
Normalizing Metamorphic Malware Using Term Rewriting

Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane, & ArunLakhotia
University of Louisiana at Lafayette

arun@louisiana.edu

Abstract

A malicious program is considered metamorphic if it can
generate offspring that are different from itself. The dif-
ferences between the offspring make it harder to recognize
them using static signature matching, the predominant tech-
nique used in malware scanners. One approach to improv-
ing the ability to recognize these metamorphic programs
is to first “normalize” them to remove the variations that
confound signature matching. This paper proposes mod-
eling the metamorphic engines of malicious programs as
term-rewriting systems and then formalizes the normaliza-
tion construction problem as a problem of constructing a
normalizing term rewriting system such that its rule set
maintains three properties: termination, confluence, and
equivalence-preservation. Risks associated with failingto
assure these three properties are outlined. A strategy is
proposed for solving the normalization construction prob-
lem. Two approximations are also defined in cases where
exact solution is not feasible/possible. These are based on
relaxing the confluence and equivalence preservation re-
quirements. A simple priority scheme is outlined for re-
ducing the number of false matches the approximations
may produce. The results of a case study are reported;
the study demonstrates the feasibility of the proposed ap-
proaches by normalizing variants of a metamorphic virus
called “W32.Evol”.

1 Introduction

Malicious programs like worms, viruses, and trojans are
collectively known as “malware” [16]. Malware is called
“metamorphic” when it is able mutate or to construct off-
spring that differ from itself [20]. The collection of mech-
anisms a malware uses to mutate are referred to as its
“metamorphic engine”.W95.RegSwap, for example, was
an early metamorphic virus whose metamorphic engine
rewrote the code by consistently substituting the registers

used throughout [20].

Figure 1: Detection using signature for each

The reason metamorphic engines were developed, of
course, was to enable a malware to avoid detection by
malware scanners [14]. One of the primary techniques
used by malware scanners is to match invariant patterns
of data, code, or behavior. Any such distinguishing pat-
tern can be called a “signature”. The threat that metamor-
phic malware poses for all signature matching techniques
is that it reduces or removes invariants the match relies
upon. In the worst case the malware scanner would re-
quire a signature for every variant, as visualized in Fig-
ure 1. WhileW95.RegSwap could be matched using a
more general signature [20], more powerful metamorphic
engines could create many more variants—possibly un-
bounded quantities—each of which bear little obvious re-
semblence to the original. Indeed, metamorphic engines
have been evolving in such a direction [10, 20]. Recent
thought on the matter is that current scanning techniques,
by themselves, will not be able to counteract more powerful
self-transformation methods [19].

One method for recognizing metamorphic malware is to
re-transform every possible program variant into a single
common form or, at least, a much smaller number of vari-
ants. As a first approximation one may think of the goal is
to “undo” the metamorphic changes to recover the original
program. However in reality the true aim is not to recover an
original program, but rather a “normal” form which is rep-
resentative of the class of all programs that are being con-

1

sidered equivalent. If the normalization is successful the
prevalent signature-matching techniques can be leveraged
to detect, as visualized in Figure 2.

This paper shows how to construct normalizers for meta-
morphic programs. Theories and techniques from the field
of term rewriting [3] are employed. Term rewriting is a
general model of computation involving sets ofrules. A
normalizer can be constructed from a term rewiting model
of a metamorphic engine by judiciously reverting the direc-
tion of some of the rewrite rules and adding additional rules
to guarantee a unique normal form. The paper’s main con-
tributions are in (a) formalizing the normalizer construction
problem (NCP) using term rewriting, (b) proposing a strat-
egy for solving this problem, and (c) demonstrating that cer-
tain relaxations of correctness conditions may still yieldan
effective normalizer while avoiding potentially costly orfal-
lible static program analyses.

Figure 2: Detecting all variants using a normal form

Section 2 defines the NCP and introduces the necessary
term rewriting definitions, it also lists the critical problems
involved in creating a useful normalizer. Section 3 defines a
strategy for solving the NCP. First, a method forreorienting
rules is described which creates a normalizing rule set such
that termination is ensured. Second a strategy is described
for making the normalizer confluent by applying acomple-
tion procedure. Section 4 discusses how to generalize the
strategies from Section 3 in cases where one or more of the
correctness properties cannot be assured. Section 5 reports
on a case study using the normalizers forW32.Evol cre-
ated using the proposed approach. It demonstrates the fea-
sibility of the strategy and the potential usefulness of the
approximated normalizer. Section 7 concludes the paper.

2 The NCP

Early viruses and worms tried to increase genetic varia-
tion within their populations by using such tricks as se-
lecting from multiple behaviors and modifying the encryp-
tion scheme used to encode or “pack” the programs. These
were examples of what are termed “polymorphic” worms
and viruses [19]. Although the number of forms increased
via polymorphism, they were closely related, since these
worms and viruses did not perform complicated transfor-
mation of their code bodies. Malware scanners were pre-
sented some new hurdles but these were possible to over-
come since, at the very least, the fact that the code bodies
were not rewritten means that they were at some point there
and ready to be recognized. Beginning in 1998, however,
metamorphic malware appeared that would rewrite the main
bodies of their code. This development had been expected.
Cohen had observed that a program can reproduce either
exactly or with “mutations” [8]. It is typically a goal for a
metamorphic engine to ensure its mutations are programs
that are equivalent to the original. That is, the metamorphic
engines strive to besemantics-preserving. When a meta-
morphic engine is added to any given malicious payload
program it can generate a collection of equivalent programs,
each of which have potentially different code bodies.

