

Bill Havanki

Moving Hadoop to the Cloud
Harnessing Cloud Features and
Flexibility for Hadoop Clusters

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95963-3

[LSI]

Moving Hadoop to the Cloud
by Bill Havanki

Copyright © 2017 Bill Havanki Jr. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Marie Beaugureau Production Editor: Colleen Cole
Copyeditor: Kim Cofer Proofreader: Christina Edwards
Indexer: WordCo Indexing Services, Inc. Interior Designer: David Futato
Cover Designer: Karen Montgomery Illustrator: Rebecca Demarest

July 2017: First Edition

Revision History for the First Edition
2017-07-05: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491959633 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Moving Hadoop to the Cloud, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491959633

Table of Contents

Foreword. xi

Preface. xiii

Part I. Introduction to the Cloud

1. Why Hadoop in the Cloud?. 3
What Is the Cloud? 3
What Does Hadoop in the Cloud Mean? 4
Reasons to Run Hadoop in the Cloud 5
Reasons to Not Run Hadoop in the Cloud 7

What About Security? 7
Hybrid Clouds 8
Hadoop Solutions from Cloud Providers 8

Elastic MapReduce 9
Google Cloud Dataproc 10
HDInsight 10
Hadoop-Like Services 10
A Spectrum of Choices 10

Getting Started 11

2. Overview and Comparison of Cloud Providers. 13
Amazon Web Services 13

References 14
Google Cloud Platform 14

References 15
Microsoft Azure 15

iii

References 16
Which One Should You Use? 16

Part II. Cloud Primer

3. Instances. 21
Instance Types 22
Regions and Availability Zones 23
Instance Control 24
Temporary Instances 25

Spot Instances 26
Preemptible Instances 26

Images 27
No Instance Is an Island 27

4. Networking and Security. 29
A Drink of CIDR 29
Virtual Networks 30

Private DNS 32
Public IP Addresses and DNS 32

Virtual Networks and Regions 33
Routing 34

Routing in AWS 36
Routing in Google Cloud Platform 37
Routing in Azure 37

Network Security Rules 38
Inbound Versus Outbound 38
Allow Versus Deny 38
Network Security Rules in AWS 39
Network Security Rules in Google Cloud Platform 42
Network Security Rules in Azure 44

Putting Networking and Security Together 45
What About the Data? 46

5. Storage. 47
Block Storage 47

Block Storage in AWS 48
Block Storage in Google Cloud Platform 48
Block Storage in Azure 49

Object Storage 49
Buckets 50

iv | Table of Contents

Data Objects 51
Object Access 51
Object Storage in AWS 52
Object Storage in Google Cloud Platform 53
Object Storage in Azure 53

Cloud Relational Databases 55
Cloud Relational Databases in AWS 56
Cloud Relational Databases in Google Cloud Platform 56
Cloud Relational Databases in Azure 57

Cloud NoSQL Databases 58
Where to Start? 59

Part III. A Simple Cluster in the Cloud

6. Setting Up in AWS. 63
Prerequisites 63
Allocating Instances 65

Generating a Key Pair 65
Launching Instances 65

Securing the Instances 71
Next Steps 71

7. Setting Up in Google Cloud Platform. 73
Prerequisites 73
Creating a Project 74
Allocating Instances 75

SSH Keys 75
Creating Instances 77

Securing the Instances 84
Next Steps 85

8. Setting Up in Azure. 87
Prerequisites 87
Creating a Resource Group 89
Creating Resources 90
SSH Keys 96
Creating Virtual Machines 96

The Manager Instance 96
The Worker Instances 103

Next Steps 103

Table of Contents | v

9. Standing Up a Cluster. 105
The JDK 105
Hadoop Accounts 106
Passwordless SSH 106
Hadoop Installation 107
HDFS and YARN Configuration 108

The Environment 108
XML Configuration Files 110
Finishing Up Configuration 112

Startup 112
SSH Tunneling 112
Running a Test Job 113

What If the Job Hangs? 114
Running Basic Data Loading and Analysis 115

Wikipedia Exports 115
Analyzing a Small Export 115

Go Bigger 121

Part IV. Enhancing Your Cluster

10. High Availability. 125
Planning HA in the Cloud 126

HDFS HA 126
YARN HA 128

Installing and Configuring ZooKeeper 128
Adding New HDFS and YARN Daemons 130

The Second Manager 130
HDFS HA Configuration 131
YARN HA Configuration 135

Testing HA 137
Improving the HA Configuration 138

A Bigger Cluster 139
Complete HA 139
A Third Availability Zone? 139

Benchmarking HA 139
MRBench 140
Terasort 141
Grains of Salt 142

11. Relational Data with Apache Hive. 145
Planning for Hive in the Cloud 145

vi | Table of Contents

Installing and Configuring Hive 146
Startup 149
Running Some Test Hive Queries 149
Switching to a Remote Metastore 150

The Remote Metastore and Stopped Clusters 157
Hive Control Scripts 158
Hive on S3 158

Configuring the S3 Filesystem 158
Adding Data to S3 159
Configuring S3 Authentication 161
Configuring the S3 Endpoint 164
External Table in S3 164

What About Google Cloud Platform and Azure? 165
A Step Toward Transient Clusters 165
A Different Means of Computation 166

12. Streaming in the Cloud with Apache Spark. 167
Planning for Spark in the Cloud 167
Installing and Configuring Spark 168
Startup 169
Running Some Test Jobs 170
Configuring Hive on Spark 171

Add Spark Libraries to Hive 171
Configure Hive for Spark 171
Switch YARN to the Fair Scheduler 172
Try Out Hive on Spark on YARN 172

Spark Streaming from AWS Kinesis 174
Creating a Kinesis Stream 174
Populating the Stream with Data 176
Streaming Kinesis Data into Spark 178

What About Google Cloud Platform and Azure? 183
Building Clusters Versus Building Clusters Well 183

Part V. Care and Feeding of Hadoop in the Cloud

13. Pricing and Performance. 187
Picking Instance Types 187

The Criteria 188
General Cluster Instance Roles 188

Persistent Versus Ephemeral Block Storage 190
Stopping and Starting Entire Clusters 192

Table of Contents | vii

Using Temporary Instances 193
Geographic Considerations 195

Regions 195
Availability Zones 195

Performance and Networking 196

14. Network Topologies. 197
Public and Private Subnets 197

SSH Tunneling 199
SOCKS Proxy 201
VPN Access 203
Access from Other Subnets 204

Cluster Topologies 204
The Public Cluster 204
The Secured Public Cluster 205
Gateway Instances 207
The Private Cluster 208
Cluster Access to the Internet and Cloud Provider Services 209

Geographic Considerations 211
Regions 211
Availability Zones 211

Starting Topologies 213
Higher-Level Planning 213

15. Patterns for Cluster Usage. 215
Long-Running or Transient? 215
Single-User or Multitenant? 218
Self-Service or Managed? 219
Cloud-Only or Hybrid? 220
Watching Cost 221
The Rising Need for Automation 222

16. Using Images for Cluster Management. 223
The Structure of an Image 224

EC2 Images 224
GCE Images 225
Azure Images 225

Image Preparation 225
Wait, I’m Using That! 227

Image Creation 228
Image Creation in AWS 228
Image Creation in Google Cloud Platform 229

viii | Table of Contents

Image Creation in Azure 231
Image Use 231

Scripting Hadoop Configuration 232
Image Maintenance 232
Image Deletion 233

Image Deletion in AWS 233
Image Deletion in Google Cloud Platform 233
Image Deletion in Azure 234

Automated Image Creation with Packer 234
Automated Cloud Cluster Creation 236

Cloudera Director 236
Hortonworks Data Cloud 236
Qubole Data Service 237
General System Management Tools 237

Images or Tools? 238
More Tooling 238

17. Monitoring and Automation. 239
Monitoring Choices 239

Cloud Provider Monitoring Services 240
Rolling Your Own 241

Cloud Provider Command-Line Interfaces 241
AWS CLI 242
Google Cloud Platform CLI 242
Azure CLI 244
Data Formatting for CLI Results 245

What to Monitor 245
Instance Existence 245
Instance Reachability 246
Hadoop Daemon Status 248
System Load 250
Putting Scripting to Use 252

Custom Metrics in CloudWatch 253
Basic Metrics 253
Defining a Custom Metric 254
Feeding Custom Metric Data to CloudWatch 255
Setting an Alarm on a Custom Metric 258

Elastic Compute Using a Custom Metric 260
A Custom Metric for Compute Capacity 260
Prerequisites for Autoscaling Compute 261
Triggering Autoscaling with an Alarm Action 262
What About Shrinking? 263

Table of Contents | ix

Other Things to Watch 263
Ingesting Logs into CloudWatch 264

Creating an IAM User for Log Streaming 264
Installing the CloudWatch Agent 265
Creating a Metric Filter 267
Creating an Alarm from a Metric Filter 268

So Much More to See and Do 271

18. Backup and Restoration. 273
Patterns to Supplement Backups 273
Backup via Imaging 274
HDFS Replication 275

Cloud Storage Filesystems 276
HDFS Snapshots 277

Hive Metastore Replication 277
Logs 278
A General Cloud Hadoop Backup Strategy 279
Not So Different, But Better 279
To the Cloud 280

A. Hadoop Component Start and Stop Scripts. 281

B. Hadoop Cluster Configuration Scripts. 285

C. Monitoring Cloud Clusters with Nagios. 297

Index. 305

x | Table of Contents

Foreword

Apache Hadoop as software is a simple framework that allows for distributed pro‐
cessing of data across many machines. As a technology, Hadoop and the surrounding
ecosystem have changed the way we think about data processing at scale. No longer
does our data need to fit in the memory of a single machine, nor are we limited by the
I/O of a single machine’s disks. These are powerful tenets.

So too has cloud computing changed our way of thinking. While the notion of colo‐
cating machines in a faraway data center isn’t new, allowing users to provision
machines on-demand is, and it’s changed everything. No longer are developers or
architects limited by the processing power installed in on-premise data centers, nor
do we need to host small web farms under our desks or in that old storage closet. The
pay-as-you-go model has been a boon for ad hoc testing and proof-of-concept
efforts, eliminating time spent in purchasing, installation, and setup.

Both Hadoop and cloud computing represent major paradigm shifts, not just in
enterprise computing, but affecting many other industries. Much has been written
about how these technologies have been used to make advances in retail, public sec‐
tor, manufacturing, energy, and healthcare, just to name a few. Entire businesses have
sprung up as a result, dedicated to the care, feeding, integration, and optimization of
these new systems.

It was inevitable that Hadoop workloads would be run on cloud computing provid‐
ers’ infrastructure. The cloud offers incredible flexibility to users, often complement‐
ing on-premise solutions, enabling them to use Hadoop in ways simply not possible
previously.

Ever the conscientious software engineer, author Bill Havanki has a strong penchant
for documenting. He’s able to break down complex concepts and explain them in
simple terms, without making you feel foolish. Bill writes the kind of documentation
that you actually enjoy, the kind you find yourself reading long after you’ve discov‐
ered the solution to your original problem.

Foreword | xi

Hadoop and cloud computing are powerful and valuable tools, but aren’t simple
technologies by any means. This stuff is hard. Both have a multitude of configuration
options and it’s very easy to become overwhelmed. All major cloud providers offer
similar services like virtual machines, network attached storage, relational databases,
and object storage—all of which can be utilized by Hadoop—but each provider uses
different naming conventions and has different capabilities and limitations. For
example, some providers require that resource provisioning occurs in a specific
order. Some providers create isolated virtual networks for your machines automati‐
cally while others require manual creation and assignment. It can be confusing.
Whether you’re working with Hadoop for the first time or a veteran installing on a
cloud provider you’ve never used before, knowing about the specifics of each envi‐
ronment will save you a lot of time and pain.

Cloud computing appeals to a dizzying array of users running a wide variety of work‐
loads. Most cloud providers’ official documentation isn’t specific to any particular
application (such as Hadoop). Using Hadoop on cloud infrastructure introduces
additional architectural issues that need to be considered and addressed. It helps to
have a guide to demystify the options specific to Hadoop deployments and to ease
you through the setup process on a variety of cloud providers, step by step, providing
tips and best practices along the way. This book does precisely that, in a way that I
wish had been available when I started working in the cloud computing world.

Whether code or expository prose, Bill’s creations are approachable, sensible, and
easy to consume. With this book and its author, you’re in capable hands for your first
foray into moving Hadoop to the Cloud.

— Alex Moundalexis,
May 2017

xii | Foreword

Preface

It’s late 2015, and I’m staring at a page of mine on my employer’s wiki, trying to think
of an OKR. An OKR is something like a performance objective, a goal to accomplish
paired with a way to measure if it’s been accomplished. While my management chain
defines OKRs for the company as a whole and major organizations in it, individuals
define their own. We grade ourselves on them, but they do not determine how well
we performed because they are meant to be aspirational, not necessary. If you meet
all your OKRs, they weren’t ambitious enough.

My coworkers had already been impressed with writing that I’d done as part of my
job, both in product documentation and in internal presentations, so focusing on a
writing task made sense. How aspirational could I get? So I set this down.

“Begin writing a technical book! On something! That is, begin working on one
myself, or assist someone else in writing one.”

Outright ridiculous, I thought, but why not? How’s that for aspirational.

Well, I have an excellent manager who is willing to entertain the ridiculous, and so
she encouraged me to float the idea to someone else in our company who dealt with
things like employees writing books, and he responded.

“Here’s an idea: there is no book out there about Running Hadoop in the Cloud.
Would you have enough material at this point?”

I work on a product that aims to make the use of Hadoop clusters in the cloud easier,
so it was admittedly an extremely good fit. It didn’t take long at all for this ember of
an idea to catch, and the end result is the book you are reading right now.

Who This Book Is For
Between the twin subjects of Hadoop and the cloud, there is more than enough to
write about. Since there are already plenty of good Hadoop books out there, this book
doesn’t try to duplicate them, and so you should already be familiar with running

Preface | xiii

https://en.wikipedia.org/wiki/OKR

Hadoop. The details of configuring Hadoop clusters are only covered as needed to get
clusters up and running. You can apply your prior Hadoop knowledge with great
effectiveness to clusters in the cloud, and much of what other Hadoop books cover
still applies.

It is not assumed, however, that you are familiar with the cloud. Perhaps you’ve dab‐
bled in it, spun up an instance or two, read some documentation from a provider.
Perhaps you haven’t even tried it at all, or don’t know where to begin. Readers with
next to no knowledge of the cloud will find what they need to get rolling with their
Hadoop clusters. Often, someone is tasked by their organization with “moving stuff
to the cloud,” and neither the tasker nor the tasked truly understands what that
means. If this describes you, this book is for you.

DevOps engineers, system administrators, and system architects will get the most out
of this book, since it focuses on constructing clusters in a cloud provider and inter‐
facing with the provider’s services. Software developers should also benefit from it;
even if they do not build clusters themselves, they should understand how clusters
work in the cloud so they know what to ask for and how to design their jobs.

What You Should Already Know
Besides having a good grasp of Hadoop concepts, you should have a working knowl‐
edge of the Java programming language and the Bash shell, or similar languages. At
least being able to read them should suffice, although the Bash scripts do not shy
away from advanced shell features. Code examples are constrained to only those lan‐
guages.

Before working on your clusters, you will need credentials for a cloud provider. The
first two parts of the book do not require a cloud account to follow along, but the
later hands-on parts do. Your organization may already have an account with a pro‐
vider, and if so, you can seek your own account within that to work with. If you are
on your own, you can sign up for a free trial with any of the cloud providers this book
covers in detail.

What This Book Leaves Out
As stated previously, this book does not delve into Hadoop details more than neces‐
sary. A seasoned Hadoop administrator may notice that configurations are not neces‐
sarily optimal, and that clusters are not tuned for maximum efficiency. This
information is left out for brevity, so as not to duplicate content in books that focus
only on Hadoop. Many of the principles for Hadoop maintenance apply to cloud
clusters just as well as ordinary ones.

xiv | Preface

The core Hadoop components of HDFS and YARN are covered here, along with
other important components such as ZooKeeper, Hive, and Spark. This doesn’t imply
at all that other components won’t work in the cloud; there are simply so many com‐
ponents that, due to space considerations, not all could be included.

A limited set of popular cloud providers is covered in this book: Amazon Web Serv‐
ices, Google Cloud Platform, and Microsoft Azure. There are other cloud providers,
both publicly available and deployed privately, but they are not included. The ones
that were chosen are the most popular, and you should find that their concepts trans‐
fer over rather directly to those in other providers. Even so, each provider does things
a little, or a lot, differently from its peers. When getting you up and running, all of
them are covered equally, but beyond that, only Amazon Web Services is fully con‐
sidered, since it is the dominant choice at this time. Brief summaries of equivalent
procedures in the other providers are given to get you started with them.

Overall, between Hadoop and the cloud, there is just so much to write about. What’s
more, cloud providers introduce new services and revamp older services all the time,
and it can be challenging to keep up even when you work in the cloud every day. This
book attempts to stick with the most vital, core Hadoop components and cloud serv‐
ices to be as relevant as possible in this fast-changing world. Understanding them will
serve you well when integrating new features into your clusters in the future.

How This Book Works
Part I starts off this book by asking why you would host Hadoop clusters in a cloud
provider, and briefly introduces the providers this book looks at. Part II describes the
common concepts of cloud providers, like instances and virtual networks. If you are
already familiar with a cloud provider or two, you might skim or skip these parts.

Part III begins the hands-on portion of this book, where you build out a Hadoop
cluster in one of the cloud providers. There is a chapter for the unique steps needed
by each provider, and a common chapter for bringing up a cluster and seeing it in
action. Later parts of the book use this first cluster as a launching point for more.

If you are interested in making an even more capable cluster, Part IV can help you. It
covers adding high availability and installing Hive and Spark. You can try any combi‐
nation of the enhancements, and learn even more about the ramifications of running
in a cloud provider.

Finally, Part V looks at patterns and practices for running cloud clusters well, from
designing for price and security to dealing with maintenance. Those first starting out
in the cloud may not need the guidance in this part, but as usage ramps up, it
becomes much more important.

Preface | xv

Which Software Versions This Book Uses
Here are the versions of Hadoop components used in this book. All are distributed
through Apache:

• Apache Hadoop 2.7.2
• Apache ZooKeeper 3.4.8
• Apache Hive 2.1.0
• Apache Spark 1.6.3 and 2.0.2

Code examples require:

• Java 8
• Bash 4

Cloud providers update their services continually, and so determining the exact “ver‐
sions” used for them is not possible. Most of the work in the book was performed
during 2016 with the services as they existed at that time. Since then, service web
interfaces may have changed and workflows may have been altered.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xvi | Preface

This element signifies a general note.

This element indicates a warning or caution.

IP Addresses
Many of the examples throughout this book include IP addresses, usually for cluster
nodes. The example IP addresses are drawn from reserved address ranges as specified
in RFC 5737. They should never resolve to an actual IP address anywhere on the
internet or within private networks. Change them as needed when using the exam‐
ples in your work.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/bhavanki/moving-hadoop-to-the-cloud.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Moving Hadoop to the Cloud by Bill
Havanki (O’Reilly). Copyright 2017 Bill Havanki Jr., 978-1-491-95963-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xvii

https://tools.ietf.org/html/rfc5737
https://github.com/bhavanki/moving-hadoop-to-the-cloud
mailto:permissions@oreilly.com

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920051459.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xviii | Preface

http://oreilly.com/safari
http://oreilly.com/safari
http://www.oreilly.com/catalog/0636920051459
http://www.oreilly.com/catalog/0636920051459
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
I’m well aware that barely anyone reads the acknowledgments in a book, especially a
technical one like this. So, for those few of you who are reading this right now, well,
first, I’d like to thank you for your diligence, not to mention your attention and sup‐
port in the first place. Truly, thanks for spending time and/or money on what I’ve
written here, and I hope it helps you.

Thank you to everyone who’s helped to build up the amazing Apache Hadoop eco‐
system, from its founders to its committers to its contributors to its users, for show‐
ing us a new way of computing. Thank you also to everyone who’s built and
maintained the amazing cloud provider services, for showing us another new way of
computing and empowering the rest of us to use it.

This book would be worse off without its reviewers: Jesse Anderson, Jenny Kim, Don
Miner, Alex Moundalexis, and those who went unnamed or whom I’ve forgotten.
They each applied their expertise, experience, and attention to detail to their feed‐
back, filling in where I left important information out and correcting what I got
wrong. I also owe thanks to Misha Brukman and the Google Cloud Platform team for
looking over Chapter 7. My editors, Marie Beaugureau and Colleen Toporek, did a
wonderful job of shepherding the writing process and giving feedback on organiza‐
tion, formatting, writing flow, and lots of other details. Finally, extra thanks is due to
Alex Moundalexis for writing the foreword.

One of my favorite aphorisms is by Laozi: “A good traveler has no fixed plans and is
not intent on arriving.” I’ve arrived at the destination of authoring a book, but no one
observing my travel, including me, could have guessed that I’d have gotten here. The
road has wound through a career with a few different employers and with a few more
projects, and I was privileged to walk alongside a truly wonderful collection of cow‐
orkers and friends along the way. I owe them all my gratitude for their company, and
their roles in my journey.

I owe special thanks, of course, to my current employer, Cloudera, for the opportu‐
nity to create this book and the endorsement of the effort. I specifically want to thank
Vinithra Varadharajan, my manager for the past few years, for her unwavering faith
in and promotion of my writing effort; and also Justin Kestelyn, who got the ball roll‐
ing between me, my employer, and O’Reilly. My teammates past and present on my
current project have all played a part in helping me learn about the cloud and have
contributed their thoughts and opinions, for which I’m grateful: John Adair, Asif
Arman, Cagdas Bayram, Jayita Bhojwani, Michael Cudahy, Xiaohua Guo, David
Han, Joe Heyming, Ying Li, Andrei Savu, Fahd Siddiqui, and Michael Wilson.

Preface | xix

1 Te amo et semper amabo.

Finally, I must thank my family, including my parents and in-laws for their encour‐
agement, my daughters Samantha and Lydia, and especially my wife Kathy.1 They
have been constantly supportive of me during the long effort it’s taken to write this
book, and excited for it to be one of my accomplishments. I love them all very much.

xx | Preface

PART I

Introduction to the Cloud

The purpose of the first part of this book is to orient you. First, the exact meaning of
“the cloud” when it comes to working with Hadoop clusters is explored, so that it is
clear what the benefits and drawbacks are. Then, overviews of three major public
cloud providers are provided, including a little of their history as well as their
approaches to doing business.

CHAPTER 1

Why Hadoop in the Cloud?

Before embarking on a new technical effort, it’s important to understand what prob‐
lems you’re trying to solve with it. Hot new technologies come and go in the span of a
few years, and it should take more than popularity to make one worth trying. The
short span of computing history is littered with ideas and technologies that were once
considered the future of their domains, but just didn’t work out.

Apache Hadoop is a technology that has survived its initial rush of popularity by
proving itself as an effective and powerful framework for tackling big data applica‐
tions. It broke from many of its predecessors in the “computing at scale” space by
being designed to run in a distributed fashion across large amounts of commodity
hardware instead of a few, expensive computers. Many organizations have come to
rely on Hadoop for dealing with the ever-increasing quantities of data that they
gather. Today, it is clear what problems Hadoop can solve.

Cloud computing, on the other hand, is still a newcomer as of this writing. The term
itself, “cloud,” currently has a somewhat mystical connotation, often meaning differ‐
ent things to different people. What is the cloud made of? Where is it? What does it
do? Most importantly, why would you use it?

What Is the Cloud?
A definition for what “the cloud” means for this book can be built up from a few
underlying concepts and ideas.

First, a cloud is made up of computing resources, which encompasses everything
from computers themselves (or instances in cloud terminology) to networks to stor‐
age and everything in between and around them. All that you would normally need
to put together the equivalent of a server room, or even a full-blown data center, is in
place and ready to be claimed, configured, and run.

3

The entity providing these computing resources is called a cloud provider. The most
famous ones are companies like Amazon, Microsoft, and Google, and this book focu‐
ses on the clouds offered by these three. Their clouds can be called public clouds
because they are available to the general public; you use computing resources that are
shared, in secure ways, with many other people. In contrast, private clouds are run
internally by (usually large) organizations.

While private clouds can work much like public ones, they are not
explicitly covered in this book. You will find, though, that the basic
concepts are mostly the same across cloud providers, whether pub‐
lic or private.

The resources that are available to you in the cloud are not just for you to use, but
also to control. This means that you can start and stop instances when you want, and
connect the instances together and to the outside world how you want. You can use
just a small amount of resources or a huge amount, or anywhere in between.
Advanced features from the provider are at your command for managing storage,
performance, availability, and more. The cloud provider gives you the building
blocks, but it is up to you to know how to arrange them for your needs.

Finally, you are free to use cloud provider resources for whatever you wish, within
some limitations. There are quotas applied to cloud provider accounts, although
these can be negotiated over time. There are also large, hard limits based on the
capacity of the provider itself that you can run into. Beyond these somewhat “physi‐
cal” limitations, there are legal and data security requirements, which can come from
your own organization as well as the cloud provider. In general, as long as you are
not abusing the cloud provider’s offerings, you can do what you want. In this book,
that means installing and running Hadoop clusters.

Having covered some underlying concepts, here is a definition for “the cloud” that
this book builds from:

“The cloud” is a large set of computing resources made available by a cloud provider for
customers to use and control for general purposes.

What Does Hadoop in the Cloud Mean?
Now that the term “cloud” has been defined, it’s easy to understand what the jargony
phrase “Hadoop in the cloud” means: it is running Hadoop clusters on resources
offered by a cloud provider. This practice is normally compared with running
Hadoop clusters on your own hardware, called on-premises clusters or “on-prem.”

If you are already familiar with running Hadoop clusters on-prem, you will find that
a lot of your knowledge and practices carry over to the cloud. After all, a cloud

4 | Chapter 1: Why Hadoop in the Cloud?

instance is supposed to act almost exactly like an ordinary server you connect to
remotely, with root access, and some number of CPU cores, and some amount of
disk space, and so on. Once instances are networked together properly and made
accessible, you can imagine that they are running in a regular data center, as opposed
to a cloud provider’s own data center. This illusion is intentional, so that working in a
cloud provider feels familiar, and your skills still apply.

That doesn’t mean there’s nothing new to learn, or that the abstraction is complete. A
cloud provider does not do everything for you; there are many choices and a variety
of provider features to understand and consider, so that you can build not only a
functioning system, but a functioning system of Hadoop clusters. Cloud providers
also include features that go beyond what you can do on-prem, and Hadoop clusters
can benefit from those as well.

Mature Hadoop clusters rarely run in isolation. Supporting resources around them
manage data flow in and out and host specialized tools, applications backed by the
clusters, and non-Hadoop servers, among other things. The supporting cast can also
run in the cloud, or else dedicated networking features can help to bring them close.

Reasons to Run Hadoop in the Cloud
Many concepts have been defined so far, but the core question has not yet been
answered: Why run Hadoop clusters in the cloud at all? Here are just a few reasons:

Lack of space
Your organization may need Hadoop clusters, but you don’t have anywhere to
keep racks of physical servers, along with the necessary power and cooling.

Flexibility
Without physical servers to rack up or cables to run, it is much easier to reorgan‐
ize instances, or expand or contract your footprint, for changing business needs.
Everything is controlled through cloud provider APIs and web consoles. Changes
can be scripted and put into effect manually or even automatically and dynami‐
cally based on current conditions.

New usage patterns
The flexibility of making changes in the cloud leads to new usage patterns that
are otherwise impractical. For example, individuals can have their own instances,
clusters, and even networks, without much managerial overhead. The overall
budget for CPU cores in your cloud provider account can be concentrated in a
set of large instances, a larger set of smaller instances, or some mixture, and can
even change over time.

Reasons to Run Hadoop in the Cloud | 5

Speed of change
It is much faster to launch new cloud instances or allocate new database servers
than to purchase, unpack, rack, and configure physical computers. Similarly,
unused resources in the cloud can be torn down swiftly, whereas unused hard‐
ware tends to linger wastefully.

Lower risk
How much on-prem hardware should you buy? If you don’t have enough, the
entire business slows down. If you buy too much, you’ve wasted money and have
idle hardware that continues to waste money. In the cloud, you can quickly and
easily change how many resources you use, so there is little risk of undercommit‐
ment or overcommitment. What’s more, if some resource malfunctions, you
don’t need to fix it; you can discard it and allocate a new one.

Focus
An organization using a cloud provider to rent resources, instead of spending
time and effort on the logistics of purchasing and maintaining its own physical
hardware and networks, is free to focus on its core competencies, like using
Hadoop clusters to carry out its business. This is a compelling advantage for a
tech startup, for example.

Worldwide availability
The largest cloud providers have data centers around the world, ready for you
from the start. You can use resources close to where you work, or close to where
your customers are, for the best performance. You can set up redundant clusters,
or even entire computing environments, in multiple data centers, so that if local
problems occur in one data center, you can shift to working elsewhere.

Data storage requirements
If you have data that is required by law to be stored within specific geographic
areas, you can keep it in clusters that are hosted in data centers in those areas.

Cloud provider features
Each major cloud provider offers an ecosystem of features to support the core
functions of computing, networking, and storage. To use those features most
effectively, your clusters should run in the cloud provider as well.

Capacity
Few customers tax the infrastructure of a major cloud provider. You can estab‐
lish large systems in the cloud that are not nearly as easy to put together, not to
mention maintain, on-prem.

6 | Chapter 1: Why Hadoop in the Cloud?

1 An exception: some cloud providers have infrastructure dedicated to US government use where stricter con‐
trols are in place.

Reasons to Not Run Hadoop in the Cloud
As long as you are considering why you would run Hadoop clusters in the cloud, you
should also consider reasons not to. If you have any of the following reasons as goals,
then running in the cloud may disappoint you:

Simplicity
Cloud providers start you off with reasonable defaults, but then it is up to you to
figure out how all of their features work and when they are appropriate. It takes a
lot of experience to become proficient at picking the right types of instances and
arranging networks properly.

High levels of control
Beyond the general geographic locations of cloud provider data centers and the
hardware specifications that providers reveal for their resources, it is not possible
to have exacting, precise control over your cloud architecture. You cannot tell
exactly where the physical devices sit, or what the devices near them are doing, or
how data across them shares the same physical network.1 When the cloud pro‐
vider has internal problems that extend beyond backup and replication strategies
already in place, there’s not much you can do but wait.

Unique hardware needs
You cannot have cloud providers attach specialized peripherals or dongles to
their hardware for you. If your application requires resources that exceed what a
cloud provider offers, you will need to host that part on-prem away from your
Hadoop clusters.

Saving money
For one thing, you are still paying for the resources you use. The hope is that the
economy of scale that a cloud provider can achieve makes it more economical for
you to pay to “rent” their hardware than to run your own. You will also still need
a staff that understands system administration and networking to take care of
your cloud infrastructure. Inefficient architectures, especially those that leave
resources running idly, can cost a lot of money in storage and data transfer costs.

What About Security?
The idea of sharing resources with many other, unknown parties is sure to raise ques‐
tions about whether using a public cloud provider can possibly be secure. Could
other tenants somehow gain access to your instances, or snoop on the shared net‐

Reasons to Not Run Hadoop in the Cloud | 7

work infrastructure? How safe is data stashed away in cloud services? Is security a
reason to avoid using public cloud providers?

There are valid arguments on both sides of this question, and the answer for you
varies depending on your needs and tolerance for risk. Public cloud providers are
certainly cognizant of security requirements, and as you’ll see throughout this book,
they use many different mechanisms to keep your resources private to you and give
you control over who can see and do what. When you use a cloud provider, you gain
their expertise in building and maintaining secure systems, including backup man‐
agement, replication, availability, encryption support, and network management. So,
it is reasonable to expect that clusters running in the cloud can be secure.

Still, there may be overriding reasons why some data simply cannot be put up into
the cloud, for any reason, or why it’s too risky to move data to, from, and around the
cloud. In these situations, limited use of the cloud may still be possible.

Hybrid Clouds
Running Hadoop clusters in the cloud has compelling advantages, but the disadvan‐
tages may restrict you from completely abandoning an on-prem infrastructure. In a
situation like that, a hybrid cloud architecture may be helpful. Instead of running
your clusters and associated applications completely in the cloud or completely on-
prem, the overall system is split between the two. Data channels are established
between the cloud and on-prem worlds to connect the components needed to per‐
form work.

“Cloud-Only or Hybrid?” on page 220 explores the pattern of hybrid clouds, including
some examples for when they are appropriate or even necessary. Creating a hybrid
cloud architecture is more challenging than running only on-prem or only in the
cloud, but you are still able to benefit from some advantages of the cloud that you
otherwise couldn’t.

Hadoop Solutions from Cloud Providers
There are ways to take advantage of Hadoop technologies without doing the work of
creating your own Hadoop clusters. Cloud providers offer prepackaged compute
services that use Hadoop under the hood, but manage most of the cluster manage‐
ment work themselves. You simply point the services to your data and provide them
with the jobs to run, and they handle the rest, delivering results back to you. You still
pay for the resources used, as well as the use of the service, but save on all of the
administrative work.

8 | Chapter 1: Why Hadoop in the Cloud?

2 If there weren’t, this book would not be very useful!

So, why ever roll your own clusters when these services exist? There are some good
reasons:2

• Prepackaged services aim to cover the most common uses of Hadoop, such as
individual MapReduce or Spark jobs. Their features may not be sufficient for
more complex requirements, and may not offer Hadoop components that you
already rely on or wish to employ.

• The services obviously only work on the cloud provider offering them. Some
organizations are worried about being “locked in” to a single provider, unable to
take advantage of competition between the providers.

• Useful applications that run on top of Hadoop clusters may not be compatible
with a prepackaged provider service.

• It may not be possible to satisfy data security or tracking requirements with a
prepackaged service, since you lack direct control over the resources.

Despite the downsides, you should investigate Hadoop-based provider solutions
before rushing into running your own clusters. They can be useful and powerful, save
you a lot of work, and get you running in the cloud more quickly. You can use them
for prototyping work, and you may decide to keep them around for support tasks
even while using your own clusters for the rest.

Here are some of the provider solutions that exist as of this writing. Keep an eye out
for new ones as well.

Elastic MapReduce
Elastic MapReduce, or EMR, is Amazon Web Services’ solution for managing pre‐
packaged Hadoop clusters and running jobs on them. You can work with regular
MapReduce jobs or Apache Spark jobs, and can use Apache Hive, Apache Pig,
Apache HBase, and some third-party applications. Scripting hooks enable the instal‐
lation of additional services. Data is typically stored in Amazon S3 or Amazon Dyna‐
moDB.

The normal mode of operation for EMR is to define the parameters for a cluster, such
as its size, location, Hadoop version, and variety of services, point to where data
should be read from and written to, and define steps to execute such as MapReduce
or Spark jobs. EMR launches a cluster, performs the steps to generate the output data,
and then tears the cluster down. However, you can leave clusters running for further
use, and even resize them for greater capacity or a smaller footprint.

Hadoop Solutions from Cloud Providers | 9

EMR provides an API so that you can automate the launching and management of
Hadoop clusters.

Google Cloud Dataproc
Google Cloud Dataproc is similar to EMR, but runs within Google Cloud Platform. It
offers Hadoop, Spark, Hive, and Pig, working on data that is usually stored in Google
Cloud Storage. Like EMR, it supports both transient and long-running clusters, clus‐
ter resizing, and scripts for installing additional services. It can also be controlled
through an API.

HDInsight
Microsoft Azure’s prepackaged solution, called HDInsight, is built on top of the Hor‐
tonworks Data Platform (HDP). The service defines cluster types for Hadoop, Spark,
Apache Storm, and HBase; other components like Hive and Pig are included as well.
Clusters can be integrated with other tools like Microsoft R Server and Apache Solr
through scripted installation and configuration. HDInsight clusters work with Azure
Blob Storage and Azure Data Lake Store for reading and writing data used in jobs.
You control whether clusters are torn down after their work is done or left running,
and clusters can be resized. Apache Ambari is included in clusters for management
through its API.

Hadoop-Like Services
The solutions just listed are explicitly based on Hadoop. Cloud providers also offer
other services, based on different technologies, for managing and analyzing large
amounts of data. Some offer SQL-like query capabilities similar to Hive or Apache
Impala, and others offer processing pipelines like Apache Oozie. It may be possible to
use those services to augment Hadoop clusters, managed either directly or through
the cloud provider’s own prepackaged solution, depending on where and how data is
stored.

Of course, these tools share the same disadvantages as the Hadoop-based solutions in
terms of moving further away from the open source world and its interoperability
benefits. Since they are not based on Hadoop, there is a separate learning curve for
them, and the effort could be wasted if they are ever discarded in favor of something
that works on Hadoop, or on a different cloud provider, or even on-prem. Their
ready availability and ease of use, however, can be attractive.

A Spectrum of Choices
It’s perhaps ironic that much of this chapter describes how you can avoid running
Hadoop clusters in the cloud, either by sticking with on-prem clusters (either parti‐

10 | Chapter 1: Why Hadoop in the Cloud?

ally or completely), by using cloud provider services that take away the management
work, or by using tools that do away with Hadoop completely. There is a spectrum of
choices, where at one end you work with your data at a conceptual level using high-
level tools, and at the other end you build workflows, analyses, and query systems
from the ground up. The breadth of this spectrum may be daunting.

However, one fact remains true: Hadoop works everywhere. When you focus on the
core components in the Hadoop ecosystem, you have the freedom and power to work
however you like, wherever you like. When you stick to the common components of
Hadoop, you can carry your expertise with them to wherever your code runs and
your data lives.

Cloud providers are eager for you to use their resources. They offer services to take
over Hadoop cluster administration for you, but they are just as happy to let you run
things yourself. Running your own clusters does not require you to forgo all of the
benefits of a cloud provider, and Hadoop components that you deploy and run can
still make effective use of cloud services. This book, in fact, explores how.

Getting Started
Have you figured out why you want to run Hadoop in the cloud? Ready to get
started?

If you already know which cloud provider you’ll use, skip ahead to Part II for a pri‐
mer on the major concepts of cloud instances, networking, and storage. Otherwise,
continue to the next chapter for an overview of the major cloud providers so that you
can understand the landscape.

Getting Started | 11

CHAPTER 2

Overview and Comparison of
Cloud Providers

This short chapter provides a brief background and history of the three major public
cloud providers that are covered in this book. If you aren’t sure which one to use, this
information may help you decide.

Amazon Web Services
Amazon Web Services (AWS) is, at the time of this writing, perhaps the dominant
public cloud provider. It may be surprising to learn that its earliest services were
launched in 2006, well before cloud computing grew popular:

• Elastic Compute Cloud (EC2), a service for provisioning computing resources on
demand

• Simple Storage Service (S3), online storage for opaque data

The original primary intent of AWS was to resolve scalability issues within Amazon
itself, but even in its initial proposal in 2003 it was recognized that the new infra‐
structure could also be offered to customers.

The next prominent services to be added to the AWS suite included:

• Elastic Block Store (EBS), persistent disk-like storage for EC2 instances, in 2008
• Elastic MapReduce (EMR), a service providing Hadoop-like clusters for running

MapReduce (and later Apache Hive and Apache Pig) jobs, in 2009
• Relational Database Service (RDS), a service for managing relational database

server instances running in AWS, also in 2009

13

In 2012, new AWS services focused on data storage; in that year alone the Redshift
massive-scale data warehouse, the DynamoDB NoSQL database, and the Glacier data
archival service were introduced. More recent key developments include the Aurora
cloud-optimized relational database and the Lambda function-as-a-service compo‐
nent, both in 2014.

Major companies rely heavily on AWS for their computing and storage needs, not
least of which is Amazon itself, which migrated its shopping services to it back in
2010. The US federal government has access to its own computing region, called
GovCloud, for highly secured government applications.

By being a first mover in cloud providers, AWS was able to define the terminology
and practices that many other cloud providers use, with their own variations. It con‐
tinues to be highly active, experiencing more demand than even its originators had
anticipated. While all of the major cloud providers do a good job of evolving their
systems according to customer demand, Amazon usually makes the biggest impact
when it unveils its latest offerings, and it remains the provider against which all oth‐
ers are compared.

References
• Timeline of Amazon Web Services
• The myth about how Amazon’s web service started just won’t die

Google Cloud Platform
As the originator and popularizer of early Hadoop technologies like MapReduce, it is
natural to consider Google Cloud Platform as a home for your own Hadoop clusters.
Services such as BigQuery and BigTable provide direct access to big data systems
based on those original technologies, but you can also host your own Hadoop clusters
using other services.

Google Cloud Platform started out in 2008 as the Google App Engine service, a
development environment backed by Google’s infrastructure for needs such as per‐
sistent storage, CPU cycles, and user authentication. It was, and still is, focused on
general web application development, although today it also focuses on hosting back‐
ends for mobile services.

The next separate service, Google Storage for Developers, was introduced in 2010; it
is now called Google Cloud Storage, and works in a manner similar to AWS S3. The
BigQuery service for performing SQL-like queries on massive amounts of data fol‐
lowed in 2012.

14 | Chapter 2: Overview and Comparison of Cloud Providers

https://en.wikipedia.org/wiki/Timeline_of_Amazon_Web_Services
http://www.networkworld.com/article/2891297/cloud-computing/the-myth-about-how-amazon-s-web-service-started-just-won-t-die.html

Perhaps surprisingly, it was not until late 2013 that Google Compute Engine, Google
Cloud Platform’s answer to AWS EC2, was made available for general use. Google
Cloud SQL followed quickly in early 2014, supporting cloud deployments of MySQL.
Google Dataproc, unveiled in 2016, is a versatile service supporting Hadoop and
Spark workloads.

The infrastructure supporting Google Cloud Platform is the same that powers Goo‐
gle’s own services, most notably its internet search capability. Many major companies
use Google Cloud Platform to run their own architectures.

There is a smaller variety of services under the Google Cloud Platform umbrella than
under AWS, although they do cover the requirements for fielding Hadoop clusters.
You may find that you must assemble some pieces of your system “by hand” at times,
whereas in AWS there is a service or service feature that fills the gap. Despite that,
Google Cloud Platform is under active development just as the other cloud provider
systems are, and the generally cleaner design of Google Cloud Platform compared to
AWS may be attractive to some. Fundamentally, though, the concepts used in AWS
and Google Cloud Platform are quite compatible, and being familiar with one makes
it easier to get going with the other.

References
• Google Cloud Platform blog
• Google Developers blog

Microsoft Azure
Microsoft’s cloud provider offering, today called Microsoft Azure, started its life in
2008 as Windows Azure, a service for running .NET and other services on Windows
inside Microsoft’s infrastructure. Storage services for tables and general “blobs” were
included, along with a service bus for queuing data between applications. Windows
Azure became generally available in 2010.

Also made available in 2010, although announced a year earlier, was Azure SQL
Database, a distributed database service based on Microsoft SQL Server.

The services in Azure continued to grow and advance, and finally in 2012 the ability
to run images of Windows and Linux on persistent virtual machines was delivered.
By 2014, given Azure’s continuing expansion and shifting focus from being a
platform-as-a-service to infrastructure-as-a-service, the provider was renamed to
Microsoft Azure.

Microsoft Azure | 15

https://cloudplatform.googleblog.com/
https://developers.googleblog.com/

The mode of working with Azure has changed over time, and today one of its distin‐
guishing features is its portal, a highly customizable and dynamic web interface to the
large variety of Azure services. The current portal was made available in 2015.

Like AWS and Google Cloud Platform, Azure hosts its company’s own large internet
services, such as Microsoft Office 365, Bing, and OneDrive. Microsoft’s long history
of supporting large enterprises has led to many of them using Azure as their cloud
provider. Azure also has excellent security accreditations and meets requirements for
EU data protections, HIPAA, and US government FedRAMP. Among the major
cloud providers, Azure has the widest geographic footprint.

Azure has similar services to both AWS and Google Cloud Platform when consider‐
ing them at a high level, but its conceptual framework varies significantly, such that it
is more difficult to translate ideas and designs from Azure to the other providers, or
back again. Organizations that have innate familiarity with the Microsoft ecosystem
may be drawn naturally to Azure. While it originally leaned heavily on Microsoft
technologies such as Windows, SQL Server, and .NET, today it works just as well as a
cloud provider for Linux-based architectures, which are paramount for Hadoop clus‐
ter support.

References
• Microsoft launches Windows Azure
• A Brief History of Azure
• Windows Azure’s spring fling: Linux comes to Microsoft’s cloud
• Upcoming Name Change for Windows Azure
• Announcing Azure Portal General Availability

Which One Should You Use?
This chapter is indeed only a short overview of these three cloud providers, and you
should take the time to learn about them through their own marketing and technical
materials as well as trade articles and blog posts. War stories abound about how using
cloud provider capabilities saved the day, and large and successful customers openly
share how they are able to run their businesses in the cloud.

All of the providers offer free trials or credits in some form, so another important
task in evaluating them is to try them out. While you will be limited in the scope of
what you can field, hands-on experience tells you about how the providers work in
ways that no web page can. Tasks you should try out to get a feel for a provider
include:

16 | Chapter 2: Overview and Comparison of Cloud Providers

https://www.cnet.com/news/microsoft-launches-windows-azure/
http://www.slideshare.net/MattDeacon/a-brief-history-of-azure
http://www.zdnet.com/article/windows-azures-spring-fling-linux-comes-to-microsofts-cloud/
https://azure.microsoft.com/en-us/blog/upcoming-name-change-for-windows-azure/
https://azure.microsoft.com/en-us/blog/announcing-azure-portal-general-availability/

• Allocating a new computing resource, or instance (see Chapter 3), and logging in
to it

• Moving data from your local system to a cloud instance and back
• Downloading software to an instance and running it
• Navigating the provider’s web console
• Saving data to and retrieving data from the provider’s object storage service (see

Chapter 5)

Pricing plays a huge role in selecting a cloud provider. Your organization may
already have a business relationship with a cloud provider (Microsoft is most com‐
mon here) that can be parlayed into discounts. The providers themselves are in
robust competition with each other as well, so since Hadoop clusters can be deployed
on any of them quite effectively, you can easily pit them against each other.

Since the cloud providers evolve and change so quickly, and to be fair to all of them,
it is not possible to come up with a simple recipe for finding one that is best for you.
Still, since your goal is to spin up Hadoop clusters, a suggestion that can be given
here is to use this book as your guide, and take them each for a test drive. Here are
some of the questions you’ll want to find answers for:

• How easy is it to understand what the services do?
• Are the web interfaces easy to use?
• Is essential information easy to find?
• Does the provider make it simple to do tasks that are important to the organiza‐

tion?
• When there are problems, are they easy to fix? How capable is the provider sup‐

port?
• Are the prices fair?
• Does the provider infrastructure meet security requirements?

If you are just starting out and need to get a basic understanding of cloud provider
concepts in order to answer these questions and more, then continue on to Chap‐
ter 3, which starts you off with what an instance is. Otherwise, if you are ready to
jump in and build a cluster, head to Part III, where you can get rolling on the cloud
provider of your choice.

Which One Should You Use? | 17

PART II

Cloud Primer

This part provides an introduction to cloud provider concepts, including compute
capabilities, networking, and storage. If you are already familiar with using a cloud
provider, you may wish to skim the chapters in this part.

Cloud providers can use different terminology to refer to the same concept, or even
offer different features that support the same concept. In these cases, the descriptions
here begin by using the terminology for Amazon Web Services (AWS). Differences in
other cloud providers are called out after the basic concept is described.

CHAPTER 3

Instances

The core of a cloud provider’s offerings is the ability to provision instances. An
instance is similar in concept to a virtual machine, which is an emulation of a particu‐
lar computer system. While historically virtual machines were thought of as running
on a specific piece of hardware—perhaps a server in a company’s machine room—a
cloud instance is thought of as running somewhere unspecified within the cloud pro‐
vider’s vast infrastructure. Precisely where and how an instance is provisioned is
often not revealed to you as a customer, although you do have some coarse-grained
control (see “Regions and Availability Zones” on page 23 for one example). All that
matters to you is that you ask for an instance, and the cloud provider brings it to life.

Instances running in Azure are called “virtual machines.”

The features of an instance, beyond its precise physical location, are up to you. You
can choose from a variety of combinations of CPU power and memory, any of several
operating systems, and different storage options, just to start with. Once the instance
has been provisioned, you can access it over SSH through the networking capabilities
of the cloud provider. From that point on, it acts and feels just like a real, physical
machine. You have root access, so you can install applications, perform additional
upgrades, start web servers or Hadoop daemons, and so on.

Your cloud provider account has limits that affect the number and size of instances
you can provision. Those limits, along with the cost of running instances, influence
how you design your cloud architecture. Given those limits, often the first step in the
design process is determining which instance types to use.

21

1 During the free trial period for cloud providers, you are usually restricted to only basic instance types with
relatively meager specifications. Once you upgrade to a regular account, or after some amount of time, your
options open up.

Instance Types
Cloud providers offer instances in a multitude of combinations of features. These
combinations usually differentiate themselves in terms of compute power, memory,
storage capacity, and performance. To make selecting a combination easier, and also
to enable the cloud provider to fit all its customers’ instances together efficiently on
its infrastructure, a cloud provider offers a set of fixed feature combinations, like a
menu. Each of these instance types is defined for a purpose: heavy compute capability,
vast storage, economy, or simply general-purpose use.

Azure refers to instance types as “instance sizes.”

While you are free to always select a top-of-the-line instance type with lots of every‐
thing, it will be among the most expensive of your options, and most of the time you
will not need all of that power all the time.1 It is much more efficient, and cheaper, to
pick instance types that focus on what you need the instances for. Since a cloud pro‐
vider makes it easy to provision new instances, you have the option of allocating
more, cheaper instances, instead of staying with a smaller number of ultrapowerful
ones.

Cluster technologies like Hadoop can flourish in this sort of environment. As your
needs change over time, you can scale up or scale down the number of daemons you
run for different components without worrying about the physical hardware. More‐
over, Hadoop components do not require top-of-the-line instance specifications to
work; they can perform well on mid-range instance types. Still, you should pick
instance types that focus on the features that the components need.

Advice for selecting instance types for Hadoop clusters is provided in “Picking
Instance Types” on page 187. In short, roles are defined for instances in a cluster, and
then the needs for each role are discussed.

Cloud providers offer many different instance types, so it can be tricky to decide on
which ones to use. It is somewhat easier, though, to choose where the instances will
run.

22 | Chapter 3: Instances

Regions and Availability Zones
An advantage of using a cloud provider is geographic distribution. A major cloud
provider’s infrastructure spans time zones and continents, running 24 hours a day. A
data center can be constructed anywhere that has space, electricity, network connec‐
tivity, and people to maintain it. This enables you to set up your own systems in a
distributed fashion, reaping all of the associated availability and performance bene‐
fits.

A cloud provider infrastructure is exposed as a set of divided, geographic areas called
regions. For example, a cloud provider could define three regions in the continental
United States (say, west, central, and east) along with two more in Europe and two in
Southeast Asia. The number and coverage areas of cloud provider regions changes
over time. A busy geographic area may be covered by multiple regions.

When you provision new instances, you select the region where they live. You may
decide to pick the region you work in, so that network performance between you and
the instance is quickest. Or, you may be setting up a failover system and decide to
choose a region farther away. If you know that most of the traffic to your instance
will be from customers, you may choose a region close to them. You may pick a
region to satisfy legal requirements that apply to where your data may be stored.

Regions are one of the key factors in designing a large Hadoop cluster. While spread‐
ing a cluster far and wide across the world sounds attractive for availability, it takes
much longer, and will cost more, for instances in different regions to communicate
with each other. So, it’s important to plan carefully to minimize cross-region com‐
munication while still getting the availability you need.

To help provide both availability and performance, a cloud provider defines one or
more availability zones within a region. Availability zones are themselves independ‐
ent within a region, but they have faster interconnections. This lets you set up a dis‐
tributed architecture that sits within a single region and has good performance, yet
has some measure of availability. While it is rare for an entire availability zone to fail,
it is far rarer for an entire region to fail.

Regions and Availability Zones | 23

2 Fault domains may still reside in the same data center.

Azure does not support the concept of availability zones, but
instead lets you define availability sets. An availability set contains
instances that are spread out among multiple fault domains, each
of which has separate power and network connections and there‐
fore are housed in different hosts and racks.2 So, rather than man‐
aging availability zones yourself for each individual instance in
your architecture, you can group them into availability sets based
on their roles.

Communication between instances in different availability zones generally costs
more than between instances in the same availability zone, and this is one factor that
will influence your cluster architecture. In general, you would not spread a Hadoop
cluster across availability zones except to achieve high availability. Chapter 10 is dedi‐
cated to exploring high availability, and discusses the pros and cons of availability
zones as a factor.

As you’ve seen, you have control over the specifications of an instance through select‐
ing an instance type and some amount of control over where an instance runs. It’s
time to discuss how you can control an instance’s existence once it has been started.

Instance Control
Just like a real machine, even when no one is connected to it, an instance still “exists”
and keeps running. This makes instances perfectly suited for hosting daemons like
those across the Hadoop ecosystem. The cloud provider monitors your instances, and
you can set up alerts to be notified if any of your instances become unreachable or, in
rare cases, die out.

If you know that you will not be using an instance for a while, you can stop it. Stop‐
ping an instance works like shutting off a physical machine; processes running on it
are terminated normally and the operating system halts. A stopped instance is
unreachable until it is started again, which works like turning a physical machine
back on.

Why stop an instance instead of just leaving it running? One important reason is that
your cloud provider charges your account much less, or not at all, for an instance
while it is stopped, so it is economical to stop instances you aren’t using. In addition,
some operations on an instance, like changing its attached storage, can only be per‐
formed when the instance is stopped.

24 | Chapter 3: Instances

Azure continues to charge for instances that are stopped. You must
also “deallocate” instances to suspend charging for instances. This
is because Azure retains the compute and memory resources for
your instances even when they are stopped.

Once an instance has served its purpose, it can be terminated or deleted. A termi‐
nated instance cannot be started up again; you need to provision a new instance to
replace it. Once an instance is terminated, everything that was on its disks is lost,
unless you have backed it up, either on your own or by using other cloud provider
capabilities (see Chapter 5). Cloud providers stop charging for instances when they
are terminated.

Terminating an instance causes a cloud provider to reclaim most
or all of the resources associated with that instance, but stopping
may also cause the provider to reclaim some resources, such as
ephemeral storage (see “Block Storage” on page 47) or public IP
addresses (see “Virtual Networks” on page 30). Check your pro‐
vider’s documentation for complete information. It may be the
case that even stopping an instance participating in a Hadoop clus‐
ter will render it unusable when it is started again.

Temporary Instances
By default, once you allocate an instance, it is yours to control until you terminate it
yourself; it will not be taken away from you unless some rare problem occurs at the
cloud provider, and even then you usually receive a warning and some lead time to
react.

Under some circumstances, however, you may decide to use a temporary instance,
which can disappear after some time. While this seems like a bad idea in the general
case, temporary instances can be useful for surging your capacity for a few hours, or
for running some process that won’t take long.

Still, though, why not just use ordinary instances all the time? The main reason is that
cloud providers charge significantly less for temporary instances than for ordinary
ones. Cloud providers almost always have excess capacity going unused, so tempo‐
rary instances are a way to earn revenue on it, even at a discount, until the capacity
can be allocated to ordinary provisioned instances.

In order to use temporary instances effectively, you must have automated means of
bootstrapping them and pressing them into service. If you spend too much time get‐
ting them set up, they may disappear before you get a chance to do anything with
them. Nevertheless, if that does happen, it’s straightforward to rerun automation and
try again with another temporary instance. This mode of retrying on temporary

Temporary Instances | 25

3 AWS documentation capitalizes the word “Spot.” This book does not, reflecting how the term is commonly
used to describe temporary instances from any cloud provider.

instances is not suitable for critical pieces of your system, but can save money else‐
where.

While it makes good sense to not under-utilize temporary instances, it makes good
sense as well not to over-utilize them, especially for the sake of saving money. Tem‐
porary instances will disappear on you, sometimes when you least expect or want
them to, and a quiet spell of weeks where temporary instances have been reliable and
lingered for plenty of time can end surprisingly suddenly. So, use them, but use them
wisely.

Azure does not offer temporary instances at this time.

Spot Instances
AWS calls its temporary instances spot instances.3 There is a market for spot instances
within AWS, driven by the price that customers are willing to pay for them. When
demand for spot instances is low, the price is low; when demand goes up, so does the
price. When you request spot instances, you select a price that you are willing to pay,
anywhere from the current market price up to the fixed rate for ordinary instances.

The spot market determines not only the price for spot instances, but also how long
they last. Once the spot price rises above your chosen price, your spot instances are
reclaimed so that their resources can be used by those who bid higher (or for ordi‐
nary instances). So, you can choose a higher initial price for a higher probability of
keeping your spot instances longer, but you may end up paying “too much” if the
market price remains low.

Spot instances are particularly prone to overuse, since there is no predetermined time
after which they will disappear. They can persist for days or weeks, and lull users into
a false sense of stability. Don’t be fooled; always treat them as if they could disappear
at any moment.

Preemptible Instances
Google Cloud Platform calls its temporary instances preemptible instances. Unlike
AWS, there is no market determining the price for a preemptible instance; there is a
single offered price, which is lower than the price of a standard instance.

26 | Chapter 3: Instances

While market conditions in AWS determine when your spot instances are reclaimed,
preemptible instances are guaranteed to be reclaimed within a day (24 hours), if not
sooner. This does much to reduce the temptation to over-rely on them and promotes
the practices of automating their configuration and keeping your cluster resilient to
loss of instances.

Images
Besides its instance type, location, and lifecycle, another key feature of an instance is
what it’s actually running: its operating system type and version, the software pack‐
ages that are available, and applications that are installed. These considerations are all
bundled up into images. An image can be thought of as the plan for a virtual drive
that your instance runs from. Conceptually it is just like a virtual machine image file:
an encapsulated filesystem with a specific operating system and other software
installed and ready to go.

When you provision an instance, you select the image that it should start from.
Larger cloud providers can support hundreds or thousands of different images, some
that they fashion themselves, but many more that are created by operating system
vendors, vendors of other software, and in some cases even individuals. Cloud pro‐
viders will propose a small set of stock images to help you get started, but you have
the freedom to use any image you like.

Most images are free to use, especially those that bundle free operating systems.
However, there are some that cost money to use, either as a fixed additional cost or a
continual surcharge to running them. In addition, some images may host unlicensed,
freshly installed (at the time the image was created) software that will prompt you for
license details before your instances will start to fully function. Hadoop can be used
on images that include free operating systems like Ubuntu and CentOS, or on those
that require licenses, such as Red Hat Enterprise Linux.

One of the most important things you can do to make using Hadoop on a cloud pro‐
vider easier is to create your own images. Instead of using a basic image for every
instance and installing Hadoop components on them every time, even in an automa‐
ted fashion, you can instead create a custom image with the components installed
where you need them. Chapter 16 goes into detail about this process.

No Instance Is an Island
Instances provisioned by a cloud provider aren’t of much use if no one can reach
them. The next chapter discusses how instances are connected into a network so that
you can reach them and they can reach other and other systems outside the cloud
provider.

Images | 27

CHAPTER 4

Networking and Security

An essential aspect of working with instances is configuring their network connectiv‐
ity. While cloud providers start customers off with a basic, working network configu‐
ration, it’s important to understand the ways to construct different network
topologies, so that your clusters can communicate effectively internally, and back and
forth with your own systems and with the outside world.

Network topology is of primary importance when setting up Hadoop clusters.
Worker daemons like datanodes and node managers must be able to work with
namenodes and resource managers, and clients must understand where to send jobs
to run and where cluster data resides. You will likely spend more time designing and
maintaining the network architecture of your clusters than the instances and images
that serve as their building blocks.

Security considerations are intertwined with network design. Once network connec‐
tions are made, you need to determine the rules by which they are used. Which parts
of the network can talk to which other parts of the network? What can reach out to
the internet? What can reach in from the internet? What ports should be exposed,
and to whom?

This chapter covers a wide range of topics, and is more of an introduction to cloud
networks and security than an application of them to Hadoop, although there are
some pointers. Chapter 14 goes into much more detail about designing a network
and security rules for a Hadoop cluster.

A Drink of CIDR
Before diving into the details of cloud provider network services, it’s helpful to be
familiar with CIDR (Classless Inter-Domain Routing) notation, a way of denoting a
continuous range of IP addresses. The scopes of network partitions and the rules that

29

apply to activity in them are defined using CIDR notation. In this book, the term
“CIDR” or “CIDR block” is used to refer to an IP address range specified in CIDR
notation.

An IP address range expressed in CIDR notation has two parts: a starting IP address
and a decimal number counting the number of leading bits of value 1 in the network
mask, which is as long as the IP address itself. An IP address lies within the range if it
matches the starting IP address when logically ANDed with the network mask.

