
NSM and Intrusion Detection:
Your Guide to Mastering IDS Rules and Alerts

Written by Tony Robinson
Produced by Hurricane Labs

1

Chapter 1: Introduction to Network Security Monitoring (NSM)		 2

1.1: Passive Collection							 2

1.2: Netflow								 3

1.3: Full Packet Capture (FPC)						 4

1.4: IDS and IPS								 5

Chapter 2: IDS and IPS Platforms						 7

2.1: Snort									 7

2.2: Suricata								 9

2.3: Other Choices (Vendor-Specific platforms, etc.)			 10

2.4: Which Platform is Best						 11	

Chapter 3: Snort and Suricata Rule Anatomy					 12

3.1: Header								 13

3.2: Rule Body								 15

Chapter 4: Analyzing Alerts							 27

Chapter 5: Making Judgements via Supporting Evidence			 33

5.1: Network Diagrams and/or Asset Management			 33

5.2: Host-Based Security Solutions					 34

5.3: Open-Source Intelligence, and External Data Sources		 35

5.4: Other NSM Data Sources						 36

Chapter 6: Tuning and Noise Reduction					 37

6.1: Disable Rules								 37

6.2: Pass Rules								 38

6.3: BPF (Berkeley Packet Filters)						 39

6.4: Suppressions								 40

6.5: Thresholds								 41

Chapter 7: Bonus Content - Bootstrap and Pre-Build Distributions		 43

Table of Contents

Chapter 1: Introduction to Network Security Monitoring
Hello again! I’m Tony Robinson, that guy whom you may or may not wonder whether or
not he is just there to write books and provide comic relief. Recently, I was requested to
write up a guide on how to interpret IDS/IPS events. But before we get there, there’s
some ground work we have to cover.

In this guide, we will cover what network security monitoring is, what IDS and IPS is, how
to interpret rules for Snort and Suricata, what the most popular IDS/IPS platforms today
are, discuss reading and analyzing IDS alerts, how to make judgements on the validity
of an IDS/IPS alert based on supporting evidence, discuss some options for tuning your
ruleset and reducing noise as necessary, and last, but not least, I will provide you with
some pre-built NSM-focused Linux distributions so that you may experiment on your
own. So, now that we have an agenda taken care of, let’s dive right into it.

Network Security Monitoring (or NSM for short) is the practice of collecting and/or
analyzing network traffic for the express use of troubleshooting, or detecting and
troubleshooting anomalies, including possible threats or malicious actions being taken.

NSM usually consists of multiple components, but for the sake of simplicity, I’ve broken
them down into four classes: Passive Collection, Netflow, Full Packet Capture (FPC), and
Intrusion Detection/Prevention Systems (IDS/IPS).

1.1: Passive Collection

Passive collection is the action of collecting certain network protocol requests and/or
responses observed on a network segment. The data collected could be complete
protocol transactions, or just partial collection.

Some examples of passive collection include HTTP headers from both the client and
server, SSL certificates, DNS queries and responses, LDAP queries and responses, etc. Some
open-source software capable of performing passive collection include passivedns1,
HTTPry2, Bro3, and Suricata4.

2

1 https://github.com/gamelinux/passivedns
2 https://github.com/jbittel/httpry
3 https://www.bro.org
4 https://suricata-ids.org

3

5 http://www.ntop.org/products/traffic-analysis/ntop/
6 https://tools.netsa.cert.org/silk/index.html
7 https://qosient.com/argus/downloads.shtml

What can passive collection solutions be used for? Let’s say you receive a threat
intelligence report. That report may provide a list of network-based indicators for a given
threat. Using that list and passively collected information from your network, you want to
know whether or not your network or enterprise was targeted or breached by the threat
being reported on.

Network indicators in a threat report may include things such as SSL certificate strings,
HTTP user-agent strings, DNS domains associated with the campaign, etc.. You could
query your passive HTTP, passive DNS, and SSL passive collection logs for your network to
retroactively search for these indicators of compromise to determine if your organization
was ever targeted or breached by these attackers.

1.2: Netflow

Network Flows, or “Netflow” for short, consist of metadata about individual
connections observed over a portion of the network. Netflow is not concerned with the actual
content of an individual data connection/flow (flows can be TCP, UDP and/or ICMP), but
is instead concerned with data about the connection itself, such source and destination IP
addresses, source and destination ports (if TCP or UDP), number of packets sent and/or
received, number of bytes sent and/or received, duration of the connection, etc. In addition to
recording this information, each individual data connection or flow as given a flow id for
tracking and ease of use for NSM analysts. Some open-source tools that have netflow
collection capabilities include Bro, Suricata, nTop5, SiLK6, and Argus7.

Some might wonder, what use is information about a connection, if you don’t have the
actual content transferred itself? If you’ve kept up on national security news in
recent years, you might be familiar with the exploits of Edward Snowden, and how he
brought to light a number of metadata collection programs in use by the US Intelligence
Community, namely the NSA. A lot of these programs or revealed files mention “Metadata”.
Metadata is typically defined as “data about data”. For a phone call, this might be the
duration of a call, and/or the phone numbers observed. For a data file this could the file’s
name, the size of the file, the file’s magic identifier (e.g. what type of file it is -- jpg, png, exe,
txt, etc.) and timestamps for when the file was created, last accessed, and last modified.
Metadata allows analysts to build a pattern of life and/or ascertain connections by looking
at information about the data being transferred. You can infer connections, you can imply
important links without actually having the all of the content of a conversation, or actually
knowing the contents of a file.

Bringing this back to flow data, netflow allows you to observe patterns that could be
indicative of network problems, or malicious behavior. For instance, if you observe a large
100mb data connection LEAVING your network, that might be something worth taking a
closer look at. What time was the connection made? What is the src/dst IP address pair?
What ports were used? etc. Another example might be the observation of a host in your
network sending out a 128-byte connection every 30 minutes on the dot. This could be

Chapter 1: Introduction to Network Security Monitoring

4

8 http://netsniff-ng.org/
9 http://www.openfpc.org/
10 https://molo.ch/

Chapter 1: Introduction to Network Security Monitoring

beaconing behavior, and you might be observing a piece of malware on your network
“Calling back” to a command and control host on the internet. In addition to all of this,
flow data doesn’t require a whole lot of space (when compared to say, full packet capture),
making it much easier to retain netflow data for an extended period of time.

1.3: Full Packet Capture (FPC)

Full Packet Capture, or FPC for short, is considered the holy grail of network security
monitoring. As the name implies, FPC captures all traffic on a given network segment,
and stores it to disk somewhere for later retrieval. Think of it as a recorder for all traffic
traversing a section of the network. This gives you the ability to pull packet captures
and do whatever you want with them -- test IDS alerts, analyze their netflow statistics,
perform file carving, perform passive collection analysis against them, etc.

While full packet capture is extremely useful to have, it is extremely cumbersome to set
up, and requires tons of disk space to store, especially for an extended period of time.
For example, let’s consider monitoring a 100% fully utilized 100mbps network link. 100
megabits per second translates to 12.5 Megabytes per second. There are 60 seconds in a
minute, 60 minutes in an hour, and 24 hours to a single day, so we perform the following
simple calculation to determine our storage needs for a single day:

12.5 * 60 * 60 * 24

So, if we multiply 12.5 * 60 that gives us 750MB of disk space required for storing 60
seconds of network traffic on a fully utilized 100Mbps link. Take that 750 and
multiply it by 60 again, and you get 45,000MB. Divide that by 1024, and you get 43.95
Gigabytes. You’d need roughly 45 gigabytes of disk to store one hour of traffic on a fully
utilized 100Mbps link. Finally, take that 43.95 number and multiply that by 24, and you get
pproximately 1055 Gigabytes. Divide that by 1024 again, and you get approximately 1.03
Terabytes. You would need just over 1TB of disk space to store traffic for a fully utilized
100Mbps link for an entire day. Just a single day, and that doesn’t account for storing
it in a database to make capable of being queried, file headers taking additional space,
splitting the dumps into manageable chunks, etc. Storing Full packet capture for any sort
of extended period of time is a very tall order, not to mention you must also have powerful
network capture hardware and software in place capable of processing, and writing the
packets to disk fast enough to keep up with demand.

While FPC is extremely helpful for investigating alerts, events, and possible intrusions,
the likelihood that you will see very many enterprises implementing it, even partially, will
be very slim due to the prohibitive cost and maintenance involved. Some open-source full
packet capture platforms include netsniff-ng8, OpenFPC9, and Moloch10.

5

11 https://www.snort.org/

Chapter 1: Introduction to Network Security Monitoring

1.4: IDS and IPS

And now we come to the heart of the matter, IDS and IPS. IDS is shorthand for
Intrusion Detection System, while IPS is shorthand for Intrusion Prevention System. An IDS
passively analyzes traffic on a network segment. If the network traffic meets certain
criteria defined in a rule, an alert is raised (and typically logged). Some systems will also
capture the packet or packets that triggered the rule as well.

IPS systems work very similarly to IDS systems, except that they don’t passively
monitor traffic, they’re placed on some sort of a network choke point (e.g. maybe between a
backbone switch and internet-facing firewall, or between two backbone switches, etc.)
where traffic MUST pass through the IPS device. This allows the IPS device to actually
drop traffic that matches a rule, allowing the IPS to prevent network attacks (In addition to
generating an alert, logging the alert, and/or the packet associated with that alert as well).

While being able to prevent network attacks sounds like an amazing feature, if the rules
or signatures your IPS uses are inaccurate, the IPS has the potential to seriously impact
network operations and drop otherwise legitimate traffic. Therefore, testing, tuning and
constant maintenance is a requirement for IPS deployments. IDS and IPS systems both
require constant care and maintenance to ensure that they are not generating “false
positives”, or alerts for otherwise legitimate traffic. False positives can be the result of
poorly written signatures, and can lead to alert fatigue, causing your security analysts to
overlook otherwise important IDS alerts, due to to it being “noisy”.

Think of alert fatigue the same way you might think of the story “The Boy who Cried
Wolf”. If you get enough alerts from a system that tends generate false positives, your
analysts may have a tendency to ignore that system. This can result in real, legitimate
attacks being missed due analysts simply ignoring the IDS entirely.

Most IDS and IPS solutions these days are signature based. Some companies will say
that they aren’t signature driven, instead stating that they are “rule driven” instead. Rules
and signatures are only slight degrees of separation. The bottom line is that if a rule OR
signature isn’t available, your IDS or IPS will simply let unknown malicious traffic pass by
unchallenged. So, from here on out, consider IDS/IPS rules and IDS/IPS signatures to be
interchangeable terminology.

The most well-known open-source IDS/IPS projects are Snort11, and Suricata. However, I
would be remiss if I did not at least discuss Bro.

You might have seen that I mentioned Bro a couple of times in other NSM capabilities
and roles. Bro is technically classified as an IDS, and in some ways, it fits that capacity, but
it’s not really anything like Suricata, Snort, or other signature-based IDS/IPS platforms.
Whereas Suricata, Snort, and most other IDS/IPS platforms are signature and rule-driven,
Bro is primarily anomaly driven.

6

Chapter 1: Introduction to Network Security Monitoring

Bro has a unique scripting language that allows you to define certain parameters to look
for in network traffic that can, in a pinch, act like signature-based detection and take
certain actions if criteria are met. y and far, Bro’s greatest strength is that it is a network
monitoring and passive collection gold mine. Freshly compiled, bro can detect protocol
banners on nonstandard ports, collect HTTP client and server headers, collect DNS requests
and responses, IRC, SMTP, SSH, SSL certificates, LDAP/Active Directory, Netflow-like
network statistic gathering and so much more.

