

Raspberry Pi By Example

Start building amazing projects with the Raspberry Pi
right out of the box

Ashwin Pajankar

Arush Kakkar

BIRMINGHAM - MUMBAI

Raspberry Pi By Example

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1190416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-506-6

www.packtpub.com

www.packtpub.com

Credits

Authors
Ashwin Pajankar

Arush Kakkar

Reviewers
Nathan Johnson

Elliot Kermit-Canfield

Anna Torlen

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Ashwin Nair

Content Development Editor
Merwyn D'souza

Technical Editors
Nirant Carvalho

Mohit Hassija

Copy Editors
Stuti Srivastava

Madhusudan Uchil

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Priya Sane

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Authors

Ashwin Pajankar is a software professional and IoT enthusiast with more than
5 years' experience in software design, development, testing, and automation.

He graduated from IIIT Hyderabad, earning an M.Tech in computer science and
engineering. He holds multiple professional certifications from Oracle, IBM,
Teradata, and ISTQB in development, databases, and testing. He has won several
awards in college through outreach initiatives, at work for technical achievements,
and community service through corporate social responsibility programs.

He was introduced to Raspberry Pi while organizing a hackathon at his workplace,
and he's been hooked on Pi ever since. He writes plenty of code in C, Bash, Python,
and Java on his cluster of Pis. He's already authored one book on Raspberry Pi and
reviewed three other titles related to Python for Packt Publishing.

His LinkedIn Profile is at https://in.linkedin.com/in/ashwinpajankar.

I would like to thank my wife, Kavitha, for motivating me to write
this book and share my knowledge with others. I would like to thank
my coauthor, Arush Kakkar, for taking over the project after the first
few chapters. I also thank Merwyn D'Souza from Packt Publishing
for providing me with the opportunity, guidance, and required
support in writing this book. Last but not least, I would like to thank
all the reviewers who helped me make the book better by providing
their precious feedback.

https://in.linkedin.com/in/ashwinpajankar

Arush Kakkar is a computer vision and deep learning researcher and an
undergraduate at Delhi Technological University. His primary focus is on
autonomous robotics, which includes drones and self-driving cars, and he has
been involved in building such systems in different capacities, such as navigation,
localization, path planning. He has also leveraged state-of-the art computer vision
and deep learning technologies for them. He is the electrical systems head of the
Solar Car team of his university, Solaris DTU.

He is currently working on his own driverless car company, CruiseX, which uses
deep learning to drive more smoothly and with fewer errors.

You can connect with him through his website at http://www.arushkakkar.com
and read up on some of his projects at http://blog.arushkakkar.com.

I would like to thank my parents for supporting me in writing this
book. I would like to thank Ashwin for collaborating while writing
this book, and I would also like to thank Merwyn from Packt
Publishing for coordinating the collaboration. I am thankful to
all the reviewers for helping me improve the book and expanding
my knowledge.

http://www.arushkakkar.com/
http://blog.arushkakkar.com/

About the Reviewers

Nathan Johnson is an NC State University graduate and the author and
maintainer of the node-arm project. Apart from node-arm, he has also contributed
to several other Raspberry Pi projects. He currently works for the Charlotte-based
company Red Ventures as a software engineer writing applications in Node.js.

I would like to thank my mom, dad, and brother for reminding me
to use all the talents I've been given.

Elliot Kermit-Canfield is a graduate student studying computer music at the
Center for Computer Research in Music and Acoustics at Stanford University. In
addition to a degree in music, science, and technology from Stanford, he holds
degrees in integrative arts and music theory from Penn State. Elliot is an avid
computer musician and has worked with Raspberry Pi and other embeddable
systems with audio applications.

Anna Torlen is an artist, educator, and techie. She received a bachelor of arts
degree in studio art at The College of Santa Fe and a master of fine arts degree in
media, technology, and entertainment at Florida Atlantic University. She has worked
on Raspberry Pi projects at her college and at Hacklab in Boynton Beach, FL. She
has contributed to the Adafruit Community Corner blog. She is currently working
at Palm Beach State College as a multimedia adjunct professor. She is interested in
building outdoor solar-powered Internet of Things Raspberry Pi projects.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 vii
Chapter 1: Introduction to Raspberry Pi and Python	 1

Single-board computers	 1
Raspberry Pi	 3

Raspberry Pi models	 3
Operating systems	 7

Raspbian	 8
Setting up the Raspberry Pi	 8

Preparing MicroSD card manually	 10
Booting up our Pi for the first time	 14
Shutting down and rebooting Pi safely	 17
Updating the Pi	 18

Getting started with Python	 19
Turtle programming with Python	 24

Summary	 28
Chapter 2: Minecraft Pi 	 29

Introduction to Minecraft Pi	 29
Playing Minecraft Pi	 30

Movement control in Minecraft Pi	 34
Action control in Minecraft Pi	 35
Other controls in Minecraft Pi	 38

Python programming for Minecraft Pi	 38
Summary	 44

Table of Contents

[ii]

Chapter 3: Building Games with PyGame	 45
Introducing PyGame	 45
Installing PyGame	 46
Drawing a binary fractal tree	 47
Building a snake game	 51
Summary	 58

Chapter 4: Working with a Webcam and Pi Camera	 59
Working with webcams	 59

Crontab	 61
Creating a timelapse sequence using fswebcam	 62
Webcam video recording and playback	 64

Working with the Pi Camera and NoIR Camera modules	 66
Using raspistill and raspivid	 68
Using picamera in Python with the Pi Camera module	 71
The Pi camera versus the webcam	 72

Summary	 72
Chapter 5: Introduction to GPIO Programming	 73

Introducing GPIO pins	 74
Building an LED Blinker	 76

Connecting a button	 78
Installing PiGlow	 80
Using PiGlow	 83
Building a binary clock	 85
Summary	 89

Chapter 6: Creating Animated Movies with Raspberry Pi	 91
Introducing stop-motion animation	 91
Setting up the prerequisites	 92

Setting up and testing the camera	 93
Adding the hardware button	 96

Rendering the video	 98
Summary	 99

Chapter 7: Introduction to Computer Vision	 101
Introducing Computer Vision	 102
Introducing OpenCV	 102
Setting up Pi for Computer Vision	 103

Testing the OpenCV installation with Python	 106

Table of Contents

[iii]

Introducing NumPy	 106
Array creation	 107
Basic operations on arrays	 107
Linear algebra	 108

Working with images	 109
Using matplotlib	 112

Working with Webcam using OpenCV	 114
Saving a video using OpenCV	 116
Pi Camera and OpenCV	 117

Retrieving image properties	 117
Arithmetic operations on images	 118
Splitting and merging image color channels	 122

Negating an image	 123
Logical operations on images	 124
Colorspaces and conversions	 126
Tracking in real time based on color	 129
Summary	 130

Chapter 8: Creating Your Own Motion Detection
and Tracking System	 131

Thresholding images	 131
Otsu's method	 134

Noise	 136
Kernels for noise removal	 136
2D convolution filtering	 137
Low pass filtering	 138

Morphological transformations on images	 141
Motion detection and tracking	 142
Summary	 146

Chapter 9: Grove Sensors and the Raspberry Pi	 147
Introducing the GrovePi	 147
Setting up the GrovePi	 149
Displaying the weather	 154
Intruder detection system	 157
Summary	 159

Table of Contents

[iv]

Chapter 10: Internet of Things with the Raspberry Pi	 161
Introducing the Internet of Things	 162
Installing the Twitter API for Python	 162

Using Tweepy	 163
Setting up a SQLite database in Python	 168
Building a tweeting weather station	 172

Adding speech capabilities to our weather station	 177
Summary	 178

Chapter 11: Build Your Own Supercomputer with Raspberry Pi	 179
Introducing a Pi-based supercomputer	 180
Installing and configuring MPICH2 and MPI4PY	 180

Installing the MPICH library	 184
Installing MPI4PY	 186

Setting up the Raspberry Pi cluster	 188
Setting up SSH access from the host to the client	 191
Running code in parallel	 193
Performance benchmarking of the cluster	 194
Introducing N-Body simulations	 194
Installing and running GalaxSee	 196
Summary	 199

Chapter 12: Advanced Networking with Raspberry Pi	 201
Introducing DHCP	 201
A few networking concepts	 202
Configuring a Raspberry Pi to act as a DHCP server	 204
Introducing Domain Naming System (DNS)	 208
Setting up a DNS server on the Pi	 209
Configuring the setup for a web server	 211
Automating node discovery in a network	 213
Summary	 215

Chapter 13: Setting Up a Web Server on the Raspberry Pi	 217
Introducing and installing Apache on Raspbian	 218
Installing PHP and MySQL	 220
Installing WordPress	 221

Configuring the WordPress installation	 222
Summary	 229

Table of Contents

[v]

Chapter 14: Network Programming in Python with the Pi	 231
The basics of sockets	 231
The difference between TCP and UDP	 232

The architecture and programming of UDP sockets	 233
Sending and receiving data with UDP	 234
UDP servers and NCAT	 234
An echo server using Python UDP sockets	 235
A UDP client	 236

The architecture of TCP sockets	 238
Creating a TCP socket	 239
Connecting to a server with a TCP socket	 239
Receiving data from the server	 243

Programming socket servers	 244
Binding a socket	 245
Listening for incoming connections	 245
Handling multiple connections	 250

Looking back	 252
A Telnet client in Python	 252
A chat program	 254

The chat server	 255
The chat client	 257

References	 259
Exercise	 260
Summary	 260

Appendix: Newer Raspberry Pi Models	 261
The Raspberry Pi Zero	 261
The Raspberry Pi 3	 266

Index	 269

[vii]

Preface
Raspberry Pi is probably one of the most versatile computers ever built. It has been
adapted for tasks ranging from home automation, cluster computing, computer
vision, and even space missions! What's more is that it enjoys a level of support
from the community that is hard to find for any other platform.

Due to this, it is a hacker-friendly device and is a must for anyone who wants
to build projects with even a little amount of programming involved. The fact
that the basic version of the board costs only $25 means there's a lot of room for
experimentation, and users aren't afraid to experiment with and damage it.

In this book, you will find a wide variety of projects, using which anyone can get
started with and also build interesting hacks by modifying some of the projects.

What this book covers
Chapter 1, Introduction to Raspberry Pi and Python, provides an introduction to the
Raspberry Pi and booting it up.

Chapter 2, Minecraft Pi, introduces you to Minecraft Pi, which is a preinstalled version
of the popular game Minecraft. The first few pages of the chapter deal with the game
concept and interface, and further pages deal with programming in-game actions
with Python. In the last part of this chapter, you are introduced to the PyGame
library and small usage examples of it.

Chapter 3, Building Games with PyGame, is an introduction to the PyGame
programming library and game programming. In this chapter, you code
your way to your first full-fledged program on the Raspberry Pi, a game.

Chapter 4, Working with a Webcam and Pi Camera, introduces you to the Pi Camera
and regular webcams and how to use them to create real-life applications with the
Raspberry Pi. You also create a time-lapse box project in this chapter.

Preface

[viii]

Chapter 5, Introduction to GPIO Programming, introduces you to the Raspberry Pi B+
and Pi 2 GPIO structure and its real-life usage with LED programming and a third-
party add-on, PiGlow.

Chapter 6, Creating Animated Movie with Raspberry Pi, demonstrates the GPIO and
camera together by creating a project that requires application of both the concepts
in order.

Chapter 7, Introduction to Computer Vision, introduces you to computer vision and
image processing with Raspberry Pi. You will create a simple project.

Chapter 8, Creating Your Own Motion Detection and Tracking System, introduces you
to advanced concepts in OpenCV, which will be used to implement the next project,
which has a higher difficulty level.

Chapter 9, Grove Sensors and the Raspberry Pi, introduces you to the Grove shield and
Grove sensors and their interfacing with Raspberry Pi. Grove Sensors are third-party
sensors for Raspberry Pi and Arduino that can be used for environment sensing.

Chapter 10, Internet of Things with the Raspberry Pi, looks at creating home automation
and Internet of Things applications with the Raspberry Pi.

Chapter 11, Build Your Own Supercomputer with the Raspberry Pi, deals with making
clusters of Raspberry Pi 2s, using MPICH2 and MPI for Python to write parallel
programs for the clusters, and running N-body simulation.

Chapter 12, Advanced Networking with the Raspberry Pi, shows you how to improve
your cluster of Pis by adding advanced networking capabilities such as DNS and
DHCP. We use of existing cluster for this and make it better.

Chapter 13, Setting Up a Web Server on the Raspberry Pi, delves into installing PHP,
MySQL, and WordPress on our Raspberry Pi to use it as a web server.

Chapter 14, Network Programming in Python with the Pi, teaches you how to use Python
to learn the basics of network programming and also create network utilities such as
Telnet and chat applications on the Raspberry Pi.

Appendix, Newer Raspberry Pi Models, briefly introduces you to some of the newest
members of the Raspberry Pi family, namely the Raspberry Pi Zero and the
Raspberry Pi 3.

Preface

[ix]

What you need for this book
The following hardware is recommended for successfully completing the projects
outlined in this book:

•	 Raspberry Pi Model B, B+ or 2 (Multiple boards for last two chapters)
•	 USB hub, powered preferably
•	 Networking hub
•	 PC for preparing SD card
•	 Webcam and/or Pi Camera

Who this book is for
What's the best way to learn how to use your Raspberry Pi? By example! If you
want something exciting to do whilst getting to grips with what your Pi can offer,
this is the book for you. With both simple and complex projects, you'll create a wide
variety of cool toys and functions with your Raspberry Pi - all with minimal coding
experience necessary. You can be a beginner before starting with this book, but by
the time you finish it, you will be a Jedi with the Raspberry Pi.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
" We need the random library for the randint() function, which returns a random
integer in the provided range."

A block of code is set as follows:

def fractal_tree(b_len,t):
 if b_len > 5:
 temp=random.randint(1, b_len)
 temp_angle = random.randint(1, 25)
 t.forward(temp)
 t.right(temp_angle)
 fractal_tree(b_len-10,t)
 t.left(2 * temp_angle)

Preface

[x]

 fractal_tree(b_len-10,t)
 t.right(temp_angle)
 t.backward(temp)

Any command-line input or output is written as follows:

pi@raspberrypi ~ $ mkdir book

pi@raspberrypi ~ $ cd book

pi@raspberrypi ~/book $ pwd

/home/pi/book

pi@raspberrypi ~/book $

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " Check out
the Product page of Raspberry Pi at http://www.raspberrypi.org/products/."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

http://www.raspberrypi.org/products/
www.packtpub.com/authors

Preface

[xi]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/RaspberryPiByExample_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/RaspberryPiByExample_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RaspberryPiByExample_ColorImages.pdf

Preface

[xii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction to Raspberry Pi
and Python

One can learn about topics in computer science in an easy way with the Raspberry
Pi and Python. The Raspberry Pi family of single-board computers uses Python
as the preferred development language. Using Raspberry Pi and Python to learn
programming and computer science-related concepts is one of the best ways to start
your journey in this amazing world of computers that is full of creative possibilities.
We will explore these possibilities in this book.

We will commence our journey in this chapter by getting ourselves familiar with the
following topics:

•	 Single-board computers
•	 Raspberry Pi
•	 Raspbian
•	 Setting up Raspberry Pi
•	 Basics of Python
•	 Turtle programming with Python

Single-board computers
A single-board computer system is a complete computer on a single circuit board.
The board includes a processor(s), RAM, input/output (I/O), and networking
ports for interfacing devices. Unlike traditional computer systems, a single-board
computer is not modular and its hardware cannot be upgraded as it is integrated on
the board itself. Single-board computers are used as low-cost computers in academia,
research, and embedded systems. The use of single-board computers in embedded
systems is quite prevalent and many individuals and organizations have developed
and released fully functional products based on single-board computers.

Introduction to Raspberry Pi and Python

[2]

The Microcomputer Trainer MMD-1 designed by John Titus in 1976 is the first true
single-board microcomputer that was based on the Intel C8080A. It was called dyna
-micro in the prototyping phase, and the production units were called MMD-1 (short
for Mini Micro Designer 1).

Popular single-board computers available in the market include but are not
limited to Raspberry Pi, Banana Pro, BeagleBone Black, and Cubieboard.
The following images are of the front view of BeagleBone Black, Banana Pro,
and Cubieboard 4, respectively:

Chapter 1

[3]

Raspberry Pi
The Raspberry Pi is a series of low-cost, palm-sized single-board computers
developed by Raspberry Pi Foundation in the UK. The intention behind the creation
of the Raspberry Pi is to promote the teaching of basic computer skills in schools,
which it serves very well. Raspberry Pi has expanded its footprint well beyond
its intended purpose by penetrating the embedded systems market and computer
science research.

This is the home page of Raspberry Pi Foundation:
http://www.raspberrypi.org.

The Raspberry Pi is manufactured with licensed agreements with Newark element14,
RS Components, Allied Electronics, and Egoman. These companies manufacture and
sell the Raspberry Pi. The hardware is the same across all manufacturers.

The following table displays the URLs of the manufacturers' websites, where you can
shop for Pi and related items online:

Manufacturer Website
Newark element14 http://www.newark.com

RS Components http://uk.rs-online.com

Egoman http://www.egoman.com.cn

Allied Electronics http://www.alliedelec.com

You can also shop for Pi and the other third-party add-ons at the following links:

•	 http://shop.pimoroni.com

•	 http://www.adafruit.com

Raspberry Pi models
The following are, at the time of writing this, the major models of Raspberry Pi:

•	 Model A (not in production; discontinued in favor of the production of later
and upgraded models)

•	 Model A+ (currently in production and available for purchase)
•	 Model B (available for purchase but not in production)
•	 Model B+ (currently in production and available for purchase)
•	 Raspberry Pi 2 Model B (currently in production and available for purchase)

http://www.raspberrypi.org
http://www.newark.com
http://uk.rs-online.com
http://www.egoman.com.cn
http://www.alliedelec.com
http://shop.pimoroni.com
http://www.adafruit.com

Introduction to Raspberry Pi and Python

[4]

Check out the Product page of Raspberry Pi at
http://www.raspberrypi.org/products/.

Additionally, Raspberry Pi is also available in a more flexible form factor intended
for industrial and embedded applications. It is known as Compute Module.
A Compute Module prototyping kit is also made available by the foundation.

Check out the following URLs for the Compute Module and Compute
Module development kit, respectively:
http://www.raspberrypi.org/products/compute-module/

http://www.raspberrypi.org/products/compute-module-
development-kit/

The following table compares the currently available models of Pi:

Broadcom BCM2835(CPU, GPU,
DSP, SDRAM, one USB port)

700 MHz single-core ARM1176JZF-S

Broadcom videoCore IV @ 250 MHz

Model B+

600mA
(3.5 W)

516 MB SDRAM

5V via Micro USB or GPIO Headers (Power supply through micro
USB is recommended.)

SOC (System
on a chip)

CPU

GPU

Memory
(shared with
GPU)

USB 2.0 ports

On Board
Storage

Networking

Power Source

Power Ratings

Model B

700mA
(3.5 W)

SD /
MMC /
SDIO
card slot

10/100.Mbit/s Ethernet, no Bluetooth or Wi-Fi

Model A

256 MB
SDRAM

200mA
(1 W)

None

MicroSD
slot

1 2

Pi 2 Model B

900 MHz quad-core ARM
Cortex-A7

Broadcom.BCM2836 (CPU,
GPU, DSP, SDRAM, one
USB port)

800mA
(4 W)

1 GB SDRAM

MicroSD slot

4

http://www.raspberrypi.org/products/
http://www.raspberrypi.org/products/compute-module/
http://www.raspberrypi.org/products/compute-module-development-kit/
http://www.raspberrypi.org/products/compute-module-development-kit/

Chapter 1

[5]

The following image shows the top view of the Raspberry Pi Model B front:

The following image shows the top view of the flip side of Raspberry Pi Model B:

Introduction to Raspberry Pi and Python

[6]

The following image shows the top view of the Raspberry Pi Model B+ front:

The following image shows the top view of the flip side of Raspberry Pi Model B+:

Chapter 1

[7]

The following image shows the top view of the Raspberry Pi 2 Model B front. The
location of the connectors and important ICs (integrated circuits) on the board is not
different from Pi B+:

We will be using Raspberry Pi 2 Model B throughout this book. However, all the
applications and programs in this book will work on all the models of Pi.

Operating systems
The Raspberry Pi primarily uses Unix-like Linux-kernel-based operating systems,
such as variants of Debian and Fedora.

Raspberry Pi Models A, A+, B, and B+ are based on the ARM11 family chip, which
runs on the ARMv6 instruction set. The ARMv6 instruction set does not support
Ubuntu and Windows.

Introduction to Raspberry Pi and Python

[8]

However, the recently launched Raspberry Pi 2 is based on ARM Cortex A7, which is
capable of running Windows 10 and Ubuntu (Snappy Core). The following operating
systems are officially supported by all the models of Raspberry Pi and are available
for download at the download page:

•	 Raspbian: We will be using this with Raspberry Pi throughout the book
•	 OpenELEC
•	 Pidora (Fedora Remix)
•	 RASPBMC
•	 RISC OS

Windows 10 and Ubuntu are only supported by the recently launched Pi 2.

Raspbian
Raspbian is an unofficial variant of Debian armhf (ARM Hard Float) compiled for
hard float code that will run on Raspberry Pi computers. It is a free operating system
based on Debian optimized for the Raspberry Pi hardware.

To know more about Raspbian, visit http://www.raspbian.org/.

Setting up the Raspberry Pi
We need the following hardware to set up a Pi.

•	 Raspberry Pi 2 Model B (hereafter, this will be referred only as Pi).
•	 Power Supply: A micro USB power supply.

http://www.raspbian.org/

Chapter 1

[9]

Considering that we are going for slightly power-intensive usage of our Pi
(such as connecting Pi Camera, webcam, and third-party sensors for Pi), a
5V 2A power supply is recommended. The micro USB pin is shown in the
following image:

You can find a similar one online at
http://www.adafruit.com/product/1995.

•	 A standard USB keyboard
•	 A MicroSD card and a MicroSD to SD card converter

We need a minimum 4 GB Micro SD card.

•	 A USB mouse
•	 A monitor

You can use either an HDMI monitor or a standard VGA monitor.

http://www.adafruit.com/product/1995

Introduction to Raspberry Pi and Python

[10]

•	 A monitor connection cable and converter
If you are using HDMI monitor, then an HDMI cable will be sufficient. If you
are using a VGA monitor, then you need to use an HDMI to VGA converter
with a VGA cable. Some special changes need to be made to the /boot/
config.txt file if you're using a VGA monitor, which will be explained in
the next section.

You can find a similar one online at
https://www.adafruit.com/products/1151.

•	 A Windows, Linux, or Mac OS computer with a MicroSD card reader and an
Internet connection

Preparing MicroSD card manually
This is the original way to install an OS into a MicroSD card, and many users,
including me, still prefer it. It allows the SD card to be prepared manually before
it is used and it allows easier access to configuration files such as /boot/config.
txt, which we might have to modify in a few cases before booting up. The default
Raspbian image consists of only two partitions, BOOT and SYSTEM, which will fit into
a 2 GB card. However, I recommend that you use a minimum 4 GB card to be on
safe side. Choosing an 8 GB card will be adequate for most of the applications we
are going to develop in this book.

https://www.adafruit.com/products/1151

Chapter 1

[11]

The following are the instructions for Windows users:

1.	 Download the Win32DiskImager installer, which is available at http://
sourceforge.net/projects/win32diskimager/files/latest/download
and then install it.

2.	 Download the installable version of WinZip, which is available at
http://www.winzip.com/prod_down.html, and install it.

3.	 Go to http://www.raspberrypi.org/downloads and download the latest
image of Raspbian. It will be a compressed file in the ZIP format and will
need to be extracted.

4.	 Extract the ZIP file using WinZip. The extracted file will be in the
.img format.

5.	 Insert the microSD card into the card reader and plug the card reader into the
computer. Many computers nowadays have an inbuilt SD card reader. In this
case, you will need to insert the microSD card into the microSD to SD card
converter and insert it into the computer's inbuilt SD card reader. MicroSD
to SD card converters usually come bundled with microSD cards in the same
package. If that's not the case, then you will have to procure it separately.

6.	 Run Win32DiskImager.exe and write the image onto the SD card:

http://sourceforge.net/projects/win32diskimager/files/latest/download
http://sourceforge.net/projects/win32diskimager/files/latest/download
http://www.winzip.com/prod_down.html
http://www.raspberrypi.org/downloads

Introduction to Raspberry Pi and Python

[12]

You might receive the following message if the card reader's write protection
is on:

7.	 Toggle the write protection notch and try again. You will see the
following message:

8.	 Click on Yes and it will start writing the image file to the microSD card:

Chapter 1

[13]

9.	 Once the image is successfully written, it will display the following message:

If you are using Linux, then you can find the instructions at
https://www.raspberrypi.org/documentation/
installation/installing-images/linux.md.
If you are using Mac OS, then you can find the instructions
at https://www.raspberrypi.org/documentation/
installation/installing-images/mac.md.

If you have an HDMI monitor, then skip this step. This additional step is required
only if you are planning to use a VGA monitor in place of an HDMI monitor.

Browse the microSD card on the computer. Locate and open config.txt. We have
to edit the file in order to enable proper display on the VGA monitor.

By default, the commented options (which have # at the beginning) are disabled. We
are enabling this option by uncommenting this line, that is, by removing # from the
beginning of the commented line. This is what you need to do:

1.	 Change #disable_overscan=1 to disable_overscan=1.
2.	 Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1.
3.	 Change #hdmi_group=1 to hdmi_group=2.
4.	 Change #hdmi_mode=1 to hdmi_mode=16.
5.	 Change #hdmi_drive=2 to hdmi_drive=2.
6.	 Change #config_hdmi_boost=4 to config_hdmi_boost=4.
7.	 Save the file.

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md

Introduction to Raspberry Pi and Python

[14]

Booting up our Pi for the first time
Let's boot up our Pi for the first time with the microSD card:

1.	 Insert the microSD card into the microSD card slot of the Pi.
2.	 Connect the Pi to the HDMI monitor. If you are connecting the VGA monitor,

connect it using the HDMI to VGA converter.
3.	 Connect the USB mouse and the USB keyboard.
4.	 Connect the Pi to a power supply using the micro USB power cable.

Make sure the power is switched off at this point.
5.	 Check all the connections once and then switch on the power supply

of the Pi.

At this stage, our Pi will start booting up. You will see a green light on the Pi board
blinking. This means that it's working! Now, there are few more things we need to
do before we can really start using our Pi. Once it boots up, it will show the desktop
as follows:

Chapter 1

[15]

Once the desktop is visible, go to Menu | Accessories | lxterminal. Then, type sudo
raspi-config. A text-based menu, such as the following, will appear:

Introduction to Raspberry Pi and Python

[16]

Perform the following steps. We need to use arrow keys and the Enter key to select
options in the text-based menu. Press Enter to select a menu item. Also, we can use
the Tab key to directly go to the Select and Finish buttons:

1.	 Select Expand Filesystem.
2.	 In Boot Options, select B4 Desktop Autologin, as shown in the

following screenshot:

The default username is pi and the password is raspberry.
We need it when we don't choose any of the preceding autologin
options. We can change this password from the second option in
the raspi-config menu.
We can also choose to boot to the console by selecting any of
the first two options in the preceding menu. The default shell
of Raspbian is Bash. We can confirm it by typing the following
command:
echo $SHELL

We can always go to the graphical desktop from the Command
Prompt by typing the startx command in the console.

3.	 Go to Internationalisation Options | Change Timezone.
4.	 Go to Internationalisation Options | Change Keyboard Layout | Change it

to US (the default is UK).

Chapter 1

[17]

5.	 Select Enable Camera.
6.	 Select Advanced Options.
7.	 Under this option, select Memory Split and enter 64MB for GPU.

This option decides how much RAM is used by the GPU (Graphics Processor Unit).
The more RAM is allocated to the GPU, the more intensive graphics processing can
be done. 64 MB is a good value for most graphics purposes.

Once all these options are modified, select Finish. This will prompt for a reboot of
the Pi. Choose Yes and let it reboot. Once rebooted, it will automatically take us to
the Raspbian Desktop again.

You can always invoke the raspi-config tool from Command Prompt with the
following command and change the settings:

sudo raspi-config

Shutting down and rebooting Pi safely
In the Raspbian menu, there are options to shut down and reboot the Pi.

If we click on the following Menu button on the desktop, it will display
multiple options:

Introduction to Raspberry Pi and Python

[18]

The following image shows the last option:

If we click on the preceding option, the following window will appear:

Also, from Command Prompt LXTerminal, we can shut down Pi safely by issuing
the following command:

sudo shutdown –h now

An alternative command for this is as follows:

sudo halt

You can reboot Pi with the following command:

sudo reboot

Updating the Pi
Now we have a working Pi running on the Raspbian OS. Let's update our Pi. Make
sure you have a working wired or wireless Internet connection with reasonable
speed for this activity:

1.	 Connect your Pi to an Internet modem or router with an Ethernet cable or
plug in the Wi-Fi dongle to one of the USB ports.

2.	 Run the following command to restart the networking service:
sudo service networking restart

Chapter 1

[19]

3.	 Make sure that your Raspberry Pi is connected to the Internet by typing the
following command:
ping –c4 www.google.com

4.	 apt (Advanced Package Tool) is the utility used to install and remove
software in Debian and its variants. We need to use it to update our
Pi software.

5.	 Run the following commands in a sequence:

°° sudo apt-get update: This command synchronizes the package
list from the source. Indexes of all the packages are refreshed. This
command must be issued before we issue the upgrade command.

°° sudo apt-get upgrade: This command will install the newest
versions of all the already installed software. Any obsolete packages/
utilities are not removed automatically. If any software is in its
newest version, then it's left as it is.

°° sudo rpi-update: This command is used to upgrade the firmware.
The kernel and firmware are installed as a Debian package, and so
they will also get updates. These packages are updated infrequently
after extensive testing.

°° sudo reboot: This will reboot the computer.

Getting started with Python
Python is a high-level general-purpose programming language. It supports multiple
programming paradigms, such as object-oriented programming, imperative
programming, functional programming, procedural programming, aspect-oriented
programming, and metaprogramming. It has a dynamic type system, automatic
memory management, and a large standard library to carry out various tasks. It
emphasizes code readability, and its syntax allows you to carry out tasks in fewer
lines of code than other programming languages, such as C or C++.

Python was conceived and implemented by Guido van Rossum at CWI in the
Netherlands as a successor to the ABC language, capable of exception handling and
interfacing with the Amoeba operating system platform. Van Rossum is Python's
principal author, and he continues to have the central role in deciding the direction
of Python. He has been endowed with the title benevolent dictator for life (BDFL)
by the worldwide Python community.

Introduction to Raspberry Pi and Python

[20]

The core philosophy of the Python programming language is mentioned in this URL:
https://www.python.org/dev/peps/pep-0020/; its first few lines are as follows:

"Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts."

Python is the preferred programming language for the Raspberry Pi family of
computers. Its interpreter comes preinstalled with Raspbian, and there is no need for
any additional installation to get started with code. It is recommended that you have
chapter wise directories for the code examples presented in this book, as shown in
the following diagram:

Let's get started with Python. Open Raspbian's Command Prompt LXTerminal. It
is located as a shortcut on the taskbar. Alternately, we can find it by navigating to
Menu | Accessories | Terminal. We can start Python in interactive mode by typing
python in the prompt and then pressing the Enter key. It will take us to the Python
interactive shell, as follows:

https://www.python.org/dev/peps/pep-0020/

Chapter 1

[21]

Now type the following lines and press Enter:

print "Hello World!"

The output will be as follows:

Python 2.7.3 (default, Mar 18 2014, 05:13:23)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello World!"

Hello World!

Congrats! We have started with Python programming. The interactive mode of
Python is suitable for small programs. Press Ctrl + D to exit the interactive shell.
For large and code-intensive projects, it's recommended that you use Python in
script mode. In this book, we will be using Python in script mode unless specified
explicitly. Let's look at how to use Python in script mode.

Introduction to Raspberry Pi and Python

[22]

Create a subdirectory, book, in the /home/pi directory for the code examples in
this book. We can do this with mkdir book (by default, we are be in the /home/
pi directory). Then, navigate to this recently created directory with the cd book
command. We can verify our current directory with the pwd command. It returns
the current directory as follows:

pi@raspberrypi ~ $ mkdir book

pi@raspberrypi ~ $ cd book

pi@raspberrypi ~/book $ pwd

/home/pi/book

pi@raspberrypi ~/book $

As discussed earlier, we need to keep the code of each chapter in separate directories
for better organization. Now, create the chapter01 directory for this chapter in
the current book directory using mkdir chapter01. Navigate to this with cd
chapter01. At the beginning of each chapter, we are required to create a directory
for the chapter under /home/pi/book for the code examples of that chapter.

We will now create a script file for our code and run it.

Use the Nano text editor to create and edit script files. If we type nano prog1.py,
then Nano will open prog1.py for editing if it already exists in the current directory;
otherwise, it will create a new file with the name prog1.py. You can exit the Nano
editor by pressing Ctrl + X.

You can find more information about nano at
http://www.nano-editor.org/.

Alternatively, you can use the Leafpad text editor. We can find it by navigating to
Menu | Accessories. Or, we can invoke it from Command Prompt with the leafpad
prog1.py command.

Finally, you can also use vim, but you will need to install it by running the
following command:

sudo apt-get install vim

This is the link for an interactive tutorial on vim:
http://www.openvim.com/.

http://www.nano-editor.org/
http://www.openvim.com/

Chapter 1

[23]

Let's write the same Python code and run it as a script. Write the following code with
Nano, Leafpad, or vim, and save it as prog1.py:

print "Hello World!"

To run the preceding program, use the python prog1.py command, and the output
will be as follows.

We will run all the other Python programs in this book in the same way.

Let's try some more examples to have more hands-on Python.

The following is the iterative program to calculate the factorial of a given
positive integer:

def fact(n):
 num = 1
 while n >= 1:
 num = num * n
 n = n - 1
 return num

print (fact(10))

In the preceding program, def fact(n) is a user-defined function that accepts an
argument. The logic used to calculate the factorial of a positive integer follows the
definition and the function returns a calculated factorial. The last line of the program
calls the factorial function and prints the returned output as follows:

pi@raspberrypi ~/book/chapter01 $ python prog2.py

3628800

The following is an iterative program for the Fibonacci series:

def fib(n):
 a=0
 b=1
 for i in range(n):
 temp=a
 a=b
 b=temp+b
 return a

for i in range (0,10):
 print (fib(i))

Introduction to Raspberry Pi and Python

[24]

The preceding program prints the first 10 numbers in the Fibonacci series.
A more "Pythonic" way of writing the same program, which eliminates the
use of a temporary variable, is as follows:

def fib(n):
 a,b = 0,1
 for i in range(n):
 a,b = b,a+b
 return a

for i in range(0,10):
 print (fib(i))

The output of both of the preceding programs is the same and is as follows:

pi@raspberrypi ~/book/chapter01 $ python prog4.py

0

1

1

2

3

5

8

13

21

34

Turtle programming with Python
Turtle graphics is one of the best ways to learn programming for beginners.
Originally, it was part of the Logo programming language, which was primarily
used to introduce programming in schools. Python has the turtle module, which is
an implementation of the same functionality provided by the original turtle. We can
write programs with this module in a procedural as well as object-oriented way.