Here are some examples that illustrate how to interpret CIDRs:

• The range 192.168.0.0/24 represents the IP addresses from 192.168.0.0 to
192.168.0.255, for a total of 256 addresses.

• The range 172.16.0.0/20 represents the IP addresses from 172.16.0.0 to
172.16.15.255, for a total of 4,096 addresses. Note that the number of 1 bits in the
network mask does not need to be a multiple of 4, although it commonly is.

• The range 192.168.100.123/32 represents only the single IP address
192.168.100.123. It is common practice to target a single IP address, in a security
rule for example, using a /32 block.

For more about the role of CIDR in IP routing and allocation, see the Wikipedia arti‐
cle on Classless Inter-Domain Routing. Their usefulness in allocating IP addresses is
why CIDR blocks are used to delimit virtual networks in the cloud.

Virtual Networks
Cloud providers establish virtual networks as the top-level containers where instances
live. Each virtual network is separate from other virtual networks, and instances
within a virtual network always communicate with each other more directly than
with instances in other virtual networks or outside of the cloud provider.

A virtual network is just a basic, coarse-grained concept. To enable finer control of
network topology, each virtual network is divided up into subnetworks or subnets. A
subnet is not just a lower-level instance container; it also covers a range of private IP
addresses. There are normally several subnets within a virtual network, each with a
distinct range of private IP addresses.

30 | Chapter 4: Networking and Security

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

RFC 1918 establishes three ranges of private IP addresses. Cloud
providers use these ranges to define subnets. Any of these blocks,
including just portions of them, can be used for a subnet:

• 10.0.0.0–10.255.255.255 (CIDR 10.0.0.0/8)
• 172.16.0.0–172.31.255.255 (CIDR 172.16.0.0/12)
• 192.168.0.0–192.168.255.255 (CIDR 192.168.0.0/16)

Amazon Web Services calls its virtual networks Virtual Private
Clouds or VPCs. Each VPC has a private IP address range, and the
address range for each subnet within a VPC must be a subset of the
VPC’s range. The subnet ranges do not have to completely cover
the VPC range.

For example, a single virtual network could be designed to cover the entire 16-bit pri‐
vate IP address block of 192.168.0.0/16. One way to divide the network, as shown in
Figure 4-1, is into four subnets, each covering a distinct quarter of the block:
192.168.0.0/18, 192.168.64.0/18, 192.168.128.0/18, and 192.168.192.0/18.

Figure 4-1. A virtual network with four subnets

After a virtual network is established, subnets must be created within it as homes for
instances that will reside in the virtual network. Sometimes the cloud provider estab‐
lishes one or more default subnets, and sometimes it is up to you to define them. The
size of the private IP range of a subnet dictates its capacity for instances: for example,
a range like 192.168.123.0/28 only supports 16 instances, while a range like
172.16.0.0/16 supports thousands. Instances that reside in the same subnet can com‐
municate more quickly and easily than those in separate subnets, so sizing subnets
appropriately is important for designing efficient clusters.

When you provision an instance on a cloud provider, you choose its subnet. The
cloud provider assigns the instance an IP address from the remaining unused
addresses in the subnet’s range, and that IP address sticks with the instance until it is
terminated.

Virtual Networks | 31

https://tools.ietf.org/html/rfc1918

The private IP address for an Azure virtual machine can either be
static or dynamic. A dynamic private IP address, which is the
default, is dissociated from the virtual machine even when it is
stopped, while a static private IP remains across stops until termi‐
nation. In order to avoid needing to reconfigure your Hadoop clus‐
ter after virtual machines are stopped and started, you will want to
use static addresses.

Most of the time, a Hadoop cluster should reside within a single subnet, itself within
one virtual network. Not only is this arrangement simplest, it is the least expensive
and has the best performance. Chapter 10 explores other arrangements in terms of
establishing high availability.

Private DNS
When an instance is provisioned inside a subnet, it is assigned not only a private IP
address, but also a private DNS hostname. The hostname is automatically generated
for you and registered with the cloud provider’s internal DNS infrastructure. It may
simply be a form of the public IP address or some random string, and thus have no
meaning. The cloud provider also automatically configures each instance’s network
settings so that processes running on it can resolve private DNS hostnames success‐
fully, both its own and those of others in the virtual network.

A private DNS hostname can be resolved to a private IP address only by instances
within the virtual network of the instance it is assigned to. Other instances, including
those in other virtual networks of the same cloud provider, must use a public DNS
hostname or public IP address, if those are assigned at all.

In Azure, two virtual networks can be peered, so that instances in
them can communicate using private IP addresses. The two net‐
works must have private IP address ranges that do not overlap.

In practice, private DNS hostnames have limited usefulness in working with a
Hadoop cluster; the private IP addresses work just as well, and are often shorter and
therefore easier to work with. Given all the other things to think about when manag‐
ing virtual networks and how instances are deployed within them, you may find that
private DNS can essentially be ignored.

Public IP Addresses and DNS
While an instance is always assigned a private IP address, it may also be assigned a
public IP address. The public IP address is not part of the instance’s subnet’s IP
range, but is instead assigned from the block of IP addresses administered by the

32 | Chapter 4: Networking and Security

1 See “Cluster Topologies” on page 204 for a description of gateway instances.

cloud provider. An instance with a public IP address is therefore addressable from
outside the virtual network and, in particular, from the internet.

While having a public IP address is a prerequisite for an instance to have connectivity
outside the virtual network, it does not mean that the instance can be reached, or
itself reach out from the virtual network. That depends on the security rules that gov‐
ern the instance and routing rules that apply to the subnet.

A cloud provider may also assign a public DNS hostname to an instance with a public
IP address. The typical public DNS hostname is under the domain of the cloud pro‐
vider and, like a private DNS hostname, often has no real meaning. Still, the cloud
provider does establish resolution of the public DNS hostname to the public IP
address for external clients, so it is usable.

If you have a DNS domain that you want to use for assigning public DNS hostnames
to your instances, you can use the cloud provider’s public DNS component to man‐
age assignments (AWS Route 53, Google Cloud DNS, and Azure DNS). In the con‐
text of configuring and using Hadoop clusters, however, it’s almost always sufficient
to work with private DNS hostnames for instances. Save public DNS hostnames for
those few gateway instances1 that host public-facing interfaces to your system.

Without a public IP address or public DNS hostname, an instance
is not reachable from the internet. It is therefore much more diffi‐
cult to accidentally expose such an instance through, for example,
overly permissive security settings.

The private and public addresses for instances in a virtual network provide a logical
means for finding where instances are. It is not as obvious how to understand where
a virtual network and subnets within it are located.

Virtual Networks and Regions
The location of a subnet in a virtual network, or of an entire virtual network, is deter‐
mined in different ways, depending on the cloud provider.

A subnet in AWS and Google Cloud Platform, besides determining the private IP
address for an instance, also determines the region where the instance resides. In
AWS, each subnet that you define is assigned to an availability zone, so instances in
the subnet run in that availability zone, in the zone’s region. In Google Cloud, the
arrangement is slightly different: each subnet is associated with an entire region, but

Virtual Networks and Regions | 33

when you provision a new instance, you can select an availability zone in the subnet’s
region.

The association of regions with subnets in these providers make subnets the means
by which you take geography into account when architecting the network topology
for your clusters. There is a need to strike a balance between the fast, open communi‐
cation possible between instances in a single subnet with the availability and reliabil‐
ity benefits of distributing instances across regions and therefore across subnets.
Figure 4-2 shows an example virtual network demonstrating subnets in different
locations.

Figure 4-2. A virtual network spanning two regions and multiple availability zones

Region determination works differently in Azure. With this provider, each subnet
and, in turn, each virtual network is associated with a resource group, and a resource
group specifies the region for all its resources. So, setting up a cluster that spans
regions is somewhat more challenging in Azure, since you will need multiple
resource groups, which spreads out management.

Chapter 10 goes into detail about spanning clusters across availability zones and
regions. The general advice is to never span regions, and rarely even span availability
zones, due to the impact to performance and the high cost of data transfer, given the
large amount of intracluster traffic that Hadoop generates. An architecture that keeps
clusters confined to single regions, and even single availability zones, is much more
cost effective.

Routing
Cloud networking is about much more than placing instances in the right IP address
ranges in the right geographic regions. Instances need paths to follow for communi‐
cation with other instances and with the world outside the cloud provider. These
paths are called routes.

34 | Chapter 4: Networking and Security

From the point of view of an instance, there are several possibilities for where a route
leads. The shortest and simplest path is back to the instance’s own subnet. There are
also usually routes that lead to other subnets in the instance’s virtual network. Some
other routes lead outside the network, either to other virtual networks, or completely
outside the cloud provider.

A route is comprised of an IP address range and a destination. The route declares
that a resource whose IP address falls within its range can be reached by communi‐
cating with the route’s destination. Sometimes the destination is the desired resource
itself, a direct route; but sometimes it is a device, specialized instance, or cloud pro‐
vider feature that handles establishing communication. In general, that sort of inter‐
mediary destination is called a gateway.

Here are some examples of routes, which are also illustrated in Figure 4-3:

• For IP addresses in the CIDR range 192.168.128.0/18, the destination is subnet C.
• For IP addresses in the CIDR range 10.0.0.0/8, the destination is the corporate

VPN gateway.
• For any IP address (CIDR 0.0.0.0/0), the destination is the internet gateway.

Figure 4-3. Routes leading from a subnet to various destinations

A cloud instance has a set of routes to look through, which are arranged into a route
table or routing table. Given an IP address to communicate with, the route table is
consulted, and the best match for the destination IP address is used. Sometimes there
is only one route that satisfies the need, but sometimes there are multiple. In that
case, generally, the route that most specifically matches the IP address is chosen.

Suppose that an instance has an associated route table listing the three example
routes as shown in Figure 4-3. When a process on the instance attempts to initiate
communication with 10.0.0.126, the instance’s networking system consults the route
table and looks for the best match. The IP address does not fall within the range for
subnet C, so that route is discarded. The VPN route and the internet route both
match; however, the VPN route is a better match, so that route is chosen.

Routing | 35

If there is no match at all, then network communication will fail. That is why it is
typical for there to be a catch-all (or default) route for CIDR 0.0.0.0/0 that leads to the
internet, the idea being that any IP address not accounted for must be outside the
cloud provider.

Designing a cloud network architecture can appear daunting. A
cloud provider gives you a lot of power and flexibility, but that car‐
ries complexity as well. Fortunately, when you create your first vir‐
tual network, the cloud provider sets up a reasonable default
configuration for networking so you can get started quickly. For
exploratory use the configuration is often acceptable, but before
long you will want to look at routing and security rules to ensure
they are set up for what you need, such as your first Hadoop clus‐
ter.

Routing is an important factor in building out a functioning Hadoop cluster. The
daemons that comprise each service, like HDFS and YARN, need to be able to con‐
nect to each other, and the HDFS datanodes in particular need to be available for
calls from pieces of other services. If all of a cluster’s daemons are confined to a single
subnet, then the cloud provider’s default routing is enough; some providers can even
handle routing across subnets automatically or with their defaults. For reaching out
farther, such as across VPNs or to the internet, it usually becomes necessary to define
some routes, as the defaults start out restrictive for the sake of security.

Each cloud provider provides routing services in a different way.

Routing in AWS
In AWS, a route table is an independent object that is associated with VPCs and sub‐
nets. Each VPC has a route table that is used as the default for subnets that do not
have their own route tables.

The destination for each route is termed a target. There are a variety of targets avail‐
able, some of which are described here:

• A “local” target points to the virtual network of the communicating instance.
This covers not only that instance’s own subnet, but other subnets in the same
VPC.

• An internet gateway target provides access to the internet, outside the cloud pro‐
vider. When a subnet has a route to the internet, it is called a public subnet;
without one, it is called a private subnet. See “Public and Private Subnets” on
page 197 for more detailed descriptions.

• A virtual private gateway links to your corporate network’s VPN device, allowing
access to resources within that network. To establish this connection, you must

36 | Chapter 4: Networking and Security

define a customer gateway in AWS representing the VPN device, create a virtual
private gateway that links to it, and then define the IP address ranges covered by
the gateway.

• A VPC peering connection allows for communication between VPCs using just
private IP addresses.

• A network address translation (NAT) gateway provides access to the internet for
private subnets. The gateway itself resides in a public subnet.

Routing in Google Cloud Platform
In Google Cloud Platform, each route is associated with a network, so all instances in
the network may have use of it. Routes and instances are associated by tags: if a route
has a tag, then it is associated with any instance with a matching tag; if a route has no
tag, it applies to all instances in the network.

All of the routes defined for a network form the network’s route collection, while all of
the routes that are associated with an instance form that instance’s routing table.

The destination for each route is termed its next hop. There are a variety of destina‐
tions available, some of which are described here:

• A subnet, or portion of a subnet, can be designated as the next hop by providing
a CIDR block for its private IP addresses.

• An internet gateway URL for the next hop provides direct access to the internet,
as long as the source instance has an external (public) IP address.

• The URL or IP address of a single instance can be the next hop. The instance
needs to be configured with software that can provide connectivity to the ulti‐
mate desired destination. For example, the instance could use Squid as a proxy or
perform NAT using iptables to provide internet access.

Google Cloud Platform provides a service called Cloud VPN to help manage connec‐
tivity between your corporate VPN device and your instances in virtual networks, as
well as between virtual networks in Google Cloud Platform itself. A VPN gateway
leading to a VPN tunnel is another possible next hop for a route.

Routing in Azure
In Azure, a route table is an independent object that is associated with subnets. A
route table may be associated with multiple subnets, but a subnet can have only one
route table.

Azure provides system routes for common needs, which are usually comprehensive
enough that you do not need to define a route table at all. For example, system routes

Routing | 37

direct network traffic automatically within a subnet, between subnets in a virtual net‐
work, and to the internet and VPN gateways. If you define a route table for a subnet,
its routes take precedence over system routes.

The destination for each route is termed its next hop. There are a variety of destina‐
tions available, some of which are described here:

• The local virtual network can be specified as the next hop for traffic between sub‐
nets.

• A virtual network gateway or VPN gateway for the next hop allows traffic to flow
to other virtual networks or to a VPN.

• Naming the internet as the next hop provides direct access to the internet.
• A null route or black hole route can be used as the next hop to drop outgoing

traffic completely.

Network Security Rules
If routing builds the roads for traffic between your instances, then security rules
define the laws the traffic must obey. Cloud providers separate the definitions of the
connections between instances from the definitions of how data may flow along those
connections.

In a way, routing is a coarse-grained security measure: if there is no route defined
between an instance and some destination, then absolutely no traffic can pass
between them. When a route is established, however, then security rules provide a
way to allow some kinds of traffic and disallow others.

As with routing, each cloud provider provides network security in different ways, but
they share common concepts.

Inbound Versus Outbound
Inbound rules control traffic coming to an instance, while outbound rules control
traffic leaving an instance. Most of the time, you will find yourself focusing on
inbound rules, and allowing unrestricted traffic outbound. The implication is that
you trust the activity of the instances that you yourself control, but need to protect
them from traffic coming in from outside, particularly the internet.

Allow Versus Deny
An allow rule explicitly permits some form of network traffic, while a deny rule
explicitly blocks it. If an allow rule and a deny rule conflict with each other, then usu‐
ally the deny rule wins out. A common pattern is to establish an allow rule with a

38 | Chapter 4: Networking and Security

broad scope, and then use deny rules to pick out exceptions; for example, you could
allow HTTP access from everywhere with one rule, and add deny rules that block IP
ranges that are known to exhibit bad behaviors.

Some security rule structures do not use deny rules at all. Instead, they start from an
initial implicit state of denying all traffic, and you add allow rules for only what you
want to permit.

Network Security Rules in AWS
AWS provides two main mechanisms for securing your VPC.

Security groups
The most common mechanism used is security groups. A security group provides a
set of rules that govern traffic to and from an instance. Each instance can belong to
one or several security groups; a VPC also has a default security group that applies to
instances that aren’t associated with any groups themselves.

Each rule in a security group only allows traffic. If none of the security groups for an
instance allows a particular kind of traffic, then that traffic is denied by default.

A rule in a security group can apply to either inbound traffic or outbound traffic. An
inbound rule allows traffic into an instance over a protocol (like TCP or UDP) and
port or port range from either another security group or a range of IP addresses. Sim‐
ilarly, an outbound rule allows traffic out from an instance to either another security
group or to a range of IP addresses. Here are some examples of typical inbound and
outbound security group rules:

• If you are running a web server on an instance, an inbound rule for TCP port 80
can allow access from your IP address, or the IP range for your corporate net‐
work, or the entire internet (0.0.0.0/0).

• To allow SSH access to an instance, an inbound rule should permit access for
TCP port 22. It’s best to restrict this rule to your own IP address, or those in your
network.

• If a process running on an instance will need to access a MySQL server else‐
where, an outbound rule over TCP port 3306 will allow it. The destination could
be the IP address of the MySQL server or, if the server is running in EC2, the
server’s security group.

Figure 4-4 shows how these rules appear in the AWS console. The image is a compo‐
site view of both the Inbound and Outbound tabs for a single security group.

Network Security Rules | 39

Figure 4-4. A security group with some example rules

Each VPC comes with a simple, default security group that allows outbound access to
anywhere, but inbound access only from other instances in the same security group.
This means that you need to set up SSH access from your local network before you
can access instances provisioned there.

One convenient feature of security groups is that you only need to allow one side of a
two-way connection. For example, it is enough to allow TCP port 80 inbound for a
web server; since requests are allowed to flow in, AWS automatically permits respon‐
ses to flow back outbound from the web server. This feature is not true of the other
main mechanism for securing VPCs, network ACLs.

Network ACLs
Network ACLs are a secondary means of securing a VPC. Like security groups, they
are comprised of a set of rules that govern network traffic. Unlike security groups, a
network ACL is associated with a subnet, not individual instances. A subnet may only
have one network ACL, or else it falls back to its VPC’s default network ACL.

A network ACL rule can either allow or deny traffic. While all of the rules in a secu‐
rity group apply to every network access decision, the rules in a network ACL are
evaluated in a numbered order, top to bottom, and the first matching rule is
enforced. If none of the rules match, then the fixed, final default rule in every net‐
work ACL denies the traffic.

40 | Chapter 4: Networking and Security

Each network ACL rule is an inbound rule or outbound rule, as with security group
rules. A rule applies to a protocol and port range, but sources and destinations are
only specified as IP address ranges, not as security groups.

Figure 4-5 lays out a simple network ACL that allows limited inbound SSH access
and HTTP access, but no other network traffic. The image is a composite view of
both the Inbound Rules and Outbound Rules tabs for the ACL.

Figure 4-5. An ACL with some example rules

The inbound rules allow only SSH access from one IP address range and HTTP port
80 access from two IP address ranges. Any other inbound network access is blocked
by the default final deny rule.

The outbound rules allow any traffic over nonprivileged TCP ports. This is necessary
to permit outbound traffic for SSH and HTTP connections. Unlike security groups,
network ACLs require you to allow both sides of two-way connections. Since it can
be unpredictable what port a requesting process may use to connect out from its host,
the network ACL rule here permits a wide range of ports.

Network Security Rules | 41

To illustrate, here is an example of an HTTP client outside the virtual network per‐
forming an HTTP request to a server running inside the network. The simple ACL
defined previously gates both the incoming request and outgoing response.

Inbound request from 10.1.2.3:12345 to port 80

• rule 100: does not apply (port range)
• rule 200: does not apply (source CIDR)
• rule 220: applies, so access is allowed

Outbound response from port 80 to 10.1.2.3:12345

• rule 100: applies, so access is allowed

Each VPC comes with a default network ACL that allows all traffic inbound and out‐
bound. So, by default, your VPC does not make use of a network ACL for security,
but it is still available for a second line of defense.

Network Security Rules in Google Cloud Platform
Google Cloud Platform supports firewall rules for governing traffic to instances in a
network. Firewall rules are associated with the network itself, but they can apply to
some or all of the instances in that network.

Each firewall rule only allows traffic. If none of the firewall rules for a network allow a
particular kind of traffic, then that traffic is denied by default.

A firewall rule controls inbound traffic only. You can control outbound traffic from
an instance using network utilities installed on the instance itself.

You can specify the source a firewall rule applies to as either a range of IP addresses, a
subnet in the network, or an instance tag. When a subnet is specified, then the rule
applies to all of the instances in that subnet as sources. An instance tag limits the
applicability of a firewall rule to just instances with that tag.

Each firewall rule names a protocol (like TCP or UDP) and port or port range on the
destination instances that it governs. Those instances can be either all of the instances
in the network, or just instances with another instance tag, called a target tag.

Here are some examples of typical firewall rules. They are shown with some others in
Figure 4-6:

• If you are running a web server on an instance, a rule for TCP port 80 can allow
access from your IP address, or the IP range for your corporate network, or the
entire internet (0.0.0.0/0). To narrow down where the firewall rule applies, you

42 | Chapter 4: Networking and Security

can tag the web server instance as, say, “webserver”, and provide that tag as the
target tag for the rule.

• To allow SSH access to an instance, a rule should permit access for TCP port 22.
It’s best to restrict this rule to your own IP address, or those in your network.

Figure 4-6. Some firewall rules (some source IP ranges are obscured)

The default network that Google Cloud Platform supplies for you comes with a small
set of firewall rules that allow all traffic within the network as well as SSH (TCP port
22), RDP (port 3389), and ICMP from anywhere. This is a reasonable default behav‐
ior, although it makes sense to adjust the rules to limit sources to just your own IP
address or your own network. Any new networks you create, however, do not start
out with any firewall rules, and so absolutely no inbound access is permitted. It is up
to you to build out the necessary firewall rules to gain access.

One convenient feature of firewall rules is that you only need to allow one side of a
two-way connection. For example, it is enough to allow TCP port 80 inbound for a
web server; since requests are allowed to flow in, Google Cloud Platform automati‐
cally permits responses to flow back outbound from the web server.

There are a few automatic firewall rules that are enforced on all networks. Here are
some of them:

• TCP port 25 (SMTP) is always blocked outbound from your network.
• TCP ports 465 and 587 (SMTP over SSL) are also always blocked outbound,

except to SMTP relay services hosted on Google Apps.
• Network traffic using a protocol besides TCP, UDP, or ICMP is blocked unless

the Protocol Forwarding feature of Google Cloud Platform is used to allow it.

Check the latest Google Cloud Platform documentation for ways to
send email from its instances, such as SMTP relays, that involve
third-party email providers.

Network Security Rules | 43

https://cloud.google.com/compute/docs/tutorials/sending-mail/

One final security rule deserves mention here. If an instance does not have a external
IP address assigned to it, then it is not granted access to the internet. This rule is
enforced even if a network route provides a path to an internet gateway URL. To
reach the internet from such an instance, it’s necessary to go through a gateway,
using either NAT or a VPN.

Network Security Rules in Azure
Azure provides network security groups for controlling traffic into and out of either
subnets or individual virtual machines through their network interfaces. A virtual
machine can be subject to its subnet’s network security group as well as its own.

A network security group holds a set of rules, each of which controls either inbound
traffic or outbound traffic. An inbound rule allows or denies traffic into an instance
over a protocol (like TCP or UDP) and port or port range from either a range of IP
addresses, a default tag (defined next), or all sources. Similarly, an outbound rule
allows or denies traffic out from an instance to either a range of IP addresses, a
default tag, or all destinations.

A default tag is a symbolic representation for a set of IP addresses. For example, the
virtual network tag stands in for the local virtual network and those connected to it.
The internet tag represents the internet, outside of Azure’s infrastructure and con‐
nected VPNs.

Here are some examples of typical inbound and outbound security group rules:

• If you are running a web server on an instance, an inbound rule for TCP port 80
can allow access from your IP address, or the IP range for your corporate net‐
work, or the entire internet using the internet default tag.

• To allow SSH access to an instance, an inbound rule should permit access for
TCP port 22. It’s best to restrict this rule to your own IP address, or those in your
network.

• If a process running on an instance will need to access a MySQL server else‐
where, an outbound rule over TCP port 3306 will allow it. The destination could
be the IP address of the MySQL server.

Figure 4-7 shows how these rules appear in the Azure portal.

44 | Chapter 4: Networking and Security

Figure 4-7. A network security group with some example rules

Rules are evaluated in priority order to determine which one holds sway. A lower
number priority on a rule indicates a higher priority.

Every network security group has a default set of rules, which have lower priorities
than any user-defined rules. They allow, among other things, all traffic from the same
virtual network and all outbound traffic to the internet, but deny inbound traffic
from anywhere but the virtual network. The rules can be overridden with user-
defined rules.

Putting Networking and Security Together
As you have seen, there is a lot to think about when it comes to networking and secu‐
rity in a cloud provider. Getting started with them can feel like jumping into the deep
end of a pool, or being dropped into a foreign land without a map. Here are some
pointers to getting rolling.

Cloud providers do try to start you out with a sensible initial arrangement: a single
virtual network with one or a few subnets, and default routing and security rules
applied. Of all the concerns, routing tends to require the least amount of attention, as
defaults and fallbacks define almost all of the necessary connections.

For small-to-medium Hadoop deployments, a single virtual network usually suffices.
As described in the beginning of this chapter, it is useful to think of each virtual net‐
work as a container for your clusters. With subnets to provide any necessary divi‐
sions or regional variations, and ample IP addresses available, you may find you can
go a long time before needing to define an entirely new network.

Routing and security rules become more important once traffic needs to be sent to or
received from outside a virtual network. Keeping Hadoop clusters confined to single

Putting Networking and Security Together | 45

subnets or, at worst, single virtual networks eliminates most of the need to define
routes and security rules. One important exception is allowing SSH access to some
number of instances, which is described in the following chapters about getting
started with each cloud provider. Another is opening up ports for applications run‐
ning alongside clusters, or for web interfaces of Hadoop components. For these
exceptions, the process is typically only defining a route if necessary and declaring a
security rule that allows access.

What About the Data?
The purpose here of creating cloud instances, networking them together, and estab‐
lishing routes and security rules is to stand up Hadoop clusters, and the purpose of
these clusters is to work on data. The data moves through the network between
instances, but where is it stored?

As you would expect, cloud providers offer ranges of storage options that include
disks, databases, general object storage, and other services. Understanding how these
storage options can be used is just as important for creating effective clusters as
understanding networking and security.

46 | Chapter 4: Networking and Security

CHAPTER 5

Storage

Hadoop clusters are about working with data, usually lots and lots of data, often
orders of magnitude larger than ever before. Cloud providers supply different ways to
store that data on their vast infrastructure, to complement the compute capabilities
that operate on the data and the networking facilities that move the data around.
Each form of storage serves a different purpose in Hadoop architectures.

Block Storage
The most common type of storage offered by a cloud provider is the disk-like storage
that comes along with each instance that you provision. This storage is usually called
block storage, but they are almost always accessed as filesystem mounts. Each unit of
block storage is called a volume or simply a disk. A unit of storage may not necessarily
map to a single physical device, or even to hardware directly connected to an
instance’s actual host hardware.

Persistent volumes survive beyond the lifetime of the initial instances that spawned
them. A persistent volume can be detached from an instance and attached to another
instance, in a way similar to moving physical hard drives from computer to com‐
puter. While you wouldn’t usually do that with physical drives, it is much easier to do
so in a cloud provider, and it opens up new usage patterns. For example, you could
maintain a volume loaded with important data or applications over a long period of
time, but only attach it to an instance once in a while to do work on it.

Volumes that are limited to the lives of the instances to which they are attached are
called ephemeral volumes. Ephemeral storage is often very fast and can be large, but it
is guaranteed to be eliminated when an instance is stopped or terminated, at which
time its data is permanently lost. In the context of Hadoop clusters, critical cluster-
wide information like HDFS namenode data should reside on persistent storage, but

47

information that is normally replicated across the cluster, like HDFS data copied in as
the source for a job, can reside on ephemeral storage.

A volume is backed up by taking a snapshot, which preserves its exact state at an
instant in time. It is common to take snapshots of a volume repeatedly over time, and
cloud providers store snapshots in an incremental fashion so that they don’t take up
unnecessary space. If something goes wrong with a volume, perhaps due to data cor‐
ruption or a rare hardware failure, then a new volume can be created from a snapshot
and attached to an instance to recover. A snapshot can also be used as the basis for a
new instance image, in order to generate many new identical volumes over time.

For security, the major cloud providers all support encryption at rest for data on per‐
sistent volumes. They all also automatically replicate persistent volumes, often across
data centers, to avoid data loss from hardware failures.

Block Storage in AWS
The AWS component offering block storage is called Elastic Block Storage (EBS).
When you provision an instance in EC2, you select an image for its root device vol‐
ume, and the image determines whether that volume is a persistent volume in EBS or
an ephemeral volume in the EC2 instance store. The root device volume houses the
operating system and other files from the image. The physical hardware can use
either magnetic or SSD storage.

After provisioning an instance, you can attach multiple additional EBS volumes, or
you can swap out the EBS root device volume of an instance with another existing
one. EBS volumes are resizable, although for older instance types one must be
detached before it can be resized.

Some EC2 instance types support both EBS and ephemeral volumes, while others
only support EBS. Those that support ephemeral volumes do so through drives that
are attached to the physical hosts for the instances. Data on those ephemeral drives
survive reboots of their associated instances, but not stoppages or termination. Each
instance type specifies the maximum number and size of supported ephemeral vol‐
umes.

Block Storage in Google Cloud Platform
Persistent block storage for Google Compute Engine (GCE) instances are called per‐
sistent disks. When you provision an instance in GCE, a root persistent disk is auto‐
matically allocated to house the operating system and other files from the image
selected for the instance.

After provisioning an instance, you can attach multiple additional persistent disks.
Each persistent disk, including the root disk, can use either magnetic or SSD storage.
Persistent disks can be resized at any time.

48 | Chapter 5: Storage

Any instance provisioned in GCE can be augmented with local SSDs, which are
drives attached to the physical hosts for the instance. These drives are ephemeral
storage; while data on them survives reboots of their associated instances, it is dis‐
carded when the associated instance stops or terminates. They come in a fixed size
and only a limited number may be attached to an instance. Like persistent disks, local
SSDs support at-rest encryption.

RAM disks are another block storage option for GCE instances. A RAM disk is a vir‐
tual drive that occupies instance memory. These are even more ephemeral than local
SSDs, as their data does not even survive instance restarts; however, they can be very
fast.

Block Storage in Azure
Every Azure virtual machine is automatically granted two virtual hard disks or
VHDs: one based on an image hosting the operating system, and a second temporary
disk for storing data that can be lost at any time, like swap files. Both of these disks
are persistent, but the content of the temporary disk is not preserved if the virtual
machine is migrated to different hardware.

Additional persistent VHDs can serve as data disks to store data that needs to last;
they are either created by mandate from the virtual machine image or can be attached
later. The operating system disk and data disks are resizable, but the associated vir‐
tual machine must be stopped first.

All VHDs are actually stored as page blobs within the storage account associated with
your Azure account, and the replication strategy for the storage account determines
how widely disk contents are backed up across data centers. See “Object Storage in
Azure” on page 53 for further discussion about storage accounts.

Azure File Storage is another block storage service, dedicated to serving file shares
over the Server Message Block protocol. A file share works like a mounted disk, but it
can be mounted across multiple virtual machines simultaneously.

Finally, while not necessarily qualifying as a block storage service, Azure Data Lake
Store (ADLS) stores files of arbitrary size in a folder hierarchy. The service is
designed to satisfy the requirements of a Hadoop-compatible file system, so cluster
services such as Hive and YARN can work with it directly.

Object Storage
Disk-like block storage is clearly essential for supporting instances, but there is still
the problem of where to keep large amounts of data that should survive beyond the
lifetime of instances. You may have a compressed archive of some massive data set
that will be referenced across multiple instances, or even from outside the cloud pro‐

Object Storage | 49

vider. You may have a backup of some important analytic results or critical logs that
must be preserved. Sometimes it is possible to dedicate a block storage volume to
store these big chunks of data, but there still must be at least one instance running to
access it, and often it can be tricky to share that volume across multiple instances.

As an alternative, cloud providers offer object storage. In object storage, each chunk
of data is treated as its own entity, independent of any instance. The contents of each
object are opaque to the provider. Instead of accessing a data object through a filesys‐
tem mounted on a running instance, you access it through either API operations or
through URLs.

Cloud providers each offer their own object storage solution, yet they all share many
common features.

Buckets
Data objects reside inside containers called buckets. A bucket has a name and is asso‐
ciated with one or more regions.

Azure calls its buckets containers.

There are restrictions on bucket names, because a bucket’s name is used as part of the
URLs for accessing objects in the bucket. In general, you should avoid special charac‐
ters, spaces, and other characters that can be problematic in URLs. A bucket name
must be unique to your cloud provider account; the solutions for AWS and Google
Cloud Platform also require them to be globally unique.

The region or regions associated with a bucket determine where in the world the
objects in the bucket are stored. Hadoop clusters benefit in performance and cost by
working with buckets that are in the same region as their instances. A bucket can be
configured with replication to other regions, through provider-specific mechanisms,
to geographically disperse data. This can be a valuable tool for expanding Hadoop
architectures across regions; instead of clusters around the world all needing to reach
back to a single region to access bucket contents, the bucket can be replicated to the
clusters’ regions for faster, cheaper local access.

A bucket does not have an internal hierarchy for object storage, but object naming
can be used to create the appearance of one.

50 | Chapter 5: Storage

Data Objects
A data object in object storage is a single opaque unit from the cloud provider’s point
of view. Metadata in the form of key-value pairs can be associated with each object, to
use as tags or as guides for searching for, identification of, and tracking of the data
within.

The name of an object is used to locate it. As with buckets, there are restrictions on
object names since they are also used in URLs. Although buckets are flat storage,
objects can include forward slashes in their names to create the appearance of a
directory-style hierarchy. The APIs, tools, and conventions for object storage inter‐
pret object names in a way that supports hierarchical access, often by treating com‐
mon slash-delimited prefixes of object names as pseudodirectories.

An object has a storage class, which determines how quickly it can be accessed and, in
part, its storage cost. The standard or default storage classes for cloud providers favor
quick access over cost, and these classes tend to be the ones most useful for storing
data Hadoop clusters will use. Other storage classes cost less but aim at access fre‐
quencies on the order of a few times each month or each year. While Hadoop clusters
cannot effectively use objects in those storage classes directly due to their intention‐
ally lower performance, they can be employed in associated archival strategies.

Most of the time, a data object is immutable. When an object needs to be updated, it
is overwritten with a completely new version of it. Cloud providers are capable of
storing past, versioned copies of objects so that they can be restored as necessary in
the future.

AWS and Google Cloud Platform object storage services automati‐
cally version each data object as it is updated. Azure’s object stor‐
age service does not, but permits taking snapshots of data objects.

Each data object can have permissions associated with it, in order to restrict who may
access it. The permissions scheme folds in with each cloud provider’s own authoriza‐
tion systems.

Object Access
There are two main methods for accessing objects in object storage. The most flexible
method is through the cloud provider’s own API, which provides all of the access and
management operations available. An API client can create new objects, update
them, and delete them. It can manage access permissions and versioning as well.

Jobs running in Hadoop clusters can use APIs to work with objects, either directly or
through common libraries. Some libraries provide a filesystem-like view of buckets,

Object Storage | 51

1 The choice of region also influences how data may be accessed. See “Configuring the S3 Endpoint” on page 164
for more information.

enough to allow access in many of the same ways that jobs would work with HDFS.
This is a powerful capability, because it lets new clusters start their work right away
by reading from durable, reliable object storage, instead of waiting to be primed by
getting data copied up to their local HDFS storage. By the same token, clusters can
save their final results back to object storage for safekeeping or access by other tools;
once that happens, the clusters could be destroyed. So, object storage access enables
the use of transient clusters, a pattern that is covered in more detail in Chapter 15.

The other main method for object access is through URLs. Each provider’s object
storage service offers a REST API for working with buckets and objects; perhaps the
most salient capability is simply the ability to download an object with an HTTP GET
request. Because of URL access, each bucket and object must be named to be compat‐
ible with URL syntax.

For example, an object named “my-dir/my-object” in a bucket named “my-bucket”
could be accessed by the following URLs, depending on the cloud provider. Each pro‐
vider supports a handful of different URL formats:

• AWS: https://s3.amazonaws.com/my-bucket/my-dir/my-object
• Google Cloud Platform: https://storage.cloud.google.com/my-bucket/my-dir/my-

object
• Azure: https://my-account.blob.core.windows.net/my-bucket/my-dir/my-object

The following sections get into more detail about the differences in the object storage
services offered by major cloud providers.

Object Storage in AWS
The AWS component offering object storage is called Simple Storage Service, or S3. It
stores objects in buckets that are each associated with a single region that determines
where objects are stored.1 A bucket can be configured to replicate data to a bucket in
a different region for redundancy.

S3 offers four storage classes, and a bucket may hold objects in any mix of classes:

• The standard storage class is aimed at fast, frequent data access.
• The standard-ia or standard-infrequent access storage class carries the same

durability guarantees as the standard class. It costs less to store data in this class,
but each retrieval has an associated fee.

52 | Chapter 5: Storage

• The reduced redundancy storage or RRS storage class is just as fast as the standard
class but has lower durability guarantees. It costs less, and should be used for
data that can be regenerated if necessary.

• The Glacier storage class is for nonrealtime, long-term, cheap data storage. Data
must be “restored” from Glacier before it can be accessed.

The storage class for each object is selected when it is first created. Lifecycle configu‐
ration rules can be attached to buckets to automatically migrate data from more
accessible to less accessible storage classes over time, so that less frequently accessed
data can be stored more cheaply.

Object Storage in Google Cloud Platform
Google Cloud Storage is the service offering object storage for Google Cloud Plat‐
form. It stores objects in buckets, which are each associated with a location and a
default storage class.

Google Cloud Storage offers four storage classes, and a bucket may hold objects in
several classes:

• The regional storage class is aimed at fast, frequent data access, with storage con‐
fined to a single region determined by the bucket location.

• The multi-regional storage class is similar to ordinary regional storage, but data is
replicated across multiple regions, determined by the bucket location. It costs
somewhat more than regional storage.

• The nearline storage class carries the same durability guarantees as the regional
and multi-regional classes. It costs less to store data in this class, but each
retrieval has an associated fee.

• The coldline storage class is for long-term, cheap data storage. Retrieval for
objects in coldline storage costs much more than for nearline storage.

The storage class for each object is selected when it is first created, or defaults to that
of the bucket. Lifecycle policies can be attached to buckets to automatically migrate
data from more accessible to less accessible storage classes over time, so that less fre‐
quently accessed data can be stored more inexpensively.

Object Storage in Azure
Azure has a few different forms of data storage. The service that is most pertinent to
Hadoop clusters is Azure Blob Storage.

Object Storage | 53

2 The term “blob,” which simply refers to a large chunk of data, has an interesting etymology.

Azure Blob Storage stores objects, which are called blobs.2 There are a few types of
blobs:

• A block blob is an immutable, opaque data object.
• An append blob can have additional data appended to it, and can be used to

receive a stream of data such as continuously generated logs.
• A page blob is used by Azure as the backing storage for disks.

Of the three types of blobs, the block blob is the type most useful for Hadoop clusters.
Page blobs are used to store virtual machine disks, but it’s not necessary to work with
them directly.

Each blob is stored in a container. Each container, in turn, is associated with a storage
account that is part of your Azure account. You can have multiple storage accounts,
and each serves as a home for object storage containers and other forms of cloud
storage offered by Azure. It is notable that the name for a storage account must be
globally unique, but this means that container names only need to be unique within a
storage account.

There are two kinds of storage accounts: general-purpose and blob. A blob storage
account allows for specifying one of two access tiers for the objects stored within it:

• The hot access tier is aimed at fast, frequent data access. It has higher storage
cost, but lower access and transaction costs.

• The cold access tier carries the same durability guarantees as the hot access tier. It
costs less to store data in this tier, but it has higher access and transaction costs.

The storage account also determines the primary region where objects are stored, as
part of the account’s replication strategy. There are four replication strategies avail‐
able:

• Locally redundant storage, or LRS, has the highest performance, but the lowest
durability and is bound to a single data center in a single region.

• Zone redundant storage, or ZRS, goes further than LRS and spreads data out to
multiple data centers, either in a single region or a pair of regions. However, it
has limitations in when it can be used; in particular, a blob storage account can‐
not use ZRS.

• Geo-redundant storage, or GRS, is similar to ZRS in that it replicates data out to a
secondary region.

54 | Chapter 5: Storage

https://en.wikipedia.org/wiki/Binary_large_object

3 Chapter 11 covers setting up Hive in the cloud.

• Read-access geo-redundant storage, or RA-GRS, works like GRS but also allows
replicated data to be read from the secondary region.

The access tier and replication strategy for each object is determined by the storage
account governing the container where the object is created. With some limitations
and some costs, the access tier and replication strategy for a storage account can be
changed over time.

Cloud Relational Databases
Although Hadoop breaks away from the traditional model of storing data in rela‐
tional databases, some components still need their own databases to work their best.
For example, the Apache Hive metastore database3 is crucial for mapping non-
relational data stored in HDFS into a relational model that allows for SQL queries.
The Apache Oozie workflow scheduling system also requires a backing database.
While these components and others often can work using embedded databases, sup‐
ported by software like Apache Derby, they are only production-ready when their
databases are stored on full-fledged servers. By doing so, those database servers can
themselves be maintained, backed up, and even shared across components, as part of
an overarching enterprise architecture.

It is also helpful in some situations to simply have relational databases store some
data that Hadoop clusters use or refer to. Using Hadoop does not require completely
abandoning other useful technologies. Analysis jobs can refer to tables in outside
databases to find metadata about the information being analyzed, or as lookup or
translation mechanisms, or for numerous other helpful purposes.

Finally, applications that work with Hadoop clusters may require their own relational
databases. Perhaps authentication and authorization information resides in one, or
the definitions of data views reside in another.

It is perfectly reasonable to use an ordinary cloud instance as the host for a database
server. It is a familiar and comfortable arrangement for database administrators, and
lets you carry over existing maintenance processes into the cloud. You have direct
control over upgrades, downtime, backups, and so on, and additional applications
can be installed alongside the server as necessary. There are images available for pop‐
ular databases to make standing up a database server instance even easier.

However, cloud providers also offer native, abstracted services for supporting data‐
base servers. With these services, instead of requesting a compute instance, you
request a database server instance, specifying the type, version, size, capacity, admin‐
istrative user credentials, and many other parameters. The cloud provider handles

Cloud Relational Databases | 55

setting up the server and ensuring it is accessible to your virtual networks as you
request. You do not have login access to the instance, but can access the database
server process using all the usual client tools and libraries in order to define schemas
and load and query data. The provider handles backups and ensures availability.

Hadoop components can easily use cloud relational databases. The servers have host‐
names and ports, and you can define the users, accesses, and schemas each compo‐
nent requires. From the components’ points of view, the servers host remote
databases like any other.

Cloud Relational Databases in AWS
The AWS component offering cloud relational databases is called Relational Data‐
base Service, or RDS. Each database instance hosts a single database server, and is
similar in concept to an EC2 instance, having an instance class that determines its
compute power and memory capacity. Storage capacity is managed separately, rang‐
ing from gigabytes to terabytes.

Like ordinary instances, database instances run inside an availability zone associated
with a subnet inside a VPC network, and security groups govern access. Moreover, a
multi-AZ database instance can continuously replicate its data to another in a sepa‐
rate availability zone.

RDS also automatically takes care of performing periodic database backups and
minor server software upgrades. It also handles automatically failing over a multi-AZ
database instance in case of the loss of the primary database instance, due to an avail‐
ability zone outage or a hardware failure.

RDS supports many popular database types, including MySQL, MariaDB, Post‐
greSQL, Oracle, and Microsoft SQL Server. It also offers Aurora, a MySQL-
compatible database type that has some additional benefits, including the ability to
establish a database cluster. For database types that require licenses, such as Oracle
and Microsoft SQL Server, you have the option of bringing your own license (BYOL)
or establishing instances that AWS has already licensed.

Cloud Relational Databases in Google Cloud Platform
Google Cloud SQL is the primary service offering cloud relational databases for Goo‐
gle Cloud Platform. A Cloud SQL instance hosts a database server in a specific region
and availability zone, and like an ordinary instance has a machine type determining
the number of virtual CPUs and the size of its memory. Storage capacity is specified
separately and can be set to grow automatically as needed.

Network access to Cloud SQL instances can be granted by whitelisting the IP
addresses of GCE instances, but an easier method is to use a Cloud SQL proxy, which
provides an encrypted tunnel to a Cloud SQL instance. Client use of a proxy works

56 | Chapter 5: Storage

4 Azure resource groups are described in detail in “Creating a Resource Group” on page 89.

just like ordinary database access, and the proxy can be configured with a list of
Cloud SQL instances to support or perform automatic discovery.

A Cloud SQL instance can be set up for high availability, which causes the creation of
a second instance serving as a failover replica. If the primary instance becomes
unavailable, Google Cloud SQL automatically switches to the replica, redirecting the
hostname and IP address accordingly. Google Cloud SQL also handles periodic data‐
base backups.

Only MySQL is supported by Google Cloud SQL.

Google Cloud Spanner
In beta at the time of writing, Google Cloud Spanner is another, new cloud relational
database service that takes advantage of Google’s robust global network to natively
provide high availability while enforcing strong consistency. Cloud Spanner automat‐
ically maintains replicas across availability zones in the chosen region where an
instance resides. What’s more, it provides ways to control where related data is loca‐
ted through features like parent-child table relationships and interleaved tables.

Cloud Relational Databases in Azure
The Azure SQL Database service focuses primarily on the creation and maintenance
of relational databases, as opposed to the servers that host them. A database belongs
to a service tier, which defines the guaranteed amount of compute, memory, storage,
and I/O resources available for database access. Each database runs on a server; mul‐
tiple databases can reside on a single server.

A database server belongs to an Azure resource group,4 which determines the region
where the server resides. Firewall rules associated with a database server control
which ranges of IP addresses are permissible for client access.

The service tier of a database can be updated over time in response to changing
needs, but a more powerful approach is to use elastic pools. Resource usage is spread
across all of the databases belonging to the pool, and administrative tasks can be con‐
veniently performed en masse.

Azure SQL Database handles performing automatic backups, storing data both local
to each database and in a separate data center. Long-term backups can be sent to a
vault. You can also set up replication to several additional databases in other regions,
any of which can be promoted to serve as a new primary database.

Cloud Relational Databases | 57

Azure SQL Database fully supports Microsoft SQL Server. However, newer services
such as Azure Database for MySQL and Azure Database for PostgreSQL, support
those open source databases in a similar fashion, including tiered guarantees on size
and performance and automatic replication.

Azure Cosmos DB
Newly introduced at the time of writing, Azure Cosmos DB is a service for managing
globally distributed databases that are either relational or nonrelational, using a com‐
mon data storage model beneath. The service gives you some control over how data is
partitioned and automatically scales storage to achieve the desired throughput. You
can also choose from one of several consistency models to guide the timeliness of
data availability. Behind the scenes, Cosmos DB spreads data globally to fit your
desired associations, and you can control whether to focus service interactions on
specific regions or across the world.

Cloud NoSQL Databases
It is in the same spirit of offering relational database services that cloud providers also
offer services that provide nonrelational or “NoSQL” databases. These services are
usually pushed to the margins when working with Hadoop clusters, since Hadoop’s
own data storage technologies take center stage. However, as with relational data‐
bases, NoSQL databases can be useful for ancillary applications associated with the
cluster.

In general, the databases hosted by NoSQL database services are highly scalable both
in size and geolocation, and offer high performance. The cloud provider handles
administration and availability concerns, much like they do for relational databases.
Access control is managed by the cloud provider’s own identity and access manage‐
ment systems.

The primary drawback of NoSQL database services is that they are much more spe‐
cific to each cloud provider. While any well-supported relational database supports
SQL, each cloud provider’s NoSQL database service has a way, or set of ways, of
working with data that differs from other services, sometimes even those from the
same provider. This can contribute to becoming tied to a single cloud provider,
which may be undesirable from a competitive point of view. Also, Hadoop compo‐
nents rarely have use for a NoSQL database beyond whatever storage is set up within
their clusters.

Still, NoSQL database services are a part of the storage services available from cloud
providers, and they can find their place in some architectures. Here is a quick run‐
down of what is available at the time of writing:

58 | Chapter 5: Storage

• AWS offers the DynamoDB database service. Tables can be accessed through the
AWS console or through a variety of client-side libraries.

• Google Cloud Platform offers two NoSQL database services. Cloud Datastore
works well for frequent transactions and queries and has higher durability, while
Bigtable emphasizes speed and supports access through the API for Apache
HBase.

• Azure’s DocumentDB service, now part of Azure Cosmos DB, stores databases
containing collections of documents, and can be accessed through a RESTful
protocol as well as the MongoDB API. Azure Table Storage, which is associated
with storage accounts, works with entity-based data.

Where to Start?
This chapter has covered four distinct forms of storage supported by cloud providers:
block, object, relational, and NoSQL. Each of these is provided by one or more cloud
provider services, and those are just a part of those providers’ suites of services. It can
be a lot to take in, especially when figuring out how Hadoop clusters fit.

The two more important services to think about are block storage and object storage.
Block storage is the most crucial, since it provides the disk volumes that instances
need to run. Every cluster needs block storage as an underpinning, and fortunately it
is reasonably straightforward to work with. Object storage is a powerful addition to
your clusters, giving you a place to keep data that survives cluster lifetimes and even
supporting direct use by some Hadoop components.

Relational database services are handy for supporting the Hadoop components and
secondary applications that work with clusters, but are not as important as block and
object storage, especially since you can host your own database servers on ordinary
instances. NoSQL database services are the least important, being unnecessary for
most cluster architectures, but potentially useful in some cases.

Understanding the three core concepts of instances, networking, and storage, you are
ready to jump in and create clusters in the cloud. The next part of this book begins
with individual chapters for three major cloud providers, in which you will prepare
instances and virtual networks necessary for a simple cluster. You should focus on
your cloud provider of choice, although it is informative to see how similar tasks
work in other providers, so you may want to skim the chapters for the other
providers:

• If you are using AWS, continue with Chapter 6.
• If you are using Google Cloud Platform, continue with Chapter 7.

Where to Start? | 59

• If you are using Azure, continue with Chapter 8.

Once you have worked through your cloud provider’s chapter, Chapter 9 pushes for‐
ward with Hadoop installation, configuration, and testing, which works much the
same no matter what provider you use.

60 | Chapter 5: Storage

PART III

A Simple Cluster in the Cloud

In this part, you will stand up a simple Hadoop cluster running on the infrastructure
of a cloud provider. The first three chapters in this part each focus on a separate
cloud provider, so start with the one that you use. The chapters for the other provid‐
ers can give you a sense of what it’s like to use a different one, so they may also be of
interest. The cluster that you create will have the same structure, regardless of the
provider you choose.

The simple cluster built here is used as the basis for further exploration later on in the
book.

CHAPTER 6

Setting Up in AWS

In this chapter you’ll create a simple Hadoop cluster running in Elastic Compute
Cloud (EC2), the service in Amazon Web Services (AWS) that enables you to provi‐
sion instances. The cluster will consist of basic installations of HDFS and YARN,
which form the foundation for running MapReduce and other analytic workloads.

This chapter assumes you are using a Unix-like operating system on your local com‐
puter, such as Linux or macOS. If you are using Windows, some of the steps will
vary, particularly those for working with SSH.

Prerequisites
Before you start, you will need to have an account already established with AWS. You
can register for one for free.

Once you are registered, you will be able to log in to the AWS console, a web interface
for using all of the different services under the AWS umbrella. When you log in, you
are presented with a dashboard for all of those services. It can be overwhelming, but
fortunately, for this chapter you only need to use one service: EC2. Find it on the
home page in the console, as shown in Figure 6-1.

Over time, Amazon will update the arrangement of the console,
and so the exact instructions here may become inaccurate.

63

Figure 6-1. EC2 on the AWS console home page

Notice at the top of the page a drop-down menu, as shown in Figure 6-2, with a geo‐
graphic area selected, such as N. Virginia, N. California, or Ireland. This indicates the
AWS region where you are currently working. If the selected region is not the one
you prefer, go ahead and select a different one using the drop-down. It is generally a
good idea to use a region that is close to your location.

Figure 6-2. A drop-down menu for the AWS regions

64 | Chapter 6: Setting Up in AWS

Allocating Instances
In this section, you will launch the instances that will comprise a Hadoop cluster.
You will also ensure that they have the right networking connections, and that you
can connect to them over SSH.

Generating a Key Pair
Before provisioning instances in EC2, you must create a key pair. A key pair consists
of a public key and a private key, to be used for SSH communication with your
instances. If you are already familiar with asymmetric encryption technologies such
as SSL/TLS, you will be comfortable with EC2 key pairs.

You can have AWS generate the key pair for you and download the private key. As an
alternative, you can use a client-side tool like OpenSSL to create the key pair yourself,
and then upload the public key to AWS. For now, you’ll let AWS do the work.

To have AWS generate a key pair, log in to the AWS console and select EC2. A menu
will appear on the left side of the page with options for working in EC2. Select Key
Pairs in the menu. The main area of the page will show that you have no key pairs for
the region yet. Click the Create Key Pair button to start the process of creating a new
key pair, and follow the instructions.

When you are done, you will receive a PEM file that contains a private key. The
phrase “BEGIN RSA PRIVATE KEY” starts the contents of the file. This is the key file
you will use to SSH to your provisioned instances. Save the file in a safe place, using
file permissions on your local computer to protect it (e.g., make it readable only by
your account). A great place to store it is in the hidden .ssh directory in your home
directory, which is normally used by OpenSSH for key storage and other sensitive
files:

$ mv keyfile.pem ~/.ssh
$ chmod 600 ~/.ssh/keyfile.pem

Launching Instances
You’re now ready to launch instances. For this simple cluster, you’ll launch four
instances: one “manager” and three “workers.” The manager instance will host the
HDFS namenode and the YARN resource manager, while the workers will host the
HDFS datanodes and YARN node managers. A minimum of three workers is recom‐
mended, since the default HDFS replication factor is three.

The manager instance
Let’s start by launching the manager instance. Select Instances from the EC2 menu.
(Pick EC2 from the set of AWS services if you need to.) You’ll see that you don’t have

Allocating Instances | 65

any running instances yet; you’ll change that. Click the Launch Instance button to
start the process.

In the first step, you need to choose an image to base your instance on, as shown in
Figure 6-3. In AWS, an image is called an Amazon Machine Image (AMI). A “Quick
Start” set of AMIs is presented to you. The AMIs cover popular operating systems
and architectures; they are updated periodically as new recommended images are
made available. Find an AMI for Ubuntu Linux that uses virtualization type HVM
and select it.

Figure 6-3. Some AMI choices

Free Tier
For the first year that you have an AWS account, you are eligible for the free tier,
which lets you provision small instances on free operating systems without any cost.
The free tier is great for exploring how to use AWS, but the instance types that fall
within it are, sadly, too underpowered to host a Hadoop cluster that can do more
than trivial work.

You do not need to use Ubuntu to deploy Hadoop in the cloud. It
was chosen for the instructions here because it is popular and
widely supported across all cloud providers. The steps for using a
different Linux distribution can differ, especially in the system
tools available and in package management.

Next, select an instance type for the manager. A subset of the available choices is
shown in Figure 6-4. A manager instance often needs more powerful specifications
than a worker. For this cluster, select an instance type in the General purpose family

66 | Chapter 6: Setting Up in AWS

https://aws.amazon.com/free/faqs/

1 If you just created your AWS account, you may discover that you are not permitted to use such a powerful
instance type right away. If so, go ahead and use a free tier instance type that at least has the minimum mem‐
ory needed. The cluster will still work for experimentation.

with at least four vCPUs and at least 8 GB of memory.1 Over time, EC2 introduces
new instance types with faster processing, better or more memory, or better storage
capabilities, and these new types are preferred over older ones. Unless you have par‐
ticular requirements that only an older instance type satisfies, you should favor new
instances types.

Figure 6-4. Selecting an EC2 instance type

Instead of clicking the tempting Review and Launch button, you need to work
through the full set of steps for launching an instance to fully configure it. Click the
Next: Configure Instance Details button to review networking choices and other
information. The form for doing so is shown in Figure 6-5.

Figure 6-5. EC2 instance details

Allocating Instances | 67

There is a lot to digest here, but here are some highlights:

• The number of instances to launch defaults to one. That is fine for now, because
only one manager is necessary for a simple cluster.

• A VPC has already been selected. Your AWS account is automatically set up with
a VPC upon creation; if you are using a long-standing, shared account, there may
be a few VPCs to choose from.

• The shutdown behavior defines what happens if you issue a system shutdown
within your instance (e.g., /sbin/shutdown). The default of Stop leaves the
instance available in your account to be started again, but selecting Terminate
causes the instance to instead be destroyed. You should leave Stop selected.

• You can enable termination protection on instances so that they cannot be ter‐
minated without explicitly disabling the protection via the console as an extra
step.

Since the cluster will have multiple instances talking to one another, configuration
will be easier and performance will be much better if they are all close to each other
in the network. So, select a specific subnet from the list of available subnets. A subnet
is a segment of the overall address space in a VPC that resides within a single availa‐
bility zone. Remember the subnet you choose now, so that the worker instances can
be provisioned there as well.

Click Next: Add Storage to see options, as shown in Figure 6-6, for adding storage to
the new instance.

Figure 6-6. EC2 instance storage configuration

By default, an EC2 instance comes with a modest amount of dedicated storage moun‐
ted as its root volume. Increase the amount, if necessary, to at least 30 GB, so that
there is ample room for installing what you need for your cluster. Resist the tempta‐
tion to add more storage than you need: you will be charged per GB provisioned, not
per GB utilized. Then click Next: Tag Instance to see the tag entry form as in
Figure 6-7.

68 | Chapter 6: Setting Up in AWS

Figure 6-7. Setting EC2 instance tags

Tags are simple name-value pairs that are attached to instances. They are useful for
organizing instances and noting their name, purpose, owner, or any other basic
information. For this instance, enter a tag with key “Name” and value “manager”.
Click Next: Configure Security Group to set up security for the new instance using
the form shown in Figure 6-8.

Figure 6-8. The default security group selection for EC2 instances

Here, you will define the permissions for network communications to and from the
cluster through a security group. Start by selecting the “Create a new security group”
radio button, and then entering “basic-security” for the group name. Supply any
description you like. The renamed security group is shown in Figure 6-9.

The new security group defaults to having one incoming rule, allowing SSH access
from any IP address, and is represented by the CIDR 0.0.0.0/0. While this can be
acceptable for a case such as this where you are only trying things out, you should
instead restrict access to only an appropriate range of IP addresses.

To restrict SSH access to your IP address alone, either replace the default CIDR
address by selecting Custom IP and enter your IP address, or just select My IP to
have your address autodetected. To instead restrict access to a range of IP addresses
(e.g., your address may change over time, or you may switch local computers), select
Custom IP and enter the appropriate CIDR address.

Allocating Instances | 69

If you are on a local network that accesses the internet through a
router performing network address translation (NAT), then be
sure to use the IP address assigned to the router. The My IP auto‐
detection should select the correct IP address.

Figure 6-9. Updated security group configuration for EC2 instances

Click the Review and Launch button to see an overview of the instance you are about
to launch. The chosen AMI, instance type, security group, and other details are avail‐
able to look over. When you are satisfied, click the Launch button to complete the
last step.

Before EC2 proceeds to launch your instance, you will be asked for a key pair to use
for SSH access. Since you already created a key pair, select its name and click Launch
Instances.

Your new instance will start to launch. You can monitor its progress by returning to
the AWS console and selecting Instances from the EC2 menu. Once the instance state
is shown as “running,” you can attempt to connect to it over SSH, using the private
key from your chosen key pair to authenticate. The username to use depends on the
AMI you have chosen; sometimes “root” will work, but often it will be a different
username; for Ubuntu, you can try “ubuntu” as the username. You can use either the
public DNS name or public IP address to reach the instance; these can be found in
the instance details when you select the manager instance from the list of running
instances.

The AWS console can help you with your SSH command line for
connecting to an instance. Select Instances from the EC2 menu,
select the row for the instance you want to connect to, and click the
Connect button. A dialog box will suggest an SSH command line,
including a username that may work.

70 | Chapter 6: Setting Up in AWS

The worker instances
Once you can connect to the manager instance, you’ve completed the first step
toward standing up a cluster. Now, repeat the preceding steps to launch the three
worker instances. The procedure is almost the same, but there are important changes:

• You can choose a less powerful instance type for workers: for example, an
instance type with only two vCPUs.

• When configuring instance details, change the Number of Instances to 3.
• Be sure to select the same subnet as the one hosting the manager instance. As

mentioned earlier, this will make configuration of the cluster much easier.
• Use the value “worker” for the Name tag.
• Instead of creating a new security group, select the same security group that you

created for the manager instance.

After the worker instances are launched, make sure you can SSH to each of them as
well. At this point you have a set of instances that is able to run a Hadoop cluster.