Something else to be especially aware with Bro is that performing all of this parsing,
protocol detection and various other bits of functionality requires a lot of CPU and
memory. Bro is considerably more CPU and memory intensive than either Snort or
Suricata, and is NOT designed to be ran as an IPS. It should not be ran inline on a
production network but should instead be ran off of a network tap, a span port, or for
offline packet capture analysis.

Chapter 2: IDS and IPS Platforms
In this chapter we will be discussing IDS and IPS platforms a little bit further in-depth.
This chapter will primarily focus on Snort and Suricata IDS/IPS platforms, as they are
most likely to be what you will encounter on most enterprise networks, but we will also
discuss Bro, and some vendor-specific solutions such as FireEye, Palo Alto Networks, and
Checkpoint IPS.

2.1: Snort

The Snort IDS/IPS platform was originally released in 1998, as a tcpdump clone by
Martin Roesch. Marty later discovered that his tcpdump clone could be configured to look
for patterns in network traffic, and trigger alerts on these patterns. As it would happen,
people were willing to pay money for this capability, and also to have someone manage
writing the patterns (now known as “rules”) for detecting malicious traffic on enterprise
networks. Thus Sourcefire, and VRT (Vulnerability Research Team) were born. Since then,
Sourcefire has been acquired by Cisco, and a lot of technologies and innovations out of
Sourcefire were integrated into Cisco’s security products.

Snort’s primary feature is intrusion detection, inspecting traffic via network switch span
port feeds, or dedicated network taps and generating alerts for malicious or anomalous
traffic observed from this traffic. Additionally, Snort can be deployed in inline (IPS) mode,
where traffic must traverse through two network cards on the sensor, where Snort can
actively drop malicious packets if configured to do so.

While these are Snort’s primary features, there are a whole host of other features that
are used to counter network evasion techniques such as fragrouting12, overlapping IP
fragments13, duplicate TCP segments14, session splicing15, low TTLs16, etc. Snort can be
configured to handle IP packet fragmentation, TCP session stream reassembly, application
layer protocol parsing and decoding of encoded data, etc. The removal of IP fragments,

7

12 https://tools.kali.org/information-gathering/fragrouter
13 https://s3.amazonaws.com/snort-org-site/production/document_files/files/000/000/032/original/target_
based_frag.pdf?AWSAccessKeyId=AKIAIXACIED2SPMSC7GA&Expires=1501097853&Signature=ttDV9ycIP-
rONnqEbH7AHkR%2Ff8UU%3D
14 https://s3.amazonaws.com/snort-org-site/production/document_files/files/000/000/033/original/Stream5_
reassembly.pdf?AWSAccessKeyId=AKIAIXACIED2SPMSC7GA&Expires=1501098338&Signature=q%2Bk2oMs-
dLqdSLpou%2BdPbqLfVRUc%3D
15 https://www.owasp.org/images/2/20/OWASP042509.pdf
16 https://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-evasion-tech-
niques-case-studies-37527

8

Chapter 2: IDS and IPS Platforms

TCP/UDP stream reassembly, application protocol parsing, etc. is collectively referred to as
network traffic normalization. This process is automatic and performed prior to evaluating
the traffic against IDS signatures to ensure that snort sees the fully reassembled, decoded,
and deobfuscated traffic stream before evaluating any IDS rules against network traffic.

Snort IDS/IPS software is still open-source and will likely remain so for some time. While
Snort itself is open-source, the rules themselves fall under a different license -- If you want
coverage for the latest threats, you need to purchase a subscription which could range in
price from 30.00 (Individual, non-enterprise use) to 400.00 per sensor (enterprise use). If
you’re okay with a 30-day delay in coverage, you can obtain some of those same rules for
free just by registering with snort.org. The TALOS ruleset (the ruleset provided from snort.
org) is well-maintained, with the majority of rules provided having pretty self-explanatory
alert messages describing what traffic they triggered on and/or reference metadata point-
ing to websites you can go to for more information.

In addition to Snort’s primary functions as an IDS/IPS, and the built-in normalization
functions, Snort also has experimental support for carving files out of network streams17
for a host of protocols (HTTP, FTP, SMTP, and SMB to name a few), and experimental
support for identifying network applications via the new OpenAppID preprocessor18.

Most of Snort’s downsides surround its ease of use, or lack thereof. Your choices for
managing the rules your sensors use are either modifying configuration/rule files by hand,
or using confusing command-line tools. The recommended tool for maintaining rules on
your Snort IDS/IPS sensors is the pulledpork19 perl script. While this script is powerful and
has a ton of powerful functionality, it is unwieldy and takes some getting use to in order
to unlock its full potential for IDS rule management.

In addition to the complexity of rule management, Snort has limited output mechanisms
for its alerts available by default. You can output to syslog, alert text format (snorts own
text-based log), output packets that caused alerts to trigger in a special pcap format and
last but not least, unified2. Unified2 is a binary log format, the justification is that it’s
easier and faster for Snort to output alerts in this binary format.

So how are you supposed to transform these binary logs into something human readable
for your analysts to consume? Third party parsers. The most popular of which is known
as Barnyard220. Barnyard2 supports converting the unified2 files to a variety of different
output formats, the most useful of which is probably the output format that parses
unified2 data, and converts it to SQL for storage in many different types of database
engines (e.g. MSSQL, Oracle, Mysql, etc.) for web-based interfaces with which to view your
alerts and/or pcaps. In addition to barnyard2, there is a newer parser called u2json21 which
converts Snort’s binary unified2 format into JSON for integration with SIEMs such as
Splunk, or open-source ELK (Elasticsearch, Logstash, Kibana) stacks.

17 https://www.snort.org/faq/readme-file
18 https://github.com/Cisco-Talos/snort-faq/blob/master/docs/README.appid
19 https://github.com/shirkdog/pulledpork
20 https://github.com/firnsy/barnyard2
21 https://idstools.readthedocs.io/en/latest/index.html

9

Chapter 2: IDS and IPS Platforms

One last downside about Snort is that it is somewhat difficult to scale effectively. By
default, Snort is not multithreaded. In order to scale it effectively past 1gbps of network
traffic inspection throughput, you have to run multiple snort processes, install pf_ring,
compile Snort’s data acquisition libraries to use pf_ring, then tell snort which CPU cores
to bind to22. And if you’re crazy enough to want to do all of this in IPS mode, there is a
specific build of pf_ring by the metaflows group you must use23. Snort 3.0, which has been in
development since 2005, with its first alpha release in 2014 is, as of this writing, still in
alpha release status (alpha 4 as of 7/2017) after 3 years of development. So, even though it
promises native multithreading capability (among a host of other improvements), don’t
count on it being available any time soon.

2.2: Suricata

Suricata was initially released in 2009, as a product of the Open Information Security
Foundation (OISF), partially funded through the Department of Homeland Security and
the Navy’s Space and Naval Warfare Systems Command (SPAWAR). A lot of Suricata’s
features are nearly identical to Snort -- it has a similar rule language, similar normalization
capabilities (e.g. IP defragmentation, tcp stream reassembly, handling for
duplicate/overlapping segments/fragments, application layer protocol decoding and
deobfuscation, etc.) and even includes support for snort’s output formats in order to have
compatibility with most web applications and tools intended to be used with Snort (e.g.
unified2 output, compatible with barnyard2, and various applications intended to display
Snort IDS alerts).

While the normalization features make sense in order to maintain the capability to
detect IDS/IPS evasion techniques, the other features are more for backwards compatibility
purposes to ensure some level of interoperability between Suricata and Snort, without
having to retrain a bunch of security analysts to learn the ins and outs of a new IDS/IPS
platform.

While Suricata maintains a lot of compatibility with Snort, there are a great many features
that Suricata introduces. By default, Suricata is multi-threaded, meaning that it is much
easier to scale up Suricata in order to inspect traffic on large, multi-gigabit networks.
Suricata also supports using graphic cards to help offload and scale network inspection.

In addition to the scalability, Suricata has the capability to log a lot more data than Snort
does -- Suricata by default supports logging DNS queries, HTTP header and body requests
and responses, netflow-like data, SSL certificate information, and can also extract files
from network streams, and store them to disk (not unlike Snort).

Finally, when it comes to output options, Suricata has a few options. It supports unified2
output, like Snort to support Snort tools and output options, but in addition to unified 2,

22 https://ossectools.blogspot.com/2011/07/running-load-balanced-snort-in-pfring.html
23 https://s3.amazonaws.com/snort-org-site/production/document_files/files/000/000/014/original/
PF_RING_Snort_Inline_Instructions_daq_062.pdf?AWSAccessKeyId=AKIAIXACIED2SPMSC7GA&Ex-
pires=1501190549&Signature=Qe7HPRVreC%2F%2BHr5Iqi%2BpGPJCfhE%3D

10

Chapter 2: IDS and IPS Platforms

24 https://suricata.readthedocs.io/en/latest/rules/differences-from-snort.html
25 https://github.com/StamusNetworks/scirius

Suricata supports output to JSON in the “eve.json” file. This allows Suricata to easily
integrate into most SIEMs easily, including ELK stacks.

While Suricata is similar to Snort, and the rule language used is nearly identical, there
are some compatibility problems and slight differences from Snort that make Suricata
incompatible with the VRT ruleset24. Additionally, and this is just personal opinion, but the
VRT ruleset is more well-organized than Emerging Threats (Which, not unlike the VRT/
TALOS ruleset, comes in both a free and a paid edition), the recommend ruleset to use
with Suricata. There are a lot of old rules that haven’t been pruned or updated, a lot of rules
don’t have reference urls or CVE numbers or any sort of reasoning behind what they detect,
and what their detection is based on at all. However, in their defense, I have heard from
members of the Emerging Threats team that cleanup and reorganization of the ruleset is
on the to-do list, and recommendations for new rules typically call for descriptive alert
messages, and reference URLs for users to understand the alert better.

In addition to the proposed rule cleanup, Suricata also supports using the pulledpork rule
manager for modifying, enabling, disabling and updating rulesets as necessary for your
deployments, as well as the Scirius25 web interface developed by Stamus networks.

In addition to the differences in ruleset and how the rule language works, the Suricata
configuration file is based off of YAML. The makes the configuration file is slightly
different from Snort’s .conf file. Fortunately enough, the configuration file is littered
with comments that describe what options are available, and what certain configuration
options do, making it easy to transition from Snort’s config file format.

2.3: Vendor-Specific Solutions

In addition to Snort and Suricata, there are several other vendor-specific IDS/IPS
solutions such as FireEye, Palo Alto Networks, Checkpoint IPS and several others (this is by
no means an exhaustive list of IDS/IPS vendors). FireEye’s IDS solution is essentially a rigidly
maintained Snort deployment (that is not user-modifiable), while PAN, Checkpoint,
and other vendors use their own homegrown solutions. The upside of most of these
solutions are that they are typically professional-grade, backed by relatively large enterprise
security companies, and well supported in order for customers to get help with
deployment issues, false positives, and/or bugs as needed. Since the products are
subjected to QA and in most cases, the hardware is quality tested before being sold, you’ll
(with some slight variation because every single network is unique) know exactly how
much traffic your sensors can handle inspecting, and have some measure of confidence
that the IDS/IPS software will work as intended.

