
Misusing Kademlia Protocol to Perform DDoS
Attacks

Jie Yu
School of Computer

National University of Defense Technology
Changsha 410073, China

yj@nudt.edu.cn

Zhoujun Li , Xiaoming Chen
School of Computer Science & Engineering

Beihang University
Beijing 100083, China

lizj@buaa.edu.cn, chenxm@buaa.edu.cn

Abstract—Kademlia-based DHT has been deployed in many P2P
applications and it is reported that there are millions of
simultaneous users in Kad network. For such a protocol that
significantly involves so many peers, its robustness and security
must be evaluated carefully. In this paper, we analyze the
Kademlia protocol and identify several potential vulnerabilities.
We classify potential attacks as three types: asymmetric attack,
routing table reflection attack and index reflection attack. A
limited real-world experiment was run on eMule and the results
show that these attacks tie up bandwidth and TCP connection
resources of victim. We analyze the results of our experiment in
three aspects: the effect of DDoS attacks by misusing Kad in
eMule, the comparison between asymmetric attack and routing
table reflection attack, and the distribution of attacks. More
large-scale DDoS attack can be performed by means of a little
more effort. We introduce some methods to amplify the
performance of attack and some strategies to evade detection.
Finally, we further discuss several solutions for these DDoS
attacks.
Keywords- Kademlia; DDoS; P2P; Security

I. INTRODUCTION
Distributed denial of service (DDoS) attack is a technique

that uses client/server model, combines lots of computers as an
attack platform and launches at one or more victims (machines
or networks)[1]. Traditional DDoS attacks involve two steps:
first, breaking into a large number of computers using
techniques such as virus, Trojan, buffer overflow, etc. and
gaining a zombie network; second, sending a great deal of
traffic to victims using zombie network and preventing them
from offering service to their legitimate users. In most cases,
the first step is the key to restrict the scale and performance of
DDoS attack as more and more Internet users recognize the
security of computer system and network.

Nowadays, P2P applications have been more and more
popular and have lots of users. It is reported that P2P file
sharing contributes more than 70% of the traffic in some areas
[2]. P2P is characterized by peers in self-organized overlay
network, which overlay the Internet Protocol (IP). It’s possible
to perform large scale DDoS attack by exploiting P2P protocol
and application vulnerabilities, which doesn't need any
compromised computers. Due to its easy operation, low cost,
great performance and difficulty in defense, misusing P2P
systems for DDoS attacks has been a new research hot in
network security [3, 4, 5, 6, 7, 11, 15, and 16].

One of P2P’s important characteristics is security. However,
until now it is not covered in the protocols themselves but is
just covered at the application level. Finally there is a low level
of security [8], especially the DHT-based overlay protocols
suffering from man-in-middle and Trojan attacks. Petar M. and
David M. proposed a new DHT protocol in 2002, called as
Kademlia protocol [9]. Comparing with other DHT technique
such as Chord, CAN and Pastry, Kademlia-based DHT, called
Kad for short, improves the performance of routing and
searching. It mostly applies to P2P open source projects and
has been deployed in Overnet, eMule, aMule, Bittorrent, etc.
eMule is an open source P2P file sharing application and has
large mount of users all over the world, especially in China.
Nowadays, The Kad network in eMule connects over a million
of simultaneous users [8]. aMule is the UNIX version of eMule.
Bittorrent is one of the most popular P2P file-sharing
applications. Kademlia protocol has been one of the most
popular DHT protocols.

This paper focuses on how to exploit the vulnerabilities of
Kademlia protocol in its design and implementation to launch
DDoS attacks. We propose three attack methods: (1)
asymmetric attack that misuses the difference in size or number
of messages between request and response; (2) routing table
reflection attack that sends spoofed routing messages to reflect
traffic to victim; and (3) index reflection attack that sends
spoofed index messages to reflect TCP connection requests to
victim. We then identify them by real-world experiment on
eMule. Furthermore, we discuss some possible approaches to
improve the performance of attack and solutions to mitigate or
defend against these attacks.