Securing the Instances
Some of the work to secure the new instances was done when the security group for
them was defined, but there is a little more to do.

If you took the recommended step of locking down SSH access in the “basic-security”
security group created while allocating instances, then SSH between instances will
not work. This is because the security group only allows SSH from your IP address
(or IP address range), and nowhere else. So, the security group must be updated to
allow wider SSH access. In fact, there will be more than just SSH traffic between
instances once the cluster is running, so the best way to allow it all is to open up
inbound traffic from anywhere in the security group itself.

Start by selecting Security Groups from the EC2 menu. Select the row for the “basic-
security” group, and then select the Inbound tab for the group. Click the Edit button,
and then Add Rule in the dialog box that appears. For the Type of the new rule, select
“All traffic,” and enter the security group ID or name in the Source field. Click Save,
and the security group will be updated. At this point, it should be possible to SSH
between any two instances in the security group.

Next Steps
At this point, there are instances destined to host a cluster running in EC2. To pause
here, you can stop the new instances by selecting them in the list of running instances

Securing the Instances | 71

and then using the Actions button to select Instance State, and then Stop. You can
start them later by using Start in the same menu.

Otherwise, proceed to Chapter 9 to install Hadoop and configure it, and then try it
out with some basic MapReduce jobs.

72 | Chapter 6: Setting Up in AWS

CHAPTER 7

Setting Up in Google Cloud Platform

In this chapter you’ll create a simple Hadoop cluster running in Google Compute
Engine (GCE), the service in Google Cloud Platform that enables you to provision
instances. The cluster will consist of basic installations of HDFS and YARN, which
form the foundation for running MapReduce and other analytic workloads.

This chapter assumes you are using a Unix-like operating system on your local com‐
puter, such as Linux or macOS. If you are using Windows, some of the steps will
vary, particularly those for working with SSH.

If you just worked through the previous chapter on AWS, you’ll
find that this chapter covers the same procedures, just under Goo‐
gle Cloud Platform. If you’re more interested in using your AWS
cluster, skip ahead to Chapter 9.

Prerequisites
Before you start, you will need to have an account already established with Google
Cloud Platform. You can use your current Google account, or register for a separate
account for free.

Once you are registered, you will be able to log in to the Google Cloud Platform con‐
sole, a web interface for using all of the different services under the Google Cloud
Platform umbrella. When you log in, you are presented with a dashboard providing a
curated view of some of those services; a complete list is available from the “hambur‐
ger” menu accessible from the top-left corner. For this chapter, you will be focusing
on GCE, whose dashboard tile is shown in Figure 7-1.

73

Figure 7-1. GCE on the Google Cloud Platform dashboard

Over time, Google will update the arrangement of the console, and
so the exact instructions here may become inaccurate.

Creating a Project
Work that you perform in Google Cloud Platform is always done within the context
of a project. You can define projects yourself and switch between them. Each project
defines a scope for instances, billing, security, default metadata, and so on. Perhaps
most importantly, a project has a default region and availability zone for instances
that are created within it. Google Cloud Platform will select a region that is near your
location, but you can choose a different one yourself if you want.

To create a new project, use the project drop-down menu next to the search bar
across the top of the dashboard to select “Create a project.” The menu is shown in
Figure 7-2.

74 | Chapter 7: Setting Up in Google Cloud Platform

Figure 7-2. Creating a new project

A cluster creation form, as shown in Figure 7-3, appears. This project can be called
“My First Cluster”. By selecting “Show advanced options,” you can select a specific
default region for the project. Click the Create button to create the new project. Once
the project has been created, the dashboard switches to working within it. Now you
have a space for allocating instances. Open the hamburger menu and select Compute
Engine.

Figure 7-3. The “My First Cluster” project

Allocating Instances
In this section, you will launch the instances that will comprise a Hadoop cluster.
You will also ensure that they have the right networking connections, and that you
can connect to them over SSH.

SSH Keys
Before provisioning instances in Google Cloud Platform, you must provide it an SSH
key. An SSH key is just the public key that forms half of a public/private key pair used
for SSH communication with your instances. If you are already familiar with asym‐

Allocating Instances | 75

metric encryption technologies such as SSL/TLS, you will be comfortable with SSH
keys.

If you already have a key pair that you like to use, you can reuse it for Google Cloud
Platform. If not, you can create a new one yourself using a client-side tool like
OpenSSL. In either case, you will upload the public key to Google Cloud Platform.
Then, the public key can be chosen to be recognized by the default login account on
newly provisioned instances, enabling SSH access.

To create a new key pair, try using the ssh-keygen utility. You can run it with no argu‐
ments to work completely interactively, or use command-line options to supply most
of what the utility needs. The following example generates a 2048-bit RSA key, saving
the private key to a file named “gcp” and the public key to a file automatically named
“gcp.pub” in the hidden .ssh directory, which is normally used by OpenSSH for key
storage and other sensitive files:

$ ssh-keygen -b 2048 -t rsa -f ~/.ssh/gcp

When ssh-keygen asks for a passphrase for the new private key,
you can enter an empty string (press Enter or Return) to leave the
key unprotected. This is a common practice done for convenience,
so that the key can be used to connect via SSH without entering a
passphrase every time. If you do this, though, be sure to protect the
private key file by using file permissions (e.g., make it readable only
by your account), so that it is less likely to be compromised.

With the key pair generated, you can upload the public key data to Google Cloud
Platform. Select Metadata from the Google Cloud Platform menu, and then the SSH
Keys tab in the main part of the page. The empty form for adding new keys is shown
in Figure 7-4.

Click the “Add SSH keys” button to reveal a simple form for adding the data. Copy
the contents of your public key file to your clipboard, as demonstrated in Figure 7-5,
and paste them into the text area. Then click Save.

Use the contents of the public key, not the private key. Google
Cloud Platform never needs to know your private key to provide
SSH access. If you accidentally paste your private key data into the
form, assume that the key has been compromised and generate a
new one.

76 | Chapter 7: Setting Up in Google Cloud Platform

Figure 7-4. The SSH Keys tab

Figure 7-5. An SSH key

Creating Instances
You’re now ready to create instances. For this simple cluster, you’ll create four
instances: one “manager” and three “workers.” The manager instance will host the
HDFS namenode and the YARN resource manager, while the workers will host the
HDFS datanodes and YARN node managers. A minimum of three workers is recom‐
mended, since the default HDFS replication factor is three.

The manager instance
Let’s start by creating the manager instance. Select VM instances from the Google
Cloud Platform menu. You’ll see, like in Figure 7-6, that you don’t have any running
instances yet; you’ll change that. Click the “Create instance” button to start the pro‐
cess.

Allocating Instances | 77

1 At the time of writing, the limit is eight, which is enough for a cluster of four instances with two cores each.

2 Such a powerful instance type may run up against your free trial core limit. Go ahead and use fewer vCPUs if
you wish; the cluster will still work for experimentation.

Figure 7-6. The first “Create instance” button

Free Trial
After signing up for Google Cloud Platform, you are eligible for a limited-time free
trial, during which you are granted a fixed amount of credit that can be used to provi‐
sion instances. The free trial is great for exploring how to use Google Cloud Platform,
but during the free trial you are limited in how many cores you can have active at
once.1 This prevents you from getting in over your head, but also disallows creating
Hadoop clusters that can do more than trivial work. After the free trial ends, there is a
permanent free tier, although resources that run under it are too underpowered for
Hadoop.

A form appears, covering the basic information needed to create a new instance:

• Use the name “manager”.
• Select an availability zone near your location. It does not need to be within the

default region of your project.
• A manager instance often needs more powerful specifications than a worker. For

this cluster, select an instance type in the standard family with at least four
vCPUs and at least 8 GB of memory.2

• The boot disk hosts the operating system and file storage for the instance. Click
the Change button to bring up a secondary form, as shown in Figure 7-7, where
you can pick a different image and resize the disk. Select an Ubuntu image from

78 | Chapter 7: Setting Up in Google Cloud Platform

https://cloud.google.com/free/docs/frequently-asked-questions
https://cloud.google.com/free/docs/frequently-asked-questions

the “Preconfigured image” tab, then increase the size, if necessary, to at least 30
GB, so that there is ample room for installing what you need for your cluster.

Figure 7-7. Boot disk options

You do not need to use Ubuntu to deploy Hadoop in the cloud. It
was chosen for the instructions here because it is popular and
widely supported across all cloud providers. The steps for using a
different Linux distribution can differ, especially in the system
tools available and in package management.

The instance is ready to be created. While here, though, you can take a look through
additional hidden options by selecting “Management, disk, network, SSH keys” near
the bottom of the form. All of the defaults in these additional tabs are acceptable for
this instance.

• You can see that Google Cloud Platform automatically selects a subnet for the
instance. When you create a new project, Google Cloud Platform establishes a

Allocating Instances | 79

network for it automatically with a few subnets, one per region. The subnetwork
selected here resides in the same region as the availability zone for the instance. If
you update the network definition with additional subnets for the region, this
form lets you select from those subnets.

• You could use the SSH Keys tab here to supply a public key, but since the project
already has a default, it isn’t necessary here.

With the manager instance fully specified as shown in Figure 7-8, click the Create
button to start the instance creation process.

Figure 7-8. The manager instance

80 | Chapter 7: Setting Up in Google Cloud Platform

Your new instance will start to launch. You can monitor its progress on the Google
Cloud Platform console by selecting “VM instances” from the Google Cloud Plat‐
form menu. Once the instance state is shown as running via a checkmark, you can
attempt to connect to it over SSH, using the private key from your chosen key pair to
authenticate. The username matches the username for your Google account. You can
use the external IP address to reach the instance, which can be found in the list of
instances in the console.

The Google Cloud Platform console lets you connect to instances
via SSH directly from the browser. Do this by selecting SSH from
the Connect column in the list of instances. Google Cloud Platform
generates a short-lived SSH key pair and configures a login account
on the instance to recognize it, then connects you in a popup ter‐
minal window. The account created in this process does have sudo
capability, so you can use it to fully explore the instance, including
checking on what the standard account for the instance is.

The worker instances
Once you can connect to the manager instance, you’ve completed the first step
toward standing up a cluster. On the VM instances dashboard page, you will see
options across the top for creating an instance and an instance group. For efficiency,
select Create Instance Group to begin the process of launching three worker instan‐
ces at once.

The procedure here is similar to setting up the single manager instance, but there are
important changes. Start off by using the name “worker-group-1” and selecting the
same availability zone you selected for the manager.

Under “Creation method,” leave “Use instance template” selected and select “Create
an instance template” from the Instance Template drop-down. An instance template
defines the parameters needed to automatically generate several instances at once,
and the form that appears for defining a template, shown in Figure 7-9, works just
like the similar part of the form for creating a single instance:

• Enter a template name “worker-template-1”.
• If you wish, choose a less powerful instance type for workers: for example, an

instance type with only 2 vCPUs.
• Select the same OS and root disk size.

Allocating Instances | 81

Figure 7-9. The worker instance template

Back on the main form, as shown in Figure 7-10, change the “Number of instances”
to 3. Then click Create.

82 | Chapter 7: Setting Up in Google Cloud Platform

Figure 7-10. The worker instances

The VM instances dashboard page will show three new instances being provisioned.
Figure 7-11 shows a set of provisioned workers along with a manager. The name for
each of the workers is automatically determined by Google Cloud Platform, but they
are all prefixed with the instance group name. After the instances are running, make
sure you can SSH to each of them as well. At this point you have a set of instances
that is able to run a Hadoop cluster.

Allocating Instances | 83

Figure 7-11. Instances running in GCE

Securing the Instances
You may have noticed that, besides selecting availability zones, no network choices
needed to be made for provisioning instances. That is because GCE automatically
placed the instances into the default network, which was already populated with sub‐
nets and firewall rules. Those firewall rules can be updated to improve the security
posture of the cluster.

From the VM instances dashboard page, follow the link for the “default” network lis‐
ted for any of the instances. (Alternatively, select Networking from the hamburger
menu, then Networks, and follow the link for the “default” network.) The page for
the default network, as shown in Figure 7-12, lists the subnets and firewall rules that
are already in place.

The firewall rules defined for the default network do limit access from outside the
network to only a few ports, but for those ports they allow access from anywhere, as
can be seen from the IP range of 0.0.0.0/0 for the relevant rules. Make the following
changes to the firewall rules to make the network more secure:

• Remove the RDP / port 3389 rule.
• Edit the ICMP and SSH / port 22 rules to restrict them to your IP address or

organization’s IP address range. To edit a rule, follow the link for its name and
select Edit from the menu at the top of the page to bring up the rule editing form.

The IP range for a single IP address is expressed in CIDR notation
by appending “/32” after the IP address, e.g., “203.0.113.123/32”.

84 | Chapter 7: Setting Up in Google Cloud Platform

Figure 7-12. Default firewall rules

Note the firewall rule that allows traffic on any port from IP addresses in the subnet.
This enables unfettered network connectivity between instances in the subnet includ‐
ing SSH and all the other ports used by Hadoop components. That is why an addi‐
tional allow rule for that traffic isn’t required; that helpful, permissive firewall rule
takes care of it.

After updating the firewall rules, check to make sure that you can still connect to
your instances via SSH as before. If you cannot, make sure that you used the correct
IP address range in the edited rules.

Next Steps
At this point, there are instances destined to host a cluster running in GCE. To pause
here, you can stop the new instances by selecting them in the list of instances and
then clicking the Stop button in the options across the top of the list. You can start
them later by using the Start button.

Otherwise, proceed to Chapter 9 to install Hadoop and configure it, and then try it
out with some basic MapReduce jobs.

Next Steps | 85

CHAPTER 8

Setting Up in Azure

In this chapter you’ll create a simple Hadoop cluster running in Azure. The cluster
will consist of basic installations of HDFS and YARN, which form the foundation for
running MapReduce and other analytic workloads.

This chapter assumes you are using a Unix-like operating system on your local com‐
puter, such as Linux or macOS. If you are using Windows, some of the steps will
vary, particularly those for working with SSH.

If you just worked through a previous chapter on AWS or Google
Cloud Platform, you’ll find that this chapter covers the same proce‐
dures, just under Azure. If you’re more interested in using your
AWS or Google Cloud Platform cluster, skip ahead to Chapter 9.

Prerequisites
Before you start, you will need to have an account already established with Azure.
You can use your current Microsoft account, or register for a separate account for
free.

Free Trial
After signing up for Azure, you are eligible for a limited-time free trial, during which
you are granted a fixed amount of credit that can be used to provision resources. The
free trial allows you to explore Azure, but the limited number of permitted cores per
region may be so low that you are unable to field a Hadoop cluster. If so, contact
Azure Support to request a limit increase.

87

https://azure.microsoft.com/en-us/free/free-account-faq/

Once you are registered, you will be able to log in to the Azure portal, a web interface
for using all of the different services under the Azure umbrella. A view of the portal is
shown in Figure 8-1. When you log in, you are presented with a default portal
arrangement with a starter set of tiles; a complete list of services is available from the
menu on the left side of the portal. You are free to rearrange the tiles to your liking.

Figure 8-1. The default arrangement of the Azure portal

Over time, Microsoft will update the default arrangement of the
portal, and so the exact instructions here may become inaccurate.
Also, as you work in Azure, the contents will change.

88 | Chapter 8: Setting Up in Azure

Creating a Resource Group
Working in Azure is about managing resources, which are things like virtual
machines and virtual networks. Resources are grouped into resource groups so that
they can share the same lifecycle and be tagged and controlled together. Each
resource group is associated with a region, so all of the resources in the group are tied
to that region. As a start to building a cluster in Azure, create a resource group for all
of the cluster’s resources.

To begin creating a resource group, select “Resource groups” from the portal menu.
This opens a window within the portal, called a blade, which lists the resource
groups. As shown in Figure 8-2, there are none at the moment, so click the “+ Add”
button in the toolbar to create one.

Figure 8-2. A closeup of the Resource groups blade

A new blade appears, with a small form, as shown in Figure 8-3, to fill in about the
resource group. Give it a name such as “my_first_cluster” and select a region for the
“Resource group location.” If you have just signed up for Azure, “Free Trial” is the
only choice for the subscription; otherwise, pick the correct one. If desired, check the
“Pin to dashboard” checkbox so that the resource group appears in the portal as a tile.
Finally, click Create to complete the workflow.

Creating a Resource Group | 89

Figure 8-3. The my_first_cluster resource group

Once Azure creates the resource group, a new blade will appear for it, with an empty
list of resources. If you close this using the “X” at the upper right, you will see a new
tile like the one shown in Figure 8-4 for the resource group in the dashboard, as long
as you checked the “Pin to dashboard” checkbox.

Figure 8-4. The my_first_cluster resource group in the portal

Creating Resources
Now it’s time to fill up the resource group with the resources needed for a Hadoop
cluster. The resources are:

• A virtual network, to house the cluster instances
• A storage account, as a home for the disk storage used by the cluster
• A network security group, to control network traffic to and from the cluster

90 | Chapter 8: Setting Up in Azure

1 A /16 CIDR block such as this covers 65,536 addresses. For more about interpreting CIDR notation, see “A
Drink of CIDR” on page 29.

In this chapter, the terms virtual machine and instance are used
interchangeably.

There is a somewhat standard process for creating any resource: select the resource
type from the portal menu to bring up a blade with a list of the resources, click the
“+ Add” button to begin the process of creating the resource, and follow the steps
provided, ending up back at the resource list. Because Azure creates resources asyn‐
chronously, the resource list might not show a new resource immediately, but it can
be refreshed. Notifications keep you informed of progress.

The portal menu shows “favorite” resource types and other services, but all of them
are available by following the “More services” option at the bottom of the menu. The
menu contents can be customized by selecting and deselecting favorites, and the
menu order can be rearranged by dragging items around. Do feel free to customize
the menu for easier use.

Creating these resources before any virtual machines that will com‐
prise your cluster is one possible workflow. You can instead go
ahead and create the first virtual machine, and Azure will generate
a virtual network, storage account, and network security group for
you. The instructions here show the supporting resources first to
highlight how they are configured.

Start with creating a virtual network by selecting “Virtual networks” from the portal
menu. Following the usual workflow, click the “+ Add” button above the empty list of
virtual networks to reveal a form, as shown in Figure 8-5, for beginning the creation
process:

• Give the virtual network a name such as “cluster_net”.
• The default IP address space for the network is 10.0.0.0/16, which is more than

enough.1

• Likewise, the first subnet in the network, named “default” with IP address space
10.0.0.0/24, will work fine for a cluster.

• Select the same subscription that you used for the resource group. You’ll do this
for each new resource, so it is not called out again here.

Creating Resources | 91

• Select the resource group that you just created. This will also populate the loca‐
tion with the resource group’s location. Again, this is a common step across
resources and won’t be repeated in these steps.

Figure 8-5. The virtual network

End by clicking the Create button. As with the resource group, and with other
resources that you will make, you should see notifications that the resource is being
created and then is ready. You can refresh the list of virtual networks to see it listed.

Next, create a storage account so that you can access Azure Storage services. This
provides a home for the disks that will be attached to cluster instances. Start from the
“Storage accounts” portal menu item and follow the usual workflow, using the form
shown in Figure 8-6:

• Give the account a name. This must be globally unique across all Azure storage
accounts, so short or obvious names might not be available.

• Select “Resource manager” for the deployment model.
• The correct account type is “General purpose,” since this will be for virtual

machine disks, as opposed to only blobs.

92 | Chapter 8: Setting Up in Azure

• Select Premium for performance. This directs the storage account to use SSDs for
disks, instead of slower magnetic storage. Some virtual machine images require
premium storage.

• For replication, select LRS (locally redundant storage) as the cheapest option. It
may be the only option available. There are several options for data redundancy,
which are discussed in “Object Storage in Azure” on page 53.

• Storage service encryption may be disabled.

Figure 8-6. The storage account

Now for the network security group, starting from “Network security groups” in the
portal menu and using the form shown in Figure 8-7, the only unique piece of infor‐
mation needed is a name, such as “cluster_nsg”.

Creating Resources | 93

Figure 8-7. The network security group

With a network security group defined, add an inbound rule that permits SSH access
from your local computer, so that you can connect directly to any of the cluster
instances. Select the group from the list of network security groups, if necessary, to
see a blade like the one shown in Figure 8-8, providing an overview of the group with
its empty lists of inbound and outbound rules.

Figure 8-8. An overview of the new network security group

94 | Chapter 8: Setting Up in Azure

Select “Inbound security rules” from the blade menu to reveal a list of empty rules.
Click the “+ Add” button above the list to create a new rule. Populate the new rule as
shown in Figure 8-9:

• Give the rule a name such as “cluster_ssh”.
• Pick a priority. The default of 100 represents the highest possible priority and is

fine as a default.
• For a source, select “CIDR block,” and provide an IP address range that includes

your local computer.
• Select SSH for the service, and the protocol and port range are filled in automati‐

cally.
• Pick Allow for the action.

Figure 8-9. An inbound rule permitting SSH access

Creating Resources | 95

SSH Keys
Before provisioning instances in Azure, you need to generate an SSH key. An SSH key
is just the public key that forms half of a public/private key pair used for SSH com‐
munication with your instances. If you are already familiar with asymmetric encryp‐
tion technologies such as SSL/TLS, you will be comfortable with SSH keys.

If you already have a key pair that you like to use, you can reuse it for Azure. If not,
you can create a new one yourself using a client-side tool like OpenSSL. In either
case, the public key can be provided for the login account on newly provisioned
instances, enabling SSH access.

To create a new key pair, try using the ssh-keygen utility. You can run it with no argu‐
ments to work completely interactively, or use command-line options to supply most
of what the utility needs. The following example generates a 2048-bit RSA key, saving
the private key to a file named “azure” and the public key to a file automatically
named “azure.pub” in the hidden .ssh directory, which is normally used by OpenSSH
for key storage and other sensitive files:

$ ssh-keygen -b 2048 -t rsa -f ~/.ssh/azure

When ssh-keygen asks for a passphrase for the new private key,
you can enter an empty string (press Enter or Return) to leave the
key unprotected. This is a common practice done for convenience,
so that the key can be used to connect via SSH without entering a
passphrase every time. If you do this, though, be sure to protect the
private key file by using file permissions (e.g., make it readable only
by your account), so that it is less likely to be compromised.

Creating Virtual Machines
With the preliminary work of establishing necessary support resources out of the
way, you’re now ready to create virtual machines. For this simple cluster, you’ll create
four instances: one “manager” and three “workers.” The manager instance will host
the HDFS namenode and the YARN resource manager, while the workers will host
the HDFS datanodes and YARN node managers. A minimum of three workers is rec‐
ommended, since the default HDFS replication factor is three.

The Manager Instance
Let’s start by creating the manager instance, following the usual procedure: Select the
Virtual machines item in the portal menu and click the “+ Add” button in the cur‐
rently empty list of virtual machines, as shown in Figure 8-10.

96 | Chapter 8: Setting Up in Azure

Figure 8-10. The initially empty list of virtual machines

A blade for the Azure Marketplace appears so you can select an image to base your
instance on. Enter “ubuntu” in the search field to look for available Ubuntu images,
and select a recent Ubuntu Server image. Remember which one you select, so you can
re-use it for other cluster instances. Figure 8-11 shows a couple of options for Ubuntu
versions.

Figure 8-11. Search results for Ubuntu in the marketplace

You do not need to use Ubuntu to deploy Hadoop in the cloud. It
was chosen for the instructions here because it is popular and
widely supported across all cloud providers. The steps for using a
different Linux distribution can differ, especially in the system
tools available and in package management.

The next blade asks for your deployment model, either Resource Manager or Classic.
As shown in Figure 8-12, select the newer Resource Manager model, which lets you
work with your cluster resource group, and click the Create button.

Creating Virtual Machines | 97

Figure 8-12. Selecting the Resource Manager deployment model

Next, a pair of blades appear to work through a wizard-like workflow for creating a
new instance. The first step is a form, shown in Figure 8-13, for basic settings:

• Use the name “manager”.
• Provider a username for the default account. These instructions assume the user‐

name is “ubuntu”.
• Select “SSH public key” for the authentication type, and for the next field copy in

the public key from your SSH key pair.

Use the contents of the public key, not the private key. Azure never
needs to know your private key to provide SSH access. If you acci‐
dentally paste your private key data into the form, assume that the
key has been compromised and generate a new one.

• Select the “Use existing” radio button for the resource group and enter the name
for your resource group.

Click OK to move to the next step.

98 | Chapter 8: Setting Up in Azure

2 Such a powerful instance size may not be available under a free trial subscription. Go ahead and select an
instance size that at least has the minimum memory needed. The cluster will still work for experimentation.

Figure 8-13. The basic settings for the manager instance

Now select a size for the manager instance. A manager instance often needs more
powerful specifications than a worker. For this cluster, select an instance size with at
least four vCPUs and at least 8 GB of memory.2 Figure 8-14 shows some available
instance sizes, along with their monthly costs, at the time of writing.

Creating Virtual Machines | 99

Figure 8-14. Some available instance sizes for a virtual machine

The next form, shown in Figure 8-15, is for “optional” settings, but for setting up a
Hadoop cluster they are quite important:

• Select the storage account, virtual network, default subnet, and network security
group that you created earlier. They may be automatically selected in the form.

• A new public IP address is suggested. Highlight the automatic selection and a
pair of new blades appear, one for choosing a public IP address with the “Create
new” option selected, and a second with a small form for defining the public IP
address. A public IP address in Azure is a resource like any other, so you can
establish one for the manager now. In the public IP address form, enter a name
for the public IP address resource and select Static assignment.

• Monitoring diagnostics may be disabled.

100 | Chapter 8: Setting Up in Azure

Figure 8-15. Optional settings for the manager instance

The last part of the workflow is just a summary, so you can verify your choices before
Azure begins to create the virtual machine. An example summary is shown in
Figure 8-16. Click OK one last time to start the creation process.

Creating Virtual Machines | 101

Figure 8-16. A summary of the manager instance settings

Azure automatically places a tile on the portal for the new virtual machine, which
animates as the instance is created. You can select the tile to bring up a blade about
the virtual machine and monitor its progress. You may notice that Azure automati‐
cally creates yet another resource, a network interface. This is analogous to a network
adapter card in a physical machine, and links the virtual machine to its public IP
address and virtual network.

When the virtual machine is created and running, the overview of the virtual
machine describes its “Essentials,” including the public IP address reserved for it. An
example overview is shown in Figure 8-17. You can now attempt to connect to it over
SSH, using the username and SSH key provided during the creation process.

Figure 8-17. Essential information about the new manager instance

102 | Chapter 8: Setting Up in Azure

The Worker Instances
Once you can connect to the manager instance, you’ve completed the first major step
toward standing up a cluster. Now, repeat the preceding steps to launch the three
worker instances. The procedure is almost the same, but there are a couple of impor‐
tant changes:

• Use unique names for the instances, such as “worker1”, “worker2”, and
“worker3”.

• You can choose a less powerful instance size for workers: e.g., an instance size
with only two vCPUs.

After the worker instances are launched, make sure you can SSH to each of them as
well. At this point you have a set of instances that is able to run a Hadoop cluster.

Next Steps
The default rules of the network security group automatically permit connectivity
between all of the instances, since they all belong to the same virtual network, and the
explicit inbound rule in the group restricts SSH access appropriately, so there are no
further steps needed to secure the instances.

To pause here, you can stop each new virtual machine; go to the list of virtual
machines and select Stop in each one’s action menu, which is denoted by an ellipsis
(three periods). You can start them later by selecting Start in the same menu.

Otherwise, proceed to Chapter 9 to install Hadoop and configure it, and then try it
out with some basic MapReduce jobs.

Next Steps | 103

CHAPTER 9

Standing Up a Cluster

Now that you have instances up and running in the cloud provider of your choice,
they can be set up to run a Hadoop cluster. If you don’t have instances at the ready
and want to follow along, then go back to Chapter 6 for AWS, Chapter 7 for Google
Cloud Platform, or Chapter 8 for Azure first, and then return here.

The JDK
Hadoop requires a Java runtime to work, and so Java must be installed on each of
your new instances. A good strategy is to use the operating system package manage‐
ment capability already on the instances, e.g., yum on Red Hat Linux, apt on Ubuntu.
Cloud providers ensure that these capabilities work within their infrastructures,
sometimes even providing local mirrors or gateways to help.

Table 9-1 suggests packages to install for some operating systems. As new versions of
Java are released, the package names will change.

Table 9-1. Suggested Java packages

OS Package names
Debian or Ubuntu openjdk-8-jdk or openjdk-7-jdk

Red Hat or CentOS java-1.8.0-openjdk or java-1.7.0-openjdk

Instead of using a package available natively for your operating system, you can
install an Oracle JDK by downloading an installation package directly from Oracle.
Since you have root access to your instances, you are free to use whatever means you
prefer to install Java.

105

After you have installed Java, make note of where the Java home directory is (i.e.,
what the JAVA_HOME environment variable should be set to). You will need to know
this location later.

Hadoop Accounts
While Hadoop can run under the root account, it is better security practice to use
nonprivileged accounts. For this simple cluster, create two ordinary user accounts on
each instance for running HDFS and YARN. These instructions will assume that the
usernames for the account are “hdfs” and “yarn”. They will both belong to a new
“hadoop” group. For even better security, instead of creating passwords for the new
accounts, use an SSH key pair. One option is to copy in the authorized_keys file from
the standard login account for the instance; that way, you can use the same private
key to connect via SSH from your local computer to any of the accounts on the
instances:

$ sudo groupadd hadoop
$ for u in hdfs yarn; do
> sudo useradd -G hadoop -m -s /bin/bash ${u}
> sudo mkdir /home/${u}/.ssh
> sudo cp ~/.ssh/authorized_keys /home/${u}/.ssh
> sudo chmod 700 /home/${u}/.ssh
> sudo chown -R ${u} /home/${u}/.ssh
> done

Passwordless SSH
The Hadoop distribution includes some helpful utility scripts that can connect to
each instance in your cluster to start and stop everything for a service at once. To use
these scripts, passwordless SSH must be established from the “hdfs” and “yarn”
accounts on the manager instance to the same accounts on each of the worker instan‐
ces, as well as for hopping from the manager instance back to itself.

While your cloud provider key pair can be used for passwordless SSH, it’s better to
keep its private key from being copied too widely. So, instead, generate new default
SSH keys on the manager instance under each account, and then transfer the public
keys to the corresponding accounts on the worker instances:

on manager:
$ ssh-keygen -t rsa -b 2048 -f ~/.ssh/id_rsa -N ''
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

on each worker:
$ cat >> ~/.ssh/authorized_keys
copy and paste public key contents
^D

106 | Chapter 9: Standing Up a Cluster

The preceding commands accomplish transferring the public keys by just copying
and pasting their contents through your SSH sessions. Another option, which is auto‐
matable, is to copy the public keys using SCP back to your local computer, and then
copy them again from there to each worker instance. On a larger system, manage‐
ment tools like Chef or Puppet could be used to automatically distribute keys.

Now that the public keys have been distributed, connect via SSH from the “hdfs” and
“yarn” accounts on the manager to the same accounts on each instance, including the
manager itself, using each instance’s private IP address. This is not only a useful
check, but also gives you the chance to accept the key fingerprint for each instance
and have it recorded in the SSH known hosts files of the manager accounts. Without
doing so, automated scripts that use SSH might get stuck waiting for interactive con‐
firmation of a fingerprint.

If the connections fail, verify the security rules governing the instances, and make
sure to use the private keys generated for each Hadoop account, not the private key
set up with the cloud provider.

Hadoop Installation
For now, the Hadoop cluster will only contain the basic Hadoop services HDFS and
YARN. These instructions are based on the standard cluster setup instructions and
use the standard binary distribution from Apache. If you already have a tried-and-
true set of steps for Hadoop installation, or if you prefer to use a customized or bun‐
dled distribution from a Hadoop vendor, you may be able to adapt these instructions.

To start, download a binary Hadoop distribution from hadoop.apache.org to each of
your instances, under the standard login account. You can download to your local
computer and then use SCP to transfer the distribution to each of your instances, or
instead use curl or wget on each instance to download the distribution directly.

Apache uses a mirror system to offer distributions, so the simplest way to find a
download URL is to visit the Hadoop download page to have it select a mirror, and
then use the chosen mirror URL for your download command line.

Since multiple user accounts will be running Hadoop components, install it in a com‐
monly accessible location. For this cluster you’ll use /opt/hadoop as that common
location:

$ curl -O http://mirrorhost/path/to/hadoop-x.y.z.tar.gz
$ sudo tar xzfC hadoop-x.y.z.tar.gz /opt
$ sudo ln -s /opt/hadoop-x.y.z /opt/hadoop

Hadoop Installation | 107

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html
http://hadoop.apache.org/releases.html

Example commands in this chapter will use the version number
x.y.z to stand in for the real Hadoop version number. Unless you
have a specific need otherwise, you should simply use the latest
release.

About now you may notice how often you need to repeat steps for
every instance in your cluster. Once you are creating lots of clusters
in the cloud, it’s a good idea to use a tool that issues commands
over SSH to multiple instances at a time. Chapter 17 discusses
some options.

Now that Hadoop is installed, its bin directory can be added to the PATH environment
variable for each of the Hadoop accounts:

as hdfs and as yarn
$ echo "export PATH=\"/opt/hadoop/bin:\$PATH\"" >> ~/.profile

HDFS and YARN Configuration
Once Hadoop is installed across your cluster, it’s time to configure it. The procedure
here is much like configuring a Hadoop cluster on “real” hardware. Refer to the
Hadoop documentation for all of the details, or consult texts like Hadoop: The Defini‐
tive Guide by Tom White (O’Reilly). The instructions here are simple ones, just to get
the cluster going. Again, if you are used to configuring Hadoop clusters, go ahead
and adapt what you normally do.

Many of these configuration steps require you to use sudo. The standard login
account for your instances should be able to execute commands using sudo.

To avoid needing to type sudo before every command, use
sudo su - in the standard instance login account to open a shell as
root. Be careful, though, since you will have unrestricted access to
the machine.

Unless otherwise stated, the configuration steps should be performed on every cluster
node. Some that are only required on the manager node are called out.

The Environment
Create a script /etc/profile.d/hadoop.sh that sets the HADOOP_PREFIX environment
variable to point to the Hadoop installation. To have the script take effect, either log
out and back in again, or source it in your current shell:

as root
% echo "export HADOOP_PREFIX=/opt/hadoop" > /etc/profile.d/hadoop.sh

108 | Chapter 9: Standing Up a Cluster

Redirection of a command run under sudo happens under the ini‐
tial account, and not as root. That is why the preceding command
requires you to be logged in as root. An alternative is to use the tee
utility to write the file, but then discard standard output:

$ echo "export HADOOP_PREFIX=/opt/hadoop" | \
> sudo tee /etc/profile.d/hadoop.sh > /dev/null

Create a symlink at /etc/hadoop that points to /opt/hadoop/etc/hadoop, since you will
be using that directory for the cluster’s configuration:

$ sudo ln -s /opt/hadoop/etc/hadoop /etc/hadoop

Create the directories /var/log/hadoop and /var/run/hadoop for Hadoop logs and pro‐
cess ID files, and make them writable only by the Hadoop accounts:

$ for d in /var/log/hadoop /var/run/hadoop; do
> sudo mkdir $d
> sudo chgrp hadoop $d
> sudo chmod g+w $d
> done

On many Linux distributions, the contents of /var/run are stored on a temporary file‐
system and destroyed on reboot, causing the new /var/run/hadoop directory to van‐
ish. There are two options to cope with this. First, you can simply use a different
directory for process ID files, such as /opt/hadoop/pids, which resides on a non-
temporary filesystem; however, this is a nonstandard approach. The other option is
to employ a system initialization script, in accordance with the Linux distribution
you are using, that creates /var/run/hadoop on each boot. These instructions assume
the latter approach.

Here is an example initialization script for Ubuntu and similar distributions, which
can be saved as /etc/init.d/hadoop:

#!/bin/sh

BEGIN INIT INFO
Provides:
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Create Hadoop directories at boot
END INIT INFO

case "$1" in
 start)
 mkdir -p /var/run/hadoop
 chown root:hadoop /var/run/hadoop
 chmod 0775 /var/run/hadoop

HDFS and YARN Configuration | 109

1 The /tmp directory may map to persistent storage, but can still be cleared out by the operating system on
reboot.

 ;;
esac

The script can be activated through either of the following commands:

activate with fixed start priority of 98
$ update-rc.d hadoop defaults 98
activate using dependencies in INIT INFO comments
$ /usr/lib/lsb/install_initd hadoop

Next, edit /etc/hadoop/hadoop-env.sh and make the following changes:

• Set the path for JAVA_HOME. Where this is depends on how you chose to install
Java. If you used your platform’s package manager, try seeing where /usr/bin/
java or /etc/alternatives/java links to.

• Set HADOOP_LOG_DIR and HADOOP_PID_DIR to point to /var/log/hadoop
and /var/run/hadoop, respectively:

export JAVA_HOME=/path/to/jdk
export HADOOP_LOG_DIR=/var/log/hadoop
export HADOOP_PID_DIR=/var/run/hadoop

Edit /etc/hadoop/yarn-env.sh and set the paths for YARN_CONF_DIR and YARN_LOG_DIR
to point to /etc/hadoop and $HADOOP_LOG_DIR, respectively. Also append a Java
option to the YARN_OPTS variable so that YARN daemons prefer to listen over IPv4:

export YARN_CONF_DIR=/etc/hadoop
export YARN_LOG_DIR="$HADOOP_LOG_DIR"
YARN_OPTS="$YARN_OPTS -Djava.net.preferIPv4Stack=true"

XML Configuration Files
Edit /etc/hadoop/core-site.xml and configure the fs.defaultFS property with the
address of your manager instance. Use the private IP address of the manager instance
in the URL. You can find the private IP address for an instance by locating it in your
cloud provider’s console.

You can also configure the hadoop.tmp.dir property with a different location for
Hadoop’s temporary file storage. HDFS, for one, uses this location as the basis for
where namenode and datanode data is kept. The default value for the directory
resides under /tmp, which is cleared out when instances are restarted.1 If you want to
be able to stop and start your cluster, you should change this location. The
value /home/${user.name}/tmp directs Hadoop to use a temporary directory under
each Hadoop account’s home directory. You could select other persistent locations as

110 | Chapter 9: Standing Up a Cluster

well, perhaps those that map to large persistent disks. “Stopping and Starting Entire
Clusters” on page 192 discusses the practice of stopping and starting Hadoop clusters in
more detail.

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://203.0.113.101:8020</value>
</property>
<property>
 <name>hadoop.tmp.dir</name>
 <value>/home/${user.name}/tmp</value>
</property>

For Azure only, edit /etc/hadoop/hdfs-site.xml and disable the requirement that datan‐
odes have a resolvable IP address. Azure does not establish reverse DNS lookup for
private IP addresses by default:

<property>
 <name>dfs.namenode.datanode.registration.ip-hostname-check</name>
 <value>false</value>
</property>

Edit /etc/hadoop/yarn-site.xml and make the following changes:

• Configure the yarn.resourcemanager.hostname property for your manager
instance. Use its private IP address here as well.

• Configure the yarn.nodemanager.aux-services property with the value
“mapreduce_shuffle”. This enables YARN node managers to perform the shuffle
stage of MapReduce jobs:

<property>
 <description>The hostname of the RM.</description>
 <name>yarn.resourcemanager.hostname</name>
 <value>203.0.113.101</value>
</property>
<property>
 <name>yarn.nodemanager.aux-services</name>
 <value>mapreduce_shuffle</value>
</property>

Create the file /etc/hadoop/mapred-site.xml; the easiest way is to copy the empty tem‐
plate file for it:

$ sudo cp /etc/hadoop/mapred-site.xml.template /etc/hadoop/mapred-site.xml

Then, add the mapreduce.framework.name property with the value “yarn” so that the
cluster will use YARN for executing MapReduce jobs. Also set the
yarn.app.mapreduce.am.staging-dir property to the /user directory in HDFS; this
will allow users running MapReduce jobs to write staging data into their home direc‐
tories in HDFS, which will have the necessary permissions:

HDFS and YARN Configuration | 111

<property>
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
</property>
<property>
 <name>yarn.app.mapreduce.am.staging-dir</name>
 <value>/user</value>
</property>

Finishing Up Configuration
Edit /etc/hadoop/slaves and replace its contents with a list of the private IP addresses
for the worker instances. This only needs to be done on the manager instance. This
file is used by Hadoop’s helper scripts to find each worker.

Startup
The cluster is ready to start. Begin by formatting HDFS as usual. Log in to the man‐
ager instance as the “hdfs” user for the step:

as hdfs
$ hdfs namenode -format mycluster

Now start up HDFS and YARN using the helper scripts, also on the manager
instance. This uses the passwordless SSH set up earlier to connect to the manager
itself and each worker to start the daemons. If you did not try out the connections
manually and accept the key fingerprints for each instance, then you will see the
interactive prompts emitted by these scripts; just type “yes” for each one you see and
they should continue executing:

as hdfs
$ $HADOOP_PREFIX/sbin/start-dfs.sh
as yarn
$ $HADOOP_PREFIX/sbin/start-yarn.sh

For brevity, configuration and startup of the MapReduce Job His‐
tory Server is omitted; the cluster will function without it. To set it
up, establish a “mapred” user in the “hadoop” group, just like the
“hdfs” and “yarn” users, and follow the standard instructions to
configure and start the server.

SSH Tunneling
Now that all of the daemons are started, you can check their statuses through their
web interfaces. However, connecting directly will not work, because the security rules
governing the instances block access from outside to the necessary ports. You can
open up access to those ports from your IP address by adding new rules, but a better

112 | Chapter 9: Standing Up a Cluster

option is to use SSH tunneling, which maps a local port on your computer to a
remote port on another computer through SSH. Using SSH tunnels lets you leave
only the SSH port open to anything outside the security group, and encrypts the traf‐
fic as a bonus.

You can create SSH tunnels using the standard SSH client. Run commands like these
to establish tunnels from the local ports 50070 (for the namenode web interface) and
8088 (for the resource manager web interface) to the same ports on your manager
instance. Use the public IP address or, if it is available, the public DNS name for your
manager instance to establish the connection from your local computer. For the
remote end of the tunnel, “localhost” works for the namenode, but you must use the
same IP address for the resource manager as configured for the
yarn.resourcemanager.hostname configuration property in yarn-site.xml.

$ ssh -i /path/to/cloud_provider_key.pem -n -N \
> -L 50070:localhost:50070 userid@manager.cloud-provider.example &
$ ssh -i /path/to/cloud_provider_key.pem -n -N \
> -L 8088:203.0.113.101:8088 userid@manager.cloud-provider.example &

Consult the man page for ssh for more information about setting up SSH tunnels.
Tunneling is also covered in more detail in Chapter 14.

Now, in your browser, navigate to http://localhost:50070 and http://localhost:8088 to
see your namenode and resource manager ready for work. The web interfaces are
being served from the manager instance, but tunneled through SSH to your browser.

Running a Test Job
After all of that work, it should be gratifying to see your cluster in action. The
Hadoop distribution comes with many example programs bundled in an examples
JAR. You can use any of those on your new cluster. One easy one to try is the “pi”
example, which calculates the value of pi using a MapReduce algorithm.

MapReduce jobs in the cluster will write their history information to /user/history in
HDFS, so that directory needs to be established before any jobs are run. Using the
“hdfs” user, create it with wide-open permissions but owned by the “mapred” user
and the “hadoop” group:

as hdfs
$ hdfs dfs -mkdir -p /user/history
$ hdfs dfs -chmod -R 1777 /user/history
$ hdfs dfs -chown mapred:hadoop /user/history

Now, you can run the example under any account on an instance. For the account
you choose, create a home directory in HDFS, using the hdfs account. Then go ahead
and run the example:

Running a Test Job | 113

as hdfs
$ hdfs dfs -mkdir -p /user/userid
$ hdfs dfs -chown userid /user/userid

as the user account
$ export PATH=/opt/hadoop/bin:$PATH
$ export HADOOP_CONF_DIR=/etc/hadoop
$ hadoop jar \
> /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-x.y.z.jar \
> pi 10 100

You should see the MapReduce job submitted to YARN and visible in the resource
manager web interface. If not, then it is possible that you are not configured to use
YARN for MapReduce, and the job is being run locally; check over the configuration,
especially yarn-site.xml and mapred-site.xml.

After a short runtime and some output describing the progress of the job, you should
see an answer like this. Yours may vary:

Estimated value of Pi is 3.14800000000000000000

Congratulations, you have created a functional Hadoop cluster in the cloud! You
should feel free to try running more example programs or other analyses through it.
Even though it is running in the cloud, using it is much like using an on-premises
cluster.

What If the Job Hangs?
If the example job never gets started, but gets stuck waiting for an application master
(AM) to be allocated, it’s usually a sign that there may not be enough memory on the
node managers for allocating the container needed for the application master pro‐
cess. The default configurations for YARN are higher than what you often have to
work with in smaller cloud deployments. Try setting these configuration properties:

• In /etc/hadoop/yarn-site.xml, set yarn.nodemanager.resource.memory-mb to
something low; for example, 1,024 for a worker instance with 8 GB of memory.
The default value of 8,192 is too high for such an instance.

• In /etc/hadoop/mapred-site.xml, set yarn.app.mapreduce.am.resource.mb to the
same value.

If this does not work, consult the documentation about tuning YARN configurations
for MapReduce. They provide advice, and even worksheets, for coming up with
appropriate configuration property settings for your cluster.

114 | Chapter 9: Standing Up a Cluster

Running Basic Data Loading and Analysis
The example job does exercise your new cluster, but might not be representative of
the type of work a cloud-based cluster will perform. The next test of the cluster will
get a little closer to real life by running a couple of simple MapReduce jobs that read
in text data from Wikipedia and then, following the tradition of new Hadoop clusters
everywhere, count words in it.

Wikipedia Exports
Wikipedia offers on-demand and pregenerated exports of all of its data in XML for‐
mat. You can export the complete information for a single article, or for a category of
articles, on demand. Wikipedia also periodically posts large, complete dumps of
many wikis in the Wikimedia family. These exports are well suited for analysis in a
Hadoop cluster.

Visit https://dumps.wikimedia.org/ to see the available pregenerated dumps.

Analyzing a Small Export
While it is tempting to grab a complete Wikipedia dump, it is better to start with a
smaller one, and then scale up. Since the XML format is the same for any dump, the
same jobs will work on any of them.

Generating the export
Visit https://en.wikipedia.org/wiki/Special:Export, which lets you export one or more
articles from the English Wikipedia site. Collect a set of page titles that you want to
export and enter them manually, or select a category. In Figure 9-1, the category is
“Member states of the United Nations,” which returns around 200 articles. Remove
any subcategory entries, and be sure to check the boxes to include only the current
revision of each article and to save as a file. Then click the Export button to receive
the exported data as XML.

Running Basic Data Loading and Analysis | 115

https://dumps.wikimedia.org/
https://en.wikipedia.org/wiki/Special:Export

Figure 9-1. Wikipedia export page

The export will serve as the source data for analysis, so it needs to be copied into
HDFS in the cluster. Copy the file up to the manager instance using scp; be sure to
use the same private key that works for SSH access. Then, on the manager instance,
use the hdfs utility to copy the XML into the home directory for the same user
account used earlier to run the pi example:

on the computer where the export was downloaded
$ scp -i /path/to/cloud_provider_key.pem Wikipedia-20160701000000.xml \
> userid@manager.cloud-provider.example:.
on the manager instance
$ hdfs dfs -copyFromLocal Wikipedia-20160701000000.xml /user/userid

The MapReduce jobs
For this analysis, two MapReduce jobs will be used. The first one will scan the XML
and extract each article’s title and page contents, saving them into HDFS; this can be
seen as a very basic extract-transform-load or ETL process, although real-life ETL is
often much more involved. The second one will evaluate each article’s text to count
words in it, much like the standard Hadoop word-count example.

116 | Chapter 9: Standing Up a Cluster

2 Find the complete source at: https://github.com/bhavanki/moving-hadoop-to-the-cloud.

Examples 9-1 and 9-2 show the important parts of the Java source2 for the loader job,
which consists of a driver class and a mapper class. This is a map-only job with no
reducers required. The driver sets up the job to stream the XML data from the file
provided as the first argument, runs it through a mapper, and sends the output data
to sequence files in an HDFS directory specified by the second argument.

Example 9-1. Wikipedia loader job driver code

JobConf conf = new JobConf(getClass());
conf.setJobName("WP dump loader");

// Set the mapper class, but skip the reduce phase
conf.setMapperClass(WikipediaDumpLoaderMapper.class);
conf.setNumReduceTasks(0);
// The object key/value pairs are text
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);

// Stream XML into the job
conf.setInputFormat(StreamInputFormat.class);
StreamInputFormat.addInputPath(conf, new Path(args[0]));
// Use the XML record reader, with each page as one record
conf.set("stream.recordreader.class",
 "org.apache.hadoop.streaming.StreamXmlRecordReader");
conf.set("stream.recordreader.begin", "<page>");
conf.set("stream.recordreader.end", "</page>");
// Emit sequence files
conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
return 0;

Example 9-2. Wikipedia loader job mapper code

private enum Counter { ARTICLES }

private DocumentBuilder db;

@Override
public void configure(JobConf conf) {
 try {
 db = DocumentBuilderFactory.newInstance().newDocumentBuilder();
 } catch (ParserConfigurationException e) {
 throw new IllegalStateException("XML parser configuration is bad", e);
 }

Running Basic Data Loading and Analysis | 117

https://github.com/bhavanki/moving-hadoop-to-the-cloud

3 Or Spark (see Chapter 12).

}

@Override
public void map(Text key, Text value, OutputCollector<Text, Text> output,
 Reporter reporter) throws IOException {
 try {
 // Parse the page of XML into a document
 Document doc = db.parse(new InputSource(new StringReader(key.toString())));

 // Extract the title and text (article content) from the page content
 String title = doc.getElementsByTagName("title").item(0).getTextContent();
 String text = doc.getElementsByTagName("text").item(0).getTextContent();

 // Emit the title and text pair
 output.collect(new Text(title), new Text(text));
 reporter.getCounter(Counter.ARTICLES).increment(1L);
 } catch (SAXException e) {
 throw new IOException(e);
 }
}

MapReduce veterans may notice that this job uses the old Java MapReduce API. This
is because StreamInputFormat is currently only available under that API. An alterna‐
tive design would use Hadoop Streaming to load the XML data.3

The StreamInputFormat is configured to simply send each article’s content to the
mapper as the key; the value sent to the mapper is always an empty string. Other than
those details, the job is straightforward.

Once these classes are packaged into a JAR, the job is ready to run. Using scp, copy
the JAR to the manager instance under your user account, and run it using the yarn
command-line utility:

$ yarn jar basic-loader-1.0.0.jar com.mh2c.WikipediaDumpLoaderDriver \
> Wikipedia-20160701000000.xml wikitext

As before, you will see signs of progress as the job is run on the cluster. When the job
completes, there will be one or more sequence files in a directory in HDFS (the pre‐
ceding example uses the wikitext directory in the user’s HDFS home directory). You
should also see the custom “ARTICLES” counter reporting the total number of arti‐
cles parsed. If you like, you can peek at a sequence file to check that article text is
present; while a sequence file is binary, it will have large areas of plain text that are
easy to discriminate:

$ hdfs dfs -ls wikitext
$ hdfs dfs -cat wikitext/part-00000

118 | Chapter 9: Standing Up a Cluster

It’s time for the second job, also written in Java, which performs the word count. This
job works like any other word-count job, except that it reads from sequence files
instead of ordinary text files. Examples 9-3, 9-4, and 9-5 show the key portions of the
code for the job.

Example 9-3. Wikipedia word-count job driver code

JobConf conf = new JobConf(getClass());
conf.setJobName("WP word count");

// Set the mapper and reducer classes, and use the reducer as a combiner
conf.setMapperClass(WikipediaWordCountMapper.class);
conf.setReducerClass(WikipediaWordCountReducer.class);
conf.setCombinerClass(WikipediaWordCountReducer.class);
// The object key/value pairs are text words and integer counts
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

// Read in sequence files
conf.setInputFormat(SequenceFileInputFormat.class);
SequenceFileInputFormat.addInputPath(conf, new Path(args[0]));
// Emit ordinary text files
conf.setOutputFormat(TextOutputFormat.class);
TextOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
return 0;

Example 9-4. Wikipedia word-count job mapper code

private static final IntWritable ONE = new IntWritable(1);
private Text wordText = new Text();

@Override
public void map(Text key, Text value, OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 // Split the text content of the article on whitespace
 String[] words = value.toString().split("\\s+");
 // Count each word occurrence
 for (String word : words) {
 wordText.set(word);
 output.collect(wordText, ONE);
 }
}

Running Basic Data Loading and Analysis | 119

Example 9-5. Wikipedia word-count job reducer code

private IntWritable sumIntWritable = new IntWritable();

/**
 * key = word
 * values = counts
 */
@Override
public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output, Reporter reporter)
 throws IOException {

 // Total up the incoming counts for the word
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 // Emit the word count
 sumIntWritable.set(sum);
 output.collect(key, sumIntWritable);
}

The old Java MapReduce API is used here, for consistency with the loader job, but
this code could easily be rewritten to use the new API instead. Run the job to perform
the word count:

$ yarn jar basic-loader-1.0.0.jar com.mh2c.WikipediaWordCountDriver \
> wikitext wikiwordcount

The results are in one or more files in HDFS under the wikiwordcount directory. The
mapper code used here is intentionally simple; differing letter case and punctuation
are not accounted for, so the results could be cleaned up with some improvements:

$ hdfs dfs -ls wikiwordcount
$ hdfs dfs -cat wikiwordcount/part-00000

Both of these MapReduce jobs are quite simple, and could have been combined into a
single job, but they make clearer examples when separated. Also, the results of the
first job could be saved off and used as the starting point for other analyses later, sav‐
ing the work of parsing XML in each run. In a cloud architecture, you have the choice
of saving valuable intermediate data long term in object storage services (see “Object
Storage” on page 49), which lets you trade off the cost of repeated computation for
the cost of increased data storage. As computation time increases, the option of
reducing it by cheaply storing useful data products becomes more attractive.

120 | Chapter 9: Standing Up a Cluster

4 Increasing volume storage can be easy or difficult, depending on the cloud provider.

5 With the correct content type set for the file, Cloud Storage should decompress it when it is accessed.

Go Bigger
With the Wikipedia export jobs available and working in your cluster, you have a
starting point for further exploration. The “Member states of the United Nations”
example used an export of around 200 articles, which at the time of writing weighed
in at 26 MB, but larger exports should work just as well. The only limitation is the
amount of room available in HDFS, since the XML data needs to be loaded there first
for the loader job to work on it. If you are low on room in HDFS, or find that your
workers run out of disk space when spilling data, either add worker instances or
increase the available block storage for the existing workers.4

The trickiest part of working with a large export is getting it from Wikipedia into
HDFS. In this chapter, the file was downloaded to the local computer, copied to the
manager instance, and then copied into HDFS. This approach may not work well for,
say, the complete export of English language Wikipedia, which exceeds 20 GB, com‐
pressed, as of this writing.

It is feasible to download a large file directly to an instance, and then copy the file
from there into HDFS. The disk where the large file resides can be kept as the “golden
copy” of the data, and attached to instances when the file stored on it is needed.

A more advanced approach involves uploading a large file to the cloud provider’s
object storage service, and then configuring Hadoop to access the file from there. The
exact mechanics of this approach vary with the cloud provider, and there can be mul‐
tiple ways to pull it off. Some possibilities:

• Under AWS, download the file to an EC2 instance, and use the S3 command-line
client to upload the file into S3. Then, use Hadoop’s s3a protocol to access the file
directly as an HDFS volume, or use the distcp tool to copy the file from S3 into
local HDFS.

• Under Google Cloud Platform, use the Google Cloud Storage Transfer Service to
load the file directly from Wikipedia into a bucket in Cloud Storage.5 Then,
install the Google Cloud Storage Connector into your cluster and access the file
directly as an HDFS volume.

• Under Azure, download the file to a virtual machine, and use the Azure CLI to
upload it to either Azure Blob Storage or Azure Data Lake Store (ADLS). Then,
install the Azure Blob Storage module or the Azure Data Lake Store module into
your cluster and access the file directly as an HDFS volume.

Go Bigger | 121

Chapter 11, which covers adding Apache Hive to your cluster, describes how to use
the s3a filesystem connector to directly access data residing in S3 for use in Hive
queries.

Depending on the capabilities of the job, you may not need to decompress a large file
before storing it in HDFS or cloud provider object storage services. Avoiding decom‐
pression saves not only on HDFS capacity, but also storage costs and potential data
transfer costs. However, as usual, compressed files can hamper the performance of
MapReduce or other analytic jobs performed on them, and you may find you need to
change over a file from, say, gzip compression to a splittable compression algorithm
such as LZO. This affects the time it takes for data to be ready for work and modestly
increases storage costs. Consider these trade-offs in your data flow.

Check your cloud provider’s documentation and examples to see what options you
have for working with files and the provider’s storage features. As new features are
introduced, you may discover better patterns to move your large files around.

122 | Chapter 9: Standing Up a Cluster

PART IV

Enhancing Your Cluster

After working through Part III, you should have a simple, functional Hadoop cluster
running on a cloud provider. While this can be satisfying, you may want to push it
further, and that’s what this part of the book is all about. Each chapter starts from the
simple cluster and adds more capabilities to it, so that it works more like a real-world
cluster. You can pick and choose which chapters to dive into based on your interests.

CHAPTER 10

High Availability

A Hadoop cluster running in the cloud has some intrinsic reliability built in, due to
the robustness of the cloud provider. Their data centers are built with reliable power
sources and network connections. They also accommodate the constant parade of
failing motherboards, memory chips, and hard drives that come with running huge
numbers of servers. Often, when these “normal” hardware failures occur, your
instances and infrastructure components are automatically migrated over to alterna‐
tive resources. Sometimes, you won’t even notice that anything went wrong.

Still, there are some failures a cloud provider can’t hide from its customers. Disks can
become corrupted due to either software or hardware failures. Although rare, net‐
work hiccups or power outages at a cloud provider data center can cause instances, or
even whole availability zones, to disappear for some amount of time. Even some of
those “normal” hardware failures can’t be automatically handled every time.

Given that the risk of cluster failures is not completely eliminated by running on a
cloud provider, it is reasonable to have a strategy in place to reduce their impact.

Running in the cloud, if a cluster fails, it’s completely feasible to simply spin up a new
one to take its place. As long as the data the cluster was operating on is preserved, for
example, in cloud provider storage services, a new cluster can be created in the same
or a different availability zone, or even a different region in extreme cases, to pick up
where the failed cluster left off. This is one of the strategies that makes little sense
when working with physical hardware, but that can be advantageous when working
with a flexible and resilient cloud provider infrastructure.

If you prefer keeping clusters around for a while, perhaps because other systems
depend on them being available constantly, then another strategy is to set up high
availability (HA). An HA cluster involves running redundant copies of some Hadoop
components in order to eliminate single points of failure. By keeping cloud provider

125

infrastructure and features in mind, you can set up HA clusters that are even more
robust than those in an ordinary, single data center.

This chapter does not completely describe Hadoop HA. Please consult Hadoop docu‐
mentation for more information.

Planning HA in the Cloud
The most important Hadoop components in a cluster to set up for HA are HDFS and
YARN, so those will be focused on here.

HDFS HA
There are two options for configuring HA for HDFS: using conventional shared stor‐
age (NFS) or using the Quorum Journal Manager. This chapter explores using the
Quorum Journal Manager, which involves running several journalnode daemons as
well as a second namenode. Automatic failover, using ZooKeeper, is also covered.

When a non-HA cluster is configured, it only has a single namenode, which of course
runs in some availability zone in some region. When converting a cloud cluster to
HA, a second namenode is added, as well as a set of at least three journalnodes. An
important decision to make is whether to place the second namenode, and some of
the journalnodes, in other availability zones or other regions.

While it is possible to run the new daemons in a different region, there are practical
reasons why this should be avoided. First, network connectivity between regions is
much slower than between availability zones within a region. Second, cloud providers
often charge for data transfer between regions, increasing the cost for HA clusters.
Finally, management of all of HDFS within a cluster is much easier when all of its
instances run within one region.

There is a performance cost to spreading clusters across availability zones. Because
clusters grow to hold more data and jobs running on them become more complex,
the cost increases, and it can get to the point where jobs will tend to time out. In
“Benchmarking HA” on page 139, some techniques for testing cluster performance are
discussed; they can help guide your decision on using multiple availability zones for
HA.

Figure 10-1 shows an HA deployment that is confined to a single availability zone.
Figure 10-2 shows an HA deployment that spans two availability zones, with one
namenode and several journalnodes in each zone.

126 | Chapter 10: High Availability

Figure 10-1. An HA deployment of HDFS within a single availability zone

Figure 10-2. An HA deployment of HDFS in two availability zones. Many journalnodes
are required so that there are at least three in each zone.