The flipside to this, and the beauty of Snort and/or Suricata is that you know how
detection works and what the signatures/rules look like. With these alternative IDS
platforms, you have absolutely no idea how they are performing detection, or what their
signatures look like. You kinda just have to accept their word that they have coverage for

11

Chapter 2: IDS and IPS Platforms

26 http://www.gartner.com/technology/home.jsp
27 https://www.nsslabs.com

X thing and accept it at face value because they’re closed-source systems.

With open-source products, the software itself is free, but so is the support. This means
that when you run into problems you’re either on your own, or at the will of other users
in the community or the developer’s whim for help. They can choose to help you or not.
In most cases, those that help you with issues in open-source projects are volunteers who
are not getting paid. There are no guarantees that you’ll get help in a timely manner. Not
only that, you have no performance guarantees, or guarantees that the software will be
compatible with the hardware or operating system you choose to run the software on.
Those are just the breaks. Either you pay money for the hardware and the support, or
you run it yourself and deal with the consequences when things break. There is no middle
ground.

2.4: Which platform is best?

This is a bit of a loaded question. The best answer I can give is that “it depends”. What
does your current NSM deployment look like? What level of inspection throughput do you
need? Do you need to ensure that the IDS/IPS software is up and available at all times?
Do you have analysts who are familiar with some of the quirks or bugs if you choose to run
open-source IDS/IPS software? Do your analysts know how to write Snort/Suricata
rules? What is your budget? All of these things have some impact on what solution is the
best for you at the time. Every solution presented here has a cost, whether it happens
to be an operational expenditure requiring time and manpower to maintain, or a capital
expenditure requiring serious funds to purchase a solution that has support built into
the cost.

If I had to develop a brand-new NSM deployment from the ground up, and only had
open-source IDS deployments I could choose from, I would deploy Suricata in a heartbeat
due to the sheer number of features and scalability the project has. If I had budget for
commercial solutions, I would consider analyzing Gartner26 and/or NSS Labs27 reports to
see how different NSM vendors stack up in terms of performance and/or price. Note that
while Gartner and/or NSS Labs results aren’t exactly perfect (nor is access to their reports
in any way cheap), they’re the best the industry has right now for measuring commercial
NSM product performance.

Chapter 3: Snort and Suricata Rule Anatomy
This chapter deals with better understanding the anatomy of a rule for both Snort and
Suricata. Wherever there are differences between the two products, they will be
discussed and noted.

12

13

Chapter 3: Snort and Suricata Rule Anatomy

3.1 Rule Header

Snort and Suricata rules consist of two sections: A rule header (pictured above), and a
rule body. The header portion of the rule defines what IP addresses, ports, protocols, and
direction a rule applies to. Additionally, the header also defines what action to take when
all the conditions of a rule are true. Here is an example rule header (also pictured above):

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

The text “alert” in the rule header above defines what action we want this rule to take
when all the conditions of the rule body and header are met. There are many different
actions you can tell Snort or Suricata to take when the rule conditions are met, So let’s
break this down:

alert - simply logs an alert to whatever output format you configured (e.g. syslog, uni-
fied2, alert log, eve.json[Suricata], etc.). This usually AT A MINIMUM contains the mes-
sage the rule has configured in its rule body, the source and destination IP address pair,
TCP and/or UDP ports (if the traffic is TCP or UDP), and in the case of unified2 and/or eve.
json the network packet that triggered the event can be logged as well.

pass - If all the conditions of the rule are true, forward the packet and do not generate an
alert. This rule action can be used to assist with IDS/IPS tuning, as a highly targeted and
accurate way to defuse false positives. Say for instance you don’t want to suppress a rule,
or set up a threshold, or the rule false positives a lot for a given connection you know is
normal operation in network, but you just don’t want to disable the rule, you can use a
pass rule to say specifically for this pair or group of IP addresses and/or ports/protocol,
just ignore the traffic that the rule body describes.

drop - If all the conditions of the rule are true, and the sensor is in IPS mode, configured
to be capable of dropping traffic, drop the traffic, and generate an alert, same as a rule
configured for the “alert” action.

reject - If all the conditions of the rule are met, an alert is raised (same as the “alert”
action), and the sensor will attempt to send a reject packet to both the source and the
destination of the connection. If the connection is TCP, this packet will be a TCP reset. For
all other network protocols, an ICMP error packet will be sent. Additionally, if the sensor
is inline, the packet or network traffic that triggered the rule will be dropped.

log - If the conditions of the rule are met, don’t generate an alert, just log the packet that
triggered the rule. This is a Snort-only rule action, and in my experience, never gets used.

activate/dynamic - Activate rules generate an alert, and are used to turn on a dynamic
rule. These are Snort-only rule actions, and in my experience, never get used. If the idea
of one rule “triggering” or being used as criteria for another rule sounds like a neat idea to
you, you should consider looking into the “flowbits” rule body option instead, as it works
in a similar manner.

sdrop - Imagine someone looked at the log rule action and decided to apply that the
sensors operating in IPS mode. But, it drops the packet, and will not log it. This is a bad
idea. You don’t want to do this, as it could make network troubleshooting a nightmare.
Imagine your sensor, operating in IPS mode had one of these rules and it was silent
triggering on non-malicious traffic. Do you see where I’m going with this? In my
experience, I have never seen this rule action used, and probably for good reason. This is
a Snort-only rule action.

custom actions - Snort allows you to define custom actions that take specific actions if
your rule triggers. If you wanna see how you define rule actions, check out section 3.228
of the Snort User Guide. However, in my experience, I haven’t seen very many people use
custom actions, usually what Snort provides is more than enough.

In addition to the rule actions that each platform supports, you will want to be aware of
the fact that certain rule actions, by default, take precedence over other rule actions. Let’s
say that you have network traffic that triggers two rules one of them is a pass rule, and
the other is a drop rule. How does snort know which rule action should apply first? By
default, Snort applies rule actions in the following order (Per section 1.4.429 of the snort
user guide):

Pass
Drop (including sdrop, and reject rules)
Alert
Log
<custom rule actions>

By default, Suricata applies rule actions in the following order30:

Pass
Drop
Reject
Alert

So in our scenario above, the pass rule would be applied before the drop rule, meaning
that the traffic stream would pass through an IPS without being dropped (for both Snort
AND Suricata).

This is why pass rules are extremely useful when it comes to tuning false positives,
because by default, they are applied before any of the other alert actions. Check out the
Snort31 and Suricata32 documentation to see all the available rule actions.

14

Chapter 3: Snort and Suricata Rule Anatomy

28 https://suricata.readthedocs.io/en/latest/rules/differences-from-snort.html
29 https://github.com/StamusNetworks/scirius
30 https://github.com/StamusNetworks/scirius
31 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node29.html
32 https://suricata.readthedocs.io/en/latest/configuration/suricata-yaml.html#suricata-yaml-action-order

3.2: Rule Body

If the rule headers describe what IP addresses, ports, and/or protocols rules are meant to
be applied to, then the rule body is the portion that describes what it is Snort or Suricata
is looking for in a given traffic stream. There are tons of different modifiers and ways to
describe what content you are looking for in network streams. You can do everything from
describe how much data is in a network connection (e.g. isdataat), perform byte checks
and/or bitwise operations (byte_test), specific content matches (via the content body
option) with all sorts of modifiers to describe what that data should look like (e.g. nocase
for case insensitivity, http_header for content matches restricted to JUST the header of an
HTTP connection, etc.). If there is a static, unchanging constant you observe in network
traffic, there is a very good chance that Snort or Suricata have the means to describe that
constant in order for you to generate IDS signatures based on it.

I could spend days describing all of the rule body options available to Snort and/or
Suricata, but I’m not gonna subject you to that. Here is what we’re going to do instead:

-If you’re interested in the entire list of rule options that Suricata supports, the official
documentation is available online33. In particular, you will want to view chapter 434. OISF
has performed a herculean task in ensuring that rule body options available for Suricata
rules have been thoroughly documented.

-If you’re interested in the entire list of rule options that Snort supports, check out the
Snort User Manual35. in particular, chapter 336 contains an exhaustive list of supported rule
options.

-OISF (as a part of chapter 4) has extensive documentation on the differences between
Snort and Suricata37, especially in the realm of writing IDS signatures.

Let’s analyze some IDS rules together, so that you can gain a better understanding on how
the rules work.

To start, let’s pick something from the Snort TALOS ruleset. This rule is a little complex,
but follow along, it’ll make sense in the end, I promise:

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:”SERVER-WE-
BAPP Trend Micro Smart Protection Server admin_notification.php command
injection attempt”; flow:to_server,established; content:”/admin_notifica-
tion.php”; fast_pattern:only; http_uri; content:”spare_”; nocase; http_
client_body; pcre:”/(^|&)spare_(Community|AllowGroupIP|AllowGroupNet-
mask)=[^&]*?([\x60\x3b\x7c]|[\x3c\x3e\x24]\x28|%60|%3b|%7c|%26|%3c%28|
%3e%28|%24%28)/Pim”; metadata:policy security-ips drop, service http;
reference:cve,2016-6267; classtype:web-application-attack; sid:39913;
rev:1;)

15

Chapter 3: Snort and Suricata Rule Anatomy

33 https://suricata.readthedocs.io/en/latest/index.html
34 https://suricata.readthedocs.io/en/latest/rules/intro.html
35 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/
36 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html
37 https://suricata.readthedocs.io/en/latest/rules/differences-from-snort.html

That is a lot of text, no? What is this rule for? Check out the msg field of this rule, that’s the
first place I typically start, when I want to understand what a rule is being used for:

msg:”SERVER-WEBAPP Trend Micro Smart Protection Server admin_notifica-
tion.php command injection attempt”;

According to the msg field, this is a rule to detect attacks attempting to exploit the
Trend Micro Smart Protection Server web application. Specifically, this covers attacks
attempting to exploit a command injection flaw in the admin_notification.php file utilized by
the web application. Command injection flaws are vulnerabilities typically associated with web
applications where users input in a parameter, or a variable that can be exploited to execute
system commands38.

Towards the end of the rule, we see the strings:

metadata:policy security-ips drop, service http; reference:cve,2016-6267;
classtype:web-application-attack; sid:39913; rev:1;

Let’s talk about the metadata option first, because there is a lot to unpack here. the first
thing you’ll notice in this tag is the text policy security-ips drop, security-ips identifies this
rule as a part of the “Security over Connectivity” base ruleset. This text can be used by the
pulledpork rule manager (mentioned above) to automatically enable a preselected group of
rules for a basic IDS/IPS policy as recommended by Cisco TALOS. The TALOS ruleset has
metadata tags like this that identify rules that are activated as a part of what TALOS/CISCO
refers to as three unique “policies” or base rulesets. These rulesets are:

Connectivity over Security - rules that are extremely accurate, very low CPU/latency
impact, and deemed important enough to enable.

Balanced - an even mix of rules that might have a higher CPU/latency cost for inspection
purposes, but are still relatively important to have enabled.

Security over Connectivity - a heavier base ruleset with quite a few more rules enabled by
default than the “Balanced” or “Connectivity over Security” ruleset. Some of the rules in this
set are significantly more CPU/latency heavy.

You can configure pulledpork to enable rules in the TALOS ruleset that are a part of one of
these three base rule policies. The pulledpork script will then download the TALOS ruleset
(if you don’t have it already), parse the metadata tags of all the rules, and enable only the
rules that have the metadata tags that correspond to the base rule policy. For example, in
pulledpork.conf, you define the “Security” policy, and run pulledpork for the first time.
Pulledpork downloads the rules from snort.org (using your Oinkcode), extracts the
rules from the tarball, parses the policy metadata tag, and enables rules that have the
“security-ips” metadata tag. For more information on this, check out README.RULESET
file, included with pulledpork.

