areas, but simply to point out the differences that exist – in
fact, retrogame archeology is complementary to these other disciplines and they can
collectively inform one another.

Game studies, for one, is a field that draws heavily on the humanities. It is telling
that the 2013 book Understanding Video Games, which ‘provides a comprehensive
introduction to the growing field of game studies’ takes games as “black boxes”
and does not consider their internals at all. Implementation of any kind does not
figure in the ‘main perspectives’ or ‘major type of analysis’ they list [8, pp. 9–10].
Fernández-Vara’s Introduction to Game Analysis is not quite as exclusionary, citing
the ‘technological context’ as one of eight contextual elements that may be used in a
game analysis [9]. Specifically, she points to platform studies, an area which is more
technically-oriented but with a dose of the humanities. As platform studies propo-
nents Bogost and Montfort put it [3], ‘Platform studies connects technical details to
culture.’ Finally there are software studies and critical code studies. The former po-
sitions itself, in the series foreword of 10 PRINT, as branching out into nontechnical
ways of thinking about software [23]; the latter ‘applies critical hermeneutics to the
interpretation of computer code, program architecture, and documentation within
a socio-historical context’ [21]. If they were to be placed on a technical spectrum,
game studies would fall at one end, retrogame archeology – and its all-technical
approach – on the other, with platform studies, software studies, and critical code
studies falling somewhere in the middle.

There is a clear overlap between retrogame archeology and computer history.
The journal IEEE Annals of the History of Computing, for example, contains the
occasional article related to retrogames: the history of Pong [19]; the story of a very
early Danish computer game [13]; the previously-cited copy protection work [27].
It may seem as though retrogame archeology should be a proper subset of computer
history rather than just having an overlap, but there is a danger of it being dismissed
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as ‘excessively technical, and lacking in breadth of vision’ [4, p. 41]. While this
opinion is a matter of some debate in the history of computing [11], the technical
details are of vital importance to retrogame archeology.

In the preface, with a nod to Bogost [2], I mentioned the search for ‘tiny trea-
sures’ in games as the job of a retrogame archeologist. That is naturally a rather
vague description: after all, one person’s treasure is another person’s trash. I would
define retrogame archeology more precisely in terms of three “T”s. The goal of ret-
rogame archeology is to understand the tools, techniques, and technology used in
old games’ implementation.

Left at that point, it would be easy to construe retrogame archeology as a
backwards-looking historical exercise, and that would not be altogether a bad thing.
History is important, computers and software are important to our society, computer
games are culturally important. But there is more to this exercise than knowing
where the current generation of games has come from. Retrogame archeology is
pragmatic, and is not just about understanding and documenting the three Ts, but
connecting these ideas and placing them in a broader, modern technical context. In
other words, where are these old ideas useful or in use today?

Previous chapters made these connections, with particular emphasis on the fact
that there are current application areas outside the scope of games. That is an impor-
tant point: old implementation techniques and ways of solving problems in highly
constrained circumstances are generally useful tools for programmers to have in
their toolbox.

And constrained retrogame programmers were. To recap: limited memory, minis-
cule secondary storage, slow incompatible I/O, slow processors, soft real-time con-
straints, restricted development environments, the need to forge their own develop-
ment tools. That retrogame programmers got so much working, regardless of how
we judge these games’ quality in hindsight, is truly a testament to their skills.

9.1 Act Casual

Having taken pains to pick apart original examples of retrogame implementation,
it is hard not to feel some sense of loss, that this foundational period of creativity
is behind us. Certainly its influence lives on, and it would be hard to identify a
modern game genre that could not trace its origins to the retrogame era. An alternate
viewpoint is that retrogames have not left at all, but have evolved into something
different. Just like the idea that dinosaurs evolved into birds, perhaps retrogames
have evolved and live on, in modern casual games. Or maybe some retrogames
always were casual – Loguidice and Barton state ‘For most modern gamers, Pac-
Man is a casual game’ [18, p. 184], and furthermore that ‘Tetris later led to the rise
of what is now called “casual gaming.”’ [18, p. 291].

Jesper Juul’s A Casual Revolution identifies five characteristics of a casual game,
paraphrased from [14, p. 50]:

1. Fiction. Casual games have a pleasant, appealing environment.
2. Usability. A casual game is easy to start playing.
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3. Interruptibility. A long playing time commitment is not required.
4. Punishment. Player missteps are not punished harshly.
5. “Juiciness.” Casual games supply (overly) encouraging feedback.