Even if the metamorphic engines preserve semantics
they can create enough mischief to pose difficult problems
for malware scanners. The fact that all variants are se-
mantically equivalent provides limited help since deciding
program equivalence is known to be an undecideable prob-
lem in the general case. Moreover, Chess and White [6]
showed that detecting that a program has the property than
any one of its instances ”potentially produces” any other in-
stance is also undecidable. Spinellis [17] offered a proof
that correctly detecting evolving bounded-length virusesis
NP complete. While a complete and general solution may
be too costly or simply impossible, it does not follow that
the simpler problem of merely recognizing some malware
variants is infeasible. Oue approach to handle metamor-
phics is to reduce the number of variants that need to be
considered bynormalizingthe programs.

2.1 The normalization problem

Semantics-preserving program-to-program transformations
can be used to normalize programs and thus reduce the vari-
ation in the input to the signature matching schemes. Effec-
tively, this prunes the search space for a pattern matcher,
simplifying the recognition problem. Such an approach
was introduced by Lakhotia and Mohammed [13]. Unfor-

2

tunately, while their system can reduce the number of vari-
ations it may still be an enormous number (1020) to have
in a signature database. The reason being specific transfor-
mations of the metamorphic engine are not considered, so
the transformations are not tailored to normalizing a specific
collection of related programs.

Instead of trying to define generic transformations, how-
ever, it might be feasible to define transformers specific to
a metamorphic engine. Once a metamorphic engine is re-
leased it can be studied, and it may be possible to use the
knowledge gained to revert all of it’s outputs to a normal
form. More specifically, the goal would be to build a nor-
malizer that could take any program variant constructed by
the metamorphic engine and transform it in such a way that
if two normal forms are equal it implies the programs are
equivalent. With such a normalizer in hand a single signa-
ture could be developed for the normal form of a virus or
worm. Suspect programs could then first be normalized and
if the normal form is matched to the signature we can be
sure that the suspect program was equivalent.

While the scheme isprima faciesound there are several
potential hurdles to this approach, since simply “reversing”
the transformations of the metamorphic engine is not a suf-
ficient strategy. We illustrate this fact here using an exam-
ple from the metamorphic virusW32.Evol. Examples of its
rewrite rules are shown in Figure 3. The disassembly of
the parent’s code is shown in the left column and the cor-
responding transformed offspring code in the right column,
the parts of the code changed in the offspring are shown in
bold face.

Parent Offspring (transformed)
push eax push eax
mov [edi], 0x04 push ecx

(a) jmp label mov ecx, 0x04
mov [edi], ecx
pop ecx
jmp label

push 0x04 mov eax, 0x04
(b) mov eax, 0x09 push eax

jmp label mov eax, 0x09
jmp label

mov eax, 0x04 mov eax, 0x04
(c) push eax push eax

jmp label mov eax, 0x09
jmp label

Figure 3: Examples of rewrite rules fromW32.Evol

In example (a), the metamorphic engine has replaced an
immediatemov into a mov from a register. This transfor-
mation does not change the semantics of the code. In the

transformed code, the registerecx needed to be disturbed
in order to change themov immediate instruction. Any ex-
isting value ofecx, however, is preserved by thepush and
subsequentpop immediately surrounding the two middle
mov instructions. If a malware failed to add these blocks
the result could be semantically different, and is likely to
not work correctly. In example (b), thepush immediate
instruction has been changed to amov immediate into a
temporary register followed by apush from that register.
Like the transformation in (a), this transformation is seman-
tics preserving, but only under the condition that the regis-
ter eax is not live at the point where transformation takes
place. In example (c) a “junk” statement (ie. one with no
effect on the computation)mov eax, 0x09 is inserted.
It is also semantics preserving under the same condition.

The transformation examples in Figure 3 help introduce
several potential problems in developing a normalizer. Con-
sider, for instance, themov eax, 0x04 ; push eax
; mov eax, 0x09 sequence. The transformations in
both (b) and (c) can produce the sequence. If one were to
choose to revert to the code in (b) instead of (c) (or vice
versa), will this decision affect the results? Can we guar-
antee only a single normal form will be produced for any
variant? Can we always perform condition checks? So is it
possible that transforming a non-malicious program would
yield a false match? Without appropriate understanding of
how the transformation systems work it will be impossible
to answer these questions, or to build a correct normalizer.
In the following subsections we overview some necessary
background from the term rewriting literature and show that
we can formalize the NCP.

2.2 Term rewriting background

Term rewriting systems are widely studied and good refer-
ences exist (e.g., Baader and Nipkow [3]); this section only
briefly reviews definitions and results needed for later sec-
tions.