16

Chapter 3: Snort and Suricata Rule Anatomy

38 https://www.owasp.org/index.php/Command_Injection
39 https://github.com/shirkdog/pulledpork/blob/master/doc/README.RULESET

17

Chapter 3: Snort and Suricata Rule Anatomy

40 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node22.html#targetbased
41 http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=2016-6267

What about the drop portion of the policy? Don’t worry about this too much. This more
of a metadata tag for the enterprise product than for the open-source product. But on
the bright side, you can easily perform a regular expression search for “[policy you want to
enable] drop” and place that into pulledpork’s dropsid.conf file, to convert all rules for that
policy that have the word “drop” next to the baseline rule policy you wish to implement, and
convert them from alert action rules to drop action rules through pulledpork automatically.
If you aren’t deploying your Snort sensor in IPS mode, for the most part, you can ignore the
drop portion of the IDS policy.

The service http section of the metadata tag has to do with a feature of Snort known as a
host attributes table. You can take external scan data from other NSM tools, vulnerability
scanners and/or network scanners, and build an XML table of information on individual
hosts. The host attributes table is discussed more in-depth in the Snort User Manual40.
What this tag allows you to do, is that for all hosts in your host attributes table, who have
an service entry labeled “http”, no matter what TCP port the service is on, and regardless
of whether or not the port on that host is including in the HTTP_PORTS port variable in
snort.conf, make sure that this rule is applied to traffic on that port, that may be headed
towards that particular server (or servers). Long story short, is that if you’re not using the
enterprise product, or host attribute tables, then this does absolutely nothing for you. But
if you are, this allows you to apply certain IDS/IPS signatures to port numbers not defined
in your snort.conf file.

The reference option tells you that this rule has a CVE (Common Vulnerabilities and
Exposures) number that identifies this vulnerability. You can use your favorite search
engine and search for CVE 2016-6267, and get more details on what software versions
are affected by this vulnerability41. For this reason, it is VERY important that you have both
a descriptive rule msg field, and a solid reference field for analysts to be able to look up
more resources related to alerts they are responsible for analyzing.

The other fields are more metadata about the rule, including what type of rule it is
according to the rule authors (classtype), the rule number in the overall rule collection
(sid), and what revision number the currently deployed rule is (rev). It is very important
that if you make modifications to IDS rules, that the revision number is incremented to
reflect the fact that the rule has been modified. Collectively, the fields we’ve discussed so
far (msg, metadata, reference, classtype, sid, and rev) are all rule metadata - fields that tell
you more about the purpose of the rule itself. These aren’t the only rule metadata options
available, but they happen to be the most common.

Now, as for the actual rule itself, let’s jump back for a minute, and look at the rule header:

alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS

This rule header states that this rule applies to traffic from IP addresses defined in the
EXTERNAL_NET variable in snort.conf, on any source TCP port, going TOWARDS IP

18

Chapter 3: Snort and Suricata Rule Anatomy

42 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node33.html#SEC-
TION00469000000000000000
43 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#SEC-
TION00451000000000000000
44 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#SEC-
TION004522000000000000000
45 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#SEC-
TION004517000000000000000

addresses defined in the HOME_NET variable in snort.conf, on any TCP destination port
defined in the HTTP_PORTS variable defined in snort.conf. In short, this is looking at
HTTP traffic coming inbound towards a network you are attempting to detect attacks
against with Snort.

Next, let’s take a look at the rest of the rule body:

flow:to_server,established; content:”/admin_notification.php”; fast_
pattern:only; http_uri; content:”spare_”; nocase; http_client_body;
pcre:”/(^|&)spare_(Community|AllowGroupIP|AllowGroupNetmask)=[^&]*?([\
x60\x3b\x7c]|[\x3c\x3e\x24]\x28|%60|%3b|%7c|%26|%3c%28|%3e%28|%24%28)/
Pim”;

Starting from the top, you see the keyword flow. This keyword can be used to describe
which direction traffic should be traveling towards, or which direction the traffic should
be coming from in order for this rule to trigger. In addition to that, you can also specify
whether or not the alert should trigger on TCP connections, non-tcp connections, and a
host of other options42. In our case, flow:to_server, established; is saying the traffic should
be traveling towards a server, and that a TCP session must be established with the server.

Next, we see the content keyword. This keyword defines messages, hexidecimal bytes,
or a combination of the two we are interested in matching on in a particular packet or
network stream43. There are several modifiers that define special properties about a particular
content match (e.g. the nocase modifier tells Snort to make the previous content search
case insensitive to match on any combination of upper or lowercase letters), or restrict
Snort’s pattern matching engine to certain portions of a protocol conversation (e.g. the
http_uri modifier tells Snort to restrict the previous content match to the HTTP URI
portion of an HTTP request header.). In our example rule, we have two content matches.

The first content match, content:”/admin_notification.php”;, has two modifiers,
fast_pattern:only; and http_uri;. The fast_pattern modifier tells Snort that this
particular content match should only be processed by Snort’s fast pattern matching
engine. This modifier is typically used only with the longest content match with
multiple content matches in a rule, or if there are a lot of content matches, the most unique
content match out of an entire collection. Essentially, it’s a way of trying to increase
performance, by getting snort to look at a single content match in the fast pattern
matcher, in order to see if maybe the rest of the rule will be applicable44. The http_uri
modifier tells Snort to restrict this content match to the URI portion of an HTTP request
header45. This is another performance enhancement for this content match, telling Snort
to look for this content in a specific portion of a network stream or packet.

19

Chapter 3: Snort and Suricata Rule Anatomy

46 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#SEC-
TION00455000000000000000
47 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#SEC-
TION004511000000000000000

Our second content match, content:”spare_”;, has two additional modifiers, nocase; and
http_client_body;. The nocase modifier tells Snort to treat the previous content match
as case insensitive46. The previous content could be in upper, lower, or mixed case,
and Snort will still match on it. The http_client_body modifier tells Snort to restrict this
content match to the portion of the stream or packet where the HTTP client request body
starts47. Much like the http_uri modifier above, this is a performance enhancement for
Snort, telling Snort to restrict searching for this content match in a specific portion of a
packet/stream.

The next portion of our rule body is the pcre keyword, and boy is it a bit of a doozy. PCRE,
for those of you who don’t know, is shorthand for Perl Compatible Regular Expressions.
What is a Regular Expression? It’s a pattern that you can define to describe what content/
text you are looking for in big chunks of data. This is one of those hard to master, but
extremely useful skills to pick up for sorting through massive amounts of data in a
reasonable amount of time.

If PCRE is so useful, why aren’t all snort rules just a series of regular expressions? Be-
cause calling the engine and performing PCRE regex (short hand for regular expression)
searches is computationally expensive. Remember that Snort has to process anywhere
from hundreds of packets per second (in small deployments), to millions of packets per
second (in large-scale deployments), so computationally expensive things that take a lot of
CPU cycles and time on the CPU to complete could result in latency, dropped packets, or
missed detections. To that end, effectively written rules that utilize pcre typically try to do
so after at least one or more constant content matches can be identified for the particular
thing a rule is being written to detect. The content match serves as an “anchor” or a sort
of preliminary validation that the packet/stream may actually be a true positive, before
calling and using the computationally expensive pcre pattern matcher.

So now that you got all that, let’s take a look at this:

pcre:”/(^|&)spare_(Community|AllowGroupIP|AllowGroupNetmask)=[^&]*?([\
x60\x3b\x7c]|[\x3c\x3e\x24]\x28|%60|%3b|%7c|%26|%3c%28|%3e%28|%24%28)/
Pim”;

Let’s break this down, piece by piece:

- The “(^|&)” portion of the expression is saying “the first character can be the start of a
newline (^) or an ampersand (&).” Be aware that for regular expressions, the pipe symbol
(|) means “or”.
- The next section, “spare_(Community|AllowGroupIP|AllowGroupNetmask)=”, is
an expression that matches on the string “spare_”, and either the string “Community”,
“AllowGroupIP”, or “AllowGroupNetmask”, followed by an equal (=) sign. For example, this

20

Chapter 3: Snort and Suricata Rule Anatomy

48 https://www.w3schools.com/tags/ref_urlencode.asp
49 https://regex101.com/
50 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#SEC-
TION004526000000000000000

expression could match on “spare_Community=”, or “spare_AllowGroupIP=”, or “spare_Al-
lowGroupNetmask=”.
- The next portion, “[^&]*?” matches on any character, one or more characters, so long
as it is not the ampersand (&) character. In this instance, inside the brackets the carat (^)
symbol means “not”, so the expression in brackets reads “not an ampersand”. The
expression that immediately follows the bracketed expression is a
- The final portion of this expression, ([\x60\x3b\x7c]|[\x3c\x3e\x24]\x28|%60|%
3b|%7c|%26|%3c%28|%3e%28|%24%28), is a huge collection of byte patterns, separated
by the “|” symbol. “\x” in a regular expression denotes that the next two characters are a
hexidecimal digit. The characters with the percent symbol (%) in front of them denote URL
encoded characters. URL encoding is a method of encoding characters in a URL that are
not necessarily ascii characters so that the web server the client is sending the request to
can understand them. It is also a common obfuscation method for attackers. URL encoding
features the percent symbol (%), then a pair of hexidecimal digits that denote the URL
encoded character. For example, in our expression above, %60 is a URL encoded backtick
symbol (`)48. Knowing this, we can break down this chunk of the regex like so:
-- ([x60\x3b\x7c] : Match any one of the three hex codes in the brackets – either hex 60,
hex 3b, or hex 7c.
-- | [\x3c\x3e\x24]\x28 : Or, match any one of the three hex codes in the brackets (hex
3c, hex 3e, or hex 24) in addition to hex 28.
-- |%60 : Or, match on the string, “%60”
-- |%3b : Or, match on the string, “%3b”
-- |%7c : Or, match on the string, “%7c”
-- |%26 : Or, match on the string, “%26”
-- |%3c%28 : Or, match on the string, “%3c%28”
-- |%3e%28 : Or, match on the string, “%3e%28“
-- |%24%28) : Or, match on the string, “%24%28“

That is a lot of pipes, and “or” statements. That means if any one of these conditions in the
parenthesis is true, and either the raw hex digits or URL encoded strings appear, the entire
expression in the parenthesis is true.

I know this was a lot to take in, but there is one last thing in this expression we have to
talk about the “/Pim” at the end of it. Each of these letters are “switches” or configuration
options that change how this regular expression performs:
- i: configures the regular express to be case insensitive. Any mixture of upper and lower-
case letters will return true, so long as the pattern is found.
- m: configures how the regex treats the “^” and “$” characters – the newline, and end of
line characters, respectively.
- P: this is a snort-specific option that tells Snort to attempt to match against the raw
HTTP body without any HTTP normalizations applied, including URL decoding.