Ultimately trying to delineate casual games is probably not possible: given the
multiplicity of games, it is easy to identify counterexamples to many of the above
points. One can also argue that ‘casual’ and ‘hardcore’ labels are not meaningful or
helpful [28]. However, Juul’s framework does give us some concrete areas in which
we can examine the connections between retrogames and modern games, and an
extensive set of areas at that, as other definitions of casual games [9] exclude fiction
and juiciness.

Juiciness is added almost as an afterthought by Juul, who says it ‘was not pre-
dicted by the description of casual players’ [14, p. 50]. It could be equally stated
that juiciness is not an essential characteristic so much as a part of the casual game
business model, to retain players in a crowded market – some games sound more
desperate than encouraging – and garner more in-app purchases. Regardless, a ret-
rogame comparison would fare well against this metric. Reflecting on my own ex-
perience, the novelty of computers in the early retrogame days was such that any
interaction with and feedback from them was exciting. Modern juiciness could be
the natural inflation of this effect over time, just as modern movie explosions are
bigger and the alien threats to Earth are larger than they once were.

Usability and interruptibility are really both about the window of time a player
has to devote to a game, both in terms of learning it and playing it. Playing time
can extend beyond the boundary of the game itself: one could argue that retrogames
have become more casual in their resource demands over the years, despite running
the same code and using the same data, because it is faster and simpler to start an
emulator (or, more recently, run an in-browser emulator) than to boot an old console
or computer. Even punishment can be viewed through the lens of time, although the
opposite way that Juul intended; a game that ruthlessly kills off the player can be
very quick to play.

A brief amount of playing time was of course ideal for retrogames in the arcade,
where ‘coin drop’ was a business concern.1 A game that a player could play for a
long time was not a game constantly being fed quarters. For game design, retrogame
developer Alan McNeil distilled the appropriate length of play into a formula, where
the ratio of playing cost to gameplay time should equate to that of an established
form of entertainment, movies [7].

Usability and ease of learning a game were almost a necessity for a public un-
accustomed to computer games, and early game joysticks and paddles were not all
bristling with buttons in the way that controllers are now. Creating a complex inter-
face with the Atari 2600’s single joystick button and limited resources would have
been challenging.

The fiction characteristic, being subjective, is maybe best considered relative to
individual players. It could be that casual games simply provide a greater range of

1 Mentioned by retrogame developer Ed Rotberg in an interview [15, p. 149], and also [2]. The
latter mentions complexity with respect to early arcade games too.



208 9 Endgame

environments to choose from for potential players. If the only books published for
years were romance novels, and then Western novels arrived, we would doubtlessly
speak of a Western revolution as an underserved reading population suddenly ap-
peared in bookstores.

What is interesting about Juul’s examples of casual games is the descriptions of
them using words like ‘abstract’ and ‘cartoony.’ Perhaps the broad audience appeal
of casual games is not about a positive, upbeat fiction, but because it is easier for
a person to imagine themselves in that fiction. Scott McCloud points out in Un-
derstanding Comics [22] that abstraction makes images more universal: ‘The more
cartoony a face is [. . . ] the more people it could be said to describe’ (p. 31) and that
‘when you enter the world of the cartoon – you see yourself’ (p. 36). Retrogames
were naturally abstract due to their graphical constraints, making every player char-
acter an everyman.

9.2 Use Protection

Speaking of activities done casually for enjoyment brings us to the topic of protec-
tion. Specifically, I want to single out retrogame copy protection, since it has proven
to be a singularly irritating thorn in my side during this research. Ironically, not
because preserved retrogames have copy protection, but because they don’t.

It is hardly a surprise that it’s possible to acquire playable copies of nearly any
retrogame ever made. However, where copy protection guarded the original games,
it is often the cracked copies that have survived. On the one hand, it is good to have
the games available in some way – there are retrogame publishers that still exist and
distributors who endeavor to make games available from days of yore, and these
efforts are commendable and worth supporting, especially when retrogames can be
purchased for a mere fraction of their original cost. Not all retrogames are available,
though, and having a game available does not necessarily mean it is available in a
form suitable for studying its original implementation. On the other hand, cracked
games invariably lose fidelity. An original introductory sequence is discarded; a
screen with cracking credits is added; cheat codes are added in; copy protection is
removed. Not only can the game playing experience change, but implementation
elements have vanished.

This poses challenges for studying retrogames, their implementation, and their
copy protection. Sometimes there is no substitute for the original: I was able to
verify parts of Cannonball Blitz’ protective obfuscations in Chap. 8 only because
I lurked on eBay long enough to spot and purchase an original copy of the game,
and capture an image on original Apple hardware to study in an emulator. For Pest
Patrol I have not been as lucky, and in all likelihood when it does appear for sale,
its scarcity will ensure that verifying the copy protection will not come cheap.