In Python, when we need to access a module that is not part of the current code, we
need to import it. Over the course of the book, we will be importing various modules
as and when needed, which will provide us with specific functionalities.

Let's get started with importing the turtle module, as shown here:

import turtle

Chapter 1

[25]

The following code creates objects for turtle and the screen classes, respectively:

t=turtle.Turtle()
disp=turtle.Screen()

We will use the t.color() function with which we can set the pen and fill color,
as follows:

t.color("black","yellow")

We will call the t.begin_fill() and t.end_fill() functions to have our shape
filled with a fill color:

t.begin_fill()
t.end_fill()

The code to draw an actual shape we need will be in between these two function
calls, as follows:

t.begin_fill()
while 1:
 t.forward(100)
 t.left(190)
 if abs(t.pos())<1:
 break
t.end_fill()
disp.exitonclick()

In the preceding code, t.forward() is used to move the turtle forward a specified
distance, and t.left() is used to rotate the turtle left by 190 degrees. t.pos()
returns the current coordinates of the turtle.

Finally, we use disp.exitonclick() to close the current output window when we
click on the exit button.

At the start, the turtle cursor is at (0,0) and is pointed toward the positive
direction of the x axis (facing right).

Introduction to Raspberry Pi and Python

[26]

The output of the program will be a cursor drawing the desired shape progressively,
and it helps the programmer understand how the program is actually working.
The final output of the preceding program is as follows:

Detailed documentation for the turtle API can be found at
https://docs.python.org/2/library/turtle.html.

Next, we will learn the concept of recursion. In terms of programming, recursion
means calling the same block of code within itself. For a procedural and modular
style of programming, this stands for calling a function or method within itself.
Usually, this is done to break a big problem into similar problems with smaller input
sizes and then collect the output of all these smaller problems to derive the output of
the big problem. One of the best ways to see recursion at work is to visualize it using
a turtle. We will now write a program to draw a fractal tree using recursion.

https://docs.python.org/2/library/turtle.html

Chapter 1

[27]

First, we start by importing the required libraries, as follows:

import turtle
import random

We need the random library for the randint() function, which returns a random
integer in the provided range. This is needed to make our generated tree seem
different every time. Then, we will define a function to draw a part of the
tree recursively:

def fractal_tree(b_len,t):
 if b_len > 5:
 temp=random.randint(1, b_len)
 temp_angle = random.randint(1, 25)
 t.forward(temp)
 t.right(temp_angle)
 fractal_tree(b_len-10,t)
 t.left(2 * temp_angle)
 fractal_tree(b_len-10,t)
 t.right(temp_angle)
 t.backward(temp)

In the preceding program, we are calling the same function twice in order to draw
the further branches of the tree. If the b_len parameter is less than or equal to
5, then it will be a leaf (which means that the function will not be called again);
else, the recursion will continue. We are randomizing the angle and length of the
movement of the turtle while drawing the branches here; otherwise, the tree will be
symmetrical, which is very unlikely in real life. The combination of t.forward(),
t.backward(), t.left(), and t.right() ensures that at the end of each function
call, the turtle cursor is at the same position as where it started.

Finally, we write the routine to call this recursive function:

t=turtle.Turtle()
disp=turtle.Screen()
t.left(90)
t.up()
t.backward(100)
t.down()
t.color("green")
fractal_tree(120,t)
disp.exitonclick()

Introduction to Raspberry Pi and Python

[28]

The cursor does not draw the movements between the t.up() and t.down()
function calls. In the preceding code, we are moving the cursor downward by 100
positions so that the tree should fit in the turtle graphics window. When we call
fractal_tree() with 120 as the argument, it takes more than 30 minutes due to
the high degree of recursion. The output of the preceding program is as follows:

Summary
In this chapter, we learned about the background of Raspberry Pi and Python.
We understood the details of the different models of Pi. We learned how to set up
the Raspberry Pi for programming. We also performed some hands-on Python
programs. Then, we learned some graphics programming with the turtle library.
This got us started with the Pi and the Python programming language, which we
will be using throughout the rest of the book.

In the next chapter, we will learn how to play and program minecraft-pi.

[29]

Minecraft Pi
In the previous chapter, we learned how to set up the Pi and looked at Python and
turtle modules briefly. In this chapter, we are going to explore the Pi version of a
popular computer game, Minecraft. We will also learn how to program Minecraft
with Python as the programming interface and use it to script user actions and build
wonderful things.

We will cover the following topics in this chapter:

•	 Introducing Minecraft Pi
•	 Playing Minecraft Pi
•	 Programming Minecraft Pi with Python

Introduction to Minecraft Pi
Minecraft is a very popular open world game. Like all other open world games,
the player can freely explore the virtual world in a Minecraft Pi game. Minecraft
was created by Markus Persson, and the game was later developed and published
by the company Mojang, which is a Microsoft Game Studios subsidiary now. Jens
Bergensten is the current lead designer and lead developer for the game. The alpha
version of the game was released for PCs in 2009, and the complete version was
released in 2011. The game is available for various platforms, which include PCs,
Linux, Mac OS, iOS, Android, PlayStation, Xbox, and Raspberry Pi.

You can get more information on Minecraft at
https://minecraft.net/.

https://minecraft.net/

Minecraft Pi

[30]

The version of this game for the Raspberry Pi is known as Minecraft Pi, and it was
released in 2013. It was developed by Aron Nieminen and Daniel Frisk. Minecraft
Pi focuses on the creative and building aspect of the game and does not include
gathering resources and combat.

Playing Minecraft Pi
Minecraft Pi comes preinstalled in the latest version of Raspbian. So, there is no
need for an additional installation. Minecraft Pi can be found by navigating to
Menu | Games. Alternatively, we can start it by typing minecraft-pi in
lxterminal. The following screen will appear once we start the game:

Chapter 2

[31]

Click on the Start Game button. Then, the following window will appear:

Click on Create New and it will start generating a new world for the gameplay:

Minecraft Pi

[32]

Once the new world for the gameplay is generated, the player character is placed in
the virtual world. The default view in the game is the first-person view. It will look
as follows:

In Minecraft Pi, a new world is randomly generated in a procedural
manner. This means that the world is randomly created with the
algorithm rather than using predetermined components. So, no two
worlds in Minecraft Pi will be the same. You can learn more about
procedural generation from https://en.wikipedia.org/wiki/
Procedural_generation.

We can switch from the first-person view to the third-person view by pressing the
Esc key or by clicking on the following button for a view change:

https://en.wikipedia.org/wiki/Procedural_generation
https://en.wikipedia.org/wiki/Procedural_generation

Chapter 2

[33]

Once this button is clicked on, it will change to the following button:

At this point, once we return to the game by pressing the Esc key or clicking on the
Back to game button, we will see our Minecraft Pi character in the third person,
as follows:

We can change this view to the first person view again by following the preceding
steps.

Minecraft Pi

[34]

Movement control in Minecraft Pi
We can use a mouse to look around and also make use of the following keys for
the movement:

Key Action
W Forward
S Backward
A Left
D Right
Spacebar Jump
Double spacebar Fly or fall

Like most first/third-person games, movement is controlled by WSAD keys on the
keyboard. The character jumps if spacebar is pressed once. If we hit spacebar twice,
the character is lifted in the air, as shown in the following screenshot:

Chapter 2

[35]

At this point, WSAD keys can be used to fly in the air. We can increase the altitude
by pressing spacebar while flying. The following screenshot shows the game world
view from a higher altitude:

If spacebar is pressed twice while flying, then the character will fall on the ground.
While the character is falling, if we press spacebar twice, it will stop falling.

Action control in Minecraft Pi
By default, the player character starts with a sword in hand. If we right-click with the
sword in hand, it will remove the block in front of the character.

There is a quick draw panel at the bottom of the screen, as follows:

Minecraft Pi

[36]

Any item can be selected by scrolling the mouse wheel or using the numbers on the
keyboard. The quick draw panel always hold eight items, and the current item in the
hand is highlighted as follows:

More items can be accessed by pressing the E key. This will open the inventory,
as follows:

Chapter 2

[37]

Items in the inventory can be navigated by WSAD keys. While the inventory is open,
if the Esc key is pressed, it will cancel the inventory without choosing an item. Items
in the inventory can be chosen by clicking on the item, and the item will be added to
the quick draw panel as well as the character's hand, as follows:

With a block in the character's hand, right-clicking will place the block in front of
the character and left-clicking will remove it. The number of blocks available to the
player character is infinite.

Minecraft Pi features a creative mode, so the character does not take environmental
damage (for example, when the character falls, it does not die) and is not affected by
hunger. This game mode helps players focus on building and creating large projects.

Unlike other editions of Minecraft, Minecraft Pi does not feature any other
gameplay modes.

Minecraft Pi

[38]

Other controls in Minecraft Pi
When a game is running, pressing the Tab key will take the focus away from the
game, and the mouse cursor will be freed to enable interaction with other windows
on the desktop. Pressing Esc will pause the game and will take us to the game menu,
where we can toggle views (as seen earlier), enable/disable sound, and quit the
main window.

Now, with all this information on the movements and the actions in
the Minecraft Pi virtual game world, try to create a few things before
continuing with the remainder of this chapter.

Python programming for Minecraft Pi
Minecraft Pi comes with the Python programming interface. This means that it's
possible to script the action of a character in the game using Python. In this section,
we will learn how to use Python programming to script the character actions as well
as create amazing effects in the Minecraft world.

Start Minecraft Pi and create the world. Once it's done, while the game is running,
free the mouse by pressing the Tab key and opening lxterminal. Create the /home/
pi/book/chapter02 directory. Navigate to the directory and write the following
code in the prog1.py file:

import mcpi.minecraft as minecraft

mc = minecraft.Minecraft.create()

mc.postToChat("Hello Minecraft World!")

The preceding program first imports the Minecraft Pi Python API. The second
statement creates the connection to Minecraft, and the third statement posts the
message to the game chat.

Chapter 2

[39]

Run the preceding code; the following is its output:

Let's take a look at some of the most important functions of the Minecraft Pi
Python API.

We can see the player's current coordinates in the game window in the top-left
corner of the window. We can retrieve these coordinates with getPos(). The
following is the code to retrieve the player character's current coordinates and
print them:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()
cur_pos = mc.player.getPos()
print cur_pos.x ; print cur_pos.y ; print cur_pos.z

This will print the current coordinates to the screen. Alternatively, the following
syntax can be used to achieve this:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()
print cur_x ; print cur_y ; print cur_z

Minecraft Pi

[40]

The setPos() function can be used to set the character's position. We need to pass
the desired coordinates of the character to this function, as follows:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()
mc.player.setPos(cur_x+10, cur_y, cur_z)

The preceding code will displace the character by 10 blocks in the x axis.

The following code will set the character position 100 blocks higher than the current
position, and as a result, the character will start falling:

mc.player.setPos(cur_x, cur_y + 100 , cur_z)

We can place the blocks of our choice with the setBlock() function. We need to
pass the coordinates of the block (the first three arguments) and the type of the block
(the fourth argument) we need to set to this function as follows:

import mcpi.minecraft as minecraft
import mcpi.block as block
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()
mc.setBlock(cur_x + 1 , cur_y , cur_z , block.ICE.id)

You will find an ice block placed in front of you. If you do not find the block, then try
to look around; it will be just beside or behind you.

Some blocks (such as wool and wood) have additional properties. We can pass
this additional property as the fifth argument to the function for the wool and
wood block types. The following code creates a column of a wool block with all
the possible colors:

import mcpi.minecraft as minecraft
import mcpi.block as block
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()

for i in range (0 , 15):
 mc.setBlock(cur_x + 1 , cur_y + i , cur_z , block.WOOL.id, i)

Run the preceding code and check the output for yourself.

Chapter 2

[41]

We can use setBlocks() to place multiple blocks for a given volume. The following
example places multiple gold blocks:

import mcpi.minecraft as minecraft
import mcpi.block as block
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()

mc.setBlocks(cur_x + 1 , cur_y + 1 , cur_z + 1 , cur_x + 6 ,
cur_y + 6 , cur_z + 6 , block.GOLD_BLOCK.id)

We can also use mathematical equations to draw geometric shapes in the game
world. Now we know that setBlock() is used to place a single block. We can use
this function in a single for loop to create a line of blocks. Calling this function in a
double for loop will set a two-dimensional geometric shape. We can further extend
this by introducing one more for loop. This will create a three-dimensional shape.
The following code places a golden sphere near the player's position. We will place
the gold block in the positions where the coordinates satisfy the equation of the
sphere with a radius of 10 blocks:

import mcpi.minecraft as minecraft
import mcpi.block as block

mc = minecraft.Minecraft.create()

r = 10

cur_x , cur_y , cur_z = mc.player.getPos()

for x in range(r*-1,r):
 for y in range(r*-1, r):
 for z in range(r*-1,r):
 if x**2 + y**2 + z**2 < r**2:
 mc.setBlock(cur_x + x, cur_y + (y + 20) , cur_z - (
 z + 20) , block.GOLD_BLOCK)

Minecraft Pi

[42]

The following is the output of the preceding program:

The following code places a gold block below the player's current position until the
execution of the code is terminated by pressing Ctrl + C:

import mcpi.minecraft as minecraft
import mcpi.block as block
import time

mc = minecraft.Minecraft.create()

while 1:
 cur_x, cur_y , cur_z = mc.player.getPos()
 mc.setBlock(cur_x,cur_y-1,cur_z,block.GOLD_BLOCK.id)
 time.sleep(0.1)

Chapter 2

[43]

The following is the output of the preceding code:

Now, we will conclude the chapter with some explosions. We can place a TNT block
near us. It can be activated by left-clicking while holding the sword in hand. It will
explode in a few seconds. The explosion will destroy some blocks in the blast radius:

cur_x, cur_y , cur_z = mc.player.getPos()
mc.setBlocks(cur_x+1,cur_y,cur_z, block.TNT.id,1)
This can be made more spectacular by placing multiple TNT blocks,
as follows:
import mcpi.minecraft as minecraft
import mcpi.block as block

mc = minecraft.Minecraft.create()

cur_x, cur_y , cur_z = mc.player.getPos()
mc.setBlocks(cur_x+1,cur_y,cur_z,cur_x+4,cur_y+3,
cur_z+3,block.TNT.id,1)

Minecraft Pi

[44]

Once blocks are placed, activate the TNT block by the sword. The following is
the screenshot of an explosion after activating the TNT blocks placed by the
preceding code:

The detailed Minecraft Pi Python API can be found at http://www.
stuffaboutcode.com/p/minecraft-api-reference.html.

Summary
In this chapter, we got ourselves familiarized with the Minecraft Pi gameplay and
learned how to program it using the Python API. We learned how to place and
remove a block. Also, we implemented the code required to create some wonderful
geometric shapes. In the end, we learned how to activate and explode TNT blocks to
blow the large areas in the in-game world.

In the next chapter, we will learn how to use the Pygame library in order to create a
game for the Pi.

http://www.stuffaboutcode.com/p/minecraft-api-reference.html
http://www.stuffaboutcode.com/p/minecraft-api-reference.html

[45]

Building Games
with PyGame

In the previous chapter, we learned how to get started with Minecraft on Raspberry
Pi and how to play it and use Python to manipulate things. Continuing with the
same theme, we will now take a look at a gaming library in Python called PyGame
and also learn how to create simple games with it. In this chapter, we will go through
the following topics:

•	 Introducing PyGame
•	 Drawing a fractal tree
•	 Building a simple snake game

Introducing PyGame
PyGame is a set of Python modules designed for the writing of video games. It is
built on top of the existing Simple DirectMedia (SDL) library, and it works with
multiple backends, such as OpenGL, DirectX, X11, and so on. It was built with the
intention of making game programming easier and faster without getting into the
low-level C code that was traditionally used to achieve good real-time performance.
It is also very flexible and comes with many operating systems. It is very fast as it can
use multiple core CPUs very easily and also use optimized C and assembly code for
core functions.

Building Games with PyGame

[46]

PyGame was built to replace PySDL after its development was discontinued.
Originally written by Pete Shinners, it is a community project from 2004 and is
released under the open source free software GNU's lesser general public license.
Since it is very simple to use and is open source, it has a lot of members in the
international community and so it enjoys access to a lot of resources that other
libraries may lack. There are many tutorials that can build different games with
PyGame. It contains the following modules

Module The description
cdrom Manages CD-ROM devices and audio playback
cursors Loads cursor images and includes standard cursors
display Controls the display window or screen
draw Draws simple shapes onto a surface
event Manages events and the event queue
font Creates and renders Truetype fonts
image Saves and loads images
joystick Manages joystick devices
key Manages the keyboard
mouse Manages the mouse
movie Used for the playback of MPEG movies
sndarray Manipulates sounds with Numeric
surfarray Manipulates images with Numeric
time Controls timing
transform Scales, rotates, and flips images

For more information on the PyGame library, you can visit
www.pygame.org.

Installing PyGame
PyGame usually comes installed with the latest Raspbian distribution, but if it isn't
you can use the following command to install it:

sudo apt-get install python-pygame

www.pygame.org

Chapter 3

[47]

Test your installation by opening a Python terminal by entering python in a regular
terminal and pressing Enter. Now, execute the following command:

import pygame

Now that you have your system set up and you have hopefully checked out the
PyGame website to explore its complete functionalities, we will move on to build
the binary fractal tree to introduce you to the workings of PyGame. Let's begin!

Drawing a binary fractal tree
A binary fractal tree is defined recursively by binary branching. Typically, it consists
of a trunk of length 1, which splits into two branches of decreasing or equal length,
each of which makes an angle Q with the direction of the trunk. Furthermore, both
of these branches are divided into two branches, each making an angle Q with the
direction of its parent branch, and so on. Continuing in this way, we can infinitely
make branches, and the collective diagram is called a fractal tree. The following
diagram visually shows what such a fractal tree might look like:

Building Games with PyGame

[48]

Now, let's move on to the code and take a look at how such a fractal tree can
be constructed with PyGame. Following this paragraph is the complete code,
and we will go through it statement by statement in further paragraphs:

import pygame
import math
import random
import time

width = 800
height = 600

pygame.init()
window = pygame.display.set_mode((width, height))
pygame.display.set_caption("Fractal Tree")
screen = pygame.display.get_surface()

def Fractal_Tree(x1, y1, theta, depth):
 if depth:
 rand_length=random.randint(1,10)
 rand_angle=random.randint(10,20)
 x2 = x1 + int(math.cos(math.radians(theta)) * depth * rand_
length)
 y2 = y1 + int(math.sin(math.radians(theta)) * depth * rand_length)
 if (depth < 5):
 clr = (0 , 255 , 0)
 else:
 clr = (255, 255 , 255)
 pygame.draw.line(screen, clr , (x1, y1), (x2, y2), 2)
 Fractal_Tree(x2, y2, theta - rand_angle, depth - 1)
 Fractal_Tree(x2, y2, theta + rand_angle, depth - 1)

Fractal_Tree((width/2), (height-10) , -90, 12)
pygame.display.flip()

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT or event.type ==
 pygame.KEYDOWN:
 pygame.quit()
 exit(0)

Chapter 3

[49]

Save the preceding code as prog1.py and then run the following:

 python prog1.py

You will now get the following output:

If you increase the depth by 2 with a slight increase in the canvas area, the fractal tree
now looks like this:

Building Games with PyGame

[50]

The new tree looks considerably denser and more branched out than the original tree.

Now, since you know what the output looks like, let's grab our magnifying glasses
and sift through the program to understand how it works!

The first four lines are there to satisfy the dependencies required to build the
program. These are PyGame, a math library, a library to generate random numbers,
and a library to keep track of time for delay functions. Next, we specify the
dimensions for the screen space required for our program.

The pygame.init() method initializes all the modules that were loaded as part of
importing pygame in the first statement. It is required to be executed if you want to
be able use any functionality of PyGame. The display.set_mode() method creates
a new Surface object, which represents the area on the screen that is visible to the
user. It takes a tuple consisting of the dimensions of the window as the argument:
the width and height variables in this case. It is literally the canvas on which you
can draw. Anything you do to this object will be shown to the user. Images and
other objects are represented as PyGame objects, and you can overlay them on the
the main surface. Then, we set the title of the window using the caption() method,
and finally, the screen variable actually gets the object that the display is stored in.
So now, our canvas is stored in the screen variable, and we will use it to make any
changes to the canvas.

The Fractal_Tree function should be fairly easy to understand. It takes four
arguments: the starting point of the branch (X1, Y1), the angle of the branch with
respect to the positive x axis—which is a horizontal line going to your right when
you look at the computer screen, and the depth of the fractal tree (which indicates
the levels in the tree). It is called for the first time in the 28th line with appropriate
arguments. You might notice that towards the end of the function, it calls itself using
different arguments. These kinds of function are called recursive functions and are
very useful in tasks where there is repetition and where the same task needs to be
performed with minor differences.

If the depth is positive, it selects a random length and angle for the next branch by
selecting a random integer from the randint() method of the random package. It
then specifies the coordinates of the end of that branch, which are labeled X2 and Y2.
If the depth is less that 5, it selects the color of the line as green; otherwise, it is white.
Here, it is important to understand that the color is represented in the RGB format.
Hence, (0, 255, 0) means green. Similarly, (255, 0, 0) will be red. The three numbers
in the tuple represent the intensity of RGB colors; hence, we can select any color
using a mixture of these three intensities.

Chapter 3

[51]

Finally, there is a recursive call to itself (Fractal_tree), and the program then
draws the second level of the fractal tree and so on until the depth becomes zero.
There are two recursive calls: one to draw the left branch and the other to draw
the right branch. If you've noticed, the function isn't actually executed until the
28th line. And once it is executed, the complete pattern is drawn at once due to
the recursiveness of the function, but it still isn't displayed. The next line, pygame.
display.flip(), is responsible for displaying the drawn shapes on screen:

while True:
 for event in pygame.event.get():
If event.type == pygame.QUIT or event.type == pygame.KEYDOWN:
 pygame.quit()
 exit(0)

This block of code is there to ensure that PyGame quits properly and specifies how
to shut down the program. The event.get()method clears the event queue so that
you always get the last event that occurred. An event queue consists of all the key
presses and mouse clicks that happen, and they are stored in a Last In First Out
(LIFO) fashion. You will see this while loop in almost every PyGame program as it
handles the exit of the program properly. If you are using IDLE, then not shutting
down PyGame properly can cause it to hang. In this case, PyGame quits when
pygame.quit() is executed. Finally, with exit(0), Python also quits and closes
the application.

As we are randomizing the length and the angle every time the function calls itself,
no two branches will be exactly the same, giving it the appearance of the irregularity
of real-life trees. By induction, no two trees will be same.

You can modify parts of this code to see for yourself how the tree behavior changes
on changing a few variables, such as theta and depth. Now that we have completed
all the basics of PyGame and can implement fairly complex problems, we are now
ready to move on to a real challenge: making an actual game.

Building a snake game
Who doesn't remember the classic game called Snake, which involves a snake
chasing a morsel of food? It is probably the very first game that you played as
a child. The basic premise of the game is that you control a snake and lead it
to a morsel of food. Every time the snake consumes that food, it grows by one
unit length, and if the snake hits a boundary wall or itself, it dies. Now as you
can imagine, the more you play the game, the longer the snake grows, which,
consequently, makes it more difficult to control the snake. In some versions of the
game, the speed of the snake also increases, making it even more difficult to control.
There comes a point where you simply run out of screen space and the snake
inevitably hits a wall or itself, and the game is over.

Building Games with PyGame

[52]

Here, we will learn how to build such a game. The basic logic of playing the game
will be to have a moving rectangle, of which we know the leading point coordinates.
This will be our snake. It will be controlled by the four arrow keys. The piece of food
is initialized randomly on the screen. At each point of time, we will check whether
the rectangle has hit the boundary wall or itself since we know the position of the
snake at every point of time. If it has, then the program will exit. Let's now look at
the code sectionwise; the code will be explained after each section:

from pygame.locals import *
import pygame
import random
import sys
import time

pygame.init()

fpsClock = pygame.time.Clock()

gameSurface = pygame.display.set_mode((800, 600))
pygame.display.set_caption('Pi Snake')

foodcolor = pygame.Color(0, 255, 0)
backgroundcolor = pygame.Color(255, 255, 255)
snakecolor = pygame.Color(0, 0, 0)
textcolor = pygame.Color(255, 0, 0)

snakePos = [120,240]
snakeSeg = [[120,240],[120,220]]
foodPosition = [400,300]
foodSpawned = 1
Dir = 'D'
changeDir = Dir
Score = 0
Speed = 5
SpeedCount = 0

Now, we will learn what each block of code does, but for brevity the very basics are
skipped as we have already learned about them in the previous sections.

Chapter 3

[53]

The first few lines before the finish() function initialize PyGame and set the
game parameters. The pygame.time.Clock()function is used to track time within
the game, and this is mostly used for frames per second, or FPS. While it seems
somewhat trivial, FPS is very important and can be tweaked. We can increase or
decrease the FPS to control the speed of the game. Going further into the code,
we can choose options such as the screen size, the color of the snake, the starting
position, the starting speed, and so on. The snakePos list variable has the head of the
snake, and snakeSeg will contain the initial coordinates of the segment of the snake
in a nested list. The first element contains the coordinates of the head, and the second
element contains the coordinates of the tail. This block of code also defines the initial
food position, the state of the food, the initial direction, the initial speed, and the
initial player score:

def finish():
 finishFont = pygame.font.Font(None, 56)
 msg = "Game Over! Score = " + str(Score)
 finishSurf = finishFont.render(msg, True, textcolor)
 finishRect = finishSurf.get_rect()
 finishRect.midtop = (400, 10)
 gameSurface.blit(finishSurf, finishRect)
 pygame.display.flip()
 time.sleep(5)
 pygame.quit()
 exit(0)

The preceding block of code defines the finishing procedure for the game. As we will
see in the following code, finish() is called when the snake either hits the walls or
itself. In this, we first specify the message that we want to display and its properties,
such as the font, and then we add the final score to it. Then, we render the message
via the render() function, which operates on the finishFont variable. Then, we
get a rectangle via get_rect(), and finally we draw those via the blit() function.
When using PyGame, blit() is a very important function that allows us to draw one
image on top of the other. In our case, this is very useful because it allows us to draw
a bounding rectangle over the message that we show as a part of the ending of the
game. Finally, we render our message on screen via the display.flip() function
and after a delay of 5 seconds, we quit the game:

while 1:
 for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
 exit(0)
elif event.type == KEYDOWN:
if event.key == ord('d') or event.key == K_RIGHT:

Building Games with PyGame

[54]

changeDir = 'R'
if event.key == ord('a') or event.key == K_LEFT:
changeDir = 'L'
if event.key == ord('w') or event.key == K_UP:
changeDir = 'U'
if event.key == ord('s') or event.key == K_DOWN:
changeDir = 'D'
if event.key == K_ESCAPE:
pygame.event.post(pygame.event.Event(QUIT))
 pygame.quit()
 exit(0)

if changeDir == 'R' and not Dir == 'L':
Dir = changeDir
if changeDir == 'L' and not Dir == 'R':
Dir = changeDir
if changeDir == 'U' and not Dir == 'D':
Dir = changeDir
if changeDir == 'D' and not Dir == 'U':
Dir = changeDir

if Dir == 'R':
snakePos[0] += 20
if Dir == 'L':
snakePos[0] -= 20
if Dir == 'U':
snakePos[1] -= 20
if Dir == 'D':
snakePos[1] += 20

Then, we move on to the infinite while loop, which contains the bulk of the game's
logic. Also, as mentioned earlier, the pygame.event.get()function gets the type
of event; according to what is pressed, it changes the state of some parameters. For
example, pressing the Esc key causes the game to quit, and pressing the arrow keys
changes the direction of the snake. After that, we check whether the new direction is
directly opposite to the old direction and change the direction only if it isn't. In this
case, changedDir is only an intermediate variable. We then change the position of
the snake according to the direction that's selected. Each shift in position signifies a
shift of 20 pixels on screen:

snakeSeg.insert(0,list(snakePos))
if snakePos[0] == foodPosition[0] and snakePos[1] == foodPosition[1]:
foodSpawned = 0
Score = Score + 1
SpeedCount = SpeedCount + 1

Chapter 3

[55]

if SpeedCount == 5 :
SpeedCount = 0
Speed = Speed + 1
else:
snakeSeg.pop()

if foodSpawned == 0:
x = random.randrange(1,40)
y = random.randrange(1,30)
foodPosition = [int(x*20),int(y*20)]
foodSpawned = 1

gameSurface.fill(backgroundcolor)
for position in snakeSeg:
pygame.draw.rect(gameSurface,snakecolor,Rect(position[0], position[1],
20, 20))
pygame.draw.circle(gameSurface,foodcolor,(foodPosition[0]+10,
foodPosition[1]+10), 10, 0)
pygame.display.flip()
if snakePos[0] > 780 or snakePos[0] < 0:
finish()
if snakePos[1] > 580 or snakePos[1] < 0:
finish()
for snakeBody in snakeSeg[1:]:
if snakePos[0] == snakeBody[0] and snakePos[1] == snakeBody[1]:
finish()
fpsClock.tick(Speed)

It is important to keep in mind that at this point, nothing is rendered on screen.
We are just implementing the logic for the game, and only after we are done with
that will anything be rendered on the screen. This will be done with the pygame.
display.flip()function. Another important thing is that there is another function
named pygame.display.update(). The difference between these two is that the
update() function only updates specific areas of the surface, whereas the flip()
function updates the entire surface. However, if we don't give any arguments to the
update() function, then it will also update the entire surface.

Building Games with PyGame

[56]

Now, since we changed the position of the head of the snake, we have to update
the snakeSeg variable to reflect this change in the snake body. For this, we use the
insert() method and give the position of object we want to append and the new
coordinates. This adds the new coordinates of the snake head into the snakeSeg
variable. Then comes the interesting part, where we check whether the snake has
reached the food. If it has, we increment the score, set the foodSpawned state to
False, and increase SpeedCount by one. So, once the speed count reaches five, the
speed is increased by one unit. If not, then we remove the last coordinate with the
pop() method. This is interesting because if the snake has eaten the food, then its
length will increase; consequently, the pop() method in the else statement will not
be executed, and the length of the snake will be increased by one unit.

In the next block of code, we check whether the food is spawned; if not, we randomly
spawn it, keeping in mind the dimensions of the screen. The randrange()function
from the random package allows us to do exactly that.

Finally, we get to the part where the actual rendering takes place. Rendering is
nothing but a term for the process that is required to generate and display something
on screen. The first statement fills the screen with our selected background color so
that everything else on the screen is easily visible:

for position in snakeSeg:
pygame.draw.rect(gameSurface,snakecolor,Rect(position[0], position[1],
20, 20))

The preceding block of code loops through all the coordinates present in the
snakeSeg variable and fills the space between them with the color specified for
our snake in the initialization code. The rect function takes three inputs: the
window name on which the game will be played, the color of the rectangle, and the
coordinates of the rectangle that are given by the Rect function. The Rect function
itself takes four arguments: the x and y position and height and width of the
rectangle. This means that for every coordinate contained in the snakeSeg variable,
we draw on a rectangle that has dimensions of 20 x 20 pixels. So, we can see that
we do not have to keep track of the snake as a whole; we only have to keep track of
the coordinates that describe the snake.

Next, we draw our food using the circle() method from the draw module in the
PyGame package. This method takes five arguments: the window name, the color,
the centre of the circle, the radius, and the width of the circle. The centre of the
circle is given by a tuple that contains the x and y coordinates that we selected
previously. The next statement, pygame.display.flip(), actually displays
what we have just drawn.

Chapter 3

[57]

Then, we check for the conditions in which the game can end: hitting the wall or
itself. When it hits an exit condition, the finish()function is called. The first two
lines of the function are self-explanatory. In the third line, render() basically makes
the text displayable. But it is not displayed yet. It will only be displayed once we
call the pygame.display.flip() function. The next two lines set the position of
the textbox that will be displayed on the window. And, finally, we quit the PyGame
window and the program after a delay of 5 seconds.

Save this program in a file named prog2.py and run it using the following command:

python prog2.py

This is what you will be greeted with:

We can play the game for as long as we want (and we should because it's our
creation) and when we exit, the game will be greeted by the same message that
was defined in the finish() function!

Building Games with PyGame

[58]

As you may recognize, in the preceding screenshot, the black shape is the snake and
the green circle is its food. You can play around with it and try to get an idea of the
logic behind this game as to how it might be programmed.

With this, we complete the implementation of the snake game, and you should
try out the program for yourself. An even better way to fully understand how
the program works is to change some parameters and see how that affects the
playing experience.

Summary
In this chapter, we learned about PyGame and its capabilities. We also learned how
to build a binary fractal tree with random branches.

Furthermore, we built a snake game and used it to gain further experience in
programming games using PyGame. You can also modify the game to gain any
additional features you like.

Using these examples as an inspiration, you can also try to build games of your own.
You can combine your knowledge of the chapter on Minecraft to build your own
simple Minecraft clone!

In the next chapter, we will learn about the basics of Pi Camera and its webcam and
how to capture images using them. We will also build some real-life examples using
the Python language.

[59]

Working with a Webcam and
Pi Camera

In the previous chapter, we learned how to set up and write our own games
using pygame. In this chapter, we will learn how to use different types and uses of
cameras with our Pi. Let's take a look at the topics we will study and implement in
this chapter:

•	 Working with a webcam
•	 Crontab
•	 Timelapse using a webcam
•	 Webcam video recording and playback
•	 Pi Camera and Pi NoIR comparison
•	 Timelapse using Pi Camera
•	 The PiCamera module in Python

Working with webcams
USB webcams are a great way to capture images and videos. Raspberry Pi supports
common USB webcams.

To be on the safe side, here is a list of the webcams supported by Pi:
http://elinux.org/RPi_USB_Webcams.

http://elinux.org/RPi_USB_Webcams

Working with a Webcam and Pi Camera

[60]

I am using a Logitech HD c310 USB Webcam as shown in the following image:

You can purchase it online, and you can find the product details
and the specifications at http://www.logitech.com/en-in/
product/hd-webcam-c310.