I know that was a ton of information. If you’re interested in learning more about regular
expressions, visit regex101 online49. If you’d like to learn more about regular expression

21

Chapter 3: Snort and Suricata Rule Anatomy

For your reference, I have created a diagram that illustrates the different portions of the
rule we just analyzed together:

So now that we have reviewed a Snort rule together, it is only fair that we do the Same
and analyze a Suricata rule together from the Emerging Threats ruleset. For this purpose,
I have picked the following rule:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:”ET TROJAN Formbook
0.3 Checkin”; flow:to_server,established; content:”POST”; http_method;
content:”config.php”; http_uri; isdataat:!1,relative; content:”Mozilla
Firefox/4.0”; http_user_agent; content:”dat=”; depth:4; http_client_
body; nocase; fast_pattern; pcre:”/^[a-z0-9-_/+]{1000,}/PRi”; metadata:
former_category TROJAN; reference:md5,6886a2ebbde724f156a8f8dc17a6639c;
classtype:trojan-activity; sid:2024436; rev:2; metadata:affected_prod-
uct Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target Client_
Endpoint, deployment Perimeter, signature_severity Major, created_at
2017_06_29, malware_family Password_Stealer, updated_at 2017_06_29;)

This rule demonstrates a lot of the unique features that Suricata offers. Let’s start with
our rule header:

alert http $HOME_NET any -> $EXTERNAL_NET any

22

Chapter 3: Snort and Suricata Rule Anatomy

This rule header states that this rule applies to http traffic from IP addresses defined in
the HOME_NET variable in suricata.yaml, on any source TCP port, going TOWARDS IP
addresses defined in the EXTERNAL_NET variable in suricata.yaml, on any destination
port, so long as it is parsed as http traffic. In short, this is looking at HTTP traffic going
outbound from a network you are attempting to detect attacks against with Suricata.

Let’s move on to the rule body and start by focusing on msg field:

msg:”ET TROJAN Formbook 0.3 Checkin”;

The msg field indicates that this is a rule out of the “ET TROJAN” ruleset, for a piece of
trojan malware named formbook, in particular, this rule captures version 0.3’s Checkin
network traffic. Check-in traffic is sometimes also referred to as a beacon, or what traffic
is generated when a piece of malware attempts to establish contact with its command and
control. Now, just like the Snort rule, we’re going to skip over the main portion of the rule
to the end of the rule where the rest of the metadata is:

metadata: former_category TROJAN; reference:md5,6886a2ebbde724f156a8f-
8dc17a6639c; classtype:trojan-activity; sid:2024436; rev:2; meta-
data:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit, at-
tack_target Client_Endpoint, deployment Perimeter, signature_severity
Major, created_at 2017_06_29, malware_family Password_Stealer, updat-
ed_at 2017_06_29;)

So there is a lot going on here, but don’t be alarmed. Not unlike the Snort rule we
analyzed before, the metadata tags are additional pieces of contextual information that can
be used to give us more information about this signature. We have two metadata keywords
associated with this rule:

metadata: former_category TROJAN;

The string “former_category TROJAN” is information that can be used for rule
organization and maintenance, and lets us know that this rule may have moved from a
different rule category to the “ET TROJAN” rule category, or that the rule may be moved
to a new category in the near future. Now, let’s analyze the other metadata keyword:

metadata:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit,
attack_target Client_Endpoint, deployment Perimeter, signature_severity
Major, created_at 2017_06_29, malware_family Password_Stealer, updat-
ed_at 2017_06_29;)

This keyword has a lot of strings associated with it. All of these strings give us a
plethora of information about this rule. For example, “affected_product Windows_
XP_Vista_7_8_10_Server_32_64_Bit”, tells us that this trojan targets Microsoft
Windows operating systems. The string, “attack_target Client_Endpoint”, tells us this
is a trojan that targets client endpoint systems; you are more likely to see this rule firing for
client operating systems, as opposed to server editions of Microsoft Windows. The string,

23

Chapter 3: Snort and Suricata Rule Anatomy

“deployment Perimeter”, tells us that the writers or maintainers of this rule think it is best
suited for deployment on an IDS or IPS sensor at the perimeter of your local network. The
string, “signature_severity Major”, tell us that the authors/maintainers think that this
rule has a high severity. This means that if this rule has triggered an alert, it is like that
the host system the alert came from is compromised. Considering that this rule is for a
check-in/beacon, the major severity seems reasonable. Barring any false positives,
the source IP address identified in an alert is likely to be compromised and will require
remediation.

The “created_at 2017_06_29”, and “updated_at 2017_06_29” strings server a sim-
ilar purpose to inform you of the date the rule was last written, and the date on which
the rule was last modified. This could be important information for ensuing that you
have the latest revision of the rule available, or coverage against newer variants of this
particular trojan. Finally, the string “malware_family Password_Stealer”, indicates what
capabilities this trojan has available. Be aware, that this tag may or may not be an
exhaustive list of functionality. Now, let’s have a look at the remaining metadata we
haven’t covered yet:

reference:md5,6886a2ebbde724f156a8f8dc17a6639c; classtype:trojan-ac-
tivity; sid:2024436; rev:2;

Much like Snort, there are sid, rev, classtype, and reference keywords, and they are used
in practically the same manner. reference:md5,6886a2ebbde724f156a8f8dc17a6639c
informs us that a point of reference available to us is an MD5 file hash. Using this file hash,
you could search through online sandboxes, malware databases, or even your favorite
search engine to see if you can find a write-up on this trojan, or download a copy of it for
in-house analysis and reverse engineering. classtype:trojan-activity tells us that
this rule is classified as activity associated with trojan style malware. And last but not
least, sid:2024436; rev:2 tells us both the rule identification number in the emerging
threats ruleset, and what revision number this rule is.

While Suricata (currently) does not have any baseline ruleset policies like Snort does, you
can easily use these metadata tags and/or several other criteria with the rule management
tool pulledpork to make your own baseline ruleset for Suricata. You can simply put in an
expression, or group of expressions in the pulledpork enablesid.conf (or, if you want to
operate in IPS mode, dropsid.conf) file, and that will tell pulledpork what rules to enable
after downloading them. Now, all this being said, let’s look at the remaining portion of our
rule body:

flow:to_server,established; content:”POST”; http_method; content:”con-
fig.php”; http_uri; isdataat:!1,relative; content:”Mozilla Firefox/4.0”;
http_user_agent; content:”dat=”; depth:4; http_client_body; nocase;
fast_pattern; pcre:”/^[a-z0-9-_/+]{1000,}/PRi”;

Just like with Snort, Suricata has a flow keyword you can use to determine what

51 https://suricata.readthedocs.io/en/latest/rules/flow-keywords.html#flow

24

Chapter 3: Snort and Suricata Rule Anatomy

The next portion of this rule is a content search for the string “POST”, followed by the
modifier, http_method. The content keyword defines what data we want to look for in the
networks stream or packet52. The http_method modifier restricts the previous content
search to the section of the HTTP client header that defines the method being used
to connect to the destination web server53. This is used to speed up performance by
restricting which portion of a packet or stream is analyzed for a particular content match. For a
reference on HTTP methods, you will want to review RFC261654.

The next portion of this rule is another content match, looking for “config.php” in the URI
portion of the HTTP client request header, via the http_uri modifier. Just like with Snort
(and similar to the http_method modifier above), the http_uri modifier makes your rules
more efficient and faster, by restricting content searches to certain portions of a packet
or stream. In this case, we only want to search in the URI portion of the HTTP request
header55.

The next portion of the rule utilizes the isdataat keyword. As the name implies, this is a
simple check that asks snort to see if there are a certain number of bytes of data in the
payload of a packet/stream56. For example, isdataat:50 will return true (and generate
an alert) if the payload portion of a packet/stream has 50 bytes or more of data within.
This can be matched from the beginning of the payload portion of a packet, or relative
from the last content match. In the case of our rule above, isdataat:!1,relative, this
is checking to see that there is at least 1 byte of data AFTER the last content match, if not,
then the check is true.

The next content match is looking for the string, “Mozilla Firefox/4.0” with the modifier
http_user_agent. As you may have guessed, this is another modifier that restricts what
portion of the packet/stream will be searched for a valid match. The HTTP user-agent
is a field in the HTTP client request header that can optionally identify what browser or
application issued an HTTP request57. It isn’t very high fidelity, can easily be modified or
spoofed, but it is an HTTP client request header field nonetheless. We’re looking for a
user-agent string that reads “Mozilla Firefox/4.0”.

The next content match is a bit of a doozy:

content:”dat=”; depth:4; http_client_body; nocase; fast_pattern;

So the first thing is that we are looking for the string “dat=” in an http packet/stream. The
modifiers however, are doing quite a few things to narrow down where Suricata will be
looking for this string. The depth modifier tells Suricata that the previous content match
should be in the first four bytes of the payload portion of the packet/stream normally.
You’ll notice the http_client_body modifier immediately after the depth modifier. The

52 https://suricata.readthedocs.io/en/latest/rules/payload-keywords.html#content
53 https://suricata.readthedocs.io/en/latest/rules/http-keywords.html#http-method
54 https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
55 https://suricata.readthedocs.io/en/latest/rules/http-keywords.html#http-uri-and-http-raw-uri
56 https://suricata.readthedocs.io/en/latest/rules/payload-keywords.html#isdataat
57 https://suricata.readthedocs.io/en/latest/rules/http-keywords.html#http-user-agent

25

Chapter 3: Snort and Suricata Rule Anatomy

58 https://suricata.readthedocs.io/en/latest/rules/pcre.html#pcre-perl-compatible-regular-expressions

http_client_body modifier tells Suricata to look for the previous content match in the
body portion of an HTTP client request. This is usually where parameters, user input, or
data that users are uploading to a web server is located, and as you might expect, comes
immediately after the HTTP client request headers. Between the depth and http_client_
body, we’re telling Suricata that this content match should be in the first four bytes of the
HTTP client request body. We also see a nocase modifier to make this string match on
upper and lowercase letter variations, and finally, we have the fast_pattern modifier. This
modifier works nearly identically to the fast_pattern:only modifier for Snort rules in that it
tells Suricata that this content search should be the one sent to the fast pattern matching
engine that Suricata uses, in order to see if the content match can be found in http traffic
it’s evaluating. Just like with Snort, the longest content match is the one that is used by
the fast pattern matcher by default, and just like with Snort, your goal with fast pattern
matching content matches is to have a unique content match used. Sometimes, a shorter
content match in your rule could end up being a more useful, unique content match and
can overall mean better rule performance due to Suricata not getting as many preliminary
matches. So in our rule above, saying that this content match, anchored to the first four
bytes of the HTTP client body should be the pattern to send to the fast pattern matcher.

The last portion of our Suricata rule is a regular expression, via the pcre keyword:

pcre:”/^[a-z0-9-_/+]{1000,}/PRi”;

Just like with Snort, Suricata features a PCRE pattern matching engine that can utilize
perl-compatible regular expressions. This particular regular expression is looking for any
of the following characters: a-z,0-9, or the symbols -, _, /, or +, repeating 1,000 or more
times. The option “P” is a Suricata-specific option that tells the pcre engine to search in
the HTTP client body. The option “R” is another Suricata-specific option that tells the pcre
pattern matching engine to begin its search relative to the last content match. In our case,
this tells the pattern matcher to start looking for characters that match the express after
the “dat=” content match at the start of the HTTP client request body. The “i” option, just
like with Snort makes the pcre pattern matching case-insensitive. For more information on
Suricata’s pcre keyword, please review the documentation online58.

