
Mike Julian

Practical
Monitoring
EFFECTIVE STRATEGIES FOR
THE REAL WORLD

Mike Julian

Practical Monitoring
Effective Strategies for the Real World

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95735-6

[LSI]

Practical Monitoring
by Mike Julian

Copyright © 2018 Mike Julian. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Virginia Wilson and Nikki McDonald
Production Editor: Justin Billing
Copyeditor: Dwight Ramsey
Proofreader: Amanda Kersey

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2017: First Edition

Revision History for the First Edition
2017-10-26: First Release
2017-11-27: Second Release

See http://oreil.ly/2y3s5AB for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Practical Monitoring, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreil.ly/2y3s5AB

Table of Contents

Preface. xi

Part I. Monitoring Principles

1. Monitoring Anti-Patterns. 3
Anti-Pattern #1: Tool Obsession 3

Monitoring Is Multiple Complex Problems Under One Name 4
Avoid Cargo-Culting Tools 6
Sometimes, You Really Do Have to Build It 7
The Single Pane of Glass Is a Myth 8

Anti-Pattern #2: Monitoring-as-a-Job 8
Anti-Pattern #3: Checkbox Monitoring 9

What Does “Working” Actually Mean? Monitor That. 10
OS Metrics Aren’t Very Useful—for Alerting 10
Collect Your Metrics More Often 11

Anti-Pattern #4: Using Monitoring as a Crutch 11
Anti-Pattern #5: Manual Configuration 12
Wrap-Up 13

2. Monitoring Design Patterns. 15
Pattern #1: Composable Monitoring 15

The Components of a Monitoring Service 16
Pattern #2: Monitor from the User Perspective 24
Pattern #3: Buy, Not Build 25

It’s Cheaper 26
You’re (Probably) Not an Expert at Architecting These Tools 26
SaaS Allows You to Focus on the Company’s Product 27

iii

No, Really, SaaS Is Actually Better 27
Pattern #4: Continual Improvement 28
Wrap-Up 28

3. Alerts, On-Call, and Incident Management. 31
What Makes a Good Alert? 32

Stop Using Email for Alerts 33
Write Runbooks 33
Arbitrary Static Thresholds Aren’t the Only Way 34
Delete and Tune Alerts 35
Use Maintenance Periods 35
Attempt Automated Self-Healing First 36

On-Call 37
Fixing False Alarms 37
Cutting Down on Needless Firefighting 37
Building a Better On-Call Rotation 38

Incident Management 40
Postmortems 42
Wrap-Up 43

4. Statistics Primer. 45
Before Statistics in Systems Operations 45
Math to the Rescue! 46
Statistics Isn’t Magic 47
Mean and Average 47
Median 49
Seasonality 49
Quantiles 50
Standard Deviation 51
Wrap-Up 52

Part II. Monitoring Tactics

5. Monitoring the Business. 57
Business KPIs 57
Two Real-World Examples 60

Yelp 60
Reddit 61

Tying Business KPIs to Technical Metrics 62
My App Doesn’t Have Those Metrics! 62
Finding Your Company’s Business KPIs 63

iv | Table of Contents

Wrap-Up 64

6. Frontend Monitoring. 65
The Cost of a Slow App 66
Two Approaches to Frontend Monitoring 67
Document Object Model (DOM) 68

Frontend Performance Metrics 69
OK, That’s Great, but How Do I Use This? 71

Logging 72
Synthetic Monitoring 72
Wrap-Up 73

7. Application Monitoring. 75
Instrumenting Your Apps with Metrics 75

How It Works Under the Hood 77
Monitoring Build and Release Pipelines 79
Health Endpoint Pattern 80
Application Logging 84

Wait a Minute…Should I Have a Metric or a Log Entry? 85
What Should I Be Logging? 85
Write to Disk or Write to Network? 86

Serverless / Function-as-a-Service 87
Monitoring Microservice Architectures 87
Wrap-Up 91

8. Server Monitoring. 93
Standard OS Metrics 93

CPU 94
Memory 94
Network 95
Disk 95
Load 96

SSL Certificates 97
SNMP 98
Web Servers 98
Database Servers 100
Load Balancers 101
Message Queues 101
Caching 102
DNS 102
NTP 103
Miscellaneous Corporate Infrastructure 103

Table of Contents | v

DHCP 103
SMTP 104

Monitoring Scheduled Jobs 104
Logging 106

Collection 106
Storage 107
Analysis 107

Wrap-Up 108

9. Network Monitoring. 109
The Pains of SNMP 110

What Is SNMP? 110
How Does It Work? 110
A Word on Security 112
How Do I Use SNMP? 113
Interface Metrics 116
Interface and Logging 118
Recap 118

Configuration Tracking 119
Voice and Video 119
Routing 120
Spanning Tree Protocol (STP) 121
Chassis 121

CPU and Memory 121
Hardware 121

Flow Monitoring 122
Capacity Planning 123

Working Backward 123
Forecasting 123

Wrap-up 124

10. Security Monitoring. 125
Monitoring and Compliance 126
User, Command, and Filesystem Auditing 127

Setting Up auditd 127
auditd and Remote Logs 128

Host Intrusion Detection System (HIDS) 129
rkhunter 129
Network Intrusion Detection System (NIDS) 130
Wrap-Up 132

vi | Table of Contents

11. Conducting a Monitoring Assessment. 133
Business KPIs 133
Frontend Monitoring 134
Application and Server Monitoring 134
Security Monitoring 136
Alerting 136
Wrap-Up 137

A. An Example Runbook: Demo App. 139

B. Availability Chart. 143

Index. 145

Table of Contents | vii

To Leonard, for sparking my curiosity in tech at a young age.

To my parents, for stoking that curiosity and putting up with
my constant all-nighters in front of the computer.

To Donna and Justine, for taking a huge chance and
giving me my first job (in tech, even!).

To Mrs. Sedor, who showed me the joy of literature,
both in understanding it and creating it.

To all my dear friends, without whom life wouldn’t be nearly as enjoyable.

Preface

The monitoring landscape of today is vastly different than it was only a few years ago,
and even more so than it was 10 years ago. With the widespread popularity of cloud
infrastructure came new problems for monitoring, as well as creating new ways to
solve old problems.

The rise in popularity of microservices has especially stretched how we think about
monitoring. Since there is no longer a monolithic app server, how do we monitor
interactions between the dozens, or even hundreds, of small app servers that commu‐
nicate constantly? A common pattern in microservice architecture is that a server
may exist for only hours or even minutes, which has wreaked havoc on the age-old
tactics and monitoring tools we once relied on.

Of course, while some things change, some things stay the same. We still worry about
web server performance. We still have concerns over root volumes unexpectedly run‐
ning out of space. Database server performance still keeps many of us awake at night.
While some of the problems we have today are similar to (or the same as) the prob‐
lems we had 10 years ago, the tools and methodologies available to us are much
improved. It is my goal to teach you the advances we’ve made and how to leverage
them for your purposes.

I believe it is helpful to bear in mind throughout this book what the purpose and
goals of monitoring are. To that end, allow me to pass along a definition of monitor‐
ing. The best definition I’ve heard comes from Greg Poirier, proposed at the Monitor‐
ama 2016 conference:

Monitoring is the action of observing and checking the behavior and outputs of a sys‐
tem and its components over time.

This definition is broad, but rightly so: there’s a lot under the monitoring umbrella,
and we’ll be covering it all: metrics, logging, alerting, on-call, incident management,
postmortems, statistics, and much, much more.

xi

https://vimeo.com/173610062
https://vimeo.com/173610062

Who Should Read This Book
If you deal with monitoring, this is the book for you. More specifically, this book is
geared toward those seeking a foundational understanding of monitoring. It’s suitable
for junior staff as well as nontechnical staff looking to beef up their knowledge on
monitoring.

If you already have a great grasp on monitoring, this probably is not the book for you.
There are no deep dives into specific tools or discussions about monitoring at
Google-scale. Instead, you will find practical, real-world examples and immediately
actionable advice geared to those new to the world of monitoring.

Those looking for the next hot monitoring tool to implement will be disappointed. As
I will discuss later in this book, there’s no magic bullet for solving your monitoring
challenges. As such, this book is tool-agnostic, though I certainly will mention spe‐
cific tools from time to time as examples of what to do or not to do. Likewise, if you
want to go deeper into a particular stack of tools, this book will not help.

A minimum level of technical knowledge is assumed for this book. I assume you
know the basics of running servers and writing code. My examples all reference
Linux, though the topics are still generically applicable for Windows administrators
as well.

Why I Wrote This Book
Throughout my career, I’ve found myself as the unwitting champion for better moni‐
toring. As we all know, the one who points out the problem signs up to fix it, which
resulted in my doing more monitoring implementations than I can recall. Over time,
I’ve noticed many people have the same questions about monitoring, sometimes
phrased in different ways.

• My monitoring sucks. What should I do about it?
• My monitoring is OK, but I know I can do better. What should I be thinking

about?
• My monitoring is noisy and no one trusts it. How can I permanently fix it?
• What stuff is the most important to monitor? Where do I even start?

These are all complex questions with complex answers. There’s no single correct
answer, but there are some great guiding principles that will get you where you want
to go. This book will walk through these principles with plenty of examples.

This book is not the final word on monitoring, nor is it meant to be. This is the book
I wish had existed when I first started getting serious about improving monitoring.
There are plenty of great books that go deep on specific topics that I only touch on, so

xii | Preface

if you find yourself wanting to go there, I encourage it! I view this book as preparing
for you a foundational skill level in the monitoring domain.

A Word on Monitoring Today
Monitoring is a quickly evolving topic. To make things more challenging, monitoring
is a topic that will never reach a state of true maturity: every time we get close, our
entire world changes. In the late ’90s and early ’00s, Nagios was king, and we were all
pretty satisfied with it. Before long, we needed to start automating infrastructure due
to the growing size of it all. People began doing interesting things with scaling it (e.g.,
Gearman, instant failover with custom heartbeats and DRBD) and managing the con‐
figuration (e.g., external datasources, custom UIs, and MySQL-backed configuration
storage), completely stretching Nagios to its limits and revealing that our ways of
thinking about monitoring were beginning to show their age. This has been repeated
a few times since then, of course: cloud computing, containers, microservices.

While this constant change may frustrate some, it excites others. Take heart, though:
the principles I will talk about are timeless.

Navigating This Book
The book is divided into two parts. Chapters 1 through 4 discuss principles of moni‐
toring: anti-patterns to watch out for and new ways to think about monitoring. Chap‐
ters 5 through 11 are about monitoring tactics: what to monitor, why to do it, and
how.

Online Resources
I have a companion website for this book at https://www.practicalmonitoring.com,
which will contain additional resources and errata.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Preface | xiii

https://www.practicalmonitoring.com

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This element signifies a general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Practical Monitoring by Mike Julian
(O’Reilly). Copyright 2018, Mike Julian, 978-1-491-95735-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xiv | Preface

mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://shop.oreilly.com/product/
0636920050773.do.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://oreilly.com/safari
http://oreilly.com/safari
http://shop.oreilly.com/product/0636920050773.do
http://shop.oreilly.com/product/0636920050773.do
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This book wouldn’t be here without the help, advice, and support of many.

Many thanks to my technical reviewers, whose feedback made this a much better
book than I ever thought it could be: Jess Males, John Wynkoop, Aaron Sachs, Hein‐
rich Hartmann, and Tammy Butow. Thanks to Jason Dixon and Elijah Wright, who
reviewed and gave feedback on the first outline of what would become this book and
encouraged me to write it.

A huge thank you to my editors at O’Reilly: Brian Anderson, Virginia Wilson, and
Angela Rufino. I must have driven you nuts with the many missed deadlines, so thank
you for your patience and guidance. As a first-time author, your help was invaluable.

My writing progress seems to be positively correlated with my coffee consumption,
leading me to have written the bulk of this book in coffee shops—often while travel‐
ing. Therefore, I would like to extend a special thanks to my dealers—er, baristas:

• Old City Java, Knoxville, TN
• Wild Love Bake House, Knoxville, TN
• Workshop Cafe, San Francisco, CA
• Hubsy, Paris, France
• OR Espresso Bar, Brussels, Belgium

If you ever find yourself in the neighborhood, I recommend stopping in for a great
cup of coffee.

Many of the lessons I set out to teach in this book are not new—in fact, some are dec‐
ades old in concept. Thusly, I cannot take all of the credit, for I’ve reworded and pre‐
sented in new ways the thoughts and ideas of those who have come before me. That is
to say, there is very little new in the world, and ideas in tech have a way of recycling
themselves.

xvi | Preface

PART I

Monitoring Principles

Part I of Practical Monitoring will explore the guiding principles of monitoring. We’ll
be discussing anti-patterns, design patterns, alerting, and more. Part I will set the
foundation for your monitoring journey.

CHAPTER 1

Monitoring Anti-Patterns

Before we can start off on our journey to great monitoring, we have to identify and
correct some bad habits you may have adopted or observed in your environment.

As with many habits, they start off well-meaning. After years of inadequate tools, the
realities of keeping legacy applications running, and a general lack of knowledge
about modern practices, these bad habits become “the way it’s always been done” and
are often taken with people when they leave one job for another. On the surface, they
don’t look that harmful. But rest assured—they are ultimately detrimental to a solid
monitoring platform. For this reason, we’ll refer to them as anti-patterns.

An anti-pattern is something that looks like a good idea, but which backfires badly
when applied.

—Jim Coplien

These anti-patterns can often be difficult to fix for various reasons: entrenched practi‐
ces and culture, legacy infrastructure, or just plain old FUD (fear, uncertainty, and
doubt). We’ll work through all of those, too, of course.

Anti-Pattern #1: Tool Obsession
There’s a great quote from Richard Bejtlich in his book The Practice of Network Secu‐
rity Monitoring (No Starch Press, 2013) that underscores the problem with an exces‐
sive focus on tools over capabilities:

Too many security organizations put tools before operations. They think “we need to
buy a log management system” or “I will assign one analyst to antivirus duty, one to
data leakage protection duty.” And so on. A tool-driven team will not be effective as a
mission-driven team. When the mission is defined by running software, analysts
become captive to the features and limitations of their tools. Analysts who think in
terms of what they need in order to accomplish their mission will seek tools to meet

3

those needs, and keep looking if their requirements aren’t met. Sometimes they even
decide to build their own tools.

—Richard Bejtlich

Many monitoring efforts start out the same way. “We need better monitoring!” some‐
one says. Someone else blames the current monitoring toolset for the troubles they’re
experiencing and suggests evaluating new ones. Fast-forward six months and the
cycle repeats itself.

If you learn nothing else from this book, remember this: there are no silver bullets.

Anything worth solving takes a bit of effort, and monitoring a complex system is cer‐
tainly no exception. Relatedly, there is no such thing as the single-pane-of-glass tool
that will suddenly provide you with perfect visibility into your network, servers, and
applications, all with little to no tuning or investment of staff. Many monitoring soft‐
ware vendors sell this idea, but it’s a myth.

Monitoring isn’t just a single, cut-and-dry problem—it’s actually a huge problem set.
Even limiting the topic to server monitoring, we’re still talking about handling met‐
rics and logs for server hardware (everything from the out-of-band controller to the
RAID controller to the disks), the operating system, all of the various services run‐
ning, and the complex interactions between all of them. If you are running a large
infrastructure (like I suspect many of you are), then paying attention only to your
servers won’t get you very far: you’ll need to monitor the network infrastructure and
the applications too.

Hoping to find a single tool that will do all of that for you is simply delusional.

So what can you do about it?

Monitoring Is Multiple Complex Problems Under One Name
We’ve already established that monitoring isn’t a single problem, so it stands to reason
that it can’t be solved with a single tool either. Just like a professional mechanic has an
entire box of tools, some general and some specialized, so should you:

• If you’re trying to profile and monitor your applications at the code level, you
might look at APM tools, or instrumenting the application yourself (e.g., StatsD).

• If you need to monitor performance of a cloud infrastructure, you might look at
modern server monitoring solutions.

• If you need to monitor for spanning tree topology changes or routing updates,
you might look at tools with a network focus.

4 | Chapter 1: Monitoring Anti-Patterns

In any mature environment, you’ll fill your toolbox with a set of general and special‐
ized tools.

The Observer Effect Isn’t a Problem
The observer effect states that the act of observing a thing causes that thing to change.
When it comes to technology, this is often taken to mean that any observation tools
are going to place additional load on a system. That’s true—but it’s not actually a
problem.

Let me put this one to rest now: it’s 2017, not 1999—your systems can handle the
additional load, however minuscule it will be (and it will be minuscule).

Some people seem concerned about using an agent at all. Agents aren’t a bad thing:
how else are you planning to get metrics out of these systems? If you’re worried about
management and configuration of the agent, you should be using a configuration
management tool (if you’re not, put this book down and go learn and implement con‐
fig management). Agentless monitoring is extraordinarily inflexible and will never
give you the amount of control and visibility you desire—bite the bullet and you’ll
never look back.

I’ve found it’s common for people to be afraid of tool creep. That is, they are wary of
bringing more tools into their environment for fear of increasing complexity. This is a
good thing to be wary of, though I think it’s less of a problem than most people imag‐
ine.

How Many Tools Is Too Many?
How many monitoring tools is too many? Unfortunately, there’s no hard-and-fast rule
I can give you on this. I’ve worked with companies supporting only a handful of tools
for specific purposes all the way up to large enterprises with over a hundred different
tools, many of them overlapping in purpose and function.

The guidance I can provide is this: as few as you need to get the job done. If you have
three tools to monitor your database and they all provide the same information, you
should consider consolidating. On the other hand, if all three of those tools monitor
your databases and provide different information, you’re probably fine. Tool frag‐
mentation is only a real problem when the tools don’t work together and can’t corre‐
late their data.

My advice is to choose tools wisely and consciously, but don’t be afraid of adding new
tools simply because it’s yet another tool. It’s a good thing that your network engi‐

Anti-Pattern #1: Tool Obsession | 5

neers are using tools specialized for their purpose. It’s a good thing that your software
engineers are using APM tools to dive deep into their code.

In essence, it’s desirable that your teams are using tools that solve their problems,
instead of being forced into tools that are a poor fit for their needs in the name of
“consolidating tools.” If everyone is forced to use the same tools, it’s unlikely that
you’re going to have a great outcome, simply due to a poor fit. On the other hand,
where you should be rightfully worried is when you have many tools that have an
inability to work together. If your systems team can’t correlate latency on the network
with poor application responsiveness, you should reevaluate your solutions.

What if you want to set some company standards on tools to prevent runaway adop‐
tion? In essence, you might have dozens of tools all doing the same thing. In such a
case, you’re missing out on the benefits that come with standardization: institutional
expertise, easier implementation of monitoring, and lower expenses. How would you
go about determining if you’re in that situation?

It’s easy. Well, sort of: you have to start talking to people, and a lot of them. I find it
helpful to start an informal conversation with managers of teams and find out what
monitoring tools are being used and for what purpose. Make it clear right away that
you’re not setting out to change how they work—you’re gathering information so you
can help make their jobs easier later. Forcing change on people is a great way to derail
any consolidation effort like this, so keep it light and informal for now. If you’re
unable to get clear answers, check with accounting: purchase orders and credit card
purchases for the past year will reveal both monthly SaaS subscriptions and annual
licensing/SaaS subscriptions. Make sure to confirm what you find is actually in use
though—you may just find tools that are no longer in use and haven’t been cancelled
yet.

Avoid Cargo-Culting Tools
There is a story recounted in Richard Feynman’s book Surely You’re Joking, Mr. Feyn‐
man! about what Feynman dubbed cargo cult science:

In the South Seas there is a cargo cult of people. During the war they saw airplanes
land with lots of good materials, and they want the same thing to happen now. So
they’ve arranged to imitate things like runways, to put fires along the sides of the run‐
ways, to make a wooden hut for a man to sit in, with two wooden pieces on his head
like headphones and bars of bamboo sticking out like antennas—he’s the controller—
and they wait for the airplanes to land. They’re doing everything right. The form is
perfect. It looks exactly the way it looked before. But it doesn’t work. No airplanes land.
So I call these things cargo cult science, because they follow all the apparent precepts
and forms of scientific investigation, but they’re missing something essential, because
the planes don’t land.

Over the years, this observation from the science community has become applied to
software engineering and system administration: adopting tools and procedures of

6 | Chapter 1: Monitoring Anti-Patterns

more successful teams and companies in the misguided notion that the tools and pro‐
cedures are what made those teams successful, so they will also make your own team
successful in the same ways. Sadly, the cause and effect are backward: the success that
team experienced led them to create the tools and procedures, not the other way
around.

It’s become commonplace for companies to publicly release tools and procedures they
use for monitoring their infrastructure and applications. Many of these tools are quite
slick and have influenced the development of other monitoring solutions widely used
today (for example, Prometheus drew much inspiration from Google’s internal moni‐
toring system, Borgmon).

Here’s the rub: what you don’t see are the many years of effort that went into under‐
standing why a tool or procedure works. Blindly adopting these won’t necessarily lead
to the same success the authors of those tools and procedures experienced. Tools are
a manifestation of ways of working, of assumptions, of cultural and social norms.
Those norms are unlikely to map directly to the norms of your own team.

I don’t mean to discourage you from adopting tools published by other teams—by all
means, do so! Some of them are truly amazing and will change the way you and your
colleagues work for the better. Rather, don’t adopt them simply because a well-known
company uses them. It is important to evaluate and prototype solutions rather than
choosing them because someone else uses them or because a team member used
them in the past. Make sure the assumptions the tools make are assumptions you and
your team are comfortable with and will work well within. Life is too short to suffer
with crummy tools (or even great tools that don’t fit your workflow), so be sure to
really put them through their paces before integrating them into your environment.
Choose your tools with care.

Sometimes, You Really Do Have to Build It
When I was growing up, I loved to go through my grandfather’s toolbox. It had every
tool imaginable, plus some that baffled me as to their use. One day, while helping my
grandfather fix something, he suddenly stopped, looking a little perplexed, and began
rummaging through the toolbox. Unsatisfied, he grabbed a wrench, a hammer, and a
vice. A few minutes later he had created a new tool, built for his specific need. What
was once a general-purpose wrench became a specialized tool for solving a problem
he never had before. Sure, he could have spent many more hours solving the problem
with the tools he had, but creating a new tool allowed him to solve a particular prob‐
lem in a highly effective manner, in a fraction of the time he might have spent other‐
wise.

Creating your own specialized tool does have its advantages. For example, one of the
first tools many teams build is something to allow the creation of AWS EC2 instances
quickly and with all the standards of their company automatically applied. Another

Anti-Pattern #1: Tool Obsession | 7

https://prometheus.io

example, this one monitoring-related, is a tool I once created: while working with
SNMP (which we’ll be going into in Chapter 9), I needed a way to comb through a
large amount of data and pull out specific pieces of information. No other tool on the
market did what I needed, so with a bit of Python, I created a new tool suited for my
purpose.

Note that I’m not suggesting you build a completely new monitoring platform. Most
companies are not at the point where the ground-up creation of a new platform is a
wise idea. Rather, I’m speaking to small, specialized tools.

The Single Pane of Glass Is a Myth
Every Network Operations Center (NOC) I’ve been in has had gargantuan monitors
covering the wall, filled with graphs, tables, and other information. I once worked in
a NOC (pronounced like “knock”) myself that had six 42” monitors spanning the
wall, with constant updates on the state of the servers, network infrastructure, and
security stance. It’s great eye candy for visitors.

However, I’ve noticed there can often be a misconception around what the single pane
of glass approach to monitoring means. This approach to monitoring manifests as the
desire to have one single place to go to look at the state of things. Note that I didn’t say
one tool or one dashboard—this is crucial to understanding the misconception.

There does not need to be a one-to-one mapping of tools to dashboards. You might
use one tool to output multiple dashboards or you might even have multiple tools
feeding into one dashboard. More likely, you’re going to have multiple tools feeding
multiple dashboards. Given that monitoring is a complex series of problems, attempt‐
ing to shoehorn everything into one tool or dashboard system is just going to hamper
your ability to work effectively.

Anti-Pattern #2: Monitoring-as-a-Job
As companies grow, it’s common for them to adopt specialized roles for team mem‐
bers. I once worked for a large enterprise organization that had specialized roles for
everyone: there was the person who specialized in log collection, there was the person
who specialized in managing Solaris servers, and another person whose job it was to
create and maintain monitoring for all of it. Three guesses which one was me.

At first glance, it makes sense: create specialized roles so people can focus on doing
that function perfectly, instead of being a generalist and doing a mediocre job on
everything. However, when it comes to monitoring, there’s a problem: how can you
build monitoring for a thing you don’t understand?

Thus, the anti-pattern: monitoring is not a job—it’s a skill, and it’s a skill everyone on
your team should have to some degree. You wouldn’t expect only one member of

8 | Chapter 1: Monitoring Anti-Patterns

your team to be the sole person familiar with your config management tool, or how
to manage your database servers, so why would you expect that when it comes to
monitoring? Monitoring can’t be built in a vacuum, as it’s a crucial component to the
performance of your services.

As you move along your monitoring journey, insist that everyone be responsible for
monitoring. One of the core tenets of the DevOps movement is that we’re all respon‐
sible for production, not just the operations team. Network engineers know best what
should be monitored in the network and where the hot spots are. Your software engi‐
neers know the applications better than anyone else, putting them in the perfect posi‐
tion to design great monitoring for the applications.

Strive to make monitoring a first-class citizen when it comes to building and manag‐
ing services. Remember, it’s not ready for production until it’s monitored. The end
result will be far more robust monitoring with great signal-to-noise ratio, and likely
far better signal than you’ve ever had before.

There is a distinction that must be made here, of course: the job of building self-
service monitoring tools as a service you provide to another team (commonly called
an observability team) is a valid and common approach. In these situations, there is a
team whose job is to create and cultivate the monitoring tools that the rest of the
company relies on. However, this team is not responsible for instrumenting the appli‐
cations, creating alerts, etc. The anti-pattern I want to caution you against isn’t having
a person or team responsible for building and providing self-service monitoring
tools, but rather, it’s having your company shirk the responsibility of monitoring at all
by resting it solely on the shoulders of a single person.

Anti-Pattern #3: Checkbox Monitoring
When people tell me that their monitoring sucks, I find that this anti-pattern is usu‐
ally at the center of it all.

Checkbox monitoring is when you have monitoring systems for the sole sake of saying
you have them. Perhaps someone higher up in the organization made it a require‐
ment, or perhaps you suddenly had specific compliance regulations to meet, necessi‐
tating a quick monitoring deployment. Regardless of how you got here, the result is
the same: your monitoring is ineffective, noisy, untrustworthy, and probably worse
than having no monitoring at all.

How do you know if you’ve fallen victim to this anti-pattern? Here are some common
signs:

• You are recording metrics like system load, CPU usage, and memory utilization,
but the service still goes down without your knowing why.

Anti-Pattern #3: Checkbox Monitoring | 9

• You find yourself consistently ignoring alerts, as they are false alarms more often
than not.

• You are checking systems for metrics every five minutes or even less often.
• You aren’t storing historical metric data (I’m looking at you, Nagios).

This anti-pattern is commonly found with the previous anti-pattern (monitoring-as-
a-job). Since the person(s) setting up monitoring doesn’t completely understand how
the system works, they often set up the simplest and easiest things and check it off the
to-do list.

There are a few things you can do to fix this anti-pattern.

What Does “Working” Actually Mean? Monitor That.
To fix this problem, you first need to understand what it is you’re monitoring. What
does “working” mean in this context? Talking to the service/app owner is a great
place to start.

Are there high-level checks you can perform to verify it’s working? For example, if
we’re talking about a webapp, the first check I would set up is an HTTP GET /. I
would record the HTTP response code, expect an HTTP 200 OK response, specific text
to be on the page, and the request latency. This one check has given me a wealth of
information about whether the webapp is actually working. When things go south,
latency might increase while I continue to receive an HTTP 200 response, which tells
me there might be a problem. In another scenario, I might get back the HTTP 200, but
the text that should be on the page isn’t found, which tells me there might be a prob‐
lem.

Every service and product your company has will have these sorts of high-level
checks. They don’t necessarily tell you what’s wrong, but they’re great leading indica‐
tors that something could be wrong. Over time, as you understand your service/app
more, you can add more specific checks and alerts.

OS Metrics Aren’t Very Useful—for Alerting
Early in my career as a systems administrator, I went to my lead engineer and told
him that the CPU usage on a particular server was quite high, and asked what we
should do about it. His response was illuminating for me: “Is the server still doing
what it’s supposed to?” It was, I told him. “Then there’s not really a problem, is
there?”

Some services we run are resource-intensive by nature and that’s OK. If MySQL is
using all of the CPU consistently, but response times are acceptable, then you don’t
really have a problem. That’s why it’s far more beneficial to alert on what “working”
means as opposed to low-level metrics such as CPU and memory usage.

10 | Chapter 1: Monitoring Anti-Patterns

1 Consult the documentation for your metrics tool on roll-up configuration and best practices.

That isn’t to say these metrics aren’t useful, of course. OS metrics are critical for diag‐
nostics and performance analysis, as they allow you to spot blips and trends in under‐
lying system behavior that might be impacting performance. 99% of the time, they
aren’t worth waking someone up over. Unless you have a specific reason to alert on
OS metrics, stop doing it.

Collect Your Metrics More Often
In a complex system (like the one you are running), a lot can happen in a few
minutes, or even a few seconds. Let’s consider an example: imagine latency between
two services spikes every 30 seconds, for whatever reason. At a five-minute metric
resolution, you would miss the event. Only collecting your metrics every five minutes
means you’re effectively blind. Opt for collecting metrics at least every 60 seconds. If
you have a high-traffic system, opt for more often, such as every 30 seconds or even
every 10 seconds.

Some people have argued that collecting metrics more often places too much load on
the system, which I call baloney. Modern servers and network gear have very high
performance and can easily handle the minuscule load more monitoring will place on
them.

Of course, keeping high-granularity metrics around on disk for a long period of time
can get expensive. You probably don’t need to store a year of CPU metric data at 10-
second granularity. Make sure you configure a roll-up period that makes sense for
your metrics.1

The one caveat with this is that many older network devices often have very low per‐
formance available to the management cards, causing them to fall over when hit with
too many requests for monitoring data (I’m looking at you, Cisco). Be sure to test
them in a lab before increasing the polling interval for these.