What about the datanodes?
HA configuration for HDFS does not require doing anything special for datanodes; it
focuses on the critical data used by the namenode and on having a second namenode
running. However, the loss of an availability zone causes a loss of datanodes within it
as well, which can lead to data being lost or being unreachable for a time.

When configuring a cluster for HA, then, consider spreading datanodes across availa‐
bility zones too, keeping in mind potential performance problems. New datanodes
added to new availability zones will, as usual, gradually receive replicated copies of
HDFS data, until they are fully participating in the cluster.

Planning HA in the Cloud | 127

YARN HA
Just as HDFS HA is enabled by running two namenodes, one active and one standby,
YARN HA is enabled by running two resource managers, one active and one
standby. As with the namenodes, it is possible to install the second resource manager
in a different availability zone than the original (first) one.

Installing and Configuring ZooKeeper
In order for an HA cluster to automatically switch from a formerly active namenode
or resource manager to a standby, ZooKeeper must be running on the cluster. Zoo‐
Keeper is a distributed, highly reliable coordination system. It is used to enable many
different capabilities in a Hadoop cluster, and automatic failover for HDFS and
YARN HA is one of them.

A distributed ZooKeeper deployment requires at least three daemons, and as with
journalnodes and the second namenode and resource manager, it may be spread
across availability zones. ZooKeeper itself is “smart” enough to detect when its own
daemons disappear, and it can continue functioning when that happens, so no special
steps are required after installing and configuring it for it to participate in an HA
cluster.

These instructions are based on the standard setup instructions and use the standard
binary distribution from Apache. If you already have a tried-and-true set of steps for
ZooKeeper installation, or if you prefer to use a customized or bundled distribution
from a Hadoop vendor, you may be able to adapt these instructions.

Prepare for installing ZooKeeper by creating a dedicated account for it on each host
that will be running ZooKeeper, just like those for HDFS and YARN (see Chapter 9).
These instructions will assume that the username for the account is “zk” and that the
account belongs to the “hadoop” group. SSH key pairs are used for logging in.

$ sudo useradd -G hadoop -m -s /bin/bash zk
$ sudo mkdir /home/zk/.ssh
$ sudo cp ~/.ssh/authorized_keys /home/zk/.ssh
$ sudo chmod 700 /home/zk/.ssh
$ sudo chown -R zk /home/zk/.ssh

If you have a cluster with three workers like the one set up in Chapter 9, then those
can be the targets for ZooKeeper installation as well. You may want to create an
account on the manager instance as well for hosting a control script, described later
on in this section.

Download a binary ZooKeeper distribution from zookeeper.apache.org to each of
your instances, under the standard login account. In keeping with the use of /opt/
hadoop as the installation location for Hadoop, install ZooKeeper to /opt/zookeeper:

128 | Chapter 10: High Availability

http://zookeeper.apache.org/doc/trunk/zookeeperStarted.html

$ curl -O http://mirrorhost/path/to/zookeeper-x.y.z.tar.gz
$ sudo tar xzfC zookeeper-x.y.z.tar.gz /opt
$ sudo ln -s /opt/zookeeper-x.y.z /opt/zookeeper

Example commands in this chapter will use the version number
x.y.z to stand in for the real ZooKeeper version number. Unless
you have a specific need otherwise, you should simply use the latest
stable release.

This ZooKeeper system will be running “replicated” with a quorum of servers. Each
of them receives the same configuration file, so it’s enough to create the file on one
worker instance and copy it to the others. (The file should be named /opt/zookeeper/
conf/zoo.cfg.)

tickTime=2000
dataDir=/var/lib/zookeeper
clientPort=2181
initLimit=5
syncLimit=2
server.1=203.0.113.102:2888:3888
server.2=203.0.113.103:2888:3888
server.3=203.0.113.104:2888:3888

In the preceding example, the private IP addresses of the worker instances are used in
the file. It also names /var/lib/zookeeper as its data directory, so create that on each
worker as well:

$ sudo mkdir /var/lib/zookeeper
$ sudo chgrp hadoop /var/lib/zookeeper
$ sudo chmod g+w /var/lib/zookeeper

Each server requires a file named /var/lib/zookeeper/myid containing its numeric ID
from the configuration file (e.g., 1, 2, or 3 for the preceding file). This file, therefore,
must be created uniquely on each worker.

The last part of configuring ZooKeeper is setting its log directory. If it is not set, it
defaults to the current directory, which in this configuration is the home directory of
the “zk” account. You may want it to instead log to /var/log/zookeeper, again to be
similar to Hadoop. If so, create that directory on each worker, and set the
ZOO_LOG_DIR environment variable in /opt/zookeeper/bin/zkEnv.sh (before the script
evaluates it):

commands to make the log directory
$ sudo mkdir /var/log/zookeeper
$ sudo chgrp hadoop /var/log/zookeeper
$ sudo chmod g+w /var/log/zookeeper

then, editing zkEnv.sh
export ZOO_LOG_DIR=/var/log/zookeeper

Installing and Configuring ZooKeeper | 129

ZooKeeper is ready to start. This can be done by running /opt/zookeeper/bin/
zkServer.sh on each worker instance; unfortunately, ZooKeeper does not ship with a
distributed start script like the Hadoop distribution does. But it doesn’t take anything
complicated. See Example A-1 for a script that covers the basics.

In order to use the example script, the account running it must have passwordless
SSH access to each worker. One option is to create a “zk” account on the cluster man‐
ager instance and establish access from there, just like for the “hdfs” and “yarn”
accounts.

Once all the ZooKeeper servers are running, you can check the status of each one by
running zkServer.sh, or the example script in Example A-1, with the status subcom‐
mand. One server should report it is the leader, and the others should report they are
the followers:

Using the example script "zk"
$./zk status
Checking ZooKeeper status
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper/bin/../conf/zoo.cfg
Mode: follower
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper/bin/../conf/zoo.cfg
Mode: leader
ZooKeeper JMX enabled by default
Using config: /opt/zookeeper/bin/../conf/zoo.cfg
Mode: follower

ZooKeeper is now running alongside your Hadoop cluster and ready to play its part
in enabling HA.

Adding New HDFS and YARN Daemons
With ZooKeeper in place and ready to perform automatic failover, the additional
HDFS and YARN daemons can be installed on the cluster, and the entire cluster con‐
figured for HA. Start by noting the availability zone(s) where the current namenode
and resource manager are running, and identify which other zone or zones will host
the second instances of those daemons.

The Second Manager
For a cluster set up with a single manager instance that hosts both the namenode and
resource manager, as was done in Part III, the most straightforward path is to create a
second manager instance. Follow the procedure you used to prepare the first man‐
ager instance, depending on which cloud provider you use, to prepare a second one.
Give it a unique name, say, “manager2”. If desired, select a different availability zone
for the new manager instance.

130 | Chapter 10: High Availability

In AWS, subnets do not span availability zones, and so the second
manager instance in a separate availability zone must reside in a
different subnet from the first one, which complicates cluster
architectures. In Google Cloud Platform, this is not the case; a sub‐
net may span availability zones. In Azure, instead of using a differ‐
ent availability zone, add the new manager instance to an
availability set also containing the first one.

There are more efficient ways of essentially cloning or copying
existing instances, which will be covered in Chapter 16.

Install Hadoop on the second manager instance and start to configure it like the first
one, as covered in Chapter 9:

• Install a JDK and Hadoop as before.
• Set up the “hdfs” and “yarn” accounts, as well as “zk” if you are using a control

script for ZooKeeper as described earlier.
• Set up passwordless SSH access from the Hadoop accounts on the new manager

instance to all of the workers, as well as to itself. In the event that the first man‐
ager is unavailable, say, because its instance fails, then control of the cluster will
pass to this new instance, and so it should be capable of starting and stopping
daemons. The second manager instance does not need to use the same SSH key
pair as the first one, but it can.

• Make the same directories and changes to the Hadoop environment scripts (like
hadoop-env.sh) as before. You can copy the scripts from the first manager to the
second, since the needed changes are identical. This does not include the XML
configuration files, however, which need changes to set up HA.

HDFS HA Configuration
Now for the main part of this effort: configuring HDFS HA. Stop your existing clus‐
ter before proceeding, so that the Hadoop daemons aren’t running while changes are
being made to their configuration.

Adding New HDFS and YARN Daemons | 131

1 The instructions in Chapter 9 did not include any modifications to hdfs-site.xml, so your file probably has no
configuration properties to start with.

Edit /etc/hadoop/hdfs-site.xml on the first, original master instance and make the fol‐
lowing changes:1

• Configure the dfs.nameservices property with your cluster’s name. These
instructions assume a cluster name of “myfirstcluster”; replace this name with
your own in other configuration properties.

• Configure the dfs.ha.namenodes.myfirstcluster property with a list of name‐
node IDs. There should be two since there are two manager instances in your
cluster. These instructions use “nn1” and “nn2”.

• Configure the dfs.namenode.rpc-address.myfirstcluster and dfs.namenode
.http-address.myfirstcluster sets of properties with the private IP addresses
of the manager instances.

• Configure the dfs.namenode.shared.edits.dir property with a qjournal://
URI pointing to each of the worker instances in your cluster. Each worker will
host a single journalnode.

• Specify the standard ConfiguredFailoverProxyProvider class with the dfs.
client.failover.proxy.provider.myfirstcluster property.

• Configure the dfs.journalnode.edits.dir property with the path that jour‐
nalnodes should use for storing their data. In these instructions, /var/data/jn will
be used.

• Configure the dfs.ha.fencing.methods property with at least the do-nothing
value “shell(/bin/true)”. Even though fencing isn’t strictly required under the
Quorum Journal Manager, automatic failover will not work without something
set for it.

• Configure the dfs.ha.automatic-failover.enabled property with the value
“true”. As one might expect, this enables automatic HDFS failover:

<property>
 <name>dfs.nameservices</name>
 <value>myfirstcluster</value>
</property>
<property>
 <name>dfs.ha.namenodes.myfirstcluster</name>
 <value>nn1,nn2</value>
</property>
<property>
 <name>dfs.namenode.rpc-address.myfirstcluster.nn1</name>
 <value>203.0.113.101:8020</value>

132 | Chapter 10: High Availability

</property>
<property>
 <name>dfs.namenode.rpc-address.myfirstcluster.nn2</name>
 <value>203.0.113.105:8020</value>
</property>
<property>
 <name>dfs.namenode.http-address.myfirstcluster.nn1</name>
 <value>203.0.113.101:50070</value>
</property>
<property>
 <name>dfs.namenode.http-address.myfirstcluster.nn2</name>
 <value>203.0.113.105:50070</value>
</property>
<property>
 <name>dfs.namenode.shared.edits.dir</name>
 <value>qjournal://203.0.113.102:8485;203.0.113.103:8485;
 203.0.113.104:8485/myfirstcluster</value>
</property>
<property>
 <name>dfs.client.failover.proxy.provider.myfirstcluster</name>
 <value>org.apache.hadoop.hdfs.server.namenode.ha.
 ConfiguredFailoverProxyProvider</value>
</property>
<property>
 <name>dfs.journalnode.edits.dir</name>
 <value>/var/data/jn</value>
</property>
<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/bin/true)</value>
</property>
<property>
 <name>dfs.ha.automatic-failover.enabled</name>
 <value>true</value>
</property>

Copy /etc/hadoop/hdfs-site.xml over to the new manager instance, so that both of
them have the same HA settings. Also copy it to the worker instances, so that they are
aware of HA being in place.

Don’t forget to create the journalnode data directory that was configured in
hdfs-site.xml. It should be writable by the “hdfs” account, since that account will run
the journalnodes. The directory only needs to be created where the journalnodes are
running:

$ sudo mkdir -p /var/data/jn
$ sudo chgrp hadoop /var/data/jn
$ sudo chmod g+w /var/data/jn

Adding New HDFS and YARN Daemons | 133

Next, edit /etc/hadoop/core-site.xml on all of the instances, and any other instances
that serve as clients for Hadoop, and make the following changes:

• Change the fs.defaultFS configuration property from the URI for the single
namenode to the HA URI.

• Configure the ha.zookeeper.quorum property with a list of the private IP
addresses and ports for the ZooKeeper instances. Since ZooKeeper will arbitrate
automatic failover, the system needs to be pointed to where its servers are run‐
ning:

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://myfirstcluster</value>
</property>
<property>
 <name>ha.zookeeper.quorum</name>
 <value>203.0.113.102:2181,203.0.113.103:2181,203.0.113.104:2181</value>
</property>

Start the ZooKeeper servers if they are not running, and initialize their HA state:

as zk, if needed
$./zk start
as hdfs
$ hdfs zkfc -formatZK

It is time to transition the cluster to HA, now that configuration is complete. Start by
manually starting the journalnodes on each of the worker instances:

as hdfs on worker instances
$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start journalnode

After the journalnodes are running, the namenodes can be started. First, on the origi‐
nal, first manager instance, initialize the namenode’s shared edits directory and start
the namenode. Then go to the new, second manager instance and initialize and start
it as well:

as hdfs on the original manager instance
$ hdfs namenode -initializeSharedEdits
$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start namenode

as hdfs on the new manager instance
$ hdfs namenode -bootstrapStandby
$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start namenode

At this point, HDFS is not fully running: the namenodes and journalnodes are up,
but nothing else. The easiest way to get everything running again is to start HDFS as
usual, with the helper script. You may notice that this not only starts datanodes, but
also the ZooKeeper failover controller (zkfc), which is required for automatic failover
to work:

134 | Chapter 10: High Availability

as hdfs on a manager instance
$ $HADOOP_PREFIX/sbin/start-dfs.sh

Moving forward, the start-dfs.sh script is all you need to start and stop all of the
HDFS daemons; once HA is configured, it handles starting journalnodes and zkfc
processes.

HDFS is now running in an HA configuration. You can verify this by looking at the
web interface for each of the two namenodes. If you are using SSH tunnels to reach
the namenodes, note that since HA configuration required specifying private IP
addresses for their HTTP addresses, the remote host specified for the tunnels must
match those private IP addresses, instead of just “localhost”. One of the namenodes
should be listed as active, the other as standby. If this is not the case, check to make
sure that ZooKeeper is running correctly and that the ZooKeeper failure controller
processes are working properly.

Another way to find out which namenode is active is to use the hdfs haadmin com‐
mand. In the following example output, as expected, one of the namenodes is listed as
active, the other as standby:

$ hdfs haadmin -getServiceState nn1
active
$ hdfs haadmin -getServiceState nn2
standby

YARN HA Configuration
Configuring HA for YARN takes less work than for HDFS. As with configuring
HDFS, stop the YARN daemons before configuring for HA. Edit /etc/hadoop/yarn-
site.xml on the first, original master instance and make the following changes:

• Configure the yarn.resourcemanager.ha.enabled property with the value
“true”.

• Configure the yarn.resourcemanager.cluster-id property with your cluster’s
name. These instructions assume a cluster name of “myfirstcluster”; replace this
name with your own in other configuration properties.

• Configure the yarn.resourcemanager.ha.rm-ids property with a list of resource
manager IDs. There should be two since there are two manager instances in your
cluster. These instructions use “rm1” and “rm2”.

• Configure the yarn.resourcemanager.ha.id property with the ID of the
resource manager on the instance; for the first manager instance, use “rm1”.

• Configure the set of yarn.resourcemanager.hostname properties with the pri‐
vate IP addresses of the manager instances. Eliminate or comment out the single,
non-HA yarn.resourcemanager.hostname property.

Adding New HDFS and YARN Daemons | 135

• Configure the yarn.resourcemanager.zk-address property with a list of the
private IP addresses and ports for the ZooKeeper instances.

• Configure the yarn.resourcemanager.ha.automatic-failover.enabled and
yarn.resourcemanager.ha.automatic-failover.embedded properties each
with the value “true”. As one might expect, this enables automatic resource man‐
ager failover using the embedded elector:

<property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
</property>
<property>
 <name>yarn.resourcemanager.cluster-id</name>
 <value>myfirstcluster</value>
</property>
<property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
</property>
<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm1</value>
</property>
<property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>203.0.113.101</value>
</property>
<property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>203.0.113.105</value>
</property>
<property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>203.0.113.102:2181,203.0.113.103:2181,203.0.113.104:2181</value>
</property>
<property>
 <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
 <value>true</value>
</property>
<property>
 <name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
 <value>true</value>
</property>

Copy /etc/hadoop/yarn-site.xml over to the new manager instance and update the
yarn.resourcemanager.ha.id property with the value “rm2” in that copy. Also copy
the file to the worker instances, so that they are aware of HA being in place, but
remove the yarn.resourcemanager.ha.id property.

136 | Chapter 10: High Availability

YARN is ready to be restarted. Unfortunately, its helper script does not have the abil‐
ity to start both resource managers, so it’s necessary to start one of them directly:

as yarn on one manager
$ $HADOOP_PREFIX/sbin/start-yarn.sh

as yarn on the other manager
$ $HADOOP_PREFIX/sbin/yarn-daemon.sh start resourcemanager

YARN is now running in an HA configuration. You can verify this by looking at the
web interface for the active resource manager. The same caveat applies here as with
HDFS: SSH tunnels must point their remote ends to the private IP addresses of the
resource managers, and not “localhost”.

It is possible that only the active resource manager is reachable over a tunnel. The
standby resource manager returns to the browser an HTTP redirect to the active
resource manager, and if the redirect uses a DNS name that is not resolvable on your
local computer, the request will fail. This doesn’t indicate a problem with YARN HA.

To find out which resource manager is active, use the yarn rmadmin command. In
the following example output, as expected, one of the resource managers is listed as
active, the other as standby. If this is not the case, check to make sure that ZooKeeper
is running correctly:

$ yarn rmadmin -getServiceState rm1
active
$ yarn rmadmin -getServiceState rm2
standby

Testing HA
Perhaps the best part of running an HA cluster is testing it out. If everything has been
configured correctly, then it should be possible to stop a namenode or resource man‐
ager and still have a functional cluster.

The first step is to ensure that the reconfigured cluster is still working. Running the pi
example from “Running a Test Job” on page 113 again should succeed as it did
before:

$ hadoop jar \
> /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-x.y.z.jar \
> pi 10 100

If it doesn’t work, any of a wide variety of problems could be at the root of the failure.
Start by making sure that all of the daemons for HDFS and YARN are running, as
well as the ZooKeeper servers. Check their logs in /var/log/hadoop for signs of any
errors. See if HDFS on its own is working correctly before looking at YARN, which
builds on top of it.

Testing HA | 137

As you have seen, configuring HA is involved, and it is very easy to make a typo‐
graphical error or forget a critical configuration property. Check over the configura‐
tion files, especially core-site.xml and hdfs-site.xml, on all of the instances to make
sure they are correct.

Once you are able to run a job through the HA cluster, it’s time to put it through its
paces. Here are some things to try:

• Stop the active resource manager. The standby resource manager should auto‐
matically take over, and the pi example should run without any trouble:

as yarn on the manager instance with the active resource manager
$ yarn rmadmin -getServiceState rm1
active
$ yarn rmadmin -getServiceState rm2
standby
$ $HADOOP_PREFIX/sbin/yarn-daemon.sh stop resourcemanager
stopping resourcemanager
$ yarn rmadmin -getServiceState rm2
active

• Stop the active namenode. The standby namenode should automatically take
over:

as hdfs on the manager instance with the active namenode
$ hdfs haadmin -getServiceState nn1
active
$ hdfs haadmin -getServiceState nn2
standby
$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh stop namenode
stopping namenode
$ hdfs haadmin -getServiceState nn2
active

• Using the console for your cloud provider, stop the manager instance hosting the
active namenode and active resource manager. This emulates, to a degree, the
unanticipated termination of a manager instance in your cluster, and is much
more severe than merely stopping a daemon. Be sure to only stop the instance,
not terminate it, or else the work you put into its configuration will be lost.

Improving the HA Configuration
The HA cluster set up in this chapter works well enough, but there are additional
changes that could be made to it to make it even more robust. Here are some sugges‐
tions for further exploration of HA clusters in the cloud.

138 | Chapter 10: High Availability

A Bigger Cluster
It’s recommended that the HDFS journalnodes be running on more robust instances
than the worker instances; manager instances are a great choice. Allocate a third
manager instance with Hadoop installed, and reconfigure the cluster to host jour‐
nalnodes on the three manager instances.

Even though the second manager instance may be in a separate availability zone from
the first manager instance, all of the datanodes are still in that original availability
zone. Try allocating additional worker instances in the second availability zone and
add them to the cluster, so that it could potentially survive the loss of an entire zone.

The cluster built up in this chapter is only running three ZooKeeper servers. Since
ZooKeeper is vital for automatic failover, it is a good idea to run more servers. New
servers could be run on the manager instances, or on additional worker instances that
also host more datanodes and node managers. It’s vital, though, to only run an odd
number of ZooKeeper servers, so that a majority can be reached when the quorum
makes decisions.

Complete HA
The instructions in this chapter did not cover all HA configurations, including name‐
node fencing and work-preserving recovery for resource managers. Those additional
measures can be added to an HA cluster in the cloud just as they normally would be.

Namenode fencing using SSH implies that passwordless SSH to the “misbehaving”
manager instance is possible from the other manager instance, so be sure to configure
the fencing method with a private key that is already authorized for that SSH connec‐
tion. Since either manager instance could be the one being fenced, keys need to be set
up for either direction.

A Third Availability Zone?
If two availability zones can be good, wouldn’t three be even better? Unfortunately,
that is not the case. Both HDFS HA and YARN HA currently only support two
namenodes and resource managers, respectively, so it is not possible today to field a
third instance of those. You can add more datanodes, node managers, ZooKeeper
servers, and more to a third availability zone, and the cluster should still hang
together. Expanding too far, however, will not only increase the cost of the cluster but
also further hurt performance as data moves across even more availability zones.

Benchmarking HA
Depending on your choices, the HA cluster implemented in this chapter may span
two availability zones. Network traffic between availability zones is not as fast as

Benchmarking HA | 139

within an availability zone, and so a cluster spread across availability zones can have
poorer performance. While it is certainly better to have an HA cluster that continues
to function during an availability zone failure, the performance penalty paid during
the times when nothing has gone wrong could more than offset the benefit.

The best thing to do, then, is to run some benchmarks on the cluster. If its perfor‐
mance suffers, then either there are configuration tweaks to be made, or perhaps
spanning availability zones is not worth it.

The best benchmarks are those that resemble the “real” workloads that will be run on
the cluster. Here, benchmarks that ship with the Hadoop distribution are used. While
they are general, they are well understood and have been used for years to measure
cluster performance. You can use the same methodology with your own benchmarks.

The benchmarks described in this section were run using Hadoop 2.7.2 on an HA
cluster just like the one developed in this chapter. The cluster ran on t2.large instan‐
ces with 30 GB root volumes in AWS, in the us-east-1 region.

MRBench
The main concern about spreading cluster instances across availability zones is the
increased time for them to communicate with each other. So, a good benchmark to
try out first is MRBench, which focuses on MapReduce performance, and thereby
communication between instances, instead of HDFS performance, which focuses on
each instance’s connection to its block storage.

For the following test results, MRBench was run with these parameters:

• 30 runs
• 3 maps
• 10 input lines

MRBench is a small benchmark, but it can be run many times in succession to get an
average runtime:

$ hadoop jar \
> /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.7.2.jar \
> mrbench -numRuns 30 -maps 3 -inputLines 10

A long-standing bug in MRBench kept it from correctly obeying its
-baseDir option. If you add the option and find that the bench‐
mark tries to write to the /benchmarks/MRBench directory in
HDFS anyway, then create the /benchmarks directory in HDFS
with global write permissions and try again.

140 | Chapter 10: High Availability

The benchmark was run under the following conditions:

1. The active namenode and resource manager are in the same availability zone
(zone 1) as the datanodes, while the standby daemons are in a separate zone
(zone 2); the job is run from zone 1.

2. The same as the first condition, except the active namenode is in zone 2.
3. The active namenode and resource manager are in zone 2; the job is run from

zone 1.
4. The same as the first condition, except the job is run from zone 2.
5. The same as the first condition, except the standby namenode and resource man‐

ager are not running. This is similar to a non-HA cluster, although there are
additional daemons running, such as the journalnodes and ZooKeeper servers.

The average job times for the test runs are listed in Table 10-1.

Table 10-1. Average job times for MRBench

Condition Average time (ms)
1 20863

2 20860

3 20789

4 20858

5 20858

For this set of runs, you can see that the average job time does not vary significantly
across the different test conditions.

Terasort
The Terasort benchmark tests both HDFS and MapReduce performance by sorting
large amounts of data. It exercises HDFS as well as MapReduce, but it is much larger
than MRBench, so it is useful to try it out.

For these runs, teragen was first executed to generate 5 GB of test data. Jobs were
run under the “ubuntu” user account:

run as the ubuntu user
$ hadoop jar \
> /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar \
> teragen 50000000 /user/ubuntu/terasort-input

Then, terasort was run under the same conditions described for MRBench. In
between each run, the previous run’s output was deleted from HDFS and removed
from the trash:

Benchmarking HA | 141

as ubuntu
$ hdfs dfs -rm -r -skipTrash /user/ubuntu/terasort-output
$ hadoop jar \
> /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar \
> terasort /user/ubuntu/terasort-input /user/ubuntu/terasort-output

No tuning was performed on the cluster before running Terasort.
Cluster tuning is a critical part of configuring real-world clusters,
and the right settings can dramatically improve performance both
on benchmarks like Terasort and on real workloads. So, interpret
the results here as those of a cluster with an out-of-the-box config‐
uration.

The CPU times for each run are listed in Table 10-2.

Table 10-2. Job times for Terasort

Condition CPU time spent (ms)
1 416260

2 422250

3 416510

4 414970

5 415460

As was the case with MRBench, there were no significant differences in total CPU
time across the test conditions.

Grains of Salt
What do the preceding results mean? Not too much, to be honest. There are a huge
number of variables that can affect cluster performance, including:

• The number and instance types of cluster instances
• The version of Hadoop in use and the services running
• Cloud provider configuration, especially networking
• Current load and outages at the cloud provider
• The choice of cloud provider
• The nature of the workload

One conclusion that can be drawn from them is that it is possible to have an HA clus‐
ter that performs consistently under different configurations of active, standby, or
inactive namenodes and resource managers. Whether this is true for your own clus‐
ters can only truly be determined by running tests on them.

142 | Chapter 10: High Availability

One final, important principle to remember is that, while outages in cloud providers
are rare, they can and will happen. Your clusters and applications should be struc‐
tured in such a way that they can withstand those inevitable problems. By configur‐
ing high availability to automatically deal with outages, and running tests on your
clusters’ performance, you can implement a reliable and resilient cloud cluster archi‐
tecture.

Benchmarking HA | 143

1 In this book, Hive will run using the newer HiveServer2 server process and the Beeline client, as opposed to
the older Hive CLI.

CHAPTER 11

Relational Data with Apache Hive

So far, the clusters established in the cloud using the instructions in this book have
only been capable of running classic MapReduce jobs. Of course, the Hadoop ecosys‐
tem offers many other ways to work with large amounts of data, and one of the most
attractive is viewing it as relational data that can be queried using Structured Query
Language (SQL). For decades before the advent of Hadoop and similar cluster archi‐
tectures, data analysts worked with large data sets in relational databases, and for
many use cases that is still appropriate today. Hadoop components such as Apache
Hive allow those with experience in relational databases to transition their skills over
to the big data world.

As you might expect, a Hadoop cluster running on a cloud provider can support
these components. What’s more, the cloud providers have features that the compo‐
nents can take advantage of, and the components themselves have ways to explicitly
use cloud provider features to enhance their capabilities.

The content in this chapter starts off with installing Hive into a cloud cluster. The
instructions assume that you have a cluster set up in the configuration developed in
Chapter 9 but, as usual, you should be able to adapt the instructions to your specific
situation.

Planning for Hive in the Cloud
The most important pieces of Hive to consider are the Hive server (HiveServer21), a
server process that accepts requests from other Hive clients, and the Hive metastore,
which houses information about the objects and structures comprising Hive data‐

145

bases, tables, and partitions. A typical configuration has at least a single Hive server
running on a manager node, alongside the HDFS namenode and YARN resource
manager.

The Hive metastore, which maps HDFS data into relational data models, can live
either “locally” within Hive itself or “remotely” on a separate database server. The
instructions here start with a local metastore, since that is a quick way to check that
Hive is working, but then go on to set up a remote metastore fronted by a Hive meta‐
store server.

Installing and Configuring Hive
These instructions are based on the standard Hive installation instructions and use
the standard binary distribution from Apache. If you already have a tried-and-true
set of steps for Hive installation, or if you prefer to use a customized or bundled dis‐
tribution from a Hadoop vendor, you may be able to adapt these instructions.

Prepare for installing Hive by creating a dedicated account for it, just like those for
HDFS and YARN (see Chapter 9). These instructions will assume that the username
for the account is “hive” and that the account belongs to the “hadoop” group. SSH
key pairs are used for logging in. Since Hive components only run on the manager
node, it’s not necessary to establish a “hive” account on workers or to have password‐
less SSH established across the cluster for the account:

$ sudo useradd -G hadoop -m -s /bin/bash hive
$ sudo mkdir /home/hive/.ssh
$ sudo cp ~/.ssh/authorized_keys /home/hive/.ssh
$ sudo chmod 700 /home/hive/.ssh
$ sudo chown -R hive /home/hive/.ssh

Download a binary Hive distribution from hive.apache.org to your manager instance,
under the standard login account. In keeping with the use of /opt/hadoop as the
installation location for Hadoop, install Hive to /opt/hive:

$ curl -O http://mirrorhost/path/to/apache-hive-x.y.z-bin.tar.gz
$ sudo tar xzfC apache-hive-x.y.z-bin.tar.gz /opt
$ sudo ln -s /opt/apache-hive-x.y.z-bin /opt/hive

Example commands in this chapter will use the version number
x.y.z to stand in for the real Hive version numbers. Unless you
have a specific need otherwise, you should simply use the latest sta‐
ble releases.

Now that Hive is installed, it can be configured. The instructions here are simple
ones, just to get Hive going. Again, if you are used to configuring Hive clusters, go
ahead and adapt what you normally do.

146 | Chapter 11: Relational Data with Apache Hive

https://cwiki.apache.org/confluence/display/Hive/AdminManual+Installation

2 You can instead copy hive-default.xml.template to hive-site.xml.

Fortunately, Hive’s default configuration is set up to use a local metastore. Take a
look at /opt/hive/conf/hive-default.xml.template to see what the default configuration
entails:

• The hive.metastore.warehouse.dir property points to where data that Hive
operates on lives in HDFS. Its default value is /usr/hive/warehouse, which works
fine. These instructions will assume that default, but for something different, set
this property in hive-site.xml.

• The javax.jdo.option.ConnectionURL and javax.jdo.option.Connection

DriverName properties point to a local database running under Apache Derby, a
lightweight embedded relational database engine, as the metastore. Initially Hive
will use that metastore, but later in this chapter Hive will be reconfigured to use a
remote metastore.

• The hive.metastore.uris property is empty, which indicates to Hive that the
metastore is local.

• The hive.exec.scratchdir property points to /tmp/hive, also in HDFS like the
warehouse directory, as Hive’s scratch directory. This default works as well, and
these instructions use it.

There are still some changes to make, however. Hive does not ship with a copy
of /opt/hive/conf/hive-site.xml, so create it:2

as root
% cat > /opt/hive/conf/hive-site.xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
</configuration>
^D

These instructions require that impersonation be disabled in Hive, so that queries
run as the user running the Hive server and not the querier. (A more secure installa‐
tion would leave impersonation on and set permissions appropriately.) To do so, set
the hive.server2.enable.doAs property in hive-site.xml to “false”. Hive’s instruc‐
tions also recommend disabling filesystem caches to avoid memory leaks when
impersonation is disabled, so also set the fs.hdfs.impl.disable.cache and
fs.file.impl.disable.cache properties to “true”:

<property>
 <name>hive.server2.enable.doAs</name>
 <value>false</value>
</property>

Installing and Configuring Hive | 147

https://db.apache.org/derby/
https://cwiki.apache.org/confluence/display/Hive/Setting+Up+HiveServer2#SettingUpHiveServer2-Impersonation

<property>
 <name>fs.hdfs.impl.disable.cache</name>
 <value>true</value>
</property>
<property>
 <name>fs.file.impl.disable.cache</name>
 <value>true</value>
</property>

As the “hdfs” user on the manager instance, create the required warehouse and
scratch directories in HDFS, and set their permissions. Here, the /tmp directory is
opened up because the Hive server must write to it and will fail to start correctly if it
cannot:

as hdfs
$ hdfs dfs -mkdir /tmp
$ hdfs dfs -mkdir -p /user/hive/warehouse
$ hdfs dfs -chmod 777 /tmp
$ hdfs dfs -chown -R hive:hadoop /user/hive

Hive uses Apache Log4J 2 for its own logging. Since the rest of the Hadoop compo‐
nents in the cluster are logging to /var/log, Hive should as well. Start by creating
a /var/log/hive directory that the “hive” user can write to:

$ sudo mkdir /var/log/hive
$ sudo chgrp hadoop /var/log/hive
$ sudo chmod g+w /var/log/hive

Then put the Log4J properties file in place for Hive and edit the value of property
.hive.log.dir to point to /var/log/hive:

$ sudo cp /opt/hive/conf/hive-log4j2.properties.template \
> /opt/hive/conf/hive-log4j2.properties
$ sudo vi /opt/hive/conf/hive-log4j2.properties # and edit property.hive.log.dir

148 | Chapter 11: Relational Data with Apache Hive

Startup
Hive is ready to start. Set up the “hive” account to work with Hive by setting the
HIVE_HOME and other environment variables, and by adding Hive’s bin directory to
the PATH:

as hive
$ export HADOOP_HOME=/opt/hadoop
$ export HIVE_HOME=/opt/hive
$ export PATH=${HIVE_HOME}/bin:${HADOOP_HOME}/bin:$PATH
$ export HADOOP_CONF_DIR=/etc/hadoop

Use schematool to initialize the local metastore, and then start the Hive server:

as hive
$ $HIVE_HOME/bin/schematool -dbType derby -initSchema
$ $HIVE_HOME/bin/hiveserver2 &

If, while working with Hive, the server fails to start and logs errors
saying that “direct SQL is disabled,” it is because you did not start
it from the same directory in which it was first started, and it can‐
not locate the local metastore. Find the metastore_db directory and
start the Hive server from there.

As was the case with the HDFS namenode and YARN resource manager, you can
check on the status of the Hive server through its web interface, but security rules
governing the manager instance block access from the outside to the necessary port.
Establish an SSH tunnel (see “SSH Tunneling” on page 112 for a refresher) from the
local port 10002 to the same port on your manager instance:

$ ssh -i /path/to/cloud_provider_key.pem -n -N \
> -L 10002:localhost:10002 userid@manager.cloud-provider.example &

Now, in your browser, navigate to http://localhost:10002 to see your Hive server ready
for work.

Running Some Test Hive Queries
To make sure Hive is working properly, you can run some basic queries using the
Beeline CLI. For now, run it from the “hive” account on the manager instance, since
its environment is already set up for Hive. You can also try these steps from a sepa‐
rate account.

$ beeline -u jdbc:hive2://localhost:10000

Startup | 149

http://localhost:10002

3 The MovieLens database contains ratings of movies entered by users of the MovieLens website. For full
details, visit the MovieLens database.

Make a simple table and run some queries on it. This example creates a test table with
a single column, inserts a row, and runs some SELECT queries. You should see evi‐
dence of Hive issuing MapReduce jobs, starting with the first SELECT query:

CREATE TABLE test (value INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

SELECT COUNT(*) from test;

INSERT INTO test VALUES (123);

SELECT * FROM test;

!quit

For something a little more interesting, try working with the MovieLens database
using the instructions in Apache Hive documentation.3 The datasets are distributed
as ZIP files, so to extract them you will need the unzip utility; use your operating sys‐
tem’s package manager to install it.

If the data load and count query work, you should see a correct result for the row
count:

SELECT COUNT(*) FROM u_data;
...
OK
+---------+--+
| c0 |
+---------+--+
| 100000 |
+---------+--+

At this point, Hive is working on your cluster and running MapReduce jobs in the
cloud to satisfy queries. The next step, needed for a more robust Hive installation, is
to switch to a remote metastore. Fortunately, your cloud provider can help you with
setting up a database server where the metastore can live.

Switching to a Remote Metastore
The result of the previous instructions is a Hive server using a local metastore. To
switch to a remote metastore, begin by stopping the Hive server and cleaning out the
warehouse in HDFS. This will get Hive back into an empty state:

150 | Chapter 11: Relational Data with Apache Hive

https://grouplens.org/datasets/movielens
https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-MovieLensUserRatings

as hive
$ kill hive-server-pid
as hdfs
$ hdfs dfs -rm -r /user/hive/warehouse
$ hdfs dfs -mkdir -p /user/hive/warehouse
$ hdfs dfs -chown -R hive:hadoop /user/hive

A remote metastore requires a database server. The instance hosting the database
should be separate from any of the cluster instances, so that it can be managed inde‐
pendently. While you can launch a new instance and manually install a database
server, it’s much easier to use your cloud provider’s database hosting features. See
“Cloud Relational Databases” on page 55 for an overview; here is a quick rundown:

• Under AWS, you can use RDS to stand up a database server, choosing from sev‐
eral supported engines. RDS handles backups, availability, and patching auto‐
matically.

• Under Google Cloud Platform, you can use Google Cloud SQL to stand up a
MySQL database server. The server can be configured with automatic backups,
high availability, and automatic failover.

• Under Azure, you can use Azure SQL database to stand up a Microsoft SQL
Server database server, or Azure Database for MySQL or Azure Database for
PostgreSQL to stand up one of those types of database server. The server is auto‐
matically backed up across data centers and can be explicitly replicated.

These instructions cover setting up a MySQL database server to host the remote met‐
astore, since MySQL is supported across all three cloud providers. There are no spe‐
cial requirements on the database server, so you can follow your provider’s standard
instructions. The steps here work with AWS RDS, but even if you use Google Cloud
Platform or Azure, it is worth looking through them to guide you.

It may be tempting to use an existing, on-prem database server for
the remote metastore. While it is possible, it is a very bad idea. Not
only will performance be much worse between the server and the
rest of your cluster, but you will be charged for data moving into
and out of the cloud provider infrastructure. See Chapter 13 and
Chapter 14 for more about how the choices in where you position
cluster components affects price and performance.

In the AWS console dashboard, select the RDS service. Be sure to select the same
region where your cluster resides as well. Just like when working with EC2, the RDS
dashboard presents a menu on the lefthand side of the page, as shown in Figure 11-1.
Select Instances in the menu.

Switching to a Remote Metastore | 151

Figure 11-1. RDS dashboard

The main area of the page will show that you have no RDS instances. Click the
Launch Instance button to start the process of creating a new RDS instance. Your
first choice is which engine to use; pick the MySQL tab from the available options, as
shown in Figure 11-2, and click Select for MySQL. You may be presented with a
choice of using Amazon Aurora, an in-house, compatible variant of MySQL; these
instructions stick with MySQL itself.

Figure 11-2. RDS engines

152 | Chapter 11: Relational Data with Apache Hive

Your next decision is whether to set up a production-ready database or one suited for
development and testing. See Figure 11-3 for an example of this prompt. Since the
cluster is being used for testing and exploration, select Dev/Test.

Figure 11-3. A choice of production or development database

The next page, part of which is shown in Figure 11-4, presents options for the specifi‐
cations of the new RDS instance:

• Select the latest available version of MySQL for the Database Engine Version.
• The DB instance class may be the smallest available, since this is an exploratory

installation of the remote metastore. Feel free to pick a larger instance if you plan
to do more work in Hive. Similarly, a multizone deployment isn’t necessary.

• The metastore does not require a lot of space, so the maximum permitted under
the AWS Free Tier should be more than enough.

Switching to a Remote Metastore | 153

Figure 11-4. RDS instance specifications

Below the instance specifications is a separate form, shown in Figure 11-5, for nam‐
ing the instance and providing its root username and password. Be sure to record
your choices here, so that you can connect to it to create the metastore database.

Figure 11-5. RDS instance settings

Next, describe where the new instance will reside in your network. Use the same
VPC, subnet, and availability zone as your manager instance for the best performance
and lowest cost. Also select the same security group that your cluster belongs to, so
that communications between the metastore and the cluster are unimpeded. The
instance does not need to be publicly accessible, because Hive is running inside the
cloud provider as well. Figure 11-6 shows the network and security form filled out
with these settings.

154 | Chapter 11: Relational Data with Apache Hive

4 RDS does not divulge IP addresses for database servers, so use the assigned hostname.

Figure 11-6. RDS instance network and security settings

The remaining items on the page can be left as they are. RDS can create an initial
database, but to show more about how the remote metastore is created and managed,
these instructions opt not to use that feature. Click the Launch DB Instance button to
complete this last step. When RDS reports that the instance is being created, click
View Your DB Instances to return to the list of instances.

Once the database server is available, determine its hostname or IP address.4 The next
step is to create the metastore database; Hive ships with a MySQL script for this pur‐
pose.

The Hive schematool can be used as an alternative way to establish
the metastore database; consult the Hive documentation for details.

To connect to the database server, install the MySQL client on the manager instance
that hosts the Hive server, using the operating system’s package manager. Then, run
the SQL script included with the Hive distribution to create the metastore database:

$ cd /opt/hive/scripts/metastore/upgrade/mysql
use chosen root username here
$ mysql -h mysql-hostname.cloud-provider.example -u root -p
Enter password: # enter chosen root password here
mysql> create database metastore;
mysql> use metastore;
mysql> source
/opt/hive/scripts/metastore/upgrade/mysql/hive-schema-x.y.z.mysql.sql;
many queries are run

Switching to a Remote Metastore | 155

https://cwiki.apache.org/confluence/display/Hive/Hive+Schema+Tool

mysql> create user 'hive'@'%' identified by 'hive';
mysql> grant all privileges on metastore.* to 'hive'@'%';
mysql> \q

The preceding MySQL commands create a “hive” user inside MySQL with access to
the metastore database. Change the password in the create user command if
desired. The new user can log in from any remote address, which is acceptable for
testing and when security rules block access from most sources; in a production set‐
ting, you may wish to restrict access to a small range of remote addresses as an extra
line of defense.

The cd command is necessary because the SQL script that is
sourced itself sources another script in the current directory. This
limitation was fixed in issue HIVE-6559 but appears to have
regressed.

As an extra check, you can reconnect to the database server as the “hive” user and see
that the metastore tables have been created:

$ mysql -h mysql-hostname.cloud-provider.example -u hive -p
Enter password:
mysql> use metastore;
mysql> show tables;
list of tables appears
mysql> \q

Next, Hive must be reconfigured to use the new database server for the metastore.
Edit /opt/hive/conf/hive-site.xml and make the following additions:

• Add the javax.jdo.option.ConnectionURL property, set to the JDBC URL of
the metastore database.

• Add the javax.jdo.option.ConnectionDriverName property, set to
“com.mysql.jdbc.Driver”.

• Add the javax.jdo.option.ConnectionUserName and javax.jdo.option

.ConnectionPassword properties with the username and password for the data‐
base user added while creating the metastore database.

• Add the hive.metastore.uris property with a Thrift URI for the manager
instance that hosts the Hive server. This same instance will also host the meta‐
store server:

<property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://mysql-hostname.cloud-provider.example/
 metastore</value>
</property>
<property>

156 | Chapter 11: Relational Data with Apache Hive

https://issues.apache.org/jira/browse/HIVE-6559

 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
</property>
<property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hive</value>
</property>
<property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>hive</value>
</property>
<property>
 <name>hive.metastore.uris</name>
 <value>thrift://203.0.113.101:9083</value>
</property>

Hive needs access to the MySQL JDBC driver in order to communicate with the
remote metastore database server. Either install the driver JAR file, called
Connector/J, using the manager instance’s operating system package manager, or
download a copy from the official download page. Copy the JAR file to /opt/hive/lib/
mysql-connector-java.jar.

Hive is now configured for a remote metastore. Start the Hive metastore server, and
then the Hive server once more. Use the same port for the metastore server that is
configured in hive-site.xml, and direct its log to /var/log/hive alongside the Hive
server’s log:

as hive
$ $HIVE_HOME/bin/hive --service metastore -p 9083 > /var/log/hive/metastore.log &
wait for the metastore server to come up
$ $HIVE_HOME/bin/hiveserver2 &

Once the servers are up, you can try the same tests that were performed for the local
metastore. This time, Hive is reaching out to the remote metastore on the database
server maintained by the cloud provider, with all the benefits of performance and
reliability that come along with it.

The Remote Metastore and Stopped Clusters
If you stop your cluster instances, you may also wish to turn off the database server
hosting the remote metastore. Google Cloud SQL allows you to stop a database
instance, but if you are using RDS or Azure SQL, then you do not have the option to
just stop a database server; you can only terminate it. In that case, go ahead and ter‐
minate the instance, but take one last snapshot or backup of the server contents.
When it comes time to start the cluster again, create a new database instance that
restores from the final snapshot. You may need to reconfigure Hive if the new data‐
base server’s hostname or IP address differs from the old one’s.

Switching to a Remote Metastore | 157

http://dev.mysql.com/downloads/connector/j/

Hive Control Scripts
Hive does not ship with convenience scripts for starting and stopping its servers. See
Example A-2 and Example A-3 for some simple ones that should work well, at least
as starting points.

Hive on S3
So far, Hive has operated on data that was explicitly loaded into HDFS. The data is
distributed across datanodes in the cluster, and metadata about how it can be inter‐
preted as relational data tables is kept in a remote database server; all of the instances
are running in the cloud. This is a common and reasonable way of working with Hive
data. But you can go further, specifically in how the data is stored.

Cloud providers have object storage solutions, as described in “Object Storage” on
page 49. Instead of pulling data into HDFS before analyzing it, you can keep the data
in object storage and reference it there as Hive external tables.

This section describes how to configure Hive to work with data on the AWS object
storage service, S3.

Configuring the S3 Filesystem
The first step in working with S3 under Hadoop is to configure the cluster to use a
Hadoop S3 filesystem. When such a filesystem is enabled, you can address objects
and folders in S3 like files and directories in HDFS. S3 cannot act exactly like a file‐
system, due to its weaker guarantees on consistency, but it can work as one in many
situations, including as a source for file-like data.

Why Not Use S3 for Everything?
If you can access data in S3 like a Hadoop filesystem, you may wonder why you
shouldn’t just use S3 for all file storage, forgoing HDFS completely.

The primary reason is that S3 does not adhere to POSIX-like constraints on how a
filesystem should behave. Newly created files may not be immediately visible after
creation, and deleted files may still be available for some time after deletion. These
behaviors and others are why S3, and other object stores like it, are called eventually
consistent. Because of the delays in some changes made in S3, it is not suitable for
storing transient or highly variable data, like that saved in the middle of a workflow.
Its strengths include storage of read-only data and archival use.

An attempt to compensate for S3’s eventual consistency, called S3Guard, is underway
at the time of this writing. It pairs up an external, consistent database with S3 access

158 | Chapter 11: Relational Data with Apache Hive

5 As of Hadoop 2.7.

to improve consistency overall. See the Hadoop issue tracking its development at
“HADOOP-13345”.

Over time, Hadoop has supported three separate S3 filesystem implementations: the
original S3 block filesystem or “s3”, the S3 native filesystem or “s3n”, and the latest
“s3a” filesystem. The instructions here focus on s3a, since s3 has already been
removed from Hadoop and s3n is deprecated.

The s3a filesystem implementation ships with Hadoop but is not active by default.5

Activating it involves adding the library directory where the implementation and
supporting JAR files reside to the Hadoop classpath.

On each cluster instance, edit /etc/hadoop/hadoop-env.sh and add the following line,
which places the necessary directory into the Hadoop classpath:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/share/hadoop/tools/lib/*

Then, again on each cluster instance, edit /etc/hadoop/mapred-site.xml and add the
mapreduce.application.classpath property. This property controls the classpath
available to MapReduce tasks, which is independent from the Hadoop classpath. The
value shown in the following code includes the default classpath as well as the direc‐
tory containing the s3a filesystem implementation. (The following XML is edited for
fit.)

<property>
 <name>mapreduce.application.classpath</name>
 <value>$HADOOP_MAPRED_HOME/share/hadoop/mapreduce/*,
 $HADOOP_MAPRED_HOME/share/hadoop/mapreduce/lib/*,
 $HADOOP_MAPRED_HOME/share/hadoop/tools/lib/*</value>
</property>

These new settings do not take effect until HDFS and YARN are restarted, but there
are more settings to add.

Adding Data to S3
One way to check that the s3a filesystem is working properly, once it is fully config‐
ured, is to place some data into S3 and then attempt to look at it using the HDFS
client. Since you are already familiar with the MovieLens data, that data can work for
this test.

In the AWS console dashboard, select the S3 service. The welcome page for S3
appears, with a button for creating your first bucket. Click that button, and use the
dialog box shown in Figure 11-7 to name your bucket. Remember that the bucket

Hive on S3 | 159

https://issues.apache.org/jira/browse/HADOOP-13345

name is globally unique, so more obvious names are most likely already taken. Select
the region where your cluster resides, and then click Create to create the bucket.

Figure 11-7. Creating an S3 bucket

Remember the region that you chose for your bucket, as that may influence how you
must configure Hadoop later on.

Select the bucket from the S3 dashboard. The bucket is currently empty, so add a
folder by clicking the Create Folder button. Enter the name “ml-100k” for the folder,
and it will be created and displayed as shown in Figure 11-8.

160 | Chapter 11: Relational Data with Apache Hive

Figure 11-8. A folder in an S3 bucket

Now the file containing the MovieLens data can be uploaded. Download the ZIP file
containing the data to your local computer and unzip it. The file “u.data” in the con‐
tents contains the data set, and it’s that file that should be uploaded to S3.

Back in the S3 console, select the folder you just created to navigate into it, and then
click the Upload button. In the upload dialog, click the Add Files button, and navi‐
gate to the “u.data” file on your local computer and select it for addition. Then click
the Upload button in the dialog to begin the file upload. It should complete in a few
seconds, and the file should appear in the bucket as shown in Figure 11-9.

Figure 11-9. A file uploaded to an S3 bucket

The data is now available in S3. However, attempts to look at it from Hadoop at this
point will fail, because public access to the S3 bucket contents is not established.
Additional configuration is necessary for Hadoop to be able to authenticate to AWS
using an account with permissions to look into S3.

Configuring S3 Authentication
The s3a filesystem implementation can retrieve credentials for S3 from many differ‐
ent locations, including environment variables, properties in core-site.xml, Hadoop’s

Hive on S3 | 161

6 An instance profile for an EC2 instance links to a role in AWS. Processes running on the instance automati‐
cally gain the permissions associated with the role.

own credential providers, and the instance profile6 associated with the EC2 instances
where Hadoop runs. Here, properties in core-site.xml are used.

The core-site.xml properties themselves support a few different means of authentica‐
tion, but the simplest is to use a typical AWS access key and secret key pair. The keys
associate Hadoop with a user under your AWS account, and when that user has per‐
missions to work with S3, Hadoop is able to work with S3.

A user is needed for AWS keys, so make one using the Identity and Access Manage‐
ment (IAM) service, which is available from the AWS console. Select Users from the
menu on the left side of the page, and click the Add User button above the empty
user list. In the form that appears, shown in Figure 11-10, provide your choice of
username and select the Programmatic access checkbox, which triggers the creation
of keys. Click the Next: Permissions button to pick what the new user can do.

Figure 11-10. Creating a new user in IAM

From the choices in the next form, as shown in Figure 11-11, select “Attach existing
policies directly,” since there are no groups or users existing yet.

162 | Chapter 11: Relational Data with Apache Hive

7 For even more security, choose “AmazonS3ReadOnlyAccess.” However, this will prohibit Hadoop writing to
S3 in the future.

Figure 11-11. Permission choices for a new IAM user

Below these choices, a list of security policies appears. Each policy can grant a set of
permissions to the new user. Look for the policy named “AmazonS3FullAccess,” as
shown in Figure 11-12, and check its checkbox.7 Click the Next: Review button to
check over the settings for the new user, and then “Create user” to create it.

Figure 11-12. An S3 policy selected for a new IAM user

The next page should display a success message along with a table containing the keys
for the new user. Record both key values and then click the Close button. This is the
only time that AWS will tell you the secret access key, so do not miss the opportunity
to save it; if you do, then you must delete the user and start again.

Keys in hand, edit /etc/hadoop/core-site.xml on each cluster instance and add the
fs.s3a.access.key and fs.s3a.secret.key properties. (Obviously, the keys in the
following XML have been masked out.)

<property>
 <name>fs.s3a.access.key</name>
 <value>AKIAXXXXXXXXXXXXXXXX</value>
</property>
<property>
 <name>fs.s3a.secret.key</name>
 <value>XX</value>
</property>

Hive on S3 | 163

Configuring the S3 Endpoint
If your S3 bucket resides in a region that was added to AWS after January 30, 2014,
then calls accessing the bucket must be authenticated with the AWS Signature Ver‐
sion 4 (V4) algorithm, and not with the older Signature Version 2 (V2) algorithm.
Usually this detail can be ignored, since the AWS SDK handles the details for you,
but it matters for S3 access. The default endpoint for S3 is s3.amazonaws.com; this
endpoint works for any region under V2, but under V4 it only works for the default
us-east-1 region.

So, if your bucket is in a V4-only region, edit /etc/hadoop/core-site.xml on each clus‐
ter instance and add the fs.s3a.endpoint property with the unique S3 endpoint for
the region. For example, if you are using the Frankfurt region eu-central-1, add the
following:

<property>
 <name>fs.s3a.endpoint</name>
 <value>s3.eu-central-1.amazonaws.com</value>
</property>

Now that S3 authentication and the correct S3 endpoint are in place, go ahead and
restart HDFS and YARN. This will activate the s3a filesystem implementation with
authentication in place using the new user account. Once HDFS is ready, you can try
to look into S3 using the HDFS client. Pass a URL that follows the s3a scheme, start‐
ing with the bucket and proceeding down through the folders:

$ hdfs dfs -ls s3a://myhivebucket/ml-100k
Found 1 items
-rw-rw-rw- 1 1979173 2017-01-01 12:34 s3a://myhivebucket/ml-100k/u.data
$ hdfs dfs -tail s3a://myhivebucket/ml-100k/u.data
last 1K of file

If s3a listings do not work, make sure that the AWS keys were entered correctly, that
the updated classpaths are correct, and that you have set the S3 endpoint if required
for your region.

External Table in S3
All of the prerequisites are in place for Hive to work with data in S3. Return to the
Beeline client and create a new table for the MovieLens data loaded into the new
bucket. This table is an external table, indicating that the data should be left in its
original location and not copied into HDFS:

CREATE EXTERNAL TABLE u_data_s3 (
 userid INT,
 movieid INT,
 rating INT,
 unixtime STRING)
ROW FORMAT DELIMITED

164 | Chapter 11: Relational Data with Apache Hive

FIELDS TERMINATED BY '\t'
LOCATION 's3a://myhivebucket/ml-100k/';

Notice that the s3a URL for the folder containing the data is provided as the location
for the table. You should now be able to work with the data just as when it was avail‐
able in HDFS:

SELECT COUNT(*) FROM u_data;
...
OK
+---------+--+
| c0 |
+---------+--+
| 100000 |
+---------+--+

What About Google Cloud Platform and Azure?
If you are using Google Cloud Platform, you can use the Google Cloud Storage Con‐
nector to link up Hadoop and Google Cloud Storage. Like the s3a filesystem imple‐
mentation, the connector establishes a filesystem, usually named “gs”, that is backed
by Google Cloud Storage. It is implemented by a JAR that must be placed into the
necessary classpaths, and it authenticates via the service account associated with the
cluster’s GCE instances. Consult Google Cloud Platform documentation for details
on installation and configuration.

Hadoop ships with an implementation for a “wasb” filesystem backed by Azure Blob
Storage. It is activated in a similar fashion to the s3a filesystem, by including it in the
necessary classpaths and configuring authentication using an access key. The imple‐
mentation supports both block blobs and page blobs. Consult the Hadoop documen‐
tation for the hadoop-azure module for more information.

An even better option for Azure is to use the “adl” Azure Data Lake Store (ADLS)
Hadoop filesystem implementation. ADLS has stronger consistency guarantees than
Azure Blob Storage or even S3, so it should better support scenarios where updates
occur.

Once any of these provider-specific filesystems are in place and working, external
Hive tables should work from locations containing their URLs.

A Step Toward Transient Clusters
It is certainly convenient to be able to work with relational data directly from cloud
provider object storage services, but there is another, greater motivation for doing so.
With data given a safe home on a storage service, you do not need to worry about the
Hadoop cluster that works with it; it no longer needs to store the data for the long
term. If the cluster should be lost, due to problems in the cloud provider or even a

What About Google Cloud Platform and Azure? | 165

mistake made by administrators, the data remains. In this chapter, you’ve worked
with reading data stored in S3, but of course data can be written to S3 too.

When you begin to think of cloud storage as the durable, available home for impor‐
tant cluster data, then you can understand how the clusters themselves do not need to
live for a long time. To work with the data, you can spin up a cluster, query the data
from S3, write final results back to S3, and then destroy the cluster. This has the
potential to save money and make more efficient use of cloud provider resources.
With the right automation, you can thereby support working with transient clusters.

“Long-Running or Transient?” on page 215 goes into greater detail about using transi‐
ent clusters, but this chapter has given you initial exposure to the idea.

A Different Means of Computation
While working with Hive, you may have noticed some warnings like this:

WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the
future versions. Consider using a different execution engine (i.e. tez, spark)
or using Hive 1.X releases.

So far, the steps in this book for setting up a Hadoop cluster have only covered setting
up YARN, so that is all that is available for conducting MapReduce jobs to satisfy
Hive queries. As the warnings suggest, different providers for Hive computation are
supported.

The next chapter covers adding one of those providers, Spark, to your cloud cluster.
Not only will Spark be configured as another execution engine for Hive, but it will
also be used for processing streaming data, which is one of its more powerful capabil‐
ities.

166 | Chapter 11: Relational Data with Apache Hive

CHAPTER 12

Streaming in the Cloud with Apache Spark

The venerable MapReduce computation framework, part of Apache Hadoop from
the beginning, is falling out of favor now that newer and more flexible solutions are
available. The original MapReduce implementation of job trackers and task trackers
is obsoleted by YARN, which scales better and can support distributed work beyond
MapReduce jobs.

One of the most popular alternatives to MapReduce is Apache Spark, which supports
a wide variety of algorithms including mapping and reducing, and also manages the
chaining of the distributed computations together. Much like Hive caters to users
who are familiar with relational data, Spark caters to developers who can focus more
on the algorithmic features of the jobs they write, so they need not try to hammer
them into the MapReduce mold.

The content in this chapter starts off with installing Spark in a cloud cluster. The
instructions assume that you have a cluster set up in the configuration developed in
Chapter 9 but, as usual, you should be able to adapt the instructions to your specific
situation. Later on, the instructions cover running Hive on Spark, and it’s expected
that your cluster is set up for Hive as described in Chapter 11.

Planning for Spark in the Cloud
Spark running in a cluster can use any of several execution engines, including its own
“standalone” manager and worker processes that can run in an integrated fashion
with a Hadoop cluster. However, Spark can use YARN for running jobs, which is
already available in your cluster. By configuring Spark on YARN, you can get running
more quickly and take advantage of the resiliency already present in the YARN
framework.

167

1 A dedicated account is not truly needed for Spark on YARN, but it provides better separation of Spark jobs
from other cluster work.

Installing and Configuring Spark
These instructions are based on the standard Spark download and configuration
instructions and use the standard binary distribution from Apache. If you already
have a tried-and-true set of steps for Spark installation, or if you prefer to use a cus‐
tomized or bundled distribution from a Hadoop vendor, you may be able to adapt
these instructions.

Prepare for installing Spark by creating a dedicated account for it,1 just like those for
HDFS and YARN (see Chapter 9). These instructions will assume that the username
for the account is “spark” and that the account belongs to the “hadoop” group. SSH
key pairs are used for logging in. Since Spark will run jobs on YARN, which is already
installed in the cluster, it’s not necessary to establish a “spark” account on workers or
to have passwordless SSH established across the cluster for the account:

$ sudo useradd -G hadoop -m -s /bin/bash spark
$ sudo mkdir /home/spark/.ssh
$ sudo cp ~/.ssh/authorized_keys /home/spark/.ssh
$ sudo chmod 700 /home/spark/.ssh
$ sudo chown -R spark /home/spark/.ssh

Download a binary Spark distribution from spark.apache.org to your manager
instance, under the standard login account. You can choose a prebuilt package that
matches your specific Hadoop version, or a package that needs to be configured for a
“user-provided” Hadoop; these instructions use the latter to be more widely applica‐
ble. In keeping with the use of /opt/hadoop as the installation location for Hadoop,
install Spark to /opt/spark:

$ curl -O http://mirrorhost/path/to/spark-x.y.z-bin-without-hadoop.tar.gz
$ sudo tar xzfC spark-x.y.z-bin-without-hadoop.tar.gz /opt
$ sudo ln -s /opt/spark-x.y.z-bin-without-hadoop /opt/spark

If you plan to run Hive on Spark and are using a version of Hive
before 2.2.0, then you will need to install a 1.x version of Spark.
You may also install a 2.x version of Spark in a separate directory
to benefit from its improvements elsewhere, but it is not compati‐
ble with Hive before version 2.2.0.