26

Chapter 3: Snort and Suricata Rule Anatomy

Just like with Snort, here is an illustration to help you understand the portions of a
Suricata rule a little bit better:

Chapter 4: Analyzing Alerts
So now we know what both Snort and/or Suricata rules look like, you have access to rule
documentation for both Snort and Suricata, and you should now be able to read rules more
effectively. What about IDS alerts? Here is a collection of IDS alerts from a personal lab
environment I have set up. The alerts are generated by a Snort VM, parsed by Hurricane
Labs Add-On for Unified2, a Splunk application that parses Snort’s unified2 output files on
the sensor, and turns them into JSON plaintext logs59. Those logs are then sent from the
Splunk Universal Forwarder installation on the Snort sensor, to my lab’s Splunk indexer
for logging, and retrieval from the Splunk search head (on the same system) for querying/
retrieval60:

27

59 https://tools.kali.org/information-gathering/fragrouter
60 https://s3.amazonaws.com/snort-org-site/production/document_files/files/000/000/032/original/target_
based_frag.pdf?AWSAccessKeyId=AKIAIXACIED2SPMSC7GA&Expires=1501097853&Signature=ttDV9ycIP-
rONnqEbH7AHkR%2Ff8UU%3D

As you can see from the screen capture above, there is a ton of information to
analyze. When you are tasked with investigating IDS/IPS events, here are some of the main
questions you want to be able to answer, with answers based on the data presented
above in bold:

28

Chapter 4: Analyzing Alerts

What is the alert’s message? OS-OTHER Bash environment variable injection attempt
What are the source and destination IP addresses involved? Source:172.16.6.2 Dest:
172.16.6.3
Do we know what operating system the target system is running? Yes
Do we know what network services are hosted on the target system? Yes
What transport protocol was used? TCP
What are the source and destination ports involved? Source:42437 Dest: 21
What is the signature ID? 32069
When did this event occur: 1:48PM on April 28th, 2017
Do we have the packet that triggered the event? Yes
Are there multiple instances of the alert firing? If so, do they follow any sort of a
discernible pattern? No
Are there other IDS/IPS alerts to/from the same hosts indicating further malicious
behavior? (e.g. post-exploitation activity, other exploits thrown, brute forcing, SQL
injection, etc.) Yes

With few exceptions, most of these questions can immediately be answered with the
data available from the alert itself. Most IDS alerts will have the alert message that
triggered, some information on the network protocol used in the attack, the time the
attack occurred, the signature that fired, source and destination IP addresses involved, as
well as source and destination TCP/UDP ports (if applicable). This information should be
available no matter what IDS/IPS platform you use, regardless of it being open or closed
source.

Sometimes, depending on the platform/SIEM you are logging to, and the output format
you configure for your IDS/IPS platform, you may be able to get a copy of the packet
that triggered the IDS alert. Our Splunk add-on to parse unified2 files is able to send the
packets logged in unified2 format, show you any ASCII, human readable strings in the
data, provide a raw hex dump of the packet, and store this data in Splunk:

Some logging platforms will let you request the actual pcap. Others will show you the
a hex string (as seen in the picture above), and still more will encode the hex dump in
base64, requiring you to decode it before converting the hex string to a packet capture.
You’re probably wondering: How do I convert the raw hex dump into a packet that I can
load up in wireshark or another network analysis tool? Here is what you’ll need:

A Linux/Unix-like system with the following utilities:
The application xxd
The application od
The application text2pcap (on debian/apt-based linux distros, this is usually provided
when you run apt-get install wireshark)
The ability to copy/paste output (e.g. SSH session) or copy a file containing our hex
string to the Linux system

29

Chapter 4: Analyzing Alerts

Method 1: Fileless

Copy the hex string you want to convert back to a pcap to your system’s clipboard. In our
image above, this would be the hexadecimal string:

00 15 5D 02 02 0E 00 15 5D 02 02 0D 08 00 45 00 00 E0 EC 10 40 00 40 06
E9 E1 AC 10 06 02 AC 10 06 03 A5 C5 00 15 26 5F 9A F6 24 2E BF 30 80 18
00 E5 B4 12 00 00 01 01 08 0A 00 24 77 17 00 11 28 76 50 41 53 53 20 28
29 20 7B 20 3A 3B 7D 3B 20 2F 62 69 6E 2F 73 68 20 2D 63 20 22 70 72 69
6E 74 66 20 27 5C 31 35 30 5C 31 35 30 5C 35 37 5C 31 34 32 5C 31 35 31
5C 31 35 36 5C 32 31 31 5C 33 34 33 5C 31 32 30 5C 31 32 33 5C 32 31 31
5C 33 34 31 5C 32 36 30 5C 31 33 5C 33 31 35 5C 32 30 30 27 3E 3E 2F 74
6D 70 2F 6C 4A 70 44 4F 20 3B 20 2F 62 69 6E 2F 63 68 6D 6F 64 20 2B 78
20 2F 74 6D 70 2F 6C 4A 70 44 4F 20 3B 20 2F 74 6D 70 2F 6C 4A 70 44 4F
20 3B 20 72 6D 20 2D 66 20 2F 74 6D 70 2F 6C 4A 70 44 4F 22 0D 0A

Open an SSH session (if you haven’t already) to the system with xxd, od, and text2pcap
installed. Run the following command:

echo “00 15 5D 02 02 0E 00 15 5D 02 02 0D 08 00 45 00 00 E0 EC 10 40 00
40 06 E9 E1 AC 10 06 02 AC 10 06 03 A5 C5 00 15 26 5F 9A F6 24 2E BF 30
80 18 00 E5 B4 12 00 00 01 01 08 0A 00 24 77 17 00 11 28 76 50 41 53 53
20 28 29 20 7B 20 3A 3B 7D 3B 20 2F 62 69 6E 2F 73 68 20 2D 63 20 22 70
72 69 6E 74 66 20 27 5C 31 35 30 5C 31 35 30 5C 35 37 5C 31 34 32 5C 31
35 31 5C 31 35 36 5C 32 31 31 5C 33 34 33 5C 31 32 30 5C 31 32 33 5C 32
31 31 5C 33 34 31 5C 32 36 30 5C 31 33 5C 33 31 35 5C 32 30 30 27 3E 3E
2F 74 6D 70 2F 6C 4A 70 44 4F 20 3B 20 2F 62 69 6E 2F 63 68 6D 6F 64 20
2B 78 20 2F 74 6D 70 2F 6C 4A 70 44 4F 20 3B 20 2F 74 6D 70 2F 6C 4A 70
44 4F 20 3B 20 72 6D 20 2D 66 20 2F 74 6D 70 2F 6C 4A 70 44 4F 22 0D 0A”
| xxd -r -p - | od -Ax -tx1 -v | text2pcap - file.pcap

What this does is take the hex ascii string, sends it to the xxd command which converts
it from an ASCII string of the hex you see to a raw representation of the hex. From there,
we send that raw hex data to the od command with specific parameters to format the raw
hex data in a format that the text2pcap command can use to transform the raw data into
a packet capture (pcap). The end result is a file named “file.pcap”:

30

Chapter 4: Analyzing Alerts

Method 2: Copying files around

Highlight and copy the hex dump to your system’s clipboard. Open your text editor of
choice (For Windows, I recommend notepad++, and on OSX TextWrangler/BBEdit) and
copy the hex dump to your text editor. Save the file, making sure that you converted
newlines to Unix style (LF):

Afterwards, using SCP or your file transfer method of choice, transfer this file to your
Linux box for conversion, and use the following command (assuming the text file’s name is
“dump.txt”) the end result should be a packet capture named “dump.pcap”:

cat dump.txt | xxd -r -p - | od -Ax -tx1 -v | text2pcap - dump.pcap

Regardless of what method you used, you can then use SCP or your file copy method of
choice to copy this from your Linux system back to your primary workstation for analysis
in Wireshark, or if your Linux system has a GUI, open up wireshark and analyze the packet
capture on that system.

I copied the pcap file from my Linux box to my Windows box, and opened it in wireshark.
It was able to parse the frame, packet, and tcp headers, and determine that this was
indeed FTP traffic:

31

Chapter 4: Analyzing Alerts

So what does this packet capture tell us? It confirms the source and destination IP,
transport protocol, and the source and destination ports. It also lets us see what sort of
payload the source system was attempting to send. From the looks of things, the target
system was running an FTP server, and from what it looks like, an attacker was attempting
to perform a command injection vulnerability using the FTP PASS parameter. Let’s go look
up the rule number 32069, paying attention to the metadata sections, in particular any
reference keywords:

32

Chapter 4: Analyzing Alerts

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:”OS-OTHER Bash envi-
ronment variable injection attempt”; flow:to_server,established; con-
tent:”PASS “; depth:5; content:”() {“; fast_pattern:only; metadata:pol-
icy balanced-ips drop, policy max-detect-ips drop, policy security-ips
drop, ruleset community, service ftp; reference:cve,2014-6271; refer-
ence:cve,2014-6277; reference:cve,2014-6278; reference:cve,2014-7169;
classtype:attempted-admin; sid:32069; rev:3;)

According to the reference keyword, we have Three CVE numbers we can look up in
relation to this rule; CVE 2014-627161, 2014-627762, 2014-627863, and 2014-716964.
According to the rule header above, we can confirm that this rule is targeting FTP
servers on port 21/tcp (or systems with the FTP service tag via host attributes XML), and
by cross-referencing the packet capture with the rule content matches, we can confirm
that the ASCII text “PASS ” (with a space afterwards) appears in the first five bytes of the
packet payload, followed by the sequence “() {“ elsewhere in the packet payload. Based
on researching the CVE numbers, and the rest of the payload, we can surmise that the
attacker was attempting to exploit the “shellshock” bug on an FTP connection to the
target system.

61 https://nvd.nist.gov/vuln/detail/CVE-2014-6271
62 https://nvd.nist.gov/vuln/detail/CVE-2014-6277
63 https://nvd.nist.gov/vuln/detail/CVE-2014-6278
64 https://nvd.nist.gov/vuln/detail/CVE-2014-7169

Chapter 5: Making Judgements via Supporting Evidence
In continuing with our scenario from Chapter 4, we have a better understanding on what
the attacker is trying to do (exploit the “shellshock” vulnerability), we have some more
questions that we want to answer:

Was this attack successful?
If so, is there evidence of further malicious activity (e.g. post exploitation)?
If not, was it a false positive?
Does any IDS rule tuning need to be done?

These are questions you would need to gather further network, host, and asset
information before you could make a final judgment.

5.1: Network Diagrams and/or Asset Management

Strong asset management is a vital part of being able to interpret IDS and IPS rules
properly. Whether it’s a ticket system, a spreadsheet full of host information, an internal
wiki/confluence, vulnerability scanner logs, passive network fingerprinting suites (such as
P0f65, prads66, or Bro), or simply by connecting to the KVM or IPMI port of a system to see
with your own eyes, you need to know what Operating System and Service(s) a host is
running to come closer to answering our questions above.

In the case of my lab, I know that 172.16.6.2 is a malicious host running Kali Linux, while
172.16.6.3 is a host running Linux, particularly Metasploitable 2, based on Ubuntu 8.04
which is a very old version of the Ubuntu Linux distribution. So old, that Canonical, the
company responsible for Ubuntu, doesn’t support it anymore. Not only that, but this
installation is running a whole host of services that are all kinds of old and vulnerable;
some intentionally so. The least of which is an FTP server that our attacker attempted to
attack.

You won’t have it so easy in the real-world. You might have to call associates at datacenters
across the world to figure out what OS your server is running, or sift through weeks old
network scans, or perhaps a rarely updated spreadsheet/wiki that will be all you have.
Whatever system or systems you are using for asset management and service

33

65 http://lcamtuf.coredump.cx/p0f3/
66 https://github.com/gamelinux/prads

34

Chapter 5: Making Judgements via Supporting Evidence

67 http://heartbleed.com/
68 https://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
69 https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
70 https://securelist.com/wannacry-ransomware-used-in-widespread-attacks-all-over-the-world/78351/

detection, keep using them, keep improving them, and ensure that the information is
updated frequently, especially if you find any discrepancies. This will definitely help you
with future investigations.