Anti-Pattern #4: Using Monitoring as a Crutch
I once worked with a team that ran a legacy PHP app. This app had a large amount of
poorly written and poorly understood code. As things tended to break, the team’s
usual response was to add more monitoring around whatever it was that broke.
Unfortunately, while this response seems at first glance to be the correct response, it
does little to solve the real problem: a poorly built app.

Avoid the tendency to lean on monitoring as a crutch. Monitoring is great for alerting
you to problems, but don’t forget the next step: fixing the problems. If you find your‐
self with a finicky service and you’re constantly adding more monitoring to it, stop

Anti-Pattern #4: Using Monitoring as a Crutch | 11

and invest your effort into making the service more stable and resilient instead. More
monitoring doesn’t fix a broken system, and it’s not an improvement in your situa‐
tion.

Anti-Pattern #5: Manual Configuration
I’m sure we all can agree that automation is awesome. That’s why it’s surprising to me
how often monitoring configuration is manual. The question I never want to hear is
“Can you add this to monitoring?”

Monitoring Cloud Architectures Versus Traditional Ones
Monitoring cloud-based architectures differs from traditional (aka static) architec‐
tures in one big way: you are monitoring entire classes of things, rather than individ‐
ual things. Monitoring becomes an exercise in analyzing the aggregate of entire
groups of systems rather than one or two. Automation is crucial to successfully moni‐
toring a cloud-native architecture.

Your monitoring should be 100% automated. Services should self-register instead of
someone having to add them. Whether you’re using a tool such as Sensu that allows
for instant self-registration and deregistration of nodes, or using Nagios coupled with
config management, monitoring ought to be automatic.

The difficulty in building a well-monitored infrastructure and app without automa‐
tion cannot be overstated. I’m often called on to consult on monitoring implementa‐
tions, and in most cases, the team spends more time on configuration than on
monitoring. If you cannot quickly configure new checks or nodes, building better
monitoring becomes frustrating. After a while, you’ll just stop bothering. On the
other hand, if it takes only a few minutes to add new checks for every web server in
your fleet, you won’t be so hesitant to do more of it.

Runbook Abuse
A special note on runbooks, which I talk about in more detail in Chapter 3: a runbook
can often be a symptom of inadequate automation. If your runbook is simply a list of
steps to take (“Run this command, check this information, run this other com‐
mand”), then you need more automation. If the alert the runbook is referencing can
be solved by simply going through a list of steps, consider automating those steps and
having your monitoring tool execute that before alerting you.

12 | Chapter 1: Monitoring Anti-Patterns

https://sensuapp.org

Wrap-Up
We learned about five common anti-patterns in monitoring in this chapter:

• Tool obsession doesn’t give you better monitoring.
• Monitoring is everyone’s job, not a single role on the team or a department.
• Great monitoring is more than checking the box marked “Yep, we have monitor‐

ing.”
• Monitoring doesn’t fix broken things.
• Lack of automation is a great way to ensure you’ve missed something important.

Now that you know the monitoring anti-patterns to watch out for and how to fix
them, you can build positive monitoring habits. If you were to do nothing but fix
these five problems in your environment, you’d be in good shape. Of course, who
wants to settle for good when they can be great? And for that, we’ll need to talk about
the inverse of the anti-pattern: the design pattern.

Wrap-Up | 13

CHAPTER 2

Monitoring Design Patterns

In the last chapter we covered how good intentions can result in a well-meaning train
wreck. I certainly don’t expect you to have solved all of those problems in your envi‐
ronment by the time you read this chapter, and that’s totally OK. Since you can now
be mindful of the anti-patterns and work on solving them, you’re going to need new
solutions for what to do in their place.

This chapter answers that question by presenting four design patterns that, if taken
seriously and implemented, will lead you to monitoring nirvana. Let’s dig in.

Pattern #1: Composable Monitoring
Composable monitoring is the first pattern of modern monitoring design. The princi‐
ple is simple: use multiple specialized tools and couple them loosely together, forming
a monitoring “platform.” This pattern is directly in opposition to the monolithic tools
many of you are familiar with, chief among them, Nagios. Composable monitoring
can be thought of as the UNIX philosophy in action:

Write programs that do one thing and do it well. Write programs to work together.
—Doug McIlroy

Back in 2011, conversations about why monitoring was so bad grew around the
#monitoringsucks hashtag on Twitter. This grew into #monitoringlove and the
founding of the Monitorama conference in Boston. Many, many conversations were
had about what could be done to improve things. One of the biggest points raised was
that we needed new and better tools. More specialized tools. Composable monitoring
as an idea was thus born, and it has grown into a de facto standard in practice. With
the rise of tools such as Graphite, Sensu, logstash, and collectd, we can clearly see that
tying specialized tools together has resulted in a more flexible and less painful moni‐
toring stack. Even commercial monitoring services, such as Librato, Loggly, and Ping‐

15

dom, have extensive APIs to control and manage how monitoring is done through
them.

One of the biggest perks of composable monitoring is that you are no longer commit‐
ted long-term to a particular tool or way of doing things. If one tool no longer suits
your needs, you can remove it and replace it with another, instead of replacing your
entire platform. Such flexibility can lead to a more complex architecture, but the ben‐
efits far outweigh the costs.

The Components of a Monitoring Service
If we are to build a monitoring platform from loosely coupled specialized compo‐
nents, we first have to break down what the facets of a monitoring system are. A
monitoring service has five primary facets:

• Data collection
• Data storage
• Visualization
• Analytics and reporting
• Alerting

Even if you’re using a monolithic tool, you have these components in place—-they’re
just in a single tool instead of multiple. In order to understand how composable mon‐
itoring helps, we’ll dig into each component. Each of these components is fairly
straightforward in concept but can range from simple to mind-bogglingly complex in
practice. Thankfully, we have plenty of options for how complex we make them when
it comes to implementation.

Data collection
The data collection component does just that: it collects data. There are two primary
ways for data collection to happen: push or pull. As silly as it sounds, this distinction
has yielded more than its fair share of think pieces and conference talks. For those
reading this book, the decision isn’t that important—use what works for you and
move on.

In the pull model, a service will request that a remote node send data about itself. The
central service is responsible for scheduling when those requests happen. You are
likely familiar with SNMP and Nagios, both of which are pull-based monitoring
tools. Some people argue that pull-based is always a bad idea, but I believe it’s more
nuanced than that. When it comes to monitoring network gear, you’re pretty much
stuck with SNMP, though that is slowly changing as network hardware vendors come
to their senses. Another use case is the /health endpoint pattern in application moni‐

16 | Chapter 2: Monitoring Design Patterns

toring, which exposes metrics and health information about an app to an HTTP end‐
point, which can be polled by a monitoring service, service discovery tool (such as
Consul or etcd), or by a load balancer.

When it comes to metrics, there are some annoying downsides for a pull-based
mechanism: a pull model can be difficult to scale, as it requires central systems to
keep track of all known clients, handle scheduling, and parse returning data.

In the push model, a client (a server, an application, etc.) pushes data to another loca‐
tion. The client may do so on a regular schedule or as events occur. syslog forwarding
is a great example of a push model with irregular events, while the popular metrics
collection agent collectd is an example of a push model on a regular schedule. A push
model is easier to scale in a distributed architecture, such as those in cloud environ‐
ments, due to the lack of a central poller (coordinating polling schedules across mul‐
tiple pollers is tricky and you’ll still need to maintain a master list of all nodes to poll).
Nodes pushing data need only know where to send it, and don’t need to worry about
underlying implementation of the receiving end. As a result, the push model can have
better redundancy and high availability.

Each approach has its own merits and use cases. In my experience, using push-based
tools is easier to work with and reason about, but your mileage may vary.

As for what data we may be gathering, we’re concerned about two types: metrics and
logs.

Metrics. Metrics come in different representations:

Counter
A counter is an ever-increasing metric. The odometer in your car is an example
of a counter. Counters are great for such things as counting the cumulative num‐
ber of visitors to your website.

Traffic on a network interface is an example of a counter. Just like the odometer
on your car, counters have an upper bound. Once that upper bound is crossed,
the counter will “roll over” (or, “wrap”) and start over again at zero. A technical
example of this is a 32-bit network interface counter. Under 100% load, a 32-bit
counter on a 1 Gb interface will wrap in 32 seconds. Thankfully, most operating
systems and network devices that implement counters are using 64-bit counters,
which will take on the order of years to wrap (4.5 years, in fact). This is mostly
only a concern on network gear, which will we go into more in Chapter 9.

Gauge
A gauge is a point-in-time value. The speedometer in your car is an example of a
gauge. The nature of a gauge has one big shortcoming: it doesn’t tell you anything
about previous values and provides no hints for future values. However, by stor‐

Pattern #1: Composable Monitoring | 17

https://www.consul.io
https://coreos.com/etcd

1 Here’s one guide for switching Apache and NGINX to JSON: http://bit.ly/2vAWbsX.

ing gauge values in a TSDB, you can retrieve them later and do such things as
plot them on a graph. Most metrics you’ll be working with are gauges.

Logs. Logs are essentially strings of text with (hopefully) a timestamp associated with
them to denote when the event occurred. Logs contain significantly more data than
metrics do, and often require some parsing to get information out of them without a
human reading through them. Logs come in two types: unstructured and structured.

Most of us are used to dealing with unstructured logs. Unstructured logs have no
explicit mapping of meaning to a particular field. For example, consider this log entry
from NGINX, a popular web server:

192.34.63.77 - - [26/Jun/2016:14:06:22 -0400] "GET / HTTP/1.1" 301 184

"-" "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/47.0.2526.111 (StatusCake)" "-"

If I were to ask you to tell me what the status code and user agent were, would you
immediately know? Semantics in unstructured logs are often implied by order, so if
you’re unfamiliar with NGINX or web servers, you would have a difficult time
answering the question without finding the NGINX documentation.

Let’s take this same log entry and turn it into a structured log entry with JSON:

{ "remote_addr": "192.34.63.77", "remote_user": "-", "time":

"2016-06-26T14:06:22-04:00", "request": "GET / HTTP/1.1", "status":

“301”, "body_bytes_sent": “184”, "http_referrer": "-",

"http_user_agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/

537.36 (KHTML, like Gecko) Chrome/47.0.2526.111 (StatusCake)",

"http_x_forwarded_for": "-" }

As you can see, we’ve turned our log entry into key-value pairs. Quickly understand‐
ing what a field means is so much easier now that semantics are explicit. Even better
is that now we can let computers do what computers do and extract the information
for us with ease. I encourage you to use structured logging where you can. There are
plenty of guides online for switching various services over to use a structured format
(JSON is the most popular).1

Sometimes Unstructured Logs Are Best
Depending on your use case and tools, it may not make sense to turn your unstruc‐
tured logs into structured ones. If the logs are low volume, explicitly meant for

18 | Chapter 2: Monitoring Design Patterns

http://bit.ly/2vAWbsX

human consumption, and you don’t need any tools more complicated than grep and
tail, I would keep your logs unstructured. No need to complicate things unnecessarily.

That said, the majority of your logs probably should be structured and sent to a sys‐
tem capable of parsing them.

Log collection can be done in a couple different ways, but the most common (and
easiest) is to set up log forwarding on your systems. Every major operating system
and logging daemon supports log forwarding, including network gear. Log forward‐
ing allows you to tell your systems to send their logs to another place instead of let‐
ting them sit locally on the system. The benefits are obvious, as you can now analyze
logs for many systems from a single place instead of logging into multiple systems.
On a large fleet of systems, this allows for easy aggregation of similar data for large-
scale analysis. For example, consider the scenario where you might have a dozen web
servers behind a load balancer. Instead of logging into each of the dozen web servers
individually to check logs, log forwarding to a remote logging service allows you to
analyze all dozen from a single place, giving you a more complete picture of what
your web servers are up to.

If you are writing applications, you should be logging information from them. Most
programming frameworks (e.g., Ruby on Rails and Django) have built-in logging
capabilities with their own structure, though you can also define your structure. Once
the files are on disk, you can easily have the syslog daemon on the server forward
these files to a remote service.

Data storage
After collecting the data, you’ll need somewhere to store it. Depending on the data
type, this might be a specialized solution.

Metrics, being time series, are usually stored in a Time Series Database (TSDB). A
TSDB is a specialized sort of database designed for storing time series data, which is
fundamentally key-value pairs made up of a timestamp (when the measurement was
taken) and a value. We refer to the key-value pair as a datapoint. You may already be
familiar with two common TSDBs: Round Robin Database (RRD) and Graphite’s
Whisper. There are many others in various stages of maturity.

Many TSDBs “roll up” or “age out” data after a certain time period. This means that as
the data gets older, multiple datapoints are summarized into a single datapoint. A
common rollup method is averaging, though some tools support other methods such
as summing datapoints.

For example, assume we had a rollup schedule of the following: metrics are collected
every 60 seconds from a node, stored at native resolution (60 seconds) for 1 day, then
summarized to 5 minutes after 3 days. This means that there would be 86,400 data‐

Pattern #1: Composable Monitoring | 19

points for the past 24 hours of metrics, but only 864 datapoints for the next 3 days.
This occurs by averaging the values for every datapoint in a five-minute period into
one datapoint. Metric rollup occurs as a result of compromises: storing native resolu‐
tion for metrics gets very expensive for disks, both in storage and in the time it takes
to read all of those datapoints from disk for use in a graph.

Many people are of the opinion that rolling up data is undesirable. Certainly, for
some kinds of metrics, this could be true, but for the vast majority of operational
data, do you really care what the CPU was doing at a 60-second granularity last week?
Probably not. When it comes to operational data, you are far more concerned with
recent events, and only with a general idea of older trends.

Log storage comes in a two different flavors. Some systems store the data as simple
flat files. If you’ve ever told rsyslog to forward to another syslog receiver for remote
storage, you’ve seen this in action. More advanced solutions store the log files in a
search engine (such as Elasticsearch). If you actually want to use your logs, you will
be interested in the latter. Most logging platforms will include the storage component,
making this somewhat transparent.

While metric storage is inexpensive, storing logs can get expensive. It’s not uncom‐
mon to generate terabytes worth of data per day. There’s not a magic solution to this
problem, but compression and retention policies can help.

Visualization
Everyone loves charts and dashboards, making them the most visible component to
your monitoring platform. If you are using a monolithic tool (e.g., Nagios and Solar‐
Winds’ NPM) then you’re basically stuck with the dashboard provided, with little (if
any) room for building your own stuff. If you’re using tools built for composability,
you have far more options.

Why would you want to build your own frontend? Having tons of data is fine, but it’s
useless if you can’t make sense of it in a way that suits you and your team. What good
is a bunch of metrics with cluttered, confusing dashboards? A driving principle
behind great monitoring is that you should be building things in a way that works
best for your environment.

There are lots of dashboard products and frameworks out there, such as Grafana and
Smashing.

20 | Chapter 2: Monitoring Design Patterns

https://grafana.com/
https://github.com/Smashing/smashing

When it comes to visualization, an entire book could written on the
topic. Oh, wait a minute, many great books have been written on
the topic!
Edward Tufte’s The Visual Display of Quantitative Information
(Graphics Press) and Stephen Few’s Information Dashboard Design
(Analytics Press) are excellent resources for going deeper into the
world of data visualization. I cannot do these works justice in a
short section such as this, so if you’re interested in the world of vis‐
ualization, I strongly recommend reading them.

The most common visualization for time series data is the line graph (also called a
strip chart), but there are certainly other representations that can be useful. Display‐
ing data in a table format, a bar graph, a singular number, or even straight text can all
have their value. For the most part, you’ll be working with line graphs in ops/software
engineering.

But for the Love of God, Don’t Use a Pie Chart

The primary use of a pie chart is for a snapshot-in-time visualiza‐
tion. It doesn’t contain any context about history or trends is and
therefore best used for data that doesn’t change often. The most
common use for a pie chart is to show data in relation to the whole,
but even still, a bar chart is often a better visualization for that pur‐
pose.

Speaking of dashboards, what makes a great one? Useful dashboards have different
perspectives and scopes. A great dashboard answers questions you have at a particu‐
lar time. You might have one dashboard that shows only a high-level overview of
every major functionality and service of your company (WAN, LAN, applications,
etc.), while you might have more dashboards for each of those major services. You
might even have more dashboards for different aspects of those services.

The best dashboards focus on displaying the status of a single service (e.g., the inter‐
nal email system or the corporate network routing topology) or one product (e.g., a
single app). These dashboards are most effective if they are created and maintained
by the people who understand the service the best. For example, if you have an inter‐
nal email service, have the admins for that service create the dashboards for it.

Analytics and Reporting
For some types of monitoring data, it can be helpful to go beyond a simple visualiza‐
tion and into the realms of analytics and reporting.

One of the most common use cases here is determining and reporting on service-level
availability (SLA) of your applications and services. An SLA is an agreement between

Pattern #1: Composable Monitoring | 21

2 I encourage you to track this information even if you aren’t required to. It’s helpful to understand your own
reliability in order to improve it.

3 I’ve included a full chart of availability numbers in Appendix B.

you and your customer (whether that’s an external, paying customer or another inter‐
nal team) regarding the expected availability of your application/service, typically
determined month by month.2 Depending on the agreement, there might be contrac‐
tual penalties for not meeting the SLA. SLAs with no penalty clause are generally con‐
sidered to be more of a “target to hit.” Penalty or not, it’s important that your
monitoring data is complete and accurate so you’re able to effectively report on avail‐
ability.

SLAs Are (Mostly) Hopes and Lies
I’m cynical about SLAs. The penalty for not meeting an SLA is just a refund, though
at worst, you might lose a customer. Many enterprise software contracts contain unre‐
alistic SLA expectations (of the “no downtime ever” variety), making the whole game
suspect.

Availability is referred to by the number of nines. That is, 99% is two nines, while
99.99% is four nines.3 In a simple infrastructure, the math is straightforward: deter‐
mine how much downtime you had and compute that in terms of an availability per‐
centage. The formula for this is equally simple: a = uptime / total time, where total
time is the time the component was both up and down. The resulting a is a percent‐
age measurement of availability. Let’s look at an example:

If your app ran for a complete month (43,800 minutes) and experienced 93 minutes
of downtime, then the availability would be 99.7% (43,707 (uptime) / 43,800). Pretty
simple, right?

Did You Spot the Sampling Error?

This calculation is actually naive and has a problem that’s easy to
overlook: a sampling error.
According to the Nyquist-Shannon sampling theorem, to measure
an outage of two minutes, you must be collecting data in minute-
long intervals. Thus, to measure availability down to one second,
you must be collecting data at sub-second intervals. This is just one
more reason why achieving accurate SLA reporting better than
99% is so difficult.

22 | Chapter 2: Monitoring Design Patterns

http://bit.ly/2i2kBmv

Well, not quite. You might notice that computing uptime and total time in a complex
architecture is tricky, and you would be right. In order to determine the required
numbers, you would have to compute them for each and every component that your
app depends on. If components of the app have redundancy, you have two options:
accuracy or ease.

If you want to be completely accurate in your availability calculations and reporting,
you’ll need to calculate the availability of each redundant component, then calculate
the availability of the component as a whole. This math can get more complex than
what you’re probably interested in, and in my opinion, isn’t that helpful.

Instead, I recommend calculating the availability of the component as a whole and
ignoring the availability of the underlying redundant components. The calculation is
much simpler and more directly answers what you’re really looking for anyway.

An oft-overlooked point about availability is when your app has dependency compo‐
nents: your service can only be as available as the underlying components on which it
is built. For example, did you know that AWS EC2 only provides a 99.95% SLA for a
single region? That’s about four hours of downtime a year. If you’re running your
infrastructure in AWS in a single region, you can’t promise a higher SLA than that
without potentially violating the SLA. Likewise if your underlying network is unrelia‐
ble, the servers and applications higher in the stack can’t possibly be more reliable
than the network.

A final point before moving on: 100% availability is unrealistic. The downtime that
maps to nine nines (99.9999999% availability) is roughly 31 seconds of downtime per
year. Recall that even AWS EC2 has an SLA guarantee of fewer than four nines, and
there’s a good chance AWS invests more into the reliability of EC2 than your com‐
pany makes in revenue per year. Each additional nine of availability has significantly
more cost associated with it, and the investment often isn’t worth it: many customers
can’t tell the difference between 99% and 99.9%.

Alerting
I have found that many people seem to build monitoring without understanding its
purpose. They seem to believe that the driving purpose of a monitoring system is to
alert you when things go wrong. While older monitoring systems like Nagios cer‐
tainly lead you to that conclusion, monitoring has a higher purpose. As a friend of
mine once said:

Monitoring is for asking questions.
—Dave Josephsen, Monitorama 2016

That is, monitoring doesn’t exist to generate alerts: alerts are just one possible out‐
come. With this in mind, remember that every metric you collect and graph does not
need to have a corresponding alert.

Pattern #1: Composable Monitoring | 23

https://aws.amazon.com/ec2/sla/
https://aws.amazon.com/ec2/sla/

Pattern #2: Monitor from the User Perspective
By now, you’re probably itching to start building things, but where do you start? Your
app and infrastructure are complex, with lots and lots of moving parts—failure could
happen anywhere!

You’re totally right. There are a lot of places we are going to need to instrument
things, but there’s one perfect place to start: the users (Figure 2-1).

Figure 2-1. Start monitoring as close to the user as possible

The best place to add monitoring first is at the point(s) users interact with your app.
A user doesn’t care about the implementation details of your app, such as how many
Apache nodes you’re running or how many workers are available for jobs. Your users
care about whether the application works. As such, you want visibility from their per‐
spective first.

One of the most effective things to monitor is simply HTTP response codes (espe‐
cially of the HTTP 5xx variety). Monitoring request times (aka latency) after that is

24 | Chapter 2: Monitoring Design Patterns

also useful. Neither of these will tell you what is wrong, only that something is and
that it’s impacting users.

By monitoring from the user’s perspective first, you begin to free yourself from the
worry of caring about individual nodes. If your database server’s CPU has started to
spike, but the user isn’t impacted, do you really have a problem?

Now, I’m not suggesting that this is the only place you instrument your app. You
should be starting with the user, but you should quickly expand your efforts to instru‐
menting components, such as those web nodes and worker nodes. Go as deep and
wide as you want, but always be asking asking yourself, “How will these metrics show
me the user impact?”

Pattern #3: Buy, Not Build
We discussed the anti-pattern of tool obsession in Chapter 1. This design pattern is
essentially the direct answer to that anti-pattern.

I’ve noticed a natural progression of monitoring tooling and culture as it matures
within a company.

Companies often start off running purely SaaS services. This allows them to quickly
get monitoring up and running, and gives them the ability to focus their efforts on
building a great product.

At some point (a point that comes at different times for every company and team),
monitoring is brought in-house. Sometimes it happens for financial reasons, some‐
times it happens because the SaaS services are no longer meeting the needs of a grow‐
ing product. The tools they transition to are the well-known FOSS monitoring tools,
such as Graphite, InfluxDB, Sensu, and Prometheus.

A small group of companies will eventually outgrow even those and set out to build
their own custom platforms, tailored specifically for the unique concerns and needs
of their company. For example, Netflix, Dropbox, and Twitter are all in that final
group.

There is often some overlap and mixing of the stages (e.g., you might have a custom
metrics platform but use a SaaS logging service), but the important part here is that
your first effort at monitoring probably shouldn’t be jumping right to building an in-
house platform if you’re not already reasonably mature in your monitoring. You pro‐
gress because the tools no longer serve your needs and you’ve outgrown them. If you
have no monitoring or poor monitoring right now, you should put more work into
the fundamentals of monitoring things and spend less time worrying about your
tools.

Pattern #3: Buy, Not Build | 25

4 These numbers are very rough estimates.

I am a big proponent of SaaS solutions for many things. It’s my belief that within five
years, it will be considered a no-brainer to use SaaS as your monitoring solution.
Here’s why.

It’s Cheaper
What goes into building your own monitoring, whether it’s made of FOSS or home‐
grown tools? You will have to consider the cost of FTEs (full-time employees) to build
it and maintain it over time, the lost opportunity cost of those FTEs working on a
monitoring system instead of something else, the time to create and maintain docu‐
mentation for the service, the time to train users on your internal tools, and the
operational complexity costs stemming from having a mission-critical service run‐
ning in-house.

Let’s take an example case:4

• Average cost of an FTE (salary + benefits + overhead): $150,000
• Number of engineers: 3
• Time to build a decent solution (reliable, scalable, documentation, training): 4

weeks
• Maintenance time: 20 hours a month

With these numbers, it will cost you $35,000 in raw engineering time to build a solu‐
tion, plus another (roughly) $18,750 per year in maintenance. But don’t forget oppor‐
tunity cost: three engineers spending a month on building a monitoring platform
means three engineers spending a month on something that doesn’t generate any rev‐
enue for your company.

Opportunity cost is hard to quantify due to different roles and business needs. For
example, unless your company manages networks for its customers, your network
engineers are probably not as crucial to revenue generation as a software engineer at a
SaaS company would be. Use your best judgment.

By comparison, a great SaaS monitoring solution will cost most companies between
$6,000/yr and $9,000/yr. This seems like a big number, but you really do get quite a
bit of bang for your buck.

You’re (Probably) Not an Expert at Architecting These Tools
You are probably not an expert at building and maintaining a high-throughput,
mission-critical monitoring service. And even if you are, is it really the best use of

26 | Chapter 2: Monitoring Design Patterns

5 Exceptions made for those whose products are monitoring services. More power to you, in that case.
6 There are some well-known, large companies that have gone from on-premises monitoring tools to SaaS, pre‐

cisely because running it themselves cost too much money and engineering time. Keep that datapoint in
mind.

your time?5 Many of us remember running our own mail servers and DNS servers,
but few of us do that anymore thanks to the rise of SaaS solutions. SaaS solutions
allow you to buy dedicated expertise thrown at a specific problem domain, at a price
much cheaper than you can do yourself. Amazon is probably way better at running
large-scale, highly-available infrastructure than you are, so it’s a no-brainer to con‐
sider them as a solution-provider. Likewise with Gmail/Google Apps.

SaaS Allows You to Focus on the Company’s Product
Using SaaS tools is easier and quicker to get up and running with. If you move
quickly, it may take a few days to have a workable in-house solution. You’ll be missing
any decent user documentation, high-availability, or any real automation, but it’ll be
workable. On the other hand, SaaS allows you to have a working solution within
minutes, and you get all of those things you were missing for free, right from the
start.

No, Really, SaaS Is Actually Better
Of course, I’ve heard plenty of objections to using SaaS for monitoring, but frankly,
most of them aren’t very good. The only two rational reasons for not using SaaS I’ve
run across across:

1. You really have outgrown it. This is far less common than you might imagine.6

2. Security/compliance reasons. Despite even governments making use of SaaS for
many services, getting into an argument with your corporate auditors is usually a
losing proposition. Many companies resolve this by documenting what’s being
sent in the logs and never sending any sensitive data to the SaaS service. Your
mileage may vary.

By far the most common reason for people not wanting to use SaaS comes down to
the perceived cost, which we covered a couple sections ago. As your infrastructure
and applications grow, so too does the effort required for monitoring them. However,
the time required for growing on-premises monitoring tends to outpace that for SaaS,
leading to paying $120,000/yr for SaaS. This causes some people to freak out and staff
a team for building their own monitoring. These teams are usually four to five people

Pattern #3: Buy, Not Build | 27

7 Some very large companies are still using SaaS for monitoring: Airbnb, Pinterest, Yelp, Target—the list goes
on.

and cost between $600,000/yr and $750,000/yr in just staff. The short answer is that if
you’re using SaaS, you’ve probably not outgrown it.7

Most people railing against using SaaS for monitoring are doing so out of bias, con‐
scious or unconscious, and not out of any technical or financial reason.

Pattern #4: Continual Improvement
People look up to progressive companies like Google, Facebook, Twitter, Netflix, and
Etsy and marvel at the amazing things they’ve done with monitoring. Countless blogs
have been written to talk about how advanced monitoring is at these companies.
However, people seem to forget that it took years for each of those companies to get
to where they are today. Each of them has retired tools and built new ones as things
changed and matured in their organizations.

While you probably aren’t responsible for building a world-class monitoring service
at a company as large and mature as these, your efforts to improve monitoring will
change over time, and you aren’t going to be at a world-class level tomorrow and not
even a year from now. Even if you are doing well, you will find yourself completely
rearchitecting your monitoring every two or three years as your needs change and the
industry evolves.

In essence, world-class isn’t achieved in a week, but rather, over months and years of
consistent attention and improvement. You’re in this for the long haul.

Wrap-Up
We’ve covered the four primary design patterns in this chapter:

• Composable monitoring is more effective than monoliths.
• Monitoring from the user’s perspective first yields more effective visibility.
• Opt for buying your monitoring tools if at all possible, instead of building them

yourself.
• Always be improving.

While certainly not an exhaustive list, applying these four will get you further along
to a great monitoring platform than most companies.

28 | Chapter 2: Monitoring Design Patterns

Now that you’ve got these patterns available to you, let’s move on to a specific topic
that’s easy to screw up, hard to get right, and likely represents much of your pain in
monitoring: alert design.

Wrap-Up | 29

CHAPTER 3

Alerts, On-Call, and Incident Management

Alerting is one of the most crucial parts of monitoring that you will want to get right.
For whatever reason, infrastructure likes to go sideways in the middle of the night.
Why is it always 3 a.m.? Can’t I have an outage at 2 p.m. on a Tuesday? Without alerts,
we’d all have to be staring at graphs all day long, every day. With the multitude of
things that could possibly go wrong, and the ever-increasing complexity of our sys‐
tems, this simply isn’t tenable.

So, alerts. We can all agree that alerting is an important function of a monitoring sys‐
tem. However, sometimes we forget that the purpose of monitoring isn’t solely to
send us alerts. Remember our definition:

Monitoring is the action of observing and checking the behavior and outputs of a sys‐
tem and its components over time.

Alerts are just one way we accomplish this goal.

Great alerting is harder than it seems. System metrics tend to be spike-y, so alerting
on raw datapoints tends to produce lots of false alarms. To get around that problem, a
rolling average is often applied to the data to smooth it out (for example, five minutes
worth of datapoints averaged into one datapoint), which unfortunately causes us to
lose granularity, resulting in occasionally missing important events. There’s just no
winning, is there?

One of the other reasons alerting is so difficult to do well is because you often want
alerts them going to a human, and we humans have limited attention. You’d rather
spend it on problems of your choosing and not on the monitoring system sending
you a text that something is on fire. Every time you get an alert, a little bit more of
your attention is claimed by the monitoring system.