Attach your USB webcam to Raspberry Pi through the USB port on Pi and run the
lsusb command in the terminal. This command lists all the USB devices connected
to the computer. The output should be similar to the following output depending on
which port is used to connect the USB webcam:

pi@raspberrypi ~/book/chapter04 $ lsusb

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

Bus 001 Device 004: ID 148f:2070 Ralink Technology, Corp. RT2070 Wireless
Adapter

Bus 001 Device 007: ID 046d:081b Logitech, Inc. Webcam C310

Bus 001 Device 006: ID 1c4f:0003 SiGma Micro HID controller

Bus 001 Device 005: ID 1c4f:0002 SiGma Micro Keyboard TRACER Gamma Ivory

http://www.logitech.com/en-in/product/hd-webcam-c310
http://www.logitech.com/en-in/product/hd-webcam-c310

Chapter 4

[61]

Then, install the fswebcam utility by running the following command:

sudo apt-get install fswebcam

fswebcam is a simple command-line utility that captures images with webcams for
Linux computers. Once the installation is done, you can use the following command
to create a directory for output images:

mkdir /home/pi/book/output

Then, run the following command to capture the image:

fswebcam -r 1280x960 --no-banner ~/book/output/camtest.jpg

This will capture an image with a resolution of 1280 x 960. You might want to try
another resolution for your learning. The --no-banner command will disable the
timestamp banner. The image will be saved with the filename mentioned. If you
run this command multiple times with the same filename, the image file will be
overwritten each time. So, make sure that you change the filename if you want to
save previously captured images. The text output of the command should be similar
to the following output:

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

No input was specified, using the first.

--- Capturing frame...

Corrupt JPEG data: 2 extraneous bytes before marker 0xd5

Captured frame in 0.00 seconds.

--- Processing captured image...

Disabling banner.

Writing JPEG image to '/home/pi/book/output/camtest.jpg'.

Crontab
Cron is a time-based job scheduler in Unix-like computer operating systems. It is
driven by a crontab (cron table) file, which is a configuration file that specifies
shell commands to be run periodically on a given schedule. It is used to schedule
commands or shell scripts to run periodically at a fixed time, date, or interval.

The syntax for crontab in order to schedule a command or script is as follows:

1 2 3 4 5 /location/command

Working with a Webcam and Pi Camera

[62]

Here are the definitions:

•	 1: Minutes (0-59)
•	 2: Hours (0-23)
•	 3: Days (0-31)
•	 4: Months [0-12 (1 for January)]
•	 5: Days of the week [0-7 (7 or 0 for Sunday)]
•	 /location/command: The script or command name to be scheduled

The crontab entry to run any script or command every minute is as follows:

* * * * * /location/command 2>&1

We will be using crontab in many chapters in this book. In the next section, we
will learn how to use crontab to schedule a script to capture images periodically
in order to create the timelapse sequence.

You can refer to this URL for more details on crontab:
http://www.adminschoice.com/crontab-quick-reference.

Creating a timelapse sequence using
fswebcam
Timelapse photography means capturing photographs in regular intervals and
playing the images with a higher frequency in time than those that were shot. For
example, if you capture images with a frequency of one image per minute for 10
hours, you will get 600 images. If you combine all these images in a video with
30 images per second, you will get 10 hours of timelapse video compressed in 20
seconds. You can use your USB webcam with Raspberry Pi to achieve this. We
already know how to use the Raspberry Pi with a webcam and the fswebcam utility
to capture an image. The trick is to write a script that captures images with different
names and then add this script in crontab and make it run at regular intervals.

Begin with creating a directory for captured images:

mkdir /home/pi/book/output/timelapse

http://www.adminschoice.com/crontab-quick-reference

Chapter 4

[63]

Open an editor of your choice, write the following code, and save it as
timelapse.sh:

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")
fswebcam -r 1280x960 --no-banner
/home/pi/book/output/timelapse/garden_$DATE.jpg

Make the script executable using:

chmod +x timelapse.sh

This shell script captures the image and saves it with the current timestamp in its
name. Thus, we get an image with a new filename every time as the file contains
the timestamp. The second line in the script creates the timestamp that we're
using in the filename. Run this script manually once, and make sure that the
image is saved in the /home/pi/book/output/timelapse directory with the
garden_<timestamp>.jpg name.

To run this script at regular intervals, we need to schedule it in crontab.

The crontab entry to run our script every minute is as follows:

* * * * * /home/pi/book/chapter04/timelapse.sh 2>&1

Open the crontab of the Pi user with crontab –e. It will open crontab with
nano as the editor. Add the preceding line to crontab, save it, and exit it.

Once you exit crontab, it will show the following message:

no crontab for pi - using an empty one

crontab: installing new crontab

Our timelapse webcam setup is now live. If you want to change the image capture
frequency, then you have to change the crontab settings. To set it every 5 minutes,
change it to */5 * * * *. To set it for every 2 hours, use 0 */2 * * *. Make
sure that your MicroSD card has enough free space to store all the images for the
time duration for which you need to keep your timelapse setup.

Working with a Webcam and Pi Camera

[64]

Once you capture all the images, the next part is to encode them all in a fast playing
video, preferably 20 to 30 frames per second. For this part, the mencoder utility
is recommended. The following are the steps to create a timelapse video with
mencoder on a Raspberry Pi or any Debian/Ubuntu machine:

1.	 Install mencoder using sudo apt-get install mencoder
2.	 Navigate to the output directory by using:

cd /home/pi/book/output/timelapse

3.	 Create a list of your timelapse sequence images using:
ls garden_*.jpg > timelapse.txt

4.	 Use the following command to create a video:

mencoder -nosound -ovc lavc -lavcopts vcodec=mpeg4:aspect=16
/9:vbitrate=8000000 -vf scale=1280:960 -o timelapse.avi -mf
type=jpeg:fps=30 mf://@timelapse.txt

This will create a video with name timelapse.avi in the current directory with all
the images listed in timelapse.txt with a 30 fps frame rate. The statement contains
the details of the video codec, aspect ratio, bit rate, and scale. For more information,
you can run man mencoder on Command Prompt. We will cover how to play a
video in the next section.

Webcam video recording and playback
We can use a webcam to record live videos using avconv. Install avconv using
sudo apt-get install libav-tools. Use the following command to record
a video:

avconv -f video4linux2 -r 25 -s 1280x960 -i /dev/video0 ~/book/output/
VideoStream.avi

It will show following output on the screen:

pi@raspberrypi ~ $ avconv -f video4linux2 -r 25 -s 1280x960 -i /dev/
video0 ~/book/output/VideoStream.avi

avconv version 9.14-6:9.14-1rpi1rpi1, Copyright (c) 2000-2014 the Libav
developers

 built on Jul 22 2014 15:08:12 with gcc 4.6 (Debian 4.6.3-14+rpi1)

[video4linux2 @ 0x5d6720] The driver changed the time per frame from 1/25
to 2/15

[video4linux2 @ 0x5d6720] Estimating duration from bitrate, this may be
inaccurate

Chapter 4

[65]

Input #0, video4linux2, from '/dev/video0':

 Duration: N/A, start: 629.030244, bitrate: 147456 kb/s

 Stream #0.0: Video: rawvideo, yuyv422, 1280x960, 147456 kb/s, 1000k
tbn, 7.50 tbc

Output #0, avi, to '/home/pi/book/output/VideoStream.avi':

 Metadata:

 ISFT : Lavf54.20.4

 Stream #0.0: Video: mpeg4, yuv420p, 1280x960, q=2-31, 200 kb/s, 25
tbn, 25 tbc

Stream mapping:

 Stream #0:0 -> #0:0 (rawvideo -> mpeg4)

Press ctrl-c to stop encoding

frame= 182 fps= 7 q=31.0 Lsize= 802kB time=7.28 bitrate=
902.4kbits/s

video:792kB audio:0kB global headers:0kB muxing overhead 1.249878%

Received signal 2: terminating.

You can terminate the recording sequence by pressing Ctrl + C.

We can play the video using omxplayer. It comes with the latest raspbian,
so there is no need to install it. To play a file with the name vid.mjpg, use
the following command:

omxplayer ~/book/output/VideoStream.avi

It will play the video and display some output similar to the one here:

pi@raspberrypi ~ $ omxplayer ~/book/output/VideoStream.avi

Video codec omx-mpeg4 width 1280 height 960 profile 0 fps 25.000000

Subtitle count: 0, state: off, index: 1, delay: 0

V:PortSettingsChanged: 1280x960@25.00 interlace:0 deinterlace:0
anaglyph:0 par:1.00 layer:0

have a nice day ;)

Try playing timelapse and record videos using omxplayer.

Working with a Webcam and Pi Camera

[66]

Working with the Pi Camera and NoIR
Camera modules
These camera modules are specially manufactured for Raspberry Pi and work with
all the available models. You will need to connect the camera module to the CSI port,
located behind the Ethernet port, and activate the camera using the raspi-config
utility if you haven't already.

You can find the video instructions to connect the camera module to
Raspberry Pi at http://www.raspberrypi.org/help/camera-
module-setup/.

This page lists the types of camera modules available: http://www.raspberrypi.
org/products/.

Two types of camera modules are available for the Pi. These are Pi Camera and Pi
NoIR camera, and they can be found at https://www.raspberrypi.org/products/
camera-module/ and https://www.raspberrypi.org/products/pi-noir-
camera/, respectively.

The following image shows Pi Camera and Pi NoIR Camera boards side by side:

http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/products/
http://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/products/pi-noir-camera/
https://www.raspberrypi.org/products/pi-noir-camera/

Chapter 4

[67]

The following image shows the Pi Camera board connected to the Pi:

The following is an image of the Pi Camera board placed in the camera case:

The main difference between Pi Camera and Pi NoIR Camera is that Pi Camera gives
better results in good lighting conditions, whereas Pi NoIR (NoIR stands for No-Infra
Red) is used for low light photography. To use NoIR Camera in complete darkness,
we need to flood the object to be photographed with infrared light.

This is a good time to take a look at the various enclosures for Raspberry
Pi Models. You can find various cases available online at https://www.
adafruit.com/categories/289.

https://www.adafruit.com/categories/289
https://www.adafruit.com/categories/289

Working with a Webcam and Pi Camera

[68]

An example of a Raspberry Pi case is as follows:

Using raspistill and raspivid
To capture images and videos using the Raspberry Pi Camera module, we need to
use raspistill and raspivid utilities.

To capture an image, run the following command:

raspistill -o cam_module_pic.jpg

This will capture and save the image with name cam_module_pic.jpg in the
current directory.

To capture a 20 second video with the camera module, run the following command:

raspivid –o test.avi –t 20000

This will capture and save the video with name test.avi in the current directory.
Unlike fswebcam and avconv, raspistill and raspivid do not write anything
to the console. So, you need to check the current directory for the output. Also,
one can run the echo $? command to check whether these commands executed
successfully. We can also mention the complete location of the file to be saved in
these command, as shown in the following example:

raspistill -o /home/pi/book/output/cam_module_pic.jpg

Just like fswebcam, raspistill can be used to record the timelapse sequence.
In our timelapse shell script, replace the line that contains fswebcam with the
appropriate raspistill command to capture the timelapse sequence and use
mencoder again to create the video. This is left as an exercise for the readers.

Chapter 4

[69]

Now, let's take a look at the images taken with the Pi Camera under different
lighting conditions.

The following is the image with normal lighting and the backlight:

The following is the image with only the backlight:

Working with a Webcam and Pi Camera

[70]

The following is the image with normal lighting and no backlight:

For NoIR camera usage in the night under low light conditions, use IR illuminator
light for better results. You can get it online. A typical off-the-shelf LED IR
illuminator suitable for our purpose will look like the one shown here:

Chapter 4

[71]

Using picamera in Python with the Pi Camera
module
The picamera is a Python package that provides a programming interface to the Pi
Camera module. The most recent version of raspbian has picamera preinstalled.
If you do not have it installed, you can install it using:

sudo apt-get install python-picamera

The following program quickly demonstrates the basic usage of the picamera
module to capture an image:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(1024,768)
 cam.start_preview()
 time.sleep(5)
 cam.capture('/home/pi/book/output/still.jpg')

We have to import time and picamera modules first. cam.start_preview()
will start the preview, and time.sleep(5) will wait for 5 seconds before
cam.capture() captures and saves image in the specified file.

There is a built-in function in picamera for timelapse photography. The following
program demonstrates its usage:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(1024,768)
 cam.start_preview()
 time.sleep(3)
 for count,
 imagefile in enumerate(cam.capture_continuous
 ('/home/pi/book/output/image{counter:
 02d}.jpg')):
 print 'Capturing and saving ' + imagefile
 time.sleep(1)
 if count == 10:
 break

Working with a Webcam and Pi Camera

[72]

In the preceding code, cam.capture_continuous() is used to capture the
timelapse sequence using the Pi camera module.

Checkout more examples and API references for the picamera
module at http://picamera.readthedocs.org/.

The Pi camera versus the webcam
Now, after using the webcam and the Pi Camera, it's a good time to understand the
differences, the pros, and the cons of using these.

The Pi camera board does not use a USB port and is directly interfaced to the Pi.
So, it provides better performance than a webcam in terms of the frame rate and
resolution. We can directly use the picamera module in Python to work on images
and videos. However, the Pi camera cannot be used with any other computer.

A webcam uses an USB port for interface, and because of that, it can be used with
any computer. However, compared to the Pi Camera its performance, it is lower in
terms of the frame rate and resolution.

Summary
In this chapter, we learned how to use a webcam and the Pi camera. We also
learned how to use utilities such as fswebcam, avconv, raspistill, raspivid,
mencoder, and omxplayer. We covered how to use crontab. We used the Python
picamera module to programmatically work with the Pi camera board. Finally, we
compared the Pi camera and the webcam. We will be reusing all the code examples
and concepts for some real-life projects soon.

In the next chapter, we will learn about programming Pi GPIO with PiGlow, which is
a third-party add-on board for the Pi.

http://picamera.readthedocs.org/

[73]

Introduction to GPIO
Programming

In the previous chapter, we learned how to use a webcam and Pi Camera to capture
images and videos. We also built a timelapse photography box to get experience
about the real-life uses of what we learned.

In this chapter, we are going to adopt a hardware-focused approach and use
Raspberry Pi's most talked about feature: its GPIO (short for General Purpose Input
Output) pins. Specifically, we will learn how to use GPIO pins on Raspberry Pi B+
and Raspberry Pi 2. Once we get familiar with the use of the pins, we will also build
a real-life project to further our knowledge of their use. The following topics will be
covered in the chapter:

•	 Introducing GPIO pins
•	 Blinking an LED with GPIO pins
•	 Adding push button controls
•	 Learning about PiGlow

Introduction to GPIO Programming

[74]

Introducing GPIO pins
Most of you may know where GPIO pins are located on the Raspberry Pi. If not,
the following illustration will make it clear:

The following is a top view of the Raspberry Pi B+ board, which will help you see the
components even more clearly:

Chapter 5

[75]

The following diagram of the GPIO pins gives information about the naming
convention and the function of each of the pins:

Note that the GPIO pins of Raspberry Pi B+ and Pi 2 are the same.

As you can see from the preceding diagram, there are four power pins, two for 3.3V
and two for 5V, 8 ground pins distributed across the rail, 26 GPIO pins—some of
which also provide protocols such as UART, SPI, PCM, PWM, I2C—and two pins
reserved for accessing the EEPROM via I2C.

GPIO pins can be ON or OFF and HIGH or LOW. When a 3.3V pin is high, it outputs
3.3V, and when it is low, it outputs 0V. A GPIO pin can act as an input as well as an
output but not both at the same time. To use it as an output is as simple as setting the
pin state to ON or OFF.

Introduction to GPIO Programming

[76]

To use GPIO pins, we will use a simple Python library called RPi.GPIO, which takes
out all the effort and makes it easy to configure and use the pins. Configuring a pin
to be an output or an input requires only a single statement. We will now see how
to manipulate GPIO pins to use this library.

Take care to use Broadcom chip names for the GPIO pins. You can look this up in
the diagram given earlier. If our pin has been set to the output mode, we can also set
its activation or voltage level to HIGH or LOW. Keep in mind that in the case of the
Raspberry Pi, high voltage is represented by 3.3V, and low voltage is represented by
0V. It will be damaging for the Raspberry Pi if you connect a 5V device to its 3.3V
GPIO pins. However, you can use two 5V pins to power a small add-on, such as an
LED or a buzzer. If you plan to use anything that requires more current, ensure that
you use a separate power supply as the Pi can supply only a limited current. So,
directly powering a motor from the Pi is not a good idea.

You can do amazing things with the input pins. Not only can you take inputs from
a button, but you can also connect sensors, such as a light sensor, smoke sensor,
and temperature sensor to build all kinds of amazing projects. You can also use
an Internet-connected Raspberry Pi to control your outputs from anywhere in the
world! But the networking part is outside the scope of this chapter.

A simple project at this point would be to build a simple LED blinking program.
So let's see how that works!

Building an LED Blinker
For this project, you will require a humble low-power LED with the color of your
choice, which can be obtained at your local hardware store or can be ordered online.
The Raspberry Pi will act as both the switch and the power supply. In fact, we will
power and switch the LED from the same output pin. The complete code and the
wiring diagram has been given here. We will learn the code line by line following the
diagram. Connect your LED to the Raspberry Pi, as shown. In an LED, the longer leg
is the positive pin by convention, and the shorter leg has negative polarity. So take
care to connect it the right way, or it might get damaged:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)

def Blink(speed):
 GPIO.output(7,True)
 time.sleep(speed)

Chapter 5

[77]

 GPIO.output(7,False)
 time.sleep(speed)
 GPIO.cleanup()

Blink(1)

Once you've connected the LED as shown, go ahead and save the code as prog1.py,
and execute the following command:

python prog1.py

If everything goes according to the plan, you should now see your LED blinking.
Now we will analyze the code to see what exactly was done.

As usual, we begin the Python program by importing the required dependencies.
RPi.GPIO is the Python library that provides the API that allows us to use GPIO
pins. It is preinstalled on the Raspbian operating system. Then, we import the time
module that will provide us with the delay for the blink.

Introduction to GPIO Programming

[78]

GPIO.setmode() sets the addressing mode of the GPIO pins. There are two modes,
namely BOARD and BCM. The BOARD mode addresses the pins by the numbering
given on the board. For example, in the preceding GPIO diagram, the GPIO04 is
pin 7. The other mode is BCM and it defines the pins according to the Broadcom
Firmware on the Raspberry Pi. So, the GPIO04 pin will be referred to as 4 rather than
7. The next statement, GPIO.setup(), configures the specified pin to be an output or
input depending on the argument.

Now, we'll move on to the main chunk of the code, which is the Blink() function.
The GPIO.output() function takes two arguments: the pin number and the logical
operation to be performed. In the first output statement, we set pin 7 to HIGH, and
then in the second output statement, we set it to LOW. In between these functions,
we have the sleep() function from the time package, which takes only one
argument: the time in seconds. It does nothing but delay the execution of the next
statement by the input number of seconds, which could also be fractions such as 0.5
or 0.2. The last statement in the Blink()function is the cleanup() function, which
resets all the ports you have used back to the input mode. This prevents the pin from
being damaged when you have set HIGH as an output and then accidentally connect
it to ground, which would short-circuit the port. So, it's safer to leave the ports
as inputs.

Connecting a button
As we saw in the previous section, connecting an LED to a GPIO pin was easy, and
the code was simple. In this section, we will use the same general code in order to
program a GPIO pin to take an input from the button and if the button is pressed,
light the LED that we have already connected in the previous section. We will now
take a look at the code and then explain those lines that were not encountered in the
previous section:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_UP)
GPIO.setup(7, GPIO.OUT)

while True:
 input_state = GPIO.input(12)

if input_state == False:
 print('Button Pressed')
GPIO.output(7, True)

Chapter 5

[79]

else :
 print('Button Not Pressed')
GPIO.output(7, False)

Now, save the code as prog2.py and run it with the following command:

python prog2.py

In this section, we configure pin #12 (by board numbering) to be an output via the
same GPIO.setup() statement that we used in the previous section. But here, we
have an extra argument, pull_up_down=GPIO.PUD_UP. This means that the internal
resistor for the GPIO pin is being pulled up to 3.3V, and it will return False when
the button is pressed. This is a little counter-intuitive, but without pulling up or
down, the input will be left "floating", which means that the Pi will not be able to
determine a button press simply because it does not have anything to compare the
voltage level to!

Now we enter the infinite while loop, where it checks for the button state using the
GPIO.input()function. As mentioned earlier, if the button is pressed, input_state
will return False and the LED will be lit up. If, instead, the button is not pressed
anymore, the LED will go off!

Simple, isn't it? Let's move on a more complicated add-on.

Introduction to GPIO Programming

[80]

Installing PiGlow
The following figure shows the PiGlow board:

Since we have learned how to control an LED and a button via Raspberry Pi GPIO
pins, we will now move on to a module called PiGlow, which is an add-on board for
the Raspberry Pi and provides 18 individually controlled LEDs, and which you can
use via a provided library. We will now proceed to install the software requirements
for PiGlow by using a script provided by Pimoroni itself. To install PiGlow, run the
following command in a new terminal:

curl get.pimoroni.com/piglow | bash

To check whether PiGlow has been installed properly, open a Python terminal and
execute the following command:

import piglow

If it is successful, then continue.

To confirm whether I2C has been enabled, open the Raspberry Pi configuration tool
by entering the following command:

sudo raspi-config

Chapter 5

[81]

Then, select the Advanced Options menu from the displayed options.

When we enter the Advanced Options menu of raspi-config, we are greeted by the
following screen. We will now select the A7 option, which is I2C.

Introduction to GPIO Programming

[82]

Once we select the I2C menu, the following display will be shown:

Select Yes for both the previous screen and the following one:

Chapter 5

[83]

Using PiGlow
PiGlow has a set of female GPIO railings, which cover the Raspberry Pi's male GPIO
rails. In case of Raspberry Pi 2 and B+, the size of the railing in PiGlow is shorter, so
we need to make sure that PiGlow is attached to only lower numbered pins on the
Raspberry Pi.

You can find out more about PiGlow on the Pimoroni website at
https://shop.pimoroni.com/products/piglow.

We can now proceed to control the LEDs on the PiGlow board. Open up a Python
terminal and execute the following statements in a sequential order:

import piglow
piglow.red(64)

Here, we import the particular library in Python first. The red() method selects all
the red LEDs on the PiGlow board. It takes only one argument, the intensity of the
LEDs, which can be a number from 0 to 255. You can also try to pass the number
255 to the red() method to see how it affects the intensity of the LED. In this case,
passing 0 would mean that the LED is off. But once we execute the earlier two
statements, nothing will happen. We have to update the PiGlow with our changes
by issuing the following command:

piglow.show()

Why? Because if we are setting up a pattern, lighting the LED costs time and
resources. However, we can use the show method to draw the changes
instantaneously. If you find this strange, you can turn this off by turning
auto-update on with the following command:

piglow.auto_update = True

Similar to the red() method used earlier, we also have functions to control different
colors, namely white, blue, green, yellow, and orange.

But maybe we want to control each arm of the light rather than all the lights of a
single color. Well, we can do that with the arm() function! Take a look:

piglow.arm(0, 128)

https://shop.pimoroni.com/products/piglow

Introduction to GPIO Programming

[84]

The arm function takes two arguments. The first is the number of the arm, and
second is the intensity from 0 to 255. For example, in the earlier statement, we set
the LEDs of the first arm to an intensity of value 128, which is half of the full level of
brightness. Suppose we want to control arbitrary LEDs according to what we specify.
We're in luck! The set() function lets us control individual LEDs. It can be used in
the following ways:

•	 set(0, 255): This sets LED 0 to full brightness
•	 set([1, 3, 5], 200): This sets LEDs 1, 3, and 5 to a 200 level of brightness
•	 set(0, [255, 255, 255]): This sets three LEDs starting at 0 index to

full brightness

Now that we have learned the basics of using PiGlow, we will move on to building
real-life examples with it. First, we will build a very simple example that looks like
the arms of PiGlow are like cycle's spokes. Cool, right? The code is given here,
and an explanation is as follows:

import time
import piglow

i = 0

while True:
 print(i)
piglow.all(0)
piglow.set(i % 18, [15, 31, 63, 127, 255, 127, 63, 31, 15])
piglow.show()
i += 1
time.sleep(0.1)

Now save the program as prog1.py and run it with the following command:

python prog1.py

As with every Python program, we first import the dependencies required, which in
this case are the time library and the PiGlow library we just installed. Next, we set up
the counter to keep track of which LED we want to light up and to execute the bulk
of the program we enter into an infinite while loop. This while loop will continue
lighting the LEDs until we kill the program.

Chapter 5

[85]

First, we print the status of the counter, and then we execute the all() function,
which will refresh all the LEDs and ensure that they are turned off at the beginning.
We then use the third form of the set() function we saw earlier. This means that
starting from the zeroth LED, we light up nine LEDs in an ascending and then
descending fashion. The i % 18 will give the remainder of i divided by 18 so that the
index of the LED remains within the range of 0 to 18 at all times. Then, we actually
show the pattern that we set in the earlier statement via the show() function. Finally,
we increment the counter and add a delay of 100 milliseconds.

This pattern gets repeated for every LED, and when done in quick succession,
it appears like the spokes are cycling.

This was a very basic example, and now we're ready to move on to a more
complicated one, which involves building a binary clock. Let's begin!

Building a binary clock
In this example, we will be building a binary clock using the club PiGlow in which
each hour, minute, and second is represented by the three arms of PiGlow. The
numbers are displayed in the binary format. We will now look at the code and
learn what each part does:

import piglow
from time import sleep
from datetime import datetime

piglow.auto_update = True

show12hr = 1
ledbrightness = 10

piglow.all(0)

hourcount = 0
currenthour = 0

Introduction to GPIO Programming

[86]

Like the previous example, we import PiGlow and the time libraries, but we also
import an additional library, datetime, which gives us the current time. Then, we
set the auto-update parameter to true so that PiGlow updates as soon as we make
a change to it rather than pushing all the changes at once. We will now set some
customization parameters, namely selecting between a 12-hour format or a 24-hour
format and the brightness of the LEDs. With that completed, we refresh the LED to the
0 level and set the hour counters. Now we are ready to move on the meat of the code:

while True:
 time = datetime.now().time()
print(str(time))
hour = time.hour
min = time.minute
sec = time.second

if show12hr == 1:
 if hour > 12:
 hour = hour - 12

if currenthour != hour:
 hourcount = hour
currenthour = hour

for x in range(6):
 piglow.led(13 + x, (hour & (1 << x)) * ledbrightness)

for x in range(6):
 piglow.led(7 + x, (min & (1 << x)) * ledbrightness)

for x in range(6):
 piglow.led(1 + x, (sec & (1 << x)) * ledbrightness)

if hourcount != 0:
 sleep(0.5)
piglow.white(ledbrightness)
sleep(0.5)
hourcount = hourcount - 1
else :
 sleep(0.1)

The main code logic is executed inside an infinite while loop so that the program
never stops.

Chapter 5

[87]

We can now proceed to learn what it is that makes the program tick. First, we must
determine the current time, which is done by the datetime.now().time() method.
Then, we store each of current hour, minute, and time in a separate variable to
display them on separate arms. In the next if statement, we merely check whether
we want to display the 12-hour format, and if we do, we subtract 12 from the current
hour if it is greater than 12. So, something like 15 will be represented as 3. We have
two variables named currenthour and hourcount, which serve to keep the correct
hour displayed on the PiGlow arm by decrementing hourcount whenever an hour
passes. This way, the hour is decreased, which is necessary if we are using the 12
hour mode. To understand the next statements, which are actually responsible for
lighting up the LEDs, we need to understand the logic operators in Python. Some of
these are given as follows:

Operation Description
X and Y Logical AND
X or Y Logical OR
Not X Logical NOT
X | Y Bitwise OR
X ^ Y Bitwise XOR
X & Y Bitwise AND
X << Y Bitwise Left Shift
X >> Y Bitwise Right Shift

We are now greeted with a for loop. It has a very simple format as follows:

for (variable) in range(upper limit): The variable is a counter that starts from 0 and
gets incremented after each iteration even though we don't explicitly do it. The upper
limit, specified as the argument of the range() method, tells the for loop how many
iterations are to be executed.

So, for x in range(6), we will set up x as a counter and the loop will be executed
exactly six times. This is preferred since each arm has six LEDs, and each of
them can be set without having six separate statements.

Introduction to GPIO Programming

[88]

To understand what the following piece of code does, we will need to delve into
the world of binary numbers and bitwise operations. You will also notice that in the
argument of the led() function, we are doing a bitwise operation of the numbers.
Why so? In the first iteration of the for loop, the value of x is 0, and the binary
representation of 1 is 00000001. So, the bitwise shift operation will introduce no
change. In the second iteration, however, the value of x will be 1. So, a 1-bit left shift
will result in the binary number 00000010, which is the representation of integer
2. Similarly, the third iteration will result in 00000100, which is binary for 4. Now,
there is also the bitwise AND operation on the variables holding the values of hours,
minutes, and seconds. Consider, for example, that the current hour is 3 p.m. The
binary representation will be 00000011. If we do a bitwise AND operation in the first
iteration, we get 00000001. This is 1 and it is multiplied with the ledbrightness
variable; we light up the 13 + 0 = 13th LED at a brightness of 10. This LED is the
first LED of the arm that is represented by hours. Now, doing a bitwise AND in
the second iteration, we have hour = 00000011 and 1 << x = 00000010. The result
is 00000010, which is the integer 2. This means that the 14th LED will light with a
brightness of 20. But in the third iteration, since 1 << x = 00000100, we get the
integer 0 at the output, which means that the 15th LED will not light at all!

Applying the same logic if the time is 4 pm, the 13th LED will not light up, the 14th
LED will not light up, but the 15th LED will light up with a brightness of 40. Going
in the same direction, we now have an intuitive understanding of how the hours,
minutes, and seconds of the binary clock are represented.

Finally, we design the program to flash all the white LEDs once the hour finishes.
We also add 500-ms delays on both sides of the flash so that it doesn't appear too
sudden. Then, we decrement the hour count and the whole program repeats with
the updated time.

Now, save the code as prog3.py and run it with the following command:

python prog3.py

You will now be able to see the hours, minutes, and seconds represented as binary
numbers on PiGlow!

Chapter 5

[89]

Summary
This chapter was particularly interesting and hands-on because we learned how to
manipulate hardware from software! This is exactly the reason why the Raspberry Pi
and other boards with GPIO pins have become so popular. They allow you to control
real-life hardware applications with software.

We can create potentially unlimited applications for the Pi just by changing the
sensors connected to it and tweaking the code. We can build stuff such as home
automation systems, security applications, wearable devices, and many more with
just this small board! In this chapter, we had the humble beginnings of such projects
where we first learned to blink an LED, which wasn't very impressive by itself. Then,
we learned how to control that same LED with a button, which was a bit more fun.

Then, we learned about PiGlow and how to connect it to the Raspberry Pi. We
learned the various API commands that are used to control the LEDs on PiGlow,
and using these commands, we built a binary clock.

With these solid foundations, we then moved on to an even more complicated
undertaking, which involved a little theory and a bit of clever programming in
Python, which greatly reduced our effort.

In our next chapter, we will learn how to create animated movies. We will use a
more software-based approach and make animations such as stop motion.

[91]

Creating Animated Movies
with Raspberry Pi

In the previous chapter, we learned how to use GPIO pins to control LEDs and get
input from buttons. We also learned how to control the PiGlow module with its
provided Python API. In Chapter 4, Working with Webcam and Pi Camera, we learned
how to operate Pi Camera or a general webcam to capture images and videos. In
this chapter, we will combine the two concepts and learn how to create stop-motion
animation. In this chapter, we will learn about the following:

•	 Creating a stop-motion animation using a push button
•	 Examining the theory behind stop-motion
•	 Revisiting some GPIO concepts
•	 Using the ffmpeg library to render the shots into a video

Introducing stop-motion animation
A stop-motion animation is basically a video of sequenced images, such as those
where an object is physically manipulated so that it appears to move on its own
when the video is played. The position of the object is changed incrementally after
each shot so that over a course of multiple frames, it appears as though the object
is moving. A common subject for stop-motion animations is a clay object, such as a
bird, animal, and so on.

Creating Animated Movies with Raspberry Pi

[92]

Setting up the prerequisites
In addition to the Raspberry Pi, for this chapter we will require the following:

•	 Pi Camera
•	 Tactile push button
•	 Breadboard
•	 A few jumper cables

1.	 The tactile button can be purchased from your local hardware shop or online
from sellers such as Adafruit. It might look something like the following:

2.	 The breadboard is basically a temporary connection mechanism for electronic
components. Each pin in the 5-pin row is connected to each other, so they
behave as a common terminal for each component connected to the same
row. All the pins in the side rail are electrically connected and primarily
serve as power lines. A breadboard looks like the following:

Chapter 6

[93]

Jumper cables are nothing but wires that allow us to connect different rows in a
breadboard and look like this:

We will require the ffmpeg library installed on our Pi. This can be installed with the
following command:

sudo apt-get install ffmpeg

Once the installation is finished, you can test it by executing the following command:

avconv

If it is installed properly, then you should see some information about the avconv
tool. If not, then try to install it properly and then run the command again.

Setting up and testing the camera
Before booting up the Pi, we need to connect Pi Camera to it. This is as simple as
locating the camera port beside the Ethernet port, inserting the camera strip in it,
and pushing the tab down to secure it.

You can now test to check whether this works. After booting up the Pi, issue the
following command:

raspistill -o image.jpg

Creating Animated Movies with Raspberry Pi

[94]

If everything went fine, you should now see an image in your home directory. Open
it to check whether the camera took a satisfactory picture. Don't worry if it is upside
down as we will correct this shortly. It will look something like this:

Chapter 6

[95]

Now, we will look at the code to take a picture with Python. As we did earlier,
we will first see the code completely and then learn what it does statement by
statement. Here it is:

import picamera
from time import sleep

with picamera.PiCamera() as camera:
 camera.start_preview()
 sleep(3)
 camera.capture('/home/pi/image.jpg')
 camera.stop_preview()

We first import the PI camera library, which is required to take pictures with PiCam.
We also import the time library to provide delays in taking a picture. The next
statement essentially ensures that we can access picamera.PiCamera() with the
same camera. The camera.start_preview() method starts a preview screen for the
camera, and after a delay of 3 seconds the capture() method takes a picture. The
argument to the capture command gives the filename for the image file. Finally, the
stop_preview() method stops the preview.

Save the file as prog1.py and run it with the following command as this is a
python3 program:

python3 prog1.py

Now, double-click on the new image file from the File Explorer and check whether it
is upside down. If it is, then add the following two lines before the start_preview()
method to correct it:

camera.vflip = True
camera.hflip = True

Creating Animated Movies with Raspberry Pi

[96]

Adding the hardware button
To our current setup, we will add a hardware input button so that we can take
pictures when we press that button. So, connect a tactile button to the Raspberry Pi,
as shown in the following image:

Chapter 6

[97]

This time, we will use the BCM convention when specifying GPIO pins. We will
connect the button to the GPIO17 pin. Then, we will modify the code so that it looks
like the following:

import picamera
from RPi import GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

with picamera.PiCamera() as camera:
 camera.start_preview()
 GPIO.wait_for_edge(17, GPIO.FALLING)
 camera.capture('/home/pi/image.jpg')
 camera.stop_preview()

Save the preceding program as prog2.py and run it with the following command:

python3 prog2.py

We will now see what each line of code does, except those that we already saw in the
previous program. To use the GPIO pins, we have to import the RPi.GPIO library,
as we did in the previous chapter. Then, we set the GPIO addressing mode as BCM,
which uses the Broadcom convention rather than numbering the pins on the board.
This means that we can address the GPIO pin by its GPIO number rather than its
board number. With the setup() method, we configure the pin to be an input and
set it so that it is pulled up by default.