To the best of our knowledge, this is the first extensive
study of Kademlia-based DDoS attacks against any victim host
on Internet. The work in [4] is partly similar to ours, while it
just experiments on Overnet and isn’t from the view of the
whole Kademlia protocol that is implemented in many P2P
applications. Furthermore, we propose a new attack method –
asymmetric attack, which is effective and easy to implement.
[14] analyses the implementation of Kad in eMule and declares
that it couldn’t be exploited to launch active routing table
reflection attack. Therefore, they perform DDoS attack by
passively waiting for routing requests and responding with
spoofed response messages. However, we discover another
vulnerability in the implementation of Kad in eMule and verify
that it indeed could be misused to launch active routing table
reflection attack.

This paper is supported by National Natural Science Foundation of China
(No.90604007, 90718017)

We find following results by experimenting on eMule:
 Above mentioned three attacks can be certainly perform-

ed and they tie up bandwidth and TCP connection
resources of victim.

 Under same conditions, the effect of attacks is influenced
mostly by the time the attacker starts. The effect at
afternoon is best, and then is at evening, and the last is at
wee hours. We have measured that the performance of
attacks start at 13:00 is about 60% more than that start at
05:00.

 In eMule, file location information and routing infor-
mation will live certain period. A single routing table
reflection attack and a single index reflection attack will
keep 1 hour and 5 hours respectively.

 Kad network has a kind of “memory” about the file
location information and routing information as there is
some attack traffic on victim even 6 hours after attacks
are stopped.

 The effect of asymmetric attack ramps up rapidly (in 10
seconds) and then keeps as the same in the full attack
period, however, the effect of routing table reflection
attack begins with small and increases linearly in the first
one hour, and then increases slowly in following attack
duration. The effect of asymmetric attack disappears as
soon as attacks stop while the effect of routing table
reflection attack can maintain one hour even after attacks
stop. Thus, the combination using of these two attacks
might be much more sophisticated.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 gives an overview of Kad.
Section 4 presents the vulnerabilities in Kad that can be
exploited to turn into a platform for launching DDoS attacks.
Section 5 presents the results of real-life experiments on eMule.
Section 6 discusses several solutions and we conclude in
Section 7.

II. RELATED WORK
Until now, there hasn’t been any work that extensively

researched on misusing Kademlia protocol as a DDoS engine.
However, more and more works concern on P2P-based DDoS
attack. K.Cheung Sia et.al.[5] analyses the vulnerability of
Bittorrent protocol and implements DDoS attack by sending
announcement messages to trackers which declare victim
sharing certain resources; Harrington et.al.[12] perform DDoS
attack by modifying trackers and replying every peer query
with the victim’s location information; In [7], the authors
propose another method by declaring victim as trackers. They
are all lack of analysis and simulation on DHT technique in
Bittorrent. N. Naoumov et.al.[4] describe two approaches to
create a DDoS engine out of a P2P system: the first involves
poisoning the distributed index in the peers; the second
involves poisoning the distributed routing tables in the peers;
they experiment on Overnet. J. Liang et.al.[6] analyze the index
Poisoning attack in detail and experiment on FastTrack and
Overnet. E. Athanasopoulos et.al.[3] discuss DDoS attacks by
misusing unstructured P2P systems and identify it on Gnutella.
X. Sun et.al.[14] analyze the vulnerability of implement of Kad
in eMule and ESM, and perform DDoS attack by passively
waiting for routing requests and responding with spoofed

response messages. They further discuss and simulate some
methods to prevent such attacks in [15]. Y. Liu et.al.[11]
propose a distributed and scalable method, DD-POLICE, to
detect malicious nodes in order to defend unstructured P2P
systems from overlay flooding-based DDoS attacks. J. Yu
et.al.[10] build DDoS attack model in application layer and
propose a defense mechanism by combination of detection
technology and currency technology.

III. OVERVIEW OF KAD
In this section, we give a brief overview of the Kad proto-

col, which emphasis on those parts that we later exploit to
perform DDoS attacks.

Each Kad has a 128-bit ID. Kad computes the distance
between two peers by XOR metric of their IDs. They commu-
nicate with each other using UDP messages.