Term rewriting system (TRS). A TRS, T , consists of
a set ofrewrite rules. A rule is denoteds→ t, wheres

andt are terms (described below). Figure 4 shows a simple
example of a term rewriting system.

Terms, subterms, atomic, and ground.Terms are com-
posed of constants, variables, functions, or functions on
terms. For example, the termmultiply(2, add(3, 1)) is
built using the binary functionsadd andmultiply and the
constants1, 2, and 3. A term t may contain other terms
(calledsubtermsof t). An atomicterm is one that does not
contain subterms. Agroundterm is one that does not con-

3

tain variables.

add(1, 1) → 2 ; add(1, 2) → 3 ; add(0, 3) → 3

Figure 4:Example rule set transforming arithmetic expressions

Reduction relation (→T). Any term rewriting system
T induces a relation→T on terms, also represented as→
where obvious. Given termss andt,→T is defined as fol-
lows: s →T t holds if and only if, for some rewrite rule
s′ → t′, s has, as a subterm, an instance ofs′ which, if re-
placed with its corresponding instance oft′, turnss into t;
that is, applying rules′ → t′ to s transforms it intot. A
conditional TRS may have conditions attached to the rules
(p|R). This means that ruleR may be applied only when
the conditionp holds.

Equivalence relation (⋆
←→). Theequivalence relation,

⋆
←→, is the reflexive symmetric transitive closure of the re-
lation→ induced byT , it partitions the set of terms into
equivalence classes. Given aT , we use the notation[x]T
to refer to the equivalence class of a termx, as defined by

⋆
←→.

Normal form. If a term t is not related to any other
term under→T , thent is said to be innormal formwith
respect the rewriting systemT . NormT (x) is the set of
terms in[x]T which are in normal form. The termadd(2, 2)

is in normal form with respect to the example rewriting sys-
tem shown in Figure 4, andadd(1, add(1, 1)) is related to
add(1, 2) under the relation induced by this system.

Termination. T is terminating if there exists no infinite
descending chain of the forma→ b→ c · · ·.

Confluence. Let w, x, y and z denote arbitrary terms.
Suppose there is a sequence of applications of rewriting
rules that reducesx to y and another sequence that reduces
x to z. The system is confluent ify andz are joinable. Two
termsy andz are said to bejoinableif there is a sequence of
applications of rewriting rules that reducesy andz to some
termw. To determine, in general, if a TRS is confulent is
undecidable.

Convergence. A TRS is convergentif it is confluent
and terminating. If a TRS is convergent then determining
membership in an equivalence class is decidable since each
equivalence class has a unique normal form.

2.3 NCP as a term rewriting problem

Using the term rewriting theory of Section 2.2 we can for-
mally restate the normalization problem introduced in Sec-
tion 2.1.

Modeling the metamorphic engineIt may be possible
to formalize a metamorphic engine as a term rewriting sys-
tem by considering assembly statements as terms, treating
operations as functions, and considering its operands either
constants (which must match exactly) or variables (which
allow patterend matches). Figure 5 depicts an example of
how rules might typically be written in a term rewriting for-
malism. For example, in this casemov is the function,reg1

andimm are variables.

mov (reg1, imm)

−→

{ push (reg2);
mov (reg2, imm);
mov (reg1, reg2);
pop (reg2); }

Figure 5: Sample metamorphic transform as a rewrite rule

In modeling the metamorphic engine each rule should
preserves semantics. The rule in Figure 5 has no condition
attached to it, meaning its conditions for firing are always
true, and the left hand side must be equivalent to the right
hand side at any time. This is true for the potential rules in
Figure 3(a).1 Other rewrite rules need to be conditioned to
be able to encode such transformations as the ones shown
in Figure 3(b) and Figure 3(c). Using a scheme like this
we were able to formally model the metamorphic engine in
W32.Evol. Henceforth, for simplicity we will write rules in
simple assembly language rather than as shown in Figure 5.

The normalizer construction problem (NCP)Suppose
one has formalized a metamorphic engine as a TRS, as de-
scribed above. Call this TRSM . M induces an equivalence
relation and so partitions programs into equivalence classes
[x]M . If M happens to be convergent then the problem of
determining equivalence for variants of a metamorphic pro-
gram is, in principle, solvable. Given a malicious sample
s and a sample programp one can determine whetherp is
a variant ofs, i.e., whetherp ∈ [s]M . To do this a TRS
can apply rewrite rules top ands until they match. IfM is
convergent it is confluent, and if it is confluent thenp and
s will be joinable if they are equivalent, and not joinable if
not. This malware recognizer could therefore produce no
false positives (no non-equivalent programs would joins)
nor false negatives (all equivalentp would eventually join).

In practice, however, it is unlikely thatM is conver-
gent, otherwise the metamorphic engine will only serve to
progress the malware towards a single form, thereby defeat-
ing the goal of metamorphism. HoweverM can be useful
if it can be modified to create a new TRS which is conver-
gent. The problem of doing this is what we call NCP: the

1Modulo issues considered unimportant, such as code size and location.