The function that actually does the magic is wait_for_edge(). It takes the pin
number as the first argument and GPIO_FALLING as the second. This means that the
function will be triggered only when the signal at pin 17 goes from high to low or
when it falls. So, it will be triggered when the button goes from the pressed state to
the unpressed state; that is, it will be triggered when we leave the button rather than
when we press the button. The next statements capture and save the image and then
exit the preview. If we want to take a selfie, then we can add a delay after the wait_
for_edge() function in order to enable us to get into position. Also, don't forget to
add the two commands to correct an upside down picture if such a need arises.

Now that we have successfully taken individual photos without a camera, it's time to
try taking a series of still images and combining them in order to make a stop-motion
animation. Just so that your home folder does not just get messy, we can create a new
folder and enter it with the following commands:

mkdir stopmotion

cd stopmotion

Creating Animated Movies with Raspberry Pi

[98]

Modify the given code and add a loop to take a picture every time the button is
pressed. The new code looks like the following:

import picamera
from RPi import GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

with picamera.PiCamera() as camera:
 camera.start_preview()
 frame = 1
 while True:
 GPIO.wait_for_edge(17, GPIO.FALLING)
 camera.capture('/home/pi/stopmotion/frame%03d.jpg' % frame)
 frame += 1
 camera.stop_preview()

What we have done is create an infinite while loop that keeps taking photographs as
long as the button is pressed. The frame variable keeps track of the current frame and
saves the corresponding image in the folder.

But be careful about the space limitations of your SD card. If we
hold down the button for long, the Pi could run out of space and
crash once it run out of space, causing us to lose all the data and
potentially corrupting the SD card.

Now, save the program as prog3.py and run it with the following command:

python3 prog3.py

Run the program and collect as many images as required for our stop-motion project.
Press Ctrl + C to exit the program and open the File Manager to see your images.

Rendering the video
We are now ready to render the video from the sequence of images we just collected.
We will begin rendering the video by entering the terminal window. Navigate to the
stopmotion folder with the following command:

cd /home/pi/stopmotion

Then, execute the following command to begin rendering the video:

avconv -r 10 -qscale 2 -i frame%03d.jpg animation.mp4

Chapter 6

[99]

We will now see what each part of this command does:

•	 -r specifies the frame rate for the video, which is currently set at 10
•	 -qscale specifies the quality for the video and can range from 2-5
•	 -i specifies the input file

Once the rendering is complete, you can play it with the following command:

omxplayer animation.mp4

Congratulations! You have just created your own stop-motion animation creator!
Go ahead and try it out. Build your own interesting animations and upload them
on YouTube.

Summary
In this chapter, we revised how to use Pi Camera with the Raspberry Pi and take
photos with it. We learned a neat trick to correct our photos if they are upside
down. We also learned how to use a GPIO to use a tactile button to act as the
trigger for our images.

Once we obtained the images required for our animation, we proceeded to combine
those images in a video, where we specified the frame rate and quality. Finally,
we rendered the video using the ffmpeg library.

In the next chapter, we will learn about the popular open source image processing
library, OpenCV, and get it set up on the Raspberry Pi. We will also implement
some interesting projects, such as video processing, logical operations on an image,
colorspace conversions, and much more!

[101]

Introduction to
Computer Vision

In the previous chapter, we implemented a battery-operated portable Pi time-lapse
box and a stop motion recording system. In this chapter, we will cover the basics of
computer vision with Pi using the OpenCV library. OpenCV is a simple yet powerful
tool for any computer vision enthusiast. One can learn about computer vision in an
easy way by writing OpenCV programs in Python. Using a Raspberry Pi computer
and Python for OpenCV programming is one of the best ways to start your journey
in the world of computer vision. We will cover the following topics in detail in
this chapter:

•	 Introducing computer vision
•	 Introducing OpenCV
•	 Setting up Pi for computer vision and NumPy
•	 Image basics in OpenCV
•	 Webcam video processing with OpenCV
•	 Arithmetic and logical operations on images
•	 Colorspace and the conversion of colorspace
•	 Object tracking based on colors

Introduction to Computer Vision

[102]

Introducing Computer Vision
Computer vision is an area of computer science, mathematics, and electrical
engineering. It includes ways to acquire, process, analyze, and understand images
and videos from the real world in order to mimic human vision. Also, unlike human
vision, computer vision can also be used to analyze and process depth and infrared
images. Computer vision is also concerned with the theory of information extraction
from images and videos. A computer vision system can accept different forms of
data as an input, including—but not limited to—images, image sequences, and
videos that can be streamed from multiple sources to further process and extract
useful information from it for decision making. Artificial intelligence and computer
vision share many topics, such as image processing, pattern recognition, and
machine learning techniques.

Introducing OpenCV
OpenCV (short for Open Source Computer Vision) is a library of programming
functions for computer vision. It was initially developed by the Intel Russia research
center in Nizhny Novgorod, and it is currently maintained by Itseez.

You can read more about Itseez at http://itseez.com/.

This is a cross-platform library, which means that it can be implemented and
operated on different operating systems. It focuses mainly on image and video
processing. In addition to this, it has several GUI and event handling features for
the user's convenience.

OpenCV was released under a Berkeley Software Distribution (BSD) license, and
hence, it is free for both academic and commercial use. It has interfaces for popular
programming languages, such as C/C++, Python, and Java, and it runs on a variety
of operating systems, including Windows, Android, and Unix-like operating
systems.

You can explore the OpenCV homepage, www.opencv.org,
for further details.

http://itseez.com/
www.opencv.org

Chapter 7

[103]

OpenCV was initially an Intel Research initiative to develop tools to analyze images.
The following is the timeline of OpenCV in brief:

In August 2012, support for OpenCV was taken over by a nonprofit foundation,
www.OpenCV.org, which is currently developing it further. It also maintains a
developer and user site for OpenCV.

At the time of writing this, the stable version of OpenCV is 2.4.10.
Version 3.0 Beta is also available.

Setting up Pi for Computer Vision
Make sure that you have a working, wired Internet connection with reasonable
speed for this activity. Now, let's prepare our Pi for computer vision:

1.	 Connect your Pi to the Internet through Ethernet or a Wi-Fi USB dongle.
2.	 Run the following command to restart the networking service:

sudo service networking restart

3.	 Make sure that Raspberry Pi is connected to the Internet by typing in the
following command:
ping –c4 www.google.com

If the command fails, then check the Internet connection with some other
device and resolve the issue. After that, repeat the preceding steps again.

www.OpenCV.org

Introduction to Computer Vision

[104]

4.	 Run the following commands in a sequence:
sudo apt-get update

sudo apt-get upgrade

sudo rpi-update

sudo reboot –h now

5.	 After this, we will need to install a few necessary packages and dependencies
for OpenCV. The following is the list of packages we need to install. You just
need to connect your Pi to the Internet and type this in:
sudo apt-get install <package-name> -y

Here, <package-name> is one of the following packages:

libopencv-dev libpng3 libdc1394-22-dev

build-essential libpnglite-dev libdc1394-22

libavformat-dev zlib1g-dbg libdc1394-utils

x264 zlib1g libv4l-0

v4l-utils zlib1g-dev libv4l-dev

ffmpeg pngtools libpython2.6

libcv2.3 libtiff4-dev python-dev

libcvaux2.3 libtiff4 python2.6-dev

libhighgui2.3 libtiffxx0c2 libgtk2.0-dev

libpng++-dev libtiff-tools libunicap2-dev

opencv-doc libjpeg8 libeigen3-deva

libcv-dev libjpeg8-dev libswscale-dev

libcvaux-dev libjpeg8-dbg libjpeg-dev

libhighgui-dev libavcodec-dev libwebp-dev

python-numpy libavcodec53 libpng-dev

python-scipy libavformat53 libtiff5-dev

python-matplotlib libgstreamer0.10-0-dbg libjasper-dev

python-pandas libgstreamer0.10-0 libopenexr-dev

python-nose libgstreamer0.10-dev libgdal-dev

v4l-utils libxine1-ffmpeg python-tk

libgtkglext1-dev libxine-dev python3-dev

libpng12-0 libxine1-bin python3-tk

libpng12-dev libunicap2 python3-numpy

Chapter 7

[105]

For example, you have to install x264, then you will need to to type
the following:
sudo apt-get install x264 -y

This will install the necessary package. Similarly, install all the previously
mentioned packages. If a package is already installed on your Pi, then it will
show the following message:
Reading package lists... Done

Building dependency tree

Reading state information... Done

x264 is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

In this case, don't worry. This package is already installed and comes with its
newest version. Just proceed with installing all the other packages in the list
one by one.

6.	 Finally, install OpenCV for Python with this:

sudo apt-get install python-opencv -y

This is the easiest way to install OpenCV for Python; however, there is a
problem with this. Raspbian repositories may not always contain the latest
version of OpenCV. For example, at the time of writing this, Raspbian
repository contains 2.4.1, while the latest OpenCV version is 2.4.10. With
respect to the Python API, the latest version will always contain much better
support and more functionality.
For the convenience of the readers, all these commands are included in an
executable shell script, chapter07.sh, in the code bundle. Just run the script
with the following command:
./chapter07.sh

This will install all the required packages and dependencies to get started
with OpenCV on Pi.

Introduction to Computer Vision

[106]

Another method to do the same is to compile OpenCV from the
source, which I will not recommend for beginners as it's a bit
complex and will take a lot of time.

Testing the OpenCV installation with Python
In Python, it's very easy to code for OpenCV. It requires very few lines of code
compared to C/C++, and powerful libraries such as NumPy can be exploited for
multidimensional data structures required for image processing.

Open a terminal and type python, and then type the following lines:

>>> import cv2

>>> print cv2.__version__

This will show us the version of OpenCV installed on the Pi, which is 2.4.1 in
our case.

Introducing NumPy
NumPy is the fundamental package used for scientific computing with Python
and it is matrix library for linear algebra. NumPy can also be used as an efficient
multidimensional container of generic data. Arbitrary datatypes can be defined and
used. NumPy is an extension to the Python programming language, adding support
for large, multidimensional arrays and matrices, along with a large library of high-
level mathematical functions to operate on these arrays. We will be using NumPy
arrays throughout this book in order to represent images and carry out complex
mathematical operations on them. NumPy comes with many built-in functions for all
these operations so that we do not have to worry about all the basic array operations.
We can directly focus on the concepts and code for computer vision. All OpenCV
array structures are converted to and from Numpy arrays. So, whatever operations
you can compute in Numpy, we can process them with OpenCV.

In this book, we will be using NumPy with OpenCV a lot. Let's start with some
simple example programs that will demonstrate the real power of NumPy.

Open python in the terminal and try out the upcoming examples.

Chapter 7

[107]

Array creation
Let's look at some examples of array creation. array()method is used very
frequently in the remainder of the book. There are many ways to create arrays of
different types. We will explore these ways as and when required throughout the
remainder of this book:

>>> import numpy as np

>>> x=np.array([1,2,3])

>>> x

array([1, 2, 3])

>>> y=range(10)

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Basic operations on arrays
We are going to learn about a linspace()function now. It takes three parameters:
start_num, end_num, and count. This creates an array with equally spaced points
starting with start_num and ending with end_num. Try out the following example:

>>> a=np.array([1,3,6,9])

>>> b=np.linspace(0,15,4)

>>> c=a-b

>>> c

array([1., -2., -4., -6.])

The following is the code to calculate the square of every element in an array:

>>> a**2

array([1, 9, 36, 81])

Introduction to Computer Vision

[108]

Linear algebra
Let's explore some linear algebra examples. We will look at the transpose(), inv(),
solve(), and dot() functions, which are useful for linear algebra:

>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]])

>>> a.transpose()

array([[1, 4, 7],

 [2, 5, 8],

 [3, 6, 9]])

>>> np.linalg.inv(a)

array([[-4.50359963e+15, 9.00719925e+15, -4.50359963e+15],

 [9.00719925e+15, -1.80143985e+16, 9.00719925e+15],

 [-4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])

>>> b=np.array([3,2,1])

>>> np.linalg.solve(a,b)

array([-9.66666667, 15.33333333, -6.])

>>> c= np.random.rand(3,3)

>>> c

array([[0.69551123, 0.18417943, 0.0298238],

 [0.11574883, 0.39692914, 0.93640691],

 [0.36908272, 0.53802672, 0.2333465]])

>>> np.dot(a,c)

array([[2.03425705, 2.59211786, 2.60267713],

 [5.57528539, 5.94952371, 6.20140877],

 [9.11631372, 9.30692956, 9.80014041]])

You can explore NumPy in detail at http://www.numpy.org/.

http://www.numpy.org/

Chapter 7

[109]

Working with images
Let's get started with the basics of OpenCV's Python API. All the scripts we will
write and run will use the OpenCV library, which must be imported with the import
cv2 line. We will import few more libraries as required, and in the next sections and
chapters, cv2.imread() will be used to import an image. It takes two arguments.
The first argument is the image filename. The image should be in the same directory
where the Python script is the absolute path that should be provided to cv2.
imread(). It reads images and saves them as NumPy arrays.

The second argument is a flag that specifies that the mode image should be read.
The flag can have the following values:

•	 cv2.IMREAD_COLOR: This loads a color image; it is the default flag
•	 cv2.IMREAD_GRAYSCALE: This loads an image in the grayscale mode
•	 cv2.IMREAD_UNCHANGED: This loads an image as it includes an alpha channel

The numeric values of the preceding flags are 1, 0, and -1, respectively.

Take a look at the following code:

import cv2 #This imports opencv
#This reads and stores image in color into variable img
img = cv2.imread('lena_color_512.tif',cv2.IMREAD_COLOR)

Now, the last line in the preceding code is the same as this:

img = cv2.imread('lena_color_512.tif',1)

We will be using the numeric values of this flag throughout the book.

The following code is used to display the image:

cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyWindow('Lena')

Introduction to Computer Vision

[110]

The cv2.imshow() function is used to display an image. The first argument is a
string that is the window name, and the second argument is the variable that holds
the image that is to be displayed.

cv2.waitKey() is a keyboard function. Its argument is the time in milliseconds.
The function waits for specified milliseconds for any keyboard key press. If 0 is
passed, it waits indefinitely for a key press. It is the only method to fetch and handle
events. We must use this for cv2.imshow() or no image will be displayed on screen.

cv2.destroyWindow() function takes a window name as a parameter and destroys
that window. If we want to destroy all the windows in the current program, we can
use cv2.destroyAllWindows().

We can also create a window with a specific name in advance and assign an image to
that window later. In many cases, we will have to create a window before we have
an image. This can be done using the following code:

cv2.namedWindow('Lena', cv2.WINDOW_AUTOSIZE)
cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Putting it all together, we have the following script:

import cv2
img = cv2.imread('lena_color_512.tif',1)
cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyWindow('Lena')

Chapter 7

[111]

To summarize, the preceding script imports an image, displays it, and waits for the
keystroke to close the window. The screenshot is as follows:

Introduction to Computer Vision

[112]

The cv2.imwrite() function is used to save an image to a specific path. The first
argument is the name of the file and second is the variable pointing to the image
we want to save. Also, cv2.waitKey() can be used to detect specific keystrokes.
Let's test the usage of both the functions in the following code snippet:

import cv2
img = cv2.imread('lena_color_512.tif', 1)
cv2.imshow('Lena', img)
keyPress = cv2.waitKey(0)
if keyPress == ord('q'):
 cv2.destroyWindow('Lena')
elif keyPress == ord('s'): cv2.imwrite('output.jpg', img)
cv2.destroyWindow('Lena')

Here, keyPress = cv2.waitKey(0) is used to save the value of the keystroke
in the keyPress variable. Given a string of length one, ord() returns an integer
representing the Unicode code point of the character when the argument is a
Unicode object or the value of the byte when the argument is an 8-bit string. Based
on keyPress, we either exit or exit after saving the image. For example, if the Esc key
is pressed, the cv2.waitKey()function will return 27.

Using matplotlib
We can also use matplotlib to display images. matplotlib is a 2D plotting library
for Python. It provides a wide range of plotting options, which we will be using in
the next chapter. Let's look at a basic example of matplotlib:

import cv2
import matplotlib.pyplot as plt
#Program to load a color image in gray scale and to display using
 matplotlib
img = cv2.imread('lena_color_512.tif',0)
plt.imshow(img,cmap='gray')
plt.title('Lena')
plt.xticks([])
plt.yticks([])
plt.show()

Chapter 7

[113]

In this example, we are reading an image in grayscale and displaying it using
matplotlib. The following screenshot shows the plot of the image:

The plt.xticks([]) and plt.yticks([]) functions can be used to disable x and
y axis. Run the preceding code again, and this time, comment out the two lines with
the plt.xticks([]) and plt.yticks([]) functions.

The cv2.imread() OpenCV function reads images and saves them as NumPy arrays
of Blue, Green, and Red (BGR) pixels.

Introduction to Computer Vision

[114]

However, plt.imshow() displays images in the RGB format. So, if we read an image
as it is with cv2.imread() and display it using plt.imshow(), then the value for
blue will be treated as the value for red and vice versa by plt.imshow(), and it
will display an image with distorted colors. Try out the preceding code with the
following alterations in the respective lines to experience the concept:

img = cv2.imread('lena_color_512.tif',1)
plt.imshow(img)

To remedy this issue, we need to convert an image read in the BGR format into an
RGB array format by cv2.imread()so that plt.imshow() will be able to render it
in a way that makes sense to us. We will be using the cv2.cvtColor() function for
this, which we will learn soon.

Explore this URL to get more information on matplotlib:
http://matplotlib.org/.

Working with Webcam using OpenCV
OpenCV has a functionality to work with standard USB webcams. Let's take a look at
an example to capture an image from a webcam:

import cv2

initialize the camera
cam = cv2.VideoCapture(0)
ret, image = cam.read()

if ret:
 cv2.imshow('SnapshotTest',image)
 cv2.waitKey(0)
 cv2.destroyWindow('SnapshotTest')
 cv2.imwrite('/home/pi/book/output/SnapshotTest.jpg',image)
cam.release()

In the preceding code, cv2.VideoCapture() creates a video capture object. The
argument for it can either be a video device or a file. In this case, we are passing a
device index, which is 0. If we have more cameras, then we can pass the appropriate
device index based on what camera to choose. If you have one camera, just pass 0.

http://matplotlib.org/

Chapter 7

[115]

You can find out the number of cameras and associated device indexes using the
following command:

ls -l /dev/video*

Once cam.read() returns a Boolean value ret and the frame which is the image it
captured. If the image capture is successful, then ret will be True; otherwise, it will
be False. The previously listed code will capture an image with the camera device,
/dev/video0, display it, and then save it. cam.release() will release the device.

This code can be used with slight modifications to display live video stream from
the webcam:

import cv2

cam = cv2.VideoCapture(0)
print 'Default Resolution is ' + str(int(cam.get(3))) + 'x' +
 str(int(cam.get(4)))
w=1024
h=768
cam.set(3,w)
cam.set(4,h)
print 'Now resolution is set to ' + str(w) + 'x' + str(h)

while(True):
 # Capture frame-by-frame
 ret, frame = cam.read()

 # Display the resulting frame
 cv2.imshow('Video Test',frame)

 # Wait for Escape Key
 if cv2.waitKey(1) == 27 :
 break

When everything done, release the capture
cam.release()
cv2.destroyAllWindows()

You can access the features of the video device with cam.get(propertyID). 3 stands
for the width and 4 stands for the height. These properties can be set with
cam.set(propertyID, value).

Introduction to Computer Vision

[116]

The preceding code first displays the default resolution and then sets it to 1024 x
768 and displays the live video stream till the Esc key is pressed. This is the basic
skeleton logic for all the live video processing with OpenCV. We will make use of
this in future.

Saving a video using OpenCV
We need to use the cv2.VideoWriter() function to write a video to a file. Take a
look at the following code:

import cv2
cam = cv2.VideoCapture(0)
output = cv2.VideoWriter('VideoStream.avi',
cv2.cv.CV_FOURCC(*'WMV2'),40.0,(640,480))

while (cam.isOpened()):
 ret, frame = cam.read()
 if ret == True:
 output.write(frame)
 cv2.imshow('VideoStream', frame)
 if cv2.waitKey(1) == 27 :
 break
 else:
 break

cam.release()
output.release()
cv2.destroyAllWindows()

In the preceding code, cv2.VideoWriter() accepts the following parameters:

•	 Filename: This is the name of the video file.
•	 FourCC: This stands for Four Character Code. We have to use the cv2.

cv.CV_FOURCC()function for this. This function accepts FourCC in the *'code'
format. This means that for DIVX, we need to pass *'DIVX', and so on. Some
supported formats are DIVX, XVID, H264, MJPG, WMV1, and WMV2.

You can read more about FourCC at www.fourcc.org.

•	 Framerate: This is the rate of the frames to be captured per second.
•	 Resolution: This is the resolution of the video to be captured.

www.fourcc.org

Chapter 7

[117]

The preceding code records the video till the Esc key is pressed and saves it in the
specified file.

Pi Camera and OpenCV
The following code demonstrates the use of Picamera with OpenCV. It shows
a preview for 3 seconds, captures an image, and displays it on screen using
cv2.imshow():

import picamera
import picamera.array
import time
import cv2

with picamera.PiCamera() as camera:
 rawCap=picamera.array.PiRGBArray(camera)
 camera.start_preview()
 time.sleep(3)
 camera.capture(rawCap,format="bgr")
 image=rawCap.array
cv2.imshow("Test",image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Retrieving image properties
We can retrieve and use many image properties with OpenCV functions. Take a look
at the following code:

import cv2
img = cv2.imread('lena_color_512.tif',1)
print img.shape
print img.size
print img.dtype

The img.shape operation returns the shape of the image, that is, its dimensions
and the number of color channels. The output of the previously listed code will be
as follows:

(512, 512, 3)
786432
uint8

Introduction to Computer Vision

[118]

If the image is colored, then img.shape returns a triplet containing the number of
rows, the number of columns, and the number of channels in the image. Usually, the
number of channels is three, representing the red, green, and blue channels. If the
image is grayscale, then img.shape only returns the number of rows and the number
of columns. Try to modify the preceding code to read the image in the grayscale
mode and observe the output of img.shape.

The img.size operation returns the total number of pixels, and img.dtype returns
the image datatype.

Arithmetic operations on images
In this section, we will take a look at the various arithmetic operations that can be
performed on images. Images are represented as matrices in OpenCV. So, arithmetic
operations on images are the same as arithmetic operations on matrices. Images must
be of the same size in order to perform arithmetic operations with images, and these
operations are performed on individual pixels .cv2.add() method is used to add
two images, where images are passed as parameters.

The cv2.subtract() method is used to subtract one image from another.

We know that subtraction operation is not commutative; so, cv2.
subtract(img1,img2) and cv2.(img2,img1) will yield different
results, whereas cv2.add(img1,img2) and cv2.add(img2,img1)
will yield the same result as the addition operation is commutative. Both
the images have to be of the same size and type as that explained earlier.

Check out the following code:

import cv2
img1 = cv2.imread('4.2.03.tiff',1)
img2 = cv2.imread('4.2.04.tiff',1)
cv2.imshow('Image1',img1)
cv2.waitKey(0)
cv2.imshow('Image2',img2)
cv2.waitKey(0)
cv2.imshow('Addition',cv2.add(img1,img2))
cv2.waitKey(0)
cv2.imshow('Image1-Image2',cv2.subtract(img1,img2))
cv2.waitKey(0)
cv2.imshow('Image2-Image1',cv2.subtract(img2,img1))
cv2.waitKey(0)
cv2.destroyAllWindows()

Chapter 7

[119]

The preceding code demonstrates the usage of arithmetic functions on images.
Image2 is the same Lena image that we experimented with in the previous chapter,
so I am not including its output window. The following is the output window
of Image1:

Introduction to Computer Vision

[120]

The following is the output of the Addition:

Chapter 7

[121]

The following is the output window of Image1-Image2:

Introduction to Computer Vision

[122]

The following is the output window if Image2-Image1:

Splitting and merging image color
channels
On several occasions, we might be interested in working separately with the red,
green, and blue channels. For example, we might want to build a histogram for
each channel of an image.

Chapter 7

[123]

The cv2.split() method is used to split an image into three different intensity
arrays for each color channel, whereas cv2.merge() is used to merge different
arrays into a single multichannel array, that is, a color image. Let's take a look at
an example:

import cv2
img = cv2.imread('4.2.03.tiff',1)
b,g,r = cv2.split (img)
cv2.imshow('Blue Channel',b)
cv2.imshow('Green Channel',g)
cv2.imshow('Red Channel',r)
img=cv2.merge((b,g,r))
cv2.imshow('Merged Output',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

The preceding program first splits the image into three channels (blue, green, and
red) and then displays each one of them. The separate channels will only hold the
intensity values of that color, and they will be essentially displayed as grayscale
intensity images. Then, the program will merge all the channels back into an image
and display it.

Negating an image
In mathematical terms, the negative of an image is the inversion of colors. For
a grayscale image, it is even simpler! The negative of a grayscale image is just
the intensity inversion, which can be achieved by finding the complement of the
intensity from 255. A pixel value ranges from 0 to 255 and, therefore, negation is the
subtraction of the pixel value from the maximum value, that is, 255. The code for this
is as follows:

import cv2
img = cv2.imread('4.2.07.tiff')
grayscale = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
negative = abs(255-grayscale)
cv2.imshow('Original',img)
cv2.imshow('Grayscale',grayscale)
cv2.imshow('Negative',negative)
cv2.waitKey(0)
cv2.destroyAllWindows()

The negative of a negative will be the original grayscale image. Try this
on your own by taking the image negative of a negative again.

Introduction to Computer Vision

[124]

Logical operations on images
OpenCV provides bitwise logical operation functions on images. We will take a
look at functions that provide bitwise logical AND, OR, XOR (exclusive OR), and
NOT (inversion) functionalities. These functions can be better demonstrated visually
with grayscale images. I am going to use barcode images in horizontal and vertical
orientations for demonstration. Look at the following code:

import cv2
import matplotlib.pyplot as plt

img1 = cv2.imread('Barcode_Hor.png',0)
img2 = cv2.imread('Barcode_Ver.png',0)
not_out=cv2.bitwise_not(img1)
and_out=cv2.bitwise_and(img1,img2)
or_out=cv2.bitwise_or(img1,img2)
xor_out=cv2.bitwise_xor(img1,img2)

titles = ['Image 1','Image 2','Image 1 NOT','AND','OR','XOR']
images = [img1,img2,not_out,and_out,or_out,xor_out]

for i in xrange(6):
 plt.subplot(2,3,i+1)
 plt.imshow(images[i],cmap='gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

We first read images in the grayscale mode and calculate the NOT, AND, OR, and
XOR, and then, with matplotlib, we display them in a neat way. We are leveraging
the plt.subplot() function here to display multiple images. In this example,
we are creating a two row and three column grid for our images and displaying
each image in every part of the grid. You can modify this line and make it
plt.subplot(3,2,i+1) in order to create a three row and two column grid.

We can do this without a loop in the following way. For each image, you have to
write the following statements. I am writing this for the first image here only. Go
ahead and write it for the rest of the five images:

plt.subplot(2,3,1) , plt.imshow(img1,cmap='gray') , plt.title('Image
1') , plt.xticks([]),plt.yticks([])

Chapter 7

[125]

Finally, use plt.show() to display. This technique is to avoid the loop where there is
very small number of images to be displayed: usually 2 or 3. The output of this will
be exactly the same, as follows:

You might want to make a note of the fact that a logical NOT
operation is the negative of the image.
You can check out the Python OpenCV API documentation at
http://docs.opencv.org/modules/refman.html.

http://docs.opencv.org/modules/refman.html

Introduction to Computer Vision

[126]

Colorspaces and conversions
A colorspace is a mathematical model used to represent colors. Usually, colorspaces
are used to represent colors in a numerical form and perform mathematical and
logical operations with them. In this book, the colorspaces we mostly use are BGR
(OpenCV's default colorspace), RGB, HSV, and grayscale. BGR stand for Blue,
Green, and Red. HSV represents colors in the Hue, Saturation, and Value format.
OpenCV has a cv2.cvtColor(img,conv_flag) function that allows us to change
the colorspace of an img image, while the source and target colorspaces are indicated
in the conv_flag parameter. We have learned that OpenCV loads images in the
BGR format, and matplotlib uses the RGB format for images. So, before displaying
images with matplotlib, we need to convert images from BGR to the RGB
colorspace. Take a look at the following code. The programs read image in the color
mode using cv2.imread(), which imports the image in the BGR colorspace. Then,
it converts it into RGB using cv2.cvtColor(), and finally, it uses matplotlib to
display the image:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('4.2.07.tiff',1)
img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)
plt.imshow(img), plt.title('COLOR IMAGE'), plt.xticks([]),
 plt.yticks([])
plt.show()

Another way to convert an image from BGR to RGB is to first split the image
into three separate channels (B, G, and R channels) and merge them in the BGR
order. However, this takes more time as split and merge operations are inherently
computationally costly, making them slower and inefficient. The following code
shows this method:

import cv2
import matplotlib.pyplot as plt
img = cv2.imread('4.2.07.tiff',1)
b,g,r = cv2.split(img)
img=cv2.merge((r,g,b))
plt.imshow(img), plt.title('COLOR IMAGE'), plt.xticks([]),
 plt.yticks([])
plt.show()

Chapter 7

[127]

The output of both the programs is the same as that shown in the following screenshot:

If you need to know the colorspace conversion flags, then the following snippet
of code will assist you in finding the list of available flags for your current
OpenCV installation:

import cv2
j=0
for filename in dir(cv2):
 if filename.startswith('COLOR_'):
 print filename
 j=j+1

print 'There are ' + str(j) + ' Colorspace Conversion flags in
 OpenCV'

Introduction to Computer Vision

[128]

The last few lines of the output will be as follows (I am not including the complete
output due to space limitation):

.

.

.
COLOR_YUV420P2BGRA
COLOR_YUV420P2GRAY
COLOR_YUV420P2RGB
COLOR_YUV420P2RGBA
COLOR_YUV420SP2BGR
COLOR_YUV420SP2BGRA
COLOR_YUV420SP2GRAY
COLOR_YUV420SP2RGB
COLOR_YUV420SP2RGBA
There are 176 Colorspace Conversion flags in OpenCV

The following code converts a color from BGR to HSV and prints it:

>>> import cv2

>>> import numpy as np

>>> c = cv2.cvtColor(np.uint8[[[255,0,0]]]),cv2.COLOR_BGR2HSV)

>>> print c

[[[120 255 255]]]

The preceding snippet of code prints an HSV value of Blue represented in BGR.

Hue, Saturation, Value (HSV) is a color model that describes colors (hue or tint) in
terms of their shade (the saturation or the amount of gray) and their brightness (the
value or luminance). Hue is expressed as a number representing hues of red, yellow,
green, cyan , blue, and magenta. Saturation is the amount of gray in the color. Value
works in conjunction with saturation and describes the brightness or intensity of
the color.

Chapter 7

[129]

Tracking in real time based on color
Let's study a real-life application of this concept. In the HSV format, it's much easier
to recognize the color range. If we need to track a specific color object, we will need
to define a color range in HSV and then convert the captured image in the HSV
format and check whether the part of that image falls within the HSV color range of
our interest. We can use the cv2.inRange() function to achieve this. This function
takes an image, the upper and lower bounds of the colors, and then it checks the
range criteria for each pixel. If the pixel value falls in the given color range, then
the corresponding pixel in the output image is 0; otherwise, it is 255, thus creating a
binary mask. We can use bitwise_and() to extract the color range we're interested
in using this binary mask thereafter. Take a look at the following code to understand
this concept:

import numpy as np
import cv2

cam = cv2.VideoCapture(0)

while (True):
 ret, frame = cam.read()

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

image_mask = cv2.inRange(hsv, np.array([40, 50, 50]),
 np.array([80, 255, 255]))

output = cv2.bitwise_and(frame, frame, mask = image_mask)

cv2.imshow('Original', frame)
cv2.imshow('Output', output)

if cv2.waitKey(1) == 27:
 break

cv2.destroyAllWindows()
cam.release()

Introduction to Computer Vision

[130]

We're tracking the green-colored objects in this program. The output should be
similar to the following figure. I used green tea bag tags as the test object.

The mask image is not included in the preceding figure. You can see it yourself by
adding cv2.imshow('Image Mask',image_mask) to the code. It will be a binary
(pure black and white) image.

We can also track multiple colors by tweaking this code a bit. We need to modify
the preceding code by creating a mask for another color range. Then, we can use
cv2.add() to get the combined mask for two distinct color ranges, as follows:

blue=cv2.inRange(hsv, np.array([100,50,50]),
 np.array([140,255,255]))
green=cv2.inRange(hsv,np.array([40,50,50]),np.array([80,255,255]))
image_mask=cv2.add(blue,green)
output=cv2.bitwise_and(frame,frame,mask=image_mask)

Try this code and check the output by yourself.

Summary
In this chapter, we learned the basics of computer vision with OpenCV and Pi. We
also went through the basic image processing operations and implemented a real-life
project to track objects in a live video stream based on the color.

In the next chapter, we will learn some more advanced concepts in computer vision
and implement a fully fledged motion detection system with Pi and a webcam with
the use of these concepts.

[131]

Creating Your Own Motion
Detection and Tracking

System
In the previous chapter, we studied the basics of the OpenCV library. We set up our
Pi for OpenCV programming with Python and implemented a simple project to track
an object based on the color in OpenCV with a live webcam feed. In this chapter,
we will learn about some more advanced concepts and implement one more project
based on OpenCV. In this chapter, we will learn about the following topics:

•	 Thresholding
•	 Noise reduction
•	 Morphological operations on images
•	 Contours in OpenCV
•	 Real-time motion detection and tracking

Thresholding images
Thresholding is a way to segment images. Although thresholding methods and
algorithms are available for colored images, it works best on grayscale images.
Thresholding usually (but not always) converts grayscale images into binary
images (in a binary image, each pixel can have only one of the two possible
values: white or black). Thresholding the image is usually the first step in
many image processing applications.

Creating Your Own Motion Detection and Tracking System

[132]

The way thresholding works is very simple. We define a threshold value. For a pixel
in a grayscale image, if the value of grayscale intensity is greater than the threshold,
then we assign a value to the pixel (for example, white); otherwise, we assign a black
value to the pixel. This is the simplest form of thresholding. Also, there are many
other variations of this method, which we will look at now.

In OpenCV, the cv2.threshold() function is used to threshold images. Its input
includes grayscale image, threshold values, maxVal, and threshold methods as
parameters and returns the thresholded image as the output. maxVal is the value
assigned to the pixel if the pixel intensity is greater (or lesser in some methods)
than the threshold. There are many threshold methods available in OpenCV; in the
beginning, the simplest form of thresholding we saw was cv2.THRESH_BINARY.
Let's look at the mathematical representation of some of the threshold methods.