Example commands in this chapter will use the version number
x.y.z to stand in for the real Spark version numbers. Unless you
have a specific need otherwise, you should simply use the latest sta‐
ble releases.

168 | Chapter 12: Streaming in the Cloud with Apache Spark

http://spark.apache.org/downloads.html
http://spark.apache.org/docs/latest/running-on-yarn.html

Now that Spark is installed, it can be configured. The instructions here are simple
ones, just to get Spark going. Again, if you are used to configuring Spark clusters, go
ahead and adapt what you normally do.

Create the file /opt/spark/conf/spark-env.sh; the easiest way is to copy the empty tem‐
plate file for it:

$ sudo cp /opt/spark/conf/spark-env.sh.template /opt/spark/conf/spark-env.sh

Then, define the HADOOP_CONF_DIR environment variable, pointing to /etc/hadoop, so
that Spark can find the cluster’s configuration files. If you installed the Spark package
for user-provided Hadoop, then also define the SPARK_DIST_CLASSPATH environment
variable so that Spark can locate Hadoop binaries:

export HADOOP_CONF_DIR=/etc/hadoop
export SPARK_DIST_CLASSPATH=$(/opt/hadoop/bin/hadoop classpath)

This is a good checkpoint to make sure that Spark is configured correctly, before con‐
tinuing to connect it to YARN. Try running the “SparkPi” example job locally:

as spark
$ cd /opt/spark
$./bin/run-example SparkPi 10

In the midst of a lot of informative logging, you should see a result like this:

Pi is roughly 3.1421711421711422

It is not much more work to get Spark jobs running on YARN; Spark is already con‐
figured with Hadoop’s configuration directory. To make it easier to find the output
from Spark jobs, enable log aggregation in YARN; this causes logs from each node
manager involved in a job to be gathered and stored in HDFS for later retrieval. To
enable log aggregation, edit /etc/hadoop/yarn-site.xml on each cluster instance and
add the yarn.log-aggregation-enable configuration property, set to true:

<property>
 <name>yarn.log-aggregation-enable</name>
 <value>true</value>
</property>

Startup
Since Spark is set up to run on YARN, there are no Spark components to start. Do
ensure that HDFS and YARN are running, though. If YARN had been running
before enabling log aggregation, restart it.

Startup | 169

Running Some Test Jobs
You can run Spark jobs under any account, and so for the account you choose, create
a home directory in HDFS, using the hdfs account. These instructions assume that
the new “spark” user account is used for running Spark jobs:

as hdfs
$ hdfs dfs -mkdir -p /user/spark
$ hdfs dfs -chown spark /user/spark

The example job can now be run again, this time using YARN instead of local execu‐
tion. The command for running the example differs based on the Spark version:

as spark
$ cd /opt/spark
for Spark 2.x
$./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
> --deploy-mode cluster examples/jars/spark-examples_2.11-x.y.z.jar 10
for Spark 1.x
$./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
> --deploy-mode cluster lib/spark-examples-x.y.z-hadoop2.2.0.jar 10

You should see the Spark job submitted to YARN and visible in the resource manager
web interface. After a short runtime and a good amount of local output describing
the progress of the job, you should see a report that the job was successful. The appli‐
cation master IP address and hostname in the tracking URL will use the private IP
address of the YARN resource manager, and the timestamps and application IDs will
reflect the time that the job was executed:

16/12/27 13:59:13 INFO yarn.Client: Application report for application_
1482846864508_0002 (state: FINISHED)
16/12/27 13:59:13 INFO yarn.Client:
 client token: N/A
 diagnostics: N/A
 ApplicationMaster host: 203.0.113.101
 ApplicationMaster RPC port: 0
 queue: default
 start time: 1482847140363
 final status: SUCCEEDED
 tracking URL
 : http://ip-203-0-113-101.ec2.internal:8088/proxy/application_
 1482846864508_0002/
 user: spark

There is no indication of the job output, because that is echoed to standard output by
one of the Spark containers that executed the job. The result can be found in the
aggregated log results for the job, which can be viewed using the yarn logs com‐
mand. Find the application ID for the Spark job in the output from running it, or
consult the resource manager web UI:

170 | Chapter 12: Streaming in the Cloud with Apache Spark

as spark
$ $HADOOP_PREFIX/bin/yarn logs -applicationId application_1482846864508_0002 | \
> less

The standard error and standard output logs for each container are listed, and one of
those standard output logs should contain the result:

Pi is roughly 3.1417631417631418

Congratulations, your Hadoop cluster running in the cloud now supports Spark jobs!
You should feel free to try running more example Spark jobs or other analyses
through it.

Configuring Hive on Spark
Hive queries are converted under the hood into jobs to be run on the underlying
cluster, and by default those are ordinary MapReduce jobs. You can configure a dif‐
ferent “execution engine” if one is available, and now that Spark is installed in your
cluster, you can use it instead of MapReduce jobs on YARN for satisfying Hive
queries.

There is documentation on this subject, but as usual, the steps here attempt to repre‐
sent the minimum needed to get to a working state.

Add Spark Libraries to Hive
Hive ships with the ability to run a Spark driver, but it does not ship with the neces‐
sary Spark code. That must be installed by you. For Spark versions before 2.0, a single
“assembly” JAR is all that is required:

$ sudo cp /opt/spark/lib/spark-assembly-*.jar /opt/hive/lib/

Starting with Spark version 2.0, there is no longer an assembly JAR, but several
smaller JARs take its place:

$ sudo cp /opt/spark/jars/scala-library-*.jar /opt/hive/lib/
$ sudo cp /opt/spark/jars/spark-core_*.jar /opt/hive/lib/
$ sudo cp /opt/spark/jars/spark-network-common_*.jar /opt/hive/lib/

Be sure to use a version of Spark that is compatible with the version of Hive.

Configure Hive for Spark
Edit /opt/hive/conf/hive-site.xml and make the following changes:

• Configure the spark.master property with the value “yarn”. This indicates that
Spark should itself rely on YARN for compute capability, as opposed to its own
standalone implementation, for example.

Configuring Hive on Spark | 171

https://cwiki.apache.org/confluence/display/Hive/Hive+on+Spark%3A+Getting+Started

• Configure the spark.home property to point to the Spark installation that is com‐
patible with Hive; for example, /opt/spark.

• Optionally, configure the hive.spark.job.monitor.timeout property with a
custom timeout, in seconds, larger than the default of 60. When using a small,
untuned test cluster, it may take longer than 60 seconds for some Hive queries to
be serviced by Spark, in particular, the first query in each session. You may leave
this property out and add it later if you find that jobs submitted by Hive are tim‐
ing out after just over a minute:

<property>
 <name>spark.master</name>
 <value>yarn</value>
</property>
<property>
 <name>spark.home</name>
 <value>/opt/spark</value>
</property>
<property>
 <name>hive.spark.job.monitor.timeout</name>
 <value>120</value>
</property>

Switch YARN to the Fair Scheduler
To configure YARN to use the fair scheduler, as recommended by Hive documenta‐
tion, edit /etc/hadoop/yarn-site.xml and configure the yarn.resourcemanager

.scheduler.class property with the class name for the fair scheduler. (The follow‐
ing XML is edited for fit.)

<property>
 <name>yarn.resourcemanager.scheduler.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.
 FairScheduler</value>
</property>

Try Out Hive on Spark on YARN
Restart the Hive metastore server and the Hive server to pick up the new Hive config‐
uration. If you have multiple Spark installations, specify the SPARK_HOME environment
variable with the same value as the spark.home configuration property in hive-
site.xml. Without the environment variable, the startup scripts for Hive may guess
incorrectly as to the location of the Spark installation:

as hive
export usual environment variables, but then add:
$ export SPARK_HOME=/opt/spark
$ $HIVE_HOME/bin/hive --service metastore -p 9083 > /var/log/hive/metastore.log &

172 | Chapter 12: Streaming in the Cloud with Apache Spark

wait for the metastore server to come up
$ $HIVE_HOME/bin/hiveserver2 &

Also restart YARN to switch it to use the fair scheduler.

Finally, run the Beeline client as usual, but before running your first query, tell it to
use Spark for query executions:

set hive.execution.engine=spark;

Now when you run a query, instead of seeing information about MapReduce being
used, you will see details about how Hive submitted work to Spark, and how Spark is
itself running on YARN. (The following output is edited for fit.)

0: jdbc:hive2://localhost:10000> SELECT COUNT(*) FROM u_data;
Query ID = hive_20161228174515_9bfd160e-6c6b-413f-9f7e-5eff85d04124
Total jobs = 1
Launching Job 1 out of 1
In order to change the average load for a reducer (in bytes):
 set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
 set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
 set mapreduce.job.reduces=<number>
Starting Spark Job = 72d7b61d-9f19-4a31-ae87-385ac80676c7
Running with YARN Application = application_1482938585635_0013
Kill Command = /opt/hadoop/bin/yarn application -kill
 application_1482938585635_0013

Query Hive on Spark job[1] stages:
2
3

Status: Running (Hive on Spark job[1])
Job Progress Format
CurrentTime StageId_StageAttemptId:
SucceededTasksCount(+RunningTasksCount-FailedTasksCount)/TotalTasksCount
 [StageCost]
2016-12-28 17:45:16,760 Stage-2_0: 0(+1)/1 Stage-3_0: 0/1
2016-12-28 17:45:19,775 Stage-2_0: 1/1 Finished Stage-3_0: 1/1 Finished
Status: Finished successfully in 4.02 seconds
OK
+---------+--+
| c0 |
+---------+--+
| 100000 |
+---------+--+
1 row selected (4.285 seconds)

Configuring Hive on Spark | 173

Spark Streaming from AWS Kinesis
Besides being able to perform complex analytics on data stored at rest, whether in
HDFS or elsewhere, Spark can also work on data that is streamed into it. Spark
Streaming lets you process large amounts of incoming live data in much the same
way as typical resilient distributed datasets (RDDs). Batches of data generated
through discretized streams or “DStreams” can be operated upon similarly to RDDs,
and the results can be saved to persistent storage for further analytics.

Spark supports several sources for DStreams, including Apache Flume and Apache
Kafka. It also ships with support for streaming data from Amazon Kinesis, a compo‐
nent of AWS that supports the establishment and management of data streams
within AWS.

This section describes how to set up a Spark Streaming job that reads from a Kinesis
stream, performs some simple processing on it, and saves the results to HDFS.

The streaming pipeline developed in this section operates on Apache access logs. In a
real-life scenario, Apache web servers would be configured to forward their access
logs to the Kinesis stream, but to make the work here simpler, access log data is faked
using a basic generator. The basic architecture of the streaming pipeline is shown in
Figure 12-1.

Figure 12-1. Data flow for a Spark Streaming job through AWS Kinesis

Creating a Kinesis Stream
To create a Kinesis stream, use the AWS console to select the Kinesis service. Be sure
to select the region where you want the stream to be created. On the Kinesis home
page, click Go to Streams. Click the “Create stream” button on the next page to reveal
the form—shown in Figure 12-2—for creating a new stream.

Provide a name for the stream, such as “apache-access-logs”. For the simple stream
used in this section, use just one shard. The form automatically calculates the read
and write throughput for the stream, which is more than enough for exploration pur‐
poses. Click the “Create stream” button to begin the process of stream creation.

174 | Chapter 12: Streaming in the Cloud with Apache Spark

Figure 12-2. Creating a Kinesis stream

The stream eventually appears in the list of streams. Soon, the stream should be
reported as ACTIVE, as shown in Figure 12-3, meaning it is ready to accept and pro‐
vide data.

Figure 12-3. An active Kinesis stream

Once the generator begins to send data into the stream and the stream job reads data
from the stream, the Monitoring tab for the stream will provide graphs summarizing
the data flow.

Spark Streaming from AWS Kinesis | 175

2 Find the complete source at: https://github.com/bhavanki/moving-hadoop-to-the-cloud.

Populating the Stream with Data
The simplest way to populate the new Kinesis stream is to use a simple standalone
generator program. The Kinesis client available in the AWS SDK can be used to send
one generated log line at a time, as bytes, to the stream. The main body of a generator
program is listed in Example 12-1.2

As in the rest of this book, code in this chapter is written in Java.

Example 12-1. Loop for sending log lines to a Kinesis stream

AmazonKinesisClient client = new AmazonKinesisClient();

int numPasses = (numRecords + recsPerSecond - 1) / recsPerSecond;
int recordsLeft = numRecords;
for (int i = 0; i < numPasses; i++) {
 int numToGenerate = Math.min(recordsLeft, recsPerSecond);
 for (int j = 0; j < numToGenerate; j++) {
 String logLine = generateLogLine();

 PutRecordRequest request = new PutRecordRequest()
 .withStreamName(streamName)
 .withPartitionKey(PARTITION_KEY)
 .withData(ByteBuffer.wrap(logLine.getBytes(StandardCharsets.UTF_8)));
 PutRecordResult result = client.putRecord(request);
 System.out.println(String.format("Wrote to shard %s as %s", result.getShardId(),
 result.getSequenceNumber()));
 }

 recordsLeft -= numToGenerate;
 if (recordsLeft > 0) {
 Thread.sleep(1000L);
 }
}

The loop in Example 12-1 sends a batch of records each second (roughly) to the
Kinesis stream and reports the sequence number assigned by Kinesis to each record
as a sign that the transfer was successful.

The work of creating a fake Apache access log line is done by the generateLogLine()
method. There are many ways to implement the method; the code in Example 12-2

176 | Chapter 12: Streaming in the Cloud with Apache Spark

https://github.com/bhavanki/moving-hadoop-to-the-cloud

uses a combination of java.util.Random, weighted distributions supported by
Apache Commons Math 3, and the Java Faker library to create realistic-looking log
lines. (The example here is edited down for clarity.)

Example 12-2. Generation of a random Apache access log line

private static final String FORMAT =
 "%s - - [%s] \"%s %s HTTP/1.0\" %s %d \"%s\" \"%s\"";

private Random random = new Random();
private Faker faker = new Faker();
private static final DateTimeFormatter TIMESTAMP_FORMATTER =
 DateTimeFormatter.ofPattern("dd/MMM/yyyy:HH:mm:ss Z");
private static final EnumeratedDistribution<String> METHODS = makeDistribution(
 Pair.create("GET", 6.0), Pair.create("POST", 2.0)
);
private static final EnumeratedDistribution<String> RESOURCES = makeDistribution(
 Pair.create("/page1", 10.0), Pair.create("/page2", 9.0)
);
private static final EnumeratedDistribution<String> RESPONSES = makeDistribution(
 Pair.create("200", 8.0), Pair.create("404", 2.0)
);
private static final EnumeratedDistribution<String> USER_AGENTS = makeDistribution(
 Pair.create("user agent string 1", 4.7), Pair.create("user agent string 2", 3.8)
);

@SafeVarargs
private static EnumeratedDistribution<String> makeDistribution(Pair<String,
 Double>... items) {
 return new EnumeratedDistribution<String>(Arrays.asList(items));
}

private String generateLogLine() {
 String ipAddress = faker.internet().privateIpV4Address();
 String dateTime = TIMESTAMP_FORMATTER.format(ZonedDateTime.now());
 String method = METHODS.sample();
 String resource = RESOURCES.sample();
 String status = RESPONSES.sample();
 int bytes = random.nextInt(10000);
 String referer = faker.internet().url();
 String userAgent = USER_AGENTS.sample();

 return String.format(FORMAT, ipAddress, dateTime, method, resource, status,
 bytes, referer, userAgent);
}

A Kinesis stream can hang on to data for a while, but the processing job will read
from the leading edge of the stream. So, in order to see the job in action, the genera‐
tor must run simultaneously.

Spark Streaming from AWS Kinesis | 177

https://github.com/DiUS/java-faker

3 This exposes the key values in the command line reported by utilities like ps. Other ways of passing the keys
are described in the AWS SDK documentation for managing credentials.

The generator program can run anywhere that has access to the Kinesis stream. AWS
credentials are necessary for putting records in the stream, and one way that they can
be supplied to the program is through an AWS access key ID and secret access key
assigned to an IAM user with the necessary permissions. See “Configuring S3
Authentication” on page 161 for instructions on how to add a new IAM user with the
permissions you choose. The policies required are:

• “AmazonKinesisFullAccess” for reading from and writing to Kinesis streams
• “AmazonDynamoDBFullAccess” for checkpointing progress in reading Kinesis

streams
• “CloudWatchFullAccess” for reporting stream metrics to AWS CloudWatch

The keys may be passed to the program in a few different ways. The most straightfor‐
ward is to set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment
variables before running.3

Streaming Kinesis Data into Spark
A streaming job that processes records from a Kinesis stream starts by creating a
DStream from it. All the usual stream manipulation capabilities of Spark are available
to perform processing on the data, and the end result may be saved to any of several
locations. The job in Example 12-3 alters each log record to have an anonymized IP
address and a generic user agent, and then maps each line to a pair with a unique
identifier so that it can be saved to Hadoop.

Example 12-3. Processing of Apache log lines in Spark Streaming

public void process(String streamName, String region, int batchInterval,
 String hadoopDir)
 throws InterruptedException {

 String kinesisEndpoint = String.format("https://kinesis.%s.amazonaws.com/",
 region);

 AmazonKinesisClient client = new AmazonKinesisClient();
 client.setEndpoint(kinesisEndpoint);

 int numShards =
 client.describeStream(streamName).getStreamDescription().getShards().size();
 SparkConf conf = new SparkConf().setAppName(APP_NAME);
 JavaStreamingContext ctx = new JavaStreamingContext(conf,

178 | Chapter 12: Streaming in the Cloud with Apache Spark

http://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html

 new Duration(batchInterval));

 JavaDStream<byte[]> kinesisStream =
 KinesisUtils.createStream(ctx, APP_NAME, streamName, kinesisEndpoint, region,
 InitialPositionInStream.LATEST,
 new Duration(batchInterval),
 StorageLevel.MEMORY_AND_DISK_2());

 // Make more DStreams
 JavaDStream<ApacheLogRecord> processedRecords = kinesisStream
 .map(line -> new ApacheLogRecord(new String(line, StandardCharsets.UTF_8)))
 .map(record -> record.withIpAddress(anonymizeIpAddress(record.getIpAddress())))
 .map(record ->
 record.withUserAgent(categorizeUserAgent(record.getUserAgent())))
 ;

 // Only pair streams can be written as Hadoop files
 JavaPairDStream<String, ApacheLogRecord> markedRecords = processedRecords
 .transformToPair(recordRdd ->
 recordRdd.mapToPair(
 record -> new Tuple2<>(UUID.randomUUID().toString(), record)
));

 // Write out to Hadoop
 markedRecords.print();
 markedRecords.saveAsHadoopFiles(hadoopDir, "txt", Text.class, Text.class,
 TextOutputFormat.class);

 ctx.start();
 try {
 ctx.awaitTermination();
 } catch (InterruptedException e) {
 System.out.println("Streaming stopped");
 return;
 }
}

The processing code in Example 12-3 uses lambdas, introduced in
Java 8, to be more readable. This requires that the Hadoop cluster,
or at least YARN, run under Java 8 as well.

The ApacheLogRecord class referenced in Example 12-3 is a basic implementation of
an object that can manage the fields in a log record.

When the streaming job is run, each batch delimited by the batch interval is pro‐
cessed, and its results are saved into a separate directory in Hadoop. To avoid an
explosion of directories, make the batch interval somewhat large, on the order of at
least a minute.

Spark Streaming from AWS Kinesis | 179

Packaging the streaming job
As with any Spark job, the streaming job should be packaged into an all-in-one JAR
that can be uploaded to the cluster for execution. The Spark Streaming library does
not need to be included, since the job runs within Spark. This will dramatically
reduce the size of the JAR.

With complex systems like Spark, the AWS SDK, and Hadoop all being used at once,
it is likely that dependency conflicts will arise when running the streaming job. Here
are some conflicts to watch out for, and how to resolve them:

• The Amazon Kinesis Client Library (KCL) available through Spark uses a specific
version of the AWS Java SDK. If you use a different version for your job, classes
in the SDK may be reported missing or incompatible. Try using the same version
of the AWS SDK for your job that the KCL packaged with Spark uses.

• Spark and the AWS SDK may rely on different versions of the Jackson JSON
library, leading to class-loading problems. Override the versions of Jackson so
that the latest ones are bundled.

• The Amazon KCL also uses a specific version of Apache Commons HTTPClient,
which may be newer than the version embedded in the Hadoop cluster. Use
Apache Maven’s package relocation capability to move the HTTPClient code
used by the job to a different “shaded” package to avoid the conflict altogether.

Example 12-4 illustrates how to use Apache Maven to implement the workarounds
that resolve dependency conflicts among Spark, the AWS SDK, and Hadoop.

Example 12-4. Maven settings resolving dependency conflicts among Spark, AWS SDK,
and Hadoop

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-java-sdk-bom</artifactId>
 <version>1.10.20</version><!-- KCL in Spark 2.1.0 uses 1.10.20 -->
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- Jackson libs in AWS 1.10 are too old for Spark 2 -->
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>2.6.5</version>
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.dataformat</groupId>
 <artifactId>jackson-dataformat-cbor</artifactId>

180 | Chapter 12: Streaming in the Cloud with Apache Spark

 <version>2.6.5</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.4.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <relocations>
 <!-- Apache Commons HTTPClient in Hadoop may conflict -->
 <relocation>
 <pattern>org.apache.http</pattern>
 <shadedPattern>com.mh2c.shaded.org.apache.http</shadedPattern>
 </relocation>
 </relocations>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Running the streaming job
To run the streaming job, upload its JAR to the Hadoop cluster and run it in a
Hadoop user account like “spark”. Use the spark-submit utility to start the job driver
in YARN and to pass essential Spark configuration properties and command-line
arguments:

as spark
$./bin/spark-submit --class com.mh2c.LogProcessor --master yarn \
> --deploy-mode cluster \
> --conf spark.yarn.appMasterEnv.AWS_ACCESS_KEY_ID=AKIAXXXXXXXXXXXXXXXX \
> --conf spark.yarn.appMasterEnv.AWS_SECRET_ACCESS_KEY=XXXX....XXXX \
> --conf spark.executorEnv.AWS_ACCESS_KEY_ID=AKIAXXXXXXXXXXXXXXXX \
> --conf spark.executorEnv.AWS_SECRET_ACCESS_KEY=XXXX....XXXX \
> /home/spark/apache-access-log-processing-1.0.0.jar \
> apache-access-logs us-east-1 60000
> hdfs://203.0.113.101:8020/user/spark/access-logs/stream

Spark Streaming from AWS Kinesis | 181

Notice that the AWS keys are passed to both the application master and the Spark
executors. Failing to do both leads to authentication failures working with Kinesis or
DynamoDB.

The arguments in this command line, which correspond to the arguments of the
process method in Example 12-3, are:

• The name of the Kinesis stream
• The region of the Kinesis stream, which is used to determine the Kinesis end‐

point URL
• The batch interval for Spark Streaming, in milliseconds
• The “prefix” for Hadoop files written by the job

The Hadoop file prefix is the start of the URL for where files should be written. An
hdfs:// URL directs Spark to write the files into HDFS. If the s3a filesystem imple‐
mentation is installed and available in the Hadoop cluster, then the job can write files
directly to S3, provided that the IAM user associated with the AWS keys also has
write access to S3. That is how you can create a Spark Streaming job that not only
reads from a cloud service, but also writes to one as well, leaving no critical data resi‐
dent in the cluster itself. See “Configuring the S3 Filesystem” on page 158 for instruc‐
tions on setting up the s3a filesystem.

Stopping the streaming job

The spark-submit command is merely reporting on the status of the YARN applica‐
tion hosting the Spark Streaming job, so it can be stopped at any time using Control-
C. This leaves the YARN application itself running, and it continues to run until you
kill it through YARN. Find the application ID for the job, as reported by spark-
submit, and then kill the application. (The following output has been edited for fit.)

as spark
$ /opt/hadoop/bin/yarn application -kill application_1484496337475_0014
17/01/15 20:58:47 INFO client.RMProxy: Connecting to ResourceManager at
 /203.0.113.101:8032
Killing application application_1484496337475_0014
17/01/15 20:58:47 INFO impl.YarnClientImpl: Killed application
 application_1484496337475_0014

With YARN log aggregation enabled, you can find the output from the job as usual,
using yarn logs. The logs contain output from Spark itself, including the output
from print() calls on DStreams:

as spark
$ $HADOOP_PREFIX/bin/yarn logs -applicationId application_1484496337475_0014 | \
> less

182 | Chapter 12: Streaming in the Cloud with Apache Spark

The actual output files can be found in Hadoop at the location specified to the job as
the “prefix.” For example, a prefix of “hdfs://203.0.113.101:8020/user/spark/access-
logs/stream” leads to a set of directories in HDFS starting with “stream” and time‐
stamped at each batch. Each directory houses “part” files with the text records from
the processor. (The following output is edited for fit.)

as spark
$ hdfs dfs -ls /user/spark/access-logs/
Found 5 items
drwxr-xr-x /user/spark/access-logs/stream-1484513640000.txt
drwxr-xr-x /user/spark/access-logs/stream-1484513700000.txt
drwxr-xr-x /user/spark/access-logs/stream-1484513760000.txt
drwxr-xr-x /user/spark/access-logs/stream-1484513820000.txt
drwxr-xr-x /user/spark/access-logs/stream-1484513880000.txt

With the streaming results in place, other analysis jobs using Spark, MapReduce, or
other frameworks that can read the files can be run later to drill further into the data.

What About Google Cloud Platform and Azure?
If you are using Google Cloud Platform, Google Cloud Pub/Sub is the analogous ser‐
vice for AWS Kinesis. There is a Java library for the service, although it is still very
new. Spark does not ship with built-in support for working with Cloud Pub/Sub, but
connecting should be possible with the Pub/Sub Java library or the grpc library.
Another tack is to use Apache Kafka as the source for the streaming job, and use the
CloudPubSubConnector to move data from Cloud Pub/Sub through Kafka to the job.

If you are using Azure, Azure Event Hubs is the analogous service for AWS Kinesis.
Microsoft’s HDInsight team maintains a Spark connector for Azure Event Hubs that
can take the place of the AWS KCL in Spark Streaming jobs.

Apache Kafka alone is a viable alternative for any of the stream services offered by the
cloud providers. Choosing Kafka gives you more control over how your streams are
managed, at the cost of having to maintain Kafka itself and the instances Kafka runs
on.

Building Clusters Versus Building Clusters Well
Configuring Spark, including Hive on Spark and Spark Streaming, on a cluster is a
complex affair. If you also installed Hive as described in Chapter 11 and enabled high
availability as described in Chapter 10, you did a lot of work and ended up with a
powerful, capable cluster in the cloud.

It is time now to take a step back and think about other issues with deploying cloud
clusters beyond the mechanics of installation and configuration, which has been the
focus of this book up until now. Part V begins by exploring the pricing decisions to

What About Google Cloud Platform and Azure? | 183

https://github.com/GoogleCloudPlatform/pubsub/tree/master/kafka-connector
https://github.com/hdinsight/spark-eventhubs

be made when designating resources for clusters, weighing them against performance
requirements. After all, while a cloud cluster is powerful and useful, it is even better if
it is also cost-effective and fast.

184 | Chapter 12: Streaming in the Cloud with Apache Spark

PART V

Care and Feeding of Hadoop
in the Cloud

By now you have created a simple Hadoop cluster running on a cloud provider, run
some jobs on it, and possibly enhanced it to be highly available or tried out some
other Hadoop components on it. The goals so far have been centered on getting
things working and exploring, but now that you have some experience with clusters
running in the cloud, it’s time to focus on getting things to work well. That entails
understanding how the features offered by cloud providers, as well as their trade-offs
and limitations, can influence the choices you make in architecting clusters.

CHAPTER 13

Pricing and Performance

As the saying goes, you get what you pay for. When it comes to cloud providers, in
general, the more you are willing to pay, the more resources you can have at your
command. For a small price, you can provision some modest instances with a small
amount of storage and use them for proof-of-concept work, small websites, or simple
server hosting. On the other hand, if you have money to spend, you can employ the
full range of compute and storage offerings from your cloud provider, which enable
you to field entire enterprise-scale infrastructures—for a corresponding enterprise-
scale price.

Fortunately, Hadoop was designed from the start not to require enterprise hardware,
and it can run on a small handful of instances, at least to start with. Even in cloud
deployments, it is not necessary to deploy the most powerful resources in order to
architect a powerful cluster. You can build a decent cluster at a decent price.

Regardless of the scale of your clusters, there’s no need to waste money. By taking a
careful look at the menu of selections for instances and storage, and building your
network out well, you can be sure that you are getting the most bang for your buck.

Picking Instance Types
One of the first decisions to confront when designing a cluster running in the cloud is
which instance type or types to use. Some instance types are too underpowered for
most cluster roles, while some are overpowered except for very large-scale deploy‐
ments. Even though there is a lengthy list of instance types to choose from, it’s
enough to focus on a few characteristics common to all of them to find a good fit.

187

The Criteria
The primary criteria to consider when choosing instance types for a cluster are:

• Number of vCPUs or cores
• Memory
• Associated block storage or disk space

In general, and as you probably expect, an instance type is priced higher when it has
more vCPUs, more memory, or more block storage. However, the ratios between
these criteria do not stay constant across the set of available instance types. Some
instance types go heavy on memory, while others have a tremendous amount of
block storage.

Instance types can usually be categorized by what their expected role is, and the role
for a type derives from what criteria are emphasized in its makeup. Role classifica‐
tions can apply to Hadoop cluster architectures as well as other uses. Here are some
common roles for instance types:

• General-purpose instance types provide a balanced amount of vCPUs, memory,
and block storage. These are analogous to general-purpose physical computers,
which are configured to perform most tasks well, but without any specializations.

• Compute instance types provide more vCPUs and a lot more memory, while
reducing available block storage. These instance types excel at number-
crunching and analysis tasks that can eat up a lot of memory, but which don’t
require large amounts of block storage.

• Storage instance types are light on vCPUs and memory but deliver large amounts
of block storage. While these instance types can still perform nontrivial compute
tasks, they serve best as data repositories.

Cloud providers do offer other instance types aimed at different roles, such as very
high memory or GPU availability. If you are just getting started with Hadoop in the
cloud, those more specialized instance types are not usually necessary, but as your
expertise grows and the needs of your clusters become apparent, they can become
useful.

General Cluster Instance Roles
As a Hadoop cluster architect, you have complete freedom to choose the instance
types you want to use for your cluster (provided you have the budget). A common-
sense starting point is to define some basic cluster instance roles, where each role

188 | Chapter 13: Pricing and Performance

maps to some set of Hadoop daemons. The needs of those daemons then influence
the proper instance type for the role.

Here is a good starter set of instance roles:

manager
An instance that hosts the “master” or “manager” daemons for each cluster ser‐
vice, such as the HDFS namenode and the YARN resource manager

worker
An instance that hosts the more numerous daemons for each cluster service,
such as an HDFS datanode or a YARN node manager

gateway
An instance that hosts daemons that interface with the world outside the cluster,
like Flume agents, and/or host clients for cluster services

If you built out a cluster in Part II, you will recognize the manager and worker roles.

In a cluster that follows these roles, there are usually only one or two manager instan‐
ces, a large number of workers, and a handful of gateways. More sophisticated archi‐
tectures would evolve to include different worker roles optimized for specific cluster
services, or even different manager instances.

Given these roles, it’s straightforward to map them to appropriate instance types:

Table 13-1. Some cluster roles and their matching instance types

Role Instance type
manager more powerful general purpose

worker compute and/or storage

gateway less powerful general purpose

Because manager instances host the most crucial daemons in the cluster, they need to
have the best and broadest resources available. They themselves do not store much
data or execute cluster jobs, so general purpose-hardware is suitable. For larger clus‐
ters, an instance type with somewhat more memory can help keep things running
smoothly.

Since cluster work is spread out across workers, they can be less powerful compared
to a manager instance, but they make up for it in numbers. Workers that run jobs can
take advantage of the extra vCPUs and memory of a compute instance, while HDFS
datanodes can take up the additional storage associated with storage instances. In
larger clusters, you may choose to run storage daemons and compute daemons on
separate instances with optimized instance types, but on smaller clusters all of the
worker daemons will host both kinds of daemons, in which case compute instances
tend to be the better choice. If you need additional storage on a compute instance,

Picking Instance Types | 189

1 Well, not always. Cloud providers like AWS allow you to start an instance with an ephemeral root volume,
but for most uses, including Hadoop clusters, this is not recommended.

you can always attach more volumes, but you can’t as easily add vCPUs or memory
to a storage instance, if it’s possible at all.

Gateway instances are used lightly and mostly serve to feed the cluster or to host
interactive applications for people to use, so they typically do not require a lot of
horsepower.

As always, there are exceptions, depending on what the cluster needs, but these are
good guidelines to start with.

Persistent Versus Ephemeral Block Storage
Each instance you launch comes with at least one persistent root volume1 for data
storage. Some instance types provide additional ephemeral volumes, where data sur‐
vives as long as the instance is not stopped or terminated. After an instance is
launched, you can attach new persistent volumes and may be able to add more
ephemeral volumes, at least up to a limit. So, with all these block storage options,
what should you use for a Hadoop cluster?

One option is to use persistent volumes for all block storage. Cloud providers take
measures to ensure that they are available and can survive outages. However, persis‐
tent storage has two primary drawbacks over ephemeral storage:

• They are slower. Persistent volumes are not necessarily attached to the same
hardware, or even nearby in the same network, as an instance. In contrast,
ephemeral storage is either directly connected to the same physical hardware or
extremely close to it, so data access is fast.

• They cost more. While the cost of persistent volumes is not generally considered
expensive, it is more than that of ephemeral storage. Once your clusters scale up
to storing huge amounts of data, the cost of maintaining that data, triple-
replicated in the case of HDFS, may start to add up.

While ephemeral storage is relatively fast and cheap, its primary drawback is that it’s
ephemeral. Whenever a cluster instance stops, its ephemeral storage is wiped out.
Therefore, it’s likely unsafe to use it for data that needs to be stored long-term only
within the Hadoop cluster.

The primary issue is using ephemeral storage as the backing disks for HDFS. Because
HDFS replicates data across datanodes, a cluster can automatically recover from the
loss of a single datanode and the corresponding loss of its share of data. As usual, a

190 | Chapter 13: Pricing and Performance

cluster can safely lose as many datanodes as the value of its replication factor, less
one. Losing more than that risks data loss, unless the data is saved off elsewhere.

In some cases, you may not be able to use ephemeral storage for HDFS at all. Perhaps
information-handling policies require that cluster data be stored on more robust
forms of storage, or perhaps there is concern that the cluster will lose too many
datanodes while jobs are running. If so, persistent storage is the better option.

The dichotomy between persistent and ephemeral storage is not as simple to discern
as perhaps one would like. Other factors blur the lines.

As one example, some cloud providers offer different types of persistent block storage
with faster or slower access times and throughput, with corresponding differences in
cost. You could choose faster, more expensive types of persistent storage for com‐
monly used clusters or instances, and choose slower ones for less busy corners of
your architecture. With different options for persistent storage, you may not need to
consider ephemeral storage at all.

If you architect data flows such that data you cannot afford to lose is kept safely out‐
side of Hadoop clusters, perhaps in object storage, then in-flight data is no longer as
critical to preserve, and it becomes more feasible to use ephemeral storage for cluster
data. The trade-off is that it can take time to retrieve data from storage and send final
results back to it; is that extra time and data transfer cost offset by increased cluster
performance?

Finally, it is important not to forget that you can, and should, back up your cluster
data periodically (see Chapter 18). With reliable backups in places, the risk of using
ephemeral storage is reduced, but now there is a need to restore data once in a while,
which can slow things down and incur data transfer costs.

In summary, then, here are two overarching strategies for block storage use in a
Hadoop cluster:

• Use persistent storage for all data. Optionally, go with slower and cheaper storage
types where performance is not an issue.

• Use ephemeral storage for HDFS, and persistent storage for the rest. Save critical
data to object storage, and restart processing from there if too many datanodes
are lost.

Current trends are to go with the first strategy and use persistent storage for every‐
thing. The cost savings and performance boost of ephemeral storage are often not
enough to make up for the increased criticality of data backups and the lack of intrin‐
sic reliability compared to persistent storage. It is also more akin to running on-
prem, which organizations are today still more comfortable with.

Exclusive use of persistent storage also makes it easier to start and stop clusters.

Persistent Versus Ephemeral Block Storage | 191

Stopping and Starting Entire Clusters
Running clusters on a cloud provider opens up new usage patterns and operations
practices. There is added flexibility, due to the fact that instances are not actual physi‐
cal pieces of hardware, but abstract collections of resources.

One practice that becomes viable in a cloud provider is shutting down clusters when
they are not needed. In a typical on-premises architecture, it does not usually make
sense to shut down entire machines when they are not needed, except to save on
power and cooling costs; instead, you might try to have those machines serve multi‐
ple purposes, so that they are in use as much as possible. Of course, this makes
administration of those instances more complex and can lead to conflicts among the
software packages installed.

This pursuit of machine-level efficiency isn’t as necessary in the cloud, because it is
easy to stop and start instances as often as you wish. There is no need for a human to
physically visit hardware and push buttons and rewire network connections; every‐
thing is controlled through the cloud provider’s consoles and APIs.

This practice can save money. However, it’s also a way to effectively field a larger set
of clusters than with a more static operational stance. For example, instead of run‐
ning ten general-purpose clusters all the time, you could run six general-purpose
clusters, but then use the remaining capacity for a shifting set of eight other clusters
for specialized needs. At any moment, only some of those specialized clusters would
be running, but they can be swapped in and out in response to business needs. There
is still the cost of maintaining the block storage associated with all of the instances,
but this costs less than it would with all of the instances running with their storage
attached. This scheme is shown graphically in Figure 13-1. On the left, all of the
resources are constantly used by ten running clusters. On the right, six clusters
always run, but other clusters are defined that can be started and stopped to use the
rest of the resources.

There are important caveats with this practice. Perhaps the most important is that all
data residing on ephemeral block storage is destroyed when instances are stopped.
The process of stopping specialized clusters must involve backing up any important
data that ends up on ephemeral storage, and likewise the process for starting them
must involve putting it back. For this reason, it’s usually recommended to use persis‐
tent storage exclusively for clusters that are stopped and started.

192 | Chapter 13: Pricing and Performance

Figure 13-1. Ways to manage clusters with limited resources

Another important caveat is that providers may grant a restarted instance a different
IP address from when it was last running. Cluster configurations that rely on those IP
addresses must be updated in order to bring the cluster back up to fully operational
status. For example, a GCE instance that is stopped and restarted will receive a new
ephemeral public IP address by default, unless a static IP address has already been
established for it. Generally, private IP addresses do remain assigned to instances as
they are stopped and started, which is a good reason to configure clusters using them.

Finally, not all cloud providers meter instance usage at a fine level, but instead at
larger time units, such as whole hours for EC2. As a result, it is not always economi‐
cal to bring up clusters frequently but for short periods of time; the provider will
round up charges to the next time unit anyway. For example, if a cluster is brought
up and shut down three times in a single hour, and billing is done in units of hours,
then the cloud provider will charge for three hours of usage for each instance. So,
bring up clusters at times when there is a batch of jobs to be run; this will maximize
their time used within the billing unit. In general, trying to game cloud provider bill‐
ing practices to save a few dollars is tricky and prone to creating higher charges.

Automation is extremely helpful for managing the starting and stopping of clusters,
which is covered in Chapter 17.

Using Temporary Instances
Another attractive way to save money on clusters besides stopping them when not in
use is to use temporary instances. As explained in “Temporary Instances” on page 25,
a temporary instance works just as well as a standard instance and costs much less,
but can or will be terminated without warning after some time.

Using Temporary Instances | 193

Some roles in a cluster are naturally suited for temporary instances. In the set of basic
instance roles defined previously, the worker role is the most appropriate to host on
temporary instances, because a cluster has so many of them. As temporary instances
are reclaimed, new ones can be provisioned to take their place. Hadoop automatically
copes with the disappearance and appearance of worker daemons like datanodes and
node managers, so operating in this fashion is practical.

It’s important to maintain a minimum number of nontemporary instances for some
cluster roles. The HDFS datanode role is a prime example. If all of the datanodes are
running on temporary instances and are reclaimed by the host provider, then all of
your HDFS data is lost. Even if only some datanodes disappear, if those hosted all of
the replicas of some HDFS data and they disappeared too quickly for the replicas to
be copied to remaining datanodes, then that data is lost.

Automation of the maintenance of temporary cluster instances is required to work
with them for a significant period of time. It’s wasteful and slow to have someone
manually allocating new temporary instances as older ones are reclaimed. Scripts,
tools, or cloud provider features should be employed to notice when the pool of tem‐
porary instances in your clusters falls below a certain level, provision new temporary
instances to take their place, and configure them into your clusters. Chapter 17 cov‐
ers ways that you can get started with monitoring your clusters.

One common tactic is to use temporary instances for YARN node managers, expand‐
ing a cluster’s compute capacity. If there is, say, a surge of end-of-month jobs to run,
or a busy shopping day coming up, and the additional load on the cluster is certain to
abate after some time, then expanding a cluster with temporary compute instances is
a cost-effective and easy way to cope. Even as some node managers drop away when
the cloud provider pulls back its instances, YARN can automatically push the work to
the remaining node managers without intervention.

It isn’t too difficult to “manually” expand a cluster, but with the right combination of
monitoring and automation, you can arrange for clusters to grow in response to
increased demand as it is sensed. See “Elastic Compute Using a Custom Metric” on
page 260 for pointers on how to implement autoscaling of compute capacity, which
works with both temporary and ordinary instances.

Always keep in mind that you cannot rely on temporary instances to last for any
amount of time. Even if historically you find that they survive for a long time, there
are no guarantees that history will continue to repeat itself. AWS spot instances, for
example, can theoretically last for weeks if the initial bid is high enough and the mar‐
ket price stays low, and this can lull you into a false sense of security. In contrast,
Google Cloud Platform preemptible instances are guaranteed to be terminated within
24 hours, specifically to avoid that, but that makes them less reliable for some cluster
operations.

194 | Chapter 13: Pricing and Performance

Geographic Considerations
The cost of running clusters in a cloud doesn’t depend just on what you run with, but
where it runs.

Regions
The price for an instance type, or gateway, or other element of cloud infrastructure
can vary from region to region. The hardware and connectivity in each of a cloud
provider’s regions is roughly the same, so you can realize significant cost savings by
running in a region that has lower rates.

There are reasons to run in a more expensive region. The most important one is net‐
work performance between instances running in the region and their users; this is
even more important when the users are customers outside of your organization. You
may find that your clusters need to run closer to their users to meet your needs. For
example, clusters running in Asian regions will tend to exhibit higher latencies for
users in Europe than users also in Asia. If the performance is bad enough, you may
consider replicating your clusters in a European region.

You should never construct a cluster that spans regions. Not only are network speeds
much slower than even between availability zones in the same region, but there is
additional cost associated with data flowing into or out of regions, which are signifi‐
cant given the amount of network traffic within Hadoop clusters.

Availability Zones
Resources are not priced differently depending on the availability zone within which
they run, so that need not influence your cluster design. However, some cloud pro‐
viders do charge for network traffic between availability zones. A cluster that spans
availability zones will cost more, although not nearly as much as one spanning
regions.

Network speeds between availability zones are slower than within availability zones,
although again not as slow as between regions. Still, larger clusters and more exten‐
sive workloads benefit from being contained within a single zone, since they will run
faster.

You may wish to build clusters that span availability zones as part of a high-
availability strategy (see Chapter 10), but heavier workloads may have trouble run‐
ning and costs may shoot up, and you may be driven to stay within a single zone.
Keeping cluster data backed up or safe in a cloud provider storage service (see Chap‐
ter 5) can enable moving work from a cluster lost in one availability zone to another
running in a separate zone, as an alternative to a single HA cluster.

Geographic Considerations | 195

Performance and Networking
The performance of Hadoop clusters in the cloud is determined by more than the
sort of instances they run on and the kinds of storage they use; how the instances are
networked also has a major effect. The geographic considerations of regions and
availability zones covered here only touch on the topic of networking Hadoop clus‐
ters. Chapter 14 goes further, developing and comparing network topologies while
keeping in mind performance as well as security.

196 | Chapter 13: Pricing and Performance

CHAPTER 14

Network Topologies

Cloud providers let you design almost any network architecture you could imagine to
support your instances. You have options for where in the world the instances are
running, their IP addresses and DNS names, and all of the rules for how they can talk
to each other and the outside world. All of that freedom can be overwhelming.

Cloud providers start you off with a default network that gets you up and running
quickly. However, even establishing a single Hadoop cluster leads you to outgrow
that initial state, and compels you to confront many questions about how your
instances should be arranged, and the rules that they should play by. Your organiza‐
tion may also have its own requirements for where data can live and the protections
for it both at rest and in transit, including access rules and redundancy requirements.

The collective layout for a network of computing resources can be called its topology.
This chapter defines some common concepts behind cloud network topologies and
shows how Hadoop clusters can work within them.

Public and Private Subnets
When it comes to networking and security, perhaps the most fundamental question
to ask about a single instance, or an entire cluster’s worth of them for that matter, is:
Who can see it?

It’s essential that all of the instances within a single Hadoop cluster be able to see
each other. In the typical, basic case, all of the instances run in the same subnet in the
same availability zone, so that they have the fastest network connectivity to each
other. Security rules also allow for unrestricted communication between them, so
there is no internal obstacle to the cluster’s functionality.

197

It is possible to set up security rules so that only the ports relevant
to Hadoop clusters are reachable, even from instances in the same
cluster. In practice, this is very difficult, as there are so many of
them to cover. The better model is to assume that cluster instances
can completely trust each other with no obstacles blocking their
way. If instances within a single cluster cannot trust each other,
there are deeper architectural problems!

If the cluster instances in a subnet are also reachable, in some way, from the internet,
then the subnet is called a public subnet. If there is no network routing between the
instances and the internet, or security rules completely prevent communications,
then the subnet is called a private subnet.

A cloud provider generally starts you off with public subnets, by automatically allow‐
ing at least SSH access from either the internet or from your apparent IP address to
instances residing in it. After all, without any other way to reach your instances, they
are not of much use. You can manipulate the security rules to allow wider access, or
eliminate all outside access and turn the subnet private.

A good rule of thumb for securing any system is to minimize the attack surface. So, in
general, using private subnets for your clusters is more secure than using public sub‐
nets. The trade-off is in convenience, as it takes extra steps to reach a private subnet.
The rest of this chapter explores the trade-offs.

If you use a public subnet to host clusters, then access from the internet should be
tightly restricted:

• Prefer allowing only SSH access, using tunneling or proxies (see “SOCKS Proxy”
on page 201) for any other form of communication.

• Prefer key-based authentication over password-based authentication. For SSH
access in particular, there is no reason to use passwords.

• Prefer secure, encrypted communication protocols or layers, such as HTTPS
instead of HTTP.

• Use security rules that restrict outside access to known IP address ranges instead
of allowing in the entire internet (CIDR 0.0.0.0/0).

Imagine an HDFS namenode running in a public subnet, and suppose cluster users
want to check on it through its web interface. The worst configuration for it would be
to allow access from anywhere on the internet to its unencrypted HTTP port. While
this is undoubtedly convenient, it is completely exposed to attack from anywhere.
Moreover, anyone who stumbles upon it can learn about your internal cluster archi‐
tecture, including IP addresses of your instances. Just enabling HTTPS for the name‐
node’s web interface is not enough; authentication is also required, which involves

198 | Chapter 14: Network Topologies

setting up Kerberos and configuring the namenode appropriately. Fortunately, in the
cloud, there are alternatives to doing all of that work for securing the namenode.

SSH Tunneling
One alternative is to prohibit direct access to the namenode’s HTTP port from out‐
side the subnet. As described in “SSH Tunneling” on page 112, you can establish an
SSH tunnel from outside the subnet to the HTTP port of the namenode. This is less
convenient than direct access, but it carries the benefits of key-based authentication
and encryption, and reduces the exposure of the subnet’s instances; it’s one less port
that’s exposed.

To create a tunnel, make an SSH connection to an instance inside the public subnet,
and request that it establish a tunnel to the desired instance and port within the sub‐
net. Here is an example of creating a tunnel for reaching a namenode:

$ ssh -i /path/to/cloud_provider_key.pem -n -N \
> -L 50070:localhost:50070 userid@bastion.cloud-provider.example &

In this example, the SSH command is purely for creating a tunnel, and so it runs in
the background with the -n option. A different pattern is to create the tunnel along
with a normal, active SSH connection to the instance where you will be issuing com‐
mands. The -N option instructs the SSH client not to run a command on the instance
hosting the tunnel, since it is running only to maintain a tunnel.

An important concept to understand for tunneling is that the instance on the other
end of the tunnel does not need to be the same as the desired destination. In the pre‐
ceding example, the SSH connection is made to an instance “bastion.cloud-
provider.example”, and then the tunnel’s remote end is directed to port 50070 on
“localhost”. The tunnel is illustrated in Figure 14-1.

Figure 14-1. An SSH tunnel to a bastion host that forwards to a port on the bastion
host

Public and Private Subnets | 199

The network diagrams in this chapter were generated using Cloud‐
craft.

The address for the remote end of the tunnel is specified relative to the serving
instance. So, “localhost” here means bastion.cloud-provider.example, because the
namenode is running on that same instance. If the namenode were running else‐
where, and the routes and security rules allowed connecting from the instance, the
tunnel could direct requests there. This arrangement is shown in Figure 14-2, created
by a command like the following:

$ ssh -i /path/to/cloud_provider_key.pem -n -N \
> -L 50070:nn1.cloud-provider.internal:50070 \
> userid@bastion.cloud-provider.example &

Figure 14-2. An SSH tunnel to a bastion host that forwards to a port on another host

The single instance bastion.cloud-provider.example can be used for SSH tunneling to
lots of other instances, and serves as a kind of communications center on behalf of all
the instances in the public subnet. Such an instance is called a bastion, because it is
like a fortified part of the subnet that is exposed to the internet, protecting the rest of
the instances. You should not run cluster components on a bastion, but use it as a
dedicated communications hub.

200 | Chapter 14: Network Topologies

https://cloudcraft.co
https://cloudcraft.co

Caring for Your Bastion
A bastion is a potentially vulnerable part of your cloud architecture, so it must be
hardened. Some prudent practices:

• Keep its operating system up-to-date with the latest patches, especially security-
related ones.

• Disable root access except through local logins.
• Disable password-based SSH authentication.
• Monitor network connections made to it, and watch for attacks.
• Lock it down to access from a limited IP address range and from as few ports as

possible, preferably only SSH (port 22).
• Stop it when it is not in use.

Since the desired destination is resolved on the bastion, you are free to use the private
IP address or private hostname of the destination when describing the tunnel. They
do not mean anything to your local computer hosting the local end of the tunnel, but
the bastion runs in the cloud provider and can interpret them. So, with the right net‐
work and security configuration, this allows a bastion to reach private subnets as well.

Once an SSH tunnel is established, you use it by pointing your browser to the local
port on your own computer, e.g., http://localhost:50070/. The SSH client is listening
on that port locally, and forwards the request through the tunnel to the bastion,
which sends it to the remote destination and port. Response data flows back through
the same path. So, communication is enabled by only having the SSH port of the bas‐
tion exposed.

SOCKS Proxy
Another method for reaching into a public subnet in a more secure way is to establish
a SOCKS proxy server, again on a bastion host. A SOCKS proxy listens on a single
port and forwards requests to it on to the desired destination.

There are many SOCKS proxy server implementations available. As it turns out, the
OpenSSH client process can act as a SOCKS proxy:

$ ssh -i /path/to/cloud_provider_key.pem -n -N \
> -D 8157 userid@bastion.cloud-provider.example &

This command connects to the bastion host, as when performing SSH tunneling, but
it also starts a SOCKS proxy server listening locally on port 8157. Any TCP requests
that are sent to that local port are forwarded through the encrypted SSH connection

Public and Private Subnets | 201

and then issued from the bastion host to the desired destination. This method adds
an additional layer on top of the basic SSH tunnel.

To use a SOCKS proxy, a client program like your web browser needs to be config‐
ured to send requests through it instead of directly to the destination. Using an SSH
tunnel requires you to explicitly send requests to the local end of the tunnel, but
using a SOCKS proxy does not, as the client program automatically knows that it
needs to communicate via the proxy. So, a SOCKS proxy is less intrusive once config‐
ured, but requires support from the client.

A SOCKS proxy connecting through an SSH tunnel is illustrated in Figure 14-3. The
client application is configured to work with the SOCKS proxy, which forwards
requests through SSH to a bastion host, and onward from there to the desired desti‐
nation.

Figure 14-3. A SOCKS proxy with an SSH connection

To connect to the example namenode, you would point your configured browser to
port 50070 of its instance’s private IP address or private DNS hostname. The browser
will send the request to the SOCKS proxy running on your local computer, which
forwards it through the SSH tunnel to the bastion, and the SSH daemon on the bas‐
tion will be able to resolve either private identifier and send the request to the name‐
node instance.

It is possible, depending on your network configuration, that you can use the public
IP address or hostname, which is more natural when you are operating outside the
cloud provider. However, if the cloud provider routes requests to those public identi‐
fiers outside the subnet, as it would for any other external address, then the connec‐
tion can fail. The route for the request will exit the subnet and attempt to re-enter,
but the subnet may be locked down. This situation is illustrated in Figure 14-4.

202 | Chapter 14: Network Topologies

Figure 14-4. A SOCKS proxy with an SSH connection with a bad destination address:
because the bastion host resolves the public IP address to a route that leaves the secure
network, the connection fails

An advantage of using a SOCKS proxy is that once one is established, you are free to
send requests to any reachable host and port within the subnet. With SSH tunneling,
you must establish one tunnel per host and port. A disadvantage is that you must
configure applications on the client side to use the proxy; SSH tunneling does not
require that, although you must then target the tunnels explicitly.

Instead of relying on SSH, you can set up a standalone SOCKS proxy server on the
bastion host. The server would listen on its own port, which is available outside its
subnet, and client programs would be configured to use it as their proxy. When using
such a server, it’s important to establish strong authentication and not run it as an
“open proxy” that the whole world can use. Restricting access to only IP addresses in
the range used by you or your organization is also prudent, whether for a SOCKS
server or SSH in general.

VPN Access
An organization that uses a cloud provider heavily may establish access directly from
the organization’s VPN. Conceptually, this is like extending private access to virtual
networks to clients that are connected to the VPN; at a minimum, clients are able to
reach instances using their private IP addresses. It may also be possible for clients to
resolve the cloud provider’s internal hostnames, which are normally only resolvable
inside the cloud provider, if DNS is included in the arrangement. Sometimes, cloud
instances can even connect out of their subnets and into clients running on the VPN,

Public and Private Subnets | 203

1 Topologies for clusters running in multiple subnets are not considered here, since they have cost and perfor‐
mance problems.

making the connection truly two-way. In practice this is uncommon, since it compli‐
cates the security posture of the organization’s own network.

With VPN access, it is as if your local computer connected to the VPN is also present
in the subnet; in a way, your computer is itself a bastion. SSH tunnels or SOCKS
proxies are not necessary to gain access to instances because of the hard work that
your network administrators have done for you.

VPNs do have outages, though, so your only access to critical clusters should not be
through a VPN. Having security rules defined, but inactive, that allow access when
the VPN link is down will let you keep working with your clusters. It’s just another
part of keeping clusters available.

Access from Other Subnets
In a large enough cluster architecture, multiple subnets will be in use. Cloud provid‐
ers allow you to establish routes between subnets and to set security rules for how
instances in different subnets can connect to each other. Each subnet may be either
private or public. Most importantly, instances in a public subnet can connect to
instances in a private subnet. This opens up different possibilities for where clusters
live and how they are accessed and used.

Cluster Topologies
A cluster topology describes what runs on instances in a cluster as well as how they
are connected to each other and to cluster users. Now that concepts for public and
private access have been laid out, some cluster topologies can be built with them.

The Public Cluster
This topology is the least secure and arguably the worst choice of them all, but serves
well as a basis for comparison with better topologies. In a public cluster, all of the
instances run in a public subnet,1 and all of the ports involved in cluster operations
are open to the internet. In the least secure case, all ports on all instances are reacha‐
ble from any IP address, either inside or outside the cloud provider. A public cluster
is illustrated in Figure 14-5.

204 | Chapter 14: Network Topologies

Figure 14-5. A public cluster, in which access is completely open to the internet

Considering a basic cluster that is running HDFS and YARN services, this means that
all of the ports for the namenode, datanodes, resource manager, and node managers
are accessible from outside the subnet. This includes the standard ports used by the
daemons to communicate with each other (e.g., port 8020 for the namenode, port
50010 for a datanode) and those used by users and other clients (e.g., HTTP port
50070 for the namenode).

This topology puts up no roadblocks to accessing it, which is convenient. Anyone can
use the cluster from any location. However, it is terrible for security. Anyone can
configure a Hadoop client to connect to the cluster and peruse data stored in it, and
use it to run jobs. Even if steps are taken to secure the Hadoop services, such as ena‐
bling Kerberos and requiring TLS, the cluster components are still exposed to the
public and vulnerable to attacks. The convenience is not worth the risk.

The Secured Public Cluster
An important step in securing a public cluster is to restrict the ports that are accessi‐
ble outside the subnet. A cluster with many services running can make use of a large
number of standard ports, but most of them are not pertinent to people or processes
outside the cluster. For example, port 50010 is the standard port that a datanode lis‐
tens on for cluster operations, but cluster clients do not need to reach that port to do
their work. So, that port does not need to be exposed outside the subnet hosting the
cluster. Port for daemons like the HDFS journalnodes and the ZooKeeper servers,
which are purely for internal cluster functioning, need not have any ports exposed at
all.

Cluster Topologies | 205

So which ports are necessary? It depends on what clients need to do with the cluster.
For people checking on cluster health, it’s enough to expose the HTTP ports—or bet‐
ter yet, HTTPS ports—for the namenode, resource manager, and other key daemons.
Client processes that run jobs on the cluster or look through its stored data need
access to the primary ports of daemons like the namenode (8020), resource manager
(8032), and the Hive server (10000).

You could configure nonstandard ports as a means of obscuring
the fact that Hadoop daemons are running on your instances. A
naïve port scan might assume that a process listening on port 8020
is an HDFS namenode, but might not assume that for the same
process listening on, say, port 23456. However, port scanners can
perform fingerprinting on responses that they receive, which give
away the nature of listening processes. Also, the use of non-
standard ports makes cluster and client configuration much more
difficult. So, the practice is pointless.

Source address restrictions are also important to secure a public cluster. Just because
the cluster is reachable from the internet does not mean it has to be reachable from
the entire internet. Security rules placed on the subnet can easily limit access to IP
ranges that are known to be safe.

A secured public cluster is illustrated in Figure 14-6.

Figure 14-6. A secured public cluster; security rules control what outside sources can
access the cluster and which ports are available

206 | Chapter 14: Network Topologies

Your Drifting IP Address
If your local computer has a fixed IP address assigned to it, from your ISP or your
work organization, then maintaining security rules that are pinned to your local com‐
puter is easy. Often this is not the case, and over time your IP address will change. It’s
up to you to watch for that to happen and update your security rules. If SSH access
spontaneously stops working, check if you have a new IP address.

The cluster can be configured with authentication and authorization, using Kerberos
for example, as an additional layer of protection. This is not a topological choice, but
is very effective in further locking down a cluster. Hadoop Security by Ben Spivey and
Joey Echeverria (O’Reilly) covers “Kerberizing” clusters and many other security top‐
ics in great detail.

Gateway Instances
To make a secured public cluster even more secure, you can limit its availability to
clients. For example, the HTTP port for the namenode does not need to be directly
accessible from outside the cluster; you can use SSH tunneling or a SOCKS proxy to
reach it indirectly. It is harder to reach it, but the attack surface of the cluster is
reduced, since communications are now encrypted and authenticated with SSH.

It’s one thing to want to reach an HTTP port on a cluster with a browser, but another
to run a MapReduce job. Client applications do need direct access to work effectively.
The strategy here is to only allow client applications to run on designated resources
that are specifically configured to have direct access to the cluster. The resources
might not even run any cluster daemons, but are there purely for using the cluster.
Such a resource running in the cloud provider is called a gateway instance, because it
provides a gateway for accessing the cluster. Figure 14-7 shows the addition of a gate‐
way instance to a secured public cluster. Access from the internet to the cluster is
normally only through the gateway instance, although it still may be possible to reach
the cluster directly.