4

normalizer construction problem. It involves constructing a
convergent rule setN from M such that the the equivalence
classes ofM are equal to the equivalence classes ofN . Us-
ing the definitions of convergent, this means the following
properties must hold:

Equivalence. For all programsx, [x]M = [x]N . If M and
N are not equivalent wrtx then one of the following
conditions would hold: (a)∃k.k ∈ [x]M ∧ k 6∈ [x]N or
(b) ∃k.k 6∈ [x]M ∧ k ∈ [x]N . The first condition leads
to false negatives and the second one to false positives.

Termination. Clearly a successful normalizer must halt,
which means thatN must be guaranteed to have no
rules that could cause an infinite chain of application.

Confluence. If N is confluent then the order of application
is not important.

If all of these properties are met a correct malware recog-
nition system might be built on top of signature matching
techniques. For any given program samplep, the rules of
N can be applied until the result is irreducible. IfN is ter-
minating the applications are guaranteed to stop. IfN is
both terminating and confluent the same normal form will
be produced for any two programsp andq that are equiv-
alent under[q]N , and different normal forms will be pro-
duced otherwise. If[x]M = [x]N for all x then no false
positives or false negative matches would occur. With such
anN , one applies it to a known virus or worm samples to
create its normal formNormN (s) and then builds a signa-
ture for it. Then for any suspicious programp one creates
NormN (p) and checks for a match to a signature.

3 A strategy for solving NCP

Assuming one is given the term rewriting model of the
metamorphic engine,M , the challenge of NCP is to con-
struct a new rule setN such that the equivalence classes
induced byN andM are equal, andN is convergent. Here
we give a strategy for constructing such anN . The strategy
involves the application of two procedures toM : areorient-
ing procedurewhich seeks to ensure termination, and then
a completion procedure[11] which seeks to ensure conflu-
ence. The completion procedure may not terminate. How-
ever, should it terminate it will yield a solution to the NCP.

3.1 Reorienting procedure: termination

The first step is to apply a reorienting procedure toM to cre-
ate a terminating rule setM t. Reorienting means to change

the direction of a transformation. For example,x→ y is re-
oriented by turning it intoy → x. Sincex→ y means that
x is considered equivalent toy, reorienting the rule will not
change the equivalence classes induced by→. Reorienting
any rule inM to construct anM ′ will therefore never result
in a case where[x]M 6= [x]M ′ .

To solve the NCP not just any reorienting procedure will
do. It needs to ensure that the reorientedM will always ter-
minate on any given input. The naive strategy for construct-
ing M t is to reorient every rule fromM . One can think of
this as constructing the “undo” rule set: for every rule in
M reversing the directions should “undo” each metamor-
phic change. This procedure, however, does not guarantee
termination. For example ifM = {a→ b, b→ a}, then
reorienting both rules will yield a rule set that is still non-
terminating. In order to ensure the result is terminating, the
reorientation procedure must be based on awell-founded
reduction ordering> on the terms. Given such a>, then
a M ′ can be constructed such that∀a→ b ∈ M ′.a > b.
Each rule in thisM ′ would serve to reduce the terms and
since> is well founded thenM ′ is guaranteed to always
terminate [3].

For the term language we have used in our prototype we
can define a well-founded> using a length-reducing lex-
icographic ordering, as follows. Letlen(x) be length of
termx, wherelen(x) is the number of atomic subterms it
contains. Then leavea→ b if a > b, otherwise reorient it.
Thus for rules of unequal length we simply reorient the rule
if the term on the right is longer than the term on the left. If
both sides of a rule are of equal length then we consider the
particular instance where the rule matches a string, which
would of course be all ground terms, and reorient towards
the lexicographically first pair. This definition ensures that
the> is a well-founded reduction order for our rule sets.

Figure 6 shows an example of reorienting a set of rules.
Figure 6(a) shows the initial rules forM , and 6(b) shows the
M t that results from reorientingM according to the length-
reducing lexicographically first ordering. These are condi-
tional rewrite rules. The post condition columnCi specifies
the condition that must be true at the end of corresponding
li, for all conditional rewrite rules. TheCi for an uncondi-
tional rule is alwaystrue denoted by a T in the figure. As
an example of reorientation, consider rowM1. The length
of l1 is 1 and that ofr1 is 4, so it must be reoriented.

3.2 Completion procedure: confluence

Given the terminatingM t, testing if it is confluent is decid-
able [3]. If the confluence test is successful then it would

5

mean that the system is convergent. From previous step we
already know the equivalence constraint is satisfied. Which
means that both the constraints specified in previous section
are satisfied and such aM t will solve the NCP, and the out-
put will be the desiredN . If the confluence test fails then
M t would contain what are calledcritical overlaps[3, 11]
in the rules. The left hand sides of a pair of, not necessarily
distinct, rules is said to critically overlap if the prefix ofone
matches the suffix of the other, or if one is a subterm of the
other.