Say (x,y) is the input pixel; then, operations for threshold methods will be as follows:

•	 cv2.THRESH_BINARY

If intensity(x,y)> threshold, then set intensity(x,y)=maxVal; else, set
intensity(x,y) = 0

•	 cv2.THRESH_BINARY_INV

If intensity(x,y)> threshold, then set intensity(x,y)=0; else,
set intensity(x,y) = maxVal

•	 cv2.THRESH_TRUNC

If intensity(x,y)> threshold, then set intensity(x,y)=threshold; else,
leave intensity(x,y) as it is

•	 cv2.THRESH_TOZERO

If intensity(x,y)> threshold, then leave intensity(x,y) as it is; else, set
intensity(x,y) = 0

•	 cv2.THRESH_TOZERO_INV

If intensity(x,y)> threshold, then set intensity(x,y)=0; else, leave
intensity(x,y) as it is

The demonstration of the threshold functionality usually works best on grayscale
images with a gradually increasing gradient. In the following example, we are
setting the value of the threshold as 127, so the image is segmened in two sets of
pixels depending on the value of their intensity:

import cv2
import matplotlib.pyplot as plt

Chapter 8

[133]

img = cv2.imread('gray21.512.tiff',0)
th=127
max_val=255
ret,o1 = cv2.threshold(img,th,max_val,cv2.THRESH_BINARY)
ret,o2 = cv2.threshold(img,th,max_val,cv2.THRESH_BINARY_INV)
ret,o3 = cv2.threshold(img,th,max_val,cv2.THRESH_TOZERO)
ret,o4 = cv2.threshold(img,th,max_val,cv2.THRESH_TOZERO_INV)
ret,o5 = cv2.threshold(img,th,max_val,cv2.THRESH_TRUNC)

titles = ['Input Image','BINARY','BINARY_INV','TOZERO',
 'TOZERO_INV','TRUNC']
output = [img, o1, o2, o3, o4, o5]

for i in xrange(6):
 plt.subplot(2,3,i+1),plt.imshow(output[i],cmap='gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

The output of the preceding code will be as follows:

Creating Your Own Motion Detection and Tracking System

[134]

Otsu's method
Otsu's method for thresholding automatically determines the value of the
threshold for images that have two peaks in their histogram (bimodal
histograms). The following is a bimodal histogram:

This usually means that the image has background and foreground pixels and Otsu's
method is the best way to separate these two sets of pixels automatically without
specifying a threshold value.

Otsu's method is not the best way for those images that are not in the background
and foreground model and may provide improper output if applied.

This method is applied in addition to other methods, and the threshold is passed as
0. Try out the following code:

ret,output=cv2.threshold(image,0,255,cv2.THRESH_BINARY+cv2.THRESH_
OTSU)

Chapter 8

[135]

The output of this will be as follows. This is a screenshot of a tank in a desert:

Creating Your Own Motion Detection and Tracking System

[136]

Noise
Noise means an unwanted signal. Image/video noise means unwanted variations
in intensity (for grayscale image) or colors (for color images) that are not present in
the real object being photographed or recorded. Image noise is a form of electronic
disruption and could come from many sources, such as camera sensors and circuitry
in digital or analog cameras. Noise in digital cameras is equivalent to the film grain
of analog cameras. Though some noise is always present in any output of electronic
devices, a high amount of image noise considerably degrades the overall image
quality, making it useless for the intended purpose. To represent the quality of the
electronic output (in our case, digital images), the mathematical term signal-to-noise
ratio (SNR) is a very useful term. Mathematically, it's defined as follows:

SignalPowerSNR
NoisePower

=

More signal-to-noise ratio translates into better quality image.

Kernels for noise removal
In the following concepts and their implementations, we are going to use kernels.
Kernels are square matrices used in image processing. We can apply a kernel to an
image to get different results, such as the blurring, smoothing, edge detection, and
sharpening of an image. One of the main uses of kernels is to apply a low pass filter
to an image. Low pass filters average out rapid changes in the intensity of the image
pixels. This basically smoothens or blurs the image. A simple averaging kernel can be
mathematically represented as follows:

AllOnesMatrixK
Rows Cols

=
∗

For row = cols = 3, kernel will be as follows:

1 1 1
1 1 1
1 1 1
9

K

 
 
 
  =

Chapter 8

[137]

The value of the rows and columns in the kernel is always odd.

We can use the following NumPy code to create this kernel:

K=np.ones((3,3),np.uint32)/9

2D convolution filtering
cv2.filter2D() function convolves the previously mentioned kernel with the
image, thus applying a linear filter to the image. This function accepts the source
image and depth of the destination image (-1 in our case, where -1 means the same
depth as the source image) and a kernel. Take a look at the following code. It applies
a 7 x 7 averaging filter to an image:

import cv2
importnumpy as np
frommatplotlib import pyplot as plt

img = cv2.imread('4.2.03.tiff',1)

input = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
output = cv2.filter2D(input,-1,np.ones((7,7),np.float32)/49)

plt.subplot(121),plt.imshow(input),plt.title('Input')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(output),plt.title('Output')
plt.xticks([]), plt.yticks([])
plt.show()

The output will be a filtered image, as follows:

Creating Your Own Motion Detection and Tracking System

[138]

Low pass filtering
As discussed in the kernels section, low pass filters are excellent when it comes to
removing sharp components (high frequency information) such as edges and noise
and retaining low frequency information (so-called low pass filters), thus blurring or
smoothening them.

Let's explore the low pass filtering functions available in OpenCV. We do not have to
create and pass the kernel as an argument to these functions; instead, these functions
create the kernel based on the size of the kernel we pass as the parameter.

cv2.boxFilter() function takes the image, depth, and size of the kernel as inputs
and blurs the image. We can specify normalize as either True or False. If it's True,
the matrix in the kernel would have 1

rows cols∗
 as its coefficient; thus, the matrix is

called a normalized box filter. If normalize is False, then the coefficient will be 1,
and it will be an unnormalized box filter. An unnormalized box filter is useful for the
computing of various integral characteristics over each pixel neighborhood, such as
covariance matrices of image derivatives (used in dense optical flow algorithms, and
so on). The following code demonstrates a normalized box filter:

output=cv2.boxFilter(input,-1,(3,3),normalize=True)

The output of the code will be as follows, and it will have less smoothing than the
previous one due to the size of the kernel matrix:

The cv2.blur() function directly provides the normalized box filter by accepting
the input image and the kernel size as parameters without the need to specify the
normalize parameter. The output for the following code will be exactly the
same as the preceding output:

output = cv2.blur(input,(3,3))

Chapter 8

[139]

As an exercise, try passing normalize as False for an unnormalised box filter to
cv2.boxFilter() and view the output.

The cv2.GaussianBlur() function uses the Gaussian kernel in place of the box filter
to be applied. This filter is highly effective against Gaussian noise. The following is
the code that can be used for this function:

output = cv2.GaussianBlur(input,(3,3),0)

You might want to read more about Gaussian noise at http://
homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm.

The following is the output of the earlier code where the input is the image with
Gaussian noise and the output is the image with removed Gaussian noise.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm

Creating Your Own Motion Detection and Tracking System

[140]

cv2.medianBlur() is used for the median blurring of the image using the median
filter. It calculates the median of all the values under the kernel, and the center pixel
in the kernel is replaced with the calculated median. In this filter, a window slides
along the image, and the median intensity value of the pixels within the window
becomes the output intensity of the pixel being processed. This is highly effective
against salt and pepper noise. We need to pass an input image and an odd positive
integer (not the rows, columns tuple like the previous two functions) to this function.
The following code introduces salt and pepper noise in the image and then applies
cv2.medianBlur() to that in order to remove the noise:

import cv2
importnumpy as np
import random
frommatplotlib
import pyplot as plt

img = cv2.imread('lena_color_512.tif', 1)

input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

output = np.zeros(input.shape, np.uint8)
p = 0.2# probablity of noise
fori in range(input.shape[0]):
 for j in range(input.shape[1]):
 r = random.random()
if r < p / 2:
 output[i][j] = 0, 0, 0
elif r < p:
 output[i][j] = 255, 255, 255
else :
 output[i][j] = input[i][j]

noise_removed = cv2.medianBlur(output, 3)

plt.subplot(121), plt.imshow(output), plt.title('Noisy Image')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(noise_removed), plt.title('Median
 Filtering')
plt.xticks([]), plt.yticks([])
plt.show()

You will find that the salt and pepper noise is drastically reduced and the image is
much more comprehensible to the human eye.

Chapter 8

[141]

Morphological transformations on
images
Morphological operations are based on image shapes, and they work best on binary
images. We can use these to get away with a lot of unwanted information, such as
noise in an image. Any morphological operation requires two inputs: image and
kernel. In this section, we will explore the erosion, dilation, and gradient of an image.
Since binary images are most suitable for explaining this concept, we will use a
binary image (black and white) to study the concepts.

Erosion removes the boundaries in the image and slims it. In a binary image, white
is the foreground and black is the background. All the pixels at the boundary of the
white foreground image are made zero, thus slimming the image and eroding away
the boundary. Dilation is exactly opposite of erosion; it expands the foreground
image boundary and flattens it. The extent of to erosion and dilation depends on the
kernel and the number of iterations. The morphological gradient of an image is the
difference between dilation and erosion. It will return the outline of an image. Check
out the following code for the basic usage of these operations in OpenCV. We will be
using these in our next chapter to refine our image for better output:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('morphological.tif',0)
kernel = np.ones((5,5),np.uint8)

Creating Your Own Motion Detection and Tracking System

[142]

erosion = cv2.erode(img,kernel,iterations = 2)
dilation = cv2.dilate(img,kernel,iterations = 2)
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

titles=['Original','Erosion','Dilation','Gradient']
output=[img,erosion,dilation,gradient]

for i in xrange(4):
 plt.subplot(2,2,i+1),plt.imshow(output[i],cmap='gray')
 plt.title(titles[i]),plt.xticks([]),plt.yticks([])
plt.show()

The output will be as follows:

Motion detection and tracking
We will now build a sophisticated motion detection and tracking system with
simple logic to find the difference between subsequent frames from a video feed,
such as a webcam stream and plotting contours around the area where the
difference is detected.

Chapter 8

[143]

Let's import the required libraries and initialize the webcam:

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

We will need a kernel for the dilation operation that we will create in advance rather
than creating it every time in the loop:

k=np.ones((3,3),np.uint8)

The following code will capture and store the subsequent frames:

t0 = cap.read()[1]
t1 = cap.read()[1]

Now we initiate the while loop and calculate the difference between the frames and
convert the output to grayscale for further processing:

while(True):

 d=cv2.absdiff(t1,t0)

 grey = cv2.cvtColor(d, cv2.COLOR_BGR2GRAY)

The output will be as follows, and it shows difference of pixels between the frames:

This image might contain some noise, so we will blur it first:

 blur = cv2.GaussianBlur(grey,(3,3),0)

Creating Your Own Motion Detection and Tracking System

[144]

We use binary threshold to convert this noise-removed output into a binary image
with the following code:

 ret, th = cv2.threshold(blur, 15, 255, cv2.THRESH_BINARY)

The final operation will be to dilate the image so that it will be easier for us to find
the boundary clearly:

 dilated=cv2.dilate(th,k,iterations=2)

The output of the preceding step will be the following:

Then, we find and draw the contours for the preceding image with the
following code:

 contours, hierarchy =
 cv2.findContours(dilated,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 t2=t0
 cv2.drawContours(t2, contours, -1, (0,255,0), 2)

 cv2.imshow('Output', t2)

Finally, we assign the latest frame to the older frame and capture the next frame with
the webcam with the following code:

 t0=t1
 t1=cap.read()[1]

Chapter 8

[145]

We terminate the loop once we detect the Esc keypress, as usual:

 if cv2.waitKey(5) == 27 :
 break

Once the loop is terminated, we release the camera and destroy the display window:

cap.release()
cv2.destroyAllWindows()

This will draw the contour roughly around the area where the movement is detected,
as shown in the following screenshot:

This code works very well for slow movements. You can make the output more
interesting by drawing contours with different colors. Also, you can find out
the centroid of the contours and draw crosshairs or circles corresponding to
the centroids.

If you wish to explore OpenCV with Raspberry Pi in more depth, go
through Raspberry Pi Computer Vision Programming. Here is the link:
https://www.packtpub.com/hardware-and-creative/
raspberry-pi-computer-vision-programming.

https://www.packtpub.com/hardware-and-creative/raspberry-pi-computer-vision-programming
https://www.packtpub.com/hardware-and-creative/raspberry-pi-computer-vision-programming

Creating Your Own Motion Detection and Tracking System

[146]

Summary
In this chapter, we learned about the advanced topics of computer vision with
OpenCV and Pi.

We learned about advanced image processing techniques, such as thresholding,
noise reduction, contours, and morphological operations. Finally, we implemented
all these techniques to build a real-life application for image processing.

In the next chapter, we will learn about the basics of interfacing Pi with Grove Shield
and Grove Sensors.

[147]

Grove Sensors and the
Raspberry Pi

In the previous chapter, we discussed object detection and tracking and also learned
to detect motion in scenes. Along the way, we also learned various concepts of image
processing that may also be used for different applications.

In this chapter, we will be moving forward from the software-based approach of the
previous chapter and explore the hardware capabilities of the Raspberry Pi. We will
also learn about an add-on called the GrovePi Shield, which will extend the GPIO
capabilities of the Pi platform and make it even easier to connect new sensors to it.
In this chapter, we will learn about the following:

•	 Introducing the GrovePi Shield and sensors
•	 Setting up the Shield with the Raspberry Pi
•	 Building a weather station
•	 Building an intruder detection system

Introducing the GrovePi
The GrovePi Shield is an open source platform to connect a range of sensors called
the Grove sensors to the Raspberry Pi. We can create our own Internet of Things
applications without any need for soldering using the GrovePi! Grove is an
easy-to-use collection of more than a hundred Plug and Play modules that we can
use to sense and interact with the physical world. The array of sensors include relays,
temperature sensors, OLED displays, ultrasonic ranger, joystick, accelerometer,
humidity sensor, GPS, and so on. They are divided on the basis of the following
six categories: Environment Monitoring, Motion Sensing, User Interface, Physical
Monitoring, Logic Gate, and Power.

Grove Sensors and the Raspberry Pi

[148]

You can interact and monitor the world using the sensors and then store the data on
your Raspberry Pi bridging the gap to the real world!

As you can see from the preceding image, the GrovePi slips over the Raspberry Pi
and has a variety of sockets to hold the different sensors that you might want to
add to your Raspberry Pi. It works with the Raspberry Pi models A, A+, B, B+, 2,
and uses an open source library made available by its creators to allow users to
program in Python, C, C++, Go, and NodeJS.

For this chapter, we will need the following components:

•	 Humidity and temperature sensor (http://www.seeedstudio.com/depot/
Grove-TempHumi-Sensor-p-745.html?cPath=25_125)

•	 LED (http://www.seeedstudio.com/depot/Grove-Red-LED-p-1142.
html?cPath=81_35)

•	 Ultrasonic ranger (http://www.seeedstudio.com/depot/Grove-
Ultrasonic-Ranger-p-960.html?cPath=25_31)

http://www.seeedstudio.com/depot/Grove-TempHumi-Sensor-p-745.html?cPath=25_125
http://www.seeedstudio.com/depot/Grove-TempHumi-Sensor-p-745.html?cPath=25_125
http://www.seeedstudio.com/depot/Grove-Red-LED-p-1142.html?cPath=81_35
http://www.seeedstudio.com/depot/Grove-Red-LED-p-1142.html?cPath=81_35
http://www.seeedstudio.com/depot/Grove-Ultrasonic-Ranger-p-960.html?cPath=25_31
http://www.seeedstudio.com/depot/Grove-Ultrasonic-Ranger-p-960.html?cPath=25_31

Chapter 9

[149]

•	 OLED display (http://www.seeedstudio.com/depot/Grove-OLED-
Display-096-p-824.html?cPath=34_36)

•	 Buzzer (http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.
html?cPath=38)

•	 GrovePi+ (http://www.seeedstudio.com/depot/GrovePi-p-2241.html)

All of the preceding are available on the SeeedStudio website.

You can find out more about the GrovePi and the sensors on
their creator's website:
http://www.dexterindustries.com/

Setting up the GrovePi
Let us have a look at an image of the GrovePi:

http://www.seeedstudio.com/depot/Grove-OLED-Display-096-p-824.html?cPath=34_36
http://www.seeedstudio.com/depot/Grove-OLED-Display-096-p-824.html?cPath=34_36
http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html?cPath=38
http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html?cPath=38
http://www.seeedstudio.com/depot/GrovePi-p-2241.html
http://www.dexterindustries.com/

Grove Sensors and the Raspberry Pi

[150]

As you can see from the preceding image, GrovePi has a socket that allows it to fit
directly over the Raspberry Pi. Once we do that, we can begin to set up the software
on the Raspberry Pi to use the shield. The steps are given next.

1.	 Turn on the Raspberry Pi without the GrovePi attached and open a terminal
window either by using a monitor or through ssh:

2.	 It is recommended that we install GrovePi on the desktop so we first cd into
the desktop directory with the following command:
$ cd /home/pi/Desktop

3.	 Now clone the repository from GitHub into the desktop with the
following command:
$ sudo git clone https://github.com/DexterInd/GrovePi

Chapter 9

[151]

4.	 We are now ready to execute the install script for the GrovePi. But we must
first make the script executable and then run it:
$ cd /home/pi/Desktop/GrovePi/Script

$ sudo chmod +x install.sh

$ sudo ./install.sh

5.	 The terminal will ask you to press ENTER and subsequently Y to continue, so
please do press Enter to install all the required packages.

Grove Sensors and the Raspberry Pi

[152]

The setup will now be completed and your Raspberry Pi will be restarted
automatically. With the Raspberry Pi powered off, attach the GrovePi and
then turn it on.

Now we will check if the Raspberry Pi detected the GrovePi upon reboot. Run:

$ sudo i2cdetect -y 1

The command i2cdetect detects any peripherals that are connected to the I2C
Pins of the Raspberry Pi, which are GPIO02 and GPIO03 in the case of Pi B+ and Pi
2. These are the pins that the GrovePi Shield uses to establish a connection to the
Raspberry Pi.

Chapter 9

[153]

In case you have a Raspberry Pi model that was produced before October 2012,
you can run the following:

$ sudo i2cdetect -y 0

If you see a '04' in the output matrix, that means the GrovePi is detected by the
Raspberry Pi I2C port. We can now test to see if it works properly. To test, connect
an LED module to the D4 port and run the LED Blink Python example that comes
bundled with the Github repository we cloned in an earlier step. To do that, run the
following command:

$ cd /home/pi/Desktop/GrovePi/Software/Python

$ sudo python grove_led_blink.py

If everything was installed correctly in the previous steps, the LED on port D4
should now start blinking.

Congratulations, we have successfully set up the GrovePi to work with the
Raspberry Pi and we will now move on to some complex and interesting
examples to explore the functionality of the GrovePi.

Grove Sensors and the Raspberry Pi

[154]

Displaying the weather
For our first project, we will be using the humidity and temperature sensor
of the gross array and use its measurements to be displayed on an OLED display.
You will need the two modules and some connection cables to set up the hardware
for this project.

Connect the only display module to any of the three i2c ports on the GrovePi,
and connect the humidity and temperature sensor to port D7. Now we will
have a look at the following code and then learn what each statement does:

from grovepi import *
from grove_oled import *
dht_sensor_port = 7
oled_init()
oled_clearDisplay()
oled_setNormalDisplay()

Chapter 9

[155]

oled_setVerticalMode()
time.sleep(.1)
while True:
 try:
 [temp,hum] = dht(dht_sensor_port,1)
 print "temp =", temp, "C\thumidity =", hum,"%"
 t = str(temp)
 h = str(hum)
 oled_setTextXY(0,1)
 oled_putString("WEATHER")
 oled_setTextXY(2,0)
 oled_putString("Temp:")
 oled_putString(t+'C')
 oled_setTextXY(3,0)
 oled_putString("Hum :")
 oled_putString(h+"%")
 except (IOError,TypeError) as e:
 print "Error"

Save the preceding code as prog1.py and run it. You should see the temperature and
humidity values being reported on the terminal, as well as on the OLED screen:

The first two statements are responsible for importing the dependencies required for
the GrovePi Shield and OLED module to work. The asterisk tells Python to import
all the classes and functions from the given modules. The second statement creates
a variable where the port number for the DHT module is saved. The next statements
set up the OLED module for writing data to it. The functions initialize the module,
clear the display, and set the vertical mode so that if we write anything subsequently
it appears natural. It is recommended that these four statements be executed at the
start of any Python program that uses the OLED module.

Grove Sensors and the Raspberry Pi

[156]

Next, we add an infinite while loop so that the program keeps on running until
the user terminates it. Inside the while loop, we run the code that is responsible for
getting the data from the sensor and displaying it on the OLED module. One of the
common mistakes when getting data from any source is that the data might not be
available. So we always check the validity and availability of data before executing
any code to manipulate or use that data. This is why we must add a try catch
statement so that if the data is not available, the program does not crash but
gives us an error statement.

Inside the try block, our first statement is to get the data from the DHT module using
the dht() function. This function takes two arguments: the sensor port number and
the type of board connected. We'll enter 1 if the board is DHT Pro and 0 if the board
is DHT. It also gives us the output in the form of a list containing two elements: the
temperature and humidity level.

In the next statement, we print the humidity level and temperature to the terminal
so that the user can look at it. The values that we get from the dht() command are
integers, but to display them on the OLED screen we need to convert them to strings.
This is what the str() method does. It takes an input like integer, float, list, and so
on and gives a string output.

The subsequent commands that begin with oled_ are all to manipulate the display
of the data on the OLED screen. With the oled_setTextXY() method, we can set the
cursor to display the data. It takes the X and Y coordinates as arguments and sets the
cursor there. Next, with the oled_putString() method, we actually push the string
data to be displayed on the cursor we just set. We do this three times: first to set the
title as 'WEATHER', second to set the temperature and its units, and finally to set the
humidity and its percentage. Since this method only takes the string as input, it was
necessary to convert the integer values of temperature and humidity to the string
before using it here.

Finally, we read the last statement that does nothing but handle any error that might
be encountered in the try block. If it does encounter an error of any sort, it prints
Error instead of crashing.

We will now move on to our next project, which uses an ultrasonic sensor and
a Pi Camera (or a normal webcam if you so choose). Any idea about what we're
going to make?

Chapter 9

[157]

Intruder detection system
Do you have any data that would cause damage if it fell into the wrong hands?
Or do you wish to know who enters a specific place when you're not present?
Well, you can now easily answer these questions by building your own intruder
detection system!

As mentioned before, this project uses an ultrasonic range sensor for the
GrovePi and a PiCam to take pictures if any movement is detected by the ultrasonic
ranger. Connect the ultrasonic ranger to port D4 of the Grove Pi, the buzzer to D5,
the status LED to D3, and the Pi Camera to the port provided on the Raspberry Pi as
learned in Chapter 4, Working with Webcam and Pi Camera. Following the theme of the
book, we will first look at the whole code, and then learn what each statement does,
line by line:

import picamera
import grovepi
from time import sleep

camera = picamera.PiCamera()
counter = 0
led = 3
buzzer = 5
ultrasonic = 4

while True:
 try:
 if grovepi.ultrasonicRead(ultrasonic) < 100:
 print 'Intruder Detected'
 grovepi.analogWrite(buzzer, 100)
 grovepi.digitalWrite(led, 1)
 sleep(.5)
 grovepi.analogWrite(buzzer, 0)
 grovepi.digitalWrite(led, 0)
 camera.capture('image' + counter + '.jpg')
 print 'Image Captured'
 sleep(2)
 except IOError:
 print "Error"

Grove Sensors and the Raspberry Pi

[158]

Save the preceding code as prog2.py and run it. Now, try to come in front of the
ultrasonic sensor and you will see the output on the terminal, and have your picture
taken as an intruder!

The code itself is very simple to understand, as it is just an amalgamation of parts
from Chapter 4, Working with Webcam and Pi Camera, which we have already learned,
and parts from the previous example. We start by importing the dependencies for
the Pi Camera and GrovePi sensors.

As a setting-up step, we set the camera variable to be an object for our Pi Camera and
it can be used to take pictures. We set a counter for the number of pictures and set
the LED and buzzer to be used on ports D3 and D5 respectively. We also import the
sleep method from the 'time' module to add delays. Like before, we include a 'try,
except' block in the infinite while loop, so that when errors are encountered, it does
not crash.

Basic algorithm for the intruder detection can be described as: Whenever anything
comes in front of the ultrasonic ranger whose range is less than 100 cms, it means
that there is an intruder. If the preceding condition is true, then sound the buzzer,
light the LED, and take a picture. The ultrasonicRead() method from the GrovePi
module reads the output from the ultrasonic ranger that is connected to port D7
of the GrovePi. If the distance is less than 100 cms, then we proceed to execute
the intruder detection alarm procedure. First, we output Intruder detected to
the terminal, then we turn on the buzzer by the analogWrite() method and the
LED with the digitalWrite() method. The analogue write method takes the
port number of the peripheral and a value from 0 to 255. The higher the value, the
higher the intensity of the signal transmitted to the peripheral. The digitalWrite()
method also takes the port number as an input and a binary number, to set the port
high or low. We wait for half a second and then turn both the buzzer and LED off.
Finally, we capture a photo with the camera pointed toward the direction of the
ultrasonic ranger. Congratulations! We now have a photo of the intruder. Now, if we
do not add some delay after taking a photo, the code will repeat itself and since the
intruder is likely to still be there, the Raspberry Pi may take an unnecessarily large
amount of photos. This is likely to burden the CPU and take resources away from
other threads that might be running. So we add a two-second delay.

We can also experiment by varying the delay values to see what works best. I leave
the reader with an interesting exercise of adding more peripherals to expand the
functionality of the system, such as adding a keypad or a switch to turn off the
system when it is not required.

Chapter 9

[159]

Summary
In this chapter, we learned how to connect and interface the GrovePi Shield with
the Raspberry Pi, and how to connect the various sensors to it, and use their data to
display on external peripherals. We also looked at and understood two examples
that can be used easily in real life for useful tasks.

In the next chapter, we will learn about the Internet of Things and how to connect
sensors to get the data online and use it effectively. For example, we can extend
the intruder detection example and make it such that it e-mails us the photo of the
intruder it just took. In this way, we can receive real-time updates from our chosen
monitored location. The Internet of Things is a very useful concept and due to the
inexpensiveness of the components it takes to get a working system, it is becoming
very popular across the globe to make 'dumb' devices 'intelligent'.

[161]

Internet of Things with the
Raspberry Pi

In the previous chapter, we learned to interface different kinds of sensors to the
Raspberry Pi to get data from the real world and output some text so that the user
can infer the state of his surroundings, such as temperature, humidity, and so on.
We also built a surveillance system that takes pictures of any intruder. Now, these
are all standalone systems and cannot communicate with any other systems.

In this chapter, we will concentrate on the concept of the Internet of Things.
This means that we can connect standalone systems, just like the ones we built
in the previous chapters, to the Internet. We will connect devices to the Internet
and learn how to interact with different web services. The following topics will be
covered in this chapter:

•	 Installing the Twitter API for Python
•	 Using Tweepy
•	 Setting up a SQLite database
•	 Building a tweeting weather station

Internet of Things with the Raspberry Pi

[162]

Introducing the Internet of Things
The Internet of Things is all about connecting the devices that were previously
not connected to the Internet, in order to make them smarter and more controllable.
Since the size and cost of electronic devices are dropping exponentially, we can now
afford to incorporate them in our daily use, are garden watering systems, home
automation/monitoring systems, and so on. The Internet of Things in this way has
opened up a whole host of opportunities, the advantages of which are being taken
up by hobbyists, startups, and major companies alike. At the heart of the Internet of
Things revolution are small micro computers and sensors that allow these devices to
connect to the Internet and exchange data between them.

As mentioned before, in this particular chapter we will extend our previous projects
by connecting the Raspberry Pi to the Internet, and make additional projects to
demonstrate the capability of the Internet of Things.

We will now learn to exchange data from the Twitter API and post our sensor
readings to Twitter.

Installing the Twitter API for Python
API (Application Programming Interface) and it allows developers to communicate
with various web services. Since Python is, by default, installed on the Raspberry
Pi, we will use a Python script to communicate with the Twitter API over the Web.
For this, we will use an open source library called Tweepy. It works with Python
versions as old as 2.6 and is still under active development. So bugs are likely to be
fewer and, if any are found, they are likely to be fixed quickly.

The GitHub repository for Tweepy can be found at the following
link, so that new issues can be submitted and the code can be
understood much more clearly:
https://github.com/tweepy/tweepy

We will now proceed to install it and learn how to use it to do things such as
sending tweets.

This library can be installed using pip, with the following command:

sudo pip install python-twitter

https://github.com/tweepy/tweepy

Chapter 10

[163]

We can also install bleeding-edge versions of the library by cloning it from GitHub.
Run the following command:

git clone https://github.com/tweepy/tweepy.git

cd tweepy

sudo python setup.py install

You can also find more information about using Tweepy and the
full extent of its capabilities on its official documentation website:
http://tweepy.readthedocs.org/en/v3.5.0/.

Using Tweepy
Tweepy was built to be easy to set up and use, and in that regard it is of one of the
most useable libraries for communicating with the Twitter API. It takes no more than
four lines of code to set it up for use. However, before we can use it to communicate
with our account on Twitter, we need to set up a developer app on Twitter. For
this, we log on to https://apps.twitter.com, sign in to our Twitter account and
hit Create New App, after which we will be greeted by a window that allows us to
create a new application, as shown in the following window:

http://tweepy.readthedocs.org/en/v3.5.0/
https://apps.twitter.com

Internet of Things with the Raspberry Pi

[164]

Fill in all the required details such as Name, Description, and Website. Remember,
if you don't plan on using this app on a website, you can also put in a placeholder
instead of an actual website. Finally, sign the developer agreement and you will have
successfully created a Twitter app to use with your Python script. From this app,
we will need a Consumer Secret (API Secret) and a Consumer Key (API Key) to use
the Tweepy library, which is required for obtaining oauth authentication from the
Twitter app. Next, we need to create an access code for our app that is required for
communication with the Twitter API.

Chapter 10

[165]

From the preceding page, click the manage keys and access tokens to get to the page
where you can get your consumer codes and access tokens. The following menu will
give the consumer keys:

And the following screen will show us our application codes and also give an option
to generate new access codes for our application:

Internet of Things with the Raspberry Pi

[166]

We can now proceed to learn how to use Tweepy to get a list of followers. The code
is given next, and the explanation follows:

import tweepy

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

user = api.get_user('twitter')

print user.screen_name
print user.followers_count
for friend in user.friends():
 print friend.screen_name

api.update_status(' Tweepy says : Hello, world!')

In this example, we first import the Tweepy library into Python to use its
functionality. We first need to register our Python script (client) to be able to
communicate with the Twitter API. For this, we will enter the Consumer Key and
the Consumer Secret in the argument of the OAuthHandler method of the Tweepy
API. Next, we set the access codes for opening up the Twitter API for our client's
use. This is important because we need to have an access token for the app to be
able to do things like send tweets, reading tweets, or viewing followers, and so
on. Access codes for the Twitter app can be found in its settings, just below the
Consumer Codes.

We have so far set the authentication details, but we still need to do the
authentication to send tweets. This is accomplished by the API() function in the
Tweepy module. We first create an api variable that contains all the methods for
interacting with the Twitter API.

The next statement gets the user associated with our unique Consumer Key.
Every registered user will have this key and it is unique for every user so they can
correctly identify themselves. The get_user() method takes as an argument, the
name of the service (Twitter in this case) that we need from the user, and passes the
authentication codes that we have got from the previous statement to get the user
details. This is stored in the user variable. This variable will have members such as
the name, followers, following, and so on.

Chapter 10

[167]

To check that we really get the correct user from this method, we only need to print
the correct members of the user variable. So we first print to the command line, the
screen name, and the follower count. The next while loop loops over the friends()
method of the user variable and stores each follower detail in the friend variable.
Then we print the name of each friend to the command line. This way, we can check
if we have our user details correct or not.

Finally, we can send a tweet using the update_status() method of the Tweepy API.
This method takes a string as input and sends out a tweet. However, if a string is
more than 140 characters in length, the statement will silently fail that is, it will fail
without giving an error.

Now enter your Consumer and Access codes! Save this example as prog1.py and
run it with the following command:

python prog1.py

You should see the user details on the terminal, and a tweet from your user:

'Tweepy says : Hello, World!'

In addition to the preceding functionality, we can also use Tweepy to do other things
such as reading statuses. Some of the more important functionality is detailed next:

•	 api.home_timeline([since_id], [max_id], [count], [page]):
Returns the 20 most recent tweets on the user's timeline. count specifies
the number of tweets to retrieve

•	 Api.user_timeline([id/user_id/screen_name], [since_id], [max_
id], [count], [page]): Returns the 20 most recent tweets from the
specified user or, if none is given, from the authenticating user

•	 Api.get_status(id): Returns the status by ID
•	 Api.update_with_media(filename, [status], [in_reply_to_status_

id], [lat], [long], [source], [place_id], [file]): Updates the
authenticated user's status with media

Congratulations! We have successfully set up a Twitter app using Python and
communicated with the API. We will now move on to the next example where
we learn how to set up a SQLite database to store some data on the Raspberry Pi.

Internet of Things with the Raspberry Pi

[168]

Setting up a SQLite database in Python
SQLite (pronounced Sequel Lite) is a lightweight disk-based database that doesn't
require a separate server process and uses a modified version of the SQL query
language to access the data. The entire database is saved in a single file and can
be used for internal data storage. It is also possible to make a prototype of an
application using SQLite and then port the code to work with a larger database with
minimal modifications. The Python standard library has a module called sqlite3
included, which is intended to work with this database. This module is SQL
interface-compliant with DB-API 2.0.

You can find more information and the full API reference for the
SQLite3 module on its official website: https://docs.python.
org/2/library/sqlite3.html.