31

In this chapter, we’ll cover a few tips on creating better alerts, the trials and tribula‐
tions of on-call, and close out with a bit about incident management and postmor‐
tems.

What Makes a Good Alert?
With your multitude of alerts that sometimes are helpful, sometimes aren’t, and
sometimes simply make no sense, how should you reconstruct them to be good?
What does a good alert even look like?

Before we can answer that question, let’s make a distinction. I’ve found that when
people talk about alerts, they really mean two different things, depending on the con‐
text:

Alerts meant to wake someone up
These require action to be taken immediately or else the system will go down (or
continue to be down). This might mean phone calls, text messages, or alarms.
Example: all your web servers are unavailable, and your company’s main site is
no longer reachable.

Alerts meant as an FYI
These require no immediate action, but someone ought to be informed that they
occurred. Example: an overnight backup job failed.

The latter may lead to the former. For example, if your systems are capable of auto-
healing, then an auto-healing action might just be a message dropped in a log file. If
the auto-healing fails, then you might send a message to the on-call person, expecting
immediate action.

For our purposes, the second type of alert isn’t actually an alert: it’s a message. We’re
going to be talking mainly about the former here. An alert should evoke a sense of
urgency and require action from the person receiving that alert. Everything else can
essentially be a log entry, a message dropped in your internal chat room, or an auto-
generated ticket.

So with that understanding, we’re back the original question: what makes a good
alert? I’ve rounded up six practices I think are key to building great alerts:

• Stop using email for alerts.
• Write runbooks.
• Arbitrary static thresholds aren’t the only way.
• Delete and tune alerts.
• Use maintenance periods.

32 | Chapter 3: Alerts, On-Call, and Incident Management

• Attempt self-healing first.

Let’s dig deeper into how these impact your alerting strategy and how you can lever‐
age them for improvement.

Stop Using Email for Alerts
An email isn’t going to wake someone up, nor should you expect that it would. Send‐
ing alerts to email is also a great way to overwhelm everyone with noise, which will
lead to alert fatigue.

What should do you do instead? Think about what sorts of use cases each alert will
have. I’ve found they fall into one of three categories:

Response/action required immediately
Send this to your pager, whether it’s an SMS, PagerDuty, or what-have-you. This
is an actual alert, per our definition.

Awareness needed, but immediate action not required
I like to send these to internal chat rooms. Some teams have built small webapps
to receive and store these for review with great success. You could send these to
email, but be careful—it’s easy to overwhelm an inbox. The other options are
usually better.

Record for historical/diagnostic purposes
Send the information to a log file.

Logging Your Alerts
It’s important to retain logs of your alerts so you can report on them later. Being able
to report on alerts will help you understand what parts of your application/service are
causing you the most trouble and where you should focus your efforts. It will also aid
in reporting on your SLAs.

With proper attention given to the purpose and response required of the alert, you
can easily lower the noise level of every alert you have.

Write Runbooks
A runbook is a great way to quickly orient yourself when an alert fires. In more com‐
plex environments, not everyone on the team is going to have knowledge about every
system, and runbooks are a great way to spread that knowledge around.

What Makes a Good Alert? | 33

A good runbook is written for a particular service and answers several questions:

• What is this service, and what does it do?
• Who is responsible for it?
• What dependencies does it have?
• What does the infrastructure for it look like?
• What metrics and logs does it emit, and what do they mean?
• What alerts are set up for it, and why?

For every alert, include a link to your runbook for that service. When someone
responds to the alert, they will open the runbook and understand what’s going on,
what the alert means, and potential remediation steps.

As with many good things, runbooks can be easy to abuse. If your
remediation steps for an alert are as simple as copy-pasting com‐
mands, then you’ve started to abuse runbooks. You should auto‐
mate that fix or resolve the underlying issue, then delete the alert
entirely. A runbook is for when human judgment and diagnosis is
necessary to resolve something.

I’ve included an example runbook in Appendix A.

Arbitrary Static Thresholds Aren’t the Only Way
Nagios got all of us used to the idea of using arbitrary static thresholds for alert crite‐
ria, and this is our loss. Not every situation has a warning and critical state that makes
sense (I’d argue that most don’t). Furthermore, there are a lot of situations where
alerting on such things as “datapoint has crossed X” isn’t useful at all. For example,
the quintessential case for this is disk usage: if I have a static threshold set at “free
space under 10%,” then I’m going to miss a disk quickly growing in usage from 11%
used to 80% used overnight. You know, that kind of thing is something I’d really want
to know about, but my static threshold wouldn’t tell me.

There are plenty of other options available here. For example, using a percent change/
derivative would handle our disk usage problem nicely by telling us “disk usage has
grown by 50% overnight.”

With a bit more capable metrics infrastructure (e.g., Graphite), we could even apply
some statistics to the problem, using various approaches such as moving averages,
confidence bands, and standard deviation. We’ll go into more about statistics and
how they could be applied in Chapter 4.

34 | Chapter 3: Alerts, On-Call, and Incident Management

Delete and Tune Alerts
Noisy alerts suck. Noisy alerts cause people to stop trusting the monitoring system,
which leads people to ignoring it entirely. How many times have you looked at an
alert and thought, “I’ve seen that alert before. It’ll clear itself up in a few minutes, so I
don’t need to do anything”?

The middle ground between high-signal monitoring and low-signal monitoring is
treacherous. This is the area where you’re getting lots of alerts, some actionable and
some not, but it’s not to the point that you don’t trust the monitoring. Over time, this
leads to alert fatigue.

Alert fatigue occurs when you are so exposed to alerts that you become desensitized
to them. Alerts should (and do!) cause a small adrenaline rush. You think to yourself,
“Oh crap! A problem!” Having such a response 10 times a week, for months on end,
results in long-term alert fatigue and staff burnout. The human response time slows
down, alerts may start getting ignored, sleep is impacted—sound familiar yet?

The solution to alert fatigue is simple on its face: fewer alerts. In practice, this isn’t so
easy. There are a number of ways to reduce the amount of alerts you’re getting:

1. Go back to the first tip: do all your alerts require someone to act?
2. Look at a month’s worth of history for your alerts. What are they? What were the

actions? What was the impact of each one? Are there alerts that can simply be
deleted? What about modifying the thresholds? Could you redesign the underly‐
ing check to be more accurate?

3. What automation can you build to make the alert obsolete entirely?

With just a little bit of work, you’ll find that your alert noise will be cut back signifi‐
cantly.

Use Maintenance Periods
If you need to do work on a service, and you expect it to trigger an alert (e.g., due to it
being down), then set that alert into a maintenance period. Most monitoring tools
support the concept, which is a simple one: if you’re working on the thing that alert is
watching, and you know your work is going to cause an interruption, there’s no sense
in having the alert go off. An alert firing is just distraction, especially for your team‐
mates who may not immediately know that you’re working on it.

What Makes a Good Alert? | 35

Be careful not to silence too many alerts. I can’t even begin to count
the number of times that I’ve been working on something and
found a previously unknown dependency that caused some other
service to start to have problems. Such a scenario is actually desira‐
ble, as it reveals things about your infrastructure that you may not
have known before, or it can warn you that something might be
going sideways with the maintenance work you’re doing. Issuing a
wide, blanket silence can cause more problems than it solves.

Attempt Automated Self-Healing First
If the most common action needed on an alert is to perform a known and docu‐
mented series of steps which usually fixes the problem, why not let a computer do the
work? Auto-healing is a great approach to avoiding alert fatigue, and when you’re
managing a large environment, it’s not really optional (hiring more staff gets expen‐
sive!).

Auto-Healing Embedded Devices
I once had a few dozen small, embedded computers living in places no computer
should ever live, such as on roofs, in trees, or the side of a dirt road. They were rather
simple sensor devices with two externally accessible interfaces: SNMP and a (very)
basic CLI accessible over SSH. Due to the design, the SNMP engine had a tendency to
become unresponsive, but the system itself was still running. The fix for this was to
log in to the sensor via SSH and restart it, which solved the problem (until the next
time it died). This happened on a regular basis, usually two to three times a week. We
wanted to know when they stopped responding to SNMP queries immediately (the
data collected via SNMP was the entire reason for their existence), but it was getting
tiresome to be woken up about it.

With such a simple and straightforward fix to my failing sensor devices, surely I could
devise a better solution to this problem.

I came up with a simple method of attempting auto-healing: I first set up a check that
detected when SNMP failed (by grabbing any OID and watching for a timeout, while
also confirming that the device was accessible via ICMP). If SNMP failed but the
device was still on the network, a script logged into the sensor device and restarted it.
This worked perfectly: the sensor came back online in a matter of seconds and every‐
thing worked again. Most importantly, no one was being woken up over something
that could be fixed automatically.

There are several ways you can implement auto-healing, but the most common and
straightforward approach is to simply implement any standardized fix into code and

36 | Chapter 3: Alerts, On-Call, and Incident Management

1 It’s not a universal truth that on-call sucks. Many companies have amazing and effective on-call experiences. It
takes a lot of work to get there.

let your monitoring system execute the script instead of notifying a human. If the
problem wasn’t resolved via an auto-healing attempt, then send an alert.

On-Call
Ah, good old on-call. Many of you reading this book have probably been on-call at
some point in your career, even if it was unofficial. For those that haven’t, on-call is
where you are expected to be available to respond to pages about things going wrong.
If that’s you at all times, you’re always on-call (this is bad, but we’ll talk about that
later).

For those with on-call experience, you know how terrible on-call can be.1 You’re
plagued by false alarms, unclear alerts, and constant firefighting. After a few months,
you start experiencing the effects of burnout: irritability, sleep deprivation, anxiety,
and more.

It doesn’t have to be this way, though, and I want to show you how to fix it. While we
can’t avoid computers doing silly things in the middle of the night, we can avoid get‐
ting needlessly woken up about it. Let’s talk about what we can do about it.

Fixing False Alarms
False alarms, for many us, are just an everyday fact of life when it comes to monitor‐
ing. 100% accuracy in alerting is a really hard problem—one that is still unsolved.
While tuning alerts isn’t always easy, many of you will be able to cut false alarms by an
appreciable amount. At any rate, even if you never achieve 100% accuracy, you should
still strive for it.

Here’s an easy way to always tune the alarms: as part of the duties of the person on-
call, compile a list of every alert that fired for the previous day. Go through them and
ask yourself how the alert’s signal can be improved, or if the alert can be deleted
entirely. Do this every day you are on-call and soon you’ll be in much better shape
than when you started.

Cutting Down on Needless Firefighting
Sometimes it’s not a signal problem, and the alerts are legit. Except, there’s dozens of
them a day, and they’re all legit. You have an excessive firefights problem. We talked
about this back in Chapter 1.

On-Call | 37

To quote a colleague who made an apt observation with monitoring, “You gotta fix
your shit.”

Monitoring doesn’t fix anything. You need to fix things after they break. To get out of
firefighting mode, you must spend time and effort on building better underlying sys‐
tems. More resilient systems have less show-stopping failures, but you’ll only get
there by putting in the effort on the underlying problems.

There are two effective strategies to get into this habit:

1. Make it the duty of on-call to work on systems resiliency and stability during
their on-call shift when they aren’t fighting fires.

2. Explicitly plan for systems resiliency and stability work during the following
week’s sprint planning/team meeting (you are doing those, right?), based on the
information collected from the previous on-call week.

I’ve seen both methods work successfully, so I’d recommend trying both and seeing
which one works better for your team.

Building a Better On-Call Rotation
You’ve no doubt experienced the unofficial on-call: instead of a formal designation of
when you are on-call and when you are not, you were simply always on call. Always
being on-call is a great way to burn people out (as I’m sure you already know!), and
this is why on-call rotations are a great idea. They’re a tried-and-true method of man‐
aging on-call response.

Here’s how a simple rotation might work. Let’s say you have Sarah, Kelly, Jack, and
Rich on your team. You set up a four-week rotation, whereby each of them is on-call
for one week, starting on Wednesday at 10 a.m. and ending one week later. This
rotates through in a specified order until everyone has been on-call for one week and
off on-call for three, then repeats itself.

A schedule like this works pretty well and is a great start if you don’t have a rotation
schedule already.

It’s important to start the on-call rotation during the workweek instead of tying it
directly to a calendar week. This allows your team to do an on-call handoff: the per‐
son coming off on-call discusses with the person going on-call what’s in-flight that
needs attention, any patterns noticed during the week, etc. I’ve been on teams where
we did handoff at 9 a.m. on Monday morning and others where we did it in the after‐
noon on Wednesdays—I’d pick whatever day and time works best for your team. If
you’re not sure, go with Wednesday at 10 a.m.

38 | Chapter 3: Alerts, On-Call, and Incident Management

Follow-the-Sun Rotations
Once your company is large enough, something you can take advantage of is a follow-
the-sun (FTS) rotation. Instead of a rotation consisting of, say, six people all from one
office, you can split the rotation across time zones. For example, a London-based
engineer can be on-call during their work hours and handoff to a Los Angeles–based
engineer when the UK day ends. Even better is distributing the rotation across
Europe, the United States, and Asia-Pacific (e.g., London, Los Angeles, and Sydney).
FTS rotations allow you to have full on-call coverage with no one being on-call dur‐
ing their nights. One big downside to FTS rotations is the significant increase in com‐
munication overhead. Handing off on-call becomes more difficult, so make sure you
have solid processes and communication channels in place.

One question that comes up often about on-call schedules is whether you should
have a backup on-call person or not, in addition to the primary on-call person. For
most teams, I advise against this unless you have a suitably large team. Having a pri‐
mary and a backup puts a person on-call for two rotations during the cycle. If you
only have a team of four people and use one-week rotations, that means everyone is
on-call for two weeks of the month—brutal!

Even if the backup isn’t called, they’re still required to do all the normal primary on-
call things: be near a computer with internet, be sober, and so forth, and that just isn’t
fair to them (it will also lead to quicker burnout).

This isn’t to say that the on-call person is all alone: you do absolutely need escalation
paths available for issues beyond the knowledge and capability of the on-call person
to solve. My caution has more to do with expecting everyone to always be available,
regardless of whether they are officially on-call or not.

Now, I know what you’re thinking: what if primary on-call doesn’t respond to the
alert? That’s fine. It’s the job of the on-call person to respond to alerts, and people are
more responsible than they’re often given credit for. If you have a consistent problem
with your on-call not responding to alerts, you’ve got a different problem. Otherwise,
I wouldn’t worry about it.

That brings us to another point: how many people do you need for an effective on-
call rotation schedule? That depends on two factors: how busy your on-call tends to
be and how much time you want to give people between on-call shifts.

On-call shifts with only two or three incidents a week can be considered light—what
you should be aiming for. The more incidents you have on a regular basis, the more
time off you should give between rotations. As for how much time off between shifts,
for a normal shift (such as the example I gave), I recommend three weeks between
on-call shifts for each person. Assuming you have only a single primary on-call, that

On-Call | 39

means you’re looking at a team of four people. If you want a backup rotation as well,
then you need eight people on the schedule.

I strongly encourage you to put software engineers into the on-call rotation as well.
The idea behind this is to avoid the “throw-it-over-the-wall” version of software engi‐
neering. If software engineers are aware of the struggles that come up during on-call,
and they themselves are part of that rotation, then they are incentivized to build bet‐
ter software. There’s also a more subtle reason here: empathy. Putting software engi‐
neers and operations engineers together in some way increases empathy for each
other, and it’s awfully hard to be upset at someone you genuinely understand and like.

Lastly, augment your on-call with tools such as PagerDuty, VictorOps, OpsGenie, etc.
These tools help you build and maintain escalation paths and schedules, and can
automatically record your incidents for you for later review. I try to avoid recom‐
mending specific tools in this book, but when it comes to tools that help on-call, I
really cannot recommend these enough.

On-Call Compensation
I would also consider two compensation-related things for your on-call people:

1. Give a PTO day immediately following the end of an on-call shift. On-call can be
nerve-wracking and a day to recuperate is well deserved.

2. Pay your team extra for their on-call shift. It’s standard practice in the medical
profession for on-call to receive additional pay for on-call shifts, ranging from an
additional $2/hr for nurses up to $2,000/day for neurosurgeons.

On-call negatively impacts many parts of life, including sleep quality, time with fam‐
ily, and more. Additional compensation for the worst part of our industry only seems
fair.

With some work, you can significantly improve your on-call experience for everyone
involved.

Incident Management
Incident management is a formal way of handling issues that arise. There are several
frameworks out there for the tech world, with one of the most popular coming from
ITIL:

An unplanned interruption to an IT service or reduction in the quality of an IT service.
—ITIL 2011

ITIL’s process for incident management looks something like this:

40 | Chapter 3: Alerts, On-Call, and Incident Management

http://bit.ly/2lf6XBm
http://bit.ly/2ixJL05
http://www.bmc.com/guides/itil-incident-management.html

1. Incident identification
2. Incident logging
3. Incident categorization
4. Incident prioritization
5. Initial diagnosis
6. Escalation, as necessary, to level 2 support
7. Incident resolution
8. Incident closure
9. Communication with the user community throughout the life of the incident

Despite the stilted presentation of it, a formal, consistent method for detecting and
responding to incidents provides a certain rigor and discipline to a team. For most
teams, formal methods such as this are overkill. However, what if we took the preced‐
ing ITIL process and simplified it, to not be so heavyweight?

1. Incident identification (monitoring identifies a problem).
2. Incident logging (monitoring automatically opens a ticket for the incident).
3. Incident diagnosis, categorization, resolution, and closure (on-call troubleshoots,

fixes the problem, resolves the ticket with comments and additional data).
4. Communications throughout the event as necessary.
5. After the incident is resolved, come up with remediation plans for building in

more resiliency.

Hey, that’s not so bad. In fact, I’d bet that a lot of you are doing something very simi‐
lar to this already, and that’s great. There is value in establishing your incident
response as an internal standard, formal procedure for handling incidents: incidents
are logged and followed-up on consistently; your users, management, and customers
get more transparency and insight into what’s going on; and your team can start to
spot patterns and hot spots in the app and infrastructure.

For most incidents that are resolved quickly, this process works well. What about for
incidents that are actual outages and last longer than a few minutes? In that case, a
well-defined set of roles becomes crucial. Each of these roles has a singular function
and they should not be doing double-duty:

Incident commander (IC)
This person’s job is to make decisions. Notably, they are not performing any
remediation, customer or internal communication, or investigation. Their job is
to oversee the outage investigation and that’s it. Often, the on-call person adopts

Incident Management | 41

the IC role at the start of the incident. Sometimes the IC role is handed off to
someone else, especially if the person on-call is better suited for another role.

Scribe
The scribe’s job is to write down what’s going on. Who’s saying what and when.
What decisions are being made? What follow-up items are being identified?
Again, this role should not be performing any investigation or remediation.

Communication liaison
This role communicates status updates to stakeholders, whether they are internal
or external. In a sense, they are the sole communication point between people
working on the incident and people demanding to know what’s going on. One
facet of this role is to prevent stakeholders (e.g., managers) from interfering with
the incident by directly asking those working on resolving the incident for status
updates.

Subject matter experts (SMEs)
These are the people actually working on the incident.

One common anti-pattern I’ve seen with incident management
roles is for them to follow the day-to-day hierarchical structure of
the team or company. For example, the manager of the team is
always the IC. The incident management roles do not need to
resemble the day-to-day team roles. In fact, I encourage you to
have the team’s manager act as communication liaison rather than
IC, and allow an engineer on the team to act as IC. These are often
a much better fit, as it allows the manager to protect the team from
interruption and it puts decision-making power in a person who is
best suited to assess risk and trade-offs.

This is only a brief overview of incident management, but if you’re interested in
learning more about the topic, I recommend reading PagerDuty’s Incident Response
documentation.

Postmortems
I want to devote some special attention to step five from the simplified incident
response process above. After an incident has occurred, it’s always advisable to have a
discussion about the incident (what happened, why, how to fix it, etc.). For some inci‐
dents, especially those concerning outages, a proper postmortem is a great idea.

You’ve likely participated in, or even perhaps led, a postmortem. Essentially, you get
all interested parties together and discuss what went wrong, why, and how the team is
going to make sure it doesn’t happen again.

42 | Chapter 3: Alerts, On-Call, and Incident Management

https://response.pagerduty.com/
https://response.pagerduty.com/

2 A great book on this topic is Beyond Blame by Dave Zwieback (O’Reilly, 2015).

There’s a nasty habit in postmortems that I’ve noticed: a blame culture. If you’ve ever
been in a team where people were punished for mistakes or people felt compelled to
cover up problem areas, you were probably in a blame culture.

If people fear retribution or shaming for mistakes, they will hide or downplay them.
You can never fix deep, underlying issues if your actions after an incident are to
blame a person.2

Wrap-Up
This jam-packed chapter covered a lot of material about your alerting, on-call, and
incident management. To recap:

• Alerting is hard, but a few key tips will keep you on the right path:
— Don’t send alerts to email.
— Write runbooks.
— Not every alert can be boiled down to a simple threshold.
— Always be reevaluating your alerts.
— Use maintenance periods.
— Attempt automated self-healing before alerting someone.

• Improving the on-call experience isn’t too difficult with a few tweaks.
• Building a simplified and usable incident management process for your company

should be prioritized.

Now that we’ve gotten alerting and on-call out of the way, let’s move on to everyone’s
least favorite class from school: statistics!

Wrap-Up | 43

1 I don’t mean to pick on Nagios—it’s just that Nagios, thanks to its influence, has set the expected standards in
many tools. There are plenty of other tools just as guilty.

CHAPTER 4

Statistics Primer

Statistics is an undervalued topic in the world of software engineering and systems
administration. It’s also misunderstood: many people I’ve spoken to over the years are
operating on the misapprehension that “rubbing a little stats on it” will result in
magic coming out the other end. Unfortunately, that isn’t quite the case.

However, I am happy to say that a basic lesson in statistics is both straightforward and
incredibly useful to your work in monitoring.

Before Statistics in Systems Operations
Before we get into the statistics lesson, it’s helpful to understand a bit of the back‐
ground story.

I fear that the prevalence and influence of Nagios has stifled the improvement of
monitoring for many teams. Setting up an alert with Nagios is so simple, yet so often
ineffective.1

If you want an alert on some metric with Nagios, you’re effectively comparing the
current value against another value you’ve already set as a warning or critical thres‐
hold. For example, let’s say the returned value is 5 for the 15m load average. The
check script is going to compare that value against the warning value or critical value,
which might be 4 and 10, respectively. In this situation, Nagios would fire an alert for
the check breaching the warning value, which is expected. Unfortunately, it isn’t very
helpful.

45

As so often happens, systems can behave in unexpected (but totally fine) ways. For
example, what if the value crossed the threshold for only one occurrence? What if the
next check, 60 seconds later, came back with a value of 3.9? And the one after that
was 4.1? As you might imagine, things would get noisy.

Nagios and similar tools have built mechanisms to quiet the noise for this particular
sort of problem in the form of flapping detection. This works simply and rather
naively: the monitoring tool will silence a check that swings back and forth from OK
to alerting too many times in a set time period. In my opinion, mechanisms like flap
detection just cover for bad alerting. What if there were a better way?

Math to the Rescue!
One of the core principles of the modern monitoring stack is to not throw away the
metrics the monitoring service gives you. In the old days, Nagios didn’t record the
values it received from a check, so you had no idea what trends were, whether last
week or five minutes ago. Thankfully, it’s commonplace to record this data in a time
series database now, even with Nagios (see Graphios and pnp4nagios). Something
often overlooked is that keeping data opens up many new possibilities for problem
detection through the use of statistics.

Every major time series database in use supports basic statistics. The configuration
and usage is different across each one, so I’m going to spend our time together in this
chapter on the statistics themselves, rather than their use in a particular tool.

If you’re used to the Nagios model of running checks, we’ll need to change your
thinking just slightly. Instead of having the monitoring system gather the data and
check the values against a set threshold at the same time (typical Nagios behavior),
let’s decouple those into two separate functions.

We’ll need something to collect the data and write it to the time series database at reg‐
ular intervals (I’m a huge fan of collectd for this purpose). Separately, we’ll have
Nagios run its load average check not against the host directly, but against a metric
stored in the time series database. You’ll need to use a different check script for this,
one that is built to query your TSDB of choice (see Nagios + Graphite, Sensu +
Graphite).

46 | Chapter 4: Statistics Primer

https://github.com/shawn-sterling/graphios
https://docs.pnp4nagios.org/
https://collectd.org/
https://github.com/pyr/check-graphite
https://github.com/sensu-plugins/sensu-plugins-graphite
https://github.com/sensu-plugins/sensu-plugins-graphite

2 Loading several thousand datapoints from disk to display a graph takes a very long time, and you probably
don’t care about granularity when viewing four weeks’ worth of data.

One of the new capabilities with this method is that you don’t have to run the check
against just the last reported value anymore—you can run it against a larger number
of values. This will allow you to make use of basic arithmetic and statistical functions,
leading you to more accurate problem detection. This additional amount of data is
fundamental to everything in this chapter, as we can’t tease out insights or predict the
future without more of an idea of the past.

Statistics Isn’t Magic
There seems to be a common feeling that if you “just rub some stats on it,” you’ll coax
out some major insight. Unfortunately, this isn’t the case. A lot of work in statistics is
figuring out which approach will work best against your data without resulting in
incorrect answers.

I cannot hope to do proper justice in this book to all the statistical methods you could
possibly use—after all, volume upon volume has been written on the topic for centu‐
ries. Rather, I intend to teach you some fundamentals, dispel some misconceptions,
and leave you in a position to know where to look next. With that, let’s dive in.

Mean and Average
Mean, more commonly known as average (and technically known as the arithmetic
mean), is useful for determining what a dataset generally looks like without examin‐
ing every single entry in the set. Calculating the mean is easy: add all the numbers in
the dataset together, then divide by the number of entries in the dataset.

A common use of averaging in time series is something called the moving average.
Rather than taking the entirety of the dataset and calculating the average, it calculates
the average as new datapoints arrive. A by-product of this process is that it smooths a
spiky graph out. This process is also used in TSDBs for storing rolled-up data and in
every time series graphing tool when viewing a large set of metrics.2

For example, if you had a metric with values every minute for the past hour, you
would have 60 unique datapoints. As we can see from Figure 4-1, it’s noisy and hard
to see what’s going on:

Statistics Isn’t Magic | 47

Figure 4-1. Load average

Applying a rolling average with five minute intervals yields a very different graph.
This resulting graph shown in Figure 4-2 is what we call smoothed.:

Figure 4-2. Load average, smoothed

That is, through the process of averaging values, the peaks and valleys have been lost.
There are pros and cons to this: by hiding the extremes in the dataset, we create a
dataset with patterns that are easier to spot, but we also lose datapoints that could be
valuable. With more smoothing comes a better visualization at the expense of accu‐

48 | Chapter 4: Statistics Primer

3 Your TSDB hides the underlying calculation from you, but trust me, this is what it’s doing.

racy. In other words, determining the correct amount of smoothing to apply is a bal‐
ancing act.

Median
Median is helpful when the average isn’t going to be accurate. Essentially, the median
is the “middle” of the dataset. In fact, median is often used for analyzing income lev‐
els of entire populations precisely for reason of accuracy. If you have 10 people, all
with incomes of $30,000/yr, the average of their incomes is $30,000, while the median
is also $30,000. If one of those 10 people were to strike it rich and have an income of
$500,000/yr, the average becomes $77,000, but the median stays the same. In essence,
when dealing with datasets that are highly skewed in one direction, the median can
often be more representative of the dataset than the mean.

To calculate the median, you first must sort the dataset in ascending order, then cal‐
culate the middle using the formula (n + 1) / 2, where n is the number of entries in
the dataset.3 If your dataset contains an odd number of entries, the median is the
exact middle entry. However, if your dataset contains an even number of entries, then
the two middle numbers will be averaged, resulting in a median value that is not a
number found in the original dataset.

For example, consider the dataset: 0, 1, 1, 2, 3, 5, 8, 13, 21. The median is 3. If we
added a 10th number so the dataset becomes 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, then the
median becomes 4.

Seasonality
Seasonality of data is when your datapoints adopt a repeating pattern. For example, if
you were to record your commute time every day for a month, you would notice that
it has a certain pattern to it. It may not always be the same time each day, but the
pattern holds day-to-day. You use this kind of knowledge every day to help you plan
and predict the future: because you know how long your commute normally takes,
you know when you need to leave in order to make it to the office on time. Without
this seasonality, planning your day would be impossible. Figure 4-3 shows an example
of seasonality in web server requests.

Median | 49

4 This is a rough definition and glosses over some subtleties of the underlying math. A more thorough treat‐
ment of percentiles can be found in “Statistics For Engineers” (Heinrich Hartmann, ACM Vol 59, No 7).

Figure 4-3. Seasonality of web server requests over seven days

If I know, based on previous data, that my web servers handle roughly 100
requests/sec on a given weekday, then I can also assume that half that number or dou‐
ble that number is maybe something worth investigating. Some tools allow you to
apply this on a rolling basis, comparing datapoints now to datapoints at a previous
time period, such as comparing req/sec currently to exactly the same time one week
prior, one day prior, or even one hour prior. For workloads with a high degree of sea‐
sonality, you can thus make assumptions about what the future will look like. Not all
workloads have seasonality—in fact, some have no discernible seasonality at all.

Quantiles
Quantiles are a statistical way of describing a specific point in a dataset. For example,
the 50th quantile is the mid-point in the data (also known as the median). One of the
most common quantiles in operations is the percentile, which is a way of describing a
point in the dataset in terms of percentages (from 0 to 100).

Percentiles are commonly found in metered bandwidth billing and latency reporting,
but the calculation is the same for both. First, the dataset is sorted in ascending order,
then the top n percent of values is removed. The next largest number is the nth per‐
centile.4 For example, bandwidth metering is often billed on a 95th percentile basis. To
calculate that value, we would would drop the top 5% of values. We do this because
it’s expected in bandwidth metering that the usage will be bursty, so paying for band‐
width on a 95th percentile basis is more fair. Similarly, using percentiles for latency
reporting gives you a good idea of what the majority of the experience is like, ignor‐
ing the outliers.

50 | Chapter 4: Statistics Primer

https://cacm.acm.org/magazines/2016/7/204029-statistics-for-engineers

You Can’t Average a Percentile

By the nature of calculating a percentile, you’re dropping some
amount of data. As a result, you can’t average percentiles together
because you’re missing some of the data—the result will be inaccu‐
rate. In other words, calculating a daily 95th percentile and then
averaging seven of those together does not give you an accurate
weekly 95th^value. You’ll need to calculate the weekly percentile
based on the full set of weekly values.