For example, two critical overlaps inM t shown in Fig-
ure 6(b) are: (1)M t

1
andM t

2
overlap atpush eax, and (2)M t

2

andM t
3

overlap atpush eax. These critical overlaps indicate
conflicts in the rule set that may make the set non-confluent.
In this example a case can occur where either ofM t

2
or M t

3

might be applied, and the resulting irreducible forms may
not be equivalent. Note that whileM t

1
andM t

3
may seem at

Rule Post Condition li

Mi Ci → ri

M1 mov [reg1+imm], reg2
T → push eax

mov eax, imm
mov [reg1+eax], reg2
pop eax

M2 eax is dead push imm
→ mov eax, imm

push eax

M3 eax is dead push eax
→ push eax

mov eax, imm

M4 T NOP
→

(a)M , the original rule set

Rule Post Condition li

M
t

i
Ci → ri

M
t

1
push eax

T mov eax, imm
mov [reg1+eax], reg2
pop eax

→ mov [reg1+imm], reg2

M
t

2
eax is dead mov eax, imm

push eax
→ push imm

M
t

3
eax is dead push eax

mov eax, imm
→ push eax

M
t

4
T NOP

→

(b) M
t, the reoriented rule set

Figure 6: Example application of reorienting procedure

first to have a critical overlap atpush eax ; mov eax, imm, it
is not critical if we take into account the corresponding post
conditions. In particular,M t

3
requires theeax register to be

dead, yet forM t
1
, after themov eax, imm is performed it must

be the case thateax is never dead, and hence there is no pos-
sibility for the potential overlapping rules to be applicable
simultaneously.

Critical Pairs

2mov eax, imm

push eax

mov eax, imm

push imm

mov eax, imm

push eax
mov eax, imm

push imm

M’

M’2

3

New RuleM’

Figure 7: Completion step forM t
2

andM t
3

In cases whereM t is terminating but non-confluent a
completion procedure can be applied to try to make it con-
fluent. A completion procedure attempts to adds rules to a
rule set such that all members of the same equivalence class
are joinable. It is an undecidable problem, in general, to en-
sure convergence of a rule set. However it is possible to test
for confluence on a terminating set, so it is possible to ap-
ply a completion procedure and simply test to see whether
it worked. This is the strategy suggested here.

Rule Post Condition li

Ni Ci → ri

N1 push eax
T mov eax, imm

mov [reg1+eax], reg2
pop eax

→ mov [reg1+imm], reg2

N2 eax is dead mov eax, imm
push eax

→ push imm

N3 eax is dead push eax
mov eax, imm

→ push eax

N4 T NOP
→

N5 eax is dead push imm
mov eax, imm

→ push imm

N6 T push imm
mov eax, imm
mov [reg1+eax], reg2
pop eax

→ mov eax, imm
mov [reg1+imm], reg2

Figure 8: Rule setN , the result of the completion procedure

In our case we applied the completion procedure of

6

Knuth and Bendix [11]. This procedure successfully com-
pleted the fullM t for W32.Evol, giving the ’ideal’ normal-
izing set. The procedure searches for critical overlaps and
then adds rules which connect the two potentially distinct
and irreducible forms. Figure 7 illustrates the process of
completing for the critical overlap betweenM t

2
and M t

3
.

The new rule, as shown, connects the two irreducible terms
push imm; mov eax, imm andpush imm. Repeatedly applying
this procedure to all critical overlaps from Figure 6 termi-
nated, giving us the desiredN as appears in Figure 8.

4 Approximated solutions to NCP

When the strategy described in Section 3 works, the result-
ing normalizer is guaranteed to be convergent. This was
shown to be, in many respects, an ideal situation: not only
would there be only one normal form to build signatures
for, N would also come with a guarantee that each equiva-
lence class has a distinct normal form, eliminating the po-
tential for false matches. Two more cases are considered
here: (1) when the completion procedure fails to terminate
with a confluent rule set, and (2) when one uses an imple-
mentation of the normalizer which does not calculate the
conditions correctly for the conditional rules. We call these
“approximated” solutions to NCP because they fail to meet
at least one of the requirements for an exact solution. A
strategy is outlined for dealing with the approximation at
the term rewriting system implementation level by imple-
menting a priority scheme.

4.1 Failure to complete

Section 3 noted that the completion procedure is not guar-
anteed to terminate with a confluent rule set. Even though
it completed successfully in the case ofW32.Evol’s meta-
morphic engine, one may still encounter a case where an
alternative approach is required.

One possibility is to simply use the (possibly partially
completed)M t as the normalizer without a guarantee of
confluence. One cost of doing so is that the equiva-
lence classes induced byM t may have multiple irreducible
normal forms; that is there may exist anx such that
|NormMt(x)| > 1. Whether this fact poses a serious prob-
lem for application in a malware scanner may depend upon
the normalizer or the particular metamorphic program itself.
For instance it might happen that all of the irreducible forms
in NormMt(s) for some malware samples are highly sim-
ilar. The similarity between the normal forms may allow all
of them to be matched using a small number of signatures—

possibly a single signature. So while having a confluent nor-
malizer is a laudable goal it may not always be necessary to
achieve it. The case study in Section 5 provides some sup-
port for this possibility.

A second approach is to apply anad hoccompletion. An
analyst would have to examineM t and add rules to create
N ′ which the analyst believes will produce a single normal
form under the priority scheme discussed in Section 4.3.
There are, ofcourse, risks of manual errors.