Where original disks do exist, there are ongoing efforts to record disk images at
a low enough level to capture copy protected retrogames in their natural state. It is
fair to characterize these efforts as both valuable and as producing mixed results,
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at least for now. Some images need repeated recordings or time-consuming manual
intervention to become usable, like Video Vegas in Chap. 7. With others, it can be a
matter of trial and error to find an emulator that the image works on.

In other cases, preservation formats have excluded copy protection. Many tape
images of Commodore 64 retrogames are available and playable, for instance, but
since the Commodore cassette player converted the analog signal to digital form
internally, it is sufficient from a playability standpoint to record the converted signal
for preservation. This comes at the expense of losing the audio from the original
tapes that was reputed to include anti-duplication measures [12].

Hopefully these complaints are transient preservation problems, because ret-
rogame media and the equipment to read it are in a race with time that they will
ultimately lose.

9.3 Sources Sighted

It is probably apparent in the source code examples from previous chapters that the
same smallish pool of games has been drawn on repeatedly. There is a reason for
that.

One worrisome thing I have found while doing the research for this book is how
little original source code is available for study. With few exceptions, retrogames
had many copies (legitimate and otherwise) widely available; source code had few
copies and wasn’t distributed at all.2 A lot can be gleaned from disassembly, but it
loses information about coding practices, and it loses comments that reveal the in-
tent and thought processes of the programmer. Even when retrogame authors can be
contacted now, it would be unreasonable to expect them to remember – and remem-
ber correctly – the minutia of decades-old code. The comments in code can capture
that forgotten moment in time like an old photograph.

It is heartening that code discoveries are still being made. In the course of re-
searching and writing this book, several retrogames’ code has been unearthed and
made available. Most of these have been already woven into past chapters, where
appropriate, but two examples in particular highlight the sort of treasures that might
yet be uncovered.

Example 9.1 (Wander, 1974). In April 2015 came the news that ‘a lost mainframe
game is found’ [1, 6], spurring many people to search around and dig up early
source code for Wander. Wander was not a text adventure game so much as a gen-
eral text game-building system; the manual page describes it as ‘a tool for writing
non-deterministic fantasy “stories”.’3 Its games were described in files written in
a domain-specific language and the range of rediscovered examples spans from a
binary number tutorial to Adventure-like games.

2 This fact doesn’t make preservation of retrogames any easier, or even the decision of exactly
what to preserve and how to do it, subjects explored at length by other authors [10, 20, 26].
3 This quote is from the c. 1980 source, and I wrote example “stories” using a resurrected version
of Wander whose source appears to date from 1978–1985; a code comment mentioning ‘V6’ (i.e.,
Version 6 Unix) also places it in the mid- to late-1970s.
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1 : .misc file, containing location-independent code
2
3 "Behold... THE PHONE BOOTH GAME!"
4
5 words (objects)
6 phone 0 1
7 telephone 1
8 "rotary phone" 2
9

10 pre action
11 "look phone" o?phone m=\
12 "The phone is a robust contraption with a rotary dial."
13
14 : .wrld file, containing location-dependent code
15
16 #1 Telephone Booth
17 You are in a telephone booth.
18 exit 2
19
20 #2 Outside Telephone Booth
21 You are not in a telephone booth.
22 enter 1

Fig. 9.1 Extended phone booth game code in Wander

It is here where the historical record gets interesting. Adventure would have first
come about in 1976, but the C version of Wander dates back to 1974, and that
was a conversion – earlier versions were written in HP BASIC, and ‘From the start
the idea was for it to be table-driven’ [16], i.e., using a domain-specific language.
Unfortunately, what seems to be lost (at least so far) is the BASIC code and early C
versions; even a chunk of the 1980 version exists only as PDP-11 binaries. Wander
does seem to be an Adventure before Adventure, though.

Figure 9.1 shows the Wander code for an extended variant of the phone booth
game from Chap. 3 (the basic phone booth game was trivially easy to describe
in Wander). This code would be in two separate files: lines 1–12 in a ‘.misc’ file
with location-independent code, and lines 14–22 describing the game locations in
a ‘.wrld’ file. Line 3 is a banner message printed once at the start of the game, and
lines 6–8 define the phone object and two synonyms for it; the first number after the
object name controls whether it is the primary name (0) or a synonym (non-zero),
and the second number places the object initially in that location. The section from
lines 10–12 defines what happens when the player looks at the phone which, in this
case, prints a message (m=) but only if the phone is present (o?phone).

In the ‘.wrld’ file, there are two locations similarly defined. The first one, for
instance, gives the location number and short description (line 16), followed by the
long description (line 17), and location-specific actions (line 18). Here, if the player
issues the exit command from location 1, they end up in location 2.