In the case of our lab network, I know the destination is running Linux; an old flavor of
Linux, likely with the vulnerable version of the bash interpreter installed. So we know that
the attacker was targeting the right OS, but was the service vulnerable? Is there evidence
of post-exploitation activity?

5.2: Host-based security solutions

To answer the two questions from section 5.1, you’ll need to look at your other network
security data sources. These could be things such as other NSM sources that we have
already discussed at some length, as well as data from host-based security solutions.
Host-based security solutions and data is a bit of a far-reaching term, and can
encompass all sorts of things, like system logs, AV alerts/quarantine notifications, file integrity
monitoring, memory dumps, data from remote live forensics agents, system and
application logs, process lists, network connections (sockets and established
connections), and so on.

We’re not going to get into log analysis or Data Forensics and Incident Response (DFIR),
but you should be aware of host-based data sources you can and should have access to.
Having this data on hand can enhance your capability to respond to IDS alerts, determine
if they are true positives, and determine whether or not the host requires remediation.
Consider pulling logs from host Antimalware and security solutions (e.g. antivirus endpoints
like Symantec, Eset, Sophos, Crowdstrike, Carbon Black, Cylance, etc.), Consider pulling
logs from system and security logs (Linux/Unix: messages, syslog, dmesg, auth, secure,
Application/Service logs, etc. Windows: Application, System, Security, Audit, Sysmon,
etc.)

In the case of our IDS alert, I could easily check output for the netstat and ps commands, in
addition to looking at various logs in /var/log for any evidence of a successful exploit and/
or post-exploitation actions. Spoilers: The attacker in our scenario wasn’t successful. While
the correct sequence was sent to trigger the “shellshock” vulnerability, there are certain
conditions that had to be met in order for the exploit to succeed that were not present,
resulting in an attack, but unsuccessful exploitation. This will be a common sight for you
if you are a SOC/NSM analyst, or responsible for reviewing IDS alerts in your company,
especially if you have IDS sensors in your DMZ network segments, or at the network
perimeter.

Bad guys love to wait until a proof-of-concept (PoC) exploits for a relatively new or recent
vulnerability is available, modify it to drop a payload of their choosing, then just spray it all

35

Chapter 5: Making Judgements via Supporting Evidence

71 https://otx.alienvault.com/
72 https://www.virustotal.com/#/home/upload

over the internet. We saw this with “heartbleed67”, we saw this with “shellshock68”, and most
recently, we saw this with the shadowbrokers and the “eternal69” Windows SMB exploits
(resulting in the WannaCry70 ransomware worm). If there is a system out on the internet
with an exposed service, bad guys will throw their exploit, regardless of whether or not they
are targeting the wrong operating system, or the wrong software version of the service. It
takes less time to simply spray and pray than it does to refine a list of potential targets. This
means that after a vulnerability is identified, and a PoC exploit that results in remote code
execution is available, attackers will spray it all over the internet. Doesn’t matter if it’s
a Windows system, or if you have patches/remediations in place already, you’ll see
attackers spraying it all over the net, and see it all over your perimeter and DMZ
networks. This is why patching remote code execution vulnerabilities in general is
extremely important, but even more so in services that you expose to the internet,
because they are subjected to attacks constantly.

5.3: Open-Source Intelligence, and external data sources

Sometimes your investigations into IDS alerts won’t be easy open and close,
sometimes you have to do a little bit of extra legwork and investigate sources where
attacks came from, and/or file hashes to ascertain whether or not they were malicious, or
successful. This is where making use of public search engines, open-source intelligence and
information exchange with peers comes in handy. There are a wide variety of
open-source intelligence repositories for malware on the internet, and discussing each and
every one of them would take another 30 pages, and is beyond the scope of this already
saturated guide. So let me break this down into open-source intelligence resources that are
powerful, reliable, and mostly free:

1. Alienvault OTX71: Alienvault’s OTX is a threat intelligence exchange where people will
post information about the latest threats. This could be anything from malware campaigns,
to data dumps from honeypots that users manage. The data can be searched through,
downloaded in a variety of formats, has an API, and is free. All you have to do is register.

2. Virustotal72: Virustotal is a wonderful resource. You can submit files to virustotal, and it
submits that file to multiple antivirus engines to determine if the signature/scanning engine
detects the file as malicious. Recently Virustotal has acquired several “Next-Generation”
anti-malware solutions that use so-called “AI” or “Machine Learning” to score files on
how malicious the product thinks they are as well. In addition to submitting files, you can
also submit domains and URLs to virustotal to see if they have been seen before and/or
how many reputation blacklists determine the URL or domain to be malicious. Virustotal’s
greatest power comes from analysts being able to search on file hashes (md5, sha1, sha256)
to see if a file has already been submitted previously and how many engines marked it
as malicious. This allows analysts to determine if file they are investigating is malicious
without uploading the file to Virustotal. This is extremely important because once the file is
submitted to Virustotal, anyone with API access or a Virustotal Intelligence account can
search for the file hash and download the file. This can lead to sensitive information

36

Chapter 5: Making Judgements via Supporting Evidence

73 https://www.riskiq.com/products/passivetotal/
74 https://otx.alienvault.com/
75 https://www.virustotal.com/#/home/upload

leaking from your enterprise, or in the event of a malware investigation, could serve as a
tip-off to threat actors that they have been discovered.

RiskIQ/passivetotal73: RiskIQ is free for a limited amount of data/queries per day, but the
sheer amount of data available is great.

Threatminer74: a free resource containing all sorts of IOCs for a wide variety of malware
samples, all 100% free.

Threatcrowd75: another open-source intelligence search engine. The great thing about
threatcrowd is that it allows for easy pivoting via a node visualization system. You could
start off with a malicious IP address, and find several domains, hashes and other resources
that are tied to that IP address that can fuel indicator search and remediation efforts in
your enterprise.

5.4: Other NSM data sources

We discussed other NSM solutions aside from IDS/IPS sensors at some length earlier.
These other NSM platforms, or even other IDS/IPS alerts can be used to help determine
whether a triggered alert warrants further investigation or tuning. Consider the following:

- The nature of flow data is the collection of network traffic metadata. Use this to
your advantage to catch unknown bad things, and/or bad things using encrypted
communications. Were there any other unusual flows that come immediately before,
or immediately after the IDS alert occurred that are suspicious? Is there a pattern of
traffic that occurs after the alert that may be malware C2/beaconing (e.g. contacting a
particular IP address/domain consistently during a regular interval, etc.)? Has there been a
substantial increase in traffic where the suspected host is the originator of the increase in
traffic (e.g. increased outbound traffic that could indicate data exfiltration)?

- The nature of passive collection is to collect information about application layer
protocol connections. If you are logging HTTP client headers, are you seeing unusual,
non-standard HTTP user-agent strings after an alert has occurred? Unusual HTTP URLs
getting logged? If you are collecting passive dns data, are you seeing dns requests to DNS to new
domains? Are the volume of these requests small (e.g. only coming from a few hosts or DNS
resolvers)? Did these new logs occur in or around the time the IDS alert occurred?

- Other IDS alerts can be designed to catch post-exploitation actions (e.g. malware C2 for
known bad RATs, Trojans, etc.). Are there any other IDS alerts in or around the same time
for the same host you are currently investigating? This could be post-exploitation action,
or a persistent attacker attempting other exploitation methods.

- If you have Full Packet Capture, pull the network stream that triggered the alert and
start carving files and data out of the packet capture, especially if the network traffic is
unencrypted. You can easily obtain malware samples and all sorts of interesting things.

Chapter 6: Tuning and Noise Reduction
So you’ve made a judgement on your IDS alert if it’s a true positive, and isn’t
generating an obnoxious amount of alerts, there’s not much you have to do. Mark the alert
as reviewed, and move on with your life. What are your options for tuning your ruleset if a
particular rule is noisy? We will discuss options that are available for tuning Snort and
Suricata IDS rulesets and sensors to reduce noise. We will be discussing Suppressions,
Thresholds, BPFs, Pass Rules, and Simply disabling the rule altogether. Please note that many
of these options are Snort/Suricata specific, and that other IDS/IPS vendors have different
methods for tuning and rule management that you will have to consort with the
documentation to discover.

6.1: Disabling Rules

Disabling IDS/IPS rules is the simplest way to go. Is a rule generating a ton of false
positives? Is the rule not relevant to your operating environment (e.g. Windows
exploit alerts from a sensor on a network segment that has zero Windows hosts)? Maybe
disabling the rule is the right option for you.

For Snort and Suricata, disabling an IDS rule in your ruleset is as simple as placing a
octothorpe (#) in front of the rule header of a rule. This comments out the line entirely
and prevents the rule from being loaded into memory. What if you have multiple rules you
want to disable? Your best bet is a rule management solution like pulledpork.

Pulledpork has the disablesid.conf file that lets you specify different strings and/or
expressions to search your ruleset for, and let pulledpork handle disabling them for you.
For example, you’re running Snort in your enterprise and you used pulledpork to generate
the default “Security over Connectivity” ruleset to apply to your passive IDS sensor. This
Snort ruleset has a lot of HP Openview rules enabled by default, but you don’t use HP’s
Openview product in your environment, so you really don’t care of any of the 66 rules for
HP Openview are generating alerts.

Open the disablesid.conf file, and input the line:

pcre:HP OpenView

37

38

Chapter 6: Tuning and Noise Reduction

Save the file, and re-run pulledpork, including the disablesid.conf file as the pulledpork
documentation recommends (using the “-i” flag), and that’s 66 rules you don’t have to
worry about anymore. You can also specify CVE Numbers, MS vulnerability identification
numbers, Snort/Suricata sid numbers, or even specify entire rule categories.

Bear in mind however, disabling IDS/IPS rules isn’t always the best method. For instance,
if the IDS rule is valid, and is a valid concern, you may consider setting a rule threshold
instead, or if the rule is generating an overwhelming amount of false positives for a set of
hosts, but the rule may still be considered valuable to you, might consider implementing
a pass rule or BPF instead.