4.2 Incorrect condition evaluation

Conditional analysis requires complicated analyses includ-
ing control flow and points-to information [2]. In the gen-
eral case these costs are likely to be exorbitant for an ordi-
nary desktop malware scanner to perform. Perhaps worse
yet, it might not be feasible to calculate the required con-
dition information correctly for obfuscated malware using
static analysis techniques.

For the above reasons one may wish to develop a nor-
malizer N ′ for M that is not guaranteed to calculate the
conditions correctly. The effective result is that the induced
equivalence relationship no longer correctly reflects the true
program equivalences, i.e.,[x]M 6= [x]N ′ and we might
have false negatives and false positives.

4.3 Priority scheme

As surveyed by [22], in the case when system is not con-
vergent one can define a rule application strategy to reach
the optimal solution. We have experimented with a sim-
ple priority scheme, that tries to compensate for the above
approximations, for rule application which is designed to
reduce the likelihood of producing false results. This pri-
ority scheme was used in the prototype in the case study
described in the following section.

The priority scheme is constructed as follows. The ini-
tial set of rules inN ′ is first partitioned into two subsys-
tems such the one has all unconditional rules while the
other has conditional ones. Call these rule subsetsN ′

U
and

N ′

C
, respectively. Consider the rule set in Figure 8. Then

N ′

U
= {N1, N4, N6} andN ′

C
= {N2, N3, N5}. The nor-

malization process proceeds by applying rules fromN ′

U
un-

til the result is irreducible. ThenN ′

C
is checked for a rule

that can apply. If one (any one) can be applied it is done
and the procedure loops back into applying allN ′

U
until the

result is again irreducible. The process loops in this fashion
until no more rules from either set can be applied.

This system is equivalent to a scheme with a priority-
sensitive application order such that all the rules inN ′

U
have

7

higher priorities than any rule inN ′

C
. There is a simple in-

tuitive justification to this simple priority scheme: we know
the rules inN ′

U
preserve semantics, whereas application of

any rule inN ′

C
may not. Keeping the unsafe rules at a lower

priority means that every safe applications will be tried be-
fore an unsafe one. As a result, some improper rule appli-
cations may be avoided because a higher priority rule will
block it’s application.

5 Case study

Even though Knuth and Bendix completion procedure ter-
minated in the case ofW32.Evol, a case study was per-
formed to evaluate the effectiveness of the two approxi-
mated solutions described in Section 4.

5.1 Subject and preparation

W32.Evol was selected as a test subject. We obtained a
copy of the 12288-byte long first generation sample from
the “VX Heavens” archive [1]; henceforth we will refer to
this sample as the “Eve” sample.W32.Evol was considered
to be a suitable subject for our study. First, it is not a serious
threat to handle in our secure environment. Second, it cre-
ates sufficient variation in its mutated offspring that static
signature based techniques fail: at the time of this writing
we believe it is being matched by emulation [20]. Some of
its transforms introduce arithmetic on immediate constants;
these mutation rules, alone, can yield232 different varieties
at each possible mutation site. Even ignoring all variations
in constants and registers, by examining its possible mu-
tation sites and methods we conservatively estimate that it
could reasonably generate on the order of10686, 101339,
and101891 variations in its second, third, and fourth gener-
ations, respectively. It is a representative example of a virus
with a sophisticated mutating engine. Third, as we noted in
the examples from previous sections,W32.Evol’s metamor-
phic engine includes conditional transformations and criti-
cal overlaps. This provides a good test for the sufficiency of
the proposed NCP solution strategies.

5.2 Materials and Protocol

The procedure we used is as follows: 1) construct a set of
term rewriting rulesM that representW32.Evol’s mutat-
ing operations; 2) construct the normalizing setN by re-
orienting the rules inM as described in Section 3, but not
completing it; 3) implement theN in a prioritized term-
rewriting system that does not check conditions, as de-

scribed in Section 4.3 (this is prioritized with no comple-
tion); 4) completeN in an ad-hoc manner to getNC and
implement in a second prototype using the priority scheme
and not checking conditions (this is prioritized with ad-hoc
completion); and 5) feed samples to the two prototypes to
generate the normal forms, and collect results

Extraction of the mutating rules was done by hand using
a combination of code reading and code tracing in a debug-
ger. The normalizing set consisted of55 rules of which15
did not participate in any overlap. Prototype transformers
for N andNC were implemented using theTXL program-
ming language [9].2 We choose 26 different variants spread
across six generations to perform the tests.

5.3 Results

Table 1 quantifies the results from the prioritized with no
completion normalization prototype. Row four of Table 1
indicates the average length of the normal forms of the vari-
ants after normalizing with the prioritized scheme. Note
that the normal form of the Eve is smaller than the original
Eve. This is due to two factors. First, much of the reduc-
tion in size is due to transformations inN that happen to
be length reducing. These are unconditionally semantics-
preserving, which means that the equivalence class is pre-
served. A simple example isnop removal. Second there
are conditional length reducing rules applied wrongly since
we are not performing any analysis to check for conditions.
Row five simply lists how many lines, on average, differ.
It was calculated using thediff program and counting
the number of lines that differed from the normal form of
the Eve. Row six shows the average raw percentage of se-
quence commonality between the normal form of the Eve,
and the normal form of the sample variant. Rows seven and
eight of Table 1 record execution information for the proto-
type.