Cluster Topologies | 207

2 Establishing VPN access to the cluster is an alternative that preserves convenience.

Figure 14-7. A secured public cluster with a gateway instance

Use of gateway instances is less convenient.2 No longer do users simply run jobs from
their local computer or their favorite nearby server; they must connect to a gateway
instance, potentially copying their application over, and work from there. Server
applications that use a backing Hadoop cluster must be installed out in the cloud pro‐
vider on gateway instances, instead of on on-premises hardware. They, in turn, must
enforce their own security using TLS, passwords, and/or other measures.

The Private Cluster
A gateway instance can be viewed as a kind of bastion, a fortified and controlled
entry point for working with a cluster. With gateway instances in place, cluster
instances running Hadoop daemons no longer need to be accessible at all from the
internet.

A private cluster topology places all of the instances that constitute the cluster in one
private subnet. The only way to access the instances is through other subnets. Some
of those may in turn be private, but at least one of them, somewhere down the line, is
public and hosts gateway instances. Cluster users only ever directly connect to the
gateway instances which, ensconced in the cloud provider and locked down, safely
access the cluster. A private cluster is illustrated in Figure 14-8. Access to the cluster
is only possible through the gateway instance, and access from the internet is routed
only to the gateway instance.

208 | Chapter 14: Network Topologies

Figure 14-8. A private cluster

A private cluster does not strictly require additional security measures to be imple‐
mented, such as TLS or Kerberos, because all communications are either contained
within its subnet or on controlled paths to client applications. The cloud provider
shields the “soft underbelly” of the cluster from the outside. You may still need to, or
want to, implement those measures, depending on the nature of the data that the
cluster manages and the number and skill of the users of the cluster.

Administrators can still access cluster instances by tunneling or proxying through
gateway instances to the relevant ports.

Cluster Access to the Internet and Cloud Provider Services
The preceding topologies assume that the cluster doesn’t initiate interactions with the
outside world, but this assumption does not hold true in many real-world deploy‐
ments. For example, a job executing on a cluster may reach out to a website or to a
database running outside the cloud provider to pull down data for analysis. A differ‐
ent job could rely on another cloud provider service, such as object storage, and calls
to those service endpoints might be routed outside of the private subnet.

Fortunately, it isn’t necessary to open the cluster all the way back up to the internet to
satisfy these situations. If a cluster is running in a public subnet, the security rules for
outbound traffic can be fashioned to allow exactly the connections that jobs in the
cluster need. If there’s confidence that the cluster will not be used maliciously, all out‐
bound traffic can be permitted.

Cluster Topologies | 209

A fully locked down private subnet permits no outbound traffic, though, except to
gateway instances in order to deliver results. Those gateway instances run in a public
subnet, with access to the outside world, so they can be used in routes the cluster uses
to reach out. Sometimes, client applications that make use of the cluster can arbitrate
that access themselves, so there is no additional work to be done; otherwise, a gate‐
way instance needs to be set up, this time to serve the cluster’s needs, and not just
users’ needs.

One general solution to this problem is to set up a gateway instance as a network
address translation (NAT) instance. Like a home router, a NAT instance provides
controlled access outside of an isolated network. It must run in a public subnet in
order to do its job, but cluster instances only need to talk to the NAT instance, and
are not themselves directly exposed. For example, if a job running on the cluster
needs to save a data blob to the cloud provider’s object storage service, then the
request sent to the storage service is routed to the NAT instance, which then handles
sending it on to the service.

A proxy instance is a similar solution. Instead of performing NAT, a proxy instance
runs a proxy server, such as a SOCKS server, which forwards any requests from the
cluster out and returns the results. This could be considered more heavyweight than a
NAT instance.

Cloud providers support NAT and proxying in different ways:

• EC2 provides both NAT instances and newer NAT gateways. A NAT instance is
an EC2 instance that launches from a special AMI containing network configura‐
tion scripts that, on launch, set up the instance to perform NAT. A NAT gateway
is a more abstract element that EC2 automatically manages; it is the newer and
usually the better choice.

• GCE does not have first-class support for NAT instances, but supports creating
either a NAT instance that uses iptables or a proxy instance that uses Squid to
enable access from a private subnet to the internet.

• Azure automatically uses Source Network Address Translation (SNAT) to sup‐
port outbound connections. If the virtual machine is under a load balancer with a
public IP address, the connection is made through the load balancer’s IP address;
otherwise, a temporary, unconfigurable public IP address is associated with the
connection.

Sometimes a NAT or proxy instance is not necessary, because it is possible to run
part of a cluster service on a gateway instance directly. A good example of this is
Flume, which uses agent processes to accept incoming data and save it to HDFS.
Flume agents can run on gateway instances in a public subnet, thereby allowing
external sources to deliver data to them directly, but also having a controlled out‐

210 | Chapter 14: Network Topologies

bound path into the cluster on the private subnet to save that data (or to other agents,
depending on the flow architecture).

Geographic Considerations
The topologies developed in this chapter are all logically defined, without concern for
where the availability zones in a cluster’s subnet exist in the real world. It is not possi‐
ble to completely ignore this aspect of cluster topology, but fortunately it does not
have a large impact on it.

Regions
The guidance for cluster topologies across regions is simple: each cluster should
reside in just one region. As described in “Regions” on page 195, network speeds are
too slow and data transfer costs are too high to make cross-region topologies practi‐
cal. Moreover, it is essentially impossible to construct a single working cluster in sep‐
arate regions where the instances all reside in private subnets, as heavy amounts of
NAT or proxying would be necessary for the large volume of traffic between cluster
daemons.

Availability Zones
Most clusters will exist in a single availability zone. A cluster that spans multiple
availability zones should be set up for high availability (see Chapter 9) in order to
cope with the loss of a zone hosting the namenode or resource manager. Under high
availability, it is possible to have the two namenodes and two resource managers in
separate availability zones.

See “Planning HA in the Cloud” on page 126 and “Availability
Zones” on page 195 for discussions on the price and performance
trade-offs of running a cluster that spans availability zones. The
higher costs and lower performance that come with such a cluster
may drive you to avoid it altogether, making network topology
choices moot.

In any of these cases, clusters can reside in private subnets and rely on gateway
instances for working with them. The important question becomes: where should
gateway instances reside?

A rule of thumb to follow is: For the highest availability for use of the cluster, gateway
instances should run in the same availability zones as the namenodes and resource
managers.

Geographic Considerations | 211

3 It is theoretically possible to spread out the active and standby daemons across up to four availability zones,
but those scenarios are exceedingly rare and not explored here.

Consider the case of a non-HA cluster running in a single availability zone. Its gate‐
way instances could run in the same zone or in a separate zone. When they run in the
same zone, and that zone drops out, then the gateway instances are unavailable, but
so is the cluster, so the client applications would not work anyway. When they run in
a separate zone, there are two ways to lose functionality:

1. The cluster’s availability zone drops out but the gateway instances remain avail‐
able. The client applications are only usable for the few features, if any, that do
not require the cluster.

2. The gateway instances’ availability zone drops out but the cluster remains avail‐
able. However, without any gateway instances, the cluster is effectively unavail‐
able, if it is running in a private subnet.

There is limited advantage to running gateway instances separately from the cluster,
so it is generally better to host them in the same availability zone for speed and ease
of administration. However, if the client applications are still useful without the clus‐
ter, or if some basic “emergency use” gateway instances are running in the same zone
as the cluster, then running the client applications separately could still be a good
option.

The possibilities for an HA cluster are a little more complex. Here, usually there are
one or two key availability zones hosting namenodes and resource managers.3 If the
namenodes and resource managers are all running in a single availability zone, then
the calculus does not change compared to the non-HA case. If they are split across
two availability zones, things become more interesting, because even if one zone
drops out, the daemons in the other zone take over and the cluster remains available.

One option for gateway instances for an HA cluster is to host them in a third availa‐
bility zone. This way, no matter which of the two cluster’s zones drops out, the cluster
and its client applications remain available. There is only one set of client applica‐
tions in existence, so managing them is straightforward. One downside, as in the
non-HA case, is that if the third zone drops out, the cluster is still available yet unusa‐
ble without gateway instances. Also, network speeds between the gateway instances
and the cluster are worse, no matter the state of the availability zones.

Another option is to include gateway instances in both of the key availability zones
for the cluster. If one of the zones drops out, the client applications are still available
and the cluster, configured for HA, still works, so there is no loss of functionality.
Including instances in just one zone creates a new single point of failure for using the
cluster, so it is better to use both.

212 | Chapter 14: Network Topologies

However, this complicates management of the gateway instances and client applica‐
tions since there are two copies of them. Load balancing, application data replication,
and other measures are necessary to create a seamless user experience. Still, this
option ensures that the cluster is usable whenever it is available.

Starting Topologies
For your first few clusters, it’s reasonable to use a secured public cluster topology
where only SSH access is required to a small number of bastion hosts. This topology
is nearly as secure as a private cluster topology and takes less work to establish and
maintain. Gateway instances can be deployed for hosting server applications, and
those instances can be protected just like bastions.

As you gain more experience deploying clusters in the cloud, you should think about
moving to the private cluster topology for critical clusters. They are more difficult to
administer, but experience gained along the way in configuring virtual networks and
subnets and defining security rules will lessen the burden. Structurally, they are simi‐
lar to public secured clusters, except that the gateway instances reside in a separate
subnet from the cluster.

You may come up with your own topologies. After all, the practice of deploying
Hadoop in the cloud is still evolving, so there is yet room for new ideas. Good topolo‐
gies will always follow the guiding principles that have been covered in this chapter:
minimize outside access, use controlled access points, prefer stronger modes of
authentication, and ensure adequate performance.

Higher-Level Planning
The chapters so far in Part V of this book have focused on understanding low-level
concepts for designing clusters and making the right choices for cost, performance,
and security on a cluster-by-cluster basis. There are concepts at a higher level to con‐
sider as well, which come to the forefront once you have become somewhat adept at
creating clusters and have resolved many of those low-level questions. Chapter 15
takes a wider view and considers options for how all of your cloud clusters can be
managed.

Starting Topologies | 213

CHAPTER 15

Patterns for Cluster Usage

Eventually you, or your organization, will be at the point where the use of clusters
running in your cloud provider is no longer just for research or proof-of-concept
work. The important questions now change from whether it is a good idea at all to
how best to take advantage of the clusters:

• When should clusters be created and how long should they last?
• Who should be able to use them?
• How should they be created?
• How much work should be sent to the cloud?

Every organization has different answers to these questions, but knowing that there
are choices to be made helps you formulate the plan to get from experimentation to
regular use of cloud clusters.

Long-Running or Transient?
Of all the questions, the one that tends to come up the earliest and has the most effect
on the answers for others is the question of when. When do you create clusters run‐
ning in your cloud provider, and relatedly, how long should those clusters be avail‐
able?

There are two dominant answers to the question. The first, which is most like the way
that on-prem clusters are used, is that clusters should be set up in advance and ten‐
ded so that they are always available for anyone to use. Administrators monitor them
and resolve problems as they arise, perhaps even increasing or decreasing their sizes
or adjusting the mix of service components in response to demand. Meanwhile, users

215

1 Sometimes these are instead called ephemeral clusters, but to avoid confusion the term ephemeral in this book
is applied only to ephemeral storage (see “Block Storage” on page 47).

coordinate to work on them, each sharing the storage and computation facilities with
everyone else. This arrangement can be called long-running clusters.

The second, opposing answer is that clusters should be set up when they are needed
and destroyed when they are done with their work or there is no longer demand for
them. Each cluster encompasses the storage, compute power, and Hadoop compo‐
nents necessary for the jobs at hand, as laid out by the (usually automated) systems
that built it. If the cluster experiences problems, it is destroyed and replaced by a
working one. If it is not powerful enough, a new and larger one replaces it. Users can
share clusters or have their own, but overall cloud resource usage is managed across
all users. This arrangement can be called transient clusters.1

Most organizations start out in the cloud thinking mostly about long-running clus‐
ters, because they are most like on-prem clusters in how they are managed. An exist‐
ing Hadoop administration team can apply most of their expertise right away; it’s as
if the instances are simply in a server room they cannot physically access, but other‐
wise much like any other resources to manage. Users who are already familiar with
the standard practices for on-prem clusters can easily transition to cloud clusters that
run in the same way.

It’s not long before it becomes obvious that long-running clusters can be a waste of
money. For example, why run a 20-node cluster all day, every day, when it’s only
used for 8 hours each work day? Instead, the cluster should be shut down somehow,
so that charges aren’t incurred every night while the cluster is idle. So, the next stage
in the evolution of cloud cluster usage is to have clusters reserved for long spans of
time, but running only during certain time periods when demand is anticipated.

“Stopping and Starting Entire Clusters” on page 192 explains more about this mode
of operation, including some caveats that come along with it such as the disappear‐
ance of ephemeral storage and shifting IP addresses. Beyond those issues lies another
problem: What do users do when they want to use a cluster that is stopped? Perhaps
they are working outside the normal work day, to finish work during some crunch
time. The problem is exacerbated for teams spread across time zones, in which case
there may not be a lot of common downtime. How can these users get working, or do
they have to wait until the morning in your time zone?

There’s also the issue of dealing with workloads that are still in progress on a cluster
when it’s time to stop it. Even if it is somehow feasible to “freeze” these workloads,
the users waiting for the results are out of luck and have to wait even longer for the
cluster to restart.

216 | Chapter 15: Patterns for Cluster Usage

2 For example, simply dropping HDFS datanodes out of a cluster can lead to data loss if blocks are under-
replicated or if the dropped datanodes house all of a block’s replicas. Shrinking must be done in a controlled
fashion to preserve data.

A less severe tactic, similar to wholesale stopping and starting, is to reduce the size of
clusters during off-peak hours. A Hadoop cluster can cope with the loss of YARN
node managers and, to a certain extent based on replication, HDFS datanodes, while
continuing to function. Clusters can therefore be shrunk and grown at certain times
of the day or in response to demand, which naturally reduces at off-peak times. Elas‐
tic clusters like these do a good job of balancing efficiency with availability, but
require the help of automation to trigger size adjustments, to reduce or eliminate the
burden of performing the work, and to ensure data is managed safely.2 After all, there
is more to adding and removing cluster instances than just allocating or terminating
them in the cloud provider.

Instead of focusing on the clusters, and trying to figure out how to run them so that
users can get their work done, it can be a good idea to focus on the users, and figure
out how to run clusters that cater to them. This change in perspective seeds the idea
of creating entire clusters on demand. Why stop and start the same old clusters over
and over, when fresh ones can be created and terminated whenever you like? Why
struggle to get just the right sizes and components in place, when each cluster can be
tailor-made from the start with exactly what users want? Why try to guess when clus‐
ters are needed, when they can be made at will?

The idea of transient clusters isn’t necessarily obvious at first, because it is not practi‐
cal with expensive, slow-changing on-prem hardware. It also requires even more
automation than elastic clusters, since it involves creating and destroying entire clus‐
ters, each with potentially different characteristics; this is much more drastic than just
adding or removing instances.

Finally, it creates a new requirement to store critical data somewhere outside the
clusters. Fortunately, as described in Chapter 5, there are plenty of options for cloud
data storage, and ways to connect to it, like the AWS s3a connector used in “Hive on
S3” on page 158, that merge well with workloads. Users do have to adjust their work‐
loads, and their thinking, to have data flow from storage to transient clusters and
back again.

However, transient clusters solve many of the problems with long-running clusters.
They help to minimize expenses, virtually eliminate ongoing maintenance with the
help of robust automation, and avoid struggling with unpredictable times of peak
demand.

Both long-running clusters and transient clusters can work well in the cloud, and
each mode of operation has its benefits and costs. However, of the two, the benefits to

Long-Running or Transient? | 217

using transient clusters can move you and your organization to a higher level of effi‐
ciency and performance.

Single-User or Multitenant?
A cluster for each user? That concept doesn’t seem like it could be efficient at all, at
first. Yet, once an organization becomes proficient at using transient clusters, it’s a
possibility worth considering.

Imagine a system where every data scientist and every analyst can have their own
bespoke cluster, or even clusters. Since each cluster is made according to the user’s
specifications, it’s much more likely that workloads will succeed for everyone. Since
they do not have to share local storage, there is no danger of data being mixed inap‐
propriately or accidentally overwritten. If a cluster starts failing, due to hardware
problems or data corruption, it can be torn down and recreated, because it’s transient
anyway, and only the cluster’s single user is affected.

Single-user clusters shift the problem of resource sharing out of each cluster and into
the system that allots clusters to users. Because users are no longer sharing cluster
instances and disk storage, overall resource requirements can slightly increase. How‐
ever, because each user doesn’t need clusters at all most of the time, resource require‐
ments can decrease, if the clusters are managed effectively (see “Self-Service or
Managed?” on page 219).

Confining users to their own clusters leads to effective isolation of their workloads,
taking advantage of the strong network and security capabilities of the cloud pro‐
vider. The problem of preventing users on a shared cluster from accidentally access‐
ing each other’s data goes away. This can help to satisfy security requirements for that
data.

If single-user clusters are too extreme of an idea, then you could consider per-team
clusters, where only a few users have access to a cluster, instead of just one user. It is
easier for a small team of users to coordinate among themselves to share cluster
resources than for an entire organization. If they all have the necessary authorizations
to access cluster data, security requirements within the cluster are relaxed.

The fewer users that have access to a cluster, the more desirable it is for the cluster to
be transient. A cluster for a single user should be limited to his or her immediate
needs, so that its resources can be returned in good time to the pool for others to use.
On the other hand, a multitenant cluster should be long-running, since more people
rely on it, and collectively use it more often.

218 | Chapter 15: Patterns for Cluster Usage

Self-Service or Managed?
Suppose that you are thinking about taking advantage of the flexibility of your cloud
provider to create many clusters, some of which are transient, and some of which are
for only one or a few users. Whose job is it, exactly, to create and destroy all of these
clusters, and how do they know what to do?

In keeping with the questions considered so far, here are two possible answers. The
more traditional one is that cluster management is performed by a single controlling
entity, perhaps a cloud team, on behalf of the entire organization. A user requests a
cluster, describing exactly how big it should be, what Hadoop components must be
installed, and who needs access. The cloud team weighs the request against others
based on its priority, the clusters that have already been allocated, and other factors.
Finally, it creates the cluster and provides its addresses and credentials back to the
requester. The cluster is assigned a lifetime and is destroyed when it elapses or when
the user indicates that the cluster can be terminated.

The function of managing cluster allocations is certainly one that can be automated,
even beyond the core process of creating and destroying clusters. Monitoring systems
can track how many instances of what types are being used, and other factors, in
order to keep the overall cloud usage within budget. Watchdog processes can clean
up clusters automatically after their lifetimes or once they are idle for a while. After
automating business processes like these, there might not be much left for a human
to do.

If that’s so, then why not take humans out of the loop completely, and make the
entire process user-driven? A self-service system parallels the consoles and APIs of
the cloud providers, working on the level of entire clusters instead of instances and
networks and Hadoop components. As is the case with transient clusters, there is a
cost to create such a system, but it can lead to increased user satisfaction and greater
efficiency in cloud resource usage.

Even with maximized automation around cluster creation, careful monitoring is still
vital. It’s a boon to users to be granted the power to create their own clusters, but
users can forget about them and leave them idle and costing money, reserve too
many resources, or misuse what they’ve been given. At least a light touch of oversight
is still necessary to ensure the health of all clusters and to ward off unexpectedly high
cloud provider bills.

No matter which choice you pick, it’s a reasonable idea to offer only predefined clus‐
ter types for users to select. The assumption is that the grand majority of users can
make do with a typical, say, “Hive cluster” or “Spark cluster.” They needn’t be con‐
cerned with the details of which network the cluster resides in, or what the security
rules are, or even which instance types to use; those can be determined at an organi‐
zational level, taking into account the cloud budget, the infrastructure that’s already

Self-Service or Managed? | 219

3 Some may use the term “hybrid” to refer to elastic clusters that have some instances that exist for the life of
the cluster and others that come and go to adjust capacity.

been established, and technical recommendations. Users should be free instead to
devote their attention to their workloads and the jobs that they want to get done.

Cloud-Only or Hybrid?
Despite all of the benefits cluster users can reap from using cloud clusters, some may
be stuck on-prem. A common reason is data security: it may be necessary by law, reg‐
ulation, or contract to keep data within local data centers with the approved geo‐
graphic location, physical security, and network defenses. Another reason is that your
organization may not have enough money to afford sending everyone to the cloud.
Another is that licenses for essential software used in clusters may require it to be
installed only within your own facilities.

The question that is relevant here is: How much of your Hadoop work should be
shipped off to cloud clusters? Two simple answers, of course, are “all of it” and “none
of it.” A third is “some of it,” but this answer goes beyond just running some clusters
in the cloud provider and others on-prem.

Data analysts prefer to think in terms of their workloads, and not in terms of the clus‐
ters they run on. It’s why single-user, on-demand clusters are so appealing to them,
and it is also key to seeing that a single workload could be arranged to be performed
partially on-prem and partially in the cloud. An architecture that works in this way is
called a hybrid cloud.3

A workload running in a hybrid cloud is not a single, enclosed entity. It would usu‐
ally have a primary segment running on-prem, and secondary segments running in
cloud clusters. The idea is to offload processing to the cloud where it makes sense to
do so, so that the local demand for resources is lessened. At dividing points in the
overall workload, data and logic are transferred up to the cloud, and then results are
pulled back.

A hybrid cloud certainly uses less cloud resources than running everything in the
cloud, but it does incur data transfer costs, since providers charge for data being sent
to and from instances and storage services. Rates are usually quite modest, but it is
still wise to design hybrid workloads so that they minimize data transfer. Of course,
excessive data transfer stages also extend processing time.

220 | Chapter 15: Patterns for Cluster Usage

Here are some examples of workloads that could benefit from a hybrid cloud archi‐
tecture:

• Regulators have determined that data being processed must remain on machines
within a locked server room. Processing unrelated to the sensitive data has
already been migrated elsewhere, but things are still running too slowly. Some of
the work that is peripheral to the sensitive data and that doesn’t use it directly is
relocated to ancillary jobs in the cloud, which eases the load on the server room.
To send even more work to the cloud, identifiers in the data are replaced with
anonymizing tokens locally; the scrubbed data is deemed safe to process in the
cloud, and other local processes de-anonymize the resulting data once it returns.
While overall the amount of work has increased, large portions have been offloa‐
ded to the cloud, where it is easier and cheaper to expand.

• There already exists a large on-prem data processing system, perhaps using
Hadoop clusters, which works well. In order to expand its capacity for running
new analyses, rather than adding more on-prem hardware, Hadoop clusters can
be created in the cloud. Data needed for the analyses is copied up to the Hadoop
clusters where it is analyzed, and the results are sent back on-prem. The cloud
clusters can be brought up and torn down in response to demand, which helps to
keep costs lower.

• Vast amounts of data are streaming in, and it all needs to be centralized and pro‐
cessed. To avoid having one single choke point where all of the raw data is sent, a
set of cloud clusters can share the load, perhaps each in a geographic location
convenient to where the data is generated. These clusters can perform pre-
processing of the data, such as cleaning and summarization, thereby spreading
the work out. The preprocessed data is finally sent on the final centralized system
to be merged.

Notice that the last two examples are not situations where some portion of the work‐
load must remain on-prem. You could imagine alternative layouts where all of the
processing occurs in the cloud, and only final results are returned, if ever. Just
because you can move completely into the cloud does not mean you need to, and a
hybrid cloud architecture is one way to take a measured approach that balances the
benefits of the cloud with your budget and the time you have to invest.

Watching Cost
A key factor for selecting a cluster usage pattern for your organization is cost. No pat‐
tern has a guaranteed cost advantage over another, because so much depends on
when and how clusters are used. It takes research and experimentation to find the
patterns that give you the most value for what you are paying your cloud provider.

Watching Cost | 221

Table 15-1 compares the patterns explained in this chapter through highlighting how
they can either save you money or cost you money.

Table 15-1. Comparing cluster usage patterns by cost

Pattern Possible savings Possible extra cost
Long-running clusters Less time waiting for clusters to start and stop,

lower resource demand
Wasted idle time, maintenance burden, growing
size over time

Transient clusters Minimal maintenance, high efficiency Spin-up time, higher resource demand, data
transfer to permanent storage

Single-user clusters Simpler security, smaller size Higher overall resource demand

Multitenant clusters Efficient use of resources per user Complex management, security risks

Self-service clusters Efficiency of on-demand creation Need to maintain tooling, waste through overuse

Managed clusters Easy alignment with budget constraints Waiting time for usage, administrative effort

Cloud-only clusters Data transfers stay within the cloud, minimal
on-prem costs, integration with provider

Security risks, higher cloud expenditure

Hybrid clusters Lower cloud expenditure, simpler security Complex workflows, on-prem maintenance, data
transfer costs

While cost is indeed a critical factor for settling on the best way to use the cloud, it is
not the only one; fundamentally clusters need to be up and ready when needed.
Focusing only on spending on the cloud provider may lead to the implementation of
inefficient patterns whose wastefulness outweigh the savings, either in time or
money.

The Rising Need for Automation
Running clusters on a cloud provider opens up new options for how to architect your
clusters, while making it easier to exercise other options that are already available on-
prem. The best choices for your organization can depend on outside factors and on
your budget, but cloud providers can support you no matter which paths you choose.

Some of the answers to the questions examined in this chapter drive the need for
automation. Even if you have been performing some of the practices described here
manually so far, having a cloud provider at your disposal tends to increase cluster
usage, simply because of the lower barrier for setting up new clusters. It would
quickly grow tiresome to manually create clusters in the face of increased user
demand and adjudicate who gets which clusters when. Chapter 16 kicks off the dis‐
cussion of ways to manage clusters using scripts, tools, services, and cloud provider
features. The first technique, that of using images, is a straightforward and highly
effective initial way to get more efficient at building more clusters.

222 | Chapter 15: Patterns for Cluster Usage

CHAPTER 16

Using Images for Cluster Management

It is worthwhile to go through the exercise of building out a Hadoop cluster “by
hand,” as laid out in Part III, in order to understand how instance allocation, net‐
working, and security rules all play their parts. Once you are building clusters over
and over again, though, you’ll want to be much more efficient.

You don’t usually need to establish virtual networks, routing, and security rules for
every new cluster. They can all happily coexist within one or a few networks and
abide by the same rules. Each cluster needs its own instances, but starting those up is
also straightforward, either by using a provider console or by a single API call. It’s
Hadoop installation and configuration that takes most of the time.

One method to speed things up is to create images for cluster instances with most of
the installation and configuration work baked in. Instances based on those images
can already have Hadoop components almost ready to go, requiring only a minimum
of additional configuration to become fully functional.

Stamping out cluster instances like this is not only faster, but results in fewer mis‐
takes or unintentional variations. It also lends itself to automation; you could imagine
it as part of a complete automatic process for building Hadoop clusters.

Images can be shared. That means that a valuable base image for creating Hadoop
cluster instances can benefit not just who built it, but their friends, coworkers, and
even their customers.

This chapter starts out by describing the structure of an image, and then covers creat‐
ing and maintaining them directly and through the use of Packer. At the end, tooling
options for creating and managing clusters are described, along with their relation‐
ships to images.

223

The Structure of an Image
The concept of images was introduced in “Images” on page 27.

What makes up an image varies from cloud provider to cloud provider. Fundamen‐
tally, though, an image is a set of one or more disk snapshots along with metadata
that makes the snapshots available for launching new instances. The snapshot of the
root disk, which houses the operating system, is the essential ingredient in an image.
Images can include snapshots of additional data disks that are always to be associated
with instances launched from the image. The metadata about an image holds its
name, describes its features and limitations, links to the snapshots for the image’s
disks, and may include permissions or other guidance on using it.

Each cloud provider offers a starter set of images for many different operating sys‐
tems. The operating systems are preconfigured to work within the provider infra‐
structure, primarily so that they can be seamlessly integrated into virtual networks.
Usually, the cloud provider’s own client utilities are preinstalled as well, but for all
practical purposes they are uncustomized, vanilla installations of the operating sys‐
tems.

Because base images are so minimal in content, they frequently serve as the basis for
new, custom images. For example, a software vendor may start with an instance cre‐
ated from a standard Ubuntu image, install its own software on it and configure it
properly, and then create a new image. You can imagine a custom image, then, that
already has Hadoop components installed and mostly ready to run.

EC2 Images
An EC2 image, called an Amazon Machine Image or AMI, consists of the snapshot
for a root volume, permissions for who can use the image, and a block device map‐
ping laying out additional EBS or instance store volumes to attach, based on their
own snapshots.

The root volume for an image can be hosted on either EBS, making it persistent, or
the instance store, making it ephemeral. You should always use EBS-backed instances
for Hadoop clusters. They are created faster, have larger root volume capacity, can be
stopped and started without losing data, and are stored more efficiently and thus
more cheaply within AWS.

Permissions are applied to each AMI to determine who can use them. By default,
those you create yourself are private, but you can grant permission to specific users or
to the public. You are not charged for others’ use of your AMI, only for storing it.

224 | Chapter 16: Using Images for Cluster Management

1 It is possible to create a new image “from scratch,” but it is a much more complex effort. Consult your cloud
provider’s documentation for information.

GCE Images
A GCE image consists of a boot loader and templates for the operating system and
root filesystem as a single persistent disk. Images can be grouped into image families
as a framework for versioning them; this way, it is easy to figure out, for example, the
latest image available for a specific purpose.

GCE images can be shared in one of two ways. The simpler way is to grant other
Google Cloud Platform users the necessary permission to use images in the image’s
project. While this is straightforward, the permission allows access to all images in
the project. The more complex but fine-grained way is to save images to Google
Cloud Storage as compressed “raw disk” images. Access controls in Google Cloud
Storage govern the saved image files and therefore dictate who may use them.

Azure Images
An Azure image is comprised of the snapshot for a root volume, optional snapshots
for additional volumes, and a Resource Manager template defining metadata for the
image. Each disk snapshot is formatted as a virtual hard disk (VHD) file, which
means that it is possible to supply your own VHD files created outside Azure as the
basis for new images. While images available in the Azure Marketplace are treated as
single units, your own images are managed as the component VHD files and accom‐
panying template.

The VHD files underlying an Azure image are kept in Azure Storage, and so they
may be shared by applying the appropriate permissions to those files, along with dis‐
tributing the associated template. Users of the image may update the template, which
is written in JSON, for their own needs before creating new virtual machines from it
and the disk snapshots.

Image Preparation
Suppose that you have an instance running that is just how you like it, and you want
to be able to create new instances from the same pattern. If you worked your way
through Part III, then you have a cluster’s worth of these instances. It’s a lot of work,
and almost all of it would need to be done again for your next cluster. Even just
building the first cluster, there were a lot of steps that had to be repeated on every
instance. To save time and effort, then, you’ll want to make an image of one of the
cluster instances.1

Image Preparation | 225

For easy management later, it’s good to work with a single image for any cluster
instance. They all have the same software installed, and most Hadoop configuration
files are identical, or nearly so, across all of the instances.

A useful variation for complex clusters is to have one image per role, to cover any
special infrastructure choices you make. For example, an image for a worker node
may call for extra volumes to be attached to be used for HDFS storage, something
manager or gateway nodes don’t usually need.

Images do not mandate the size of the instance types that may be used for them. The
same image can be used for a small gateway node and a heavy manager node, since
images focus on the disk storage used for an instance. There may be instance types
that are incompatible with an image, but normally many of them apply.

So, decide which cluster instance or instances you’d like to image. You’ll want to
make changes to it to make it generic, but there’s plenty to leave just the way it is,
including these items:

• The JDK installation
• The Hadoop user accounts, such as “hdfs” and “yarn”
• The installed Hadoop software
• The Hadoop configuration files and most of the properties in them (read on for

exceptions)
• Directories created for Hadoop

There are some files and configurations you can keep, but you might wish to change
for improved security:

SSH keys for the Hadoop user accounts
The keys are necessary to control Hadoop services from the manager instance or
instances, but there is no reason that every future cluster has to use the same set
of keys. Leaving the keys in place would let a manager instance in one cluster
connect via SSH to instances in another cluster, which may be a security issue for
you. The SSH key used to connect to the instances from your own local com‐
puter, however, needs to remain, or else you will be unable to reach your cluster.

The file $HOME/.ssh/authorized_keys in each Hadoop user account
This keeps track of which SSH keys are trusted for logging in. If you dispose of
the SSH keys for the user accounts, then this file should be cleaned out to no
longer include them. It does need to retain the SSH key used for outside connec‐
tions from your local computer.

226 | Chapter 16: Using Images for Cluster Management

Finally, there are some things that should be changed, as they are specific to the
cluster:

IP addresses in the Hadoop configuration files
A new cluster built from the image will have different IP addresses, so replace
those in core-site.xml, yarn-site.xml, and the others with tokens indicating what
they should be. If someone uses the image and forgets to fill in the token, it will
be obvious in error messages. For example, you should change the “fs.defaultFS”
property in core-site.xml to something like “hdfs://${manager.ip}:8020/”.

ZooKeeper configuration files
The file zoo.cfg contains the IP addresses for each quorum server, so those should
be replaced with tokens like other IP addresses. The content of myid, which
unfortunately must be unique per server, should be replaced as well, or else the
file should just be removed.

Local data and code
If you uploaded files to the cluster for import into HDFS, uploaded job code to
run, or extracted files from the cluster to look at or save, they should be wiped
away so that new clusters do not waste space carrying them forward. In addition,
any data still resident in cluster data stores such as HDFS should be deleted
and/or purged. Each image should provide a clean starting state for new clusters.

The file $HOME/.ssh/known_hosts in each Hadoop user account
Because IP addresses will be different in new clusters, the mapping between hosts
and IP addresses in this file will be obsolete or, if some IP address does happen to
get reused, incorrect, causing SSH connections to fail. The file should be deleted.

It’s easy to miss a change or two when preparing an instance. Fortunately, the process
can be performed iteratively, where each image is better than its predecessor. As time
goes on, the needs for the image will evolve anyway, perhaps to include more Hadoop
components or third-party applications.

Wait, I’m Using That!
Obviously, preparing an instance to be imaged as just described will break it as a clus‐
ter instance. If you cannot spare the instance, there are other ways to proceed.

The simplest alternative is to image the instance as it is, and then create a separate
instance from the image to do the preparation work. You will need to stop the origi‐
nal instance in order to create the image, so that it is guaranteed that there are no
ongoing writes to the disk that could cause a disk snapshot to be corrupted. So, this
doesn’t require breaking a cluster, but does require degrading it. A worker node is a
good candidate here, since Hadoop can recover when one drops out.

Image Preparation | 227

2 Because you should not use instance store-backed AMIs for Hadoop clusters, the differing procedure for cre‐
ating those is not described here.

Another alternative is to create a new instance from the original image used for the
cluster and work through the Hadoop installation and configuration steps from the
beginning, modifying them here and there so that the end result is correct for imag‐
ing. This method is attractive since it eliminates the possibility that anything will be
left over from the real cluster, but it takes more time, and it’s easy to miss some steps.

Eventually you will want to automate this manual, error-prone work. See “Automa‐
ted Image Creation with Packer” on page 234 for how to get started with using Packer
for image creation; for now, imaging an existing instance yields quick results.

Image Creation
Once the instance is prepared, it can be imaged. The procedure for doing so varies
depending on your cloud provider.

Image Creation in AWS
Creating an AMI from an EBS-backed instance is straightforward.2 First, stop the
instance to be sure that there is no changing disk state. Then, locate your instance in
the list of EC2 instances and select it. Click the Actions button and select Image, then
Create Image from the drop-down menu.

In the Create Image dialog, as shown in Figure 16-1, give the new image a name and
description. The table of instance volumes lists each attached volume that will be
snapshotted as part of the image creation process. You can add more volumes, either
as EBS snapshots or as ephemeral instance store volumes. Finally, click Create Image
to create a new AMI.

A snapshot is taken of the root volume and any other attached EBS volumes, and
AMI metadata is generated and registered with AWS. The process can take some
time, mostly due to the snapshot work. Eventually, the AMI will appear in the list of
images shown when you select AMIs from the EC2 menu.

228 | Chapter 16: Using Images for Cluster Management

Figure 16-1. The form for creating a new AMI

Image Creation in Google Cloud Platform
An image can only be created from an unattached root disk. The first step in creating
an image from an instance is to ensure that the root disk for the instance is not auto‐
matically deleted when the instance itself is terminated. In the Google Cloud Plat‐
form console, select VM instances from the Google Cloud Platform menu. Follow the
hyperlink for the name of the instance to image, so that a page with its details is dis‐
played. Look for the “Boot disk and local disks” table, as shown in Figure 16-2; below
it is a checkbox labeled “Delete boot disk when instance is deleted.” If the checkbox is
checked, then select Edit from the menu at the top of the page, clear the checkbox,
and click the Save button.

Figure 16-2. The disk attached to an image and the cleared deletion checkbox

Now it is safe to delete the instance by using the Delete option in the top menu. If the
confirmation dialog includes a checkbox for deleting the boot disk, be sure it is not
checked.

Select Disks from the Google Cloud Platform menu. The table of disks should include
the former root disk for the instance. Eventually the “In use by” column for the disk

Image Creation | 229

will be empty, as shown in Figure 16-3, indicating that the disk is no longer attached
to its former instance. Note the name of the disk.

Figure 16-3. The unattached disk ready for imaging

Select Images from the Google Cloud Platform menu. The many public images avail‐
able from Google are listed, but you will be making your own private image. Select
the Create Image option from the menu at the top of the page. Fill in the form for the
new image, as shown in Figure 16-4, including its name, family, and description.
Select Disk for the source of the image, and pick the disk from the recently deleted
instance as the “Source disk.” Click Create to create the new image.

Figure 16-4. The form for creating a new image in GCE

Return to the Images page. Eventually, the new image appears in the table of available
images. At this point, if you wish, you can return to the list of disks and delete the
snapshot used as the foundation for the image.

230 | Chapter 16: Using Images for Cluster Management

Image Creation in Azure
Creating an image in Azure is a largely manual process that does not involve the
Azure portal. The first step, for a Linux virtual machine, is to “deprovision” the
instance to be imaged by running a command on it. This eliminates data on disk that
would be problematic for new instances created from the image:

$ sudo waagent -deprovision+user -force

The remaining steps require use of the Azure CLI, properly configured to work with
your account. The three steps to execute, after ensuring that the CLI is in Resource
Manager mode, are to deallocate (stop) the virtual machine, then “generalize” it, and
finally capture it as VHD snapshots and a JSON template. The snapshots are saved in
Azure Blob Storage and named with the prefix you provide:

switch to Resource Manager mode
$ azure config mode arm
stop the virtual machine
$ azure vm deallocate -g my_first_cluster -n manager
generalize the virtual machine
$ azure vm generalize -g my_first_cluster -n manager
capture its disks and generate a template
$ azure vm capture -g my_first_cluster -n manager -p snap -t manager.json

Image Use
It’s simple to use your new image in AWS and Google Cloud Platform. When
launching an instance, instead of selecting a standard base image for your instances,
select your own. Other than that, the procedure for launching instances does not
change.

In Azure, use the JSON template generated by the image creation process to launch a
new virtual machine. This can be done from the Azure CLI. It is up to you to define
additional resources needed for the virtual machine that otherwise can be automati‐
cally created by the Azure portal when creating virtual machines. You can target an
existing virtual network and subnet for the new virtual machine, but you must allo‐
cate a NIC and, if you wish, a public IP address. These resources can be created in the
Azure portal or through the Azure CLI. After creating the NIC, find its ID, a path-
like string, which you then must supply to the interactive virtual instance creation
process:

create a public IP address
$ azure network public-ip create my_first_cluster manager3_ip -l "eastus"
create a NIC that uses the public IP address
$ azure network nic create my_first_cluster manager3_nic \
> -m cluster_net -k default -p manager3_ip -l "eastus"
find the ID of the new NIC
$ azure network nic show my_first_cluster manager3_nic

Image Use | 231

create the new virtual machine from the template
$ azure group deployment create my_first_cluster my_image_deployment \
> -t manager.json
info: Executing command group deployment create
info: Supply values for the following parameters
vmName: manager_3
adminUserName: root
adminPassword: password
networkInterfaceId: /subscriptions/.../networkInterfaces/myNic

Once your instances are ready, connect to them via SSH using the same key used to
access the original instance. Reconfiguring instances launched from a Hadoop image
takes much less work than starting from scratch:

• If necessary, generate new SSH keys for the Hadoop user accounts and add them
to the necessary authorized_keys files. Then, use them to connect from the man‐
ager instance to each worker instance in order to populate the known_hosts files.

• Edit the Hadoop configuration files with the private IP addresses for the new
cluster instances, replacing the placeholder tokens.

• Edit or recreate the myid files for the ZooKeeper servers.
• Edit the database server hostname for the remote Hive metastore.

Scripting Hadoop Configuration
The preceding steps should only take a few moments, but since they are well-defined
and only depend on a few pieces of information, they are ripe for scripting. Appen‐
dix B provides example scripts for automating the work.

Image Maintenance
A custom image remains available until you decide to deregister or delete it. Your
cloud provider charges for the storage used by the snapshots backing the image, and
some also charge a small amount for the image definition itself, but instances
launched from an image are charged for separately. In fact, even after an image is no
longer available, instances launched from it keep running.

It’s common to want to improve an image, to address problems with it, or to add new
stock configurations or installed software. Because snapshots are immutable, you
cannot update the image itself. Instead, launch an instance based on the image, make
the desired changes to it, and then create a new image from the instance.

232 | Chapter 16: Using Images for Cluster Management

Under GCE, successive images can be placed in the same image
family. This mechanism gives you the option to launch the most
recent (and likely “best”) image in a family.

It may not be long before you have made a lot of images, and you will want to con‐
sider ways to track them and to enable users to understand what they contain and
which ones to use. Cloud providers do not provide services to help with these tasks,
so here are some ideas to get you started:

• Use image names and tags in well-defined ways to describe image contents and
purposes.

• Maintain an image registry, using a spreadsheet, wiki, or simple web page.
• Wrap tools that automate image creation in calls to databases holding image

information.

Image Deletion
Over time, then, images tend to pile up. To save money and make tracking images
easier, you’ll want to get rid of older images that should no longer be in use. As with
image creation, the image deletion process varies across cloud providers.

Image Deletion in AWS
Select Images from the EC2 menu, and highlight the image to delete in the list of
images. Look at its details and note the IDs of the snapshots for the root EBS volume
and any other attached EBS volumes listed as “Block Devices”; each ID begins with
“snap-”. Then, click the Actions button and select Deregister from the drop-down
menu.

A deregistered AMI is no longer available for use in launching new instances, but
deregistration does not destroy the snapshots backing the former image. Select Snap‐
shots from the EC2 menu to see the list of snapshots, select the snapshots used for the
deregistered AMI, and select Delete from the Actions button drop-down menu.

Image Deletion in Google Cloud Platform
GCE lets you either deprecate or delete an image. A deprecated image can still be
used, but does not appear by default in the list of available images. When an image is
deprecated, an image must be named as its replacement. A deleted image, in contrast,
is simply no longer available.

Image Deletion | 233

To either deprecate or delete an image, select Images from the Google Cloud Plat‐
form menu. Select the image to work with, and select either Deprecate or Delete from
the options in the menu at the top of the page. After confirming, the image will dis‐
appear from the list of images. To see a deprecated image once again, use the “Show
deprecated images” link at the bottom of the list.

Image Deletion in Azure
To delete an image in Azure, simply discard the JSON template and delete the VHD
files from storage.

Automated Image Creation with Packer
Creating images manually is fine for small-scale or exploratory work, but a produc‐
tion environment requires speed, predictability, and robustness. Packer from Hashi‐
Corp is a leading tool for this purpose. It takes as input a JSON template describing
how to build an image, runs through the steps as prescribed, and then creates a new
image in the cloud provider. The template serves as one form of documentation for
what the image contains, and it can be placed in version control for safekeeping and
to track changes over time.

Example 16-1 shows a simple Packer template that creates an AMI.

Example 16-1. Example Packer template

{
 "variables": {
 "ami_name": null,
 "region": null,
 "source_ami": null,
 "ssh_username": null
 },
 "builders": [{
 "type": "amazon-ebs",
 "ami_name": "{{user `ami_name`}}",
 "instance_type": "m3.large",
 "region": "{{user `region`}}",
 "source_ami": "{{user `source_ami`}}",
 "ssh_pty": "true",
 "ssh_username": "{{user `ssh_username`}}"
 }],
 "provisioners": [{
 "type": "shell",
 "inline": "sudo yum install --assumeyes wget"
 }]
}

234 | Chapter 16: Using Images for Cluster Management

https://www.packer.io/intro/index.html

3 This is one of the less secure methods. See the builder documentation for all of the options.

A Packer template uses one or more builders to build images for different platforms
and tools that can use images. There are builders for creating images for EC2 and
GCE and VHDs for Azure. Each builder requires information about the source image
to work from. In the template in Example 16-1, the source AMI is specified as a vari‐
able passed to the template, along with other variables.

Provisioners in the template can run processes on the instances being used by the
builders to perform installation and configuration tasks. Some provisioners use shell
scripts, run either on the instances or locally, while others use common infrastructure
automation tools like Ansible, Chef, and Puppet. The provisioner in Example 16-1
performs an installation of the wget utility on the build instance, so the final image
will have it already installed.

Packer can run on your local computer, remotely connecting to the cloud provider
using credentials that you supply. Each builder accepts credentials differently; the
EC2 builders look in a variety of typical locations for the access key ID and secret
access key, including the environment:3

$ export AWS_ACCESS_KEY_ID=...
$ export AWS_SECRET_ACCESS_KEY=...

Assuming those keys have been set, the following command line works to build an
image from the example template. It works in us-east-1 and selects a specific CentOS
AMI as the source:

$ packer build -var 'region=us-east-1' -var 'source_ami=ami-6d1c2007' \
> -var 'ami_name=PackerTest1' -var 'ssh_username=centos' packer.json

Packer outputs progress as it builds and provisions, and then finally reports the ID of
the new AMI. (Yours will be unique.)

==> Builds finished. The artifacts of successful builds are:
--> amazon-ebs: AMIs were created:

us-east-1: ami-5c29154b

Packer has just done the work of creating an instance from a source image, installing
software on it, and using it to create a new image. Along the way it handled deciding
the choice of network and security rules for the temporary instance, generating an
SSH key pair to use, and cleaning up after itself. Even for making simple images,
automation has compelling advantages.

The example template can be augmented to perform all of the work needed to create
a base image for a Hadoop cluster; it’s a matter of encoding the steps performed in
Chapter 9 and elsewhere. Shell provisioners can perform software downloads and

Automated Image Creation with Packer | 235

4 Disclaimer: At the time of this writing, the author is an employee of Cloudera who works on Director. As
such, the descriptions of Director and competing products in this section may be unavoidably uneven. Please
interpret the descriptions as informative and avoiding advocacy.

installations, file provisioners can copy up templates for configuration files, and other
shell provisioners can use hands-off editing tools from sed up to Perl and Python to
add and change configuration information.

Unfortunately, Packer cannot do all of the work. Specifically, the information listed
in “Image Use” on page 231 still is not available until an actual cluster is being con‐
structed. So, there is still room for automation outside of Packer to get to a complete,
working Hadoop cluster in the cloud.

Automated Cloud Cluster Creation
Cloud providers have their own services for automatically creating Hadoop clusters,
some of which are described in “Hadoop Solutions from Cloud Providers” on page 8.
They present a more hands-off approach to cluster management, focusing instead on
what you want to do with the clusters. If you are looking for a tool that builds cloud
clusters that are more under your direct control, you have some choices.

Cloudera Director
Cloudera Director4 supports creating clusters in AWS, Google Cloud Platform, and
Azure. It can be run as a server process or through a standalone client, both of which
are installed and run directly. Director handles creating instances and then installing
Cloudera Manager, Cloudera’s own cluster management tool, and the company’s
CDH distribution of Hadoop components. Once a cluster is created, Director can
manage adding and removing instances from it, and terminate it when you are done
with it.

Director can manage many clusters at once, and leaves it up to the user to select the
components and define the topology for each cluster. The Director client works with
configuration files defining all aspects of the Cloudera Manager and cluster installa‐
tions and configurations. The server supports a RESTful API that enables scripting,
and Cloudera distributes Java and Python client libraries.

Hortonworks Data Cloud
Hortonworks Data Cloud (HDCloud) is an AWS Marketplace application that runs
inside EC2. Its web console lets you create clusters running the company’s HDP dis‐
tribution of Hadoop components, managed by Apache Ambari. Cluster templates
can be defined and reused to create new similar clusters, and the application allows

236 | Chapter 16: Using Images for Cluster Management

for resizing, cloning, and termination on demand. The user interface includes links to
the web interfaces for Ambari and other Hadoop components.

HDCloud offers a curated set of cluster types, some including Spark or Hive, and
supports options that cover the instance types for master (manager) and worker
instances, whether to use an existing or new VPC, and whether to use a shared
remote Hive metastore database.

Each cluster template can be represented in JSON, and a CLI tool downloadable from
HDCloud can use such templates to perform cluster operations.

Qubole Data Service
The Qubole Data Service (QDS), available online, includes a cluster management sol‐
ution for creating and configuring clusters in AWS, Google Cloud Platform, and
Azure. The service starts you off with definitions for a few default clusters to get you
started, but you can create your own definitions, selecting from a set of predefined
types. The core Hadoop components, as well as others including Spark and HBase,
are compatible with the Apache distributions. QDS monitors cluster usage and termi‐
nates them when they are idle in order to manage costs.

QDS has topology options that include instance types for master (manager) and slave
(worker) instances, parameters for AWS spot instance proportion and pricing limits,
and virtual network and subnet placement. There is also access to Hadoop configura‐
tion property overrides, along with suggestions.

General System Management Tools
The tools just described are created and supported by third-party vendors, and some
of them may cost money to use. For those reasons, or others, you may decide to cre‐
ate your own homegrown cluster creation tool. The cloud providers each have pow‐
erful APIs that can be used to perform the work otherwise done manually through
their web consoles, and a general management tool like Ansible, Chef, or Puppet can
be employed to direct any configuration tasks that need to be performed beyond
what is already baked into images.

If it is not obvious yet, however, then it is important to understand before setting out
that such an effort, while feasible, can be time-consuming. Creating your own tool
may appear easy at first. However, it requires deep understanding of your cloud pro‐
vider’s API, including any quirks and known issues, and staying up-to-date with it as
it changes. The tool must be able to reach out to new instances to issue necessary,
nontrivial commands, all while coping with network configurations and security
rules imposed on the instances. A cluster creation tool may eventually be called upon
not just to create clusters but to destroy them as well, or change their size, or recon‐
figure them, all of which makes development and maintenance more expensive.

Automated Cloud Cluster Creation | 237

On the other hand, with your own tooling you have full control and can address any
unique needs that vendor tools do not support. You are also free to use any Hadoop
distribution you choose, including the “vanilla” versions offered directly by Apache.
A custom tool may integrate more easily into your existing systems than an off-the-
shelf, general-purpose product.

Images or Tools?
When it comes to choosing between managing clusters using either images or tools,
you are strongly encouraged to use a tool that you can adapt to your desired pro‐
cesses. Images are excellent for preserving the static needs of cluster instances, but
they do not apply well to the inescapable dynamic tasks that must be performed to
fully create clusters. Besides built-in automation for cluster creation, tools can modify
and destroy clusters and perform monitoring. They also abstract away the complexity
of working with a cloud provider.

Some tools can themselves use images as a way to save work that they would other‐
wise need to do, like software installation or operating system updates. Clusters are
then spun up more quickly, which saves money and reduces user-waiting times.
Organizational requirements about the contents and configuration of all cloud
instances are more easily enforced by creating and using “blessed” images for tools to
consume.

When your organization is ready to consider automated cluster creation, first try
some of the existing tools to see if they can meet your needs. Here are some reasons
why, after trying what’s already out there, you might decide to roll your own tooling:

• You have security requirements that cannot be satisfied by the tools already
available.

• Your organization already has strong expertise in automation tools and in work‐
ing with a cloud provider API.

• Lack of visibility into or precise control over existing tools’ activity runs against
organizational prerogatives.

If none of the existing tools are satisfactory, then at least trying them out will give you
ideas for how your own tooling should work.

More Tooling
Image creation is just one area where scripting and tooling can make it easier to stand
up Hadoop clusters in the cloud. Chapter 17 explores other areas, such as monitoring
and automation, where tools and scripts shine.

238 | Chapter 16: Using Images for Cluster Management

CHAPTER 17

Monitoring and Automation

As use of Hadoop clusters in the cloud grows in your organization, it becomes more
important to be able to monitor them. Early on, monitoring focuses on ensuring that
the clusters are fully up and not overloaded; this information can help guide your
future choices for instance types, cluster size, storage size, and network configuration.
As time goes on, monitoring data will become more important for keeping tabs on
overall cloud expenditure. Of course, cloud clusters themselves will also become
more crucial to the organization, so it becomes doubly important to be sure they are
working properly.

The need for monitoring is somewhat less when clusters are transient (see “Long-
Running or Transient?” on page 215). A transient cluster does not survive for long, so
if it does have problems, it can be torn down and replaced using systems already
established. Long-running clusters, on the other hand, need more monitoring, as it’s
necessary that they remain in good shape for continuous or on-demand use.

There are two facets to monitoring cloud clusters: monitoring the cloud provider
resources themselves, and monitoring the Hadoop components running on them. As
you may have noticed, the cloud provider’s consoles already deliver health informa‐
tion, and so it’s good to start by considering all the monitoring features they offer.

Monitoring Choices
When you’re ready to start monitoring Hadoop clusters, you’ll find that you have
choices for which monitoring system to use. The major cloud providers each support
monitoring infrastructures that you can tap into to get information about your
instances, storage, and many other resources. You also have the option of using a sys‐
tem you create and maintain yourself.

239

1 A cloud provider’s own Hadoop services, like Amazon EMR, will often integrate with its monitoring.

2 Stackdriver was originally an independent service, which Google acquired in 2014.

Cloud Provider Monitoring Services
The information available in cloud providers’ compute consoles is just the basics,
what’s necessary to give a useful overview of resource health; you can get much more
information through their monitoring services.

Each provider’s monitoring service has the advantage of being tightly integrated,
delivering the most up-to-date metrics without extra effort on your part in terms of
configuration. A downside for them is that they are generally agnostic of the soft‐
ware, like Hadoop, using the resources, so it is up to you to cover monitoring for
them.1 They can accept custom metrics, but you must install and run the code to gen‐
erate each metric and upload it.

Besides watching numeric metrics, monitoring can entail saving and analyzing the
contents of logs. Here again, cloud provider monitoring services can be configured to
ingest logs, such as the HDFS namenode log and the YARN resource manager log,
and perform basic analysis on them to look for signs of trouble. The logs are stored in
the provider’s own storage service, so you can look at them yourself as well.

Finally, monitoring services can issue alerts when metrics cross defined thresholds, or
when logs indicate a problem. Email is always an option for receiving alerts, but inte‐
grations can enable alerting via pager, text message, or instant message. In some
cases, you can also configure automatic actions that the provider should take on your
behalf, such as creating new instances or restarting daemons.

Cloud provider monitoring is free for basic levels, but advanced features such as cus‐
tom metrics can cost extra. Expense can be one reason why you might select your
own monitoring solution instead of a cloud provider’s, but the seamless integration
and features that you get up front make them compelling and worth evaluating.

If you are using AWS, CloudWatch is the monitoring service to investigate. It sup‐
ports a wide range of metrics for assessing the health of EC2 instances, RDS database
servers, EBS volumes, and more, and its API can accept custom metrics that you
send. Basic CloudWatch monitoring is automatically enabled under EC2. The service
directly supports the submission of logs to its own storage and can be configured to
scan them for patterns indicating trouble. Alarms raised from problem conditions
can result in alerts sent to personnel or automated actions to be taken by AWS itself.

Google offers a monitoring service called Stackdriver, which can monitor both Goo‐
gle Cloud Platform resources as well as AWS resources.2 Besides a large number of
metrics for Google Cloud Platform, Stackdriver supports many metrics for AWS

240 | Chapter 17: Monitoring and Automation

3 As cloud usage for Hadoop clusters continues to increase, it is likely that the applications will become more
aware of where clusters are running and provide new features to be more effective.

services as well as third-party applications running on either provider, including
HBase, Kafka, and ZooKeeper. Beyond metrics, Stackdriver has a log ingestion and
analysis capability called Stackdriver Logging as well as built-in support for uptime
checks.

The monitoring capabilities in Azure are collected under the term Azure Monitor. By
itself, Azure Monitor is a RESTful API for managing metrics and alerts, with SDKs
available for several languages. However, it is possible to configure alerts for Azure’s
wide variety of metrics using the Azure portal, its CLI, or Powershell. The Log Ana‐
lytics service, which is part of the Microsoft Operational Management Suite, is capa‐
ble of receiving logs from applications running either on Azure or elsewhere and
providing search and analysis on them. The Application Insights service, which runs
within Azure, functions as a management portal for gathering application-specific
metrics, gathered either through runtime or development-time integration.

Rolling Your Own
If you do not prefer using a cloud provider monitoring service, you can run a sepa‐
rate application that is capable of monitoring your clusters. Applications such as
Apache Ambari and Cloudera Manager provide comprehensive monitoring capabili‐
ties3 for Hadoop clusters, and they can be pointed to clusters running on a cloud pro‐
vider, provided that network connectivity is established. Perhaps you already have a
system established in your organization; it could similarly be extended to the cloud.
Such applications are generally agnostic of whether clusters they monitor are in the
cloud or on-prem, but for many monitoring needs that doesn’t matter.

Appendix C contains tips for configuring Nagios, a popular open source monitoring
system, to monitor a Hadoop cluster running on a cloud provider, beyond what nor‐
mally would need to be done for an on-prem cluster. Before leaping into configuring
it, or any other system, read on to learn about provider command-line interfaces,
which are essential for building the foundational scripts to support your monitoring.

Cloud Provider Command-Line Interfaces
Thus far in this book, you’ve been pointed almost exclusively to cloud provider con‐
soles to perform operations such as allocating and terminating instances, configuring
networks, setting security rules, and checking on resource health. Becoming comfort‐
able with your cloud provider’s CLI is an important step to setting up efficient, auto‐
mated monitoring and control capabilities.

Cloud Provider Command-Line Interfaces | 241

AWS CLI
The AWS CLI is a single Python-based application that can work with the gamut of
services such as EC2, RDS, S3, and Kinesis. It can be installed using native operating
system installers (like MSI for Microsoft Windows), or through pip, Python’s pack‐
age installation tool:

$ sudo pip install awscli

You must have an AWS access key and secret key to use the AWS CLI. The tool can
locate the keys in any of several locations; a good option is to store them in the .aws/
credentials file. After installing the CLI, you can configure it to use your keys in its
default profile using the aws configure command:

$ aws configure
AWS Access Key ID [None]: AKIAXXXXXXXXXXXXXXXX
AWS Secret Access Key [None]: XX
Default region name [None]: us-east-1
Default output format [None]: json

The CLI can report results in JSON, as plain text, or in a tabular format. Interpreta‐
tion of results by automated scripts is easiest with JSON, since it can be parsed in a
straightforward fashion. The CLI itself can filter down its JSON results as well, using
the JMESPath query language.

To check if the CLI is working, try listing the available EC2 regions:

$ aws ec2 describe-regions
{
 "Regions": [
 {
 "Endpoint": "ec2.ap-south-1.amazonaws.com",
 "RegionName": "ap-south-1"
 },
 {
 "Endpoint": "ec2.eu-west-2.amazonaws.com",
 "RegionName": "eu-west-2"
 },
...

Google Cloud Platform CLI
The Google Cloud SDK houses the CLI for Google Cloud Platform, and is comprised
of the tools gcloud, gsutil, and bq. Most operations are provided through the
gcloud tool, while gsutil is used for working with Google Cloud Storage and bq with
BigQuery. You install the SDK using native operating system installers.