While using percentiles will give you an idea of what most of the values are (e.g., in
the case of latency, what most users experience), don’t forget that you’re leaving off a
good number of datapoints. When using percentiles to judge latency, it can be helpful
to calculate the max latency as well, to see what the worst-case scenario is for users.

Standard Deviation
The standard deviation is a method of describing how close or far values are from the
mean. That sounds great at first, but there’s a catch: while you can calculate it for any
dataset, only a normally distributed dataset is going to yield the result you expect.
Using standard deviation in a dataset that’s not normally distributed may result in
unexpected answers.

Distributions? Normal? Not-Normal?
A distribution is just a statistical term for describing a model of your dataset. Normal
distributions look a lot like the graph. Not-normal distributions often have a skew,
that is, the dataset may have multiple peaks, a long lead-in, a long tail, etc.

One handy bit about standard deviation is that the amount of data within specific
deviations is predictable. As you can see from Figure 4-4, 68% of the data resides
within one standard deviation of the mean, 95% within two standard deviations, and
99.7% within three standard deviations. Keep in mind that this holds true only for
normally distributed datasets.

Standard Deviation | 51

Figure 4-4. Normal distribution and standard deviation (Wikipedia, CC BY 2.5)

I mention standard deviation only because there’s bad news: most of the data you’ll be
working with doesn’t fit a model where standard deviation will work well. You’re bet‐
ter off skipping right past using standard deviation rather than wasting time wonder‐
ing why the calculation’s results aren’t what you were expecting.

Wrap-Up
This section has only barely scratched the surface when it comes to the world of sta‐
tistics, but I’ve tried to focus on the most common and highest-impact approaches for
operations and engineering work. To recap:

• Average is the most common and useful function you’ll use, as it’s widely applica‐
ble to lots of different datasets. Median is also quite handy, for some datasets.

• Seasonality is just a fancy way of talking about patterns in data based on time.
Look at your traffic log and I bet you’ll see seasonality.

• Percentiles are helpful for understanding what the bulk of your data looks like,
but be careful: they inherently ignore the extreme datapoints.

• Standard deviation is a useful tool, but not so much for the sort of data you’ll be
dealing with.

I’ll leave you with a few questions to consider when thinking about your data.

• Does it have a large skew in either direction? That is, do the datapoints cluster at
either end of a graph?

• Are extreme outliers common?

52 | Chapter 4: Statistics Primer

• Are there upper and lower bounds for datapoints? For example, latency measure‐
ments can, in theory, be effectively infinite in the positive direction (bounded on
the low end by zero), while CPU utilization percentage is bounded on both ends
(0% and 100%).

By asking these questions of your data, you’ll start to understand which statistical
approaches may work well and which may not.

And with that, we’ve reached the end of Part I of Practical Monitoring! In Part II we’ll
get into the nitty-gritty of “What should I be monitoring? How do I do it?”

Wrap-Up | 53

PART II

Monitoring Tactics

Part II of Practical Monitoring explores specific tactics of what to monitor and how.
As you read through Part II, keep in mind the foundational principles you learned
from Part I.

CHAPTER 5

Monitoring the Business

If you recall from Chapter 2, we learned one of the important monitoring design pat‐
terns: monitor from the user’s perspective. We learned that starting your monitoring
efforts from the outside, rather than deep in the bowels of the infrastructure where
most people start, is a far better approach as it provides you with immediate insight
into the actual questions people are asking (“Is the site up?” “Are users impacted?”)
and sets the stage to iteratively go deeper.

The questions asked by business owners are often vastly different than those asked by
software engineers or infrastructure engineers, and I think this is an area where we as
engineers can improve our skills and understanding. Once we learn to ask the ques‐
tions the executives are asking, we can really begin to work on the most important
and highest-leverage problems facing the business.

In this chapter, you’ll learn what those questions are and how to apply your engineer‐
ing expertise to answering them while hitting the basics of business KPIs. By the end
of the chapter, you’ll have an appreciation for the concerns of executives and how you
can make their lives easier while also demonstrating the value that monitoring pro‐
vides to the business.

Business KPIs
A key performance indicator (KPI) is a metric that measures how your company is
doing along lines the company has deemed important to the health of the business as
a whole. A KPI, like a performance metric does for the app and infrastructure, tells
you how your business is doing. Also like performance metrics, some metrics can be
rather fuzzy about what they tell you and may require some degree of judgment in
order to make decisions with them.

57

From an executive or founder’s perspective, you can sum up their concerns fairly
easily:

• Are customers able to use the app/service?
• Are we making money?
• Are we growing, shrinking, or stagnant?
• How profitable are we? Is profitability increasing, decreasing, or stagnant?
• Are our customers happy?

There are many metrics you can use to answer these questions, and they all tend to be
approximations, requiring some level of judgment. After all, business is often messy
—if it were easy, everyone would be doing it, right?

The following are common metrics business owners use to answer these questions:

Monthly recurring revenue
Measures the amount of monthly recurring revenue from customers. Most often
used by SaaS or managed services companies.

Revenue per customer
Measures the amount of revenue per customer, generally on an annual basis. A
good measurement for most types of companies.

Number of paying customers
Self-explanatory. You probably want this number to be going up.

Net promoter score
A measurement of user/customer satisfaction. Net promoter score (NPS) asks the
user on a scale from 1 to 10, with 10 being the best (also known as a Likert scale),
how likely they are to recommend the service/app to someone else. With enough
responses, you can get a sense of how happy your users are with your service/
app. NPS can also be used at a more granular level, such as in follow up emails
with recently resolved help desk tickets.

Customer lifetime value (LTV)
The total value of a customer over their lifetime. If you are cross-selling to cus‐
tomers, this number should be going up. This measurement is closely related to
revenue per customer but is measured on a lifetime basis.

Cost per customer
Measures how much it costs to service a customer. You ideally want this number
to be decreasing over time, as it means you are becoming more efficient at pro‐
viding a service/app and therefore more profitable. If you are running a SaaS app,
determining how much infrastructure costs to run per user is a good starting
place for this metric.

58 | Chapter 5: Monitoring the Business

Customer acquisition cost (CAC)
Measures how much it costs to acquire a customer/user. This is generally a met‐
ric that your marketing team lives and dies by.

Customer churn
Measure of how many users are leaving your app/service. Some amount of churn
is inevitable and simply the nature of doing business, but high churn can indicate
problems with the app, whether from a product perspective (your app just isn’t
very good), performance perspective (your app is too slow), or cost perspective
(your app is too expensive). Churn rate is highly dependent on the nature of your
business, so it’s best compared to yourself over time and not to other businesses.

Active users
A measurement of active users for your app/service. Active users can be hard to
define, and this measurement is greatly dependent on the nature of your busi‐
ness. This metric is often tracked as multiple metrics, such as daily active users
(DAU), weekly active users (WAU), and monthly active users (MAU). Ideally, you
want this number increasing.

Burn rate
A measurement of how much money the company is spending as a whole. This
number includes everything from salaries to office space. If you’re a revenue-
generating company (e.g., later stage startup or enterprise), this number isn’t gen‐
erally used.

Run rate
Often found in conjunction with burn rate, run rate is a measurement of how
long a company has before it’s out of cash at current expenditure levels. This is
usually expressed in months. If you’re a revenue-generating company (e.g., later
stage startup or enterprise), this number isn’t generally used.

Total addressable market (TAM)
A measurement of how large a particular market is. It’s fundamentally an esti‐
mate that is arrived at by determining the total dollar value if you were to sell to
everyone in that market. This can fluctuate depending on how a company defines
its market.

Gross profit margin
A measurement of profitability after cost of goods sold (COGS). If you’re a SaaS
company, this number is usually greater than 80% and often in the 90% range.
COGS, for SaaS, is essentially what it costs to run the app/service. If you are a
physical goods company, COGS is the cost to produce those goods. COGS does
not include cost of salaries or office space. You can further divide this number by
the number of users to determine how much it’s currently costing you on a per-
user basis.

Business KPIs | 59

1 See http://bit.ly/2yJOWRe and http://bit.ly/2zBRMo9.
2 I’m making an educated guess here—I could be totally off base.

Each of these metrics is used to answer different questions (or the same question
from a different perspective!). It’s sometimes hard to get this data, depending on the
business. Given the sometimes sensitive nature of these metrics, you may not have
access to the data yourself, but it’s still important for you to understand what’s being
measured at the executive level and why. If you’re interested in learning more about
these topics, Andreessen Horowitz has two fantastic blog posts covering them.1

Though they are aimed primarily at the startup world, they’re a great starting point
for digging in deeper on business-level metrics.

Two Real-World Examples
Since you’re reading this book, you’re probably in IT or engineering and now won‐
dering what you can do about helping to monitor the business, and the answer is: a
lot, actually!

If you’re running a SaaS app, for example, there are a lot of questions that can be
answered by instrumenting it. The examples that follow will show you exactly what I
mean by monitoring from the outside first and why it’s so helpful. Let’s look at how a
couple well-known companies might take this approach.2

Yelp
Yelp is an online platform that connects people with local businesses. There are two
types of users for their platform: people searching for a local business (and possibly
giving reviews) and business owners managing their business’s page (and possibly
giving responses to reviews). A business owner can “claim” their business page for
free, but Yelp monetizes its platform by charging business owners for advertising.

Even from this small description, compiling a list of business KPIs is easily done:

• Searches performed
• Reviews placed
• User signups
• Business pages claimed
• Active users
• Active businesses
• Ads purchased

60 | Chapter 5: Monitoring the Business

http://bit.ly/2yJOWRe
http://bit.ly/2zBRMo9

• Review responses placed

All of these measure core functionality of the Yelp app and, depending on the archi‐
tecture, may have a strong or loose mapping to backend services. These metrics are
great leading indicators that something might be going wrong somewhere for one
simple reason: if the search functionality is broken or slower than normal, the num‐
ber of searches performed is likely to drop. These metrics, over time, should be rela‐
tively stable. You’ll get to know them at a glance and intuitively understand what
looks right and what doesn’t. Imagine if you had all these metrics on a TV in your
office for all to see. Anyone walking by would be able to immediately get a sense of
whether things were fine or going south. None of these metrics tell anyone what
might be wrong, but they’re great at signaling the overall health of the business.

Another side effect of tracking these metrics is that you’ll be able to quickly see the
impact of backend problems on users. How many times have you seen a slowdown in
some backend service and wondered about the impact to users? If you’ve got these
metrics, answering that question becomes as easy as popping open the dashboard.

Reddit
Reddit is a social networking site. Users can read Reddit without an account, but
posting a thread, commenting, voting, or private messages requires an account. Red‐
dit is monetized via ads and Reddit Gold, a premium-level account for users. Subred‐
dits are unlimited and free to create, but also require an account.

Measuring the core functionality would probably look something like this:

• Users currently on the site
• User logins
• Comments posted
• Threads submitted
• Votes cast
• Private messages sent
• Gold purchased
• Ads purchased

Reddit’s metrics aren’t terribly different from Yelp’s, are they?

By now, you’re starting to get an idea of what you might be able to do for your com‐
pany. On their own, these metrics aren’t perfect, but they do measure interaction and
engagement of users/customers. What would it look like if we kept going deeper with
this line of thinking?

Two Real-World Examples | 61

Tying Business KPIs to Technical Metrics
Let’s go back to one of the examples above: Reddit. On its own, tracking user logins is
good, but is there a way we could get more specific metrics about user login perfor‐
mance? I think there is: user login failures.

Tracking user logins would give you both successful and failed logins. That’s not bad,
but if the backend service responsible for handling user logins were having issues,
this metric wouldn’t show us. Tracking success and failure separately is even better, as
it helps us in our ever-present quest to know whether our app is working.

Let’s look again at Reddit’s metrics, with a bit more granularity (Table 5-1):

Table 5-1. Business KPIs tied to technical metrics

Business KPI Technical metrics
Users currently on the site Users currently on the site

User logins User login failures, login latency

Comments submitted Comment submission failures, submission latency

Threads submitted Thread submission failures, submission latency

Votes cast Vote failures, vote latency

Private messages sent Private message failures, submission latency

Gold purchased Purchase failures, purchase latency

Ads purchased Purchase failures, purchase latency

A couple things to note here:

• We’ve left current users alone. This metric is still very useful to us, as it provides
clues about traffic levels to the site.

• The new metrics are all about failure rates and latency. You can track success
rates if you’d like, but failure rates are more directly applicable to our goals.
Latency is great to track, as it can be a good indicator of coming problems.

These new metrics answer the question of whether the app is working at a more gran‐
ular level than the previous set did. They don’t assume they know what the problem
is, but only hint that there could be one—exactly where we want to be for these sorts
of metrics.

My App Doesn’t Have Those Metrics!
You might thinking about now, “My app doesn’t give me that data. How do I monitor
something I don’t have?” I am so glad you asked.

62 | Chapter 5: Monitoring the Business

3 This is actually a mind hack of sorts: talking to people outside of Engineering gets you out of the engineering
bubble, even if for a brief time. It’s always valuable to understand perspectives outside of Engineering.

Monitoring, as I mentioned in chapters 1 and 2, isn’t something that can be bolted on
after the fact. To get visibility into the performance of your app and infrastructure,
you have to have a design for it.

Can you imagine if Ford made a car with no way to measure how much fuel was in
the tank? Or how fast you were going? These aren’t simply bolted onto the car after
it’s been finished—they were designed into the vehicle from the very start. In fact,
modern vehicles are very much like modern software: the ECU (engine control unit,
aka, “the computer”) is just a whole lot of software responsible for analyzing inputs
from lots of sensors and adjusting outputs given to the other components of the car.
The core functionality of an ECU depends entirely on sensors feeding back measure‐
ments to it, allowing the ECU to adjust its controls of various critical components.
Right from the beginning of the computerized era, monitoring was built into the
vehicle at design.

Thankfully for us, we aren’t building cars: we can change things whenever we like
with a much faster feedback loop than, say, adding a gas gauge to every car we’ve sold
after they’ve been shipped out. We have the ability to modify our apps and infrastruc‐
ture to add better monitoring as we please and improve on it over time. If your app
doesn’t expose a measurement you need, get your hands dirty and modify the app to
do so.

Finding Your Company’s Business KPIs
Now that you’ve got an idea of how you can tie business KPIs to technical metrics,
let’s talk about how to find them for your business and app.

With the examples given, you’ve probably already got a decent idea of what your met‐
rics are. I’d love to give you a list of metrics you should be tracking, but alas, every
business is different, and sweeping generalizations can’t be made.

However, don’t fret, because I have a foolproof way of ensuring you understand how
the app works and what’s important to measure: talk to people.3

Yes, I know, it’s crazy, but I swear it works!

So whom should you talk to?

The first person is a product manager. If you haven’t worked with a product manager
before, their job is to essentially understand what the customers want and work with
engineering to get it built. As a result, product managers tend to have the best idea of
what matters at a high level. After talking with product managers, talk to the man‐

Finding Your Company’s Business KPIs | 63

ager(s) of the software engineering team(s), followed by a few senior software engi‐
neers. By the end, you should have a great idea of what matters and how to find it.

What should you ask them? Here are my favorite questions:

• Let’s assume I’m new to the company—how do I know the app is working? What
do you check? How should it behave?

• What are the KPIs for our app? Why are those the KPIs? What do they tell us?

Another way to figure out what you should monitor at this stage is to sketch out the
app’s functionality at a very high level. Pay no attention to whether you’re using
MySQL or PostgreSQL or what-have-you for your database—simply knowing that
some component talks to a database is sufficient to know that you probably want to
measure database latency from that component. Mapping out functionality, such as
login, search, loading a map, etc. is a great way to determine where to start.

Since every business is different, there are no common metrics everyone should
track. Your goal is to find the high-level metrics that indicate whether the app is
actually working as it should.

Wrap-Up
We’ve learned the importance of facets of the company that many of us are rarely, if
ever, exposed to. Yet they are absolutely crucial to the operation and growth of the
business—and us keeping our jobs. To recap:

• Business KPIs are among the most important metrics out there and make great
leading indicators for the health and performance of your app and infrastructure.

• We learned how to identify these important metrics in our companies and track
them.

• We learned how to tie business metrics to technical ones.

In the next chapter, we’ll learn about the ever-evolving world of frontend perfor‐
mance monitoring.

64 | Chapter 5: Monitoring the Business

CHAPTER 6

Frontend Monitoring

Many companies often overlook frontend monitoring, usually due to monitoring
being the “thing that Ops owns.” Your average sysadmin/ops engineer doesn’t often
think about the frontend of an app, aside from the public-facing web servers.
Unfortunately, this represents a pretty large blind spot, as we will soon see.

In this chapter, we’ll talk about why this is a blind spot and how to change that by
looking at various approaches for frontend monitoring. We’ll wrap up the chapter
with how to integrate frontend monitoring into other tools you’re already using to
make sure you don’t lose those performance gains over time.

What do I mean by frontend monitoring? I define the frontend as all the things that
are parsed and executed on the client side via a browser or native mobile app. When
you load a web page, all of the HTML, CSS, JavaScript, and images constitute the
frontend. All of the work a webapp does on fetching data from databases, executing
backend code (e.g., Python, PHP), or calling APIs for data—that’s the backend. As
more and more work is moved from the backend apps to the frontend, this delinea‐
tion can get a little blurry.

In fact, with the proliferation of single-page apps (SPAs), it’s not uncommon for a
spike in JavaScript errors to occur without any corresponding spikes in HTTP errors.
Traditional approaches to monitoring simply aren’t suited for a world of client-side
browser apps.

What, Exactly, Is an SPA?
An SPA is a browser-loaded webapp where most, if not all, resources are loaded on
the client side with few requests made to the server for data. One unique feature of
many SPAs is that page refreshes are unnecessary, as the page updates its data in the

65

background. React.js, Angular.js, Ember.js, and others are popular frameworks used
for SPAs.

How you approach frontend performance is going to be a little different than what
you’re used to. Your goal with monitoring frontend performance isn’t stay up, but
rather, it’s load quickly. Over time, as you develop new features in your app, frontend
performance has a habit of taking a hit due to the size of static assets, that is, all of
your images, JavaScript, and CSS.

Using the strategies here for assessing performance and ensuring your improvements
aren’t lost over time, we’ll make sure your frontend performance is always improving
—or, at least, you’re always aware of where you stand.

Talking About Tools Without Talking About Tools
Monitoring the frontend (JavaScript) is hard to do from a generic, non-tool-specific
position like we’ll be doing in later chapters. Due to the way things are with Java‐
Script, everything is abstracted away and implemented as a particular library or tool.
While I strive to be tool-agnostic in this book, doing so with JavaScript hasn’t proven
to be so easy. As a result, I’ll mention a few specific tools and libraries in this chapter,
but these should not be seen as endorsements, but merely examples.

The Cost of a Slow App
As engineers, we intuitively understand that a slow app is bad for business. I can’t
count how many times a day I get frustrated with a slow website and just move on.
But how bad is it for the bottom line, really? How do you convey the importance of
frontend performance in a tangible, dollars-focused way? How do you convince peo‐
ple that spending time on frontend performance is worthwhile? How do you measure
the outcomes?

According to a 2010 study conducted by Aberdeen Research, a one-second delay in
your page load time results in an average of 11% loss in page views, 7% loss in con‐
versions, and 16% loss in customer satisfaction. Aberdeen found that the business
begins to suffer when the page load time reaches 5.1 seconds, while the sweet spot for
load time is under 2 seconds.

Shopzilla and Amazon had similar findings. Shopzilla’s page load time dropped from
6 seconds to 1.2 seconds, resulting in a 12% increase in revenue and a 25% increase in
page views. Meanwhile, Amazon found that revenue increased by 1% for every 100
ms of load time improvement.

66 | Chapter 6: Frontend Monitoring

http://bit.ly/2y66Glp
https://www.youtube.com/watch?v=Y5n2WtCXz48
https://www.youtube.com/watch?v=Y5n2WtCXz48
http://bit.ly/2y494hq

In more recent times, Pinterest undertook a frontend performance project in March
2017 with equally astounding and impactful results: 40% drop in perceived wait time,
15% increase in SEO traffic, and a 15% increase in signups. As the authors of the blog
post wrote, “Because the traffic and conversion rate increases are multiplicative, this
was a huge win for us in terms of web and app signups.” That’s quite the endorsement
for the impact of tuning for performance on the frontend.

What Should My Page Load Time Be?
Aim for under four seconds. It’s a tough target to reach, but it’s entirely doable. Don’t
believe you can? Amazon.com maintained roughly 2.4 seconds throughout the day of
Amazon Prime Day 2017. That’s under far more traffic than any of us are likely to
experience, and they still did it.

Even with these hard, concrete numbers, it’s amazing how many teams still don’t pri‐
oritize frontend performance improvements. I was recently speaking with a colleague
who specializes in this area and helps other companies get these same sorts of results.
He observed that even though he could tie actual bottom-line dollar amounts to the
improvement efforts, teams were still hesitant, and sometimes unwilling, to dedicate
any time to the work. Don’t be one of those teams: great site performance is a require‐
ment for profitable businesses that sell something online.

Two Approaches to Frontend Monitoring
There are two main approaches to frontend monitoring: real user monitoring (RUM)
and synthetic. The difference between them has to do with the type of traffic you’re
using for monitoring.

Technically, these two approaches extend to all monitoring, not just
frontend. You may know them as whitebox monitoring and blackbox
monitoring.

If you’ve ever seen Google Analytics, that’s a type of RUM. In essence, RUM uses
actual user traffic for the monitoring data. It does this by having you put a small snip‐
pet of JavaScript on every page. When someone loads that page, it sends some metrics
off to the monitoring service.

On the flip side, tools like WebpageTest.org are synthetic monitoring: they create fake
requests under a variety of test conditions to generate the data. Many software ven‐
dors try to tout their RUM and synthetic monitoring tools as something unique and
special, but the only thing special about them is their particular implementation.

Two Approaches to Frontend Monitoring | 67

http://bit.ly/2iyxUio
http://bit.ly/2iyxUio
http://bit.ly/2i3u7Wn
http://bit.ly/2i3u7Wn

RUM will be the core of your frontend monitoring efforts, as it’s monitoring perfor‐
mance experienced by real users under real conditions. We’re going to focus on meth‐
odology and foundations of RUM for much of this chapter, and wrap up with some
thoughts on synthetic monitoring.

Document Object Model (DOM)
Before we get into the nitty-gritty of frontend monitoring, we first need to talk about
a core concept: the Document Object Model, commonly known as the DOM.

The DOM is the logical representation of a web page. The DOM is roughly tree-like,
with every HTML tag making up a node in the DOM. When a page is requested, the
browser parses the DOM and renders it into a page that’s visually readable. Techni‐
cally speaking, HTML is not the DOM, nor is the DOM just HTML—though, to
make things more confusing, a completely static website’s source HTML is a complete
representation of the DOM. As soon as you introduce JavaScript, the DOM and the
HTML source diverge.

As you may know, a JavaScript script can reference an HTML element and change the
data in it on the fly, after the page has loaded, making the page dynamic. If you’ve
ever used an online calculator, you’ve seen this in action. This is how the modern web
works, just with a whole lot more JavaScript and complexity. As a result of this capa‐
bility, the DOM that the browser parsed and the final page your browser presented to
you aren’t the same.

The reason web page performance is a big deal is because of the multitude of ways
JavaScript impacts it. By default, scripts are loaded synchronously. That is, if the
DOM is being parsed and a <script> tag is encountered, the browser will stop pars‐
ing the DOM and load the script. This makes a full HTTP connection to request the
script, download it, execute it, load it into the DOM, then continue with parsing the
DOM.

HTML5 supports an async attribute on <script> tags, which tells the DOM to not
block on loading the script. This async attribute allows the script to be downloaded
in the background while the DOM continues to be loaded, executing the script when
it’s finished downloading. This capability improves page performance greatly, but it’s
certainly not a silver bullet.

I know this is a book about monitoring, so you might be wondering why we’re talking
about JavaScript so much. I find it’s helpful to understand the underlying mechanics
of what it is we’re monitoring, and when it comes to frontend monitoring, we’re really
talking about the mess that JavaScript can cause.

To wit, imagine you have dozens of these scripts: you can see how page performance
would degrade. As an example, as of this writing, cnn.com loads 55 scripts, while

68 | Chapter 6: Frontend Monitoring

google.com loads a mere five. The load times correspond as you might imagine: 8.29
seconds for cnn.com and a snappy 0.89 seconds for google.com.

Frontend Performance Metrics
With that lesson about the DOM out of the way, let’s get down to business: metrics.
Many people aren’t aware of how much data the browser itself collects and exposes to
anything that asks for it. In fact, your browser exposes a wealth of information such
as your device’s battery level, current time, time zone, and even the size of your screen
(and more!). Of course, we’re interested in performance metrics, which the browser
has as well.

While many of the tools available on the market abstract frontend measurements
away, rolling them up into a nice easy-to-use package, it’s helpful to understand what
they’re doing. In most cases, you’re going to be using some SaaS tool to keep tabs on
frontend performance, but let’s look at what’s going on under the hood.

Navigation Timing API
Browsers expose page performance metrics via the Navigation Timing API, a specifi‐
cation recommended by the W3C. This API is enabled by default for every page and
provides a lot of information about the page performance. This API exposes 21 met‐
rics in total, though in my experience, most of them are useful for troubleshooting
performance while only a few are necessary for regular monitoring of trends.

The full list of metrics available in this API are shown in Table 6-1.

Table 6-1. Navigation Timing API metrics
navigationStart unloadEventStart unloadEventEnd

redirectStart redirectEnd fetchStart

domainLookupStart domainLookupEnd connectStart

connectEnd secureConnectionStart requestStart

responseStart responseEnd domLoading

domInteractive domContentLoadedEventStart domContentLoadedEventEnd

domComplete loadEventStart loadEventEnd

Figure 6-1 will make more sense of them:

Document Object Model (DOM) | 69

https://www.w3.org/TR/navigation-timing/

Figure 6-1. Navigation Timing API measurements

These are the metrics I’ve found most consistently useful:

• navigationStart
• domLoading
• domInteractive
• domContentLoaded
• domComplete

Let’s look at what these mean in more detail:

navigationStart
This marks the time when the page request is made by the browser.

domLoading
This marks the time when the DOM has been compiled and begins loading.

domInteractive
This marks the time where the page is deemed to be usable, but not necessarily
finished loading.

domContentLoaded
This marks the time when all scripts have been executed.

domComplete
This marks the time when the page has finished loading everything (HTML, CSS,
and JavaScript).

There’s another API in the browser called the User Timing API that’s potentially useful
for the more adventurous among you. Whereas the Navigation Timing API’s metrics
are set, the User Timing API allows you to create your metrics and events.

70 | Chapter 6: Frontend Monitoring

Speed Index
WebpageTest, being the de facto frontend performance testing tool, has quite a few
interesting and useful metrics. Chief among them, one you may be familiar with
already, is Speed Index.

Whereas Navigation Timing metrics rely on accurate reporting by the browser, Speed
Index uses video capture at a rate of 10 frames per second to determine exactly when
a page is finished loading from a visual perspective. It’s far more accurate than
browser-reported metrics for determining the user-perceived completeness. The test
results are then computed according to the Speed Index algorithm, which is repre‐
sented as a single number where lower is better. Speed Index is a good number to get
a general understanding of performance, but I would caution you about relying too
much on it, since it doesn’t include a lot of details that browser-reported metrics give
you.

OK, That’s Great, but How Do I Use This?
A list of metrics isn’t that useful if you can’t use them for anything. So, for example,
with a little math, you can compute some useful numbers:

• domComplete - navigationStart = Total page load time
• domInteractive - navigationStart = Time until the user perceives the page as

loaded

Once you’re instrumenting your app to get this data, you can send it to any number of
places. Example 6-1 shows how you can use Google Analytics and its analytics.js
library to instrument your app, sending the metrics to Google Analytics:

Example 6-1. Using the Navigation Timing API with Google Analytics (code by Google)

// Feature detects Navigation Timing API support.
if (window.performance) {
 // Gets the number of milliseconds since page load
 // (and rounds the result since the value must be an integer).
 var timeSincePageLoad = Math.round(performance.now());

 // Sends the timing hit to Google Analytics.
 ga('send', 'timing', 'JS Dependencies', 'load', timeSincePageLoad);
}

If you’d prefer to use existing tools, such as StatsD and Graphite, you have a bit of a
harder time. It’s not straightforward to send to a UDP/TCP socket from JavaScript,
but there are StatsD backends that accept an HTTP POST.

Document Object Model (DOM) | 71

http://bit.ly/1ttMTJ5

More likely (and I recommend this), if you’re doing frontend monitoring, you’ll be
opting for a specialized SaaS product. These come with their proprietary libraries for
instrumentation, and they’re quite simple to use. Under the hood, they’re leveraging
the same APIs we’ve discussed, just in a very simple-to-use manner, plus great dash‐
boards. If you’re not going that route, the Google Analytics option is probably your
best bet, especially if you’re running a small site with little infrastructure.

Logging
If you’ve spent any time in the JavaScript world, you are likely already familiar with
the console statement. console is used primarily for debugging and development
purposes. For example: console.log("This statement logs an entry");. These
sort of debug statements are certainly useful, but unfortunately, not all that helpful
when you’re wanting to stay on top of errors in production. After all, you don’t want
to be flooding the user’s browser console with messages meant for you. For logging in
production, you need something more robust.

Unfortunately, options are limited in this area. There’s not much in the way of a
generic logging infrastructure like syslog, resulting in dozens of libraries of varying
quality that essentially try to accomplish the same goal of sending log entries some‐
where.

However, if you can use a SaaS product, your options open up substantially: there are
several products out there that handle all of the hard parts of collecting exceptions
and log statements from JavaScript and sending them to a hosted service. Google for
exception tracking saas and you’ll find plenty of great options.

Synthetic Monitoring
If you’ve ever run curl on a website to ensure it was working, you’ve performed a
synthetic test. There are tools out there that take it much further, specifically designed
for web page performance. The big dog in that space is WebpageTest.org.

I’ve mentioned WebpageTest (they’re the folks who created the Speed Index), but I
want to come back to it for a particularly neat use case: integrating it into your testing
suite. Performance of webapps tends to degrade over time, unless you actively opti‐
mize for performance on a regular basis. Since you can’t improve what you don’t
measure, what if you could measure the frontend performance impact of every pull
request? This is where WebpageTest private instances save the day.