The early date and general-purpose nature of Wander make it very intriguing as
an example, both for the retrogames as well as it being used to make games years be-
fore more well-known game creation systems like Pinball Construction Set (1983).
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Fig. 9.2 Structured assembly
code

foo_bar::
cmp #42
if (lt) {

cpy #123
if (!equal) {

jmp baz
}

} else {
ldx #0
do {

inc x[buffer]
baz: inx

} while (!zero)
clearb flag

}
rts

Example 9.2 (Habitat, 1986). Habitat was an early graphical multi-user client-server
game, where the client ran on the Commodore 64 and communicated via modem (at
speeds as low as 300 baud) with a centralized server [25]. During the lead-up to
writing this book, the source code was made available, and the Commodore 64 code
is nothing short of astounding: easily the nicest-looking, easiest to read assembly of
all the examples in this book.

The key was the use of a “structured” assembly code that allowed assembly
code to be expressed using high-level language structures like if/then statements
and do/while loops.4 An assembler was developed in-house to handle the structured
input.5

Figure 9.2 gives a flavor of what the assembly code of Habitat looked like.6

Regular 6502 assembly instructions could be mixed with structured constructs,
which in turn could be nested. The conditions for if/else and do/while correspond to
mnemonic interpretations of the 6502’s status register bits and, as the jump into the
middle of a do/while loop shows, structured assembly did not preclude the use of
unstructured techniques. The clearb is not a 6502 instruction but a programmer-
defined assembler macro that would expand into 6502 code.

The important thing to stress is that none of this would be visible in the disas-
sembly of the Habitat code. It is a powerful example of the things that might never
be seen without access to retrogames’ source code.

4 Historically, the idea of high-level low-level languages can be traced back to the 1960s, with
PL360 being a prominent ancestor [29]. A survey and taxonomy of these languages may be found
in [5].
5 This was actually the second in-house assembler at Lucasfilm Games [24]. The first toolset was
described in [17], and that Lisp-based cross-assembler supported high-level constructs but was
slow, taking ‘about 45 min to assemble a 16K ROM cartridge’ [24].
6 I created this example using the Habitat source for syntax guidance. Unfortunately the macro
assembler was not available in either source or binary form to check the example’s veracity.
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9.4 Pleas and Thank You

If you are one of the people who developed games that have aged into retrogames,
thank you. Whether they were iconic masterpieces or games forgotten over the
years, many people entertained and frustrated themselves for hours with them. Tech-
nically, even the most disparaged games may have required substantial program-
ming wizardry to create.

I do want to return to the topic of source code, at the risk of repeating myself.
While I won’t name names, I have contacted programmers whose code is lost, or
resides on disks in some now hard-to-read format. A few game companies from that
era are still extant and have archives, but the author retained some rights and there
is no business case to be made for trying to sort it out legally. Unfortunately, some
retrogame authors have passed away, and any knowledge of the code is gone, or
heirs mistakenly think that the code still has value. It may be odd to consider that
code written in the span of a lifetime is now an archival document that scholars want
to study, but it is. If you have the source code for your games and retain the rights to
it, please, please consider making it publicly available, warts and all. Even if all that
remains are development notes or reference manuals for internally-used languages
and tools, please consider making them publicly available. All these things have
value when trying to study the past.

This is just the beginning of the retrogame archeology expedition; thank you for
joining me for the start of the journey. There are still many implementation gems
hiding away in retrogames, waiting to be found. As Calvin said in Bill Watterson’s
final Calvin and Hobbes strip. . . let’s go exploring!
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Appendix A
Legalese

In this fine appendix are licenses related to various images and code used throughout
the book. Riveting reading, all. Please enjoy.

A.1 Hangman

The Hangman screenshot shown in Fig. 3.5 was taken from a version of the game
built from 4.4BSD Unix source, which bears this notice:

Copyright (c) 1983, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
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A.2 Lode Runner

The screenshot in Fig. 3.13 is accompanied by this legal copy:

Tozai Games and Lode Runner are trademarks of Tozai, Inc. registered or protected in the
US and other countries. Lode Runner is protected under US and international copyright
laws c©1983–2015 Tozai, Inc.

A.3 Robots

The Robots screenshot shown in Fig. 3.6 was taken from a version of the game built
from 4.4BSD Unix source, which bears this notice:

Copyright (c) 1980, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

A.4 Termcap

The two termcap entries in Fig. 3.2 were excerpted from the 4.4BSD Unix source,
which bears this notice:

Copyright (c) 1980, 1985, 1989, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
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are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
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