After installation, the SDK must be configured using the gcloud init command.
This establishes the default configuration for the CLI tools, including the account to
authorize with and the default project. The authorization process includes the use of

242 | Chapter 17: Monitoring and Automation

https://aws.amazon.com/cli/
http://jmespath.org/
https://cloud.google.com/sdk/

a browser window to confirm authorization of the local SDK installation for your
account:

$ gcloud init

To check if the CLI is working, try listing your projects. The default output format is
a general human-readable one, but many formats are available, including JSON, CSV,
and YAML, through the --format option:

$ gcloud projects list
PROJECT_ID NAME PROJECT_NUMBER
my-first-cluster-1311 My First Cluster 123456789012
temporal-parser-127719 My First Project 372793013720
$ gcloud projects list --format=json
[
 {
 "createTime": "2016-05-14T17:05:48.748Z",
 "lifecycleState": "ACTIVE",
 "name": "My First Cluster",
 "projectId": "my-first-cluster-1311",
 "projectNumber": "123456789012"
 },
 {
 "createTime": "2016-04-10T19:52:51.350Z",
 "lifecycleState": "ACTIVE",
 "name": "My First Project",
 "projectId": "temporal-parser-127719",
 "projectNumber": "372793013720"
 }
]

Format-specific attributes and projections can be used to filter down and modify the
output results as desired. For example, JSON output can be culled down using simple
projections to pick out fields:

$ gcloud projects list '--format=json(name)'
[
 {
 "name": "My First Cluster"
 },
 {
 "name": "My First Project"
 }
]

Cloud Provider Command-Line Interfaces | 243

4 At the time of writing, version 2 of the CLI is in development.

Azure CLI
The Azure CLI comes in two forms: a cross-platform CLI tool4 and a set of Power‐
Shell cmdlets. This section covers only the cross-platform CLI. It can be installed
using native installers for macOS or Windows, or through the npm package manage‐
ment tool:

$ npm install -g azure-cli

Docker images hosting the tool are also available.

After installation, the CLI must be used to log in to Azure and become associated
with your account. The authorization process includes the use of a browser window
to confirm authorization of the local CLI for your account:

$ azure login

By default, the CLI operates in Azure Resource Manager mode, which is recom‐
mended for new Azure usage and is used throughout this book.

To check if the CLI is working, try listing your resource groups. The default output
format is a general human-readable one, but you can request JSON by passing the
--json option. The tool itself does not offer ways to filter down JSON output, but an
external tool such as jq or JMESPath can do that job for you. (The following com‐
mand output is edited for fit.)

$ azure group list
info: Executing command group list
+ Listing resource groups
data: Name Location Provisioning State Tags:
data: ---------------- -------- ------------------ -----
data: my_first_cluster eastus Succeeded null
info: group list command OK
$ azure group list --json
[
 {
 "id": "/subscriptions/12345678-.../resourceGroups/my_first_cluster",
 "name": "my_first_cluster",
 "properties": {
 "provisioningState": "Succeeded"
 },
 "location": "eastus"
 }
]
$ azure group list --json | jq '.[] | { name }'
{
 "name": "my_first_cluster"
}

244 | Chapter 17: Monitoring and Automation

https://azure.github.io/projects/clis/
https://stedolan.github.io/jq/
http://jmespath.org/

5 Should this be the private IP address or public IP address? See “Hadoop Daemon Status” on page 248 for discus‐
sion.

Data Formatting for CLI Results
Each cloud provider CLI is capable of generating output in human-readable formats,
often with clarifying colors, indentation, and tabular markings. Each CLI also sup‐
ports one or more machine-readable formats; notably, each CLI can produce JSON
output. So, it’s helpful to standardize on JSON as the output format of choice for
scripting and automation, especially for systems that work across cloud provider
boundaries. The rich ecosystem of applications that can consume and transform
JSON also make it a great choice.

What to Monitor
Now that you have your cloud provider CLI ready to use, you can think about the
questions you want to answer through monitoring. This section starts you off with
some basic ones, to get you familiar with using the CLI or other ways to script checks.

Instance Existence
The first question to consider, one which is silly for on-prem clusters, is whether the
instances a Hadoop cluster runs on exist at all. While you can be confident that in
almost all cases an instance will not vanish without you knowing about it, things can
get confusing in those rare cases when you assume an instance is there, but it’s gone.

An instance existence check is not as useful for temporary instances (discussed in
“Temporary Instances” on page 25), since those are expected to disappear after some
amount of time. You will want to apply this check to ordinary, permanent instances,
such as manager instances, nontemporary worker instances, or essential gateways.

Given the IP address of an instance,5 how can you check that the instance exists in the
cloud provider? The examples in Example 17-1 show how you can answer that ques‐
tion using the provider CLIs.

Example 17-1. Example existence checks using provider CLIs

AWS
$ aws ec2 describe-instances --instance-id=i-12345678901234567
Google Cloud Platform
$ gcloud compute instances describe instance-name
Microsoft Azure
$ azure vm show resource-group-name vm-name

What to Monitor | 245

Instance Reachability
It’s not enough for an instance to exist to know that it is fundamentally functional; an
instance also needs to be reachable, so that you can work with it as necessary. The
definition of reachability can vary. Here, an instance is considered reachable if an
SSH connection can be established to it. There are other ways to reach instances such
as through web interfaces, and those are important as well, but SSH reachability is
fundamental for maintaining control of your clusters.

Reachability checks using a provider CLI

The AWS CLI supports a describe-instance-status EC2 command, which returns
basic status information for instances. Including the --include-all-instances
option permits the command to return status information for instances that aren’t
running:

$ aws ec2 describe-instance-status --instance-id=i-12345678901234567 \
> --include-all-instances

The JSON result describes not only the “state” of the instance, which indicates if the
instance is running, stopped, or other values, but also overall system and instance sta‐
tus information. Consult the EC2 documentation for full details on interpreting the
command results. In general, if the instance status is “ok”, AWS considers the
instance reachable.

The Google Cloud Platform CLI does not include reachability checks for SSH,
although you can configure a health check that monitors whether an instance is
reachable over HTTP or HTTPS. For SSH, however, you have the option of using the
CLI to connect, without needing to know what the IP address of the instance is.
Combining that with a simple command to execute creates a good reachability check:

$ gcloud compute ssh --ssh-key-file /path/to/google_key.pem instance-name \
> --command "echo OK"

The Azure CLI does not include reachability checks over SSH. Here, your best course
of action is to simply attempt an ordinary SSH connection. It is possible to retrieve
the public IP address of a virtual machine through the CLI by using the name of its
public IP address resource, and that can be embedded into a basic SSH command to
form a basic reachability check:

$ ssh -i /path/to/azure_key.pem \
> userid@$(azure network public-ip show \
> resource-group public-ip-address-resource --json | \
> jq -r .ipAddress) \
> "echo OK"

246 | Chapter 17: Monitoring and Automation

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html

If the name of the public IP address resource is not known ahead of time, it can be
found dynamically by using the Azure CLI to first look up the virtual machine to
locate its network interface, and then again to look up the network interface to find
the public IP address. The private IP address is directly attached to the network inter‐
face:

Find the network interface for a manager instance in a cluster
$ azure vm show my_first_cluster manager --json | \
> jq -r '.networkProfile.networkInterfaces[0].id' | sed 's/.*\///g'
manager516
Find the private IP address for the instance
$ azure network nic show my_first_cluster manager516 --json | \
> jq -r '.ipConfigurations[0].privateIPAddress'
10.0.0.4
Find the public IP address resource for the instance
$ azure network nic show my_first_cluster manager516 --json | \
> jq -r '.ipConfigurations[0].publicIPAddress.id' | sed 's/.*\///g'
manager-ip
Find the public IP address for the resource
$ azure network public-ip show my_first_cluster manager-ip --json | \
> jq -r .ipAddress
203.0.113.101

Rolling your own reachability checks
There are many ways to perform straightforward checks of SSH connectivity using
common utilities, and these work for on-prem hardware as well as cloud instances.
One basic technique is to use the netcat utility to check if a daemon is listening on the
SSH port (usually 22) of the instance. This does not check that it is the SSH daemon,
nor does it ensure that an SSH connection can be established using the proper keys,
but the check is quick and simple. If the command’s exit code is 0, the check passes:

$ nc -w 10 -z 203.0.113.101 22

For a stronger check, just establish an SSH connection and issue a simple command.
Include a connection timeout so that the command does not get stuck for long if the
connection cannot be established. If the command’s exit code is 0, or if the expected
command output is emitted, then the check passes:

$ ssh -i /path/to/cloud_provider_key.pem -o ConnectTimeout=10 \
> userid@203.0.113.101 "echo OK"
OK

There are many other choices for implementing reachability checks. Be wary of using
more powerful security scanning and troubleshooting tools, such as nmap. While they
are effective, they could unintentionally trip defense mechanisms that cloud provid‐
ers put in place to prevent abuse.

What to Monitor | 247

Hadoop Daemon Status
Once it’s established that your instances exist and are reachable, a next logical step is
to see if the expected Hadoop daemons are running on them.

Cloud provider custom metrics
The cloud provider monitoring services described in “Monitoring Choices” on page
239 support the definition of custom metrics, beyond the defaults pertaining to gen‐
eral system health that they automatically track. It is up to you to implement a script
or application that determines the value of a desired custom metric and uploads it to
the monitoring service. The core benefit of this approach is that you can rely on the
provider monitoring service as a single location for tracking the health of your cloud
resources and the Hadoop components running on them.

See “Custom Metrics in CloudWatch” on page 253 to learn how to establish a custom
metric for AWS CloudWatch.

Rolling your own Hadoop daemon status checks
As is the case with reachability checks, status checks for Hadoop daemons that you
create yourself work just as well for on-prem or hybrid clusters as for cloud clusters.
If you already have monitoring systems in place for on-prem clusters, they can be
easily extended to check cloud clusters.

Status check implementations for Hadoop focus on directly contacting the daemons
at their expected ports, or else using client applications that connect for you. An
important question is whether you should use the private IP addresses or public IP
addresses for the daemons.

Using private IP addresses is a better choice, for three reasons. First, it is the more
secure option, because communication to public IP addresses requires opening up
security rules to permit traffic from outside the provider network or your organiza‐
tion’s VPN. Second, it will have somewhat better performance, since network traffic
remains within the cluster’s virtual network or within VPNs that are reliably connec‐
ted. Third, using private IP addresses allows you to use ephemeral public IP address
assignments for cluster instances, which cost less, and are only necessary for gateway
instances.

If you opt for using private IP addresses, you end up running the checks, or the mon‐
itoring application that houses them, either within the cloud provider or on your own
VPN. This makes monitoring subject to the cloud provider’s infrastructure function‐
ing well. For example, if you monitor from a cloud instance that is coresident with
your cluster and the availability zone for all of them goes down, you lose your moni‐
toring capability. Another drawback is that it can be more difficult to integrate sepa‐
rate monitoring systems for cloud clusters with existing, perhaps global, monitoring

248 | Chapter 17: Monitoring and Automation

systems already in place at your organization. Weigh the pros and cons of each possi‐
ble home for your monitoring with these implications in mind.

The simple check for SSH reachability using netcat, suggested in “Instance Reachabil‐
ity” on page 246, can be applied to the well-known ports for Hadoop daemons.
Table 17-1 is a quick reference for ports to check.

Table 17-1. Well-known TCP ports for Hadoop daemons

Daemon Port
HDFS Namenode 8020

HDFS Datanode 50010

YARN Resource Manager 8032

YARN Node Manager 8040

ZooKeeper Server 2181

check on the namenode
$ nc -v -z 203.0.113.101 8020
check on the resource manager
$ nc -v -z 203.0.113.101 8032

For more detailed information, a scripted check can collect status information from
the daemons by communicating with them. Consult the documentation for each
Hadoop component to learn about what they offer.

The core HDFS and YARN daemons automatically provide monitoring information
over HTTP that is managed internally using JMX. Table 17-2 provides example URLs
for retrieving the information.

Table 17-2. Example URLs for retrieving JMX information from Hadoop

Daemon Example URL
HDFS Namenode http://203.0.113.101:50070/jmx

HDFS Datanode http://203.0.113.101:50075/jmx

YARN Resource Manager http://203.0.113.101:8088/jmx

YARN Node Manager http://203.0.113.102:8042/jmx

The data returned is formatted in JSON, with one object for each MBean. You can
pass the qry query parameter to request only the information from a single MBean:

$ curl http://203.1.113.101:50070/jmx?qry=beanName

With the returned JSON in hand, you can use parsing utilities like jq to whittle them
down to what you want to monitor.

What to Monitor | 249

ZooKeeper servers do not use JMX, but you can retrieve textual status information
from them by issuing the four-letter command mntr to them, and then use typical
text processing utilities to narrow down what’s returned:

$ echo mntr | nc 203.0.113.102 2181

The suggestions here just scratch the surface of monitoring Hadoop daemons. You
can enable JMX on daemons that support it and then connect full-featured JMX con‐
sole applications. You can design checks that use the standard client utilities for the
Hadoop components to retrieve exactly the information you are interested in. There
are many possibilities, and since they aren’t specific to cloud clusters, they are not
covered in this book. Consult texts such as Hadoop Operations by Eric Sammer
(O’Reilly) to learn more.

System Load
Monitoring Hadoop daemons gives you a view into whether your cloud clusters are
working at all, and also into whether they are working well, if you monitor metrics
such as how full HDFS is or how long MapReduce jobs take to begin and then com‐
plete execution. Another view on whether clusters are working well is gained by
monitoring the usual system-level metrics, like CPU load. Here again, as with general
Hadoop monitoring, you can apply the same checks you normally would to on-prem
hardware to cloud instances, and you have the option of using the cloud provider’s
own services.

AWS system monitoring
Once again, under AWS you can use CloudWatch to gather and report on metrics.
CloudWatch automatically tracks some basic metrics for every EC2 instance, and you
can opt to gather more by enabling detailed metrics, for additional cost.

To find out what metrics are available for an instance, use the CLI:

$ aws cloudwatch list-metrics --namespace AWS/EC2 \
> --dimensions Name=InstanceId,Value=i-12345678901234567

Fortunately, CPUUtilization is a basic metric, so it should be listed as available for
any instance. Utilization can be retrieved by asking for metric statistics, specifying a
start and end time for the metric and a period over which each reported value, such
as an average or maximum, is to be calculated. This example reports on the maxi‐
mum CPUUtilization over the course of a day, as seen on an hourly basis:

$ aws cloudwatch get-metric-statistics --namespace AWS/EC2 \
> --metric-name CPUUtilization \
> --dimensions Name=InstanceId,Value=i-12345678901234567 \
> --start-time 2017-02-04T00:00:00 --end-time 2017-02-05T00:00:00 \
> --period 3600 --statistics Maximum

250 | Chapter 17: Monitoring and Automation

Google Cloud Platform system monitoring
To work with anything beyond basic metrics in Google Cloud Platform, you need a
Stackdriver account. Select Monitoring from the Stackdriver section of the Google
Cloud Platform console menu, and log in with the account that you use. Create a new
account and associate it with one of your projects, such as My First Cluster, as shown
in Figure 17-1.

Figure 17-1. Creating a Stackdriver account

After associating your account with one project, add other projects as you like. It is
not necessary to associate any AWS accounts during the account setup process, so
that step may be skipped and performed later. Instructions are displayed for instal‐
ling Stackdriver agents on your instances, as shown in Figure 17-2, so that you can
gather more detailed monitoring data.

Figure 17-2. Instructions for installing Stackdriver agents

What to Monitor | 251

After working the rest of the way through account setup, click the Launch Monitor‐
ing button to go to the Stackdriver dashboard. You can use this dashboard to moni‐
tor many facets of your instances.

The gcloud CLI for Google Cloud Platform does not offer access to Stackdriver met‐
rics. A good alternative for scripting is to use the Python API client library for Stack‐
driver. Consult its documentation to learn how to install the library and to use it with
service accounts to query the Stackdriver metrics endpoints.

Azure system monitoring
Azure automatically tracks several metrics for virtual machines, including Percentage
CPU. While the data is easy to access through the Azure portal, there is no easy way
to get at the raw data using the Azure CLI.

The Azure REST API provides an endpoint for retrieving metrics under the Micro‐
soft Insights banner. Consult the endpoint’s documentation to learn how to access it.
Note that use of the API requires authentication using a JSON web token based on an
approved principal in your account.

Rolling your own system checks
Use any system check that works for on-prem hardware for your cloud instances. For
checks that require SSH connectivity, be sure to provide the necessary SSH key. It’s
good practice to establish a separate account with permissions for only what is
required for the checks, so that the monitoring system cannot unintentionally per‐
turb cluster operations.

A simple way to check CPUUtilization on any instance is to parse the results of the
uptime command. For more detail, try the mpstat command, which you may need to
install beforehand, depending on how minimal the base image for your cluster
instances is. (The following mpstat output is edited for fit.)

determine system load using uptime
$ ssh -i /path/to/cloud_provider_key.pem userid@203.0.113.101 uptime
 18:51:04 up 1:58, 0 users, load average: 0.00, 0.01, 0.05
determine system load using mpstat
$ ssh -i /path/to/cloud_provider_key.pem userid@203.0.113.101 mpstat -u
Linux 3.13.0-74-generic (ip-203-0-113-101) 02/20/2017 _x86_64_ (4 CPU)

06:51:20 PM CPU %usr %nice %sys ... %idle
06:51:20 PM all 1.24 0.00 0.09 ... 98.56

Putting Scripting to Use
It’s useful to spend some time with the provider CLIs to become comfortable with
how they work and to understand what you can glean from them. Check out the
built-in help that ships with the CLI for your provider, along with the online docu‐

252 | Chapter 17: Monitoring and Automation

https://cloud.google.com/logging/docs/api/lib-api-python
https://msdn.microsoft.com/library/mt743622.aspx

mentation; not only will you get more ideas for what you can monitor, but you can
discover some convenient ways to work, beyond the confines of the provider web
console.

The next section uses scripting to support defining a custom metric in AWS Cloud‐
Watch. A custom metric can be designed to map to a measurement pertinent to
Hadoop, such as YARN job volume, or HDFS usage. This way, if you are using a
cloud provider monitoring service, you can have your Hadoop monitoring in the
same place as everything else.

Custom Metrics in CloudWatch
AWS CloudWatch automatically establishes custom metrics as soon as they are
passed to it. Starting out, there are no custom metrics, but there are many basic met‐
rics already tracked for several services. A brief look at working with those helps to
get oriented for using custom metrics.

This section assumes that you have a cluster running in AWS like the one set up in
Chapter 9.

Basic Metrics
Select the CloudWatch service from the service list in the AWS console to go to the
CloudWatch console. Then, click the Browse Metrics button to begin looking at met‐
rics.

The graph on the main portion of the page is empty because no metrics are selected
for it. To add a metric, select EC2 from the “All metrics” tab, shown in Figure 17-3,
which lists a few of the AWS services with basic metrics available. Each service maps
to a namespace of metrics under CloudWatch.

Figure 17-3. Initial metrics namespaces in AWS CloudWatch

Then, drill further by selecting Per-Instance Metrics. All of the available EC2 metrics
are listed, and checking any of them will have them begin to be plotted on the graph.

Custom Metrics in CloudWatch | 253

As an example, select the CPUUtilization metric for the “manager” instance, as
shown in Figure 17-4.

Figure 17-4. The CPUUtilization metric for the manager instance

Over time, the graph will fill up with the CPUUtilization metric for the manager
instance, looking something like Figure 17-5. You can add the same metrics for the
other cluster instances to make a single graph tracking CPUUtilization cluster-wide.

Figure 17-5. CPU utilization graphed in CloudWatch

Defining a Custom Metric
Working with a custom metric is similar to working with a basic metric, but first, the
metric must be created. This section defines a new metric for how full HDFS is,
expressed as a percentage (so, 0% is empty and 100% is full). Before defining the new
custom metric in CloudWatch, a script or application must be available to determine
it.

Fortunately, it is easy to get the figure needed for the metric using the hdfs dfsadmin
-report command. This example command retrieves the first DFS Used% line from
the DFS report, which covers the entire cluster, and extracts the field containing the
percentage:

254 | Chapter 17: Monitoring and Automation

6 You can create custom policies for more security. See “Creating an IAM User for Log Streaming” on page 264 to
learn about this process in the context of submitting logs to CloudWatch.

as hdfs
$ hdfs dfsadmin -report | grep -m 1 "DFS Used%" | cut -d ' ' -f 3 | sed 's/%//g'
0.00

This command can form the basis for a script that finds the percentage and then sub‐
mits it to CloudWatch. The latter task requires the AWS CLI, so install it on the man‐
ager instance, under the “hdfs” account, as described in “AWS CLI” on page 242. The
CLI must be configured with credentials for an IAM user that can work with Cloud‐
Watch metrics. You can use your own, or you can create a new IAM user as
described in “Configuring S3 Authentication” on page 161. If you create a new IAM
user, be sure to request programmatic access and save the access key pair to use for
CLI configuration. Applying the policy “CloudWatchFullAccess” will grant enough
permissions to the user to work with CloudWatch.6

With the CLI installed and ready to run, it’s time to think about how to name the
new custom metric. CloudWatch will establish everything automatically as soon as
the metric is first submitted, so no additional work is required in CloudWatch to get
it ready:

• A custom metric in CloudWatch occupies a namespace, like any other metric,
which groups similar metrics together. The namespace “HadoopClusters” works
nicely for any metrics pertaining to Hadoop clusters.

• A metric needs a name describing what it measures. “DFSUsed” is a succinct and
accurate name.

• A metric can have a unit associated with it, and for this custom metric “Percent”
is perfect.

• Since there may be multiple Hadoop clusters running, each with their own usage,
a dimension should be used to align the metric’s datapoints. For example, the
CPUUtilization metric has a dimension named “InstanceId”; this makes it possi‐
ble to retrieve all of the datapoints for a single instance by its ID. The custom
metric for DFS usage should be viewed per cluster, so a dimension named “Clus‐
ter” should be defined.

Feeding Custom Metric Data to CloudWatch
With the naming and dimensions worked out, a script for submitting usage informa‐
tion to CloudWatch can be written:

#!/usr/bin/env bash

Custom Metrics in CloudWatch | 255

dfs_used=$(/opt/hadoop/bin/hdfs dfsadmin -report | \
 grep -m 1 "DFS Used%" | cut -d ' ' -f 3 | sed 's/%//g')

/usr/local/bin/aws cloudwatch put-metric-data --metric-name DFSUsed \
 --namespace HadoopClusters --unit Percent --value "$dfs_used" \
 --dimensions Cluster=MyFirstCluster

Notice that the script uses full paths for the hdfs and aws commands. This is because
this script will be called by the cron daemon, which passes a minimized set of envi‐
ronment variables to scripts that it runs. Use the correct path for aws for your
instance, based on where pip installed it. You can test the script by calling it directly.

The script could easily be adapted to become a Nagios service
check, by removing the submission of the metric to CloudWatch
and adding code to return different exit codes depending on the
percentage value.

Add the script to the crontab for the hdfs user to have it run on a regular basis, send‐
ing the custom metric data to CloudWatch continually:

as hdfs
$ crontab -e
add a line for the script, as in the listing below
$ crontab -l
* * * * * /home/hdfs/dfs_used.sh > /home/hdfs/dfs_used.log 2>&1

Wait a couple of minutes after the job is added to the crontab for it to start feeding
data to CloudWatch. Soon, in the “All metrics” tab of the CloudWatch metrics page,
the new “HadoopClusters” custom namespace should appear, as shown in
Figure 17-6.

Figure 17-6. A custom namespace for Hadoop clusters in AWS CloudWatch

Selecting the HadoopClusters namespace reveals the single “Cluster” dimension, and
selecting that dimension reveals the single custom metric, DFSUsed, for the dimen‐

256 | Chapter 17: Monitoring and Automation

sion value “MyFirstCluster”. It can now be selected, as demonstrated in Figure 17-7,
and graphed like any other metric.

Figure 17-7. A custom metric for DFS usage in CloudWatch

Also like any other metric, statistics are available for DFS usage:

$ aws cloudwatch get-metric-statistics --namespace HadoopClusters \
> --metric-name DFSUsage \
> --dimensions Name=Cluster,Value=MyFirstCluster \
> --start-time 2017-02-19T17:00:00 --end-time 2017-02-20T00:00:00 \
> --period 60 --statistics Average Maximum
{
 "Datapoints": [
 {
 "Timestamp": "2017-02-19T17:57:00Z",
 "Average": 0.0,
 "Maximum": 0.0,
 "Unit": "Percent"
 },
 ...
 {
 "Timestamp": "2017-02-19T17:55:00Z",
 "Average": 0.0,
 "Maximum": 0.0,
 "Unit": "Percent"
 }
],
 "Label": "DFSUsed"
}

If there is nothing in HDFS, all of the metrics values come back as zero, which is
hardly exciting. An easy way to fill up the space is to run the teragen utility. The util‐
ity is normally used for running the Terasort benchmark, described in “Benchmark‐
ing HA” on page 139; it generates test data in HDFS in the amount that you request.

Run teragen under a user account that can run MapReduce jobs. See “Running a
Test Job” on page 113 for steps to take for the account you choose. For the first run,
try generating a small amount of data that fits easily in the available space in your
cluster:

Custom Metrics in CloudWatch | 257

$ hadoop jar \
> /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-x.y.z.jar \
> teragen 50000000 /user/userid/terasort-input

You can rerun teragen to add more and more data to HDFS, and watch the graph of
DFS usage grow. An example graph showing increased DFS usage is shown in
Figure 17-8. For each run, use a different HDFS directory as an argument.

Figure 17-8. DFS usage graphed in CloudWatch

Setting an Alarm on a Custom Metric
CloudWatch is now tracking DFS usage for a cluster, but nothing is watching the
metric to make sure usage doesn’t go too high. Accordingly, you can set an alarm to
trigger if usage exceeds a threshold. CloudWatch can take actions on your behalf if an
alarm is triggered; a simple action would be to send an email, but a highly advanced
action could add a datanode to the cluster to expand the available space. For now,
only the basic alarm without actions is established.

An alarm needs a descriptive name, such as “DFS_Usage_Alarm” for alarming on
excessive DFS usage. Various other parameters are needed as well:

• For an alarm that triggers at 80% usage, an alarm threshold of 80.0 should be
used, along with a comparison operator representing the greater-than compari‐
son. Thus, the alarm is triggered when the DFSUsed metric, already expressed as
a percentage, crosses above 80.0.

• An alarm can be made more or less sensitive by defining the length of the period
over which the metric is evaluated, and the number of periods to evaluate. To be

258 | Chapter 17: Monitoring and Automation

quite sensitive, specifying a period of 60 (seconds) and only one evaluation
period will narrow the alarm evaluation to each minute of time.

• Finally, an appropriate aggregated statistic for the metric should be chosen.
Looking at the average usage is generally a good idea, but looking at the maxi‐
mum over the evaluation period leads to a highly sensitive alarm.

These choices lead to a sensitive alarm, which in real-life usage would likely trip more
often than necessary. Instead, you would have the alarm watch the DFS usage over a
longer evaluation period, perhaps 10 or 20 minutes, and only look at the average
usage, so that transient heavy use of HDFS would not trigger the alarm needlessly.

The AWS CLI can be used to create a new alarm:

$ aws cloudwatch put-metric-alarm --alarm-name "DFS_Usage_Alarm" \
> --no-actions-enabled --namespace HadoopClusters \
> --dimensions Name=Cluster,Value=MyFirstCluster --metric-name DFSUsed \
> --statistic Maximum --period 60 --evaluation-periods 1 \
> --threshold 80.0 --comparison-operator GreaterThanThreshold

After the new alarm is created, it appears in the Alarms page of the CloudWatch con‐
sole. After a couple of minutes, depending on how full HDFS is, the alarm status will
appear as either “OK”, indicating that DFS usage is under 80%, or “ALARM”, indi‐
cating that it is over 80%. Figure 17-9 shows the alarm in the “OK” state.

Figure 17-9. An alarm on DFS usage in CloudWatch

If usage is under 80%, run teragen again until HDFS usage crosses the 80% threshold
(be careful not to fill up HDFS), and ensure the alarm is triggered, as in Figure 17-10.
Then, delete the HDFS directories holding the test data so that the usage drops again,
until the alarm returns to the “OK” state.

Figure 17-10. A triggered alarm on DFS usage in CloudWatch

You might notice that the CloudWatch interface calls out that there are no actions on
the alarm. In the next section, an alarm on a different custom metric tracking the
compute capacity of the cluster will trigger the addition of a new worker to the clus‐
ter.

Custom Metrics in CloudWatch | 259

Elastic Compute Using a Custom Metric
One of the best reasons to run clusters on a cloud provider is the flexibility to add and
remove instances as your needs change. “Using Temporary Instances” on page 193
discussed using temporary instances as a cost-effective way to scale up clusters for
short periods. Rather than scaling up “by hand,” you can set up an automated process
that detects when there is a need for more capacity and responds by growing your
cluster. This process is called autoscaling.

Here again, a custom metric is introduced to AWS CloudWatch, but this time it
tracks cluster compute capacity. When it gets too low, the action triggered by the
metric’s alarm adds a new worker to the cluster.

A Custom Metric for Compute Capacity
There are a few different ways to look at compute activity to determine if it is insuffi‐
cient and needs more resources. A simple process could add compute instances at a
fixed time in the workday, perhaps at the beginning, with the expectation that work
will pick up as people arrive for work. A more targeted technique, though, is to look
at how busy the compute system is, and if it crosses a threshold of activity, add more
instances.

In practice, this technique may need to be governed; as more capacity is added, users
may simply throw more work at the cluster, driving its size higher and higher. For
simplicity here, no upper limit or throttling is included.

There are several ways to determine if YARN is “busy.” Here, memory usage is used;
low memory availability is taken to indicate that the system is running near its
capacity. The yarn command can list the IDs of the compute nodes as well as each
node’s memory usage:

as yarn
$ yarn node -list 2>/dev/null | grep -v Total | grep -v Node-Id | cut -d ' ' -f 1
ip-172-31-60-201.ec2.internal:57541
ip-172-31-60-202.ec2.internal:58543
ip-172-31-60-103.ec2.internal:43340
$ yarn node -status ip-172-31-60-201.ec2.internal:57541 2>/dev/null | \
> grep 'Memory-'
 Memory-Used : 0MB
 Memory-Capacity : 8192MB

With this information, a general memory usage figure can be determined, as the ratio
of the memory used to the memory capacity across all nodes. A script can loop over
the nodes to sum up their memory statistics and then report the final ratio:

#!/usr/bin/env bash

used_total=0

260 | Chapter 17: Monitoring and Automation

available_total=0

for n in $(yarn node -list 2>/dev/null | grep -v Total | grep -v Node-Id | \
 cut -d ' ' -f 1); do
 mem="$(yarn node -status "$n" 2>/dev/null | grep 'Memory-' \
 | cut -d ' ' -f 3 | sed 's/MB//g' | xargs)"
 used=${mem%% *}
 available=${mem##* }
 used_total=$((used_total + used))
 available_total=$((available_total + available))
done

if [[$available_total == 0]]; then
 echo 0
else
 bc <<< "scale=4;($used_total/$available_total)*100"
fi

This script is reaching the limits of what bash shell scripting can
perform easily. Specifically, it uses techniques like xargs without a
command to concatenate lines, bash arithmetic, and bc with a here
string to perform a floating-point calculation. In practice, you may
want to use a scripting language like Python to make a more main‐
tainable script.

With a script available, a custom metric can be supplied to CloudWatch on a regular
basis via a cron job:

#!/usr/bin/env bash

yarn_mem_used=$(/path/to/yarnmem.sh)

/usr/local/bin/aws cloudwatch put-metric-data --metric-name YarnMemUsage \
 --namespace HadoopClusters --unit Percent --value "$yarn_mem_used" \
 --dimensions Cluster=MyFirstCluster

Prerequisites for Autoscaling Compute
To make automatically adding a new compute instance fast and robust, you need an
image at the ready for it. Chapter 16 lays out how much work can be saved by craft‐
ing an image with most of the Hadoop configuration already baked in. Without a
custom image, the autoscaling work involves installing all of the Hadoop components
and their dependencies, along with extensive configuration work. For speed and to
reduce the chance of misconfiguration, an image should be used. You can certainly
use the same image that you normally would for creating a new cluster.

Some configuration work must be done to a new instance before it can participate in
a cluster. In “Image Preparation” on page 225, several items were called out as being

Elastic Compute Using a Custom Metric | 261

necessary to modify for any new instance, including IP addresses. Most of the config‐
uration in the image can remain as it is, so the scripting needed to finish off the con‐
figuration is minimal. A modified form of the cluster-wide configuration update
script in Appendix B can do the trick. Some caveats:

• The script must have SSH access to the new instance, so establishing that must be
part of the configuration process.

• Some components may require a restart in order to accept their new configura‐
tions. At a minimum, the daemons on the new instance must be started.

• To keep administration simple, add the private IP address of each new instance
to the /etc/hadoop/slaves file on each manager instance.

Triggering Autoscaling with an Alarm Action
YARN usage can be volatile. Under normal conditions, a cluster may experience
spikes in activity followed by lulls of almost no activity. So, an alarm that can trigger
adding a new instance should look for consistent heavy usage. In CloudWatch, this
can be done by requiring the alarm condition to hold for more than just one consecu‐
tive evaluation period:

$ aws cloudwatch put-metric-alarm --alarm-name "YARN_Mem_Alarm" \
> --no-actions-enabled --namespace HadoopClusters \
> --dimensions Name=Cluster,Value=MyFirstCluster --metric-name YarnMemUsage \
> --statistic Maximum --period 60 --evaluation-periods 5 \
> --threshold 80.0 --comparison-operator GreaterThanThreshold

The preceding alarm has no actions, but one is needed to begin the process of adding
an instance. With CloudWatch, there are choices as to how to architect this portion
of the autoscaling flow:

• An autoscaling action can trigger the creation of an instance within an EC2
autoscaling group. An autoscaling group in EC2 is a grouping of instances that
can be automatically grown and shrunk in size. Here, an autoscaling group can
represent the additional workers that are added to a cluster. When you create an
autoscaling group, you create a launch configuration, which includes the infor‐
mation needed to launch an instance, such as its AMI, subnet, and security
group, and whether to request a spot instance. A tripped alarm can cause the
addition of instances to the group, while an alarm subsiding can cause instances
to be removed.

• A notification from an alarm can go to any of various listening or receiving enti‐
ties, such as an HTTP server, an email address, or text message. Scripts triggered
upon receipt of the message can use the AWS CLI to create a new instance as
desired. The information normally in a launch configuration would be included

262 | Chapter 17: Monitoring and Automation

in the scripts. This is a do-it-yourself form of autoscaling, which is more complex
to set up but which relies less on AWS capabilities.

Whichever path you choose, you must provide a way to run the Hadoop configura‐
tion script for the new instance (and possibly the cluster at large). When performing
your own autoscaling, you can use the information from the alarm to gain context
about the cluster and thereby find its IP addresses, or simply have them hardcoded in
the script; the script can be run anywhere that is convenient to your architecture.
When using an autoscaling group, the script may be set up to run directly on the new
instance, but it must be able to retrieve information necessary for the configuration
work, such as the IP addresses of the managers in the cluster it is being added to. For
that reason, if you are using AWS autoscaling, you may wish to also send a notifica‐
tion to a helper application that can make the necessary information available to the
new instance when it has finished starting up.

Setting up autoscaling of Hadoop clusters is a challenging task. This section provides
a plan and some starting materials for making it happen, relying on CloudWatch for
metric tracking and alarming. Take the time to think about the conditions under
which you’d want to scale up your clusters, and rely on automation for cluster cre‐
ation you have already established to help with the similar task of adding new instan‐
ces.

What About Shrinking?
Autoscaling also includes removing instances when they are no longer needed. The
same metric can be used to determine when YARN memory usage (or your chosen
metric) has gone back under some threshold for some length of time, and then termi‐
nate a worker that had been added (or any that are equivalent from the original clus‐
ter composition). The cluster should be configured again to no longer expect the
destroyed instance to be around.

If you use temporary instances, then the need to shrink is not as strong, since they
will disappear on their own after a time. However, you would still want to update the
cluster configuration to account for their absence.

Other Things to Watch
The alarms and actions set up under CloudWatch so far have been based on numeric
metrics that are sampled over time and analyzed. The next section looks at another
source of information about a cluster, logs, and also shows how to send CloudWatch
alarm notifications to an email list.

Elastic Compute Using a Custom Metric | 263

Ingesting Logs into CloudWatch
Aside from custom metrics that are tied to Hadoop components, logs are one of the
best windows into seeing how your clusters are performing.

As part of their monitoring services, each of the cloud providers offers the ability to
save off log content for later analysis, either to their standard storage services or dedi‐
cated storage, and perform automated scans and alerting based on their content. The
basic procedure is to identify a logfile to track, specify how its content is organized in
storage, and define alerts that are triggered by patterns in the logfile as it is incremen‐
tally saved off.

This section explores using AWS CloudWatch to monitor the log for an HDFS
namenode and trigger alerts whenever an error appears. Before starting, determine
the full path of the namenode log; the initial setup for CloudWatch logging includes
configuration for the first logfile. It’s assumed that the logfile exists and has some
content in it already.

Creating an IAM User for Log Streaming
CloudWatch relies on an agent process running on your cloud instance to extract
logfile content. The agent requires credentials to authorize itself with CloudWatch. If
your instances already have IAM roles associated with them, then it’s enough to add
the necessary policies to a role. Otherwise, you can create a dedicated IAM user for
the agent.

A tailored custom policy can grant the permissions necessary for the CloudWatch
agent to work. Go to the IAM service in the AWS console, and select Policies from
the menu on the left side. The list of predefined IAM policies is displayed. Click the
Create Policy button, as shown in Figure 17-11, to create a new custom policy.

Figure 17-11. Starting to create a custom IAM policy for CloudWatch

Select the option to Create Your Own Policy. Then, in the form shown in
Figure 17-12 for creating the policy:

• Provide a policy name, such as “CloudWatchLogSubmitter”.

264 | Chapter 17: Monitoring and Automation

• Enter a description if desired.
• Fill in a policy document that matches the EC2 quick start documentation for

AWS CloudWatch.

Click the Create Policy button to create the new custom policy.

Figure 17-12. A custom policy for CloudWatch

Next, create a new IAM user with the custom policy applied. Instructions for creating
a new IAM user are in “Configuring S3 Authentication” on page 161. Be sure to
request programmatic access, and save the access key pair.

Installing the CloudWatch Agent
AWS provides a Python script for installing and configuring the CloudWatch agent
on your instances. Download it to the desired instance (e.g., the manager node host‐
ing the HDFS namenode) and run it, specifying the region where the instance runs:

$ sudo apt-get update # on Ubuntu instances only
$ curl -O \
> https://s3.amazonaws.com/aws-cloudwatch/downloads/latest/awslogs-agent-setup.py
$ sudo python awslogs-agent-setup.py --region us-east-1

The script installs pip and uses it to download and install the agent. Then it asks a
series of questions to configure the agent and have it start streaming a log to Cloud‐
Watch. In the first set of questions, provide the access keys for the IAM user just cre‐
ated for submitting log data to CloudWatch, and the region. The output format
response may be left empty.

Ingesting Logs into CloudWatch | 265

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/QuickStartEC2Instance.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/QuickStartEC2Instance.html

The next set of questions establishes a log stream for the first logfile to monitor. You
will need to determine the name of the log stream that represents the log contents as
they arrive at CloudWatch, and the name of the log group where the log stream
resides. The organization of log groups is up to you; one suggestion is to use a log
group for each type of Hadoop daemon (HDFS namenode, ZooKeeper server, Hive
server) and a log stream for each instance of a Hadoop daemon. For example:

• path of log: /var/log/hadoop/hadoop-hdfs-namenode-ip-203-0-113-101.log
• log group name: mycluster/hdfs/nn
• log stream name: mycluster-hdfs-nn-manager

Finally, choose a timestamp format that you prefer, and pick the start of the file for
the initial position to load, so that the log’s entire contents are streamed.

After the agent is installed and configured, its configuration is written to /var/
awslogs/etc/awslogs.conf. More log streams can be defined there later.

If you proceed to the CloudWatch Logs service in the AWS console, you should see
the new log group and log stream for the HDFS namenode log, as shown in Figures
17-13 and 17-14.

Figure 17-13. A CloudWatch log group for HDFS namenode logs

Figure 17-14. A CloudWatch log stream for the HDFS namenode log

266 | Chapter 17: Monitoring and Automation

Creating a Metric Filter
Now that namenode log data is being streamed to CloudWatch, the next step for
monitoring it is to create a metric filter on the log stream. A metric filter generates a
metric based on patterns occurring in the log contents. Here, a metric filter is created
that looks for log messages containing the string “ERROR”, which indicates an error
logged by the namenode.

Start creating a metric filter by selecting the radio button for the new “mycluster/
hdfs/nn” log group in the list of log groups, and then clicking the “Create Metric Fil‐
ter” above the list, as shown in Figure 17-15.

Figure 17-15. Beginning to create a CloudWatch log metric filter

On the next page, define the filter pattern by entering “ERROR” (without quotes) in
the Filter Pattern text field. Click the Assign Metric button to continue to the next
step.

Fill in the remaining information for the filter on the last page, as shown in
Figure 17-16:

• Choose a filter name, such as “Namenode Errors”.
• Select a metric namespace, which is used to group similar metrics together in

CloudWatch. The namespace “HadoopClusters”, for example, could be used to
group together all metrics pertaining to your Hadoop clusters.

• Select a name for the metric that is to be generated by the filter. Something sim‐
ple like “NamenodeErrors” fits.

• Finally, open the “Advanced Options” if necessary and assign the Metric Value of
“1”, which is the default. This causes the filter to post a value of 1 to the metric
whenever the filter pattern, which looks for error messages, encounters a match.

Click the Create Filter button to create the metric filter.

Ingesting Logs into CloudWatch | 267

Figure 17-16. Definition for a new metric filter in CloudWatch

The new filter is shown as one of the metric filters associated with the namenode log
group, as shown in Figure 17-17.

Figure 17-17. A metric filter established in CloudWatch

Creating an Alarm from a Metric Filter
There is now a metric representing the presence of errors in the namenode log, but
without an alarm monitoring the metric, it is up to administrators to watch it. To cre‐
ate an alarm for the new metric, follow the “Create Alarm” link displayed for the
metric filter. A dialog appears, with the second step in the alarm creation workflow,
Define Alarm, already selected. The first step already refers to the metric associated
with the filter.

Working in the Alarm Threshold section, first provide a name and description for
the new alarm. The alarm is already focused on the “NamenodeErrors” metric;
choose to have it move to an alarmed state whenever that metric is greater than or
equal to 0 for one (consecutive) period. This will cause the alarm to trigger whenever
an error appears in the log, because the metric filter will post a value of “1” at that
time.

In the Actions section of the dialog, you can define notifications to send when the
alarm changes state. Begin by selecting the default value of “State is ALARM” for the

268 | Chapter 17: Monitoring and Automation

“Whenever this alarm:” menu, so that notifications are sent when the alarm is trig‐
gered, that is, when an error message appears in the namenode menu.

CloudWatch uses the AWS Simple Notification Service (SNS) to manage sending
notifications. Rather than specifying email addresses directly for a notification, you
create a named topic in SNS that includes your email address, and point to that in the
alarm definition. Follow the “New List” link, and the form for the notification defini‐
tion expands to allow you to enter a topic name and list of email addresses. Enter a
topic name and email address of your choice. The final states of the Alarm Threshold
and Actions sections of the dialog are shown in Figure 17-18.

Figure 17-18. Alarm threshold and actions in CloudWatch

The period and statistic that the alarm uses to consider the metric is in the Alarm
Preview section, shown in Figure 17-19. Together, they determine the calculation
performed to decide if the alarm should be triggered. For this example, a period of 5
minutes and statistic of “Sum” states that the alarm should be tripped if the sum of
the metric exceeds zero when evaluated over a 5-minute period. Since any error mes‐
sage will cause a value of “1” to be entered for the metric, these values will cause the
alarm to be triggered within 5 minutes of an error appearing in the namenode log.

Ingesting Logs into CloudWatch | 269

Figure 17-19. Alarm preview in CloudWatch

Click the Create Alarm button to create the alarm. You may be presented with a dia‐
log box asking you to confirm the email address you supplied for the notification list.
You can do this now or later. Click the View Alarm button in the dialog to see the
new alarm.

Select the Alarms section of CloudWatch from the menu on the left side of the con‐
sole to see the new alarm listed. Its state of “INSUFFICIENT_DATA” notes that there
are not enough datapoints for the metric to determine a state for the alarm; this is
because the metric filter does not post anything at all for the metric unless there is an
error message.

To get the alarm to trigger, induce an error message in the namenode log. An easy
way to do that is simply to stop the namenode using the usual stop script:

as hdfs
$ $HADOOP_PREFIX/sbin/stop-dfs.sh

An error message should appear in the namenode log indicating that it received a
SIGTERM signal. Within 5 minutes, the state for the namenode error alarm should
transition to ALARM, as shown in Figure 17-20, and you should receive an email
from AWS notifying you of the problem.

270 | Chapter 17: Monitoring and Automation

Figure 17-20. A tripped alarm for a log metric filter in CloudWatch

Receiving an email is very helpful, but you could expand on the notification capabili‐
ties in SNS to do more, such as ping a paging system, or even trigger a script that
automatically restarts HDFS.

So Much More to See and Do
This chapter, despite its length, has only scratched the surface of the monitoring
opportunities available for your clusters running in the cloud. There is much more
you can learn about each cloud provider’s offerings, and the reward is a much better
view of the health and well-being of your clusters in the cloud. Having that assurance
is both necessary to encourage moving more work to cloud providers and to keep
tabs on what’s already there.

Eventually, your monitoring will alarm you that one of your clusters is degraded. Per‐
haps HDFS has crashed, or all of the worker instances have vanished. When (not if)
that happens, you will need to be able to restore the cluster and the data that it held.
Chapter 18 briefs you on the options you have for cluster backup and restoration.

So Much More to See and Do | 271

CHAPTER 18

Backup and Restoration

Despite the reliability and availability benefits of running your clusters on a cloud
provider, failures still can occur. It’s essential to include disaster recovery procedures
as part of your maintenance process, and that starts with safe backups of your cluster
data. Even if you have faith in your cloud provider that your resources will remain
operational as long as you need them, rules and regulations pertaining to your data
can compel you to have a backup process in place.

There are many general techniques for performing backup and restoration for
Hadoop clusters. This chapter focuses on aspects of those techniques that are relevant
for cloud clusters.

Patterns to Supplement Backups
Besides explicit backup procedures, there are other measures you can, and should,
employ to provide greater assurance that your cluster data, and clusters themselves,
remain available in the face of problems.

“Long-Running or Transient?” on page 215 discusses the trade-offs between long-
running clusters and transient clusters. By their nature, long-running clusters
become more and more critical as they accumulate important data as well as unique
configurations or software installations. Transient clusters, on the other hand, cannot
become the permanent home of any data, and can be spun up easily with the proper
automation. Adoption of transient clusters, therefore, can lead to an architecture that
is more resilient to failure. When a transient cluster fails, a new similar one can be
created with little trouble, and data is already stored off-cluster in robust cloud pro‐
vider storage services.

Another measure that effectively preserves your work is the use of images, as covered
in Chapter 16, to persist the required configurations of your cluster instances. Com‐

273

bined with the automation necessary to create new clusters, you are freed from con‐
cern that all of the effort put into configuring your clusters properly will be lost if
those clusters become corrupted or disappear.

HDFS data can be similarly “imaged” by using HDFS snapshots. You can quickly cre‐
ate an HDFS snapshot to hold a read-only copy of a specified directory. If the direc‐
tory contents become corrupted, you can restore the snapshot to return to a past,
known good state. Note that HDFS snapshots, however, may be lost if a cluster loses
enough datanodes.

Finally, Hadoop itself supports high availability (HA) clusters, covered in depth in
Chapter 10, to eliminate single points of failure in your architecture such as the
HDFS namenode and the YARN resource manager. The built-in resiliency of
Hadoop to the loss of other daemons like HDFS datanodes, combined with an HA
configuration that works with cloud provider features such as availability zones, can
result in clusters that not only intrinsically back up data, but continue functioning in
the face of failure.

In summary, the following architectural choices go a long way to ensuring that clus‐
ter data and configuration is backed up, before even performing direct data backup
operations:

• Use images to bake in cluster configuration, with scripts to fill in what’s needed
at deployment time.

• Use transient clusters so that they do not accumulate essential configuration and
data.

• Store data in cloud provider storage services, pulling them into a cluster when
needed; likewise, save final results to storage services for safekeeping.

• Set up high availability.
• Use cloud provider features like availability zones and automatic failover.

After embracing some or all of these measures, you may still want an ordinary data
backup. After all, a key tenet of data security, or information assurance in general, is
defense in depth, which means setting up multiple layers of protection. In the end,
your mind may be more at ease simply knowing that, if all else fails, there’s always a
copy of your data somewhere else, safe and sound.

Backup via Imaging
A cloud provider lets you create an image of any instance. So, why not just create
images of each instance in a cluster as your backup?

274 | Chapter 18: Backup and Restoration

This can work as a backup scheme, but it has a good number of drawbacks. Among
them:

• The cluster components must be shut down, and often its instances stopped, in
order to have a stable basis for imaging.

• An image must be made of every cluster instance, because they hold unique com‐
binations of data and have unique configurations. Therefore, this technique does
not scale well to large clusters.

• On restoration, all private and public IP addresses will most likely be different, so
some reconfiguration work is still necessary. SSH access also needs to be upda‐
ted.

• The images include files from the operating system and installed software, none
of which is strictly necessary for backing up a cluster. So, a lot of space is wasted.

• Some of the data stored in the cluster may not need to be backed up, such as
checkpoint data written in the middle of a larger workflow. So, even more space
is wasted.

Few situations call for this form of cluster backup. Moving an entire cluster as is
from, say, one region to another could be accomplished in this fashion, and that may
be easier than using a selective backup scheme to manage what data needs to be
copied over. A cluster that is highly critical, and whose configuration is fragile, may
need to be backed up this way, because any other technique would be too risky.

However, it is much better not to get yourself into the position where backup via
imaging is your only option. Instead, migrate to using base images plus automation
to create clusters that can do the necessary work, and adopt transient clusters to pre‐
vent buildup of one-off configuration changes and vital data stored only in running
clusters. Rely on whole-cluster imaging only for extenuating circumstances.

HDFS Replication
A common pattern for backing up a Hadoop cluster is to maintain a disaster recovery
(DR) cluster, configured in much the same way as the original, primary cluster. The
DR cluster could serve merely as a receptacle for the data that normally resides in the
primary cluster, so that at recovery time the data must be copied back to a new opera‐
tional cluster. Alternatively, the DR cluster could be fully capable of taking over
workloads for the primary cluster, as a complete failover system.

The copying of HDFS data from one cluster to another is normally performed by the
distcp tool, which ships with Hadoop itself, and cloud clusters are no different. You
only need the IP addresses or hostnames of the namenodes in the source (primary)
and destination (DR) cluster:

HDFS Replication | 275

$ hadoop distcp hdfs://203.0.113.101:9820/datadir \
> hdfs://203.0.113.201:9820/datadir

Consult the distcp documentation for information on the available options, like
-update and -overwrite, that affect where and how files are copied over.

Network connectivity is an important factor to consider when using distcp. distcp
requires that the YARN node managers executing the copy be able to reach both the
source and destination filesystems; so, network security rules that apply to the clus‐
ters must allow the communication. It’s simplest for both clusters to reside in the
same subnet, where unrestricted connectivity is the norm. However, since this is a
backup scenario, you may wish to host the DR cluster in a separate network location,
such as a separate region, so that it’s less likely that it will experience an outage when
the primary does. If so, check the security rules, and attempt a run or two of distcp
to be sure that it works.

A related factor here is cost. Data transfer within an availability zone is generally free,
but there can be costs associated with traversing availability zones and regions. Costs
are especially important to consider if the DR cluster sits outside the cloud provider
entirely. You must strike a balance between the costs incurred for performing HDFS
replication, where the DR cluster resides, and how often replication runs. For exam‐
ple, you could replicate more often to a DR cluster hosted in a different availability
zone, but replicate to another DR cluster in a separate region less often.

Cloud Storage Filesystems
distcp takes in Hadoop filesystem URLs as arguments, so it can work with filesystem
implementations that are backed by cloud provider storage services: S3 for AWS,
Google Cloud Storage for Google Cloud Platform, and Azure Blob Storage or Azure
Data Lake Store for Azure. For example, once the s3a filesystem is installed as
described in “Configuring the S3 Filesystem” on page 158, you can back up HDFS
data to S3 directly:

$ hadoop distcp hdfs://203.0.113.101:9820/datadir s3a://mybackupbucket/datadir

This does not require a DR cluster running to work. Storage costs are significantly
lower for object storage than for the block storage associated with cluster instances,
and you also save on the cost of running the cluster instances themselves. The backup
and replication guarantees for object storage may also be stronger than for block
storage.

In the case of primary cluster failure, however, you will need to not only stand up a
new cluster, but copy the data out of object storage to it. So recovery time may be
affected. Once again, there is a balance to be achieved, based on your goals.

276 | Chapter 18: Backup and Restoration

https://hadoop.apache.org/docs/current/hadoop-distcp/DistCp.html

HDFS Snapshots
The distcp tool can take a long time to run. It needs to assemble a list of files to copy,
as well as run the mappers that take time to perform the copies. During this time,
changes can be written to HDFS, which causes inconsistency between the set of origi‐
nal files and the set of backed up files.

To avoid this problem, HDFS snapshots can be backed up instead of the live data.
The distcp tool provides some performance optimizations based on analysis of the
difference between snapshots. These can not just make the tool run faster, but also
lead it to copy less data, an advantage that directly maps to lower cost for cloud data
transfer:

initial backup as snapshot
$ hdfs dfs -createSnapshot /datadir 101
$ hadoop distcp hdfs://203.0.113.101:9820/datadir/.snapshot/101 \
> hdfs://203.0.113.201:9820/datadir
make snapshot 101 in other cluster
next backup compares snapshots
$ hdfs dfs -createSnapshot /datadir 102
$ hadoop distcp -update -diff 101 102 hdfs://203.0.113.101:9820/datadir \
> hdfs://203.0.113.201:9820/datadir

The HDFS snapshot documentation explains how to enable, perform, and manage
HDFS snapshots.

Hive Metastore Replication
HDFS data isn’t the only important data to preserve in a cluster. The Hive metastore,
which stores mapping information for tabular data accessed by Hive and other
Hadoop components, also needs to be backed up, so that those components can be
recovered without having to reconfigure them from scratch.

If you are using a local metastore, then its data is stored in HDFS, and HDFS replica‐
tion is sufficient to back it up. Otherwise, if you are using a remote metastore, then
some database server outside the cluster houses the metastore database, and it’s that
database that you must back up.

Fortunately, if you are using your cloud provider’s cloud database service to host
your remote metastore, there is not much that you need to do yourself. You don’t
need to directly manage the instance hosting the database server; in fact, it’s hidden
from you, cared for completely by the provider. Database backups, replication, and
failover are all handled as well. For cost and speed reasons, the metastore should
reside within the cloud provider anyway, so for all these reasons, you should use a
cloud database to host a Hive metastore, and delegate the work of backups.

Hive Metastore Replication | 277

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html

1 Both of these components include an audit logger in their Log4J properties.

2 There is an AzCopy utility that can perform copies to Azure Storage, but it works only on Windows.

Logs
A complete backup regime for a cluster should include saving off logs for key dae‐
mons and for applications that run alongside the cluster. With logs backed up, it
becomes easier to reconstruct whatever problems led to having to perform a restora‐
tion. Because cloud providers reclaim resources for other customers to use after you
stop using them, deep forensic analysis of failures becomes impossible without your
own log backups.

For easier analysis and reconstruction, you may also want to enable audit logging for
those components that support it, such as HDFS and Hive.1 Audit logs are more
suited for analysis and reconstruction attempts than the usual daemon logs. Consult
the documentation for each Hadoop component to learn about its auditing capabil‐
ity. Alternatively, you can deploy a separate application that supports auditing of
Hadoop clusters, and use its capability to safely store audit logs.

Logs generally do not need to be restored into clusters, so there are more options for
where they can be saved. A great choice is to use your cloud provider’s monitoring
service; see “Monitoring Choices” on page 239 for an overview. The services are effi‐
cient and include search and filter capabilities for easier analysis. “Ingesting Logs into
CloudWatch” on page 264 demonstrates how to set up AWS CloudWatch to ingest
an HDFS namenode log as an example.

Another option available in the cloud is to copy log data into an object storage ser‐
vice. You do not gain the benefits of search and monitoring, but you may save on
cost. Since logs rarely need to be analyzed, they can be sent to “cold” storage tiers,
where costs are even lower.

Suppose all of the Hadoop logs that should be saved are in /var/log/hadoop. If you are
running in AWS or Google Cloud Platform, you can use their respective CLIs to effi‐
ciently send new and updated files to a storage bucket:

AWS
$ aws s3 sync /var/log/hadoop s3://myhadooplogs
Google Cloud Platform
$ gsutil rsync -r /var/log/hadoop gs://myhadooplogs

At the time of this writing, there is no equivalent command in the Azure CLI.2 You
can use the CLI to copy individual files via the azure storage file upload com‐
mand, but this does not skip files that are unchanged. A more efficient alternative is
to use Azure File storage to mount a file share on the relevant cluster instances, and
then employ the standard rsync command to perform backups. Consult the Azure

278 | Chapter 18: Backup and Restoration

https://docs.microsoft.com/en-us/azure/storage/storage-how-to-use-files-linux

File storage for Linux documentation to learn how to create a file share and mount it
on a Linux virtual machine.

A General Cloud Hadoop Backup Strategy
Your task as the maintainer of critical Hadoop clusters is to combine the usual
options for backup with those available in the cloud into a strategy that meets the
needs of your organization and the requirements associated with the data the clusters
operate on. Every organization is different, but here are some general pointers that
can form the seed of your own strategy:

• Identify cluster data that must be backed up, distinct from transient data that can
easily be regenerated. Have jobs work with the first set in areas separate from the
second set, so that it’s easier to target backups.

• Adjust workflows for cloud clusters so that critical data needn’t reside in the
clusters for long, preferring to save long-term results in object storage services or
elsewhere. This reduces the risk of clusters failing and the need to restore back‐
ups.

• Designate destination storage for backups, either in DR clusters or object storage
services. Make sure that security rules restrict access to protect the data within
them, but also allow for backup processes to reach them and write data.

• Establish regular backups, and monitor them so they cannot silently stop work‐
ing. Use cloud services to set alarms if backups stop occurring.

• Improve the speed and reliability of the process for standing up Hadoop clusters,
using images and automation as much as possible, so that restoring from backup
takes a reasonable amount of time.

• Practice performing restoration. The time to discover that a backup is incom‐
plete or a restoration process is faulty is not when you need to restore a critical
cluster. Regular practice of restoration increases confidence in the backup strat‐
egy and leads to faster recovery times.

• Delegate backup responsibilities to cloud services where possible. Your cloud
provider has powerful backup, availability, and failover capabilities managed by
experts ready for you to use.

Not So Different, But Better
You may notice that some of the advice in this chapter, like identifying the essential
data for backup and practicing cluster restoration, is not specific to clusters running
on a cloud provider. You should employ the techniques no matter where your clus‐
ters are.

A General Cloud Hadoop Backup Strategy | 279

https://docs.microsoft.com/en-us/azure/storage/storage-how-to-use-files-linux

The key idea is that, in the cloud, there are services at your disposal that can augment
your typical practices. It’s one of the most important reasons to move your clusters to
the cloud, for it opens up a vast array of resources and versatile services that may be
difficult or impossible to create in your organization’s own data centers. You don’t
need to create a robust, resilient, geographically dispersed storage system. You don’t
need to rig up a network that is flexible to configure yet straightforward to secure.
You don’t even need to directly manage database servers. All of these responsibilities,
and more, are handled by your cloud provider. You just need to figure out how best
to take advantage of them.

This doesn’t apply just to performing backups, but to every aspect of cluster manage‐
ment. When you begin moving Hadoop clusters to the cloud, it’s natural to start with
the processes you are already familiar with, and that works. As you grow more com‐
fortable and you explore cloud provider capabilities, those processes can morph and
expand, perhaps beginning with a focused change or two, but eventually moving on
to embracing provider services to fundamentally change how you manage clusters.
This indeed can make cluster management easier and more satisfying, but it also
opens up new ways of working for your organization, so you can use clusters to
answer questions you couldn’t before, and move faster and with more confidence.

The reason to adopt a new technology then, like the cloud, is not merely to check a
box. It’s to advance to a higher state of functioning, which could be speed, or quan‐
tity, or complexity, or quality. The public cloud providers have provided the means to
get there; it’s a matter of learning about them and building on them.

To the Cloud
When you look up at a cloud, it seems simple enough, and not so mysterious. But
when you are in an airplane flying through one, you can barely see anything outside
of your window, and the ride gets bumpy. So it is with “the cloud”: It doesn’t appear
that complicated at first, but once you’re inside it, it’s easy to lose sight of where you
are and hard to figure out which way to go.

For moving your Hadoop clusters to the cloud, this book’s goal is to be like radar,
helping you discern the shape of your cloud provider and all its services, and the path
through it to get your clusters up and running. Providers are ever-changing, but with
enough experience, your piloting skills will be enough to see you through, as both
Hadoop and the cloud continue into the future.

280 | Chapter 18: Backup and Restoration

APPENDIX A

Hadoop Component Start and Stop Scripts

Some Hadoop components, like HDFS and YARN, ship with management scripts
that let you start and stop all of their component daemons or servers in one com‐
mand. Others do not. The scripts here fill those gaps.