By making use of WebpageTest’s API in your automated testing process, you can
ensure your team is considering the performance impact of new features and not lose
those hard-won performance gains.

72 | Chapter 6: Frontend Monitoring

https://sites.google.com/a/webpagetest.org/docs/private-instances

Wrap-Up
As we’ve learned, frontend monitoring, despite being largely overlooked, is not only
possible, but relatively easy to do. Like all monitoring, it’s a rabbit hole that can go on
seemingly forever, but the basics are simple:

• Monitor page load times for actual users.
• Monitor for JavaScript exceptions.
• Keep track of page load time over time with your CI system, ensuring load times

stay within an acceptable range.

The frontend of your app is closely tied to the backend, though, and performance in
the backend can often manifest as frontend issues (for example, slow reaction times
when clicking buttons). To that end, let’s move on to instrumenting the backend of
your app (in other words, the code).

Wrap-Up | 73

CHAPTER 7

Application Monitoring

I’ve seen many companies with robust monitoring on their server infrastructure,
great security monitoring, and a very capable network monitoring strategy—yet their
applications are an unknowable black box. This always strikes me as odd, since most
organizations are changing their applications more often than they are changing any‐
thing else, which means visibility into the performance of those applications should
be of high importance.

I think it’s mostly because many teams think application monitoring is too hard or
requires some highly specialized skillset. Thankfully, neither is true, and this chapter
will help you on your way to having high visibility into your applications.

Instrumenting Your Apps with Metrics
One of the most powerful things you can do in monitoring is also one of the most
overlooked things: instrumenting your own applications. Why would you want to do
this? Easy: your apps have a ton of valuable information about their performance,
many of which will allow you to move from reactive to proactive in maintaining that
performance.

One common fear I’ve heard is that it’s difficult and time-consuming to add metrics
to apps, but I’m here to tell you neither are true. As with all things, starting simple is
the key: what about timing how long database queries take? Or how long some exter‐
nal vendor API takes to respond? Or how many logins happen throughout the day?

Once you start instrumenting your app, it becomes addictive. App metrics are so use‐
ful for a variety of things, you’ll wonder why you didn’t get started sooner.

75

An Aside About Application Performance Monitoring (APM) Tools

There are a lot of tools out there under the umbrella of application
performance monitoring (APM) tools. The idea is that adding an
agent or library to your app will allow them to automatically find
all sorts of information about application performance, slow quer‐
ies, and waterfall charts of your app. It’s a compelling pitch, and it’s
not wrong: they will do all of these things and often more.
Here’s the rub: these tools have zero context about your app or the
business logic behind it. While you’re looking at pretty waterfall
charts of time spent on certain queries, it’s not telling you anything
about latency on a critical workflow path—or anything else that
requires context around what it is the app does.
APM tools aren’t bad, but understand their inherent limitations.

I know I’ve said that I wouldn’t be talking about specific tools in this book, but there
are exceptions. StatsD is one of those due to how easy it is to use in a variety of situa‐
tions. It also perfectly illustrates how simple it is to instrument your apps.

StatsD is a tool used to add metrics inside of your code. Created by Etsy in 2011,
StatsD has become a staple in any modern monitoring stack due to its ease of use and
flexibility. Even if you don’t use StatsD, the takeaways are still valuable. StatsD was
originally designed for a Graphite backend, so the metric names are dot-delimited
(e.g., my.cool.metric).

I think explaining the value by example is the best way to really get a sense of the
benefits here. Let’s take this simple login function:

def login():
 if password_valid():
 render_template('welcome.html')
 else:
 render_template('login_failed.html', status=403)

If the password is valid, we return the welcome page (and an implicit HTTP 200), but
if the login fails, we return the login_failed.html page and an HTTP 403 Access
Denied. Wouldn’t it be nice if we knew how often each happened? I’m so glad you
asked:

import statsd
statsd_client = statsd.StatsClient('localhost', 8125)

def login():
 statsd_client.incr('app.login.attempts')
 if password_valid():
 statsd_client.incr('app.login.successes')
 render_template('welcome.html')
 else:

76 | Chapter 7: Application Monitoring

http://bit.ly/2n7BmAo

 statsd_client.incr('app.login.failures')
 render_template('login_failed.html', status=403)

I’ve added three metrics to this function now: how many times a login is attempted,
how many logins succeed, and how many logins fail.

StatsD also supports timing how long something takes, and this is where we get into
interesting things. What if our login service was a separate microservice, or even
external? How would you know if things were about to go wrong?

import statsd
statsd_client = statsd.StatsClient('localhost', 8125)

def login():
 login_timer = statsd_client.timer('app.login.time')
 login_timer.start()
 if password_valid():
 render_template('welcome.html')
 else:
 render_template('login_failed.html', status=403)
 login_timer.stop()
 login_timer.send()

In this example, we’re setting up a timer to record how long the function takes, in
effect, telling us how long a login takes. Once you know how long it normally takes to
process a login, the question of “Do logins seem slower to you?” is immediately
answered with data instead of instinct and a shrug.

And that’s only the beginning of what you can do with instrumenting your applica‐
tion with StatsD!

How It Works Under the Hood
StatsD is comprised of two components: the server and the client. The client is the
code library itself that instruments the app and sends the metrics to the StatsD server
over UDP. The StatsD server can live locally on each of your servers, or you can have
a centralized StatsD—both patterns are commonly used.

The choice of UDP is important here. As UDP is a nonblocking protocol, that is,
there is no TCP handshake to slow things down, instrumenting the app with StatsD
calls won’t have any significant impact on the app’s performance. StatsD does support
TCP as well, though I haven’t found any good reason to use it over UDP.

StatsD “flushes” all collected metrics on its configured flush interval to all configured
backends. By default, metrics are flushed every 10 seconds. An important bit about
the flush is that all metrics collected during the flush interval are aggregated and then
sent to the backend. Each data type aggregates in a different way.

Instrumenting Your Apps with Metrics | 77

Timers compute several separate metrics:

• The mean of the 90th percentile
• The upper bound of the 90th percentile
• The sum of the 90th percentile
• The upper bound of all timers in the time period
• The lower bound of all timers in the time period
• The sum of all timers in the time period
• The mean of all timers in the time period
• A count of the timers collected during the time period.

This sounds like a lot, but it’s actually quite straightforward. For example, if you sent
these values as timers:

5
9
30
25
7
3
2
15
17
80

then the results that StatsD would send are:

mean_90: 10.37
upper_90: 25
sum_90: 83
upper: 80
lower: 2
sum: 193
mean: 19.3
count: 10

If you send a gauge, only the last value in the flush period is sent. A set behaves the
same way as a gauge. If you send a counter, then two metrics are sent: the counter
value and the per-second value. For example, if you increment the counter 11 times
during the flush period, then the counter value sent will be 11, and the per-second
value will be 1,100 ($value / ($flushInterval / 1,000)).

On the backend, you can send metrics to all sorts of places, including Carbon
(Graphite), OpenTSDB, InfluxDB, and many SaaS tools. Configuring a backend is
different for each backend, but it’s all straightforward. StatsD comes with the Graph‐
ite backend built in. Check the documentation for your specific backend on how to
set it up.

78 | Chapter 7: Application Monitoring

There’s a lot more to StatsD that you can find in the documentation, which I encour‐
age you to read if you’re interested. It’s also worth mentioning that most of the SaaS
monitoring vendors have their own implementation of StatsD or StatsD-like func‐
tionality.

Monitoring Build and Release Pipelines
Monitoring a build/release pipeline or procedure is an oft-overlooked aspect of the
build-release process. Monitoring the process yields so much more insight and infor‐
mation into your app and infrastructure and helps you spot regressions and other
problematic areas. You might be asking, “What could you possibly be monitoring
here? A deploy either works or it doesn’t!” That’s mostly true. The real benefit here is
in the meta-information (when did the deploy start, when did it end, what build
deployed, who triggered the deploy) being available in the same place as your other
app and infrastructure metrics.

Etsy popularized this concept in its seminal blog post, “Measure Anything, Measure
Everything”, resulting in many different new ideas and tools for making it work even
better. These days, most moderns metrics tools (both SaaS and on-premise) contain
some way to implement this functionality (usually called events, annotations, or most
aptly, deployments).

You’re probably wondering why this is useful at all, so let’s look at Figure 7-1: deploy‐
ment events overlaid on API error rates.

Figure 7-1. Deployment marker and API errors

The graph clearly shows a correlation between a recent deploy and significantly low‐
ered API success rates. While correlation does not equal causation, this graph shows a
strong case for the deploy having caused a problem somewhere. Recording informa‐
tion about deploy timing, the build data, and the deployer gives us more useful infor‐

Monitoring Build and Release Pipelines | 79

http://bit.ly/2n7BmAo
http://bit.ly/2n7BmAo

mation for troubleshooting. Recording this information isn’t often helpful by itself;
but by combining this information with other metrics, we gain a whole new perspec‐
tive and understanding of what our app and infrastructure is doing.

Health Endpoint Pattern
Oddly enough, this concept has been around for ages, but no one seems to have set‐
tled on an official name for the pattern. I’ve taken to calling it the /health endpoint
pattern, while there are also some articles online referencing the concept as a canary
endpoint. Some just call it a status endpoint.

Whatever you call it, the concept is straightforward: an HTTP endpoint in your app
that tells you the health of the app, and sometimes includes some basic information
about the app (such as deployed version, status of dependencies, etc.). Underlying the
endpoint is separate code that pulls information about the app’s health and state. The
implementation can range from simple to incredibly complex, as we’ll soon see.

Why would you want to use this pattern? After all, we just spent several pages talking
about how great push-based performance data is, so why would you want to use
something that requires regularly pulling data?

There are several benefits to this pattern that you can’t get with metric-based
approaches:

• This endpoint can be used as the health check for a load balancer or for service
discovery tools.

• The endpoint is helpful for debugging: exposing build information in the end‐
point helps with determining what is running in the environment easily.

• Increasing the depth of the health check eventually yields an app that is aware of
its own health.

Of course, it’s not an either-or situation: you can implement both patterns, emitting
metrics and providing a /health endpoint. Many teams do exactly that, depending on
their needs.

Let’s look at a simple implementation to illustrate. Consider a simple Django (a
Python framework) app with a database dependency. I’m glossing over the underly‐
ing Django configuration, which I’m leaving as an exercise to you; this code is simply
to illustrate how the health check might work, not how to use Django. You’ll want to
configure your app to call health() at whatever route you use (such as /health):

from django.db import connection as sql_connection
from django.http import JsonResponse

def health():

80 | Chapter 7: Application Monitoring

 try:
 # Connect to a SQL database and select one row
 with sql_connection.cursor() as cursor:
 cursor.execute('SELECT 1 FROM table_name')
 cursor.fetchone()
 return JsonResponse({'status': 200}, status=200)
 except Exception, e:
 return JsonResponse({'status': 503, 'error': e}, status=503)

This example reuses the existing database configuration for the app, which is a great
idea so that you don’t end up in the situation of the /health endpoint and the app
using different credentials. This example just does a very simple query to return a sin‐
gle row. If the connection is successful, an HTTP 200 is returned, while an HTTP 503
is returned if it fails.

What if this app had more dependencies than just MySQL? What if it also depended
on, say, Redis?

from django.db import connection as sql_connection
from django.http import JsonResponse
import redis

def check_sql():
 try:
 # Connect to a SQL database and select one row
 with sql_connection.cursor() as cursor:
 cursor.execute('SELECT 1 FROM table_name')
 cursor.fetchone()
 return {'okay': True}
 except Exception, e:
 return {'okay': False, 'error': e}

def check_redis():
 try:
 # Connect to a Redis database and retreive a key
 redis_connection = redis.StrictRedis()
 result = redis_connection.get('test-key')

 # Compare the key's value against a known value
 if result == 'some-value':
 return {'okay': True}
 else:
 return {'okay': False, 'error': 'Test value not found'}
 except Exception, e:
 return {'okay': False, 'error': e}

def health():
 if all(check_sql().get('okay'), check_redis().get('okay')):
 return JsonResponse({'status': 200}, status=200)

Health Endpoint Pattern | 81

 else:
 return JsonResponse(
 {
 'mysql_okay': check_sql().get('okay'),
 'mysql_error': check_sql().get('error', None),
 'redis_okay': check_redis().get('okay'),
 'redis_error': check_redis().get('error', None)
 },
 status=503
)

In this example, we’ve moved the two health checks into their own functions, then
call them both from the health() function. If both return that they’re working, the
code returns an HTTP 200. However, if either one (or both) return otherwise, the
code returns an HTTP 503.

If your service depends on other services, you could use this health check to check
those too. For example, if your service has a hard dependency on an external API,
why not check that?

from django.http import JsonResponse
import requests

def health():
 r = requests.get('https://api.somesite.com/status')
 if r.status_code == requests.codes.ok:
 return JsonResponse({'status': 200}, status=200)
 else:
 return JsonResponse({'status': 503, 'error': r.text}, status=503)

You aren’t restricted to read-only operations with this, either—feel free to write data
and test that. Let’s see how that might look with our preceding Redis example:

from django.http import JsonResponse
import redis

redis_connection = redis.StrictRedis()

def write_data():
 try:
 # Connect to Redis and set a key/value pair
 redis_connection.set('test-key', 'some-value')
 return {'okay': True}
 except Exception, e:
 return {'okay': False, 'error': e}

def read_data():
 try:
 # Connect to Redis and retrieve the key/value we set

82 | Chapter 7: Application Monitoring

 result = redis_connection.get('test-key')
 if result == 'some-value':
 return {'okay': True}
 else:
 return {'okay': False, 'error': 'Redis data does not match'}
 except Exception, e:
 return {'okay': False, 'error': e}

def health():
 if not write_data().get('okay'):
 return JsonResponse({'status': 503, 'error': write_data().get('error')},
 status=503)
 else:
 if read_data().get('okay'):
 # Clean up the old data before returning the HTTP responses
 redis_connection.delete('test-key')
 return JsonResponse({'status': 200}, status=200)
 else:
 # Clean up the old data before returning the HTTP responses
 redis_connection.delete('test-key')
 return JsonResponse(
 {
 'status': 503,
 'error': read_data.get('error')
 },
 status=503)

In this example, we first write a Redis key-value pair, then read the data back. If the
value matches what we set (which means all connections worked well), then we
return HTTP 200, and HTTP 503 if any part of the test fails.

As you can see, after only a few iterations of this pattern, the health check has become
much more complex than when we first started. Using this pattern extensively in a
distributed microservice architecture for every microservice would ultimately result
in all your services knowing their own health at all times. Essentially, you would have
just automated constant testing of the entire environment.

It is worth noting, however, that some teams have found that overly complex /health
endpoints actually make it harder to debug problems when the endpoint says there’s
an issue, as well as the endpoint becoming needlessly noisy due to all of the depen‐
dencies it might be checking. It’s not hard to imagine a scenario where a highly inter‐
connected service has so many health checks that it would become hard to determine
where problems actually lie.

One question people often have is whether the endpoint should be just another route
in the app, or a separate app entirely. You want to do the former, so that your moni‐
toring is shipped right alongside the app. Otherwise, you’re defeating the point of this
pattern.

Health Endpoint Pattern | 83

One important thing I’ve found when using this pattern that is easy to overlook: you
should be using the proper HTTP return codes. If everything is fine, return HTTP
200. If things aren’t fine, return something other than HTTP 200 (HTTP 503 Service
Unavailable is a good one to use here). Using the correct HTTP response codes
makes it easy to determine when things are working, without having to parse any text
that is returned.

Speaking of returning text, depending on what you’re using this pattern for, it can be
useful to return some data in the response. I’m a big fan of returning data as JSON,
but feel free to use any other structured format—I don’t recommend using unstruc‐
tured formats, as they’re more difficult to parse by machines. If your endpoint’s
implementation is relatively simple, then there’s really no need to return data—just
return an HTTP code and call it done.

What About Security?

I have heard objections to this pattern around security concerns.
After all, you wouldn’t want your users to be able to access this
endpoint. You can generally solve this by using access restrictions
on your web server and allowing only certain source addresses to
access the endpoint, redirecting all others somewhere else.

There are downsides to this pattern, too. The biggest issue is that it’s a lot more engi‐
neering work to implement than a simple metrics-based approach (that is, push-
based) requires. You also need tooling that can consistently check the endpoint. If you
come from metrics-based culture, you may not have this sort of infrastructure avail‐
able to you.

So there you have it, the /health endpoint pattern. I’m rather fond of the pattern, but
it certainly has its challenges and hurdles. In my opinion, the pattern is still useful,
even if you aren’t in a microservice environment, simply for being able to easily run a
sanity check on the app.

Application Logging
Metrics can only tell you so much about what your application is up to, which is why
it’s important to also be logging behavior and actions from your applications.

If you recall back from Chapter 2, we talked about the importance of using structured
logs over unstructured logs. While using structured logs in some server-side applica‐
tions (e.g., Apache) requires real configuration that could be non-trivial for some
people, emitting structured logs from your applications is super easy thanks to direct
access to the data structures. Since JSON is simply a dictionary/hash, you can build
up log data using those structures, then output using the logging library in your lan‐

84 | Chapter 7: Application Monitoring

guage of choice. Of course, many languages and frameworks have specialized libraries
for emitting JSON-structured logs, which makes this even easier (to name a few,
Python has structlog, Rails has lograge, and PHP has monolog).

Wait a Minute…Should I Have a Metric or a Log Entry?
The question of metric versus log can be a tricky one. Consider the following:

A metric: app.login_latency_ms = 5

A log entry: {'app_name': 'foo', 'login_latency_ms': 5}

If you have a sufficiently robust log analysis system, turning the log entry into metrics
is trivial. A single log entry can contain significantly more metadata than a single
metric entry can (in other words, more context):

{'app_name': 'foo', 'login_latency_ms': 5, 'username': 'mjulian', 'suc

cess': false, 'error': 'Incorrect password'}

This log entry is far more useful than the metric. In fact, from this log entry I can spot
several distinct metrics that could be interesting. So why bother with metrics at all
when logs can be so much more robust? Part of why this approach hasn’t caught on is
simply a matter of tooling: the tools that do support this sort of approach are still in
their infancy (or very expensive). The other part is that the common wisdom just isn’t
there yet. My prediction: five years from now, we’ll all be discussing better ways to do
logging for the purpose of performance analysis.

Until then, I have two rules of thumb for log versus metric:

1. Is it easier for your team to think about metrics or logs?
2. Is it more effective for the thing in question to be a log entry or metric? (In other

words, think through your use cases.)

What Should I Be Logging?
Anything and everything!

Well, that’s not completely true. Writing logs for every little thing that happens is a
great way to saturate your network or disk (depending on where you’re writing the
logs to) and could potentially create a bottleneck in the app, due to spending so much
time on writing log entries. For a particularly busy app, this could be a very real con‐
cern: your app might spend more time writing log entries than it does on doing the
work it was created for.

Application Logging | 85

The Solution Is Log Levels…or Is It?

The concept of log levels has been around for quite some time. The
syslog protocol has been around since the 1980s, though it was only
codified 2001 in RFC 3164. A later RFC, RFC 5424, updated and
codified a few more things, such as severity levels. If you’ve ever
wondered where those severity levels DEBUG, INFO, ERROR, and oth‐
ers came from, that’s where.
Many *NIX daemons support logging output based on these
severity levels, getting more or less verbose depending on the level
set. It’s common that using DEBUG in production settings will make
the service unusable, due to the volume of log entries being gener‐
ated from the service.
Here’s the problem with severity levels: you set them based on the
assumption that everything is working fine. When you have a
problem necessitating a DEBUG level (in other words, tricky, hard
problems), you don’t have the data you need in the logs (since you
probably set the default severity level to INFO or ERROR). Now you’re
missing the data you desperately need.
When writing your own apps, you get to pick the severity level a
particular entry is outputted at, which makes this problem much
worse. Is an API connection failure severity ERROR? Or is it severity
INFO? What if you have robust throttling, exponential backoff,
retries, and other mitigation strategies? Are all of those DEBUG
severity?
As you can see, severity levels are useful, but come with a big cav‐
eat. Use them wisely.

Instead of going wild and peppering logging statements everywhere, slow down a bit
and think about the behavior of your application. When something goes wrong, what
questions do you usually ask first? What information would be really useful to have
during troubleshooting or even just for reporting mechanisms? Start there. In
essence, it’s impossible to set up logging (or any monitoring, really) for a system that
you don’t completely understand. Spend the time to think through the app, and the
log statements you need (as well as metrics and alerts) will become obvious.

Write to Disk or Write to Network?
Write to disk, with a service that comes along at regular intervals to send to an exter‐
nal location.

Many log services support writing from inside the app directly to a network location.
This makes it easy to ship your logs off for storage and analysis, but as your app’s traf‐
fic increases, this could become a significant and troublesome bottleneck. After all,

86 | Chapter 7: Application Monitoring

you’re having to make a network connection every time you send a log entry, which
can get expensive in terms of resource utilization.

Instead, it’s better to write the log entry to a file on disk. You can have a service that
comes along at regular intervals (even near real time) to send the log entries to an
external location. This allows for log shipping to be done asynchronously from the
app, potentially saving a lot of resources. You can have this done using rsyslog’s for‐
warding functionality. Alternatively, many of the SaaS logging services have agents
that perform the same job.

Serverless / Function-as-a-Service
Consider this problem: a serverless app (which I’ll refer to as a function) exists only as
long as there is work to do. It’s invoked, does a job, then ceases to exist. The entire
execution time? Under a second. Sometimes way under.

How in the world do you monitor such a thing? Traditional polling models don’t
work: the polling interval isn’t short enough.

Many serverless platforms are already recording some metrics for you, such as execu‐
tion time, number of invocations, and error rates. But, you’d probably like to know
about what’s happening inside the function too.

The answer is quite simple: StatsD. Have a look back at the beginning of this chapter
for more on that.

Also, don’t forget: your functions are probably making use of other established serv‐
ices with metrics and logs already available (e.g., AWS S3, AWS SNS, etc.), so be sure
to check on those too.

Of course, monitoring one or two functions is different from monitoring an entire
architecture built around them. If you’re in that situation, you are probably going to
be very interested in distributed tracing. Let’s take a look at that now.

Monitoring Microservice Architectures
In a world where microservices are taking over everything, great monitoring becomes
a must-have. Whether you’ve got three or four microservices or a hundred (or
more!), understanding the interactions between these services can get complex,
which makes monitoring challenging.

Consider the case of the monolith application in Figure 7-2:

Serverless / Function-as-a-Service | 87

Figure 7-2. A simple monolith app architecture

It’s easy and straightforward to understand the requests coming in, the results going
out, and what’s happening between. And remember, a monolith need not be run on a
single server—this example shows a monolith application scaled horizontally across
four nodes.

What happens if we have even a small microservice environment? Imagine the pre‐
ceding architecture—except repeated multiple times and abstracted away as a stand-
alone service. Suddenly, you’re no longer certain where a request started, where it
ended up, and where it might have gone wrong (Figure 7-3). Latencies are hidden in a
microservice architecture unless you have rather robust and mature monitoring prac‐
tices.

88 | Chapter 7: Application Monitoring

Figure 7-3. Microservice app architecture

Suddenly, understanding what happens with user requests is much more challenging.
Enter distributed tracing.

Distributed tracing is a methodology and toolchain for monitoring the complex inter‐
actions inherent in a microservice architecture. Popularized by the Google Dapper
paper and first implemented outside of Google with Zipkin, distributed tracing is
becoming an integral component of the monitoring toolset for teams running micro‐
service architectures.

How it works is straightforward: for every request that comes in, “tag” it with a
unique request ID. This request ID stays with the request and resulting requests
throughout its life, allowing you to see what services a request touches and how much
time is spent in each service. One important distinction of tracing versus metrics is
that tracing is more concerned with individual requests than the aggregate (though it
can also be used for that). Figure 7-4 shows an example of a trace.

Monitoring Microservice Architectures | 89

1 Based on an example trace found in the OpenTracing Framework documentation; Copyright OpenTracing
Project.

2 That said, tracing tools are consistently improving in their implementation complexity. I suspect in a couple
of years my warning will be moot.

Figure 7-4. An example trace1

Distributed tracing is far-and-away the most challenging and time-consuming moni‐
toring technique to implement properly, not to mention only being useful for a small
segment of the industry. Distributed tracing is not for the faint of heart or the
understaffed-and-overworked engineering team. If you’ve already got all the metrics
and logs you want, but still find yourself struggling to understand inter-service per‐
formance and troubleshooting in a distributed architecture, then distributed tracing
might be for you (and the same goes for those of you with significant serverless infra‐
structures). Otherwise, effectively instrumenting your apps with metrics and logs is
going to result in much better (and quicker!) outcomes.2

90 | Chapter 7: Application Monitoring

http://opentracing.io/documentation/

Wrap-Up
To summarize what we’ve learned in this chapter on application monitoring:

• Instrumenting your application with metrics and logs is one of the most impact‐
ful things you can do for increasing your ability to understand and troubleshoot
the performance of your applications.

• Tracking releases and correlating with performance in your apps and infrastruc‐
ture.

• The /health endpoint pattern is pretty neat, though really only useful for certain
architectural designs.

• Serverless and microservice monitoring really isn’t that different from any other
application, unless you have a sizable deployment. Then distributed tracing is
probably where you want to begin investing time and effort.

Application code runs on servers somewhere, of course, and the performance of
those servers has huge impact on the performance of your application. Let’s go look at
what it means to monitor your server infrastructure.

Wrap-Up | 91

CHAPTER 8

Server Monitoring

With many monitoring efforts beginning in the sysadmin/ops engineer team, it’s no
wonder that many of us immediately associate “monitoring” with “the thing the
sysadmins do.” This is unfortunate since we’ve seen there’s so much more to monitor‐
ing than just what happens on a server.

Of course, there’s an element of truth in the misconception: a lot really does happen
on the server! Even in a serverless architecture, there are still servers underneath that
provide the platform and all that makes it tick. We’re going to delve down into what
sort of common services you’ll encounter on servers these days, what metrics and
logs are provided, and how to make sense of it all.

One note before we jump in: this chapter is going to use Linux as the assumed operat‐
ing system, since that’s what I’m most familiar with. For the readers applying these
lessons to Windows, nearly all of the stuff we’ll be covering is just as applicable to
Windows in a general sense, though your tools are different.

Standard OS Metrics
Over the course of this book, I’ve railed against the obsession with the standard OS
metrics (CPU, memory, load, network, disk) and for good reason: starting your mon‐
itoring work with them is starting with the metrics that offer the least signal of all
toward your main concern (that your app is working). In order to know if things are
working, you have to start at the top instead, which I covered xref.

However, that isn’t to say these metrics are not without usefulness. In fact, they can be
an ally when used in the proper context: diagnostics and troubleshooting. In that
context, these metrics are some of the most powerful metrics you have available.

93

My recommendation for how to use these metrics: automatically record them for
every system you have, but don’t set up alerts on them (unless you have a good rea‐
son). Pretty much every monitoring tool out there collects these by default with little
to no intervention from you; so rather than discuss how to collect them, I’m going to
discuss what they mean and how to use them. I’ll be using well-known Linux
command-line tools in my explanations—tools that you are likely well-acquainted
with.

CPU
Monitoring CPU usage is the most straightforward of all these metrics. The metrics
come from /proc/stat and are available interactively with a number of utilities. We’ll
use top here:

top - 21:13:27 up 98 days, 2:01, 1 user, load average: 0.00, 0.01, 0.05
Tasks: 105 total, 1 running, 104 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 500244 total, 465708 used, 34536 free, 85104 buffers
KiB Swap: 0 total, 0 used, 0 free. 244488 cached Mem

The third line has the CPU information we want: the percent utilization. As we can
see, this particular server is 100% idle (id). To determine the utilization percentage,
add user (us), system (sy), niced processes (ni), hardware interrupts (hi), and soft‐
ware interrupts (si). iowait processes (wa) and stolen time (st) aren’t included, since
they are waiting rather than being serviced.

Memory
Percent used versus free is the main thing here. Memory used can be further broken
down by shared, cached, and buffered, which are all counted as “used.” Most tools
report memory metrics based on values reported by /proc/meminfo. Here we’ll use the
free command, which gets its data from /proc/meminfo as well, with the -m switch to
show megabytes to make this discussion easier on us both:

 total used free shared buffers cached
Mem: 488 426 62 31 75 222
-/+ buffers/cache: 127 360
Swap: 0 0 0

The output is often misunderstood, so let’s break it down. The first row would seem
to say that this system has 488 MB of total memory, 426 MB used, and thus 62 MB
free, but what’s with the remaining columns? And row two?

First, let’s talk about buffers and caches. In Linux memory management, file system
metadata (such as permissions and contents of a directory) for recently accessed areas
of the disk are stored in buffers. The expectation is that you’re likely to request this
information again soon, so storing it in buffers will result in a quicker access time for

94 | Chapter 8: Server Monitoring

you. Caches work similarly but for the contents of recently accessed files. Being that
these are transient areas of memory with oft-changing contents, the memory used by
them is technically available for use by any processes that need the memory.

Now, about that second row: since the memory is available should it be required, the
second row is more useful for determining memory usage. This row represents mem‐
ory used (minus buffers and cache) and free (plus buffers and cache). When deter‐
mining whether you need more memory on a system, look at the second row, not the
first. Some tools record memory used/free with buffers and cache built into the calcu‐
lation, while some report the straight metrics from /proc/meminfo, leaving you, the
user, to do the math on what the memory usage really is.

The third line is self-explanatory: swap. If your systems use swap partitions/files
(they’re relatively uncommon in cloud infrastructure these days), then track it. Alert‐
ing on low free memory and increasing swap utilization is a great indicator of
increased memory pressure, if your app is memory-sensitive.

Another way to watch for serious memory issues is by monitoring the OOMKiller
spawning in your logs. This process is responsible for terminating processes in an
effort to increase the available memory to a system when it’s under high pressure.
Grepping for killed process in your syslog will spot this. I recommend creating an
alert in your log management system for any occurrences of OOMKiller. Any time
the OOMKiller is coming into the picture, you’ve got a problem somewhere, espe‐
cially because OOMKiller is unpredictable in its choice of target processes to termi‐
nate.

Network
Monitoring network performance on a server is similar to the network: all the same
metrics apply. The information ultimately comes from /proc/net/dev on Linux with
both ifconfig and ip (from the iproute2 package) being the de facto tools for interact‐
ing with it. At minimum, be sure to collect octets in/out, errors, and drops on your
server interfaces. For details on what these metrics mean, reference Chapter 9.