Next is an example on how to use the sqlite3 module to create a SQLite database to
store and retrieve some data. We will go through the code, statement by statement,
and analyze what each statement does and also discuss any variations that might
be possible.

import sqlite3

conn = sqlite3.connect('raspi.db')
cursor = conn.cursor()

#Inserting Data
cursor.execute('''
 CREATE TABLE users(id INTEGER PRIMARY KEY, name TEXT,
 	 email TEXT unique, password TEXT)
''')
cursor.execute('''INSERT INTO users(name, email, password)
 VALUES(?,?,?)''', ('Luke',
 'luke@skywalker.com', 'iamurfather'))

cursor.execute('''INSERT INTO users(name, email, password)
 VALUES(?,?,?)''', ('Darth Vader',
 'darth@vader.com', 'darkside'))

conn.commit()

https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html

Chapter 10

[169]

#Retrieving Data

user_id = 1
cursor.execute('''SELECT name, email, password FROM users WHERE
id=?''', (user_id,))
user1 = cursor.fetchone()
print(user1[0])
allusers = cursor.fetchall()
for row in allusers:
 print('{0} : {1}, {2}'.format(row[0], row[1], row[2]))

#Deleting or Updating Data

new_email = 'vader@deathstar.com'
userid = 2
cursor.execute('''UPDATE users SET email = ? WHERE id = ? ''',
(new_email, userid))

del_userid = 1
cursor.execute('''DELETE FROM users WHERE id = ? ''',
(del_userid,))

conn.commit()
conn.close()

We will now study the data exchanges that took place in the database in the
preceding given Python script. Since sqlite3 is a default Python module, we
don't need to install any additional dependencies. So we import the module into
our Python program, and create a new file to save the database with the sqlite.
connect() method. This method creates a new file for the database if none exists,
and if it does the method connects to it and loads the existing database inside the
file. Next, we create a cursor that acts as a pointer to the data inside the database. As
such, we can only manipulate the data that the cursor is pointing to. We do this with
the cursor() method that operates on the connection variable, which we created in
the last statement.

Internet of Things with the Raspberry Pi

[170]

Currently, our file does not have a database, so with the next lines of code we create
a database and insert some data in it. The execute() method takes SQL commands
as one of the arguments to manipulate data. Hence, to create the database, we
execute the CREATE TABLE query. In this case, we create a table named users that
will have a minimum of one data column, which is the key number of the data. This
ensures that the data has a unique serial ID by which it can be accessed. We save
three fields for each user: the name, the e-mail ID, and the password. So this database
can be used for logging in to an application where different users can log in. The
TEXT type in SQL is the same as str in Python, INTEGER is int, REAL is float. To
make sure that no two users enter the same e-mail ID, we add a "unique" marker to
the e-mail column. Now that we have created a database, we need to add some data
to it. We use the INSERT INTO command to accomplish this. After inserting into vi,
mention the name of the database into which we want to insert the data with the
names of the arguments. Then the values function will take the actual values of the
data. The ? means that the data is given as a value in a tuple. We repeat the same
process with different data to add rows to the database. Notice that we didn't need
to set the serial ID of the data for it to be saved properly. That is one advantage of
having a cursor in the database. It automatically places new data in the next available
row in the database. To actually write the data into the database file and save it, we
need to commit our changes. This is done by the commit() function that operates on
the connection variable. You can visualize the database with a free tool called SQLite
Database Browser. This is what the database looks like after we have made the
changes just specified:

Now that we have learned how to insert new data into the database, we will see how
to read existing data from the database.

First, we need to know the serial-id, name, e-mail, or password of the user that we
need to retrieve. Let's assume in this case we want to retrieve the user details by
the serial ID. So we execute the SELECT command, which selects a row based on the
condition that is given. If no condition is given, it will automatically select the first
row in the database. The whole statement is close to plain English, so should be easy
to understand. Basically, it selects the columns specified from the database name that
is given according to a condition given after WHERE.

Chapter 10

[171]

So, after the preceding statement our cursor is pointing toward the row whose ID is
1. The fetchone() method fetches the data from the row that the cursor is pointing
to, and saves it in the user1 variable as a list. Then, we simply print the first element
of the list, which is the user's name in this case. However, if we want to fetch the data
from all the rows in the database, we execute the fetchall() method. This points
the cursor at all the rows in the database starting from the first one, and saves the
result in the allusers variable. Then, we simply print the data in a for loop.

We have now learned how to save and retrieve data from the database. But what
if we want to update user details or delete data? The next block of code (in the
preceding code snippet) teaches us exactly that.

Assume that we want to update the e-mail ID of the second user in the database.
We first set the new e-mail ID in a string variable, and then the user that we want to
select in an integer variable. Then, to update the data, we use the UPDATE SQL query.
It takes two or more arguments in addition to the database that we want to update:
the data that we want to update and a condition, in this case the serial ID of the row.
Both of which we give by using the ? technique we described earlier. The condition
operator WHERE operates in exactly the same way in UPDATE as it does in SELECT,
pointing the cursor according to the condition given. After the update, this is what
our table looks like:

To delete some data, we use the DELETE query and select the database with the FROM
query. We also employ the condition by using the WHERE query and giving it the
serial ID we want to delete.

Internet of Things with the Raspberry Pi

[172]

Since we have changed the data in the database, to write the changes into the file
we use the commit() method, and finally release the file from the Python script
with the close() method. This ensures that no new changes can be made to the file
unless it is connected again. If we close the file without committing the changes, no
changes will be reflected in the database and we will have lost any changes that we
previously made. This is what the table looks like after we delete the first row:

Finally, we have learned how to save and update data into a database, and
retrieve it on demand for our use. We also know, from our previous Twitter tutorial,
how to send updates to Twitter. So for our next project, we will build a tweeting
weather station that will also save the data into a database. Sounds interesting?
Let's get into it.

Building a tweeting weather station
This is a continuation of the project that we built in the previous chapter and that
used the temperature and humidity Grove sensor with the Raspberry Pi to display
the weather conditions. We will be using the same hardware.

Chapter 10

[173]

The only difference now is that instead of displaying the weather on the terminal,
we will be live-tweeting it, and also saving the information into a database for
later retrieval.

Internet of Things with the Raspberry Pi

[174]

To revisit the project, we should go through it once again by turning to Chapter 9,
Grove Sensors and the Raspberry Pi. Much of the code that was used previously will be
used again, with the addition of the blocks where we tweet the information and save
it in a database. For this project, it is recommended that you make a new Twitter
account and create a new app on it to get the Consumer and Access codes.

The full Python script is presented next. We know what most of the code does
because of the previous projects that we have built, including the weather station,
Twitter bot, and SQLite database, but there is a brief summary at the end of the code.

from grovepi import *
from grove_oled import *
import tweepy
import sqlite3
import datetime

dht_sensor_port = 7

oled_init()
oled_clearDisplay()
oled_setNormalDisplay()
oled_setVerticalMode()
time.sleep(.1)

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

conn = sqlite3.connect('raspi_weather.db')
cursor = conn.cursor()

cursor.execute('''
 CREATE TABLE weather(id INTEGER PRIMARY KEY, time TEXT,
 	 temp INTEGER, hum INTEGER)
''')

while True:
 try:
 [temp,hum] = dht(dht_sensor_port,1)

Chapter 10

[175]

 print "temp =", temp, "C\thumidity =", hum,"%" 	
 t = str(temp)
 h = str(hum)
 time = str(datetime.datetime.time(datetime.datetime.
now()))

 oled_setTextXY(0,1)
 oled_putString("WEATHER")

 oled_setTextXY(2,0)
 oled_putString("Temp:")
 oled_putString(t+'C')

 oled_setTextXY(3,0)
 oled_putString("Hum :")
 oled_putString(h+"%")
 api.update_status("Temperature : " + t + " C, " +
 "Humidity : " + h + "% ")
 cursor.execute('''INSERT INTO weather(time, temp,
 hum)
 VALUES(?,?,?)''', (time, t, h))

 except (IOError,TypeError) as e:
 print "Error"

As is evident from the preceding code, it is an updated version of the weather
station we built in the previous chapter. We add the consumer and access codes
for our Twitter application so that we can tweet the weather information directly
from this script. We import the Tweepy library and set up the access. We also
import the sqlite3 module and create a new database called weather, which has
three data columns: time, temperature, and humidity, in addition to the serial
number column. Finally, in addition to displaying the temperature and humidity
on the OLED screen, we also update it in our tweet and save it in the database we
just created along with the time information. The time information is given by the
datetime module that is included with the default Python installation. datetime.
datetime.now() gives the current date and time. datetime.datetime.time()
gives the current time provided we are only given datetime.datetime.now()
as an argument.

Internet of Things with the Raspberry Pi

[176]

The tweets from our script will look like this:

And if we browse the database that we just created, it looks something like this:

Chapter 10

[177]

We have now built a weather station that not only monitors and saves weather
information for you but also broadcasts it to the world! An interesting extension
to this would be to add speech capabilities so that the Raspberry Pi speaks out the
weather information via a speaker. The espeak library is an easy-to-use library
that accomplishes this easily and effectively. Moreover, you can also hook up
to a weather service that has a web API and get your Pi to speak out weather
forecasts too!

Adding speech capabilities to our weather
station
Speech is one of the many ways in which humans communicate. And it's fascinating
to make machines do the things that humans do effortlessly. For precisely that
reason, we will add speech capabilities to our tweeting weather station so that it can
speak out the weather, and we no longer have to stare at our OLED screen or scroll
our Twitter feed to learn about the weather. For this task, we will be using an open
source tool called espeak, which is a text-to-speech engine and also has an API
for Python.

First, install the espeak library with the following commands:

sudo apt-get install espeak

sudo apt-get install python-espeak

The good thing about this library is that we can use it from the terminal or from the
Python console. To try it out, make sure that you have a speaker connected to the Pi
and execute the following command from the Linux terminal:

espeak I will tell you the weather'

This will produce the speech output and we will be able to hear it from the speaker.
Cool, right?

Next, we will learn how to use it with Python and then also add it to our weather
station project. Open a Python console by typing python in a Linux terminal. To
import the dependencies, execute the following statement:

>>> from espeak import espeak

Internet of Things with the Raspberry Pi

[178]

This imports the dependencies required for the speech output. Using espeak from
Python is also as easy as:

 >>> espeak.synth("I am the weatherman")

The synth method in the espeak module accepts a string and produces speech based
on that. It's not the best-sounding voice, but it works!

To add this to the weather station, we can add the following statement inside our
while loop:

espeak.synth("The current temperature is : " + str(temp))

espeak.synth("Humidity level is : " + str(hum) + "percent")

This works because Python supports string concatenation. This means that we
can combine two strings just by adding a + sign between them. However, the temp
and hum variables are not string variables. So we need to convert them to strings by
the str() method. The Str() method takes any type of variable and converts it into
a string.

We can also use the espeak library to tell us many different things about our
environment by getting the state from the Grove Sensors.

Summary
In this chapter, we learned how to use Python to communicate with Twitter by using
an open source library, Tweepy. We learned how to use Tweepy to send tweets.
We also learned how to create a database, save and update data in it, and get some
data from an existing database. Toward the end, we extended the capabilities of the
weather station we built in Chapter 9, Grove Sensors and the Raspberry Pi and added
tweeting and data-saving functionalities to it. We also added speech capabilities to it
to make it easier to use.

In the next chapter, we will be exploring the interesting topic of parallel computing.
We will be using multiple Raspberry Pis to create a cluster of computers that perform
computations faster by working in tandem towards a single task. A master Pi will
control other slave Pis and outsource its computations to them, so that the task is
performed faster. We will use this setup to perform an n-body simulation, which is
by itself a very computationally challenging task.

[179]

Build Your Own
Supercomputer with

Raspberry Pi
In the previous chapter, we learned how to get the Raspberry Pi to communicate
with the Internet, along with some more topics. We learned how to set up the
Twitter API and how to send out tweets using it. We also learned how to save data
in a database and retrieve it later. Finally, we combined the two concepts and the
weather station we built in Chapter 9, Grove Sensors and the Raspberry Pi to create a
tweeting weather station that also saves the temperature and humidity data in
a database.

In all the chapters prior to this one, we explored the Raspberry Pi functionalities.
But this chapter will be different in the sense that we will learn how to combine two
or more Raspberry Pi devices to create a more powerful computer. Indeed, if you
combine enough Raspberry Pi devices, you can make your own supercomputer!
Sounds interesting? We will cover the following in this chapter:

•	 Using a network switch to create a static network for Pi devices
•	 Installing and setting up MPICH2 and MPI4PY and running on a single node
•	 Using the static network of multiple Pi devices is to create an MPI (short for

Message Parsing Interface) cluster
•	 Performance the benchmarking of cluster
•	 Running GalaxSee (N Body simulation)

Build Your Own Supercomputer with Raspberry Pi

[180]

Introducing a Pi-based supercomputer
The basic requirements for the building of a supercomputer are as follows:

•	 Multiple processors
•	 A mechanism to interconnect them

We already have multiple processors in the form of multiple Raspberry Pi devices.
We connect them via a networking hub, which is connected to each Pi via an
Ethernet cable. A networking hub is nothing but a router that can accept Ethernet
cables. There are dedicated networking hubs that can support many connections
but for the purposes of this chapter, we can use a normal Wi-Fi router that accepts
four LAN connections in addition to wireless connections. This is because we will
not build a cluster of more than four Pi devices. You are welcome to add more
devices to this cluster in order to increase your computing power. So, the hardware
requirements for this chapter are as follows:

•	 Three Raspberry Pi devices
•	 Three Raspbian-installed SD cards
•	 A networking hub
•	 Three Ethernet cables
•	 Power supply for every device

Installing and configuring MPICH2 and
MPI4PY
Before we can begin installing the libraries to a network of multiple Pi devices,
we need to configure our Raspbian installation to make things a bit easier.

Boot up a Raspberry Pi and in the terminal, enter the following command:

sudo raspi-config

Chapter 11

[181]

It is assumed that you have followed all the setup steps that are preferred on first
starting up the Raspberry Pi. These are as follows:

1.	 Expand the filesystem.

2.	 Overclock the system (this is optional). We will be using a Pi overclocked to
800MHz as shown below:

Build Your Own Supercomputer with Raspberry Pi

[182]

3.	 Now, enter the advanced menu by selecting Advanced Options. We need to
configure the following:

1.	 Set the hostname to Pi1.

2.	 Enable SSH.

Chapter 11

[183]

We need to enable auto login so that we do not need to manually log in every Pi once
we fire it up. Auto login is enabled by default in the latest versions of the Raspbian
operating system, so we don't need to perform the following procedure on the latest
version. To enable auto login, exit the configuration menu, but don't reboot yet.
To set the auto login, open the inittab file with the following command:

sudo nano /etc/inittab

Comment out the following line:

1:2345:respawn:/sbin/getty --noclear 38400 tty1

This is done so that it looks like this:

#1:2345:respawn:/sbin/getty --noclear 38400 tty1

Then, add the following line:

1:2345:respawn:/bin/login -f pi tty1 </dev/tty1 >/dev/tty1 2>&1

Build Your Own Supercomputer with Raspberry Pi

[184]

Save the file and reboot the Pi with sudo reboot. When it boots up, you should be
auto-logged in.

We are now ready to proceed and begin installing the software that is required to
run a cluster of computers.

Installing the MPICH library
MPICH is a freely available, easily portable, and widely used implementation of
the MPI standard, which is a message parsing protocol for distributed memory
applications used in parallel computing. Work on the first version of MPICH was
started around 1992 and is currently in its third version. MPICH is one of the most
popular implementations of the MPI standard due to the fact that it is used as a
foundation for a vast majority of MPI implementations, including ones by IBM,
Cray, Microsoft, and so on.

To know more about the MPICH library, visit
http://www.mpich.org/.

At the time of writing, the latest version of MPICH is 3.2. The installation
instructions for this are presented. However, these should work on all the
sub-versions of MPICH3 and most of the later versions of MPICH2.

To begin the installation, ensure that the Raspberry Pi has a valid Internet
connection. Run the following commands in order to get a working installation
of MPICH:

1.	 Update your Raspbian distribution:
sudo apt-get update

2.	 Create a directory to store the MPICH files:
mkdir mpich

cd ~/mpich

3.	 Get the MPICH tar file:
wget http://www.mpich.org/static/downloads/3.2/mpich-3.2.tar.gz

4.	 Extract the tar archive:
tar xfz mpich-3.2.tar.gz

http://www.mpich.org/

Chapter 11

[185]

5.	 This will contain the MPICH installation and build the following:
sudo mkdir /home/rpimpi/

sudo mkdir /home/rpimpi/mpi-install

mkdir /home/pi/mpi-build

cd /home/pi/mpi-build

6.	 Fortran is a dependency for MPI:

sudo apt-get install gfortran

Now, since we created a build folder for the MPICH installation earlier, we need to
configure the installation script and point it to the folder where we want the interface
to be installed. We do this by running the configure script and setting the build
prefix to the installation directory:

sudo /home/pi/mpich/mpich-3.2/configure -prefix=/home/rpimpi/mpi-install

Finally, we carry out the actual installation.

sudo make

sudo make install

Keep in mind that this build might take about an hour to
complete. Make sure that the Raspberry Pi stays on for the
entire period of the build.

Edit the bashrc file so that the path to the MPICH installation is loaded to the PATH
variable every time we open a new terminal window. To do that, open the file in the
terminal with the following command:

nano ~/.bashrc

Then, add the following line at the end:

PATH=$PATH:/home/rpimpi/mpi-install/bin

Save and exit the bashrc file by pressing Ctrl + X and then click on Return. We will
now test the installation. For that, reboot the Pi:

sudo reboot

Build Your Own Supercomputer with Raspberry Pi

[186]

Then, run the following command:

mpiexec -n 1 hostname

If the preceding command returns Pi1, or whatever you set your hostname to be,
then our MPICH installation is successful and we can proceed to the next step.

We will now look at a short C program that uses MPICH. This is given as follows:

#include "mpi.h"
#include <stdio.h>

void main(int argc, char *argv[]) {
 int rank, size
 MPI_Init(argc, argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I have %d rank and %d size \n", rank, size);
 MPI_Finalize();
}

This program runs on a single node and discovers the total number of nodes in a
network. It then communicates with the MPI processes on other nodes and finds
out its own rank.

The MPI_Init()function initiates the MPICH process on our computer according to
the given information about the IP addresses in a network. The MPI_Comm_rank()
function and the MPI_Comm_size() function get the rank of the current process and
the total size of the network and save them in rank and size variables, respectively.
The MPI_Finalize() function is nothing but an exit routine that ends the MPI
process cleanly.

On its own, MPICH can be run using C and Fortran languages. But that might be a
hindrance for a lot of users. But fret not! We can use MPICH in Python by installing
the Python API called MPI4PY.

Installing MPI4PY
The conventional way of installing the mpi4py module from a package manager
such as apt-get or aptitude does not work because it tries to install the openMPI
library along with it, which conflicts with the existing installation of MPICH.

Chapter 11

[187]

So, we have to install it manually. We do this by first cloning the repository
from BitBucket:

git clone https://bitbucket.org/mpi4py/mpi4py

Make sure that all the dependencies for the library are met. These are as follows:

•	 Python 2.6 or higher
•	 A functional MPICH installation
•	 Cython

The first two dependencies are already met. We can install Cython with the
following command:

sudo apt-get install cython

The following commands will install mpi4py with the setup.py installation script:

cd mpi4py

python setup.py build

python setup.py install

Add the path to the installation of mpi4py to PYTHONPATH so that the Python
environment knows where the installation files are located. This ensures that
we are easily able to import mpi4py into our Python applications:

export PYTHONPATH=/home/pi/mpi4py

Finally, run a test script to test the installation:

python demo/helloworld.py

Build Your Own Supercomputer with Raspberry Pi

[188]

Now that we have completely set up the system to use MPICH, we need to do
this for every Pi we wish to use. We can run all of the earlier commands in freshly
installed SD cards, but the better option would be to copy the card we prepared
earlier into blank SD cards. This saves us the hassle of completely setting up the
system from scratch. But remember to change the hostname to our standard scheme
(such as Pi01 and Pi02) after the fresh SD card has been set up in a new Raspberry Pi.
For Windows, there is an easy-to-use tool called Win32 Disk Imager, which we can
use to clone the card into an .img file and then copy it to another blank SD card. If
you are using OS X or Linux, then the following procedure should be followed:

1.	 Copy the OS from an existing card:
sudo dd bs=4M if=/dev/disk2 of=~/Desktop/raspi.img

Replace disk2 with your own SD card

2.	 Remove the card and insert a new card.
3.	 Unmount the card.
4.	 Format the SD card.
5.	 Copy the OS to the SD card:

sudo dd bs=4M if=~/Desktop/raspi.img of=/dev/disk2

To know more about the mpi4py library and to have a look at
the various demos, you can visit the official Git repository on
BitBucket at https://bitbucket.org/mpi4py/mpi4py.

Setting up the Raspberry Pi cluster
Now that we have a running Raspbian distribution in all the Raspberry Pi devices
that we wish to use, we will now connect them to create a cluster. We would need a
networking hub that has at least the same number of LAN ports as the size of your
cluster should be. For the purposes of this chapter, we will use three Raspberry Pis,
so we would need a hub that has at least three LAN ports.

https://bitbucket.org/mpi4py/mpi4py

Chapter 11

[189]

If you have a Wi-Fi router, then it should already have some ports at the back,
as shown in the following image:

Build Your Own Supercomputer with Raspberry Pi

[190]

We also need three networking cables, such as those with an Ethernet connector,
where one port goes into the Raspberry Pi and the other goes into the networking
hub. They will look like the ones shown in the following image:

Chapter 11

[191]

Connect one end of the Ethernet cable to the Raspberry Pi and the other end to the
router for all the devices. Once we complete this networking setup, we can move on
to connecting the Raspberry Pi devices with software.

Setting up SSH access from the host to
the client
In the setup described here, one master node will control the other slave nodes. The
master is called the host and the slaves are called clients. To access the client from the
host, we use something called SSH. It is used to get the terminal access to the client
from the host, and the command used is as follows:

ssh pi@192.168.1.5

Here, the preceding IP address can be replaced with the IP address of our
Raspberry Pi. The IP address of a Pi can be found by simply opening up a
new terminal and entering the following command:

ifconfig

This will give you the IP address associated with your connected network and the
interface, which is eth0 in our case. A small problem with using this is that every
time we try to SSH into a client, we need a password. To remove this restriction, we
need to authorize the master to log in to the client. How we do that is by generating
an RSA key from the master and then transferring it to the client. Each device has
a unique RSA key, and hence, whenever a client receives an SSH request from an
authorized RSA device, it will not ask for the password. To do that, we must first
generate a public private key pair from the master, which is done using a command
in the following format:

ssh-keygen -t rsa -C "your_email@youremail.com"

Build Your Own Supercomputer with Raspberry Pi

[192]

It will look something like this:

To transfer this key into the slave Raspberry Pis, we need to know each of their IP
addresses. This is easily done by logging into their Pi and entering ifconfig.

Next, we need to copy our keys to the slave Raspberry Pi. This is done by the
following command, replacing the given IP address with the IP address of your
own Raspberry Pi:

cat ~/.ssh/id_rsa.pub | ssh pi@192.168.1.5 "mkdir .ssh;cat >> .ssh/
authorized_keys"

Now that we have copied our keys to the slave Raspberry Pi, we should be able to
log in without a password with the standard SSH command:

ssh pi@192.168.1.5

Chapter 11

[193]

Running code in parallel
We have now successfully completed the prerequisites for the running of code on
multiple machines. We will now learn how to run our code on the Raspberry Pi
cluster using the MPICH library. We will first run a demo included with the mpi4py
module, and then we will run an N-Body simulation on our cluster. Sounds fun?
Let's get into it.

First, we need to tell the MPICH library the IP address of each of the Pis in our
network. This is done by simply creating a new file called machinefile in the home
folder, which contains a list of the IP addresses of all the Raspberry Pis connected to
our network. Execute the following command to create the file:

nano machinefile

Then, add the IP address of each Raspberry Pi in a new line so that the final result
looks like this:

Note that we have added three IP addresses because two Raspberry Pis are slaves
and one is a master. So, the MPICH library knows that it needs to run the code on
these three devices. Also, note that MPICH does not differentiate between devices. It
just needs a valid installation of the library to run properly. This means that we can
add different versions of Raspberry Pi to our cluster or even other computers such as
a BeagleBone, which has a valid installation of MPICH.

To test our setup, we navigate to the mpi4py/demo directory with the
following command:

cd ~/mpi4py/demo

Build Your Own Supercomputer with Raspberry Pi

[194]

Then, we run the following command:

mpiexec -f ~/machinefile -n 3 python helloworld.py

It will give an output similar to this:

Performance benchmarking of the cluster
Since we have successfully created a cluster of Raspberry Pis, we now need to test
their performance. One way of doing that is to measure the latency between different
nodes. To this end, Ohio State University has created some benchmarking tests
that are included with the mpi4py library. We will run a few of these to measure
the performance of our cluster. Simply put, latency measures the amount of time a
packet takes to reach its destination and get a response. The lower the latency, the
better a cluster will perform. The tests are given in the demo folder of the mpi4py
directory. These run in this fashion: the osu_bcast benchmark measures the latency
of the MPI_Bcast collective operation across N processes. It measures the minimum,
maximum, and average latency for various message lengths and over a large number
of iterations.

To run the osu_allgather.py test, we execute the following command:

mpiexec -f machinefile -n 3 python osu_allgather.py

As an interesting experiment, try to gather the latency variation with different sizes
of data. It should give you a unique insight into the functioning of the network.

Introducing N-Body simulations
An N-Body simulation is a simulation of a dynamic system of particles that are
under the influence of physical forces, such as gravity or magnetism. It is mostly
used in astrophysics to study the processes involving nonlinear structure formation,
such as the formation of galaxies, planets, and suns. They are also used to study
the evolution of the large-scale structure of the universe, including estimating the
dynamics of a few body systems such as the earth, moon, and sun.

Chapter 11

[195]

Now, N-body simulations require a lot of computational resources. For example,
a 10-body system has 10*9 forces that need to be computed at the same time. You
can see that, if we increase the number of particles, the number of forces increases
exponentially. So a 100-body system will require 9,900 forces to be calculated
simultaneously. That is why N-Body simulations are generally run on powerful
computers. However, we are going to use our Raspberry Pi cluster to accomplish
this task because it has three times the computational power of a single Raspberry Pi.
For this task, we will use an open source library called GalaxSee.

GalaxSee is modeled as discrete bodies interacting through gravity. The acceleration
of an object is given by the sum of the forces acting on that object, divided by
its mass. If you know the acceleration of a body, you can calculate the change in
velocity, and if you know the velocity, you can calculate the change in the position.
Consequently, you will have the position of each object at every point of time. The
more objects you have, the more forces you will need to calculate, and every object
must know about every other object. To reduce the computational load on a single
processor, the Galaxy code is an implementation of simple parallelism. The most
computationally heavy calculations involve calculating the forces on a single object,
and hence, each client is involved with that calculation given the object's information
and the information about each object that exerts force on it. The master then collects
the computed forces from the clients.

2 bodies
2 forces

3 bodies
6 forces

4 bodies
12 forces

N bodies
N (N-1) forces

Build Your Own Supercomputer with Raspberry Pi

[196]

In this way, we can simulate an N-Body simulation with code running in parallel.
Next, we will see how to install and get GalaxSee running.

To learn more about the GalaxSee library, visit
https://www.shodor.org/master/galaxsee/.

Installing and running GalaxSee
Now that we have a basic idea of what an N-Body simulation is and how
different bodies interact with each other, we will proceed to the installation
of the GalaxSee library.

First, we need to download the archive of the source code. We can do this with the
wget command:

wget http://www.shodor.org/refdesk/Resources/Tutorials/MPIExamples/Gal.
tgz

Next, we extract the .tgz archive, assuming it was downloaded to the home folder.
If the path is different, we need to enter the correct path:

tar -xvzf ~/Gal.tgz

Navigate to the folder:

cd Gal

We need to use Makefile to successfully build GalaxSee on our Raspberry Pi. To do
that, open the file in the terminal:

nano Makefile

Then, change the line:

cc = mpicc

to:

cc = mpic++

https://www.shodor.org/master/galaxsee/

Chapter 11

[197]

This is done so that the final result looks like this:

To build the program, simply run this:

make

Now if you enter ls inside the Gal folder, you will see a newly created executable
file named GalaxSee. Run the file with the following command:

./GalaxSee

Build Your Own Supercomputer with Raspberry Pi

[198]

This will execute the program and will open a new window that looks like
the following:

Here, the white dots are the bodies that are interacting with each other with the force
of gravity. There are a few options that you can configure in GalaxSee to change the
number of bodies or their interaction. For example, run the following command:

./GalaxSee 200 400 10000

Here, the first argument to the program, 200, gives the number of bodies to be
simulated. The second argument gives the speed of the simulation. The higher the
number, the higher the speed. The third argument gives the amount of time to run
the simulation in milliseconds. So, in the preceding command, we will simulate 200
bodies for 10 seconds. Obviously, we can experiment with different variables and see
how these variables affect the simulation.

The preceding example was running on a single Raspberry Pi. But as promised, we
will now see how to run it on a cluster. It will probably be surprising if we learn that
the program can run on a cluster of Raspberry Pi devices with a single command and
one that we've seen before. The following command does the trick:

mpiexec -f ~/machinefile -n 3 ./GalaxSee

Chapter 11

[199]

In the preceding command, mpiexec initiates the MPI process on our host computer.
Here, we will give it three points of data on which to execute the GalaxSee program.
These are as follows:

•	 The path to the file containing the IP addresses for each device in
the network

•	 The number of devices to be used
•	 The path to the executable file

The -f option specifies the machinefile. The -n option specifies the number of
devices to be used, and finally, we give the GalaxSee executable file to it.

Try it for yourself! If you try to increase the number of bodies in the simulation on
a single Raspberry Pi, it would probably run slower. But if you try the same on a
cluster, it will definitely run faster because now, we have a lot more computational
resources at our disposal.

Summary
This chapter was unique in the sense that we learned how to execute software
not on a single Raspberry Pi but on multiple ones. We learned the advantages of
using parallel computation and learned how to build our own network of clustered
Raspberry Pi devices. We also learned how to install the libraries required for
parallel computations so that we can run our own software in the cluster. We learned
how to configure the Raspberry Pis in our network to communicate with each other
and make the communication hassle-free. Once we set up a system, we tested it to to
measure the response in the form of latency.

Finally, we learned about the concept of N-body simulation and configured an open
source program to simulate it. W also saw how increasing the number of bodies in
the simulation could affect the speed of the program's execution.

In the next chapter, we will expand upon this knowledge about clusters and learn
about advanced networking concepts, such as DNS and DHCP. We will learn how to
add functionalities such as a domain name service and auto detection of nodes and
how to initiate a remote shutdown of the cluster.

[201]

Advanced Networking with
Raspberry Pi

In the previous chapter, we built a cluster of Raspberry Pis that all interact with each
other on a common network to accomplish a single task at a much greater speed
than a single Raspberry Pi would perform. In fact, the MPI library is basically a
networking library that delegates some computations to other processors connected
in a network so that the master node doesn't have to deal with them. Now, in this
chapter, we will learn about special networking concepts that power them kinds of
cluster computers and in fact, the whole Internet. In this chapter, we will learn about:

•	 Adding DHCP capabilities to our cluster
•	 Adding a domain name system capability to our cluster
•	 Writing a script for the autodetection of nodes
•	 Writing scripts for the remote shutdown of cluster nodes

Introducing DHCP
DHCP (Dynamic Host Configuration Protocol): The host is simply a server, which
means that the host computer is responsible for providing a service. The service
could be of any kind. For example, a web server is responsible for hosting the
files required for viewing a website. Again, the server implements the necessary
communication protocols to allow many players to play against each other. A
computer or application that uses the services offered by a server is called a client.
Now you might know that every computer on the Internet is identified by a unique
address known as the IP address.

Advanced Networking with Raspberry Pi

[202]

A DHCP server is responsible for allocating such IP addresses to all the nodes in a
network, and keeping track of the allocated addresses. In DHCP, dynamic means
constantly changing, host means server, configuration refers to configuring your
network settings, and protocol means a set of rules on how to do things. Described
next is the procedure for the allocation of IP addresses by a DHCP server.

Suppose a node wants to join a network. It first sends a message to the server asking
to be allocated an IP address. The server sends a message with an IP address and a
time duration for which the node might keep that IP address. Then the server notes
down the IP address given to the node in a table, along with the time it was given at
and the validity duration.

Now, when the node joins a network, it has no way of knowing if there is a DHCP
server. So it sends out a broadcast signal to the whole network intended just for the
DHCP server. If there is a server, it sends out a reply offering an address.

Now, consider the situation when a node is shutting down or leaving the network
cleanly. It sends out a signal to the server identifying itself and offers the IP address
back to the DHCP server. The server then modifies the table, strikes off the host's
name from the IP address, and then marks it available for allocation to other nodes
in the network. But what if the node doesn't exit cleanly? For example, when the
machine loses power or the network cable is just yanked out of it. This is where the
time duration of allocation comes in handy. Once the duration of allocation of that
IP address has passed, the node is automatically struck off from the table and that
address becomes available again. Every time the server receives a packet of data
from the host, its duration of allocation is automatically refreshed.

A few networking concepts
Since we have learned how a DHCP server operates, we will now work through an
introduction to some important concepts related to networking that might be useful
in understanding the operation of the network and also for debugging any errors we
may encounter.

Though it might not look like it on first read, an IP address follows a predefined set
of conventions and it is not handed out randomly. The IP address that is visible,
for example 192.168.1.10, is actually composed of binary numbers. Each number
separated by a decimal is actually a binary octet. So the preceding IP address actually
looks like the following:

11000000 10101000 00000001 00001010

Chapter 12

[203]

Now, an IP address is classified into multiple classes according to the address
allocated to it by the DHCP server. They serve as a hierarchical system and also help
to segment the IP address into classes such as private address and external address.
They also help in distributing the IP address ranges to entities such as countries,
service providers, and so on. There are the following classes of IP addresses:

•	 Class A: In this class, the first bit of the first octet is always set to zero.
So, the first octet ranges from 00000000 – 01111111, or 0 – 127.
So Class A can only have an IP address from 1.X.X.X – 126.X.X.X as
127.0.0.1 is reserved for loopback IP addresses, that is, for the machine
to refer to itself. Hence, this class can only have 126 networks (2^7 – 2) and
16777214 (2^24 -2) hosts.

•	 Class B: Here, the first two bits of the first are set to 1 and 0 respectively.
So, the first octet ranges from 10000000 – 10111111 or, 128 – 191.
So, Class B can only have IP addresses ranging from 128.0.X.X –
191.255.X.X. Hence, this class can have 16,384 (2^14) networks and 65,534
(2^16 – 2) hosts.

•	 Class C: The first three bits of the first octet are set to 110. The range
of the first octet is from 11000000 – 11011111, or 192 – 223. So, Class C
can have IP addresses ranging from 192.0.0.X – 234.255.255.X. This
means that Class C has a total of 20,97,152 (2^21) networks and 254 (2^8 -2)
host addresses.

•	 Class D: This class of network has the first four bits of the first octet
set as 1110. That gives it a range of 11100000 – 11101111 or 235 – 239.
However, unlike the preceding three classes, Class D is used exclusively
for multicasting. So, there is no need to get individual IP addresses, because
individual host data is not required for this network to operate.

•	 Class E: This class is reserved exclusively use for experiments, or R&D,
or study. The IP addresses in this class can range from 240.0.0.0 –
255.255.255.254.