The second prototypeNC , prioritized with ad-hoc com-
pletion, created a single normal form of 2166 lines for all
samples.

5.4 Discussion

The results suggest that for a realistic metamorphic virus,
even by using these approximated methods, it is possible
to effectively normalize the variations sufficiently well that
simple signature matching can be made effective. We were
able construct a convergent normalizer forW32.Evol , which
is not only bound to give a single normal form for all its

2TXL system version 10.4 (8.1.05).

8

1 Generation Eve 2 3 4 5 6

2 ASO 2182 3257 4524 5788 6974 8455

3 MSNF 2167 2167 2184 2189 2195 2204

4 ASNF 2167 2167 2177 2183 2191 2204

5 LNC 0 0 10 16 24 37

6 PC 100.00 100.00 99.54 99.27 98.90 98.32

7 ET 2.469 3.034 4.264 6.327 7.966 11.219

8 TC 16 533 980 1472 1902 2481

ASO=average size of original (LOC); MSNF=maximum size of normal form

(LOC); ASNF=average size of normal form (LOC); LNC=lines not in common;

PC=percentage common; ET=execution time (CPU secs); TC=transformation

count

Table 1: Results using prioritized, non-completed normal-
izer

variants but also guarantees that there will be no false pos-
itives or negatives. Even though we did not implement the
convergent normalizer, these claims directly follow from
term rewriting theory. The main question now about the
normalization scheme is whether the approximation meth-
ods would be sufficient in normalizing realistic metamor-
phic programs, containing difficult overlapping and condi-
tional rules. Table 1 shows that even the prioritized scheme
without completion creates, more than 98%, similar nor-
mal forms for all of the samples. To us it seems likely that
relatively simple signature matching would be sufficient to
recognize the normalized variants ofW32.Evol. Better yet,
the priority scheme with ad-hoc completion gave single nor-
mal form.

As noted in the previous section, the normal forms of
both the normalizers are smaller in size than the original
program partly because of incorrect application of condi-
tional rules. This may result in semantically different pro-
grams (normal forms) which opens up the possibility of
false matches. We expected this result as priority scheme
cannot be a complete substitute for conditional analysis.
However, out of the 2182 original lines of code, by man-
ual inspection we found incorrect conditional applicationto
occur at two and three sites for priority without and with
ad-hoc completion respectively. The probability of finding
programs semantically different on only three lines from
W32.Evol on an actual users desktop is extremely low and
such false matches should not be a problem. This result also
shows the effectiveness of the priority scheme.

These are just proof of concept normalizers that we have
implemented which work on assembly code instead of bi-
naries. So, the timing information is just to give the reader
an idea of the size vs time curve, actual values can be made

lower using efficient implementations. Also,W32.Evol al-
ways grows in size, which is not good for the virus itself
as the code for higher generations becomes too large, re-
cent metamorphic malware try to keep the size of their code
in reasonable limits (almost constant) by applying some
‘code-shrinking’ transforms, which means that the time to
normalize will remain in reasonable limits as well (almost
constant), even for their higher generations, since its a func-
tion of code size.

One might be tempted to find fault with the fact that the
normalization technique depends upon having a formaliza-
tion of the metamorphic engine to begin with. This means
the technique cannot be expected to find malicious pro-
grams for which the metamorphic engine is unknown. This
may not be be a significant problem. Signature matching al-
ready cannot detect novel malware either, but it has proved
to be a suitable technology when signature database are able
to be updated frequently. One could also argue that the con-
struction of the model of the metamorphic engine can be
difficult and costly. First, we note that metamorphic engines
evolve slowly—much slower than the worms and viruses
themselves [19], the number of new metamorphic engines
released in a year is low enough to make them amenable
for such analysis. Second, there are metamorphic engine
libraries available, since its not an easy technique even for
malware authors to implement, a lot of malware just use ex-
isting libraries for their metamorphic engine. This means
that we just need to construct normalizers for these rela-
tively few metamorphic libraries to be able to catch all mal-
ware families who use it.

It is not possible to generalize from a single case study
with any confidence. Nonetheless other complex metamor-
phic viruses like RPME, Zmist, Benny’s Mutation Engine,
Mistfall, Metaphor, etc [4, 21, 23, 24] have transformations
similar to that ofW32.Evol and it appears likely that for
some subset of metamorphic programs, a syntactic normal-
izer built according to the strategy in Section 4 will nor-
malize all variants sufficiently well for ordinary signature
matching to succeed well enough.