Disk
Disk performance can be viewed in a variety of ways interactively, but they all read
from the same source: /proc/diskstats. We’ll use iostat (available in the sysstat package,
along with many other great tools) with the -x flag to give us an extended set of met‐
rics to look at:

~$ iostat -x
Linux 3.13.0-74-generic (ip-10-0-1-196) 12/03/2016 _x86_64_ (1 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 0.09 0.01 0.01 0.03 0.00 99.86

Standard OS Metrics | 95

1 For an extended look at load averages, Brendan Gregg wrote a great article on the topic.

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz
xvda 0.00 0.21 0.06 0.40 1.53 3.64 22.41

 avgqu-sz await r_await w_await svctm %util
 0.00 1.16 0.89 1.21 0.34 0.02

We can see that I only have one disk and that it’s mostly idle. iowait is an important
metric here: it represents the amount of time the CPU was idle due to waiting on the
disk to complete operations. High iowait is something we want to avoid.

The bottom part of the iostat output talks specifically about our disk performance.
There are a bunch of metrics here, some more useful than others. In the interest of
brevity, I’m only going to hit the most important ones: await and %util. These two
metrics directly speak to the utilization and pressure on the disk.

await is the average time (in milliseconds) taken for issued requests to be served by
the disk. This number includes both the time spent in queue and the time spent per‐
forming the request. %util is most easily thought of as the level of usage saturation of
the disk. You’ll want to keep this under 100%. Do note, however, that this metric can
be misleading when the volume in question is part of a RAID array due to an inability
to inspect it on a per-disk basis.

Running iostat without -x gives us another very useful metric: tps. +tps=, or trans‐
fers per second, is also known as I/O per Second (IOPS). IOPS is an important metric
for any service that makes use of disks, such as database servers:

~$ iostat
Linux 3.13.0-74-generic (ip-10-0-1-196) 12/03/2016 _x86_64_ (1 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 0.09 0.01 0.01 0.03 0.00 99.86

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
xvda 0.46 1.53 3.64 12987412 30858420

IOPS is a useful metric for determining when you need additional transfer capability
(e.g., more spindles) or for spotting general performance issues. For example, if
you’re tracking IOPS over time and you notice that this metric has experienced a sud‐
den drop, you may have a disk performance problem on your hands.

Load
Load is a measurement of how many processes are waiting to be served by the CPU.1

It’s represented by three numbers: a 1 m average, a 5 m average, and a 15 m average.

96 | Chapter 8: Server Monitoring

http://bit.ly/2z5WM89

The most common method to see this interactively is via the uptime command
(which pulls data from /proc/loadavg):

~$ uptime
 19:41:21 up 98 days, 29 min, 1 user, load average: 0.00, 0.01, 0.05

A system with one CPU core and a load of 1.0 means that there is exactly one process
waiting. Generally speaking, a load of 1.0 per core is considered to be perfectly
acceptable.

The problem is that the load metric doesn’t translate to system performance. It’s not
uncommon to find a server with a high load metric that is performing just fine. I’ve
seen web servers with a 15 m load metric of over 500, but customers still able to use
the system with no impact. As we learned back in Chapter 1, if nothing is impacted, is
there really a problem?

The one exception to this is that load makes for a somewhat decent proxy metric. That
is, an abnormal load metric is often an indicator of other problems (though, some‐
times it isn’t!).

In general, I think relying on the load metric for anything is a waste of time.

SSL Certificates
I’m sure every person reading this book has had an SSL certificate expire on them
without realizing it until it was too late. It sucks, but it happens.

Monitoring SSL certificates is simple: you just want to know how long you have until
they expire and for something to let you know before that happens.

There are a few options I’ve found for how to best handle this problem:

• Many domain registrars and certificate authorities (CAs) are capable of monitor‐
ing and alerting you on SSL certificate expiration (if you bought the certificate
through them). This is the easiest method to implement. The downside is that
they often alert you via email, which as we know, means you’ll probably miss it.
Another downside of this is that you’re only checking the certificate itself, not the
location where the certificate is in use, which is especially problematic for a wild‐
card certificate that might be installed in a dozen locations. If the alert can only
come in via email, I recommend having it sent to a ticket system so you get a
ticket opened instead of sitting in someone’s inbox.

• If the SSL certificate is in use externally, you can use external site monitoring
tools (e.g., Pingdom and StatusCake) to check and alert you on the certificate
expiration. Tools such as these have the flexibility we want, but the downside is
that they can’t monitor anything that isn’t publicly accessible (such as an internal
service).

SSL Certificates | 97

• If you have a lot of internally used SSL certificates, you’re left with one option: an
internal monitoring tool of some sort to check and report on the certificate. I
haven’t found any great tools for this, but a simple shell script that runs regularly
and reports to your monitoring system or ticket system works rather well. Many
on-premise monitoring systems also have the ability to monitor certification
expiration.

SNMP
Let me put this in no uncertain terms: stop using SNMP for servers.

I’ll be going into much more detail about how SNMP works and the challenges of
working with it in Chapter 9, but suffice it to say: it’s not a fun protocol to work with.
Though you’re (mostly) stuck with it for the purpose of monitoring network gear,
that’s (thankfully) not the case when it comes to monitoring servers.

Why shouldn’t you use SNMP?

• Adding more functionality means extending the agent, which is a pain.
• It requires running an inherently insecure protocol on your network. Yes, there is

v3, which has encryption and some semblance of a security model, but it’s
nowhere near enough. Your security folks will thank you for not doing this.

• It requires a centralized poller for gathering metrics, which can be difficult to
scale and manage. This isn’t a deal-breaker, as there are certainly ways to make
this no longer a problem (some modern monitoring tools use centralized poll‐
ers).

• There are far better options available with easier configuration and more capabil‐
ities.

Rather than using SNMP, opt for a push-based tool like collectd, Telegraf, or Dia‐
mond.

Web Servers
If you’re in the enterprise world, your experience with web server performance is
likely limited to low-traffic, single-node web servers. However, if you’re in the
webapp world, the performance of your web servers are one of the most critical com‐
ponents of your app. Monitoring web servers doesn’t differ between the two use cases,
though the amount of time you spend looking at the metrics will obviously be higher
for those in the webapp world.

When it comes to web servers, there is one golden metric for assessing performance
and traffic level: requests per second (req/sec). Fundamentally, req/sec is a measure‐

98 | Chapter 8: Server Monitoring

https://collectd.org/
https://github.com/influxdata/telegraf
https://github.com/python-diamond/Diamond
https://github.com/python-diamond/Diamond

2 For the full list of defined HTTP responses, see RFC 7231 Section 6.

ment of throughput. Less critical to performance, but still important for overall visi‐
bility, is monitoring your HTTP response codes. As you may know, the HTTP
protocol has many different possible responses to a request. The most common is 200
OK, while there are also other common ones, such as 404 Not Found, 500 Internal
Server Error, and 503 Service Unavailable.

Table 8-1. HTTP response codes (abbreviated)

Response code group Group meaning Common response codes
1xx Informational 100 Continue

2xx Success 200 OK, 204 No Content

3xx Redirection 301 Moved Permanently, 302 Found

4xx Client errors 400 Bad Request, 401 Unauthorized, 404 Not Found

5xx Server errors 500 Internal Server Error, 503 Service Unavailable

In total, there are 61 official HTTP responses, though some applications and web
servers implement additional ones.2

These response codes are recorded in the request log for your web server. For exam‐
ple, on NGINX, an entry looks like this:

10.0.1.52 - - [10/Dec/2016:19:41:17 +0000] "GET / HTTP/1.1" 200 24952

"http://practicalmonitoring.com/“ "Mozilla/5.0 (Windows NT 6.2; WOW64)

AppleWebKit/537.4 (KHTML, like Gecko) Chrome/98 Safari/537.4"

“192.168.1.50”

Between the request command (GET / HTTP/1.1) and the byte size of the request
(24952) is the HTTP response—an HTTP 200 in this case, showing that the request
was successful.

Of course, not all requests are successful. A rising number of non-200 responses
(such as 5xx or 4xx) to clients can indicate issues with your app which could be cost‐
ing you real money in lost sales.

There’s another metric that often gets people confused: connections. The short
answer here is that connections are not requests, and you should pay more attention
to requests than to connections. The longer answer leads us to the topic of keepalives.

Prior to the use of keepalives, each request required its own connection. Given that
websites have multiple objects that need to be requested for the page to load, this led
to a whole lot of connections. The trouble is that opening a connection requires going
through the full TCP handshake, setting up a connection, moving data, and tearing

Web Servers | 99

http://bit.ly/2z5xwz3
http://bit.ly/2z5xwz3

down the connection—dozens of times for a single page. Thus, HTTP keepalives
were born: the web server holds open the connection for a client rather than tearing it
down, to allow connection reuse for the client. As a result, many requests can be
made over a single connection. Of course, the connection can’t be held open forever,
so keepalives are governed by a timeout (15 seconds in Apache, 75 seconds in
NGINX). There is also keepalive configuration on the browser side called persistent
connections with their own timeout values. All modern browsers use persistent con‐
nections by default.

One final useful metric is request time. NGINX and Apache both expose request time
on a per-request basis in the access logs. By default, this isn’t included, so you’ll need
to update the log format to include it.

Database Servers
The first thing to monitor is the number of connections. Of particular note here is
MySQL: for reasons beyond the scope of this book, MySQL refers to its client connec‐
tions as threads, spawning exactly one thread per client connection, so don’t be con‐
fused when you go looking for the connections metric and can’t find it. All the other
database engines refer to them as simply connections.

While the number of connections to your database is a good indicator of overall traf‐
fic levels, it isn’t necessarily indicative of how busy the database actually is. For that,
we’ll need to look at queries per second (qps).

Measuring queries per second is a much more direct measurement of how busy a
server is. The qps measurement will fluctuate more in sync with actual busyness of
the app and is a wonderful indicator of exactly how loaded your database servers are.

Slow queries are the bane of high-performance database infrastructures. A slow query
will often manifest as a slow user experience, which we certainly don’t want. There
are lots of reasons for slow queries and many strategies for fixing them, but \ the first
step to fixing slow queries is finding them. Slow queries are logged in a log file with
the execution time, number of times executed, and the exact query. There are many
tools out there that make parsing this information easier (usually APM tools).

If you’re running a database infrastructure of any scale, you’re probably using replicas
(previously known as slaves, but many vendors have changed the terminology) so
monitoring replication delay is important—you certainly don’t want to find out about
an out-of-sync replica days later. A normal delay is determined by the settings in your
database server’s configuration.

Finally, of particular importance here is the IOPS measurement I introduced at the
start of this chapter. Databases are generally IO-constrained due to being heavy on
reads/writes, so make sure you keep tabs on IOPS. Nothing is more frustrating than

100 | Chapter 8: Server Monitoring

http://bit.ly/2y35qnY
http://bit.ly/2gJ76vc

troubleshooting slow database performance and finding out an hour into it that it’s
just a failing disk that’s caused IOPS to drop.

Entire books could be written about database performance monitoring and tuning.
Oh wait, they have! I highly recommend reading Baron Schwartz’s High Performance
MySQL (O’Reilly, 2008) and Laine Campbell and Charity Majors’ Database Reliability
Engineering (O’Reilly, 2017). If you’re at all interested in squeezing the most out of
your database infrastructure and building for scalability, definitely read those.

Load Balancers
Load balancers are most often used for HTTP traffic, though they can be used for
other types of traffic. We’re only going to talk about HTTP here, though.

Load balancer metrics are very similar to web server metrics in that you’re tracking
the same sorts of things. Load balancers function by presenting themselves to the cli‐
ent as a single node. There may be any number of servers on the backend that the
remote client never interacts with directly. As such, the metrics are duplicated in two
groups: frontend and backend. It’s the same set of metrics, but they tell you different
things about the health of the load balancer itself and the backend servers. You’ll want
to pay attention to both sides.

It’s worth mentioning here again that load balancers determine the state of their back‐
end servers through a health check. The simplest health check is a simple connection
to a specific port (such as checking that port 80 responds), but many load balancers
also support HTTP health checks, which makes the /health endpoint pattern from
Chapter 7 quite useful in load balancer health checks.

Message Queues
A message queue is made up of two “speakers”: a publisher and a subscriber (message
queues are sometimes called pub-sub systems because of this). Monitoring a queue is
primarily about two things: queue length and consumption rate.

Queue length refers to the number of messages on a queue waiting to be taken off by
one or more subscribers. A normal queue length depends on how your app works, so
you want to pay attention to queues that get backed up with more messages than nor‐
mal. Consumption rate is the rate at which messages are being taken off of the queue,
or consumed. This metric is usually expressed in messages per second. Just as with
queue length, a normal consumption rate depends on how your app works. Watch for
an abnormal rate.

Any messaging queue software is going to provide you with significantly more met‐
rics than just those two, and you’ll want to determine if they’re useful for your envi‐

Load Balancers | 101

ronment or not by reading the relevant documentation. Start with these two though,
and you’ll be good for a while.

Caching
A cache’s primary metrics are the number of evicted items and the hit/miss ratio
(sometimes called the cache-hit ratio).

As the cache grows, older items are removed from the cache—evicted, that is. High
evictions are a good signal for a cache being too small, causing too many items to be
evicted in order to make room for new items.

When your app requests something from the cache and the item is found, it’s referred
to as a cache hit. Likewise, if the item is requested and not found, it’s called a cache
miss. Given that the purpose of a cache is to speed up common requests, cache misses
slow things back down. Therefore, watching the hit/miss ratio is a great indicator of
cache performance. Ideally, you’d want this at 100% hit, but that’s usually unrealistic
for modern apps. Over time you’ll start to understand what a normal ratio is for your
app.

These metrics are closely related and work together—it’s a balancing act.

DNS
Unless you’re running your own DNS servers, there’s really nothing to monitor here.
In case you are running your own DNS servers, well, that’s a different story.

If you’re running your own DNS, there are a few things you’re going to care about:
zone transfers and queries per second.

Without going too deep into the inner workings of DNS, slaves are kept in sync with
the master via zone transfers. Depending on configuration, these can be either trans‐
fer of the full zone (AXFR) or incremental transfers (IXFR). These are recorded in the
log, and you’ll want to keep tabs on them for spotting sync issues. An out-of-sync
slave will serve up potentially stale information, which is going to leave you with odd
troubleshooting problems.

Monitoring queries per second helps you to understand the load your servers are fac‐
ing and are the primary measure of it for DNS servers. You’ll want to record it on at
least a per-server basis, but per-zone and per-view is much better for more granular‐
ity in your metrics.

If you are running BIND, check out the statistics-channel configuration option: ena‐
bling it will expose all of these metrics in one place. Many tools are out there to take
advantage of this, such as collectd’s BIND plugin.

102 | Chapter 8: Server Monitoring

http://bit.ly/2yN3JcM

NTP
Some of the weirdest issues I’ve ever troubleshot have come down to poor time syn‐
chronization. For example, Kerberos tickets (authentication system used in Linux and
Microsoft’s Active Directory) are strongly dependent on accurate time synchroniza‐
tion between servers and clients. Some apps also make use of the system time for
kicking off jobs, while accurate time is a crucial aspect of troubleshooting a dis‐
tributed architecture.

The NTP system can be complex and esoteric, but if you’re only running clients and
not your own stratum 1 server, then there’s only one thing you need to be concerned
with: time drift between the client and server.

ntpstat, available in Ubuntu 15.10 and later and CentOS 7 and later, is useful for giv‐
ing you a quick answer to whether a client is synced properly or not:

~$ ntpstat
unsynchronised
 polling server every 64 s

And when it’s in sync:

~$ ntpstat
synchronised to NTP server (96.244.96.19) at stratum 3
 time correct to within 7973 ms
 polling server every 64 s

What’s neat is that the exit code from ntpstat corresponds to whether it’s synced or
not, making for an easier way to monitor it: 0 for synced and 1 for unsynced. Using a
shell script or something more advanced (such as collectd) makes monitoring this
straightforward.

There are plenty more metrics you can look at if you’re running NTP servers yourself,
but this is becoming uncommon. If you do run NTP servers, you’ll need to pay atten‐
tion to drift between peers and your servers as well (ntpdate provides this informa‐
tion).

Miscellaneous Corporate Infrastructure
For those of you running traditional corporate infrastructure, there are two more
things you might be managing that those in web-based environments won’t be con‐
tending with: DHCP and SMTP.

DHCP
There are two things you want to pay attention to here: the DHCP server handing out
leases and whether the DHCP pools have enough lease capacity.

NTP | 103

If you’re running DHCP on Linux, chances are you’re using ISC’s DHCPd. Unfortu‐
nately, ISC’s DHCPd is a real pain to properly monitor due to how it exposes perfor‐
mance data. In other words, you might have to put in a little bit of work here.

Lease information is stored in /var/lib/dhcpd.leases (that path might be different
depending on your distribution). This file appends new leases to the end, so it’s
entirely possible (and common) that the file will have two (or more!) leases for the
same device, though only one of them is valid (the most recent one). Parsing this will
give you the information you’re looking for on current lease usage. In order to get the
data on the size of the lease pool, you’ll need to parse the pool definitions in the main
DHCPd config file (/etc/dhcp/dhcpd.conf) to get the size of the IP range.

SMTP
If you are running your own email services, then monitoring email is quite impor‐
tant. Email services are generally stable but can quickly ruin your day when things go
wrong.

There are a lot of common email server packages out there, so I’ll cover the general
metrics common to them all.

The outbound email queue measures how much email is waiting to be sent out for
delivery. It’s best to measure this in relation to what’s normal and alert on it when
things are abnormal.

Measuring the total amount of email sent and received (both in total and per mail‐
box) is great for spotting patterns and abnormal behavior (such as a potentially com‐
promised mailbox).

Likewise, the size of mailboxes is a great indicator of how much capacity you need to
plan for. I like to measure this both as a total and per-mailbox to spot power users
and perhaps help them cut down storage.

Monitoring Scheduled Jobs
One of the trickiest things in monitoring seems like it should be so simple: how to
monitor scheduled tasks/cron jobs where an absence of data is the symptom of some‐
thing awry.

We’ve all been there before: the backup didn’t run and no one noticed for a few weeks.
Oops. Now to add in some monitoring so that doesn’t happen again…

Since most setups send an email or append to a log on success, it’s easy to miss when
a failure happens. One way to handle alerting on an absence of data is to create data
where there was none before:

run-backup.sh 2>&1 backup.log || echo “Job failed” > backup.log

104 | Chapter 8: Server Monitoring

This will redirect the script’s stderr to stdout and then write both to backup.log. This
requires that your script implements solid error handling. The second part is the real
magic—if: if run-backup.sh fails entirely, then Job failed is written to backup.log.

Once you have this data in your log, you can send it to your log management systems
and set up alerts on the data.

In some cases, this approach doesn’t work: for whatever reason, you can’t turn an
absence of data into a presence of data. What you really need is something that can
detect when data doesn’t appear. This situation’s solution is commonly known as a
dead man’s switch: the default is to do an action, unless something tells it otherwise.

Implementing this in shell is simple enough:

#!/bin/sh

Time in minutes
TIME_LIMIT=$((60*60))

State file for updating last touch
STATE_FILE=deadman.dat

Last access time of the state file (in epoch)
last_touch=$(stat -c %Y $STATE_FILE)

Current time (in epoch)
current_time=$(date +%s)

How much time is remaining before the switch fires
timeleft=$((current_time - last_touch))

if [$timeleft -gt $TIME_LIMIT]; then
 echo "Dead man's switch activated: job failed!"
fi

Using this is equally simple: put the code into its own cron job running every minute,
then modify the preceding job above like this:

run-backup.sh && touch deadman.dat

The dead man’s switch will now fire automatically if the state file is older than a cer‐
tain age.

I should caution you this is a naive implementation and could use much improving,
but the core idea is sound.

As a bonus, there are hosted services that do this without the need for you to engineer
it all yourself. Search Google for cron job monitoring and you’ll find many options.

Monitoring Scheduled Jobs | 105

http://bit.ly/2gCYORS
http://bit.ly/2gD3E1H

Logging
Logging can be thought of as three separate problems: collection of logs, storage of
logs, and analysis of logs.

Collection
I like to group location of logs into two groups: those in syslog and those that aren’t.

If your logs are being handled by a syslog daemon already, simply configure the dae‐
mon to do log forwarding to another server. Consult your syslog daemon’s documen‐
tation for specifics on how to do it.

Syslog Forwarding: UDP Versus TCP
There’s an ongoing debate about using UDP or TCP for forwarding syslog. On the
UDP side, since there’s no acknowledgment required, you could send out “the last
dying breath” of a server right before it crashes hard. On the TCP side, you get
encryption (TLS requires TCP) and assurance that you’re not missing any log entries.

I recommend using TCP for two reasons:

1. For most environments, that “last dying breath” isn’t useful. Solve for problems
you actually have, not for problems you might have in the future.

2. I don’t want to lose messages, and syslog encryption is a no-brainer when using
SaaS log management.

If your logs aren’t being handled by syslog, you have two choices:

1. Update the configuration on whatever it is that’s emitting the logs, and have it
send them to syslog.

2. Update your syslog configuration to ingest the flat file from disk into syslog. At
this point, the log entries are effectively being managed by your syslog daemon
and will be forwarded like your other syslog entries.

If you’re using a tool that supports the collection of non-syslog log files, then you can
use whatever that tool recommends as a third option. There’s nothing wrong with
that approach at all, though there is something to be said for consistency in how you
ingest and send logs.

106 | Chapter 8: Server Monitoring

Storage
Once you’re collecting logs, you’ve got to send them somewhere. In the old days, we
would forward all these logs to a central log server that was just a simple syslog
receiver and then use standard *NIX tools (e.g., grep) to search through logs. This is a
suboptimal solution for (at least) one reason: it’s hard to search the logs. More often
than not, if you’re using this method for log storage, no one is looking at them or
making use of the logs in any way.

Thankfully, we have lots of great tools available to us now for the storage and analysis
of logs. We can split these tools into two categories: SaaS and on-premise.

As you know, I’m a proponent of SaaS monitoring tools. There are also many well-
known and capable on-premise tools. I’m not going to make any specific recommen‐
dations (you can, however, find many great options with a quick search online). The
important part is this: don’t send your logs to some syslog server, never to be seen
again. Send them to a solid log management system where you can actually get value
from them.

Analysis
You’re collecting all the logs you want and sending them to a log management service
somewhere. Great! Now what?

Now that you’ve got the plumbing, it’s time to do something useful: log analysis.

Analyzing logs isn’t a single problem, unfortunately. On one end of the spectrum,
you’ve got shell scripts that grep for certain strings; and on the other end, you have
tools like Splunk doing heavy statistical analysis on contents, and everything in
between.

There are a great many interesting things you’ll find in your logs, most of which will
depend entirely on your infrastructure. To get you started, I recommend logging and
paying attention to these:

• HTTP responses
• sudo usage
• SSH logins
• cron job results
• MySQL/PostgreSQL slow queries

Analyzing logs is largely a matter of which tool you use, whether it’s Splunk, the ELK
stack, or some SaaS tool. I strongly encourage you to use a log aggregation tool for
analyzing and working with your log data.

Logging | 107

Wrap-Up
Whew, what a chapter, eh? We hit a whole lot of topics:

• Why the standard OS metrics aren’t as usual for alerts as you might think and
how to use them more effectively

• How to monitor the typical services you’ll be using: web servers, database
servers, load balancers, and others

• What logging looks like from the server perspective

A server is only as reliable as the network on which it depends, so let’s dive into the
world of weird SNMP and network monitoring.

108 | Chapter 8: Server Monitoring

CHAPTER 9

Network Monitoring

Network monitoring has a special place in my heart. Starting with my first job in tech,
I’ve been fascinated with how networks worked. I quickly discovered the importance
of monitoring: one day while removing some old gear from a closet, I accidentally
knocked out the power plug to a switch that was perched precariously on a desk.
Given that everyone else had gone home already, this went unnoticed until the next
morning, when dozens of people were unable to check their email. I quickly fixed the
issue and then searched online for something like “monitor network switch” and then
set up Nagios. I’ve been hooked ever since.

Over my next several jobs as a systems administrator, I gravitated back to network
engineering and network monitoring. One thing I’ve learned over the years is that the
behavior and performance of the network is fundamental to the behavior and perfor‐
mance of everything that relies on it—which, these days, is everything. If your net‐
work is only capable of maintaining three nines of availability (99.9%), then your
applications can’t possibly maintain four nines (99.99%). Increasing the availability of
the network is a nice lever you pull to allow everything that relies on it to improve.

Networking is one of the few “dark arts” left in the tech world. So many people don’t
understand it, yet it’s a crucial component of everything we do. To the network engi‐
neers reading this chapter, this will likely be a recap of things you already know (and
hopefully have implemented!). As is often the case with networking though, system
administrators, DevOps engineers, and software engineers tend to find themselves
doing light network engineering with only a basic understanding of networking. It is
my aim to teach the non-network engineers how to properly monitor the network
while offering a refresher course for the network engineers among you.

109

1 To be fair, that’s not completely true: many network gear vendors are doing a wonderful job at designing devi‐
ces that look a lot more like servers under the hood, allowing us to make use of standard server monitoring
tools instead of SNMP. That said, their market penetration is still low when compared to the majority of com‐
panies still using older equipment. SNMP is going to be around a while yet.

The Pains of SNMP
If you come from a systems or software background, network monitoring can feel
like you’ve stepped back into the stone ages. The biggest challenge in monitoring net‐
work performance is due to one simple fact: you have to use SNMP.1

Simple Network Management Protocol (SNMP) is a protocol that was simple and revo‐
lutionary when it was released but feels esoteric and arcane today. Unfortunately, it’s
what we’ve got, so let’s dive in.

What Is SNMP?
SNMP is a protocol proposed under RFC 1067 in 1988 for the purpose of monitoring
and managing devices. SNMP was designed for monitoring and management of a
wide range of things, and it was common for SNMP to be used on servers as well as
network devices. In some older enterprise environments, SNMP on servers is still a
common thing (we discussed why this is a bad idea in Chapter 8).

While the world of system administration and software engineering has continually
adopted new methods of monitoring and management, network device vendors
never really have. There have been a few fits and starts, and some vendors are even
supporting popular tools from the server monitoring world such as =collectd=, but
by and large, you’re stuck with SNMP when it comes to network devices. This is
slowly changing, but it’s still going to be a while before something other than SNMP
is ubiquitous.

How Does It Work?
SNMP is a UDP-based protocol using ports 161 and 162. Polling occurs on port 161
(inbound to the device), while traps use port 162 (outbound from the device)—we’ll
cover these two terms shortly. There are many RFCs that define the behavior of
SNMP, but they’re really not that important for you to know. If you’re interested, start
at IETF.org and search for SNMP.

There are two key concepts to SNMP communication: the agent and the manager.
The agent is the device you want to get information from, while the manager is the
device receiving the information. The agent is a process running on the operating sys‐
tem of the network device you want to query (in SNMP terms, poll), but for our pur‐
poses, you can consider the agent to be a given network device. The manager, being

110 | Chapter 9: Network Monitoring

https://tools.ietf.org/html/rfc1067

whatever is receiving the information from the agent, is really just any device you’re
querying SNMP from, whether it’s a server in a datacenter or your laptop. Windows,
Linux, and OS X all have the capability to be used as an SNMP client (manager) or
server (agent).

The agent provides data in a tree format made up of object IDs (OIDs). An OID is
represented as a series of integers, for example, .1.3.6.1.2.1.1.1.0. Note the pre‐
ceding . which represents the root of the object tree. An OID can be translated to a
text format, which is significantly easier to understand than a bunch of numbers.
After translation, the preceding OID is translated as sysDescr.0.

This translation occurs through the use of Management Information Base files, com‐
monly known as MIBs. MIBs are stored as flat files on the disk of the SNMP manager
and contain a mapping of numerical OIDs to textual representations of the data.
These are formatted in a format known as SMI, which is a subset of the ASN.1 format.
These formats are complex and take a while to understand, but 99% of you won’t
need to worry about it. When an SNMP query is made, the manager tools will
attempt to translate the OID transparently. As a result, you can query SNMP using
the numeric or textual representation, and the returned data will be represented as
translated OIDs if the translation was successful.

Let me distinguish between OIDs and MIBs to clear up a common
misunderstanding: an OID is the location in the tree of specific
information, while a MIB translates the numeric OID into a textual
representation. A MIB is not required to retrieve information from
an agent or a given OID.

Though SNMP is most often queried for data, it also supports traps. SNMP traps are
best thought of as log events. A trap is emitted from the device when an event occurs
and is sent to whereever you have configured traps to go. It’s been my experience that
any data in an SNMP trap can also be found in the device’s syslog, so I tend to disable
traps entirely. If you want to use them, I recommend sending them to a log server
that is set up to accept them. If you’re using a commercial piece of software for han‐
dling SNMP traps, follow that software’s instructions. If you want to use something
open source, I recommend snmptrapd from the net-snmp package; you can find con‐
figuration instructions for it in net-snmp’s documentation.

There is no standard implementation for an SNMP agent. Each vendor implements it
the way they want, though most try to conform to the RFCs with varying levels of
success. There is no list of objects an SNMP agent is required to implement, though
most vendors will implement sysDescr.0 (the description of the device, usually make
and model) at minimum.

The Pains of SNMP | 111

There are multiple versions of SNMP in use, with each one providing slightly differ‐
ent capabilities:

Version 1
Version 1 was introduced in 1988. Security was accomplished through the use of
a community string, which is essentially a password. Community strings are
passed in plain text over the network. One particularly notable aspect of v1 is that
counter objects were only 32-bit, which means that counters with lots of changes
(e.g., “high speed” network links) would “wrap” quickly—that is, they would sim‐
ply hit their max and reset to zero. For most network links found today, the
counter may wrap multiple times in mere minutes, possibly between polling
intervals, resulting in a severe distortion of the rate of change.

Version 2
Version 2, introduced in 1993, solved some of the problems with version 1, most
notably adding support for 64-bit counters to solve the 32-bit counter wrap issue.
Version 2 also introduced “bulk requests,” which allowed for requesting large sets
of OIDs at once as well as a new user-based security model. Ultimately, the user-
based security model turned out to be unpopular, and version 2c was quickly
introduced. version 2 is uncommon, and most vendors implement version 2c
and call it Version 2.

Version 2c
Version 2c, introduced in 1996, went back to the community string security
model. This version, known colloquially as “v2c” is the most common and widely
adopted.