 Routing
In Kad, when a peer K joins network, it sends

BOOTSTRAP request messages to n (normally, n = 3) known
peers. An alive peer which receives the message will respond it
with a BOOTSTRAP response message. K then builds its own
routing table and sends its location message – HELLO request
message to all peers in its routing table. When a peer receives
HELLO request message, it will add the location information
to its routing table.

 File sharing
Then, K moves on to publish files information it is sharing.

File publishing process consists of two steps as to convenient
for searching and economize memory resources:
1. Location information publishing: First, K hashes each

file in its file sharing list and obtains a 128-bit file
identifier. Then it sends each file identifier and file
location (IP and TCP port) to peers close to the file
identifier. When peers receive this PUB_SOURCE
request message, they update their local file indexes.

2. Metadata information publishing: First, K extracts
keywords from each name of sharing files and hashes
each keyword into a 128-bit key. Then it sends each key,
file identifier and metadata information of the file (artist,
size, type, etc) to peers close to the key. When peers
receive this PUB_ KEYWORDS request message, they
update their local keyword indexes.

 File Searching
In K, it hashes each keyword that user enters to search, and

then send the key into Kad for iteratively searching. When a
peer that has records for this keyword receives the message, it
responds corresponding records to K. Each record contains file
identifier and metadata information of the file. K then displays
all matching file identifiers to user. After user selects certain
file identifier I, K sends location search messages of I into Kad
for iteratively searching. When a peer that has records for this
file identifier receives the message, it responds corresponding
records to K. Each record contains file location (IP and TCP
port). K then tries to establish TCP connections with these IPs
and downloads that file simultaneously.

IV. VULNERABILITIES OF KAD
Considering millions of simultaneous users in Kad network,

we may try to exploit it as a large zombie network (shown in

Fig.1). It just need control peers of Kad at the overlay network
layer, taking no account of compromising any computer system.
Theoretically, if we use a network that has a million of
simultaneous users as a DDoS engine, we may amplify the
performance of attack one million times or even more. In this
section, we analyze the vulnerabilities of Kad design and
implementation and realize above expectation.

Figure 1. Misusing Kad network as a DDoS engine

Kad network is an overlay network, which overlay the
transport layer. To communicate with each other exactly in
Internet, when peers publish their BOOTSTRAP, HELLO and
PUB_SOURCE request messages, transport layer information
(IP address, TCP port, and UDP port) must be included in these
messages. In the design of Kad, peers that receive above
messages don’t verify the location information of source peers
and add them into routing tables or local indexes directly. If we
declare location information in messages as victim’s, some
reflection attacks can be launched. The victim can be either
peers in Kad network, or any host on Internet (especially Web
server, Ftp server, Email sever, etc). We classify these attacks
as three types:

 Asymmetric attack: Exploiting the difference size or
number of messages between request and response, we
can send smaller or less request messages and reflect
larger or more response messages to victim. E.g. in
eMule application, a BOOTSTRAP request message only
needs 2 bytes, while a BOOTSTRAP response message
that contains information of 20 peers needs 527 bytes.
This message pair can enlarge the performance of attack
more than 260 times. Compared with following two
methods, this method is easy to implement and its power
of attack could appear immediately.

 Routing table reflection attack: We announce to be
neighbors of all peers in Kad, update their routing tables
and redirect succedent request messages to victim. In
order to implement this attack, we can send spoofed
HELLO request messages to as many peers as possible in
Kad. The source peer ID in each message is close to ID
of target and source IP address and UDP port are
replaced with victim’s. Then, joining and searching
messages to those IDs will be routed to victim.

 Index reflection attack: We declare to share some files,
update local indexes of lots of peers in Kad, and redirect
succedent connecting requests to victim. To implement
this, we can send spoofed PUB_SOURCE request
messages to as many peers as possible in Kad. The file

identifiers in these messages identify some popular files
and IP address and TCP port in these messages are
replaced with victim’s. Then, connecting requests of file
downloading to those file identifiers will be routed to
victim. If a certain service (such as Web server) is started
on this TCP port of victim, full TCP-connection will be
established until all connection resources are exhausted.