6.2: Pass Rules

As we established earlier, there are a variety of actions that can be assigned to a Snort/
Suricata IDS rule header. Pass rules are rules that if the content match of the rule occurs,
then we want to forward the packet/stream. The pass rule action is supported on both
Snort and Suricata. Not only that, but the pass action, by default, are considered highest
in action priority for both Snort and Suricata. What does this mean? Lets use an example:

I’m going to give you a real-world problem I dealt with, and how I solved with pass rules.
A few years ago a group of advanced threat actors given the moniker “Careto” were
actively exploiting targets around the world. A threat report was generated regarding their
activities, and of course a set of Snort rules were written to detect their implants. Let’s
look at sid 29760:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:”BLACKLIST Us-
er-Agent known malicious user-agent string MSIE 4.01 - Win.Trojan.Careto”;
flow:to_server,established; content:”Mozilla/4.0 |28|compatible|3B| MSIE
4.01|3B| Windows NT|29 0D 0A|”; fast_pattern:only; http_header; meta-
data:impact_flag red, policy balanced-ips drop, policy security-ips drop,
ruleset community, service http; reference:url,www.virustotal.com/en/
file/19e818d0da361c4feedd456fca63d68d4b024fbbd3d9265f606076c7ee72e8f8/
analysis/; classtype:trojan-activity; sid:29760; rev:2;)

This rule is looking for the string “Mozilla/4.0 (compatible; MSIE 4.01;
Windows NT)\r\n”. It’s a very simple content match and incredibly simple detection. The
problem with this however, is that some versions of HP’s OpenView product, when probing
systems on HTTP ports use this as the default user-agent string. HP OpenView sends
hundreds of probes every few minutes with this user-agent. You could see where
this could get annoying VERY quickly. Let assume in our example, that there are two
OpenView servers; 10.0.0.1, and 10.0.0.2. You know that they aren’t infected with this
threat actor’s implants, and you want the alerts to stop for them, but remain active for
other hosts in your network. Consider the following rule:

39

Chapter 6: Tuning and Noise Reduction

pass tcp [10.0.0.1, 10.0.0.2] any -> $EXTERNAL_NET $HTTP_PORTS (ms-
g:”PASS RULE user-agent string MSIE 4.01 - Win.Trojan.Careto”; flow:-
to_server,established; content:”Mozilla/4.0 |28|compatible|3B| MSIE
4.01|3B| Windows NT|29 0D 0A|”; fast_pattern:only; http_header; meta-
data:service http; reference:url,www.ourinternaldocumentation.corpora-
tion/passrules/orsomesuch; sid:1000000; rev:1;)

You add this rule to a local.rules file, include it your Snort.conf, and reload Snort and
suddenly you’ll notice there are a lot less alerts triggered for this rule from your
OpenView servers. But why? pass rules get evaluated first in terms of priority, that means
that the if the traffic that matches the pass rule occurs, that traffic passes through without
generating an alert, even if there is an identical rule with an alert rule action. Think of pass
rules as a surgical tuning method. You want the rule content matches to be true (like an
alert rule), but you want that specific traffic that matches the pass rule criteria to NOT
generate alerts (e.g. to or from an IP address, or group of IP addresses, and maybe even a
specific subset of destination ports).

As previously stated, pass rules are supported on both Snort and Suricata, you would
simply at them as local (as in locally created) rules and include them in the configuration
file for your IDS/IPS solution of choice. For directions on how to include local rules in
Suricata, consult the documentation76. For Snort, the directions are nearly identical – make
sure you have an “include /path/to/local.rules” statement with your other snort
rules, and that your local.rules file has your pass rule inside.

Please be aware that local rules (yes, this includes your pass rules as well) MUST have
a unique sid assigned to them. It is recommend that your local.rules file should use sid
numbers between 1000000-1999999. Every locally created rule file requires a sid
number, and a rev number. Even if all you did was copy an alert rule and change it from
“alert” to “pass” and set specific IP addresses in the rule header, the revision number
should ALWAYS start at 1. Every time you make a rule change, any change at all, that
revision number MUST be incremented. In addition to this, Suricata users should be aware
that pass rules will still log protocol information and statistics to the eve log.

6.3: BPF (Berkeley Packet Filtering)

BPF is a technology that is as old as packet capturing itself. BPFs are a sort of language
that can be used to describe what network traffic you want to collect. BPFs can range
from incredibly simple, to extremely complex. I won’t go into the intricacies of BPF here,
but there is ample, excellent documentation online that serves as an excellent reference
for understanding BPF syntax77. Lets try to address yet another real-world example where
BPF can be used by Snort or Suricata.

76 https://suricata.readthedocs.io/en/latest/rule-management/adding-your-own-rules.html
77 https://biot.com/capstats/bpf.html

40

Chapter 6: Tuning and Noise Reduction

Your organization has designated vulnerability scanner systems, and regularly scheduled
vulnerability scans. Every time these scans run, your scanner hosts generate a TON of
alerts, and rightfully so, they’re throwing scans that look like exploitation attempts at
servers in your home network. You’ve been asked to find a way to prevent the
vulnerability scanners from generating alerts on the IDS. Let’s assume your three
vulnerability scanners are 172.16.1.2, 10.0.0.2, and 192.168.1.2. Here is what a BPF
would look like to exclude your IDS from evaluating any traffic from these three hosts:

not src host (172.16.1.2 or 10.0.0.2 or 192.168.1.2)

This is a really simple BPF that ignores all traffic where these IP addresses are the source
address. Now, how do you get Snort or Suricata to use this? For Snort, place the contents
of your BPF into a file that the user you are running Snort as can access and read, and use
the “config bpf_file: /path/to/your.bpf” directive in snort.conf, or the “-F /path/
to/your.bpf” option on the command line, as per their documentation78. For Suricata, the
method is more or less the same. Create a BPF, write it to a file that the Suricata user can
access and read, and either use the “-F /path/to/your.bpf” command line option, or
the “bpf-filter: /path/to/your.bpf” option in the suricata.yaml file79.

BPF filters are extremely easy to learn, and extremely easy to get wrong with absolutely
no warning. What I mean by that is that BPFs don’t give you any warning if you mess up
the syntax, or ignore more traffic than you intended to ignore initially, meaning that if you
use a BPF incorrectly, you could be ignoring large amounts of traffic and never know it. So
long as the BPF syntax is valid, Snort or Suricata will happily accept it. So you need to be
absolutely sure that the BPF filter you craft produces the desired results, and ONLY the
desired results, or it could result in large blind spots in your IDS/IPS sensor deployments.
Tread lightly, generate packet captures, and test your packet captures against the BPF you
want to use, both with tcpdump and your IDS/IPS solution of choice before deploying
them.

6.4: Suppressions

Rule suppressions are something I never truly used, because other tuning methods just
work better. For completion’s sake however, a suppression allows you to define a series of
rules that will not generate alerts if their rule criteria is triggered, or if the rule comes from
a specific source IP, or is headed towards a particular destination IP. This seems somewhat
useful, however the rule you are suppressing is still enabled, and not only that, has to be
evaluated before a suppression is considered. In other words, every situation where you
would consider suppressing a rule, you’d be better served by disabling it, or using a pass
rule. If you are interested in studying how to configure Suppressions, both the Snort and
Suricata documentation have detailed instructions on how to utilize them8081.

78 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node16.html#SEC-
TION00313000000000000000
79 https://suricata.readthedocs.io/en/latest/configuration/snort-to-suricata.html#bpf
80 http://suricata.readthedocs.io/en/latest/performance/ignoring-traffic.html#suppress
81 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node19.html#SEC-
TION00343000000000000000

41

Chapter 6: Tuning and Noise Reduction

6.5: Thresholds

Rule thresholds are somewhat interesting. A threshold lets you define how many times
an alert can occur in a given time window (limit), or define how many times a rule must
match before an alert gets logged (threshold), or you can do both (both). Note that
thresholds are a rule option you can implement in a rule body, in addition to be a global option
you can specify in either snort.conf, or suricata.yaml (Please note, that per the Snort user
manual, that the threshold rule option is considered deprecated, and is being replaced by the
detection_filter rule option8283. Additionally, per the Snort user manual, event_filters,
and thresholds are essentially the same thing – “threshold is an alias for event_filter84”).
For the sake of simplicity, we’re only going to discuss setting global thresholds, that is,
threshold settings that are included in either the snort.conf or suricata.yaml file.

For example, if you have an alert to detect SSH bruteforce attacks, and you know that
the same source IP address is going to be attempting to brute-force internet-exposed
IP addresses at your perimeter constantly (god help you, I hope you turned off password
authentication), but you still want to see what IP addresses are attacking your servers,
maybe you would set up a limit that says to log a single alert from a source IP address
attempting to brute force you, once every 5 minutes (300 seconds). That would look like
this (assuming rule number 1337 was a rule for detecting SSH brute force attacks):

threshold gen_id 1, sig_id 1337, type limit, track by_src, count 1,
seconds 300

This tells Snort or Suricata that no matter how many alerts trigger for rule 1337 in a 5
minute window (starting from the first alert logged during this five minute window) from
a specific source IP address, only log a single alert. Let’s say you want to do the opposite
now, and you want to tell Snort or Suricata that you only want to log an alert if it occurs
X number of times in a certain time window that would look like this (again, assuming our
rule number is 1337)

threshold gen_id 1, sig_id 1337, type threshold, track by_src, count 5,
seconds 300

This threshold is telling Snort/Suricata that rule 1337 needs to trigger 5 times in 5
minutes before an alert will get logged. Please be aware that if you are in IPS mode, that
regardless of whether or not the alert gets logged, the packet WILL be dropped if the rule
matches. I typically don’t use the threshold type very often for exactly this reason; I want
at least one alert per time period to get logged and let me know something has happened.

82 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node35.html
83 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node34.html#detection_filter
84 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node19.html#event_filtering

42

Chapter 6: Tuning and Noise Reduction

I don’t want to set a threshold that has to be met before I log even a single alert, because
there is always that chance that the threshold won’t be met, and I’ll never see that alert,
either leading to a loss in visibility (if the attacker is “low and slow” enough), or a massive
troubleshooting headache (if the sensor is inline). If you want to learn more about how
to format thresholds, refer to the Snort or Suricata documentation for further details8586.

85 http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node19.html#event_filtering
86 http://suricata.readthedocs.io/en/latest/configuration/global-thresholds.html#global-thresholds

Chapter 7: Bonus Content - Bootstraps and Pre-built
NSM Distributions

This guide has focused on NSM technologies, and IDS/IPS functionality. While effort
has been put forth to list out individual open-source tools, there are a few operating
system distributions (and bootstrapper/build scripts) which are built around network security
monitoring that include practically all of the required tools “out of the box” to get started
with NSM technology immediately.

Some of these solutions are recommended for non-production network use and may be
suitable for a shared network lab environment, a home lab or home network, or simply to
serve as proof of concept to show what open-source NSM tools are capable of. Here is
a small selection of open-source Linux distributions that I have been made aware of for
NSM enthusiasts:

Security Onion87: Security Onion is a Linux Distribution built on Ubuntu Linux, maintained
by Security Onion Solutions. I have referred to it as the “Kali Linux of NSM distros”, with
a plethora of NSM tools available sure to meet everyone’s needs. In addition to being
available as a Linux Distro, there is also a Security Onion PPA containing pre-built
software packages for easily installing just the components you desire on a pre-existing
Ubuntu installation, thereby granting you the ability to custom install only the tools and
features you desire.

Red Onion88: Some places don’t like Ubuntu, and forbid you from using it for anything that
touches production. Maybe your workplace mandates the use of CentOS or Redhat due
to enterprise licensing. Red Onion is a collection of “boostrap” scripts that will install a
pre-defined set of tools on top of a Redhat or CentOS Linux installation.

RockNSM89: Rock NSM is another NSM bootstrap solution built and maintained by Missouri
Cyber (MOCYBER). RockNSM, like Red Onion, takes a slightly different approach from the
smorgasboard of options that the Security Onion distro gives you. Instead, there are only
a handful of tightly integrated tools installed on top of an existing Redhat Enterprise Linux
7 or CentOS 7 Linux installation. Instead of shipping as a distribution, RockNSM ships
as either Vagrant90 (for virtualization platforms), or as a build script that utilizes Ansible91,
grabbing required components and installing them on-the-fly.

SELKS92: SELKS is a Debian-based Linux Distribution provided by Stamus networks
that comes preinstalled with Suricata, ElasticSearch93, Logstash94, Kibana95, Scirius, and
Evebox96. The distribution is built primarily for IDS/IPS centering around Suricata as an
IDS platform.

43

87 https://github.com/Security-Onion-Solutions/security-onion
88 https://github.com/hadojae/redonion
89 http://rocknsm.io
90 https://www.vagrantup.com
91 https://www.ansible.com
92 https://github.com/StamusNetworks/SELKS
93 https://www.elastic.co
94 https://www.elastic.co/products/logstash
95 https://www.elastic.co/products/kibana
96 https://evebox.org