Advanced Networking with Raspberry Pi

[204]

Now, we move on to the concept of a subnet mask. A subnet mask is basically
a 32-bit address that divides an IP address into the network and host addresses.
A subnet mask sets all the bits for the network as 1 and all the bits for the host as 0.
So, the subnet masks for the different classes of networks are given as follows:

•	 Class A: 255.0.0.0
•	 Class B: 255.255.0.0
•	 Class C: 255.255.255.0

Class D and Class E do not have subnet addresses because Class D has multicast
addresses and Class E only consists of reserved addresses.

Configuring a Raspberry Pi to act as a
DHCP server
Now, we will perform a hands-on implementation of the preceding concept by
setting up a Raspberry Pi from our cluster to act as the DHCP server. The Raspberry
Pi selected for the purpose should be properly marked for identification because
there can be only one DHCP server in a network. More than one can cause a lot of
problems! If we have more than one DHCP server in a single network, the client
nodes will get confused as to which server to send the IP allocation request to.
We first need to install a program called dnsmasq, and we can do that with the
following commands:

sudo apt-get update

sudo apt-get install dnsmasq

Once this is installed, we can go ahead and disconnect the Internet from the LAN
and connect the network to a non-DHCP hub. Why, you may ask? Because the
conventional routers that we use have a DHCP server built into them. So configuring
a Raspberry Pi as a server and connecting it to the router might cause some
problems. So we just connect it to a networking hub that interconnects all the
nodes. We are now ready to modify the Raspberry Pi to get it running as a server.

By convention, DHCP servers will have the lowest IP address in a network from
the range of IP addresses. And for a lot of private networks, this IP address space
looks like this: 192.168.0.X. This means that the DHCP server will generally have
192.168.0.1 as the IP address and the other nodes will have 192.168.0.2, 3, 4, and
so on up to 254 IP addresses.

Chapter 12

[205]

So, logically, we need our Raspberry Pi to have this address and hold on to it so it
defaults to the DHCP server every time the network is initiated. So, edit the network
interfaces file:

sudo nano /etc/network/interfaces

In the interfaces file, eth0 refers to the connection from the ethernet port. If you've
connected a Wi-Fi dongle to it, you will also see a wlan0 interface. This translates to
Wireless LAN 0. Now, since our Pi is connected via an ethernet port, we find the
following statement:

iface eth0 inet dhcp

Basically, this line is the one responsible for the Raspberry Pi acting as a DHCP
client because it tells the Pi to try to get an IP address from a DHCP server, from the
interface eth0. But since we want our Raspberry Pi to act as a DHCP server in the
network, we comment this line out. Then, to set a static IP address for our server,
we add the following lines:

iface eth0 inet dhcp
auto eth0
iface eth0 inet static
address 192.168.1.1
netmask 255.255.255.0

The interfaces file might look something like:

The static option tells the Raspberry Pi to configure a static IP address and netmask,
which is given in the statement below. Now, save this file by pressing Ctrl + X and
Enter. To restart the networking service, enter the following command:

sudo service networking restart

Advanced Networking with Raspberry Pi

[206]

Now, the Raspberry Pi's IP address will always be set to 192.168.1.1. We can also
check this, as we did previously, by entering the command:

ifconfig

Now, we need to set up the software we installed earlier: dnsmasq. This is nothing but
a DHCP server application for which we need to manually specify a configuration file
according to our preferences. But since there already exists a default configuration file,
we will make a backup of it. To do that, enter the following commands:

cd /etc

sudo mv dnsmasq.conf dnsmasq.default

The following command creates a new configuration file for dnsmasq:

sudo nano dnsmasq.conf

Once in the editing screen, enter the following lines into the configuration file:

interface=eth0

dhcp-range=192.168.1.2,192.168.1.254,255.255.255.0,12h

The first line in the file specifies the interface on which to listen to incoming
DHCP requests. In this case, we have set it up to be the ethernet port of the Pi.
The dhcp-range takes in four parameters:

•	 Lowest IP address to be allotted
•	 Highest IP address to be allotted
•	 Netmask
•	 Lease duration

We can now save and close the file by pressing Ctrl + X and Enter. For the settings to
take effect, we need to ensure that our DHCP serves the Raspberry Pi and is the only
device connected to the networking hub. Once all the other devices are removed, we
can restart the DHCP service by:

sudo service dnsmasq restart

The DHCP server is now running and can listen to requests from clients connected to
the same networking hub.

Chapter 12

[207]

Finally, ensure that none of the other Raspberry Pis have a static IP address that is in
conflict with our DHCP server. Preferably, there should not be any Pi with a static IP
configured. The /etc/network/interfaces file should be as follows:

iface eth0 inet dhcp
auto eth0
iface eth0 inet static
address 192.168.0.1
netmask 255.255.255.0

Exit nano and restart the networking service with the following command:

sudo service networking restart

Now, we can connect all the Client Raspberry Pis to the networking hub. Once they
are all switched on, they should be able to acquire their respective IP addresses
from the DHCP server immediately. We can also check the allocated IP addresses
by running the ifconfig command on the clients. The IP addresses are allocated
randomly from the range given to the DHCP server.

Once the IP addresses are acquired, everything should work as expected. We can
check the connections by pinging different nodes from another node. Do this with
the following command:

ping 192.168.1.X

where X is the IP address of the other node. We can also check the connection to the
DHCP server with:

ping 192.168.1.1

Another interesting experiment that can be performed with the setup is actually
observing the connections go up and down. Firstly, we can shut down a client and
observe it give back the IP address to the server. Run the following on a client of
your selection:

sudo ifdown eth0

Once we do that, we will see an output similar to the following:

Listening on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on Socket/fallback

DHCPRELEASE on eth0 to 192.168.1.1 port 67

Advanced Networking with Raspberry Pi

[208]

DHCPRELEASE is the actual statement where the IP address is handed back to the
server by the client. Similarly, we restart the eth0 and observe the DHCP address
being acquired. Run the following command:

sudo ifup eth0

We will see an output similar to the following:

Listening on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on Socket/fallback

DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on eth0 to 255.255.255.255 port 67

DHCPOFFER from 192.168.1.1

DHCPACK from 192.168.1.1
bound to 192.168.0.X -- renewal in 40000 seconds

In this exchange, DCHPDISCOVER, DHCPREQUEST, DHCPOFFER, and DHCPACK are of
importance. They correlate with the acquisition procedure in the IP address through
a DHCP server, as described before. It is left as an exercise to the reader to figure out
their respective functions.

Introducing Domain Naming System
(DNS)
In the previous section, we learned to add the DHCP server to our Raspberry Pi
cluster. This was done mainly so that each Raspberry Pi in our cluster could be
identified by a unique IP address. Now, as you can imagine, the bigger our cluster
grows, the harder it is going to be to remember the IP address of each Raspberry Pi.
Humans find it hard to remember long sequences of numbers, which is what the IP
addresses are. But there is a way by which we can easily connect to different nodes
without having to remember their IP addresses.

This method is called a Domain Name System (DNS). Its basic function is to translate
IP addresses into words so that it becomes easier for us to remember. For example,
the DNS server will translate the IP address 192.168.5.43 into raspberrypi.org
and vice versa to make it easier to connect to. Indeed, this is what happens on the
Internet. Each website has an IP address behind it.

Chapter 12

[209]

When you type a URL into your browser, your computer first contacts the DNS
server and asks for the IP address that it is associated with. The DNS server then
searches its database for the name and returns the IP address to your computer.
This whole process is called a DNS query.

Now, we can have multiple DNS servers in a single network. This way, when one
DNS server doesn't have an address saved in its database, it can pass the query to the
second DNS server, and so on. This is known as an iterative DNS query. This is what
actually happens on the Internet. There are millions of websites on the Internet and
having a single DNS server that holds a large database is not only unfeasible but also
unreliable. So, there are millions of DNS servers that are distributed across the world
and act together to resolve billions of translation requests from millions of clients.

But here is an interesting problem. In a DHCP network, IP
addresses are dynamic, which means that the IP address of a node
might change. Think about how a DNS server might handle that
situation. You can do that as an exercise.

Setting up a DNS server on the Pi
Now, we will learn about the practical part of setting up a Domain Name System
server on our own cluster of Raspberry Pis so as to learn the intricacies of the system.
We will set up a DNS server on the same Pi on which we set up the DHCP server
earlier. Since we took care to see that it is easily identifiable from the other client
Raspberry Pis, we can begin the setting-up procedure.

We use the same software, dnsmasq, which we used for the DHCP server, as it also
has the capability to run a DNS server. Other than that, we don't need to install
anything extra. As a sanity check, before beginning the following tutorial, try to ping
the server from one of the clients. Although multiple DNS servers can be configured,
for the purposes of this tutorial, we will be using only one Raspberry Pi as the server.

As the DNS server doesn't have a broadcast system like DHCP, the clients can't
locate it easily. So they need to be told the IP address of the DNS server, and one way
of doing it is to make the DHCP server pass the IP address to the client. This can be
done at the same time as the DHCP server is allotting its own IP address. In this case,
the IP address of both the DHCP server and the DNS server is the same. Open up the
dnsmasq configuration file (dnsmasq.conf) for editing with the following command:

sudo nano /etc/dnsmasq.conf

Advanced Networking with Raspberry Pi

[210]

The first thing we do is specify that the IP address of the DNS server and DHCP
server is the same. To do this, add the following line at the end of the file:

dhcp-option=6,192.168.1.1

Now that the clients know where the DNS server is located, we need to create a
lookup database that contains the IP addresses with their corresponding names.
Although in actual DNS servers a more sophisticated database platform is used,
for example SQL, here we will use a simple text file as a demonstration. Add the
following two lines to the configuration file:

no-hosts

addn-hosts=/etc/hosts.dnsmasq

Here, the no-hosts line tells dnsmasq to ignore the default /etc/hosts file for
DNS queries. And the next line specifies that our own file, /etc/hosts.dnsmasq,
should be used for DNS queries.

The next step in this process is to create our hosts file. To do that, enter the
following command:

sudo nano /etc/hosts.dnsmasq

Since this file that didn't exist before, we should now be editing a blank file.
New entries can be added in a specific format, which is the IP Address, followed
by a tab, followed by the name. For example:

192.168.1.1	 server

Here, the first part is the IP address, the second part is the tab spacing, and the third
part is the name associated with that IP address.

We have to add a tab instead of multiple spaces for it to work.

Now, save and exit this file. Make sure that the server is the only device connected
to the networking switch. Unplug all other devices before restarting the dnsmasq
service. Restart the service with the following command:

sudo service dnsmasq restart

But there is one more thing. Since our server is set up with a static IP address, we
also need to tell the DHCP server to use its own DNS server. We do that through a
file named /etc/resolv.conf. Open it for editing by:

sudo nano /etc/resolve.conf

Chapter 12

[211]

Change the contents of the file to:

nameserver 127.0.0.1

Now, 127.0.0.1 is a reserved IP address that is used to refer to one's own system.
So, it would be the same if we put 192.168.1.1 as the IP address. However, if the
server's IP address changes, we would need to change this file manually. So, we
put 127.0.0.1 as the IP address of the nameserver. Exit the file and restart the
networking service:

sudo service networking restart

Finally, connect all the client Raspberry Pis to the networking hub. They should start
receiving their allocated IP addresses. Once all the Pis are connected to the network,
you can run:

ping server

And you will start getting a response. If this is successful, it means that the ping
request was first passed to the DNS server inside the server Pi and, when the
hostname was resolved, a response was obtained from the IP address of the server.

Configuring the setup for a web server
Let's say, for example, one of the Raspberry Pis is configured as a web server. So,
the task now will be to set up the cluster in such a way that you can type a name
in a browser and have the home page of the web server load up!

By convention, web servers are supposed to have static IP addresses. This is so
that DNS servers can store their hostnames without worrying too much about IP
addresses changing. Since we earlier put in the entire range of IP addresses possible
as the range for the DHCP server, we will modify that range so that we can reserve
some static IP addresses for our web servers. For this, again edit the /etc/dnsmasq.
conf file and modify the dhcp-range variable to the following:

dhcp-range=192.168.1.40,192.168.1.254,255.255.255.0,12h

So, now we have non-DHCP IP addresses from 192.168.1.2 to 192.168.1.39, which we
can allot to the web servers. One of the ways to do this is to modify /etc/network/
interfaces and /etc/resolve.conf on the web server itself and set it so that the
web server always gets a static IP address. But, we can also identify the web server
by its MAC address, which is the unique hardware address of the network interface,
and give it the same IP address every time.

Advanced Networking with Raspberry Pi

[212]

This would require a modification of the dnsmasq.conf file. We need to know
the MAC address of our web server Pi for this. It can be easily found by executing
ifconfig in a new terminal and looking for the HWaddr field ; it will be in the form
b8:27:eb:a8:6b:cc. Remember that this address is unique for every device. Once
we have this address, we will add the following line in the dnsmasq.conf file on the
server Pi to assign a specific IP address for this MAC address:

dhcp-host=b8:27:eb:a8:6b:cc,192.168.1.5

This configures the DHCP server to always allot the 192.168.1.5 IP address for
this MAC address. Now, we just need to add a name for our web server in the
hosts.dnsconf file. Open it for editing with nano and just add the following
line at the end of the file:

192.168.1.5	 webserver

So, it finally looks like this:

Restart the dnsmasq service for the changes to take effect by:

sudo service dnsmasq restart

Finally, we have to make the web server Pi take up the new IP address so
that it can be addressed by name in the DNS server. To do this, execute the
following commands:

sudo ifdown eth0

sudo ifup eth0

This will make the Raspberry Pi disengage with the DHCP server; when it tries to
re-acquire the IP address, the DHCP server will allot the static IP address we defined
in the configuration file.

Chapter 12

[213]

To test if the DNS server works with the web server or not, you can run the following
command from any of the other client Pis:

ping webserver

If you get a response, it means a DNS server is set up correctly. If not, then you need
to check whether all the steps were followed correctly.

Automating node discovery in a network
Currently, we have very few devices in our network. But, there will be a situation
when there will be many nodes and managing them manually will be a difficult task.
In a large cluster, there will be many nodes that are inactive or unserviceable. If we
try to connect to them using a script that has the IP address of the clients hardcoded,
we will meet with a lot of errors. This is why there is a need for automatic node
detection that automatically detects the active nodes in a network and saves that
information so that other programs can use it. One such program is MPICH, which
we learned about in the previous chapter. As you might have learned, whenever we
execute a program using MPICH, we have specified a filename that contains a list
of active nodes that can be used for computations. However, if one of the nodes is
inactive or unresponsive, the script will not work properly and will waste valuable
computation resources.

For node discovery in a network, we will use a program called Nmap, which is short
for network map. Nmap is a free security scanner, port discovery, and network
exploration tool. Install it using the following command:

sudo apt-get install nmap

Find out more about Nmap here:
https://nmap.org/.

As we learned with the IP addresses in the second section, the following IP address:

192.168.1.1

actually looks like the following:

11000000 10101000 00000001 00000001

https://nmap.org/

Advanced Networking with Raspberry Pi

[214]

Now that we have this information, we can move on to learn how to use the Nmap
tool. The commands for scanning active IP addresses are:

nmap -sP 192.168.1.0/24

nmap -sP 192.168.1.5-100

This is what the output looks like:

The preceding are two separate commands and we will learn what each of them
does. The first command scans the whole range of IP addresses in a network from
192.168.1.0 – 192.168.1.255. In this command, we specify a mask of 24 bits,
which basically tells Nmap to not change the first 24 bits of the IP address, which,
according to the information we learned earlier, means that the first three numbers
of the IP address will remain constant and only the last number will be varied and
checked for a response. Since our network will only contain IP addresses starting
with 192.168.1, due to the way our DHCP server is set up, this approach is good.

The second command explicitly specifies the range of the IP addresses to scan. This is
useful as you want to find active nodes in a specific range. One use case for this is to
find out all the client nodes in a network.

Chapter 12

[215]

Summary
In this chapter, we built upon the foundations laid down in the previous chapter
to gain more understanding about the concepts of networking and how they are
applied to a cluster of Raspberry Pis.

Specifically, we learned how to set up a DHCP server on a Raspberry Pi and
learned the mechanics of how IP addresses are allocated to different clients.
We also observed the exact procedure of how the allocation takes place.

As a next step, we set up a DNS server, too, that works with the DHCP server and
assigns names to the IP addresses so that the nodes are easily accessible. Using the
same methodology, we learned how to assign a name for a Raspberry Pi-based web
server so that we can open websites on our own network.

Finally, we learned about a tool that helps us discover active nodes on the network
so that we do not have to face the inconvenience of assigning computations to a non-
active node that could potentially crash a program or wrong computations.

[217]

Setting Up a Web Server on
the Raspberry Pi

In the previous two chapters, we discussed the networking capabilities of the
Raspberry Pi. In Chapter 11, Build Your Own Supercomputer with Raspberry Pi, we
built a network of Raspberry Pi devices that were able to communicate with each
other and share the computational burden, thereby significantly reducing the time
required for a task to complete. In the next chapter, Chapter 12, Advanced Networking
with Raspberry Pi, we learned about more advanced networking concepts such as
DHCP servers, DNS systems, and so on. In addition to that, we made our own
intranet with a few Pi devices.

Continuing the same theme, we will now set up a web server on a single Raspberry
Pi and set up a WordPress installation on it. The web server that we will be using is
Apache, as it is one of the most popular servers, and has high usage within the open
source community. In this chapter, we will be covering the following topics:

•	 Introducing and installing Apache
•	 Learning to serve HTML websites
•	 Installing PHP and MySQL
•	 Installing WordPress
•	 Configuring WordPress

Setting Up a Web Server on the Raspberry Pi

[218]

Introducing and installing Apache on
Raspbian
The Apache HTTP server is extremely popular and is the world's most used web
server software currently. It enjoys the support of the open source community
because it is developed and maintained by an open community of developers under
the umbrella of the Apache Software Foundation. Although most commonly used on
a Unix-like system, it is available for a variety of other operating systems including
Microsoft Windows. In 2009, it became the first web server to be used by more than a
hundred million websites and currently it is estimated to serve over 50 percent of all
websites and 37 percent of the top servers across domains.

One of the reasons it is so popular is that it supports a wide variety of features and
many more features can be implemented as compiled modules that can extend
the core functionality. For example, on its own, Apache can serve HTML files over
HTTP, but with additional modules installed, it can also serve web pages using
languages such as Python. It also has a variety of language interfaces that include
Python, PHP, and Perl.

Now, installing the web server on a Raspbian distribution is extremely easy.
We need to install the apache2 package with the following command:

$ sudo apt-get install apache2

During installation, the package automatically creates our demo HTML file that you
can see if you type 127.0.0.1 or http://localhost/ on your URL bar. We can also
see this if we navigate to the Pi's IP address from another machine connected to the
same network such as 192.168.1.5. Replace this IP address with your own Pi's IP
address in the network. You can find the IP address by typing the following on the
Raspberry Pi's terminal:

$ hostname -I

Chapter 13

[219]

The default page looks like this:

If we see this page, it means that our installation has been successful. This is just a
single HTML file that can be found at /var/www/html/index.html. Let's look at the
details of this folder. Navigate to the folder by:

$ cd /var/www/html/

And then execute the following command to see the properties of the files in
the folder:

$ ls -al

Setting Up a Web Server on the Raspberry Pi

[220]

This command lists the files and a few of their properties. You will see the
following output:

The meaning of the columns respectively is:

•	 Permissions of the file
•	 Number of files in the directory
•	 User that owns the file/directory
•	 Group that owns the file/directory
•	 File size
•	 Last modified date

Since the owner of the index.html file is root, we need to take ownership of the file
before editing it. To do that, enter the following command:

$ sudo chown pi: index.html

We can also replace the index.html file with our own HTML file and serve a fully
fledged HTML website complete with CSS classes.

However, a simple HTML website sounds too basic, right? Since we are on the
final leg of this book, we should do something more advanced. That's right, in the
following sections we will be learning how to set up a WordPress website. For that,
however, we first need to install a few tools that WordPress uses.

Installing PHP and MySQL
PHP is one of the most popular programming languages in use today for the web
look at. It is the code that runs on the server when it receives a request for a website.
Unlike HTML, PHP can generate dynamic web pages that can change the look and
content on the fly. We chose PHP to work with because WordPress uses PHP. Now,
install PHP and the accompanying Apache packages with the following command:

$ sudo apt-get install php5 libapache2-mod-php5

We now have PHP installed with its accompanying Apache packages, and we will
proceed to test it.

Chapter 13

[221]

Navigate to the HTML folder and create a new index.php file:

$ cd /var/www/html/

$ sudo nano index.php

Add a test line to it:

<?php echo "hello world"; ?>

Save the file and exit by pressing Ctrl + X and then Y. We also need to remove
the index.html file because HTML takes precedence over PHP. Do that with the
following command:

sudo rm index.html

Navigate to 127.0.0.1 or localhost in the browser and you will be greeted by the
hello world message. Let's now set up something static.

Replace the hello world line with the following:

<?php echo date('Y-m-d H:i:s'); ?>

Now that we have installed PHP to process the web pages that we want, the next
step is to install a database to store some data. Our database of choice will be
MySQL simply because WordPress uses it to store IDs of things such as Post,
Pages, Comments, Users, and so on.

To install MySQL and its PHP packages, run the following command:

sudo apt-get install mysql-server php5-mysql

Once the installation proceeds, you will be asked for a root password for creating the
databases. Enter the password and remember it for future use.

Installing WordPress
Now that we are done installing the dependencies, the next step is getting the
WordPress files in the HTML folder. Fortunately for us, WordPress provides a tar
archive of the latest version of WordPress on this link: http://wordpress.org/
latest.tar.gz. We now need to place the files contained in this folder in our web
server folder. To do that, we first need to take ownership of the folder. To carry
out that entire process, we execute the following commands:

$ cd /var/www/html/
$ sudo chown pi:
$ sudo rm *
$ wget http://wordpress.org/latest.tar.gz

http://wordpress.org/latest.tar.gz
http://wordpress.org/latest.tar.gz

Setting Up a Web Server on the Raspberry Pi

[222]

In a nutshell, we first navigate to the HTML folder, take ownership of the folder,
remove all the pre-existing files, and then fetch the WordPress archive. Next, we
extract the contents of the archive and place them in the HTML folder. We do that
with the following commands:

$ tar xzf latest.tar.gz

$ mv wordpress/*

$ rm -rf wordpress latest.tar.gz

Now, if you run the ls command, you will see the following output:

Configuring the WordPress installation
Once the files are properly placed in the right locations, to activate the installation
and start using the WordPress website, we first need to set up a MySQL database
that WordPress can use. To set up the database, execute the following command:

$ mysql -uroot -p

Chapter 13

[223]

This sets up the database so that the user is root and the -p option prompts the
terminal to ask for the password. Enter the same password that you entered while
installing the MySQL database. We are then greeted with a MySQL terminal that
looks like this:

Once inside the terminal, execute the following statement:

mysql> create database wordpress;

You will be greeted by the following message:

Finally, exit the terminal by pressing Ctrl + D.

Setting Up a Web Server on the Raspberry Pi

[224]

To complete the installation, we need to access the WordPress installation page,
located on our local host. So go ahead and enter 127.0.0.1 in your browser and
you will be greeted with the following page:

Chapter 13

[225]

This means that WordPress is properly configured. We now hit Let's go! to proceed
to the next step. This takes us to the following page:

Setting Up a Web Server on the Raspberry Pi

[226]

Enter all the details for the database including the password that you set earlier.
Enter the details on the page as given in the preceding screenshot, and then press
Submit. The installation wizard will give an error message that it was unable to
write the wp-config.php file to the filesystem. There is no reason to panic here,
because it also gives us the content of the wp-config.php file that we can use to
create the file manually. The error looks like this:

So, now copy the text given in the dialog box, and open a new terminal. Create a new
wp-config.php file in the HTML folder with the following commands:

$ cd /var/www/html

$ sudo nano wp-config.php

Chapter 13

[227]

Go ahead and paste the content that was copied. We can right-click to paste or
simply press Ctrl + Shift + V. Save and exit the file by pressing Ctrl + X and then Y.
Once the file is created, go back to the browser and hit the Run the Install button.
After processing for a few seconds, the page returns the following screen:

Now, we are ready to enter our details to create a user and begin using the
WordPress website. Enter the details, and you've successfully created it.

Setting Up a Web Server on the Raspberry Pi

[228]

You can log in to your website by appending /wp-admin.php to your website URL.
For example, in our case the admin page will be given by 127.0.0.1/wp-admin.php,
and it looks like this:

To find out more about WordPress, log on to their website:
https://wordpress.org/

https://wordpress.org/

Chapter 13

[229]

It would be an interesting exercise for you to continue with the process and try to
run a fully fledged website on the Raspberry Pi and see how it handles the loads of
running a heavy website complete with custom theme, pictures, and so on.

Summary
This chapter was a general extension of the previous two chapters, expanding on the
concepts of networking built previously and using them to set up a web server on
our intranet.

In this chapter, we installed the Apache web server on our Pi. To set up the
WordPress website, we installed all the dependencies including PHP and MySQL.
Then we downloaded the WordPress files and set up a MySQL database to work
with it.

Finally, we configured the installation and resolved the errors that we generated to
arrive at a complete installation.

In next chapter, we will learn network programming with Raspberry Pi using sockets
in Python.

[231]

Network Programming in
Python with the Pi

A network socket is an endpoint of a connection across computer networks.
Nowadays, almost all communication between computers and distinct networks
is based on the Internet Protocol, which uses sockets as a basis of communication.
A socket is an abstract reference that a local program can pass to the network API
to make use of a connection. Sockets are internally often represented in network
programming APIs simply as integers, which identify which connection to use.
In brief, we will be covering the following topics in this chapter:

•	 The basics of sockets
•	 The difference between TCP and UDP sockets
•	 UDP sockets
•	 TCP sockets
•	 The Telnet program
•	 A chat application

The basics of sockets
A socket API is an application programming interface, provided by the operating
system (OS), that allows application programs to initiate, control, and use network
sockets programmatically for communication. Internet socket APIs are usually
based on the Berkeley sockets standard. In the Berkeley sockets standard, sockets
are a form of file descriptor, adhering to the Unix philosophy that everything is a file.
Thus, we can read, write, open, and close sockets in the same way as we do files.
In inter-process communications, each end will have its own socket, but these
may use different socket-programming APIs. However, they are abstracted by the
network protocol.

Network Programming in Python with the Pi

[232]

A socket address is a combination of an Internet Protocol (IP) address and a
port number. Internet sockets deliver and receive data packets to and from the
appropriate application process or thread. On a computer with an IP address, every
network-related program or utility will have its own unique socket or set of sockets.
This ensures that the incoming data is redirected to the correct application.

The difference between TCP and UDP
There are two types of protocols in the IP suite. They are Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). TCP is a connection-oriented IP
which means that once a connection is established, data can be sent in a bidirectional
manner. UDP is a much simpler, connectionless Internet protocol. Multiple messages
are sent as packets in chunks using UDP. Let's distinguish between the two with
clear points, as follows:

TCP UDP

TCP is a connection-oriented protocol. UDP is a connectionless protocol.

Using this mode, a message makes its way
across the Internet from one computer and
network to another. This is connection based.

UDP is also a protocol used in message
transport or transfer. It is not a connection-
based protocol. A program using UDP can
send a lot of packets to another, and that
would be the end of the relationship.

TCP is suited to applications that require
high reliability, and transmission time is
relatively less critical.

UDP is suitable for applications that need
fast, efficient transmission, such as games
and live-streaming videos.

Protocols utilizing TCP include HTTP,
HTTPS, FTP, SMTP, and Telnet.

Protocols utilizing UDP include DNS, DHCP,
TFTP, SNMP, RIP, and VoIP.

Data is read as a stream of bytes; no
distinguishing indications are transmitted to
signal message segment boundaries.

Packets are sent individually and are checked
for integrity only on arrival. Packets have
headers and endpoints.

TCP performs error checking. UDP performs error checking. However, it
has no recovery options for missed or corrupt
packets.

The data transferred remains intact and
arrives in the same order (known as in-order)
in which it was sent.

There is no guarantee that the messages or
packets sent will reach at all or will be in the
same order as transmitted.

Chapter 14

[233]

The architecture and programming of UDP
sockets
Here is the architecture of a UDP client-server system:

Network Programming in Python with the Pi

[234]

UDP is an Internet protocol. Just like its counterpart TCP (which we will discuss
soon), UDP is a protocol for the transfer of packets from one host to another.
However, as seen in the diagram, it has some important differences from TCP.
Unlike TCP, UDP is connectionless and is not a stream-oriented protocol. This
means a UDP server just catches incoming packets from any and many hosts
without establishing a reliable and dedicated connection for the transfer of data
between processes.

A UDP socket is created as follows in Python:

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

SOCK_DGRAM specifies a UDP socket.

Sending and receiving data with UDP
As UDP sockets are connectionless sockets, communication is done with the socket
functions sendto() and recvfrom(). These functions do not require a socket to be
connected to another peer explicitly. They just send and receive directly to and from
a given IP address.

UDP servers and NCAT
The simplest form of a UDP server in Python is as follows:

import socket
port = 5000
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("", port))
print "waiting on port:", port
while 1:
 data, addr = s.recvfrom(1024)
 print data

Instead of having a listen() function, a UDP server has to open a socket and
wait to receive incoming packets. As is evident from the code snippet, there is no
listen() or accept() function. Save the above code and execute it from a terminal
and then connect to it using the NCAT utility. NCAT is an alternative to Telnet, and
it is more powerful than Telnet and packed with more features. Run the program
and, in another terminal window, use NCAT. Here is the output of the execution of
the program and NCAT:

pi@raspberrypi ~/book/chapter14 $ nc localhost 5000 -u -v
Connection to localhost 5000 port [udp/*] succeeded!

Hello
Ok

Chapter 14

[235]

The -u flag in the command indicates the UDP protocol. The message we send
should be displayed on the server terminal.

An echo server using Python UDP sockets
Here is the code for an echo server in Python:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

Datagram (udp) socket
try :
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 print 'Socket created'
except socket.error, msg :
 print 'Failed to create socket. Error Code : ' + str(msg[0]) + '
Message ' + msg[1]
 sys.exit()

Bind socket to local host and port
try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

#now keep talking with the client
while 1:
 # receive data from client (data, addr)
 d = s.recvfrom(1024)
 data = d[0]
 addr = d[1]

 if not data:
 break

 reply = 'OK...' + data

Network Programming in Python with the Pi

[236]

 s.sendto(reply , addr)
 print 'Message[' + addr[0] + ':' + str(addr[1]) + '] - ' +
 data.strip()

s.close()

This program will start a UDP server process on the mentioned port (in our case, it's
8888). Save the program and run it in a terminal. To test the program, open another
terminal and use the NCAT utility to connect to this server, as follows:

pi@raspberrypi ~/book/chapter14 $ nc -vv localhost 8888 -u

Connection to localhost 8888 port [udp/*] succeeded!

OK...XOK...XOK...XOK...XOK...X

OK...

Hello

OK...Hello

How are you?

OK...How are you?

Use NCAT again to send messages to the UDP server, and the UDP server will reply
back with OK... prefixed to the message.

The server process terminal also displays the details about the client connected,
as follows:

$ python prog2.py

Socket created

Socket bind complete

Message[127.0.0.1:46622] - Hello

Message[127.0.0.1:46622] - How are you?

It is important to note that unlike a TCP server, a UDP server can handle multiple
clients directly as there is no explicit connection with a client (hence connectionless).
It can receive from any client and send a reply to it. No threads are required as we do
in TCP servers.

A UDP client
The code for a UDP client is as follows:

import socket #for sockets
import sys #for exit

Chapter 14

[237]

create dgram udp socket
try:
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
except socket.error:
 print 'Failed to create socket'
 sys.exit()

host = 'localhost';
port = 8888;

while(1) :
 msg = raw_input('Enter message to send : ')

 try :
 #Set the whole string
 s.sendto(msg, (host, port))

 # receive data from client (data, addr)
 d = s.recvfrom(1024)
 reply = d[0]
 addr = d[1]

 print 'Server reply : ' + reply

 except socket.error, msg:
 print 'Error Code : ' + str(msg[0]) + ' Message ' + msg[1]
 sys.exit()

The client will connect to the UDP server and exchange messages as follows:

pi@raspberrypi ~/book/chapter14 $ python prog3.py

Enter message to send : Hello

Server reply : OK...Hello

Enter message to send : How are you

Server reply : OK...How are you

Enter message to send : Ok

Server reply : OK...Ok

Enter message to send :

The programs for the UDP protocol are simple to code as there are no explicit
connections from the UDP clients to the UDP server.

In the next subsection, we will learn about TCP sockets.

Network Programming in Python with the Pi

[238]

The architecture of TCP sockets
The following is a diagram of the TCP client-server architecture:

Chapter 14

[239]

Creating a TCP socket
Here is an example of creating a TCP socket:

import socket #for sockets

create an AF_INET, STREAM socket (TCP)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print 'Socket Created'

The socket.socket()function creates a socket and returns a socket descriptor,
which can be used in other socket-related functions.

This code will create a socket with the following properties:

•	 Address family: AF_INET (this is for IP version 4, or IPv4)
•	 Type: SOCK_STREAM (this specifies a connection-oriented protocol,

that is, TCP)

If any of the socket functions fail, then Python throws an exception called
socket.error, which must be caught as follows:

import socket #for sockets
import sys for exit

try:
 create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

In this way, we have created a TCP socket successfully. We can connect to a server,
for example, https://www.google.com, using this socket.

Connecting to a server with a TCP socket
We can connect to a remote server on a certain port number. We need two things for
this: the IP address of the remote server we are connecting to and a port number to
connect to. We will use the IP address of https://www.google.com as a sample in
the following code.

http://www.google.com
https://www.google.com

Network Programming in Python with the Pi

[240]

First, we need to get the IP address of the remote host or URL, since before
connecting to a remote host, its IP address is required. In Python, obtaining
the IP address is quite simple:

import socket #for sockets
import sys #for exit

try:
 #create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

host = 'www.google.com'

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 #could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

print 'Ip address of ' + host + ' is ' + remote_ip

Now that we have the IP address of the remote host or URL, we can connect to it on
a certain port using the connect() function:

import socket #for sockets
import sys #for exit

try:
 create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

Chapter 14

[241]

host = 'www.google.com'
port = 80

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

print 'Ip address of ' + host + ' is ' + remote_ip

Connect to remote server
s.connect((remote_ip , port))

print 'Socket Connected to ' + host + ' on ip ' + remote_ip

Run the program and notice that its output in the terminal is as follows:

pi@raspberrypi ~/book/chapter14 $ python prog4.py

Socket Created

Ip address of www.google.com is 74.125.236.83

Socket Connected to www.google.com on ip 74.125.236.83

It creates a TCP socket and then connects to a remote host. If we try connecting to a
port different from port 80, then we should not be able to connect, which indicates
that the port is not open for any connections. This logic can be used to build a
port scanner.