Figure 2. The principle of three attack methods

The principle of above three attack methods is shown in
Fig.2. Spoofed-message receivers launch asymmetric attack
directly; file downloaders in Kad launch index reflection attack
and information searchers or publishers launch routing table
reflection attack. The goal of asymmetric attack and routing
table reflection attack is to tie up the bandwidth of the victim’s
access link, while the goal of index reflection attack is to
prevent legitimate users from making connections to the victim.
All of these methods are to hamper victim from offering
service to their legitimate users.

At the end of this section, it should be noticed that these
vulnerabilities can be exploited in all Kademlia-based DHT
applications.

V. EXPERIMENT
To verify above analysis, we experiment on eMule [13] and

show that it is indeed possible to misusing Kad to perform
DDoS attacks.

There are two differences in the implement of Kad in
eMule:
1. It doesn’t include self IP address and UDP port in over-

lay messages. Peers extract source IP address and UDP
port from received UDP messages. We change source IP
address and UDP port at IP layer (It is supported in
Windows 2000, Linux, etc) when sending spoofed
messages.

2. It adds peer information into routing tables directly when
receiving a HELLO_REQ message. However, Kad in
eMule follows such strategy in that one peer checks
information of each peer in its routing table periodically
(1 minute) in regard to its lifetime by sending a
HELLO_REQ message to the oldest unchecked one. If
no response is received in 2 minutes, it will remove that
peer information from routing table. Therefore
information of each peer could exist 2 minutes at least.
However, only checked peer information will be set

alive and propagated to other peers. According to this
strategy, the authors in [15] declare that Kad in eMule
couldn’t be exploited to launch active routing table
reflection attack. However, we discover another
vulnerability in its implementation: after a peer receive
HELLO_REQ messages repeatedly (twice or more) from
one same peer in 2 minutes, it will set this peer
information alive and propagated it to other peers.
Therefore, we overcome above difficulty by continuously
sending HELLO_REQ messages to a peer twice with
same source peer ID.

In addition, file location information and file metadata
information will keep 5 and 24 hours respectively in eMule.

A. Experiment Setup
Our experiment consists of two parts: a crawler which takes

charge of collecting information of Kad peers and an attacker
which takes charge of publishing attack messages. To collect
location information (peer ID, IP address, and UDP port) of
peers, the crawler sends BOOTSTRAP_REQ messages to all
peers and inserts responded information into our database. It
works in multithreading manner. To start the crawler, we
should input some initial peers and they could be obtained at
the directory of eMule client (config/nodes.dat). The attacker
circularly sends spoofed BOOTSTRAP_REQ, HELLO_REQ
and PUB_SOURCE_REQ messages to each peer in the
database. As peers in Kad join and leave dynamically, we need
to re-collect peer information after a certain period because
many of them might be invalid. In our experiment, we ran the
crawler once every day.

For asymmetric attack, it just needs modifying the source
IP and UDP port in BOOTSTRAP_REQ messages. For routing
table reflection attack, it also needs generating spoofed peer ID
close to target. We keep the first 15 bytes as same and
randomly generate last 1 byte. For index reflection attack, we
first collect some popular file hashes including movies, images,
songs, programs, documents. Lots of eMule websites offer
references of top-popular downloading. We used the
information at China eMule [14]. Then we choose peer ID
close to file hashes. Here we select the peer ID, the first 1 byte
of which is same as file hash’s. Note that the file size in
PUB_SOURCE_REQ messages should be true, as eMule will
validate file size when it matches indexes.

We ran a monitor on our victim host. It is a Java program
and listens to victim ports (a TCP port for TCP connections and
UDP port for UDP traffic). Following data are recorded: the
number of newly created connections every minute, the number
of connections alive every minute, the seconds each connection
keeps, average throughput every minute and the distribution of
source IP addresses.

B. Results and Analysis
In this section, we analyze the results of experiment in

following three aspects: the effect of DDoS attacks by misusing
Kad in eMule and how it is influenced by the time the attacker
starts, the comparison between asymmetric attack and routing
table reflection attack, and the distribution of attacks.