Code is available at this book’s code repository.

Apache ZooKeeper
The script in Example A-1 starts and stops Apache ZooKeeper servers, assuming
each one is running on a worker instance in the cluster. It should be installed on the
manager instance and run under the “zk” account, or any account that has password‐
less SSH access to an account on each worker that may control ZooKeeper.

Example A-1. Control script for Apache ZooKeeper

#!/usr/bin/env bash

if [[-z $1]]; then
 echo "Syntax: $0 (start|stop|status)"
 exit
fi

Assumption is that each "slave" hosts a ZooKeeper server
SLAVES=($(cat /etc/hadoop/slaves))

case "$1" in

Hadoop Component Start and Stop Scripts | 281

https://github.com/bhavanki/moving-hadoop-to-the-cloud

 start)
 echo Starting ZooKeeper
 for s in "${SLAVES[@]}"; do
 ssh "$s" /opt/zookeeper/bin/zkServer.sh start
 done
 ;;
 stop)
 echo Stopping ZooKeeper
 for s in "${SLAVES[@]}"; do
 ssh "$s" /opt/zookeeper/bin/zkServer.sh stop
 done
 ;;
 status)
 echo Checking ZooKeeper status
 for s in "${SLAVES[@]}"; do
 ssh "$s" /opt/zookeeper/bin/zkServer.sh status
 done
 ;;
esac

Apache Hive
The scripts in Examples A-2 and A-3 start and stop the Hive server (HiveServer2)
and the Hive metastore server, respectively. They should be installed on an instance
where Hive is installed, usually a manager, under an account such as “hive” that has
permission to run Hive components. The scripts do not require any remote connec‐
tivity.

Ensure that the value of SPARK_HOME in the scripts points to a version of Spark that is
compatible with Hive.

Example A-2. Control script for Apache Hive server

#!/usr/bin/env bash

if [[-z $1]]; then
 echo "Syntax: $0 (start|stop|status)"
 exit
fi

Define enviroment variables Hive expects
export HADOOP_HOME=/opt/hadoop
export HIVE_HOME=/opt/hive
export SPARK_HOME=/opt/spark
export PATH=${HIVE_HOME}/bin:${HADOOP_HOME}/bin:$PATH
export HADOOP_CONF_DIR=/etc/hadoop

HS2_PID_DIR=/var/run/hadoop
HS2_PID_FILE="${HS2_PID_DIR}"/hs2.pid

282 | Appendix A: Hadoop Component Start and Stop Scripts

case "$1" in
 start)
 echo Starting HiveServer2
 "${HIVE_HOME}"/bin/hiveserver2 &
 PID=$!
 echo "${PID}" > "${HS2_PID_FILE}"
 echo "HiveServer2 started [${PID}]"
 ;;
 stop)
 if [[! -f "${HS2_PID_FILE}"]]; then
 echo HiveServer2 not running
 exit
 fi
 echo Stopping HiveServer2
 kill "$(cat "${HS2_PID_FILE}")"
 ;;
 status)
 if [[! -f "${HS2_PID_FILE}"]]; then
 echo Pid file for HiveServer2 not found
 exit 1
 fi
 PID=$(cat "${HS2_PID_FILE}")
 if kill -0 "${PID}" 2>/dev/null; then
 echo "HiveServer2 is running [${PID}]"
 else
 echo "HiveServer2 is not running"
 fi
 ;;
esac

Example A-3. Control script for Apache Hive metastore server

#!/usr/bin/env bash

if [[-z $1]]; then
 echo "Syntax: $0 (start|stop|status)"
 exit
fi

Define enviroment variables Hive expects
export HADOOP_HOME=/opt/hadoop
export HIVE_HOME=/opt/hive
export SPARK_HOME=/opt/spark
export PATH=${HIVE_HOME}/bin:${HADOOP_HOME}/bin:$PATH
export HADOOP_CONF_DIR=/etc/hadoop

HIVEMETA_LOG_DIR=/var/log/hive
HIVEMETA_PID_DIR=/var/run/hadoop
HIVEMETA_PID_FILE="${HIVEMETA_PID_DIR}"/hivemeta.pid
PORT=9083

case "$1" in

Hadoop Component Start and Stop Scripts | 283

 start)
 echo Starting Hive Metastore Server
 hive --service metastore -p ${PORT} > ${HIVEMETA_LOG_DIR}/metastore.log &
 PID=$!
 echo "${PID}" > "${HIVEMETA_PID_FILE}"
 echo "Hive Metastore Server started [${PID}]"
 ;;
 stop)
 if [[! -f "${HIVEMETA_PID_FILE}"]]; then
 echo Hive Metastore Server not running
 exit
 fi
 echo Stopping Hive Metastore Server
 kill "$(cat "${HIVEMETA_PID_FILE}")"
 ;;
 status)
 if [[! -f "${HIVEMETA_PID_FILE}"]]; then
 echo Pid file for Hive Metastore Server not found
 exit 1
 fi
 PID=$(cat "${HIVEMETA_PID_FILE}")
 if kill -0 "${PID}" 2>/dev/null; then
 echo "Hive Metastore Server is running [${PID}]"
 else
 echo "Hive Metastore Server is not running"
 fi
 ;;
esac

284 | Appendix A: Hadoop Component Start and Stop Scripts

APPENDIX B

Hadoop Cluster Configuration Scripts

To speed up the creation of Hadoop clusters in the cloud, you can create an image for
one or more representative cluster instances with software already installed and, for
the most part, configured. Chapter 16 describes the process. Still, there are configura‐
tion steps that can only be done once the cluster instances are running, and the
scripts here can automate the work.

A quick glance at the scripts should reveal that even this small slice of automation is
not trivial. You might consider borrowing the techniques used here and implement‐
ing them using a different scripting language or framework. Central to them is the
ability to establish SSH connections into and within the cluster, so look for frame‐
works that help in that regard, such as Fabric.

Code is available at this book’s code repository.

SSH Key Creation and Distribution
The Hadoop installation process in Chapter 9 and elsewhere includes the creation of
user accounts specific to services like HDFS, YARN, and ZooKeeper. Those accounts
can already be in place in an image, but for greater security they should be configured
with unique SSH keys, so that instances in one cluster cannot access instances in
other clusters that were built from the same image.

The Bash script in Example B-1 can be run from your local computer to orchestrate
the creation of SSH key pairs on the manager instance of a Hadoop cluster for each

Hadoop Cluster Configuration Scripts | 285

http://www.fabfile.org/
https://github.com/bhavanki/moving-hadoop-to-the-cloud

Hadoop account, and the distribution of public keys to the manager instance and
worker instances.

Example B-1. SSH key pair creation and distribution script

#!/usr/bin/env bash

Generates SSH key pairs for accounts on one instance (manager), and distributes
public keys to that instance and other instances (workers).

DEFAULT_ACCOUNTS=(ubuntu hdfs yarn zk)

usage() {
 cat << EOF
usage: $0 options manager-ips worker1-ips ...

OPTIONS:
 -a accts Accounts to configure (default ${DEFAULT_ACCOUNTS[*]})
 Specify as space-separated list, e.g., "acct1 acct2 acct3"
 -G Do not generate new SSH key pairs; use what is already available
 -i file Identity file for SSH connections to manager
 -u user User for SSH connections to manager
 -h Shows this help message

Run this script on a machine that can connect to the manager instance via SSH.
The user account on the manager instance must have passwordless sudo access.

Pass the public and private IP addresses for each instance in the cluster as
a colon-separated pair, e.g., 203.0.113.101:192.168.1.101.

EXAMPLE:
 $0 -a "hdfs yarn" -i /path/to/key.pem -u ubuntu \\
 203.0.113.101:192.168.1.101 \\
 203.0.113.102:192.168.1.102 \\
 203.0.113.103:192.168.1.103 \\
 203.0.113.104:192.168.1.104
EOF
}

ACCOUNTS=("${DEFAULT_ACCOUNTS[@]}")
DO_NOT_GENERATE=
SSH_IDENTITY=
SSH_USER=
while getopts "a:Gi:u:h" opt
do
 case $opt in
 h)
 usage
 exit 0
 ;;
 a)

286 | Appendix B: Hadoop Cluster Configuration Scripts

 ACCOUNTS=($OPTARG)
 ;;
 G)
 DO_NOT_GENERATE=1
 ;;
 i)
 SSH_IDENTITY="$OPTARG"
 ;;
 u)
 SSH_USER="$OPTARG"
 ;;
 ?)
 usage
 exit
 ;;
 esac
done
shift $((OPTIND - 1))

if (($# < 2)); then
 echo "Supply the manager private IP address and at least one worker IP address"
 usage
 exit 1
fi

if [[${#ACCOUNTS[@]} == 0]]; then
 echo "No accounts specified"
 usage
 exit 1
fi

Find manager IP addresses: "public IP:private IP"
MANAGER_PUBLIC_IP="${1%%:*}"
MANAGER_PRIVATE_IP="${1##*:}"
shift
Collect remaining IP address pairs for workers
WORKER_IPS=("$@")

NUM_WORKERS=${#WORKER_IPS[@]}
MANAGER_HOSTNAME="$(hostname --fqdn)"

echo "Manager public IP: $MANAGER_PUBLIC_IP"
echo "Manager private IP: $MANAGER_PRIVATE_IP"
echo "Manager hostname: $MANAGER_HOSTNAME"
echo "${NUM_WORKERS} worker IPs: ${WORKER_IPS[*]}"
echo "Accounts: ${ACCOUNTS[*]}"

Construct the SSH command with the provided identity file and username
SSH_CMD=(ssh)
if [[-n $SSH_IDENTITY]]; then
 SSH_CMD+=(-i "$SSH_IDENTITY")
fi

Hadoop Cluster Configuration Scripts | 287

if [[-n $SSH_USER]]; then
 SSH_CMD+=(-o "User=$SSH_USER")
fi

For each account ...
for acct in "${ACCOUNTS[@]}"; do

 # Note whether this account is the one used for SSH connections by this script
 if [[-n $SSH_USER && "$acct" == "$SSH_USER"]]; then
 issshuser=1
 else
 issshuser=
 fi

 echo
 if [[-z $DO_NOT_GENERATE]]; then
 # Generate a key pair on the manager instance using ssh-keygen
 echo "[$acct] Generating manager SSH key pair"
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" "sudo -u \"$acct\" ssh-keygen" \
 "-t rsa -b 2048 -f /home/$acct/.ssh/id_rsa -N ''"

 # Copy the new public key to the authorized_keys file on the manager
 # - If this account is the one being used by this script, then just
 # append it to authorized_keys, don't outright replace the file
 echo "[$acct] Copying public SSH key to authorized_keys on manager"
 if [[-n $issshuser]]; then
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" \
 "sudo cat /home/$acct/.ssh/id_rsa.pub | sudo -u \"$acct\"" \
 "tee -a /home/$acct/.ssh/authorized_keys > /dev/null"
 else
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" \
 "sudo cat /home/$acct/.ssh/id_rsa.pub | sudo -u \"$acct\"" \
 "tee /home/$acct/.ssh/authorized_keys > /dev/null"
 fi
 # Set the permissions for authorized_keys appropriately
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" \
 "sudo chmod 600 /home/$acct/.ssh/authorized_keys"
 else
 echo "[$acct] Skipping manager SSH key pair generation"
 fi

 # Get the new public key
 echo "[$acct] Retrieving public SSH key"
 pubkey="$("${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" \
 "sudo cat /home/$acct/.ssh/id_rsa.pub")"
 echo "[$acct] Public key contents:"
 echo "----"
 echo "$pubkey"
 echo "----"

 # For each worker ...
 for worker_ips in "${WORKER_IPS[@]}"; do

288 | Appendix B: Hadoop Cluster Configuration Scripts

 # Write the public key to the authorized_keys file on the worker, creating
 # it and its directory if necessary
 # - Again, just append to the file if the account is being used here
 worker=${worker_ips%%:*}
 echo
 echo "[$acct] Installing public SSH key on $worker"
 "${SSH_CMD[@]}" -t "${worker}" \
 "sudo -u \"$acct\" mkdir -p -m 0700 /home/$acct/.ssh"
 "${SSH_CMD[@]}" "${worker}" "cat >> /tmp/pubkey" <<< "$pubkey"
 if [[-n $issshuser]]; then
 "${SSH_CMD[@]}" -t "${worker}" "sudo cat /tmp/pubkey | sudo -u \"$acct\"" \
 "tee -a /home/$acct/.ssh/authorized_keys > /dev/null"
 else
 "${SSH_CMD[@]}" -t "${worker}" "sudo cat /tmp/pubkey | sudo -u \"$acct\"" \
 "tee /home/$acct/.ssh/authorized_keys > /dev/null"
 fi
 "${SSH_CMD[@]}" -t "${worker}" "sudo chmod 600 /home/$acct/.ssh/authorized_keys"
 "${SSH_CMD[@]}" "${worker}" "rm /tmp/pubkey"

 done

 # Connect from the manager instance to itself and each worker so that the
 # new host keys are accepted now; this avoids being asked interactively later
 echo
 echo "[$acct] Connecting to each cluster instance from manager to" \
 "accept host keys"
 if [[-n $MANAGER_HOSTNAME]]; then
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" "sudo -u \"$acct\"" \
 "ssh -o StrictHostKeyChecking=no \"$MANAGER_HOSTNAME\" date > /dev/null"
 fi
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" "sudo -u \"$acct\"" \
 "ssh -o StrictHostKeyChecking=no \"$MANAGER_PRIVATE_IP\" date > /dev/null"
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" "sudo -u \"$acct\"" \
 "ssh -o StrictHostKeyChecking=no 0.0.0.0 date > /dev/null"
 for worker_ips in "${WORKER_IPS[@]}"; do
 worker=${worker_ips##*:} # connect from manager to private IP of worker
 "${SSH_CMD[@]}" -t "${MANAGER_PUBLIC_IP}" "sudo -u \"$acct\"" \
 "ssh -o StrictHostKeyChecking=no \"$worker\" date > /dev/null"
 done

done

Configuration Update Script
The bash script in Example B-2 handles substituting cluster instance private IP
addresses for tokens placed into various Hadoop configuration files, as suggested in
“Image Preparation” on page 225. The script is run on the manager instance (and, for
HA clusters, on the second manager instance as well) and handles configuration on
that instance as well as worker instances.

Hadoop Cluster Configuration Scripts | 289

Example B-2. Hadoop configuration update script

#!/usr/bin/env bash

Configures Hadoop components on a manager instance and one or more worker
instances.

usage() {
 cat << EOF
usage: $0 options manager-ip worker-ip ...

OPTIONS:
 -d <name> Hostname of database server hosting Hive metastore
 -a <keys> AWS access key and secret access key, separated by a colon
 -H Initialize for second manager (for HA cluster)
 -m <ip> IP address of second manager (for HA cluster)
 -h Shows this help message

For an HA cluster, run this script on the first manager with -m, and then
on the second manager with -m and -H. Use the same manager IP addresses on
each manager; do not reverse them when running on the second manager.

The user account on each manager must have passwordless sudo access.
EOF
}

HIVE_DB_SERVER=
AWS_ACCESS_KEY=
AWS_SECRET_KEY=
ON_SECOND_MANAGER=
MANAGER2_IP=
while getopts "a:d:hHm:" opt
do
 case $opt in
 h)
 usage
 exit 0
 ;;
 a)
 AWS_ACCESS_KEY="${OPTARG%%:*}"
 AWS_SECRET_KEY="${OPTARG##*:}"
 ;;
 d)
 HIVE_DB_SERVER="$OPTARG"
 ;;
 H)
 ON_SECOND_MANAGER=1
 ;;
 m)
 MANAGER2_IP="$OPTARG"
 ;;
 ?)

290 | Appendix B: Hadoop Cluster Configuration Scripts

 usage
 exit
 ;;
 esac
done
shift $((OPTIND - 1))

if (($# < 2)); then
 echo "Supply the manager private IP address and at least one worker IP address"
 usage
 exit 1
fi

if [[-n $ON_SECOND_MANAGER && -z $MANAGER2_IP]]; then
 echo "When running on second manager, -m is required"
 usage
 exit 1
fi

Collect required IP addresses: manager and workers
MANAGER_IP="$1"
shift
WORKER_IPS=("$@")

NUM_WORKERS=${#WORKER_IPS[@]}

echo "Manager IP: $MANAGER_IP"
if [[-n $MANAGER2_IP]]; then
 echo "HA Manager IP: $MANAGER2_IP"
fi
echo "${NUM_WORKERS} worker IPs: ${WORKER_IPS[*]}"
echo

Replaces a ${token_string} in a file with a value
swap_in() {
 local f="$1"
 local token_name="$2"
 local repl="$3"

 local token='\${'"${token_name}"'}'

 sudo sed -i "s/${token}/${repl}/g" "$f"
}

echo
echo "Substituting IP addresses and hostnames into Hadoop configurations"
echo

Replace in core-site.xml files: manager.ip, worker<i>.ip
echo "- /etc/hadoop/core-site.xml"
swap_in /etc/hadoop/core-site.xml manager.ip "${MANAGER_IP}"
for i in $(seq 1 "$NUM_WORKERS"); do

Hadoop Cluster Configuration Scripts | 291

 w="${WORKER_IPS[$((i - 1))]}"
 swap_in /etc/hadoop/core-site.xml "worker${i}.ip" "$w"
done

Replace in yarn-site.xml files: manager.ip, manager2.ip, worker<i>.ip
echo "- /etc/hadoop/yarn-site.xml"
swap_in /etc/hadoop/yarn-site.xml manager.ip "${MANAGER_IP}"
swap_in /etc/hadoop/yarn-site.xml manager2.ip "${MANAGER2_IP}"
for i in $(seq 1 "$NUM_WORKERS"); do
 w="${WORKER_IPS[$((i - 1))]}"
 swap_in /etc/hadoop/yarn-site.xml "worker${i}.ip" "$w"
done
if [[-n $ON_SECOND_MANAGER]]; then
 # Change YARN RM HA ID to rm2 on the second manager
 sudo sed -i 's/<value>rm1</<value>rm2</' /etc/hadoop/yarn-site.xml
 echo
fi

Write slaves file based on known worker IP addresses
echo "- /etc/hadoop/slaves"
printf '%s\n' "${WORKER_IPS[@]}" | sudo tee /etc/hadoop/slaves > /dev/null

Replace in zoo.cfg files: worker<i>.ip
echo "- /opt/zookeeper/conf/zoo.cfg"
for i in $(seq 1 "$NUM_WORKERS"); do
 w="${WORKER_IPS[$((i - 1))]}"
 swap_in /opt/zookeeper/conf/zoo.cfg "worker${i}.ip" "$w"
done

Replace in hive-site.xml: manager.ip, dbserver.name
echo "- /opt/hive/conf/hive-site.xml"
if [[-z $ON_SECOND_MANAGER]]; then
 swap_in /opt/hive/conf/hive-site.xml manager.ip "${MANAGER_IP}"
else
 swap_in /opt/hive/conf/hive-site.xml manager.ip "${MANAGER2_IP}"
fi
if [[-n $HIVE_DB_SERVER]]; then
 swap_in /opt/hive/conf/hive-site.xml dbserver.name "${HIVE_DB_SERVER}"
fi

echo
echo "IP address and hostname substitutions complete"

if [[-n $AWS_ACCESS_KEY]]; then
 echo
 echo "Substituting AWS keys into Hadoop configurations"
 echo

 # Replace in core-site.xml: AWS keys
 echo "- /etc/hadoop/core-site.xml"
 swap_in /etc/hadoop/core-site.xml aws.access.key "${AWS_ACCESS_KEY}"
 swap_in /etc/hadoop/core-site.xml aws.secret.key "${AWS_SECRET_KEY}"

292 | Appendix B: Hadoop Cluster Configuration Scripts

 echo
 echo "AWS key substitutions complete"
fi

if [[-z $ON_SECOND_MANAGER]]; then
 echo
 echo "Copying configurations out to workers"
 WORKER_FILES=(/etc/hadoop/core-site.xml
 /etc/hadoop/yarn-site.xml
 /opt/zookeeper/conf/zoo.cfg)

 # Copy out configuration files to each worker
 for w in "${WORKER_IPS[@]}"; do
 echo "- $w"
 scp "${WORKER_FILES[@]}" "$w":.
 for f in "${WORKER_FILES[@]}"; do
 ssh "$w" sudo cp "$(basename "$f")" "$f"
 done
 done

 # If configuring for HA (and running on first manager), remove
 # yarn.resourcemanager.ha.id from worker copies of yarn-site.xml
 if [[-n $MANAGER2_IP]]; then
 echo
 echo "Removing YARN RM HA ID from workers"
 for w in "${WORKER_IPS[@]}"; do
 echo "- $w"
 ssh "$w" sudo sed -i \
 '/\<name\>yarn.resourcemanager.ha.id\</,/\<property\>/d' \
 /etc/hadoop/yarn-site.xml
 done
 fi

 # Create ZooKeeper myid files, assigning a unique number per worker
 echo
 echo "Creating ZooKeeper myid files on workers"
 for i in $(seq 1 "$NUM_WORKERS"); do
 w="${WORKER_IPS[$((i - 1))]}"
 echo "- $w"
 echo "$i" | ssh "$w" "sudo tee /var/lib/zookeeper/myid > /dev/null"
 done
fi

New Worker Configuration Update Script
When adding a new worker to an existing cluster, only a small amount of configura‐
tion is needed compared to what’s done for an entire new cluster. The script in
Example B-3 is a cut-down form of the previous script that works for most kinds of
new worker instances, such as those hosting an HDFS datanode or a YARN node

Hadoop Cluster Configuration Scripts | 293

manager. See “Elastic Compute Using a Custom Metric” on page 260 for how a script
like this can help implement the automatic addition of workers to a busy cluster.

Example B-3. Hadoop configuration update script for a new worker

#!/usr/bin/env bash

Configures Hadoop components on a new worker instance.

usage() {
 cat << EOF
usage: $0 new-worker-ip worker-ip ...

Run this script on a manager.
EOF
}

if (($# < 2)); then
 echo "Supply the new worker private IP address and at least one" \
 "(old) worker IP address"
 usage
 exit 1
fi

Collect required IP addresses: this worker, and other workers
NEW_WORKER_IP="$1"
shift
WORKER_IPS=("$@")
WORKER_IPS+=("$NEW_WORKER_IP")

NUM_WORKERS=${#WORKER_IPS[@]}

echo "New worker IP: $NEW_WORKER_IP"
echo "${NUM_WORKERS} worker IPs: ${WORKER_IPS[*]}"
echo

echo
echo "Substituting IP addresses and hostnames into Hadoop configurations"
echo

Rewrite slaves file based on known worker IP addresses
echo "- /etc/hadoop/slaves"
printf '%s\n' "${WORKER_IPS[@]}" | sudo tee /etc/hadoop/slaves > /dev/null

echo
echo "IP address and hostname substitutions complete"

Copy out configuration files to the new worker
echo
echo "Copying configurations out to new worker"
WORKER_FILES=(/etc/hadoop/core-site.xml

294 | Appendix B: Hadoop Cluster Configuration Scripts

 /etc/hadoop/yarn-site.xml
 /opt/zookeeper/conf/zoo.cfg)

echo "- copy to $NEW_WORKER_IP"
scp "${WORKER_FILES[@]}" "$NEW_WORKER_IP":.
for f in "${WORKER_FILES[@]}"; do
 echo "- put $f in place"
 ssh "$NEW_WORKER_IP" sudo cp "$(basename "$f")" "$f"
done

Hadoop Cluster Configuration Scripts | 295

APPENDIX C

Monitoring Cloud Clusters with Nagios

Nagios is a popular system for monitoring infrastructure. It can monitor networks,
hardware, and applications using its built-in capabilities along with a plug-in archi‐
tecture.

Nagios is more than capable of monitoring cloud clusters for you, and a great choice
if you are already familiar with the tool. It can be configured with custom checks that
work with cloud provider infrastructures, Hadoop components, or anything else you
can think of.

Code is available at this book’s code repository.

Where Nagios Should Run
As discussed in “Hadoop Daemon Status” on page 248, there are benefits and draw‐
backs for running a monitoring system within a cloud provider or outside it. These
considerations apply to where Nagios runs as well. If you opt to run Nagios outside
the cloud provider and outside a VPN with privileged access to the network where
the Hadoop cluster runs, you must then loosen security rules to permit Nagios to
reach all of the ports necessary for effective cluster monitoring. Also, unless you
assign static public IP addresses to your instances, you will need to edit the Nagios
configuration as those addresses change over time.

Monitoring Cloud Clusters with Nagios | 297

https://www.nagios.org/
https://github.com/bhavanki/moving-hadoop-to-the-cloud

Instance Existence Through Ping
Nagios normally checks if instances exist by attempting to ping them. The security
rules set up in your cloud provider may block ping traffic, especially if it is running
outside the cloud provider. You have the option of redefining the standard existence
check, but you could instead simply permit ping traffic from where Nagios runs.

For EC2 instances running in AWS, add a new inbound rule to the security group
containing the cluster to permit pings to enter:

• Type: Custom ICMP Rule (IPv4)
• Protocol: Echo Request
• Port Range: N/A
• Source: An appropriate IP range to cover your Nagios installation

The default firewall rules set up in Google Cloud Platform include one that permits
ICMP traffic. Edit the rule if necessary to cover your Nagios installation.

Azure as a whole disallows all ICMP traffic, so pinging a virtual machine in Azure
from an outside location such as the internet is not possible. The alternative is to set
up a service listening on a TCP or UDP port and check for a response from that port
instead. In the host definition for each Azure virtual machine, specify a command for
the check_command value that itself uses either check_tcp or check_udp to attempt to
connect to your chosen port.

For example, if you choose TCP port 55555 as the port to check, first add a new
inbound security rule to the network security group containing the cluster to permit
TCP traffic over that port:

• Source: A CIDR block with an appropriate IP range covering your Nagios instal‐
lation

• Service: Custom
• Protocol: TCP
• Port range: 55555
• Action: Allow

Set up a service listening on port 55555 on each Azure instance. You have many
options here, and perhaps the simplest is to use netcat, which can listen on a TCP
port for arbitrary traffic. The -k option allows netcat to continue running after each
connection from Nagios, instead of terminating after the first one:

nc -k -l 55555 > /dev/null &

298 | Appendix C: Monitoring Cloud Clusters with Nagios

With this command running on a virtual machine, the following check_command in
its host definition will configure Nagios to check port 55555 to verify that the
instance is up, instead of pinging it:

check_command check_tcp!55555

A functioning TCP port check is shown in Figure C-1.

Figure C-1. Checking TCP port connectivity in Nagios for an Azure VM

Hosts and Host Groups
Create a host definition in Nagios for each instance in the Hadoop cluster. As usual,
prefer using the private IP address for each instance for security and performance
reasons. For ease of tracking, use the cloud provider’s name for each instance for the
host_name and/or alias of its corresponding host definition.

Every instance in the cluster can be corralled into a single host group representing the
cluster. It is also helpful to create host groups for each instance role (see “General
Cluster Instance Roles” on page 188) since each role has common characteristics and
performance expectations; this makes it easier to target service checks appropriately.
For example, if a host group covers all of the worker instances in a cluster, then ser‐
vice checks concerning HDFS datanode disk usage or YARN node manager utiliza‐
tion can be targeted only at those instances.

Nagios allows you to define custom variables for objects. To support service checks
involving the cloud provider, define custom variables for each host to convey
provider-specific identification.

Here is an example of host and host group definitions for a small Hadoop cluster on
AWS. The custom variable _INSTANCEID holds the EC2 instance ID for each instance:

define host {
 use linux-server
 host_name manager
 alias manager
 address 203.0.113.101
 _INSTANCEID i-12345678901234567
 }

define host {
 use linux-server
 host_name worker1
 alias worker1
 address 203.0.113.102
 _INSTANCEID i-23456789012345678

Monitoring Cloud Clusters with Nagios | 299

}

define host {
 use linux-server
 host_name worker2
 alias worker2
 address 203.0.113.103
 _INSTANCEID i-34567890123456789
}

define host {
 use linux-server
 host_name worker3
 alias worker3
 address 203.0.113.104
 _INSTANCEID i-45678901234567890
}

define hostgroup {
 hostgroup_name mycluster
 alias My Cluster
 members manager,worker1,worker2,worker3
}

define hostgroup {
 hostgroup_name mycluster_workers
 alias My Cluster Workers
 members worker1,worker2,worker3
}

Figure C-2 shows how the defined host groups appear in the Nagios web interface.

Figure C-2. Host groups for a Hadoop cluster in Nagios

Services and Service Groups
The usual Nagios checks for system health apply to cloud cluster instances. To check
on the health of Hadoop daemons, the check_tcp service check works in a similar
fashion to netcat for determining if a daemon is listening on a port. For example, to
verify that a namenode is running, check on port 8020:

300 | Appendix C: Monitoring Cloud Clusters with Nagios

define service {
 use generic-service
 host_name manager
 service_description HDFS Namenode
 servicegroups HDFS
 check_command check_tcp!8020
}

A service group can collect together all of the service checks relevant to a Hadoop
component, so that it is possible to assess the overall health of that component in one
spot. Example service groups for a few Hadoop components are shown in Figure C-3.

Figure C-3. Service groups for a Hadoop cluster in Nagios

Provider CLI Integration
It is not difficult to define your own scripts for use as Nagios plug-ins. Such a script
can perform a specific call to the provider based on host information, interpret the
results, and then return one of the expected exit codes that Nagios interprets as the
outcome of the service check.

Nagios requires a functioning CLI installation to use such scripts, which implies that
Nagios has access to credentials for an account on the cloud provider. It’s therefore
important to restrict the permissions on the account, in the event that the credentials
are compromised, and also to prevent badly behaving Nagios plug-ins from interfer‐
ing with cluster operations.

Suppose that a Hadoop cluster is running in AWS, and you want a Nagios service
check that looks at the instance status of each host. Start by creating a script that uses
the describe-instance-status command to retrieve the status information. The
command requires an instance ID, and so Nagios can pass that information from the
custom variable associated with the host being checked. In Example C-1, the host is
passed as an ordinary script argument.

Monitoring Cloud Clusters with Nagios | 301

Example C-1. A Nagios script for checking the status of an EC2 instance

#!/usr/bin/env bash

usage() {
 cat << EOF
usage: $0 options instance-id

OPTIONS:
 -p <profile> AWS profile (no default)
 -h Shows this help message
EOF
}

PROFILE=

while getopts "p:h" opt
do
 case $opt in
 h)
 usage
 exit 3 # UNKNOWN
 ;;
 p)
 PROFILE="$OPTARG"
 ;;
 ?)
 usage
 exit 3 # UNKNOWN
 ;;
 esac
done
shift $((OPTIND - 1))

INSTANCE_ID="$1"

CMD=(aws)
if [[-n $PROFILE]]; then
 CMD+=(--profile "$PROFILE")
fi
CMD+=(ec2 describe-instance-status "--instance-id=${INSTANCE_ID}"\
 --include-all-instances --query 'InstanceStatuses[0].InstanceStatus.Status')

status=$("${CMD[@]}")
echo "Instance $INSTANCE_ID status: $status"

if [[$status == "\"ok\""]]; then
 exit 0 # OK
else
 exit 1 # WARNING
fi

302 | Appendix C: Monitoring Cloud Clusters with Nagios

This script uses the --query option of the AWS CLI to isolate the instance status
from the JSON returned by the command.

Place this script somewhere where Nagios can call it. Then, define a command for
running the script, passing in the instance ID from the custom variable associated
with the host using a custom variable macro:

define command {
 command_name check_aws_instance_status
 command_line /path/to/check_aws_instance_status -p $ARG1$ $_HOSTINSTANCEID$
}

Finally, add a service definition using the new check for the cluster instances. You
can use the host group covering the entire cluster:

define service {
 use generic-service
 hostgroup_name mycluster
 service_description AWS Instance Status
 check_command check_aws_instance_status!myprofile
}

Be sure to set the interval for provider CLI checks to a reasonable value. If Nagios
performs too many calls, the provider may begin to enforce rate limiting and deny
some calls, leading to spurious warnings from Nagios.

A functioning instance status check is shown in Figure C-4.

Figure C-4. AWS instance status check in Nagios

Monitoring Cloud Clusters with Nagios | 303

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/macros.html

Index

A
ACLs, 40-42
alarms

metric filter alarm creation, 268-271
setting on a custom metric, 258
triggering autoscaling with, 262

allow rules, 38
Amazon EC2 (see EC2)
Amazon Machine Image (AMI), 66, 224
Amazon RDS (see RDS)
Amazon S3 (see S3)
Amazon Web Services (see AWS)
Apache Hive (see Hive)
Apache Spark (see Spark)
Apache ZooKeeper (see ZooKeeper)
APIs, for object access, 51
automation, cloud cluster creation, 236-238

(see also images)
autoscaling

custom metric for computing capacity, 260
prerequisites for, 261
removing unneeded instances, 263
triggering with an alarm action, 262
with custom metrics, 260-263

availability sets, 24
availability zones

instances and, 23
network topologies and, 211-213
pricing/performance considerations, 195
role in high availability, 126

AWS (Amazon Web Services)
availability zones, 33
block storage in, 48
CLI, 242

cloud relational databases in, 56
CloudWatch (see CloudWatch)
cluster setup in AWS EC2 (see under EC2)
EMR, 9
free tier, 66
Hive remote metastore setup, 151
Hive tables with, 158-165
image creation, 228
image deletion, 233
image use, 231
Kinesis (see Kinesis)
network ACL rules, 40-42
object storage in, 52

(see also S3)
overview, 13
prerequisites for cluster setup, 63
reachability checks, 246
routing in, 36
securing instances, 71
security groups, 39
security rules, 39-42
spot instances, 26
SSH keys, 65
subnets in, 33
system monitoring by, 250
VPCs, 31

AWS IAM (Identity and Access Management)
creating a custom policy, 264
creating a new user in, 162

Azure
allocating/launching virtual machines,

96-103
availability sets, 24
block storage in, 49

Index | 305

CLI, 244
cloud relational databases in, 57
cluster setup in, 87-103
free trial, 87
Hive remote metastore setup, 151
Hive tables with, 165
image composition, 225
image creation, 231
image deletion, 234
image use, 231
instance existence checking, 298
network security rules, 44
object storage in, 53
overview, 15
peered networks, 32
prerequisites for cluster setup, 87
reachability checks, 246
resource creation, 90-95
resource group creation, 89-90
routing in, 37
securing instances, 103
SSH keys, 96
stopped instances, 25
subnets in, 34
system monitoring by, 252

Azure Blob Storage, 53
Azure CLI, 231, 244
Azure Cosmos DB, 58
Azure Data Lake Store (ADLS), 10, 49, 121, 165
Azure Event Hubs, 183
Azure File Storage, 49
Azure Monitor, 241
Azure SQL Database, 57

B
backup, 273-280

general strategy for, 279
HDFS replication, 275-277
logs, 278
patterns to supplement, 273
via imaging, 274

bastion, security practices for, 201
blobs, 54
block storage, 47-49

in AWS, 48
in Azure, 49
in Google Cloud Platform, 48
persistent vs. ephemeral, 190

buckets, 50

builders (Packer), 235

C
capacity, custom metric for, 260
CDH, 236
CIDR notation, 29
CLIs (for performance monitoring)

AWS, 242
Azure, 244
cloud providers, 241-245
data formatting for CLI results, 245
Google Cloud Platform, 242
Nagios and, 301-303

cloud (defined), 3
cloud NoSQL databases, 58
cloud providers, 8-11

(see also specific providers)
Amazon Web Services, 13
choosing, 16
CLI interfaces for monitoring, 241-245
cluster access to, 209-211
daemon status monitoring, 248
data formatting for CLI results, 245
Google Cloud Platform, 14
Hadoop-like services, 10
Microsoft Azure, 15
monitoring services, 240
overview and comparisons, 13-17
reachability checks using provider CLI, 246

cloud relational databases, 55-58
about, 55
Azure Cosmos DB, 58
Google Cloud Spanner, 57
in AWS, 56
in Azure, 57
in Google Cloud Platform, 56

Cloudera Director, 236
CloudWatch

about, 240
AWS system monitoring by, 250
basic metrics, 253
creating an IAM user for log streaming, 264
custom metric for compute capacity, 260
custom monitoring metrics in, 253-259
defining a custom metric, 254
elastic compute using a custom metric,

260-263
ingesting logs into, 264-271
installing agent, 265

306 | Index

metric filter alarm creation, 268-271
metric filter creation, 267
setting an alarm on a custom metric, 258
submitting usage information to, 255-258
triggering autoscaling with an alarm action,

262
clusters

automated creation, 236-238
cloud-only vs. hybrid, 220
configuration scripts, 285-294
elastic, 217
failure management strategies (see high

availability)
general system management tools, 237
images for management of (see images)
long-running vs. transient, 215-218
monitoring with Nagios, 297-303
self-service vs. managed, 219
setting up in AWS EC2, 63-72
setting up in Azure, 87-103
setting up in Google Cloud Platform, 73-85
single-user vs. multitenant, 218
standing up a (see standing up a cluster)
stopping/starting, 192-193
topologies, 204-211
usage patterns (see usage patterns)

compute instance types, 188
computing capacity, custom metric for, 260
cost (see pricing)
custom metrics

autoscaling with, 260-263
in CloudWatch, 253-259

D
daemons

for HA, 130-137
status monitoring, 248-250

data objects, 51
default tag, 44
deny rules, 38
disaster recovery (DR) cluster, 275
distcp tool, 275
DNS hostname

private, 32
public, 33
use in Hadoop configuration files, 32

E
EC2 (Elastic Compute Cloud)

allocating/launching instances, 65-71
images, 224
instance existence checking, 298
reachability checks, 246
spot instances, 26
SSH keys, 65

Elastic Block Storage (EBS), 48
elastic clusters, 217
Elastic MapReduce (EMR), 9
elastic pools, 57
endpoint, S3, 164
ephemeral storage, 47, 190

F
failure management strategies (see high availa‐

bility)
fair scheduler, 172
fault domains, 24
firewall rules, 42-44, 84-85

G
gateway instance, 189, 207
GCE (Google Compute Engine), 73

allocating/launching instances, 75-83
image composition, 225
instance existence checking, 298
preemptible instances, 26
reachability checks, 246
SSH keys, 75-76

general-purpose instance types, 188
geographic distribution (see regions)
Google Cloud Dataproc, 10
Google Cloud Platform

allocating/launching instances, 75-83
availability zones, 33
block storage in, 48
CLI, 242
cloud relational databases in, 56
cluster setup in, 73-85
creating a project, 74
Hive remote metastore setup, 151
Hive tables with, 165
image creation, 229
image deletion, 233
image use, 231
instance existence checking, 298
network security rules, 42-44
object storage in, 53
overview, 14

Index | 307

preemptible instances, 26
prerequisites for cluster setup, 73
reachability checks, 246
routing in, 37
securing instances, 84-85
SSH keys, 75-76
subnets in, 33
system monitoring by, 251-252

Google Cloud Pub/Sub, 183
Google Cloud Spanner, 57
Google Cloud SQL, 56
Google Cloud Storage, 53
Google Compute Engine (GCE) (see GCE)

H
HA (see high availability)
Hadoop in the cloud

basics, 3-11
defined, 4
hybrid cloud architecture, 8
reasons not to run, 7
reasons to run, 5
security issues, 7
solutions from cloud providers, 8-11

HDCloud (Hortonworks Data Cloud), 236
HDFS

adding new daemons for HA, 130-137
and cloud storage filesystems, 276
configuration environment, 108-110
HA configuration for, 126
replication as backup strategy, 275-277
snapshots, 277
XML configuration files, 110

HDInsight, 10
HDP (Hortonworks Data Platform), 10, 236
high availability (HA), 125-143

adding new HDFS and YARN daemons,
130-137

availability zones, 212
benchmarking, 139-143
configuring for HDFS, 126
configuring for YARN, 128
datanodes, 127
HDFS configuration, 131-135
improving the HA configuration, 138
planning in the cloud, 126-128
second manager instance, 130
testing, 137
variables affecting cluster performance, 142

YARN configuration, 135-137
ZooKeeper installation/configuration,

128-130
Hive

Azure and, 165
configuring on Spark, 171-173
control scripts, 158
Google Cloud Platform and, 165
installing and configuring, 146-148
on S3, 158-165

(see also S3)
planning for cloud deployment, 145
relational data with, 145-166
Spark libraries for, 171
startup, 149
switching to remote metastore, 150-157
switching YARN to fair scheduler, 172
test queries, 149
transient clusters and, 165
trying out Hive on Spark on YARN, 172

Hive metastore, 147, 150-157
replication as backup strategy, 277

Hortonworks Data Cloud (HDCloud), 236
Hortonworks Data Platform (HDP), 10
hybrid cloud, 8, 220

I
images, 27

automated cloud cluster creation as alterna‐
tive to, 236-238

automated creation with Packer, 234-236
backup via, 274
composition in Azure, 225
composition in EC2, 224
composition in GCE, 225
creation, 228-231
creation in AWS, 228
creation in Azure, 231
creation in Google Cloud Platform, 229
deletion, 233
deletion in AWS, 233
deletion in Azure, 234
deletion in Google Cloud Platform, 233
for cluster management, 223-238
limitations of, 238
maintenance, 232
preparation, 225-228
structure, 224
tools vs., 238

308 | Index

use in AWS, 231
use in Azure, 231
use in Google Cloud Platform, 231

inbound rules, 38
instance template, 81
instances, 21-27

about, 21
allocating/launching in Azure, 96-103
allocating/launching in EC2, 65-71
allocating/launching in GCE, 75-83
availability zones, 23
basic roles in clusters, 188-190
configuration update script, 289
control, 24
creation in EC2, 65-71
creation in Google Cloud Platform, 77-83
criteria for choosing types, 188
gateway instances, 207
image preparation, 225-228
images, 27
manager instance, 189
monitoring existence of, 245, 298
monitoring reachability of, 246
preemptible (GCE), 26
pricing/performance factors, 187-190
reachability monitoring, 246
regions, 23
securing in Azure, 103
securing in EC2, 71
securing in GCE, 84-85
spot (EC2), 26
temporary, 25-27, 193
terminating, 25
types, 22
virtual machines vs., 21
worker instances, 189

Internet, cluster access to, 209-211
IP addresses

in CIDR notation, 30
private, 30
public, 32
security rules and, 207
use in Hadoop configuration files, 32

J
Java, 105
JDK, 105

K
key pair, 65

(see also SSH keys)
Kinesis, 174-183

creating a stream, 174
equivalent Google Cloud Platform/Azure

services, 183
populating stream with data, 176-178
Spark streaming from, 174-183
streaming data into Spark, 178-183

L
logs

as part of backup strategy, 278
CloudWatch metric filter alarm creation,

268-271
CloudWatch metric filter creation, 267
creating an IAM user for log streaming, 264
ingesting into CloudWatch, 264-271
installing CloudWatch agent, 265
monitoring and, 240

long-running clusters
defined, 215
transient clusters vs., 215-218

M
managed clusters, 219
manager instance

Azure, 96-102
defined, 189
EC2, 65-70
Google Cloud Platform, 77-81
second instance for HA, 130

MapReduce
for analyzing small data export, 116-120
in cluster, 113
MRBench and, 140
Spark as alternative to, 167
Terasort and, 141

metric filter, CloudWatch
alarm for, 268-271
creating, 267

Microsoft Azure (see Azure)
monitoring, 239-271

AWS CLI for, 242
Azure CLI for, 244
cloud cluster monitoring with Nagios,

297-303

Index | 309

cloud provider CLI interfaces for, 241-245
cloud provider services for, 240
creating your own service for, 241
custom metrics in CloudWatch, 253-259
elastic compute using a custom metric,

260-263
Google Cloud Platform CLI for, 242
Hadoop daemon status, 248-250
ingesting logs into CloudWatch, 264-271
instance existence, 245, 298
instance reachability, 246
scripting and, 252
Stackdriver, 251-252
system choices for, 239
system load, 250
system monitoring by Azure, 252
what to monitor, 245-253

MRBench, 140
multitenant clusters, 218

N
Nagios

cloud cluster monitoring, 297-303
host and host groups, 299
instance existence checking, 298
provider CLI integration, 301-303
services and service groups, 300
where to run, 297

network ACL rules, 40-42
network address translation (NAT) gateway,

210
network address translation (NAT) instance,

210
network security groups, 44
network topologies, 197-213

availability zones, 211-213
cluster access to Internet/cloud provider

services, 209-211
cluster topologies, 204-211
gateway instances, 207
geographic considerations, 211-213
private cluster, 208
public cluster, 204
public/private subnets, 197-204
regions, 211
secured public cluster, 205-207
SOCKS proxy server, 201-203
SSH tunneling, 199-201
starting topologies, 213

VPN access, 203
networking, 29-46

CIDR notation, 29
combining with security, 45
routing, 34-38
security rules, 38-45
virtual networks, 30-33

new worker configuration update script, 293
next hop, 37
NoSQL databases (see cloud NoSQL databases)

O
object access, 51
object storage, 49-55

accessing objects in, 51
basics, 49
buckets, 50
containers (Azure), 50
data objects, 51
in AWS, 52
in Azure, 53
in Google Cloud Platform, 53

on-premise clusters, 4
Oracle JDK, 105
outbound rules, 38

P
Packer, 234-236
page blobs, 49
peered networks, 32
per-team clusters, 218
performance (see pricing and performance)
persistent disks, 48
persistent storage, 47, 190
port scanners, 206
preemptible instances, 26
pricing and performance, 187-196

as reason not to run Hadoop in the cloud, 7
availability zones, 195
cloud provider selection, 17
cluster usage patterns, 221
geographic considerations, 195
instance types and, 187-190
persistent vs. ephemeral block storage, 190
regions, 195
stopping/starting entire clusters, 192-193
temporary instances, 193

private cloud, 4
private cluster, 208

310 | Index

private DNS, 32
private subnet, 36, 198
provisioners (Packer), 235
public cloud, 4
public cluster, 204
public DNS hostname, 33
public IP addresses, 32
public subnet, 36, 198

Q
Qubole Data Service (QDS), 237
Quorum Journal Manager, 126

R
RDS (Relational Database Service), 56

hosting remote Hive metastore, 151
reachability monitoring, 246
regions

defined, 23
factors in selecting, 23
instances and, 23
network topologies and, 211
pricing/performance considerations, 195
virtual networks and, 33

relational data (see Hive)
Relational Database Service (RDS) (see RDS)
relational databases (see cloud relational data‐

bases)
remote metastore, Hive, 150-157
resource group (Azure), 89-90
resources (Azure), 90-95
restoration (see backup)
route collection, 37
routing, 34-38

AWS, 36
Azure, 37
Google Cloud Platform, 37

routing table, 35

S
S3 (Simple Storage Service)

adding data to, 159
configuring authentication for, 161-163
configuring endpoint, 164
eventual consistency, 158
external Hive table in, 164
filesystem configuration, 158
Hive on, 158-165

scripts
cluster configuration, 285-294
configuration update, 289
for monitoring, 252
new worker configuration update, 293
SSH key creation/distribution, 285
start/stop, 281

secured public cluster, 205-207
security, 45

(see also network topologies)
in the cloud, 7
securing instances in AWS EC2, 71
securing instances in Azure, 103
securing instances in GCE, 84-85

security groups, AWS, 39
security rules (for networking), 38-45

allow vs deny, 38
AWS, 39-42
Azure, 44
Google Cloud Platform, 42-44
inbound vs. outbound, 38

self-service clusters, 219
service tier (Azure), 57
Simple Storage Service (see S3)
single-user clusters, 218
snapshots

HDFS, 277
of volumes in block storage, 48

SOCKS proxy server, 201-203
Spark

configuring Hive on, 171-173
installing and configuring, 168
planning for cloud deployment, 167
running on YARN, 167
startup, 169
streaming from AWS Kinesis, 174-183
streaming in the cloud with, 167-183
test jobs, 170
trying out Hive on Spark on YARN, 172

Spark Streaming, 174-183
spot instances, 26, 194
SSH keys

creation/distribution scripts, 285
generating for Azure, 96
generating for EC2, 65
generating for GCE, 75-76
image security and, 226
passwordless, 106

SSH tunneling, 199-201

Index | 311

Stackdriver
about, 240
Google Cloud Platform system monitoring,

251-252
standing up a cluster, 105-122

analyzing a small export, 115-120
Hadoop accounts for, 106
Hadoop installation, 107
HDFS and YARN configuration, 108-112
JDK, 105
memory configuration, 114
passwordless SSH for, 106
running a test job, 113
running basic data loading/analysis,

115-120
running large data loading/analysis, 121-122
SSH tunneling, 112
startup, 112
Wikipedia exports for data loading/analysis,

115
XML configuration files, 110

start/stop scripts, 281
stopped clusters, 192-193

Hive remote metastore and, 157
pricing and performance, 192-193

storage, 47-59
block storage, 47-49
cloud NoSQL databases, 58
cloud relational databases, 55-58
object storage, 49-55

storage account (Azure), 54
storage class, 51
storage instance types, 188
streaming, with Apache Spark (see Spark)
subnets

access from other subnets, 204
location, 33
location in virtual network, 33
public/private, 197-204
SOCKS proxy server, 201-203
SSH tunneling, 199-201
virtual networks and, 30-32
VPN access, 203

system load monitoring, 250
system routes (Azure), 37

T
temporary instances, 25-27, 193

adding to cluster automatically, 260

and removal of unneeded instances, 263
preemptible instances, 26
spot instances, 26, 194

Terasort, 141
tools, for automated cloud cluster creation,

236-238
Cloudera Director, 236
general system management tools, 237
HDCloud, 236
images vs., 238
QDS, 237

transient clusters
and backup, 273
defined, 216
long-running clusters vs., 215-218
off-cluster storage, 165

U
URLs, for object access, 52
usage patterns, 215-222

cloud-only vs. hybrid, 220
cost factors, 221
long-running vs. transient, 215-218
self-service vs. managed, 219
single-user vs. multitenant, 218

V
Virtual Hard Disks (VHDs), 49
virtual hard disks (VHDs), 225
virtual machines, 21

(see also instances)
Azure, 96-103

virtual networks
about, 30-33
private DNS and, 32
public IP addresses and DNS hostname, 32
regions and, 33
subnet location, 33

Virtual Private Clouds (VPCs), 31
Virtual Private Networks (VPNs), 203

W
worker instances

Azure, 103
configuration update script, 293
defined, 189
EC2, 71
Google Cloud Platform, 81-83

312 | Index

Y
YARN

adding new daemons for HA, 130-137
configuration environment, 108-110
configuration when standing up a cluster,

108-112
HA configuration, 135-137
HA enabling, 128
running Spark on, 167

switching to fair scheduler, 172
trying out Hive on Spark on YARN, 172
XML configuration files, 110

Z
ZooKeeper

installation/configuration for HA, 128-130
start/stop scripts, 281

Index | 313

About the Author
Bill Havanki is a software engineer working for Cloudera, where he has contributed
to Hadoop components as well as systems for deploying Hadoop clusters into public
Cloud services. Prior to joining Cloudera he worked for 15 years developing software
for government contracts, focusing mostly on analytic frameworks and authentica‐
tion and authorization systems. He earned his B.S. in Electrical Engineering from
Rutgers University and his M.S. in Computer Engineering from North Carolina State
University. A New Jersey native, he currently lives near Annapolis, Maryland with his
family.

Colophon
The animal on the cover of Moving Hadoop to the Cloud is a southern reedbuck
(Redunca arundinum).

Southern reedbucks are typically found in southern Africa. They inhabit areas of tall
grass near a source of water. The grass offers camouflage from predators such as
lions, leopards, cheetahs, spotted hyenas, pythons, and crocodiles. Being herbivores,
the tall grass also provides sustenance. Southern reedbucks need to drink water at
least every few days, which is not typical for species in this arid region of Africa.

An elegant antelope, southern reedbucks have distinctive dark lines running down
the front of their forelegs and lower hind legs. The color of their coat ranges between
light- and greyish-brown and their underparts are white. Only the males bear
forward-curving horns, about 35–45 cm (14–18 in) long.

The southern reedbuck is monogamous, a pair inhabits a territory that is defended by
the male from other males. A single calf is born after a gestation period of around
eight months and remains hidden in the dense grass for the next two months. During
this period, the female does not stay with her young but instead visits it for 10 to 30
minutes each day. This antelope has an average lifespan of ten years.

The southern reedbuck makes a number of characteristic noises, including a shrill
whistle through the nostrils, a clicking noise to alert others about danger, and a dis‐
tinctive “popping” sound, caused by the inguinal glands, heard when the southern
reedbuck jumps.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	What You Should Already Know
	What This Book Leaves Out
	How This Book Works
	Which Software Versions This Book Uses
	Conventions Used in This Book
	IP Addresses

	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Part I. Introduction to the Cloud
	Chapter 1. Why Hadoop in the Cloud?
	What Is the Cloud?
	What Does Hadoop in the Cloud Mean?
	Reasons to Run Hadoop in the Cloud
	Reasons to Not Run Hadoop in the Cloud
	What About Security?

	Hybrid Clouds
	Hadoop Solutions from Cloud Providers
	Elastic MapReduce
	Google Cloud Dataproc
	HDInsight
	Hadoop-Like Services
	A Spectrum of Choices

	Getting Started

	Chapter 2. Overview and Comparison of Cloud Providers
	Amazon Web Services
	References

	Google Cloud Platform
	References

	Microsoft Azure
	References

	Which One Should You Use?

	Part II. Cloud Primer
	Chapter 3. Instances
	Instance Types
	Regions and Availability Zones
	Instance Control
	Temporary Instances
	Spot Instances
	Preemptible Instances

	Images
	No Instance Is an Island

	Chapter 4. Networking and Security
	A Drink of CIDR
	Virtual Networks
	Private DNS
	Public IP Addresses and DNS

	Virtual Networks and Regions
	Routing
	Routing in AWS
	Routing in Google Cloud Platform
	Routing in Azure

	Network Security Rules
	Inbound Versus Outbound
	Allow Versus Deny
	Network Security Rules in AWS
	Network Security Rules in Google Cloud Platform
	Network Security Rules in Azure

	Putting Networking and Security Together
	What About the Data?

	Chapter 5. Storage
	Block Storage
	Block Storage in AWS
	Block Storage in Google Cloud Platform
	Block Storage in Azure

	Object Storage
	Buckets
	Data Objects
	Object Access
	Object Storage in AWS
	Object Storage in Google Cloud Platform
	Object Storage in Azure

	Cloud Relational Databases
	Cloud Relational Databases in AWS
	Cloud Relational Databases in Google Cloud Platform
	Cloud Relational Databases in Azure

	Cloud NoSQL Databases
	Where to Start?

	Part III. A Simple Cluster in the Cloud
	Chapter 6. Setting Up in AWS
	Prerequisites
	Allocating Instances
	Generating a Key Pair
	Launching Instances

	Securing the Instances
	Next Steps

	Chapter 7. Setting Up in Google Cloud Platform
	Prerequisites
	Creating a Project
	Allocating Instances
	SSH Keys
	Creating Instances

	Securing the Instances
	Next Steps

	Chapter 8. Setting Up in Azure
	Prerequisites
	Creating a Resource Group
	Creating Resources
	SSH Keys
	Creating Virtual Machines
	The Manager Instance
	The Worker Instances

	Next Steps

	Chapter 9. Standing Up a Cluster
	The JDK
	Hadoop Accounts
	Passwordless SSH
	Hadoop Installation
	HDFS and YARN Configuration
	The Environment
	XML Configuration Files
	Finishing Up Configuration

	Startup
	SSH Tunneling
	Running a Test Job
	What If the Job Hangs?

	Running Basic Data Loading and Analysis
	Wikipedia Exports
	Analyzing a Small Export

	Go Bigger

	Part IV. Enhancing Your Cluster
	Chapter 10. High Availability
	Planning HA in the Cloud
	HDFS HA
	YARN HA

	Installing and Configuring ZooKeeper
	Adding New HDFS and YARN Daemons
	The Second Manager
	HDFS HA Configuration
	YARN HA Configuration

	Testing HA
	Improving the HA Configuration
	A Bigger Cluster
	Complete HA
	A Third Availability Zone?

	Benchmarking HA
	MRBench
	Terasort
	Grains of Salt

	Chapter 11. Relational Data with Apache Hive
	Planning for Hive in the Cloud
	Installing and Configuring Hive
	Startup
	Running Some Test Hive Queries
	Switching to a Remote Metastore
	The Remote Metastore and Stopped Clusters

	Hive Control Scripts
	Hive on S3
	Configuring the S3 Filesystem
	Adding Data to S3
	Configuring S3 Authentication
	Configuring the S3 Endpoint
	External Table in S3

	What About Google Cloud Platform and Azure?
	A Step Toward Transient Clusters
	A Different Means of Computation

	Chapter 12. Streaming in the Cloud with Apache Spark
	Planning for Spark in the Cloud
	Installing and Configuring Spark
	Startup
	Running Some Test Jobs
	Configuring Hive on Spark
	Add Spark Libraries to Hive
	Configure Hive for Spark
	Switch YARN to the Fair Scheduler
	Try Out Hive on Spark on YARN

	Spark Streaming from AWS Kinesis
	Creating a Kinesis Stream
	Populating the Stream with Data
	Streaming Kinesis Data into Spark

	What About Google Cloud Platform and Azure?
	Building Clusters Versus Building Clusters Well

	Part V. Care and Feeding of Hadoop in the Cloud
	Chapter 13. Pricing and Performance
	Picking Instance Types
	The Criteria
	General Cluster Instance Roles

	Persistent Versus Ephemeral Block Storage
	Stopping and Starting Entire Clusters
	Using Temporary Instances
	Geographic Considerations
	Regions
	Availability Zones

	Performance and Networking

	Chapter 14. Network Topologies
	Public and Private Subnets
	SSH Tunneling
	SOCKS Proxy
	VPN Access
	Access from Other Subnets

	Cluster Topologies
	The Public Cluster
	The Secured Public Cluster
	Gateway Instances
	The Private Cluster
	Cluster Access to the Internet and Cloud Provider Services

	Geographic Considerations
	Regions
	Availability Zones

	Starting Topologies
	Higher-Level Planning

	Chapter 15. Patterns for Cluster Usage
	Long-Running or Transient?
	Single-User or Multitenant?
	Self-Service or Managed?
	Cloud-Only or Hybrid?
	Watching Cost
	The Rising Need for Automation

	Chapter 16. Using Images for Cluster Management
	The Structure of an Image
	EC2 Images
	GCE Images
	Azure Images

	Image Preparation
	Wait, I’m Using That!

	Image Creation
	Image Creation in AWS
	Image Creation in Google Cloud Platform
	Image Creation in Azure

	Image Use
	Scripting Hadoop Configuration

	Image Maintenance
	Image Deletion
	Image Deletion in AWS
	Image Deletion in Google Cloud Platform
	Image Deletion in Azure

	Automated Image Creation with Packer
	Automated Cloud Cluster Creation
	Cloudera Director
	Hortonworks Data Cloud
	Qubole Data Service
	General System Management Tools

	Images or Tools?
	More Tooling

	Chapter 17. Monitoring and Automation
	Monitoring Choices
	Cloud Provider Monitoring Services
	Rolling Your Own

	Cloud Provider Command-Line Interfaces
	AWS CLI
	Google Cloud Platform CLI
	Azure CLI
	Data Formatting for CLI Results

	What to Monitor
	Instance Existence
	Instance Reachability
	Hadoop Daemon Status
	System Load
	Putting Scripting to Use

	Custom Metrics in CloudWatch
	Basic Metrics
	Defining a Custom Metric
	Feeding Custom Metric Data to CloudWatch
	Setting an Alarm on a Custom Metric

	Elastic Compute Using a Custom Metric
	A Custom Metric for Compute Capacity
	Prerequisites for Autoscaling Compute
	Triggering Autoscaling with an Alarm Action
	What About Shrinking?
	Other Things to Watch

	Ingesting Logs into CloudWatch
	Creating an IAM User for Log Streaming
	Installing the CloudWatch Agent
	Creating a Metric Filter
	Creating an Alarm from a Metric Filter

	So Much More to See and Do

	Chapter 18. Backup and Restoration
	Patterns to Supplement Backups
	Backup via Imaging
	HDFS Replication
	Cloud Storage Filesystems
	HDFS Snapshots

	Hive Metastore Replication
	Logs
	A General Cloud Hadoop Backup Strategy
	Not So Different, But Better
	To the Cloud

	Appendix A. Hadoop Component Start and Stop Scripts
	Apache ZooKeeper
	Apache Hive

	Appendix B. Hadoop Cluster Configuration Scripts
	SSH Key Creation and Distribution
	Configuration Update Script
	New Worker Configuration Update Script

	Appendix C. Monitoring Cloud Clusters with Nagios
	Where Nagios Should Run
	Instance Existence Through Ping
	Hosts and Host Groups
	Services and Service Groups
	Provider CLI Integration

	Index
	About the Author
	Colophon