The concept of connections applies to SOCK_STREAM/TCP type of sockets.
A connection means an explicit or reliable stream or pipeline of data such
that there can be multiple such streams and each can have communication
of its own. Think of this as a pipe that is not interfered with by data from
other pipes. Another important property of stream connections is that the
packets have an order or sequence; hence, they are always sent, arrive,
and are processed in order.
Other sockets, such as UDP, ICMP, and ARP, don't have the concept of an
explicit connection or pipeline. These are connectionless communications,
as we have seen with an example in the case of UDP. This means that we
keep sending or receiving packets from anybody and everybody.

Network Programming in Python with the Pi

[242]

The sendall()function will send all the data. Let's send some data to
https://www.google.com. The code for it is as follows:

import socket #for sockets
import sys #for exit

try:
 #create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

host = 'www.google.com'
port = 80

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 #could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

print 'Ip address of ' + host + ' is ' + remote_ip

#Connect to remote server
s.connect((remote_ip , port))

print 'Socket Connected to ' + host + ' on ip ' + remote_ip

#Send some data to remote server
message = "GET / HTTP/1.1\r\n\r\n"

try :
 #Set the whole string
 s.sendall(message)
except socket.error:
 #Send failed
 print 'Send failed'
 sys.exit()

print 'Message send successfully'

https://www.google.com

Chapter 14

[243]

In this example, we first connect to an IP address and then send the string message
GET / HTTP/1.1\r\n\r\n to it. The message is actually an HTTP command to fetch
the main page of the website.

Now that we have sent some data, it's time to receive a reply from the server. So let's
do it.

Receiving data from the server
The recv()function is used to receive data on a socket. In the following example,
we will send a message and receive a reply from the server with Python:

import socket #for sockets
import sys #for exit

#create an INET, STREAMing socket
try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error:
 print 'Failed to create socket'
 sys.exit()

print 'Socket Created'

host = 'www.google.com';
port = 80;

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 #could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

#Connect to remote server
s.connect((remote_ip , port))

print 'Socket Connected to ' + host + ' on ip ' + remote_ip

#Send some data to remote server
message = "GET / HTTP/1.1\r\n\r\n"

Network Programming in Python with the Pi

[244]

try :
 #Set the whole string
 s.sendall(message)
except socket.error:
 #Send failed
 print 'Send failed'
 sys.exit()

print 'Message send successfully'

#Now receive data
reply = s.recv(4096)

print reply

Your web browser also does the same thing when you use it to open
www.google.com.

This socket activity represents a client socket. A client is a system that connects to a
remote host to fetch the required data.

The other type of socket activity is called a server system. A server is a system that
uses sockets to receive incoming connections and provide them with the required
data. It is just the opposite of the client system. So, https://www.google.com is a
server system and a web browser is a client system. To be more specific, https://
www.google.com is an HTTP server and a web browser is an HTTP client.

Programming socket servers
Now, we move on to learning how to program socket servers. Servers basically
perform the following sequence of tasks:

1.	 Open a socket
2.	 Bind to an address (and port)
3.	 Listen for incoming client connection requests
4.	 Accept connections
5.	 Receive/send data from/to clients

We already know to open a socket. So, the next thing to learn will be how to bind it.

http://www.google.com
www.google.com
https://www.google.com
https://www.google.com
https://www.google.com

Chapter 14

[245]

Binding a socket
The bind()function can be used to bind a socket to a particular IP address and port.
It needs a sockaddr_in structure similar to the connect() function:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message ' +
msg[1]
 sys.exit()

print 'Socket bind complete'

Now that the binding is done, it's time to make the socket listen to incoming
connection requests. We bind a socket to a particular IP address and a certain port
number. By doing this, we ensure that all incoming data packets directed towards
this port number are received by the server application.

Also, there cannot be more than one socket bound to the same port.

Listening for incoming connections
After binding a socket to a particular port, the next thing we need to do is listen for
incoming connections. For this, we need to switch the socket to listening mode. The
socket_listen()function is used to put the socket in listening mode. To accomplish
this, we need to add the following line after the bind code:

s.listen(10)
print 'Socket now listening'

The parameter of the listen()function is called the backlog. It is used to control the
number of incoming connections that are kept waiting if the program using that port
is already busy. So, by mentioning 10, we mean that if 10 connections are already
waiting to be processed, then the eleventh new connection request shall be rejected.
This will be clearer after checking socket_accept().

Network Programming in Python with the Pi

[246]

Here is the code to do that:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message ' +
msg[1]
 sys.exit()

print 'Socket bind complete'

s.listen(10)
print 'Socket now listening'

#wait to accept a connection - blocking call
conn, addr = s.accept()

#display client information
print 'Connected with ' + addr[0] + ':' + str(addr[1])

Run the program. It should show you the following:

pi@raspberrypi ~/book/chapter14 $ python prog7.py

Socket created

Socket bind complete

Socket now listening

So now, this program is waiting for incoming client connections on port 8888.
Don't close this program; ensure that you keep it running.

Now, a client can connect to the server on this port. We will use the Telnet client for
testing this. Open a terminal and type this:

$ telnet localhost 8888

Chapter 14

[247]

It will immediately show the following:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 8888

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Connection closed by foreign host.

pi@raspberrypi ~/book/chapter14 $

And this is what the server will show:

pi@raspberrypi ~/book/chapter14 $ python prog7.py

Socket created

Socket bind complete

Socket now listening

Connected with 127.0.0.1:59954

So now, we can see that the client is connected to the server. We accepted an
incoming connection but closed it immediately. There are lots of tasks that can be
accomplished after an incoming connection is established. The connection was
established between two hosts for the purpose of communication. So let's reply
to the client.

The sendall()function can be used to send something to the socket of the incoming
connection, and the client should be able to receive it. Here is the code for that:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

Network Programming in Python with the Pi

[248]

s.listen(10)
print 'Socket now listening'

#wait to accept a connection - blocking call
conn, addr = s.accept()

print 'Connected with ' + addr[0] + ':' + str(addr[1])

#now keep talking with the client
data = conn.recv(1024)
conn.sendall(data)

conn.close()
s.close()

Run this code in a terminal window and connect to this server using Telnet from
another terminal; you should be able to see this:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 8888

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

happy

happy

Connection closed by foreign host.

So, the client (Telnet) received a reply from the server.

We can see that the connection is closed immediately after this, simply because the
server program terminates immediately after accepting the request and responding
with the reply. A server process is supposed to be running all the time; the simplest
way to accomplish this is to iterate the accept method in a loop so that it can receive
incoming connections all the time.

So, a live server will always be up and running. The code for this is as follows:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 5000 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Chapter 14

[249]

print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

s.listen(10)
print 'Socket now listening'

#now keep talking with the client
while 1:
 #wait to accept a connection - blocking call
 conn, addr = s.accept()
 print 'Connected with ' + addr[0] + ':' + str(addr[1])

 data = conn.recv(1024)
 reply = 'OK...' + data
 if not data:
 break

 conn.sendall(reply)

conn.close()
s.close()

Now run this server program in a terminal, and open three other terminals.

From each of the three terminals, perform a Telnet to the server port.

Each of the Telnet terminals will show output as follows:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 5000

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

happy

OK .. happy

Connection closed by foreign host.

Network Programming in Python with the Pi

[250]

The server terminal will show the following:

pi@raspberrypi ~/book/chapter14 $ python prog9.py

Socket created

Socket bind complete

Socket now listening

Connected with 127.0.0.1:60225

Connected with 127.0.0.1:60237

Connected with 127.0.0.1:60239

So now, the server is up and the Telnet terminals are also connected to it. Now,
terminate the server program. All Telnet terminals will show Connection closed
by foreign host.

Handling multiple connections
To handle every connection, we need separate handling code to run along with the
main server thread, which accepts incoming connection requests. One way to achieve
this is to use threads. The main server program accepts an incoming connection
request and provisions a new thread to handle communication for the connection,
and then, the server goes back to accept more incoming connection requests.

This is the required code:

import socket
import sys
from thread import *

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

#Bind socket to local host and port
try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

Chapter 14

[251]

#Start listening on socket
s.listen(10)
print 'Socket now listening'

#Function for handling connections. This will be used to create
threads
def clientthread(conn):
 #Sending message to connected client
 conn.send('Welcome to the server. Type something and hit
 enter\n') #send only takes string

 #infinite loop so that function do not terminate and thread do
 not end.
 while True:

 #Receiving from client
 data = conn.recv(1024)
 reply = 'OK...' + data
 if not data:
 break

 conn.sendall(reply)

 #came out of loop
 conn.close()

#now keep talking with the client
while 1:
 #wait to accept a connection - blocking call
 conn, addr = s.accept()
 print 'Connected with ' + addr[0] + ':' + str(addr[1])

 #start new thread takes 1st argument as a function name to be
 run, second is the tuple of arguments to the function.
 start_new_thread(clientthread ,(conn,))

s.close()

Run this server code and open three terminals like before. Now, the server will create
a thread for each client connecting to it.

Network Programming in Python with the Pi

[252]

The Telnet terminals will show output as follows:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 8888

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Welcome to the server. Type something and hit enter

hi

OK...hi

asd

OK...asd

cv

OK...cv

The server terminal will look like this:

pi@raspberrypi ~/book/chapter14 $ python prog10.py

Socket created

Socket bind complete

Socket now listening

Connected with 127.0.0.1:60730

Connected with 127.0.0.1:60731

This connection handler takes the input from the client and replies with the same.

Looking back
By now, we have learned the basics of socket programming in Python. When testing
these programs, if you face the following error, simply change the port number, and
the server will run fine:

Bind failed. Error Code : 98 Message Address already in use

A Telnet client in Python
The Telnet client is a simple command-line program that is used to connect to socket
servers and exchange messages. The following is an example of how to use Telnet to
connect to https://www.google.com and fetch the homepage:

$ telnet www.google.com 80

https://www.google.com

Chapter 14

[253]

This command will connect to www.google.com on port 80.

$ telnet www.google.com 80

Trying 74.125.236.69...

Connected to www.google.com.

Escape character is '^]'

Now that it is connected, the Telnet command can take user input and send it
to the respective server, and whatever the server replies will be displayed in the
terminal. For example, send the HTTP GET command in the following format and
hit Enter twice:

GET / HTTP/1.1

Sending this will generate a response from the server. Now we will make a similar
Telnet program. The program is simple: we will implement a program that takes
user input and fetches results from the remote server in parallel using the threads.
One thread will keep receiving messages from the server and another will keep
taking in user input. But there is another way to do this apart from threads: the
select() function. This function allows you to monitor multiple sockets or streams
for readability and will generate an event if any of the sockets are ready.

The code for it is as follows:

import socket, select, string, sys

#main function
if __name__ == "__main__":

 if(len(sys.argv) < 3) :
 sys.exit()

 host = sys.argv[1]
 port = int(sys.argv[2])

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(2)

 # connect to remote host
 try :
 s.connect((host, port))
 except :
 print 'Unable to connect'
 sys.exit()

Network Programming in Python with the Pi

[254]

 print 'Connected to remote host'

 while 1:
 socket_list = [sys.stdin, s]

 # Get the list sockets which are readable
 read_sockets, write_sockets, error_sockets =
 select.select(socket_list , [], [])

 for sock in read_sockets:
 #incoming message from remote server
 if sock == s:
 data = sock.recv(4096)
 if not data :
 print 'Connection closed'
 sys.exit()
 else :
 #print data
 sys.stdout.write(data)

 #user entered a message
 else :
 msg = sys.stdin.readline()
 s.send(msg)

The execution of this program is shown here. It connects to the remote host
google.com.

$ python telnet.py google.com 80

Connected to remote host

Once connected, it shows the appropriate connected message. Once the message is
displayed, type in some message to send to the remote server. Type the same GET
message and send it by hitting Enter twice. A response will be generated.

A chat program
In the previous section, we went through the basics of creating a socket server and
client in Python. In this section, we will write a chat application in Python that is
powered by Python sockets.

The chat application we are going to make will be a common chat room rather than
a peer-to-peer chat. So this means that multiple chat users can connect to the chat
server and exchange messages. Every message is broadcast to every connected
chat user.

Chapter 14

[255]

The chat server
The chat server performs the following tasks:

•	 It accepts multiple incoming connections for the client.
•	 It reads incoming messages from each client and broadcasts them to all the

other connected clients.

The following is the code for the chat server:

import socket, select

#Function to broadcast chat messages to all connected clients
def broadcast_data (sock, message):
 #Do not send the message to master socket and the client who
 has send us the message
 for socket in CONNECTION_LIST:
 if socket != server_socket and socket != sock :
 try :
 socket.send(message)
 except :
 # broken socket connection may be, chat client
 pressed ctrl+c for example
 socket.close()
 CONNECTION_LIST.remove(socket)

if __name__ == "__main__":

 # List to keep track of socket descriptors
 CONNECTION_LIST = []
 RECV_BUFFER = 4096 # Advisable to keep it as an exponent of 2
 PORT = 5000

 server_socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 # this has no effect, why ?
 server_socket.setsockopt(socket.SOL_SOCKET,
 socket.SO_REUSEADDR, 1)
 server_socket.bind(("0.0.0.0", PORT))
 server_socket.listen(10)

 # Add server socket to the list of readable connections
 CONNECTION_LIST.append(server_socket)

 print "Chat server started on port " + str(PORT)

Network Programming in Python with the Pi

[256]

 while 1:
 # Get the list sockets which are ready to be read through
select
 read_sockets,write_sockets,error_sockets =
 select.select(CONNECTION_LIST,[],[])

 for sock in read_sockets:
 #New connection
 if sock == server_socket:
 # Handle the case in which there is a new
 connection recieved through server_socket
 sockfd, addr = server_socket.accept()
 CONNECTION_LIST.append(sockfd)
 print "Client (%s, %s) connected" % addr

 broadcast_data(sockfd, "[%s:%s] entered room\n" %
 addr)

 #Some incoming message from a client
 else:
 # Data received from client, process it
 try:
 #In Windows, sometimes when a TCP program
 closes abruptly,
 # a "Connection reset by peer" exception will
 be thrown
 data = sock.recv(RECV_BUFFER)
 if data:
 broadcast_data(sock, "\r" + '<' +
 str(sock.getpeername()) + '> ' + data)

 except:
 broadcast_data(sock, "Client (%s, %s) is
 offline" % addr)
 print "Client (%s, %s) is offline" % addr
 sock.close()
 CONNECTION_LIST.remove(sock)
 continue

 server_socket.close()

In this code, the server program opens up port 5000 to listen for incoming
connections from the clients. The chat client must connect to the same port. We can
change the port number if we want by specifying another number that is not used by
any other program or process.

Chapter 14

[257]

The server handles multiple chat clients with multiplexing based on the select()
function. The select() function monitors all the client sockets and the master socket
for any readable activity. If any of the client sockets are readable, then it means that
one of the chat clients has sent a message to the server.

When the select() function returns, read_sockets will be an array consisting of all
socket descriptors that are readable. When the master socket is readable, the server
will accept the new connection. If any of the client sockets is readable, the server will
read the message and broadcast it back to all the other clients except the one who
sent the message. If the broadcast function fails to send the message to any of the
clients, the client is presumed to be disconnected, the connection is closed, and the
corresponding socket is removed from the connections list.

The chat client
Now, let's code the chat client that will connect to the chat server and exchange the
messages. The chat client is based on the Telnet program in Python, which we have
already worked on. It connects to a remote server and exchanges messages.

The chat client performs the following tasks:

•	 It listens for incoming messages from the server.
•	 It checks for user input, in case the user types in a message and then sends it

to the chat server to which it is connected.

The client has to actually listen for server messages and user input simultaneously.
To accomplish this, we can use the select() function. The select() function can
monitor multiple sockets or file descriptors simultaneously for activity. When a
message from the server arrives on the connected socket, it is readable, and when the
user types a message from the keyboard and hits Enter, the stdin stream is readable.

So, the select() function has to monitor two streams: the first is the socket that
is connected to the remote web server, and the second is stdin or terminal input
stream from the keyboard. The select() function waits until some activity happens.
So, after calling the select() function, the function itself will return only when
either the server socket receives a message or the user enters a message using the
keyboard. If nothing happens, it keeps on waiting.

We can create an array of the stdin file descriptor that is available from the sys
module and the server sockets. Then, we call the select() function, passing it the
list. The select() function returns a list of arrays that are readable, writable, or have
an error.

Network Programming in Python with the Pi

[258]

Here is the Python code that implements the previous logic using the select()
function as follows:

import socket, select, string, sys

def prompt() :
 sys.stdout.write('<You> ')
 sys.stdout.flush()

#main function
if __name__ == "__main__":

 if(len(sys.argv) < 3) :
 print 'Usage : python telnet.py hostname port'
 sys.exit()

 host = sys.argv[1]
 port = int(sys.argv[2])

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(2)

 # connect to remote host
 try :
 s.connect((host, port))
 except :
 print 'Unable to connect'
 sys.exit()

 print 'Connected to remote host. Start sending messages'
 prompt()

 while 1:
 socket_list = [sys.stdin, s]

 # Get the list sockets which are readable
 read_sockets, write_sockets, error_sockets =
 select.select(socket_list , [], [])

 for sock in read_sockets:
 #incoming message from remote server
 if sock == s:
 data = sock.recv(4096)

 if not data :
 print '\nDisconnected from chat server'
 sys.exit()
 else :
 #print data
 sys.stdout.write(data)

Chapter 14

[259]

 prompt()

 #user entered a message
 else :
 msg = sys.stdin.readline()
 s.send(msg)
 prompt()

Execute the chat client from multiple consoles as follows:

$ python telnet.py localhost 5000
Connected to remote host. Start sending messages
<You> hello
<You> I am fine
<('127.0.0.1', 38378)> ok good
<You>
on another console
<You> [127.0.0.1:39339] entered room
<('127.0.0.1', 39339)> hello
<('127.0.0.1', 39339)> I am fine
<You> ok good

In this way, the messages sent by one client can be seen on the terminal of the
other client.

References
The code and definitions in this chapter have been referred to from a few online
sources, as follows:

•	 http://www.binarytides.com/python-socket-programming-tutorial

•	 http://www.binarytides.com/python-socket-server-code-example

•	 http://www.binarytides.com/code-chat-application-server-client-
sockets-python

•	 http://www.binarytides.com/code-telnet-client-sockets-python

•	 http://www.binarytides.com/programming-udp-sockets-in-python

•	 http://www.binarytides.com/socket-programming-c-linux-tutorial/

•	 http://www.diffen.com/difference/TCP_vs_UDP

•	 http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_
GHAWBAR_24.pdf

•	 http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg

•	 http://www.cs.dartmouth.edu/~campbell/cs60/TCPsockets.jpg

http://www.binarytides.com/python-socket-programming-tutorial
http://www.binarytides.com/python-socket-server-code-example
http://www.binarytides.com/code-chat-application-server-client-sockets-python
http://www.binarytides.com/code-chat-application-server-client-sockets-python
http://www.binarytides.com/code-telnet-client-sockets-python
http://www.binarytides.com/socket-programming-c-linux-tutorial/
http://www.binarytides.com/socket-programming-c-linux-tutorial/
http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_GHAWBAR_24.pdf
http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_GHAWBAR_24.pdf
http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_GHAWBAR_24.pdf
http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/TCPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/TCPsockets.jpg

Network Programming in Python with the Pi

[260]

Exercise
Additionally, you can learn more about raw sockets in Python from the
following links:

•	 http://www.binarytides.com/raw-socket-programming-in-python-
linux

•	 http://www.binarytides.com/python-syn-flood-program-raw-
sockets-linux

Summary
In this chapter, we learned about the concepts required to understand the transfer
of data between two or more machines, in which the sender is termed as a server
and the receiver is termed as the client. We also learned the basics of establishing a
connection between a server and a client.

We built both UDP and TCP socket programs using Python and learned how to
perform tasks such as connecting to a server, sending messages, receiving messages,
and so on. Finally, we combined all that we learned to create a simple chat program
that would allow two users to communicate with each other. We can now build our
own instant messaging service!

Now that we are at the end of the book, take some time to go over the projects
that you have successfully built. We have completed some projects, ranging from
the beginner level to the advanced level, and learned a lot about the intricacies
of working with the Raspberry Pi and all its parallel concepts firsthand. Starting
from the introduction of the Raspberry Pi to projects such as motion detection from
images and intruder detection using the concepts of the Internet of Things, we have
covered almost everything that you would require to build some interesting projects
of your own.

We hope this inspires you to keep on building fun projects that are not only
interesting to set up and cool to watch but also useful to the world in general.
Keep on hacking!

http://www.binarytides.com/raw-socket-programming-in-python-linux
http://www.binarytides.com/raw-socket-programming-in-python-linux
http://www.binarytides.com/python-syn-flood-program-raw-sockets-linux
http://www.binarytides.com/python-syn-flood-program-raw-sockets-linux

[261]

Newer Raspberry Pi Models
The latest additions in the Raspberry Pi family are the Raspberry Pi Zero and
Raspberry Pi 3. We did not discuss these new additions in the earlier chapters. So,
let's focus on a few details of both these new members of the Raspberry Pi family.

The Raspberry Pi Zero
The size of a Raspberry Pi Zero is half the size of a Model A+. This is ideal for
embedded projects where size and power requirements are stringent. Here are the
specifications for the Raspberry Pi Zero:

•	 A 1-GHz, single-core CPU
•	 512 MB of RAM
•	 Mini HDMI and USB on-the-go ports
•	 Micro USB power
•	 A HAT-compatible 40-pin header
•	 Composite video and reset headers

Newer Raspberry Pi Models

[262]

Here is an image of the Pi Zero, obtained from www.wired.co.uk:

There are two ways in which we can connect the Pi Zero to a display:

•	 Using mini-HDMI-to-HDMI converter, shown here:

www.wired.co.uk

Appendix

[263]

You can purchase one from Adafruit, using these links:
https://www.adafruit.com/products/2775

https://www.adafruit.com/products/2819

•	 Also, we can use VGA for display. For this, we need to use a
mini-HDMI-to-VGA adapter.

This can be purchased at
https://www.adafruit.com/products/3048.

https://www.adafruit.com/products/2775
https://www.adafruit.com/products/2819
https://www.adafruit.com/products/3048

Newer Raspberry Pi Models

[264]

For conveniently using the GPIO pins of the Pi Zero, you can use any one of the
following two-pin strip GPIO headers:

•	 https://www.adafruit.com/products/2822

https://www.adafruit.com/products/2822

Appendix

[265]

•	 https://www.adafruit.com/products/2823

Also, for connecting various devices, a mini-USB-to-USB converter can be used.

https://www.adafruit.com/products/2823

Newer Raspberry Pi Models

[266]

This can be obtained from https://www.adafruit.com/
products/2910.

The Raspberry Pi 3
The Raspberry Pi 3 is the latest addition to the Raspberry Pi family. It is a
third-generation Raspberry Pi. It replaced the Raspberry Pi 2 Model B in
February 2016. Compared to the Pi 2, it has the following features:

•	 A 1.2-GHz 64-bit quad-core ARMv8 CPU
•	 802.11n onboard wireless LAN
•	 Bluetooth 4.1
•	 Bluetooth Low Energy (BLE)

https://www.adafruit.com/products/2910
https://www.adafruit.com/products/2910

Appendix

[267]

Also, like the Raspberry Pi 2, also has the following features:

•	 Four USB ports
•	 40 GPIO pins
•	 A full-HDMI port
•	 An Ethernet port
•	 A combined 3.5mm audio jack and composite video
•	 A camera interface (CSI)
•	 A display interface (DSI)
•	 A micro-SD card slot (now push-pull rather than push-push)
•	 A VideoCore IV 3D graphics core

The form factor of the Pi 3 is identical to that of the Pi 2 and Pi 1 Model B+. The Pi 3
has complete backward compatibility with the Pi 1 and 2.

The product description for the Pi Zero and Pi 3 can be found on
Raspberry Pi's official product pages:
https://www.raspberrypi.org/products/pi-zero/

https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/

https://www.raspberrypi.org/products/pi-zero/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[269]

Index
A
Adafruit

references 263-265
Allied Electronics

URL 3
Apache

installing, on Raspbian 218-220
API (Application Programming

Interface) 162, 231

B
backlog 245
benevolent dictator for life (BDFL) 19
Berkeley Software Distribution (BSD) 102
binary clock

building 85-88
binary fractal tree

drawing 47-51
Bluetooth Low Energy (BLE) 267
Buzzer

URL 148

C
camera modules

URL 66
chat program

about 254
chat client 257-259
chat server 255-257

cluster
performance benchmarking 194

code
running, in parallel 193

color range
tracking 129, 130

colorspaces 126-128
Computer Vision

defining 102
conversions 126-128
cron 61
crontab

URL 62

D
DHCP (Dynamic Host Configuration

Protocol) 201, 202
DHCP server

Raspberry Pi, configuring to act as 204-208
DNS server

setting up, on Pi 209-211
Domain Name System (DNS) 208, 209

E
Egoman

URL 3

F
FourCC

URL 116
fractal tree 47
fswebcam utility

about 61
installing 61

[270]

G
GalaxSee

about 195
installing 196-199
URL 196

GalaxSee program
executing 199

GPIO (general purpose input/output) 73
GPIO pins

defining 74-76
GPU (Graphics Processor Unit) 17
GrovePi

defining 147-149
setting up 149-153
URL 149

GrovePi+
URL 149

H
humidity and temperature sensor

URL 148
using 154-156

I
image color channels

image, negating 123
merging 122, 123
splitting 122, 123

image properties
retrieving 117

images
arithmetic operations 118-122
logical operations 124, 125
matplotlib, using 112-114
thresholding 131-133
working with 109-112

Internet of Things
defining 162

Internet Protocol (IP) 232
Intruder detection system 157, 158
Itseez

URL 102

L
Last In First Out (LIFO) 51
LED

URL 148
LED Blinker

building 76-78
button, connecting 78, 79

Linux
reference 13

logic operators
used, in Python 87

M
Mac OS

reference 13
matplotlib

URL 114
Minecraft

URL 29
Minecraft Pi

Action control 35-37
defining 29
Movement control 34, 35
other controls, defining 38
playing 30-33
Python programming, used for 38-44
URL 32

Minecraft Pi Python API
URL 44

MMD-1 (Mini Micro Designer 1) 2
morphological transformations

used, on images 141, 142
motion detection 142-145
MPI4PY

configuring 180-184
installing 180-188

mpi4py library
URL 188

MPICH2
configuring 180-184
installing 180-184

MPICH library
installing 184, 185
URL 184

[271]

MPI (Message Parsing Interface) 179
MySQL

installing 220-221

N
nano

URL 22
N-Body simulation

defining 194-196
NCAT

and UDP servers 234, 235
NCAT utility 234
networking concepts 202, 203
network socket 231
node discovery

automating, in network 213, 214
NoIR Camera module

working with 66, 67
noise

2D convolution filtering 137
defining 136
low pass filtering 138-140
removing, kernels used 136, 137

NumPy
array creation 107
array operations 107
defining 106
linear algebra examples 108
URL 108

O
OLED display

URL 149
OpenCV

about 102
and Pi Camera 117
defining 102, 103
Pi, setting up for 103-105
URL 103
used, for saving video 116
used, for working with webcam 114, 115

OpenCV homepage
URL 102

OpenCV installation
testing, with Python 106

OpenCV, with Raspberry Pi
URL 145

operating systems
about 7, 231
Raspbian 8

Otsu's method
defining 134

P
PHP

installing 220, 221
Pi

DNS server, setting up 209-211
Pi based supercomputer

defining 180
Pi Camera

and OpenCV 117
working with 66, 67

Pi Camera and Pi NoIR camera
references 66

Pi Camera module
URL 72

PiGlow
installing 80-82
URL 83
using 83, 84

prerequisites, Raspberry Pi
camera, setting up 93-95
camera, testing 93-95
hardware button, adding 96-98
setting 92, 93

PyGame
about 46
defining 45
installing 46, 47
modules, defining 46
URL 46

Python
defining 19-24
OpenCV installation, testing with 106
SQLite database, setting up 168-172
Telnet client 252-254
turtle programming, using with 24-27

[272]

Twitter API, installing for 162
URL 20

Python OpenCV API documentation
URL 125

Python UDP sockets
used, for echo server 235, 236

R
Raspberry Pi

booting 14-17
configuring, for acting as DHCP

server 204-208
defining 3
instructions, for Windows users 11
MicroSD card, preparing manually 10-13
models 3-7
rebooting 17, 18
references 3, 4, 9, 10
setting up 8-10
shutting down 17, 18
updating 18, 19
URL 3

Raspberry Pi 3
defining 266, 267
references 267

Raspberry Pi camera module
Pi Camera used, in Python with 71
raspistill, using 68-70
raspivid, using 68-70
versus webcam 72

Raspberry Pi cluster
setting up 188-191

Raspberry Pi models
URL 67

Raspberry Pi Zero
defining 261-265
references 262

Raspbian
about 8
Apache, installing on 218-220
URL 8

references
defining 259

RS Components
URL 3

S
setup, for web server

configuring 211, 212
Simple DirectMedia (SDL) 45
single-board computers

defining 1, 2
snake game

building 51-57
socket programming

in Python 252
sockets

defining 231, 232
socket servers

incoming connections, listening 245-249
multiple connections, handling 250, 251
programming 244
socket, binding 245

speech capabilities
adding, to weather station 177, 178

SQLite3 module
URL 168

SQLite database
setting up, in Python 168-172

SQLite (pronounced Sequel Lite) 168
SSH access

setting up, from host to client 191, 192
stop-motion animation

defining 91

T
TCP

and UDP, comparing 232
TCP sockets

architecture 238
creating 239
data, receiving from server 243, 244
server, connecting with 239-243

thresholding 131
Timelapse photography 62
tracking system 142-145
Transmission Control Protocol (TCP) 232
turtle API

URL 26

[273]

Tweepy
about 162
references 163
URL 162
using 163-167

tweeting weather station
building 172-177

Twitter
URL 163

Twitter API
installing, for Python 162

U
UDP

and TCP, comparing 232
data, receiving with 234
data, sending with 234

UDP client
defining 236, 237

UDP servers
and NCAT 234, 235

UDP sockets
architecture 233, 234
programming 233, 234

Ultrasonic ranger
URL 148

USB webcams
reference 60
URL 59

V
video

rendering 98
vim

URL 22

W
webcam

crontab 61, 62
timelapse sequence creating,

fswebcam used 62, 63
versus Raspberry Pi camera module 72
video recording and playback 64, 65
working with 59-61

Win32DiskImager installer
URL 11

WinZip
URL 11

WordPress
installing 221, 222
references 221
URL 228

WordPress installation
configuring 222-229

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Raspberry Pi and Python

	Single-board computers
	Raspberry Pi
	Raspberry Pi models

	Operating systems
	Raspbian

	Setting up the Raspberry Pi
	Preparing MicroSD card manually
	Booting up our Pi for the first time
	Shutting down and rebooting Pi safely
	Updating the Pi

	Getting started with Python
	Turtle programming with Python

	Summary

	Chapter 2: Minecraft Pi

	Introduction to Minecraft Pi
	Playing Minecraft Pi
	Movement control in Minecraft Pi
	Action control in Minecraft Pi
	Other controls in Minecraft Pi

	Python programming for Minecraft Pi
	Summary

	Chapter 3: Building Games
with PyGame

	Introducing PyGame
	Installing PyGame
	Drawing a binary fractal tree
	Building a snake game
	Summary

	Chapter 4: Working with a Webcam and Pi Camera

	Working with webcams
	Crontab
	Creating a timelapse sequence using fswebcam
	Webcam video recording and playback

	Working with the Pi Camera and NoIR Camera Modules
	Using raspistill and raspivid
	Using picamera in Python with the Pi Camera module
	The Pi camera versus the webcam

	Summary

	Chapter 5: Introduction to GPIO Programming

	Introducing GPIO pins
	Building an LED Blinker
	Connecting a button

	Installing PiGlow
	Using PiGlow
	Building a binary clock
	Summary

	Chapter 6: Creating Animated Movies with Raspberry Pi

	Introducing stop-motion animation
	Setting up the prerequisites
	Setting up and testing the camera
	Adding the hardware button

	Rendering the video
	Summary

	Chapter 7: Introduction to
Computer Vision

	Introducing Computer Vision
	Introducing OpenCV
	Setting up Pi for Computer Vision
	Testing the OpenCV installation with Python

	Introducing NumPy
	Array creation
	Basic operations on arrays
	Linear algebra

	Working with images
	Using matplotlib

	Working with Webcam using OpenCV
	Saving a video using OpenCV
	Picamera and OpenCV

	Retrieving image properties
	Arithmetic operations on images
	Splitting and merging image color channels
	Negating an image

	Logical operations on images
	Colorspaces and conversions
	Tracking in real time based on color
	Summary

	Chapter 8: Creating Your Own Motion Detection and Tracking System

	Thresholding images
	Otsu's method

	Noise
	Kernels for noise removal
	2D convolution filtering
	Low pass filtering

	Morphological transformations on images
	Motion detection and tracking
	Summary

	Chapter 9: Grove Sensors and the Raspberry Pi

	Introducing the GrovePi
	Setting up the GrovePi
	Displaying the weather
	Intruder detection system
	Summary

	Chapter 10: Internet of Things with the Raspberry Pi

	Introducing the Internet of Things
	Installing the Twitter API for Python
	Using Tweepy

	Setting up a SQLite database in Python
	Building a tweeting weather station
	Adding speech capabilities to our weather station

	Summary

	Chapter 11: Build Your Own Supercomputer with Raspberry Pi

	Introducing a Pi-based supercomputer
	Installing and configuring MPICH2 and MPI4Py
	Installing the MPICH library
	Installing MPI4PY

	Setting up the Raspberry Pi cluster
	Setting up SSH access from the host to the client
	Running code in parallel
	Performance benchmarking of the cluster
	Introducing N-Body simulations
	Installing and running GalaxSee
	Summary

	Chapter 12: Advanced Networking with Raspberry Pi

	Introducing DHCP
	A few networking concepts
	Configuring a Raspberry Pi to act as a DHCP server
	Introducing Domain Naming System (DNS)
	Setting up a DNS server on the Pi
	Configuring the setup for a web server
	Automating node discovery in a network
	Summary

	Chapter 13: Setting Up a Web Server on the Raspberry Pi

	Introducing and installing Apache on Raspbian
	Installing PHP and MySQL
	Installing WordPress
	Configuring the WordPress installation

	Summary

	Chapter 14: Network Programming in Python with the Pi

	The basics of sockets
	The difference between TCP and UDP
	The architecture and programming of UDP sockets
	Sending and receiving data with UDP
	UDP servers and NCAT
	An echo server using Python UDP sockets
	A UDP client

	The architecture of TCP sockets
	Creating a TCP socket
	Connecting to a server with a TCP socket
	Receiving data from the server

	Programming socket servers
	Binding a socket
	Listening for incoming connections
	Handling multiple connections

	Looking back
	A Telnet client in Python
	A chat program
	The chat server
	The chat client

	References
	Exercise
	Summary

	Appendix: Newer Raspberry Pi Models

	The Raspberry Pi Zero
	The Raspberry Pi 3

	Index