To control the impact on Kad network and Internet, we ran
our experiment in limited conditions. The attacker was run as a
single-thread and just continued several hours. We describe the

performance of DDoS attacks by the number of new TCP
connections every minute, the number of connections alive
every minute and UDP incoming throughput. It is noticed that
the monitor will consider the connection alive until the
connecter closes it actively.

1) The Effect of DDoS Attacks
We varied the time the attacker started (recorded as time

zone of Beijing) and kept the number of file identifiers as 400.
The attacker continued 1 hour and the monitor on victim
maintained 8 hours. The results are described in Fig.3, Fig.4
and Fig.5.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f N
ew

 C
on

ne
ct

io
ns

Time(minutes)

Started at 05:00
Started at 13:00
Started at 21:00

Figure 3. Starting at different time, number of new TCP connections

(per minute) over time

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450 500

N
um

be
r o

f A
liv

e
C

on
ne

ct
io

ns

Time(minutes)

Started at 05:00
Started at 13:00
Started at 21:00

Figure 4. Starting at different time, number of TCP connections alive

(per minute) over time

It was recorded that just 117 file identifiers was used in our
experiment as the others don’t match the first byte of target
peer IDs. Fig.3 shows the number of new TCP connections
over time. We see that the number of new TCP connections
increases while the attacker continues and it maintains about 4
hours before it decreases in following 1 hour. This is due to the
file location information just keeping 5 hours in eMule. It is
interesting that there are some new connections even 5 hours

after the attacker is stopped. It seems that Kad network in
eMule has a kind of “memory” about the file location
information. We present the number of TCP connections alive
over time in Fig.4. We see that it increases even in more than 4
hours after attacks were stopped and maintains in the following
time. This shows that many peers in Kad don’t actively close
TCP connections once they are established successfully.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140 160 180 200

Tr
af

fic
(K

bp
s)

Time(minutes)

Started at 05:00
Started at 13:00
Started at 21:00

Figure 5. Starting at different time, attack UDP traffic over time

In Fig.5 we present attack UDP traffic in the first 3 hours as
it becomes very small 2 hours after the attacker is stopped.
UDP traffic increases linearly during the time of attacks and
there is a sudden decrease when attacks are stopped which is
due to the stop of asymmetric attack. The traffic decreases to
about 2 Kbps in the following 1 hour and maintains about 2
hours.

From above three figures, we can see that the effect of
attacks is influenced mostly by the time the attacker starts, and
the effect at 13:00 is best, and then is 21:00, and the last is
05:00. This is mainly because of the most alive peers and most
file-downloaders at 13:00. Table 1 shows average effect of
DDoS attacks. The maximal alive TCP connections at 13:00 is
59.6% more than at 05:00 and the maximal UDP traffic is
59.1% more than at 05:00. Under our limited experiment, the
average maximal number of TCP connections alive and
maximal UDP traffic are 405 and 1,315Kbps respectively.

TABLE I. AVERAGE EFFECT OF DDOS ATTACKS

StartTime 05:00 13:00 21:00 Average
Average New TCP

Connections per Minute in
4 Hours after Attacks were

Stopped

11.4 15.4 12.4 13.1

Total New TCP
Connections

3818 5281 4321 4473.3

Max Alive TCP
Connections after Attacks

were Stopped
339 541 337 405.7

Max UDP Traffic (Kbps) 970.8 1544.1 1432.5 1315.8

2) Comparison between Asymmetric Attack and Routing
Table Reflection Attack

In above experiment, we send the same number of
asymmetric attack messages and routing table reflection attack

messages. However, an asymmetric attack message only needs
2 bytes while a routing table reflection attack message contains
22 bytes at least. To compare the effect between asymmetric
attack and routing table reflection attack under same cost of
attacker, we started both of them at the same time and the
frequency of asymmetric attack messages is 11 times of the
other’s. The attacker continued 2 hours and the monitor on
victim maintained 8 hours. Fig.6 shows their attack traffic.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200 250 300 350 400

Tr
af

fic
(K

bp
s)

Time(minutes)

 Asymmetric attack
Routing table reflection attack

Figure 6. Under same conditions, attack UDP traffic over time

We can see that the effect of asymmetric attack ramps up
rapidly in the first few seconds, however it is independent of
attack duration and halts as soon as the attacker is stopped;
while the effect of routing table reflection attack begins with
small and increases linearly in the first one hour, and then
increases slowly in following attack duration, which is because
of the disappearance of the anterior attack messages as routing
information only live one hour in eMule. It maintains about one
hour even after attack is stopped. Therefore, these two attack
methods can satisfy different needs, one for attacking quickly,
the other for attacking gradually. Certainly, the combination of
both will make the effect of attacks more sophisticated. We
find that there is some UDP traffic at the victim port even 2
hours after the attacker is stopped. It seems that Kad network
also has a kind of “memory” about the routing information.