6 Relations to other work

Sz̈or and Ferrie [20] give a list of both current and poten-
tial metamorphic transformations. They describe emula-
tion based detection techniques used by industrial anti-virus
scanners. Stepan improves upon dynamic emulation by re-
targeting a binary to the host CPU [18]. However emula-
tion based techniques are known to be slow and vulnera-
ble to well known anti-emulation techniques. More recent

9

work by Sz̈or [19] gives a exhaustive list of metamorphic
transformations and suggests that most current technologies
would not be able to handle the threat posed by metamor-
phic viruses. Perriot and Bruschiet. al suggest using code
optimization to normalize metamorphic variations [5, 15],
similar to Lakhotia and Mohammed [13], and is similarly
limited. The normalizers we construct are able to deter-
mine whether a program belongs to the equivalence class
of a semantically equivalent program. It therefore relatesto
other efforts that try to find malicious behaviors in arbitrary
code by looking for semantically or behaviorally equivalent
fragments. An example of such an approach is given by
Christodorescuet. al [7]. The work by Kruegelet al. [12]
is similarly related in that they try to find mutated variantsof
identical behavior in polymorphic worms. Their approach
differs in that they use structural information and perform
matching based on signatures comprised of control flow
graphs (CFGs). However malware tend to be obfuscated
so it is not easy to extract CFGs from unfriendly code.

7 Conclusions

This paper defined the NCP and defined strategies that can
be employed to construct normalizing transformers. The
normalizer construction strategy can be fallible in the sense
that it may not lead to a convergent normalizer, even though
it did for W32.Evol. But the case study provided a demon-
stration that in certain cases this may not matter, since mul-
tiple normal forms may not present a problem so long as
the normal forms associated with the malicious program are
similar enough.

Traditional signature matching methods do not have a
suitable solution to counter the metamorphic engines, and
without a significant advance in program matching they
cannot be expected to. Normalization, nonetheless, has the
potential to counter a metamorphic engine by normalizing
all possible variants into a single normal form, from which
standard signature matching can be, once again, effective.
Our case study demonstrates that even approximated nor-
malizers might yield sufficiently good results, meaning they
have some potential to be turned into efficient implementa-
tions in real malware scanners. This strategy also has the
potential to be completely automated.

References

[1] VX heavens.vx.netlux.org.
[2] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[3] F. Baader and T. Nipkow.Term Rewriting and All That.
Cambridge University Press, 1998.

[4] Benny. Benny’s metamorphic engine for win32.vx.
netlux.org/29a/29a-6/29a-6.316.

[5] D. Bruschi, L. Martignoni, and M. Monga. Using code nor-
malization for fighting self-mutating malware. InInterna-
tional Symposium on Secure Software Engineering, 2006.

[6] D. Chess and S. White. An undetectable computer virus. In
In Proceedings of Virus Bulletin Conference, Sept. 2000.

[7] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant. Semantics-aware malware detection. In2005 IEEE
Symposium on Security and Privacy, pages 32– 46, 2005.

[8] F. Cohen. Computational aspects of computer viruses.Com-
puters & Security, 8(4):325–344, 1989.

[9] J. R. Cordy. TXL – a language for programming language
tools and applications. InACM 4th International Workshop
on LTDA, volume 110 ofElectronic Notes in Theoretical
Computer Science, pages 3–31. Dec. 2004.

[10] M. Jordon. Dealing with metamorphism.Virus Bulletin,
pages 4–6, 2002.

[11] D. E. Knuth and P. B. Bendix. Simple word problems in
universal algebras. InAutomation of Reasoning 2: Classical
Papers on Computational Logic 1967-1970, pages 342–376.
Springer, 1983.

[12] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. In8th Symposium on RAID, Lecture Notes in
Computer Science. 2005.

[13] A. Lakhotia and M. Mohammed. Imposing order on pro-
gram statements and its implication to av scanner. In11th
IEEE WCRE, pages 161–171, Nov. 2004.

[14] C. Nachenberg. Computer virus-antivirus coevolution.
Communications of the ACM, 40(1):47–51, Jan 1997.

[15] F. Perriot. Defeating polymorphism through code optimiza-
tion. In Proceedings of Virus Bulletin 2003, 2003.

[16] E. Skoudis.Malware: Fighting Malicious Code. Prentice-
Hall, 2004.

[17] D. Spinellis. Reliable identification of bounded-length
viruses is np-complete.IEEE Transactions on Information
Theory, 49(1):280– 284, Jan. 2003.

[18] A. E. Stepan. Defeating polymorphism: Beyond emulation.
In Virus Bulletin Conference. Virus Bulletin, October 2005.

[19] P. Sz̈or. The Art of Computer Virus Research and Defense.
Symantec Press, 2005.

[20] P. Sz̈or and P. Ferrie. Hunting for metamorphic. In11th
International Virus Bulletin Conference, 2001.

[21] The Mental Driller. Metamorphism in practice.vx.
netlux.org/29a/29a-6/29a-6.205.

[22] E. Visser. A survey of rewriting strategies in program trans-
formation systems. InWorkshop on Reduction Strategies in
Rewriting and Programming (WRS’01), volume 57 ofElec-
tronic Notes in Theoretical Computer Science, 2001.

[23] Z0mbie. Automated reverse engineering: Mistfall engine.
vx.netlux.org/lib/vzo21.html.

[24] Z0mbie. Some ideas about metamorphism.vx.netlux.

org/lib/vzo20.html.

10