Version 3
Version 3, introduced in 2002, is the latest version of the SNMP protocol. It re-
introduced an updated version of the user-based security model as well as
encryption and a few other enhancements. Some smaller vendors still do not
support v3, despite being introduced over a decade ago, though most major net‐
work vendors offer full support for it.

A Word on Security
SNMP is an inherently insecure protocol. Community strings are passed in plain text,
as well as requests and responses, which may include sensitive data (such as host‐
names and phone numbers). SNMP v3 attempts to solve some of these problems by
encrypting requests/responses and using a user-based security model, but v3 places
more load on network devices and sometimes isn’t supported.

Generally speaking, the best way to secure SNMP is to architect security into your
infrastructure, knowing that you’re going to have an insecure protocol in use on it.
The best way to do this is to build a management network into your architecture and

112 | Chapter 9: Network Monitoring

allow SNMP queries to happen on the interfaces on that network only. It is not
advised to allow SNMP on unprotected networks.

Most network device operating systems de-prioritize the SNMP
agent when the device is under heavy load, which will cause your
SNMP queries to be slow. Unfortunately, a device under heavy load
is precisely when you want more visibility, not less. C’est la vie.

How Do I Use SNMP?
Many network monitoring packages contain functionality for using SNMP and often
have many prebuilt queries and dashboards for common objects such as network
interfaces, so I’m not going to cover those. Instead, I’m going to cover using SNMP
from the command line, which is useful for fleshing out new queries and trouble‐
shooting SNMP. Note that this is for Linux and OS X—sorry Windows users, you’re
on your own.

Installation and configuration on Linux

Install the net-snmp package using the package manager for your distro. For Debian/
Ubuntu:

apt-get install snmp

and for RedHat/CentOS:

yum install net-snmp net-snmp-utils

Once you have net-snmp installed, you’re going to want MIBs. On Debian/Ubuntu, a
collection of MIBs can be had by installing a separate package:

apt-get install snmp-mibs-downloader

then running as root:

download-mibs

Finally, edit /etc/snmp/snmp.conf and ensure mibs +ALL is in the file. For RedHat/
CentOS, MIBs are included in the packages.

Installation configuration on macOS

Using homebrew, install the net-snmp package:

brew install net-snmp

This package will automatically set up the tools and the MIBs, so no additional con‐
figuration is required.

The Pains of SNMP | 113

Testing
You can test that the SNMP agent is working from your manager by running:

snmpstatus -c <community string> -v 2c <hostname>

You can test translation by running:

snmpget -c <community string> -v 2c <hostname> sysDescr.0

It should return something like this:

SNMPv2-MIB::sysDescr.0 = STRING: <text here>

If it isn’t working, it will return an error:

sysDescr.0: Unknown Object Identifier (Sub-id not found: (top) -> sysDescr)

In the case of the error, ensure your configuration of /etc/snmp/snmp.conf is correct
and you’ve installed the MIB package.

net-snmp

The net-snmp tools contain several command line utilities of varying usefulness. The
most useful are snmpget and snmpwalk.

snmpget retrieves a single OID, while snmpwalk will enumerate an entire tree of
OIDs. For example, let’s consider a device with multiple network interfaces:

~$ snmpwalk -c <community string> -v 2c <hostname> IF-MIB::ifDescr
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: Red Hat, Inc Device 0001
IF-MIB::ifDescr.3 = STRING: Red Hat, Inc Device 0001

In this example, I’ve “walked” the ifDescr table and now have a list of each of the
network interfaces the SNMP agent knows about. The numbers at the end of the OID
are called indexes and are an important concept for SNMP. For single-item OIDs,
such as sysDescr, the index number is 0. The actual OID for sysDescr is .
1.3.6.1.2.1.1.1.0, which translates to sysDescr.0. When there is only a single
item in a tree, the SNMP manager tools will automatically return that item. However,
if you try to retrieve an OID that contains multiple items underneath, the behavior is
different and a little misleading:

~$ snmpget -c <community string> -v 2c <hostname> IF-MIB::ifDescr
IF-MIB::ifDescr = No Such Instance currently exists at this OID

This is different from the behavior we saw when we walked that OID, and that’s due
to this OID being a table, that is, a collection of items. It can be hard to predict
whether an OID is a table or a single item, so just make your best guess. Generally, if
you expect there to be multiple items underneath, it’s probably a table.

Let’s see what happens when we retrieve ifDescr for the second index:

114 | Chapter 9: Network Monitoring

~$ snmpget -c <community string> -v 2c <hostname> IF-MIB::ifDescr.2
IF-MIB::ifDescr.2 = STRING: Red Hat, Inc Device 0001

Perfecto. We’ve now retrieved a single item from the network interfaces table.

There are other useful commands in net-snmp as well. snmpstatus is great for testing
whether SNMP is functioning, as it queries several OIDs; and snmptranslate will
translate a given numeric OID to the textual representation without querying a
device. You can read all about the available options and commands by running man
snmpcmd.

Installing vendor MIBs
You will undoubtedly need to add MIBs you get from your vendor to your manager
machine. Doing so is straightforward: create a directory somewhere (it doesn’t matter
where) and then add a new line to /etc/snmp/snmp.conf before mibs +ALL: mibdirs
<path to your MIB folder>. Place all your vendor MIBs in this folder, and SNMP
will automatically pick them up.

The net-snmp client does not recursively search directories for MIBs, so if you’re like
me and want to organize your MIB collection by vendor, simply create one folder per
vendor under your new MIB directory and then add those folders individually to
your mibdirs configuration entry like so:

mibdirs /opt/vendor-mibs/cisco /opt/vendor-mibs/juniper /opt/vendor-mibs/avaya

That’s great, Mike. But where’s the list of OIDs I should monitor?
I’m glad you asked!

There isn’t one. Nor could I possibly give you a master list without it being out of date
by the time this book goes to print.

By teaching you how SNMP works and how to use the net-snmp command line tools,
I’ve given you the capability to search through an agent’s supported OIDs yourself.
When you come upon a new device (or even an updated firmware of an old device),
you’ll have the knowledge you need to go through the OIDs and find the data you
want.

Now that we’ve gotten SNMP out of the way, let’s get down to business: what should
you be monitoring and why?

The Pains of SNMP | 115

Interface Metrics
We’ll start with the obvious one: interfaces.

Network performance comes down to a few key factors: bandwidth, throughput,
latency, errors, and jitter.

Bandwidth
The theoretical maximum amount of information that can be pushed through a
connection at once. Think of this as raw capability of a network link. This is com‐
monly expressed in bits per second, usually megabits per second (Mbps) or giga‐
bits per second (Gbps). This is not to be confused with megabytes per second
(MBps) or gigabytes per second (GBps).

Throughput
The observed performance of a network link, also expressed in bits per second.
Due to protocol and transmission overhead, throughput will be less than the
link’s bandwidth. For example, assuming a standard Ethernet link with a 1,500
byte MTU, the max throughput of a TCP stream is limited to about 95% of the
bandwidth due to overhead from Ethernet, IP, and TCP encapsulations. The
more encapsulation you’re doing (e.g., MPLS) the less efficiency you’ll have. If
you’re only getting 60% during tests, then you’ve probably got an issue some‐
where.

Monitoring the throughput of a link is important to ensuring you’re getting the
most out of it. Simply recording the octets via the IF-MIB MIB and comparing
against the known max of that link won’t be sufficient, as that’s only going to
measure throughput at that moment in time.

Instead, you need to perform a test. You can use a tool like iperf2 to do such a test
or opt for the bwctl package from the folks at Internet2, which is designed as a
suite of tools for testing network performance. Bonus points for being able to
automate the test and store the results over time. Strategically placing test end‐
points around your network will enable you to consistently keep an eye on criti‐
cal network link performance.

If you suspect you should be getting more throughput out of it than you are, you
can check for some errors: drops and overruns can indicate a saturated network
link, while collisions can indicate duplex mismatches (on a full duplex connec‐
tion). Of course, physical issues can also impact performance, so be sure you’re
monitoring for those.

116 | Chapter 9: Network Monitoring

https://github.com/esnet/iperf
https://software.internet2.edu/bwctl/

Confusingly, server administrators often talk about bandwidth and
throughput in bytes per second (Bps), while network engineers talk
about it in bits per second (bps). Be aware of this communication
hurdle when interacting between teams. You can easily convert bps
to Bps by dividing the number by eight, or by Bps to bps by multi‐
plying by eight.

Measuring Throughput
There are two main ways to measure throughput: SNMP counters or a tool like
iperf2. If you’re using SNMP counters, they automatically take into account any
overhead, while tools like iperf2 do not. There’s nothing inherently bad about either
one, but be aware that you’ll see different numbers with iperf2 than from your
SNMP counters.

Latency
The time it takes a packet to travel across a network link. Lower is better, of
course, but there’s still a physical limitation on latency due to how fast electricity
(or light, in the case of fiber optic cables) can travel.

Latency can have a big impact on the user experience in some applications that
are not tolerant of high latency. One of my favorite ways to monitor latency
between two points is to use tools such as iperf2 or smokeping to regularly meas‐
ure and report latency. After carefully placing a few of these servers in your infra‐
structure, you’ll be able to graph and alert on latency.

Errors
Include metrics such as Rx/Tx errors, drops, CRC errors, overruns, carrier
errors, resets, and collisions. Consult your network device for how each of these
are exposed—some vendors don’t provide them at all.

Usually, Rx/Tx errors are exposed by default in the IF-MIB SNMP table, but
depending on the agent implementation, it may include the other error metrics,
or it may not. Typically, Rx/Tx errors are an aggregate of error metrics and aren’t
reliable for determining what is wrong, just that something is. The more specific
error counters are far more useful for diagnostics and alerting. I tend to ignore
Rx/Tx errors in favor of the other error metrics, if they’re available.

The most common thing you’ll want to monitor for are physical issues: electrical
interference and bad transceivers/cables can degrade network performance
quickly. You can monitor for this via CRC errors and carrier errors. If you have
fiber in your network, light levels are also very important.

The Pains of SNMP | 117

http://oss.oetiker.ch/smokeping/

Jitter
The deviation of a metric from its usual measurement. In networking, jitter is
most commonly applied to latency measurements. For example, latency swings
from 1 ms to 150 ms to 30 ms would be an example of high jitter, while a con‐
stant 3 ms latency would be no jitter at all. Jitter is important in interactive voice
and audio infrastructures, as it will cause the stream to come across as sounding
and looking broken or choppy. You can pay attention to latency jitter by moni‐
toring latency and checking for inconsistency.

I’m a big fan of metaphors and explaining these concepts in a metaphor is one of my
favorite ways to teach it. A good way of thinking about these metrics goes like this:

Imagine a highway with four lanes across—that’s the bandwidth. Increasing the num‐
ber of lanes increases bandwidth, but it does not necessarily increase throughput,
which is the number of vehicles that travel down the highway in a given time period.

Latency is the length of the highway. No matter how many lanes you give the high‐
way, you still aren’t changing how long it takes to travel down it.

Errors can be anything from a car crash to someone stopping unexpectedly in traffic,
causing a traffic jam. Jitter is how regular the time it takes to get down the highway is
—if it’s unpredictable, that’s high jitter.

If the highway is constantly full, it’s taking much longer to get from point A to point
B. If there are errors (slowdowns, crashes), you might be able to solve this by adding
another lane, but there are clearly limitations to that: you can only build a highway so
big, not to mention the cost of doing so. Sometimes there are no errors at all and traf‐
fic is flowing smoothly—in this case, you’ve got perfect utilization.

Interface and Logging
The syslog for a device also contains information about what interfaces are doing
(though you can also get this information from your configuration tracking tool, if
you’re using one). You’re specifically going to be interested in these events:

• Changes to trunk ports
• Ports becoming err-disabled
• Link aggregated interfaces becoming bundled or unbundled

Recap
Here’s my rule of thumb: monitor and alert on the interfaces used for uplinks and
servers. It’s up to you as to whether you feel it’s necessary to monitor access ports at
all (desktops, laptops), but I normally don’t bother: access ports are noisy and flap

118 | Chapter 9: Network Monitoring

often, giving you not a lot of useful information. Don’t forget about your aggregated
ports either—they’re good to keep track of.

Configuration Tracking
Tracking configuration changes to your network devices is one of the highest-impact
things you can be doing. How many times has an incident happened in your network,
and you found out that it was the result of a change that someone made last week but
no one knew about it?

Tools such as RANCID function by logging into your devices with a read-only
account, downloading the config, and putting it into a version control system.
Thanks to version control, the configuration is stored over time as it changes. Every
time the config changes, you and your team can be notified via email, Slack, or any
other method you choose. With tools like these, you’ll never again wonder what
change was made and how to roll it back. Every single one of you should be tracking
configuration changes to your devices.

Voice and Video
Monitoring voice and video performance can be tricky. Due to the codecs being
encrypted, it’s rather difficult to observe connection quality from the outside. Thank‐
fully, most vendors provide some sort of monitoring tools with their products for in-
depth analysis. Given that, we’ll cover only the general approach common to all video
and voice monitoring.

As you know, I’m a big fan of starting your monitoring from the user’s perspective.
When it comes to the performance of voice and video streams, however, there’s not a
lot you can do thanks to how they work. On the upside, there’s also not a lot that can
go wrong with them.

Voice and video performance is all about three measurements: latency, jitter, and
packet loss. Video and voice are quite sensitive to these metrics and will perform best
with the lowest numbers possible. We’ve already covered how to monitor these met‐
rics in this chapter.

Another particularly important thing to monitor is the codec in use: it should be the
same across the network. If it’s not, this can cause performance issues. You can check
the codec in use via SNMP. In theory, the codec won’t change once it’s set, but we all
know permanent things have a tendency to change when we least expect it.

Due to the performance-sensitive nature of voice and video, the internal networks
will often have Quality-of-Service (QoS) policies applied in order to ensure they
receive priority treatment and preserve the quality of the streams, which most ven‐
dors will expose via SNMP. In the Cisco world, QoS metrics are described by the

Configuration Tracking | 119

http://www.shrubbery.net/rancid/

Cisco Class-Based QoS Configuration and Statistics MIB. This is a rather complex
SNMP object, and trying to sift through it by hand is an effort in futility and madness
if you have a lot of policies defined. If you’re attempting to monitor QoS at any sort of
scale, I recommend having a chat with your network gear vendor and asking them
what tools they recommend (Googling for QoS monitoring will also suffice).

One particularly interesting capability is Cisco’s IP SLA. IP SLA, once configured, will
simulate traffic and report back with results on how it performed. IP SLA results can
trigger alerts, be monitored via SNMP, and even cause actions to occur, such as
informing routing protocols that a path should change to avoid problem segments.

Routing
Monitoring your routing protocols can be an interesting challenge. Dynamic routing
protocols, by design, are meant to be self-healing, making the determination of when
to alert someone rather tricky. For multi-homed networks, is it worth waking some‐
one up over a BGP peer change? Probably not. What about for dual-homed net‐
works? Probably so. The same is true for monitoring OSPF neighbor changes: it all
depends.

Most of the useful monitoring to be had here is for the dynamic routing protocols
(OSPF and BGP, primarily). Monitoring static routes is better achieved by monitor‐
ing the underlying links and the ability to pass traffic over the route (e.g., using
iperf2) than by monitoring for the existence of the route.

When it comes to BGP, there’s a lot you can and should monitor:

• Size of the TCAM table in relation to the size of the chassis’s memory. Maxing
this out can be lead to a very bad day, as evidenced by the TCAM exhaustion for
some Cisco devices back in 2014 that led to outages at many large companies.

• BGP peer changes
• BGP AS path change (this can be useful for some especially latency-sensitive

organizations)
• BGP community changes (number of prefixes being sent and received by peers)

OSPF has comparatively few things to worry about: adjacency changes are about it,
which you can find in both syslog and SNMP.

Finally, monitoring changes in first-hop redundancy can be a good indicator of
behavior change in your network. SNMP exposes VRRP and HSRP members, as well
as which of them is the active member. The router’s syslog will also report when the
active member changes.

120 | Chapter 9: Network Monitoring

http://bit.ly/2zExk5T
http://bit.ly/2gAY6Vj

Spanning Tree Protocol (STP)
Spanning tree changes can wreak havoc on a network in a hurry. On Cisco devices,
spanning tree logs can be enabled at the device level, which contain useful informa‐
tion about protocol and spanning tree roots, but this is only available at the debug log
level (which can cause excessive load on a busy switch). Enabling it at the interface
level provides less information, but contains most of what we want to keep track of:
that a change happened.

When it comes to spanning tree, we want to know only two things: when a root
bridge changes and when the protocol reconverges. Root bridge changes are some‐
thing that should happen rarely, if ever, in a relatively static network, so you’ll want to
know that they’ve occurred via an alert (though perhaps not a wake-me-up alert).
Protocol changes are somewhat more normal and acceptable, so what you’ll want to
look for there is patterns and how often they occur. One great way to do that is to
have your log management service count the number of protocol change events and
graph them in your metrics service.

Chassis
I’ve found that people spend so much time working out how to monitor interfaces
that they forget entirely about the chassis of the devices.

CPU and Memory
Graphing CPU and memory usage can be good indicators of load, but they can just as
often be red herrings. I once had a set of chassis switches that alternated between 1%
and 100% CPU utilization every few minutes, which was considered normal for the
switch. On the other, another chassis switch tended to run at 100% CPU utilization,
which the vendor also called normal. So, graph them, but take the data with a grain of
salt, and certainly don’t alert on them (unless your vendor advises it).

Some line cards and supervisor cards also include their own on-card memory and
CPU. It’s entirely possible for CPU or memory on a card to be exhausted while the
chassis appears idle. Make sure you’re monitoring all CPU and memory instances.

Hardware
Don’t forget about the actual hardware of your devices. Monitoring switch stacks, line
cards, supervisor cards, and power supplies is crucial, though many devices don’t
expose all of this information.

One important thing to look for is cold start messages in your syslog. Cold starts rep‐
resent a device having rebooted and is absolutely something you should be paying
attention to.

Spanning Tree Protocol (STP) | 121

Flow Monitoring
Most network device vendors support flow monitoring with sFlow (open standard),
IPFIX (open standard), NetFlow (Cisco), or jFlow (Juniper).

A flow, as defined by Cisco, is a unidirectional sequence of packets that all share seven
common values:

1. Ingress interface (SNMP ifIndex)
2. Source IP address
3. Destination IP address
4. IP protocol
5. Source port for UDP or TCP, 0 for other protocols
6. Destination port for UDP or TCP, type and code for ICMP, or 0 for other proto‐

cols
7. IP type of service

Flow monitoring is great for tracking down such things as high-bandwidth activities
or nodes or analyzing bandwidth utilization on a per-IP, per-protocol, per-
application, or per-service basis.

There are a few different implementations with different behavior between them:

NetFlow
A proprietary Cisco standard, available in v5 and v9 variants. Not all Cisco devi‐
ces support NetFlow.

sFlow
sFlow stands for sampled flow and differs from NetFlow in that it’s designed to
sample flows, rather than collect every last one like NetFlow (though NetFlow can
be configured for sampling). Essentially, sFlow has to sample flows, while Net‐
Flow can sample flows. This sampling improves performance of flow collection at
the expense of accuracy.

J-Flow
Juniper’s brand of a flow monitoring solution in v5, v8, and v9 variants. Func‐
tionally identical to sFlow.

IPFIX
An open standard for flow monitoring based on NetFlow v9.

One of the useful things about sFlow that I like is that it also contains octet informa‐
tion for every interface. As sFlow is push-based, you can have this information
pushed to a receiver for recording in a metrics system elsewhere. As an example of

122 | Chapter 9: Network Monitoring

http://bit.ly/2yPdzeJ

this, Jason Dixon wrote an sFlow receiver in Ruby that exports to Graphite; this could
be easily adapted to your needs.

If you want to do flow analysis on a busy network, I recommend looking for devices
that will collect flows in a hardware solution, to keep the load down on your routers.

The information flows contain can often be sensitive. It is not
advised to use flow monitoring on publicly accessible networks.

Capacity Planning
Before we wrap up this chapter, let’s talk a bit about capacity planning and how net‐
work monitoring helps this task. Capacity planning can be performed two primary
ways:

• Starting with a business requirement and working backward
• Forecasting based on usage

Working Backward
This method is often used for when the business has hard requirements, and you
need to determine how to implement. For example, if the business requires that a cer‐
tain amount of data be transferred elsewhere within a certain amount of time, you
can work backward to determine what size links are required to accomplish the goal.
This method is not informed by any monitoring data.

Forecasting
Forecasting, on the other hand, requires the use of data you’ve been storing in your
monitoring system. This method is often used on a regular basis to upgrade links and
hardware as the utilization grows over time. Some organizations opt to simply pur‐
chase the best hardware or links they can for the money they have budgeted, while
others prefer to make decisions based on current and forecasted usage.

If you’re making data-based decisions, your forecasting is straightforward: take at
least the last six months of data and apply a trend line for the next however-many
months. You have a few options for applying the trend line:

• Export the data to Excel, and use Excel’s built-in graphing functionality.
• If you’re using rrdtool, it has built-in trend line/forecasting functionality.

Capacity Planning | 123

https://github.com/obfuscurity/evenflow
http://bit.ly/2z5Eyn9

• If you’re using Graphite, it also has built-in trend line/forecasting functionality.

Wrap-up
Monitoring the network is far more complex and involved than many realize, espe‐
cially at large scale. Let’s recap what we’ve learned in this chapter:

• SNMP is an archaic pain in the rear, but it’s what we’ve got. Make sure to call
your vendors and register your displeasure over the lack of a better monitoring
and management interface.

• Tracking configuration changes yields lots of great information and can save you
time and headaches.

• We learned the intricacies of monitoring interfaces, routing protocols, switching,
and chassis components.

• We learned about monitoring the performance of voice and video streams,
quality-of-service, and IP SLA.

• Monitoring entire flows using NetFlow, J-Flow, sFlow, and IPFIX gives you
deeper understanding of what’s happening on your network.

• We learned the fundamentals of capacity planning for network engineering.

We’ve reached the end of the technical stack, so the next chapter is going to bring us
back up to a bird’s-eye view where we’ll discuss security monitoring for the entire
stack.

124 | Chapter 9: Network Monitoring

http://bit.ly/2gBxtj7

CHAPTER 10

Security Monitoring

Security monitoring is a different beast than you’re familiar with if you’re coming
from an infrastructure or application background. When it comes to monitoring an
infrastructure, you’re instrumenting things that already exist. For example, your web
servers already emit health and metrics data, and it’s a simple matter to store them
and set up any necessary alerts. However, when it comes to security, many people find
that the infrastructure and application weren’t built with security in mind. There are
no existing hooks to use, leaving many engineers in the unfortunate position of hav‐
ing to bolt on security after the fact—not fun.

In some cases, there are entire classes of problems that no one solved for. As an exam‐
ple, how are you going to detect different DDoS signatures if you have no DDoS pro‐
tection in place to begin with? As a result, unlike previous chapters, this chapter will
straddle the line between how to build basic security and how to monitor it. There
will be plenty of security approaches and tools I either gloss over or fail to mention—
security monitoring is a specialized field unto itself and one that I cannot possibly do
justice to in such a short chapter. If you find yourself interested in security monitor‐
ing and want to go deeper, I have found Richard Bejtlich’s The Practice of Network
Security Monitoring (No Starch Press, 2013) to be invaluable.

Security is a matter of assessing threat and risk and deciding on compromises. Think
of security as a continuum: on one end you have “wet paper bag,” and on the other
you have “Fort Knox.” You wouldn’t implement Fort Knox–level security for storing
$100, nor would you leave it in the open on the center console of your car while
shopping at the mall. In these cases, you’re assessing the threat (theft of your $100)
and the level of risk (leaving it unattended while shopping at the mall). It doesn’t
make sense to spend $1,000 to protect against losing $100.

In other cases, the level of security is too intrusive and cumbersome on how you
work. Can you imagine if you had the same level of security at home as found at the

125

White House? Wearing a badge around the house at all times, checking in and out
with security staff, pat-downs, metal detectors, bulletproof glass…seems a bit much
for the home, right? A good lock on the doors and windows would work much better
for the annoyance factor. Many of you work in offices with a higher level of security
than you have home: you’ve got the badge readers at external doors and often even
security staff to check in with. The level of annoyance you’re comfortable dealing
with is higher there, too.

Not all the ideas and tips here will suit everyone—some of it may be too intrusive on
workflows or too costly to implement and manage—and that’s totally fine. It’s impor‐
tant that you consciously make this decision instead of absently deciding that security
is too difficult.

With that, let’s get started.

Monitoring and Compliance
There are several compliance regulations out there for different industries and differ‐
ent types of companies. You may have heard of a few and might even be involved with
ensuring your company’s compliance. Some of the most common ones are HIPAA
(protection of health care data), Sarbanes-Oxley aka SOX (protection of financials in
public companies), PCI-DSS (protection of credit card data), and SOC2 (protection
of non-financial controls). While my initial inclination was to list specific things that
you should monitor when it comes to compliance, I quickly realized that the answer
is “basically everything,” making that idea a non-starter.

Well, not quite. To be more specific, anything that falls in scope of a particular regula‐
tion should also have a monitoring component built into it. This is to meet the com‐
mon requirement of compliance that you also demonstrate the control is working the
way you think it is working—what better way to prove that than with monitoring?

Some common requirements:

1.3.5 Permit only “established” connections into the network.

(PCI-DSS v3.2)

You could prove this control is functioning by monitoring all connections by type at
the edge firewall:

5.2 Ensure that all anti-virus mechanisms are maintained as follows:

• Are kept current,

• Perform periodic scans

• Generate audit logs which are retained per PCI DSS Requirement 10.7.

126 | Chapter 10: Security Monitoring

(PCI-DSS v3.2)

Prove this control by storing the audit logs in your log aggregation system and moni‐
toring that all nodes are both updating regularly and scans are both starting and fin‐
ishing:

(b) Standard: Audit controls. Implement hardware, software, and/or procedural
mechanisms that record and examine activity in information systems that
contain or use electronic protected health information.

HIPAA, 2007

Simple enough: log everything. (Wait a minute—didn’t we learn that logging every‐
thing is kinda hard? OK, maybe this isn’t so simple.)

Achieving compliance often ranges from straightforward to nightmarish, but remem‐
ber that for most controls, implementing monitoring is a great way to ensure things
are working as you hope they are.

User, Command, and Filesystem Auditing
auditd is a userspace interface to the Linux Audit System, a component direct hooks
to the Linux kernel, allowing it to report on events and actions that occur on the sys‐
tem. The Linux Audit System is built for security uses and is separate from other sys‐
tems, allowing it to keep functioning even when other subsystems aren’t working
(such as syslog).

auditd is great for tracking user actions and other events through its high level of
configurability. For example, some of the types of events it can report on:

• All sudo executions, the command executed, and who did it
• File access or changes to specific files, when, and by whom
• User authentication attempts and failures

Setting Up auditd
Modern CentOS and Debian-based distributions often have auditd already running.
You can have a look at what auditd is logging in /var/log/audit/audit.log. By default,
auditd doesn’t log a whole lot (sudo, authentication attempts, a few other things). You
can add your own custom rules in /etc/audit/rules.d/audit.rules (RedHat) or /etc/
audit/audit.rules (Debian). As an example, here’s a rule that will monitor all write
access to /etc/myconfig.conf: -w /etc/myconfig.conf -p wa -k myconfig_changes.

-w says to watch a file, -p tells auditd which attributes to watch (write and append),
and -k is an arbitrary identifier.

User, Command, and Filesystem Auditing | 127

Looking in the audit log after making a small change to the config, here’s what we see:

type=CONFIG_CHANGE msg=audit(1485289062.091:184): auid=1001 ses=844
op="updated_rules" path="/etc/myconfig.conf" key="myconfig_changes" list=4
res=1

type=SYSCALL msg=audit(1485289062.091:185): arch=c000003e syscall=82
success=yes exit=0 a0=55892a3bc880 a1=55892a3b0170 a2=fffffffffffffeb8
a3=55892a3b0160 items=4 ppid=15788 pid=17066 auid=1001 uid=0 gid=0 euid=0
suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=844 comm="vim"
exe="/usr/bin/vim.basic" key="myconfig_changes”

auditd is rather verbose in its logging but there it is: it logged the file change. With a
bit more work put into the configuration and tuning of the auditd rules, you can
bring the the verbosity under more control and turn it into something very useful. I
encourage you to read up on its usage for yourself. A great resource is RedHat’s own
documentation. auditd ships with example configurations as well, which you can find
at /usr/share/doc/auditd/examples/.

auditd and Remote Logs
One limitation of auditd is that the logs remain local to the server. Since we want to
ensure that logs aren’t tampered with, we need to make sure they get sent automati‐
cally to a central server for aggregation and analysis. To do that, we’ll use an auditd
plugin called audisp-remote. This plugin allows us to forward auditd events to a
remote syslog receiver.

Why Not Use rsyslog to Ingest the Logs?
One question that comes up occasionally is why use audisp-remote at all when rsy‐
slog (or syslogd/syslog-ng) can ingest the audit logs and forward them along with the
rest of the server’s logs? One configuration is better than two, after all.

While this would work from a technical perspective, it fails the security perspective:
since auditd is not reliant on the syslog subsystem to be functioning, auditd can con‐
tinue to record and forward audit events to a remote server even if rsyslog is disabled
(such as when a malicious user has intentionally disabled it). It’s not foolproof (they
could disable audisp-remote as well), but it’s an extra level of protection.

If you do go the syslog route, you can use the audisp-syslog plugin to send auditd
logs to syslog, or you can ingest directly via rsyslog/syslog-ng from file (/var/log/
audit/audit.log).

Setting up audisp-remote is simple. You will need to install the audispd-plugins pack‐
age. Once that’s installed, edit /etc/audisp/audispd-remote.conf and change the
remote_server and port configuration directives to your remote syslog server. Audit

128 | Chapter 10: Security Monitoring

logs should now be forwarding to your remote log server. If not, check the main
syslog log file (/var/log/messages or /var/log/syslog depending on your distribution)
for errors.

Once you have logs aggregated in one place, you start searching and setting up alerts
on interesting events. Some common things I recommend to watch for are successful
SSH logins and failed and successful sudo attempts. Once you start looking at the
logs, you’ll no doubt find other interesting things to keep an eye on.

One final note: there are now SaaS tools on the market that will do the collection,
aggregation, and analysis of auditd logs for you, making this whole exercise as simple
as a few lines of configuration. A couple of the well-known examples of this are Cloud
Passage and ThreatStack.

Host Intrusion Detection System (HIDS)
A host intrusion detection system (HIDS) detects bad actors on a particular host.
There are many HIDSs out there, all with different focuses. In this section, we’re
going to focus on a simple yet broad one: rootkits.

Before we get into detecting rootkits, what in the world are they? I happen to like
Wikipedia’s definition the best:

A rootkit is a collection of computer software, typically malicious, designed to enable
access to a computer or areas of its software that would not otherwise be allowed (for
example, to an unauthorized user) and often masks its existence or the existence of
other software.

—McAfee (via Wikipedia)

Rootkits can be anything from mass-installed PHP-based webshells to stealthy
recompiled system binaries and everything in-between. Due to their stealthy nature,
detecting rootkits can be rather difficult, requiring you to rely on many strategies:
user/process behavior analysis, log analysis, file system and process auditing, file hash
comparisons, and much more.

rkhunter
rkhunter is a popular and proven tool for the detection of rootkits. It does its job
through many different strategies such as file hash comparisons from known-good
hashes, signature-based detection of known rootkits, and some standard best practice
security checks (such as whether root SSH is allowed).

Installing and configuring rkhunter is simple: install the rkhunter package. After
installation, run rkhunter --update to ensure it updates the signature database fol‐

Host Intrusion Detection System (HIDS) | 129

lowed by rkhunter --propupd to update the file properties database. Now you’re ready
for your first run. To kick it off, run: rkhunter -c.

This will output all the checks its running to stdout. It will also log both the checks
and the results to /var/log/rkhunter.log. Of course, since we’re all big fans of automa‐
tion, this manual process won’t do for production uses.

Thankfully, the folks behind rkhunter have taken care of that for us too with a few
flags: --cronjob and --quiet.

Simply put this into a cron job (I recommend at least once a day): /usr/bin/rkhunter --
cronjob --update --quiet.

You’ll notice I’ve added the --update flag. This ensures that rkhunter will always use
the latest database of checks every time it runs. You can also add the --syslog flag to
log the start and end time to syslog.

I recommend sending the log file to your remote log aggregation/analysis system
where you can set up some alerts. For any issues rkhunter finds, it will prefix them
with Warning, so you can set up an alert on that. I would also consider setting up an
alert for the absence of rkhunter running, which you can do by searching for Info:
Start date is and sending an alert if it hasn’t shown up within the time frame it
should have.

If you’re looking for tools that are more robust than rkhunter, I recommend looking
into OSSEC.

Network Intrusion Detection System (NIDS)
A network intrusion detection system (NIDS) is quite useful for detecting threats on
the network itself (as opposed to on a host, which is the purview of a host intrusion
detection system—HIDS). A NIDS works by listening in on the raw traffic on the wire
using one or more network taps placed throughout the network.

Whereas a firewall performs proactive intrusion prevention by blocking access
attempts according to defined filters (access control lists, typically), a NIDS reports
on intrusions after they have occurred. At first glance, you might wonder why that’s
helpful—after all, shouldn’t we focus on preventing intrusions?

That’s true: we should put focus on securing our networks to prevent intrusions in the
first place—but intrusions are inevitable. This is where a NIDS comes into play. If you
do indeed put effort into securing your network at the edges but also assume your
network will be breached anyway (spoiler: it will), a NIDS allows you to spot the
threats and react quickly.

130 | Chapter 10: Security Monitoring

https://ossec.github.io/

To make the most of a NIDS deployment, you need network taps. A network tap is a
piece of hardware that sits inline on your network, intercepting all traffic that passes
through it and forwarding a copy to another system.

Placing network taps is a strategic choice. You want them placed at network choke
points and demarcation points where it can intercept all traffic from that segment. In
simple networks, you might have only a single tap sitting downstream of a router/
firewall. In more complex enterprise networks, you might have hundreds of taps scat‐
tered in various places. Figure 10-1 shows an example of network tap placement.

Figure 10-1. Network tap placement

Because a network tap is placed inline on a network link, make sure
you monitor the tap for availability as well as taking care to choose
taps that are reliable and have a fail-open failure mode (that is,
when they die, they act as a coupler between two network cables
instead of shutting down the link).

Network Intrusion Detection System (NIDS) | 131

Span Ports or Hardware Taps?

One question that often comes up when discussing network taps is
the debate between using span ports/port mirroring versus hard‐
ware network taps.
My recommendation is to use hardware taps. Because a span port is
a single network port on a switch, it is easy to overwhelm the port
with traffic, whereas a network tap is designed to handle much
higher levels of traffic.

Once you’ve got network taps deployed, you need a place to send the traffic for analy‐
sis, a tool called a security information and event management (SIEM) system. There
are several open source and commercial tools available that function as SIEMs, such
as Bro and Snort (both open source). While configuring a NIDS is beyond the scope
of this chapter, know that like any other monitoring tool, it requires regular tuning to
get the most out of it.

Wrap-Up
We’ve hardly touched the wide domain of security monitoring, but I’m confident
what we have worked through will give you a solid start on monitoring the security of
your applications and infrastructure. To recap:

• Monitoring requirements for compliance purposes are often more straightfor‐
ward than they appear, though they may not always be easy.

• User, command, and file system auditing with auditd is simple to get running but
can be a real bear to tweak to a point of usefulness.

• Detecting rootkits and other host-level intrusions can be difficult, but rkhunter is
a great starting point.

• Firewalls aren’t enough for network security. Careful placement of network taps
and NIDS will yield a wealth of information.

This chapter marks the end of our journey into the specifics of how to monitor the
various parts of your environment. As a final recap, we’ll conduct our own monitor‐
ing assessment on my favorite website of all time, Tater.ly.

132 | Chapter 10: Security Monitoring

CHAPTER 11

Conducting a Monitoring Assessment

We’ve reached the final chapter of the book, folks. You have, I hope, learned many
new things. This last chapter will take you through a fictionalized example of apply‐
ing all the lessons of this book at once using an exercise I do with my own consulting
clients: a monitoring assessment.

Performing a monitoring assessment on your environment is a great way to systemat‐
ically determine what you should be monitoring and why. The end result is a clearer
understanding of the behavior of your app and underlying infrastructure. It’s by no
means exhaustive or perfect, but rather, it’s intended to be a starting point to get you
thinking about what matters and what doesn’t.

Business KPIs
To start off, we need to figure out exactly what Tater.ly does. After a chat with the
CEO, we’ve learned the following:

Tater.ly’s mission is to help french-fry aficionados find the best french fries in all the
land. Users come to Tater.ly to look up restaurants and read reviews about their french
fries, as well as post their own reviews. The french fries are also rated on a scale of one
to five, with five being the best. Restaurants can create their own pages or users can
create them. Restaurants can “claim” their pages if the page already exists. Tater.ly
makes money through advertising by placing a Featured Fry at the top of search results,
with restaurants paying an advertising fee for the slot. The ad fees are based on number
of impressions—that is, the number of people that see the ad (as opposed to “clicks,”
that is, the number of people who click on the ad). Because the ad price is based on
impressions, restaurant owners can choose how much to spend and whether to show
their ad at peak times or non-peak times. It also allows us to run multiple ads. Cur‐
rently, Tater.ly has gross revenue of $250,000 annually, and that’s steadily increasing.

133

Now that we have have enough information to begin our assessment, let’s start with
the business metrics: what are the business KPIs?

To start off, there are some basic metrics that tell us the state of the venture:

• The number of restaurants reviewed
• The number of active restaurants (that is, restaurant page owners logging in)
• The number of users
• The number of active users
• Searches performed
• Reviews placed
• Ads purchased
• The direction and rate of change for all of the above

That all looks pretty sound, though I would consider adding one more: net promoter
score (NPS). Let’s add two perspectives to our list:

• NPS from users
• NPS from restaurants

And that wraps up the business section. Let’s move on to what we learned in Chap‐
ter 6: frontend monitoring.

Frontend Monitoring
As you might recall from Chapter 6, there is really only one big thing we need to
make sure we’ve got: RUM metrics (use your favorite frontend monitoring tool). This
will allow us to keep tabs on page load times from the user perspective.

Application and Server Monitoring
The first thing we’ll need for this section is an architecture diagram of Tater.ly’s infra‐
structure (Figure 11-1):

134 | Chapter 11: Conducting a Monitoring Assessment

Figure 11-1. Tater.ly architecture diagram

From this architecture diagram, we can see that we have a standard three-tier archi‐
tecture, plus a few other bits. Traffic comes in through a CDN with the origin set to
our load balancers (2x) in an active-active configuration, 4x web servers (on which
the Django app also lives), a PostgreSQL database in primary-replica configuration,
and a single Redis server for session storage. Tater.ly uses a web hosting provider
rather than their own datacenters, so managing hardware and network is of low con‐
cern to them.

Drawing upon the lessons we learned in chapters 7 and 9, what metrics and logs can
you spot? Here’s what I’ve got:

Metrics:

• Page load time
• User logins: successes, failures, length of time taken, daily active users, weekly

active users
• Searches: number performed, latency
• Reviews: reviews submitted, latency
• PostgreSQL (inside the app): query latency

Application and Server Monitoring | 135

• PostgreSQL (at the database server): transactions per second
• Redis (inside the app): query latency
• Redis (at the Redis server): transactions per second, hit/miss ratio, cache eviction

rate
• CDN: hit/miss ratio, latency to origin
• haproxy: requests per second, healthy/unhealthy backends, HTTP response

codes at frontend and backend
• Apache: requests per second, HTTP response codes
• Standard OS metrics: CPU utilization, memory utilization, network throughput,

disk IOPS and space

Logs:

• User logins: user ID, context (success? failure? reason for failure?)
• Django: exceptions/tracebacks
• The service logs for all the server-side daemons we’re using: Apache, PostgreSQL,

Redis log, and haproxy

Any synthetic website monitoring tool can provide us with another crucial piece of
information: SSL certificate expiration.

Security Monitoring
As Tater.ly isn’t subject to any compliance or regulatory requirements, security moni‐
toring is straightforward:

• SSH: login attempts and failures
• syslog logs
• auditd logs

Alerting
And lastly, we going to need some alerts. Chapter 3 taught us that we don’t need a
whole lot to be effective. Looking at the metrics and logs we’ve identified, I would
expect these alerts to be in place:

• Page load time increasing
• Increasing error rates and latency on Redis, Apache, and haproxy

136 | Chapter 11: Conducting a Monitoring Assessment

• Increasing error rates and/or latency for certain application actions: searches,
review submissions, user logins

• Increasing latency on PostgreSQL queries

Make sure to write up a runbook or two for the application with all of this newfound
information so your colleagues can benefit from all this knowledge and visibility.

Wrap-Up
And that’s it! Congratulations, you just finished your first monitoring assessment—
that wasn’t so hard, was it? Of course, this is only the beginning of your monitoring
journey. Monitoring is never done, since the business, application, and infrastructure
will continue to evolve over time. This assessment is a great starting point, but don’t
forget to keep improving.

Wrap-Up | 137

APPENDIX A

An Example Runbook: Demo App

This is an example runbook (mentioned in Chapter 3) for you to use in your own
environment. This is a great starting point, and I encourage you to build on this and
iterate over time. A runbook is only as good as the information in it, so if you find
you need different sections, by all means, create them!

Demo App
The Rails Demo App is a simple Rails blog app, showing off how a basic Rails app
might look. The main components are a database-backed user management system
and a post/comment system.

Metadata
The codebase is located in the internal source code system under the name demo-app.

The service owner is John Doe.

Escalation Procedure
In the event assistance is needed to resolve an issue with this service, the service
owner has requested to be the next escalation point. See the company contact sheet
for contact instructions.

External Dependencies
No external dependencies

139

Internal Dependencies
PostgreSQL database, running on an RDS instance located at rds-123.foo.com.

Tech Stack
• Rails 4.x
• PostgreSQL (AWS RDS)

Metrics and Logs
The app emits the following metrics:

• User login (count)
• User logout (count)
• Post create (count)
• Post delete (count)
• Comment create (count)
• Comment delete (count)
• Post create time (timer)
• Post delete time (timer)
• User signup time (timer)
• User login time (timer)
• User logout time (timer)

The app emits the following logs:

• User signin with user ID, status (success/fail), and IP address
• Post create with user ID, status (success/fail), and IP address
• Comment create with user ID, status (success/fail), and IP address

Alerts
User signin failure rate

This alert fires when the rate of user signin failures goes above 5% in a 5 m
period. Potential causes are a bad deploy (check for recent deploys) or a brute
force attack (check the user signin log for signs of an attack).

140 | Appendix A: An Example Runbook: Demo App

User login time too high
This alert fires when the time it takes for a user to login exceeds one second.
Check for a recent bad deploy or an issue with Postgres performance.

Post create time too high
This alert fires when the time it takes for a user to create a post exceeds one sec‐
ond. Check for a recent bad deploy or an issue with Postgres performance.

Comment create time too high
This alert fires when the time it takes for a user to create a comment exceeds one
second. Check for a recent bad deploy or an issue with Postgres performance.

An Example Runbook: Demo App | 141

APPENDIX B

Availability Chart

As mentioned in Chapter 4, Table B-1 is a chart of availability numbers. It’s a great
reference for how much downtime is allowed within a given availability target.

Table B-1. Availability (chart thanks to Wikipedia)

Availability % Downtime per year Downtime per
month

Downtime per week Downtime per day

90% (“one nine”) 36.5 days 72 hours 16.8 hours 2.4 hours

95% (“one and a half nines”) 18.25 days 36 hours 8.4 hours 1.2 hours

97% 10.96 days 21.6 hours 5.04 hours 43.2 minutes

98% 7.30 days 14.4 hours 3.36 hours 28.8 minutes

99% (“two nines”) 3.65 days 7.20 hours 1.68 hours 14.4 minutes

99.5% (“two and a half nines”) 1.83 days 3.60 hours 50.4 minutes 7.2 minutes

99.8% 17.52 hours 86.23 minutes 20.16 minutes 2.88 minutes

99.9% (“three nines”) 8.76 hours 43.8 minutes 10.1 minutes 1.44 minutes

99.95% (“three and a half
nines”)

4.38 hours 21.56 minutes 5.04 minutes 43.2 seconds

99.99% (“four nines”) 52.56 minutes 4.38 minutes 1.01 minutes 8.64 seconds

99.995% (“four and a half
nines”)

26.28 minutes 2.16 minutes 30.24 seconds 4.32 seconds

99.999% (“five nines”) 5.26 minutes 25.9 seconds 6.05 seconds 864.3 milliseconds

99.9999% (“six nines”) 31.5 seconds 2.59 seconds 604.8 milliseconds 86.4 milliseconds

99.99999% (“seven nines”) 3.15 seconds 262.97 milliseconds 60.48 milliseconds 8.64 milliseconds

99.999999% (“eight nines”) 315.569 milliseconds 26.297 milliseconds 6.048 milliseconds 0.864 milliseconds

99.9999999% (“nine nines”) 31.5569 milliseconds 2.6297 milliseconds 0.6048 milliseconds 0.0864 milliseconds

143

https://en.wikipedia.org/wiki/High_availability

Index

A
active users, 59
agents, 5
alert fatigue, 35
alerts/alerting, 23, 31-37

arbitrary static thresholds and, 34
assessment example, 136
auto-healing, 36
defining, 32
desensitization to, 35
email for, 33
flapping detection, 46
linking alerts to runbooks, 33
logging, 33
maintenance period use for, 35
with Nagios, 45

Amazon, 66
analytics and reporting, 21-23
anti-patterns, 3-13

checkbox monitoring, 9-11
manual configuration, 12
monitoring as a crutch, 11
monitoring-as-a-job, 8
tool obsession, 3-8

APM tools, 4, 6, 76
(see also StatsD)

app speed, 66-67
application monitoring, 75-91

assessment example, 134-136
build and release pipeline monitoring, 79-80
health endpoint patterns, 80-84
instrumenting with metrics, 75-79
logging, 84-87
metrics versus log entries, 85

microservice architectures, 87-90
serverless platforms, 87

application performance monitoring (APM)
tools (see APM tools)

arbitrary static thresholds, 34
arithmetic mean, 47-49
audisp-remote, 128
auditd, 127-129
auto-healing, 36
automation importance, 12
availability chart, 143
availability reporting, 21-23
average, 47-49

B
bad habits (see anti-patterns)
bandwidth, 116, 118
BGP routing, 120
blackbox monitoring, 67
buffers, 94
build and release pipeline monitoring, 79-80
burn rate, 59
business KPIs (see KPIs (key performance indi‐

cators))

C
caches/caching, 94, 102
canary endpoint monitoring, 80
capacity planning, 123
churn rate, 59
cloud infrastructures, 4
cloud versus traditional architectures, 12
communication liaison, 42
compliance, 126

145

composable monitoring, 15-23
alerting, 23
analytics and reporting, 21-23
data collection, 16-19
data storage, 19-20
visualization, 20-21

configuration tracking, 119
console statement, 72
consumption rate, 101
continual improvement, 28
cost considerations, 26, 27
cost of goods sold (COGS), 59
cost per customer, 58
counters, 17
CPU usage, 94, 121
customer acquisition cost (CAC), 59
customer churn, 59
customer lifetime value (LTV), 58

D
daily active users (DAU), 59
dashboards, 21
data collection, 16-19
data storage, 19-20
data visualization, 20-21
database server performance, 100-101
design patterns, 15-29

buying tools versus building, 25-28
composable monitoring, 15-23
continual improvement, 28
monitoring from user perspective, 24, 57

DHCP, 103
disk performance, 95-96
distributed tracing, 89-90
DNS servers, 102
DOM (Document Object Model), 68

E
email alerts, 33
errors, 117, 118
Etsy, 79
evicted items, 102

F
false alarms, 37
firefighting mode, 37
flapping detection, 46
flow monitoring, 122-123

follow-the-sun (FTS) rotations, 39
forecasting, 123
frontend monitoring, 65-73

assessment example, 134
defining, 65
logging, 72
Navigation Timing API, 69-70
performance importance, 66-67
Real User Monitoring (RUM), 67
speed index, 71
synthetic monitoring, 67, 72

function-as-a-service, 87

G
gauges, 17
Google Analytics, 67, 71
gross profit margin, 59

H
habits, bad (see anti-patterns)
health endpoint pattern monitoring, 80-84
hit/miss ratio, 102
host intrusion detection system (HIDS),

129-130

I
incident commander (IC), 41
incident management, 40-42
IOPS (I/O per Second), 96, 100
iostat, 95
IPFIX, 122

J
J-Flow, 122
JavaScript, 68
jitter, 118

K
keepalives, 99
KPIs (key performance indicators), 57-64

determining, 63-64, 133-134
Reddit example, 61-62
tying to technical metrics, 62-63
Yelp example, 60-61

L
latency, 117

146 | Index

line graphs, 21
load, 96
load balancers, 101
log analysis, 107
log collection, 18-19, 106
log entries, 84-87
log levels, 85
log storage, 20, 107, 128
logging, 72
LTV (lifetime value), 58

M
maintenance periods, 35
manual configuration, 12
mean, 47-49
median, 49
memory usage, 121
memory used, 94-95
message queues, 101
metrics

bandwidth, 116, 118
CPU usage, 94
disk performance, 95-96
errors, 117, 118
jitter, 118
latency, 117
load, 96
memory used, 94-95
network performance, 95
SNMP (Simple Network Management Pro‐

tocol), 116-118
standard OS, 93-97
throughput, 116, 118
versus log entries, 85

metrics collection, 17
metrics collection frequency, 11
metrics storage, 19
MIBs (management information base files), 111
microservice architectures, 87-90
monitoring

reasons for ineffectiveness of, 9-11
monitoring assessment example, 133-137
monitoring service components, 16-23

(see also monitoring components)
monthly active users (MAU), 59
monthly recurring revenue, 58

N
Nagios, 15, 34

alerting with, 45
statistics in, 46

Navigation Timing API, 69-70
NetFlow, 122
network intrusion detection system (NIDS),

130-132
network monitoring, 109-124

capacity planning, 123
configuration tracking, 119
CPU and memory usage, 121
device chassis, 121
flow monitoring, 122-123
hardware, 121
routing protocols, 120
SNMP (see SNMP (Simple Network Man‐

agement Protocol))
spanning tree protocol (STP), 121
voice and video performance, 119

network performance, 95
network taps, 131
normal distributions, 51
NPS (net promoter score), 58
number of paying customers, 58

O
Observability Teams, 9
Observer Effect, The, 5
OIDs (object identifiers), 111
on-call, 37-40

compensation, 40
rotations for, 38-40
tools for, 40

OOMKiller, 95
OS metrics alerts, 10
OSPF routing, 120
overreliance on monitoring, 11

P
page load times, 66-67
percentiles, 50
persistent connections, 100
pie charts, 21
Pinterest, 67
postmortems, 42
protocol changes, 121
pull model of data collection, 16
push model of data collection, 17

Index | 147

Q
QoS (quality of service) monitoring, 119
qps (queries per second), 100, 102
quantiles, 50
queue length, 101

R
real user monitoring (RUM), 67
Reddit, 61-62
reporting and analytics, 21-23
req/sec (requests per second), 98
return codes, 84
revenue per customer, 58
rkhunter, 129-130
root bridge changes, 121
rootkits, 129-130
routing protocols, 120
rsyslog, 128
run rate, 59
runbooks

abuse of, 12
example, 139-141
linking alerts to, 33

S
SaaS services, 25-28
scheduled jobs, 104-105
scribe, 42
seasonality, 49
security information and event management

(SIEM) system, 132
security monitoring, 125-132

assessment example, 136
auditing users, commands, and filesystems,

127-129
compliance, 126
host intrusion detection system (HIDS),

129-130
network intrusion detection system (NIDS),

130-132
server monitoring, 93-108

assessment example, 134-136
caching, 102
database servers, 100-101
DHCP, 103
DNS, 102
load balancer metrics, 101
log analysis, 107

log collection, 106
log storage, 107
message queues, 101
NTP servers, 103
scheduled jobs, 104-105
SMTP, 104
SNMP, 98

(see also SNMP (Simple Network Man‐
agement Protocol)

SSL certificates, 97
standard OS metrics, 93-97
web server performance, 98-100

serverless platforms, 87
severity levels, 85
sFlow, 122
Shopzilla, 66
SLA (Service Level Availability)
SLA (service-level availability), 21-23
slaves, 100, 102
smoothing, 47
SNMP (Simple Network Management Proto‐

col), 98, 110-119
background, 110
codec in use, 119
command line use, 113-115
interface and logging, 118
interface metrics, 116-118
securing, 112
traps, 111
versions, 112

spanning tree protocol (STP), 121
SPAs (single-page apps), 65
speed index, 71
SSL certificates, 97
standard deviation, 51-52
statistics, 45-53

mean and average, 47-49
median, 49
quantiles/percentiles, 50
seasonality, 49
standard deviation, 51-52

StatsD, 76-79, 87
status endpoint monitoring, 80
strip charts, 21
structured logs, 18-19, 84
subject matter experts (SMEs), 42
synthetic monitoring, 67, 72
syslog forwarding, 106
syslogd/syslog-ng, 128

148 | Index

systems resiliency and stability, 38

T
TCP versus UDP, 106
throughput, 116, 118
tools, 3-8

building, 7
buying versus building, 25-28
cargo-culting tools, 6
choosing, 5-7
cost considerations, 26, 27
mapping to dashboards, 8
observation tools, 5
standardization of, 6
tool creep, 5
tool fragmentation, 5

total addressable market (TAM), 59
traditional versus cloud architectures, 12
TSDB (time series database), 19

U
UDP versus TCP, 106

unstructured logs, 18-19, 84
user perspective in monitoring, 24, 57

V
visualization of data, 20-21
voice and video performance, 119

W
web server performance, 98-100
WebpageTest.org, 67, 71, 72
weekly active users (WAU), 59
whitebox monitoring, 67

Y
Yelp, 60-61

Z
zone transfers, 102

Index | 149

About the Author
Mike Julian is a consultant who helps companies build better monitoring for their appli‐
cations and infrastructure. He is the Editor of Monitoring Weekly, an online publication
about all-things-monitoring. Mike has previously worked as an operations/DevOps engi‐
neer for Taos Consulting, Peak Hosting, Oak Ridge National Lab, and others.

Mike is from Knoxville, Tennessee, and lives in San Francisco, California. Outside of
work, he spends his time driving mountain roads in a classic BMW, reading, and travel‐
ing.

You find find Mike at:
• https://www.mikejulian.com
• Aster Labs
• Monitoring Weekly

Colophon
The animal on the cover of Practical Monitoring, the Bengal monitor (Varanus benga‐
lensis), is a diurnal monitor lizard found across southern and western Asia. Dwelling
primarily in low-elevation areas, they are adaptable enough to survive in a variety of
habitats with varying degrees of moisture and vegetation, from forests, to bogs, to
agricultural zones. They are known to grow to a length of 175 cm (100 cm of which
comprise the tail), and have few predators in adulthood, aside from humans, who
hunt monitors for their meat and fat, as well as their skin, which is used as the drum
head for the kanjira, a hand-percussion instrument.

Though subsisting primarily on arthropods, Bengal monitors are known to eat most
creatures small enough to overpower, including a wide variety of vertebrates, birds,
and fish, as well as occasional fruits and vegetables. The Bengal mating season lasts
from June through September, and female monitors bury their clutch of eggs, taking
care to compact the soil over the nest while digging poorly-concealed decoy nests in
the surrounding area.

Monitor lizards have a higher metabolism than most reptiles and spend most of their
waking moments engaged in eating and physical activity. They are strong swimmers,
capable of high speeds on the ground, in the water, and while scaling trees, where
they take the eggs from birds’ nests and consume sleeping bats.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

https://www.mikejulian.com
https://www.AsterLabs.io
https://weekly.monitoring.love
http://animals.oreilly.com

The cover image is from John George Wood’s Animate Creation. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	A Word on Monitoring Today
	Navigating This Book
	Online Resources
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. Monitoring Principles
	Chapter 1. Monitoring Anti-Patterns
	Anti-Pattern #1: Tool Obsession
	Monitoring Is Multiple Complex Problems Under One Name
	Avoid Cargo-Culting Tools
	Sometimes, You Really Do Have to Build It
	The Single Pane of Glass Is a Myth

	Anti-Pattern #2: Monitoring-as-a-Job
	Anti-Pattern #3: Checkbox Monitoring
	What Does “Working” Actually Mean? Monitor That.
	OS Metrics Aren’t Very Useful—for Alerting
	Collect Your Metrics More Often

	Anti-Pattern #4: Using Monitoring as a Crutch
	Anti-Pattern #5: Manual Configuration
	Wrap-Up

	Chapter 2. Monitoring Design Patterns
	Pattern #1: Composable Monitoring
	The Components of a Monitoring Service

	Pattern #2: Monitor from the User Perspective
	Pattern #3: Buy, Not Build
	It’s Cheaper
	You’re (Probably) Not an Expert at Architecting These Tools
	SaaS Allows You to Focus on the Company’s Product
	No, Really, SaaS Is Actually Better

	Pattern #4: Continual Improvement
	Wrap-Up

	Chapter 3. Alerts, On-Call, and Incident Management
	What Makes a Good Alert?
	Stop Using Email for Alerts
	Write Runbooks
	Arbitrary Static Thresholds Aren’t the Only Way
	Delete and Tune Alerts
	Use Maintenance Periods
	Attempt Automated Self-Healing First

	On-Call
	Fixing False Alarms
	Cutting Down on Needless Firefighting
	Building a Better On-Call Rotation

	Incident Management
	Postmortems
	Wrap-Up

	Chapter 4. Statistics Primer
	Before Statistics in Systems Operations
	Math to the Rescue!
	Statistics Isn’t Magic
	Mean and Average
	Median
	Seasonality
	Quantiles
	Standard Deviation
	Wrap-Up

	Part II. Monitoring Tactics
	Chapter 5. Monitoring the Business
	Business KPIs
	Two Real-World Examples
	Yelp
	Reddit

	Tying Business KPIs to Technical Metrics
	My App Doesn’t Have Those Metrics!
	Finding Your Company’s Business KPIs
	Wrap-Up

	Chapter 6. Frontend Monitoring
	The Cost of a Slow App
	Two Approaches to Frontend Monitoring
	Document Object Model (DOM)
	Frontend Performance Metrics
	OK, That’s Great, but How Do I Use This?

	Logging
	Synthetic Monitoring
	Wrap-Up

	Chapter 7. Application Monitoring
	Instrumenting Your Apps with Metrics
	How It Works Under the Hood

	Monitoring Build and Release Pipelines
	Health Endpoint Pattern
	Application Logging
	Wait a Minute…Should I Have a Metric or a Log Entry?
	What Should I Be Logging?
	Write to Disk or Write to Network?

	Serverless / Function-as-a-Service
	Monitoring Microservice Architectures
	Wrap-Up

	Chapter 8. Server Monitoring
	Standard OS Metrics
	CPU
	Memory
	Network
	Disk
	Load

	SSL Certificates
	SNMP
	Web Servers
	Database Servers
	Load Balancers
	Message Queues
	Caching
	DNS
	NTP
	Miscellaneous Corporate Infrastructure
	DHCP
	SMTP

	Monitoring Scheduled Jobs
	Logging
	Collection
	Storage
	Analysis

	Wrap-Up

	Chapter 9. Network Monitoring
	The Pains of SNMP
	What Is SNMP?
	How Does It Work?
	A Word on Security
	How Do I Use SNMP?
	Interface Metrics
	Interface and Logging
	Recap

	Configuration Tracking
	Voice and Video
	Routing
	Spanning Tree Protocol (STP)
	Chassis
	CPU and Memory
	Hardware

	Flow Monitoring
	Capacity Planning
	Working Backward
	Forecasting

	Wrap-up

	Chapter 10. Security Monitoring
	Monitoring and Compliance
	User, Command, and Filesystem Auditing
	Setting Up auditd
	auditd and Remote Logs

	Host Intrusion Detection System (HIDS)
	rkhunter
	Network Intrusion Detection System (NIDS)
	Wrap-Up

	Chapter 11. Conducting a Monitoring Assessment
	Business KPIs
	Frontend Monitoring
	Application and Server Monitoring
	Security Monitoring
	Alerting
	Wrap-Up

	Appendix A. An Example Runbook: Demo App
	Demo App
	Metadata
	Escalation Procedure
	External Dependencies
	Internal Dependencies
	Tech Stack
	Metrics and Logs
	Alerts

	Appendix B. Availability Chart
	Index
	About the Author
	Colophon