3) The Distribution of Attacks
The CDF of TCP connection durations is shown as Fig.7.

About 90% of connections maintain less than 300 seconds and
the average duration of all connections are is 230 seconds.
There are 3% of connections maintain more than 1500 seconds
and the longest duration is 25597 seconds, more than 7 hours.
These connections contribute to the large number of alive
connections 5 hours after the attacker is stopped.

We recorded the source IPs at TCP connections and UDP
traffic. Fig.8 shows the distribution of source IP. The file
identifiers we used in attacker are referenced from a China
website and most of them are popular in China, Europe and
U.S, Thus, we can see that most source IPs of attacks come
from Asia and Europe. All of these IPs distribute in more than
100 countries and areas. The broad distribution of source IPs
makes defense of these DDoS attacks more difficult.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 300 600 900 1200 1500

Pe
rc

en
ta

ge
 o

f C
on

ne
ct

io
ns

TCP Connection Duration(seconds)
Figure 7. The CDF of TCP connection durations

Asia

Europe

North America

South America

Africa

Oceania

Figure 8. Distribution of source IP on continent

VI. FURTHER DISCUSSION
In this section, we will discuss some methods to amplify the

performance of attacks and some solutions to mitigate or
defend against these attacks.

A. Amplifying Attacks
Due to the characteristics of Kad, the performance of DDoS

attacks is mainly influenced by the following factors: the time
the attacker starts, the duration the attacker continues, file
identifiers used in PUB_SOURCE_REQ messages, total attack
messages sent in every second, the number of attackers, etc.
It’s very important to select proper file identifiers for index
reflection attack. If you publish a file that no peer wants to
download, there would be no connection request to victim port.
Further more, the same file identifiers will induce different
effect on different time which is validated in Section 5.2.1.

In real-world DDoS attacks, it is easy to amplify the
performance of above experiment one thousand times or more.
E.g. select more popular and more file identifiers, start attacks
at the time there are more simultaneous users in Kad (such as
13:00~21:00 on Friday), maintain longer time (longer attacks
continue, more peers will exchange and save spoofed file and
peer information.), decrease the interval attack packets are sent,
publish more relative keywords, build multi-layer attack model

(combine with traditional intrusion methods), adopt distributed
crawlers and attackers, etc. Further more, to protect them from
pollution attack, most Kad networks provide notes publishing
to comment files. We can offer high FILERATING of our file
identifiers by sending spoofed PUB_NOTES request messages.
This can enlarge the performance of index reflection attack too.

Since it is easy to detect and defend against single and
regular attack, the attacker may employ more sophisticated
strategies to evade detection.

 Combination of three attacks and exploiting several
vulnerabilities in one attack. E.g. to perform asymmetric
attack, we can misuse not only BOOTSTRAP message
but also some other messages such as file location and
metadata information query messages. Misusing many
vulnerabilities simultaneously, the attacker can reach her
purpose even part of these vulnerabilities are repaired or
defended.

 Variable message-arrival rate. It may be detected and
filtered by upstream ISPs if attacker sends attack
messages at continuous and high rate. We can partly
evade detection of ISPs by randomly changing message-
arrival rate at different time.

 Sending attack messages to different zones of peer ID.
Kad network may defend attacks by collaboration of
some peers. To communicate and manage effectively,
this collaboration is usually among some neighborhood
peers or same sub-zone peers. We can choose peers
alternately from different zones to avoid such defense.

B. Defending Attacks
Generally, DDoS defense mechanisms can be placed at

three different locations: the source of attacks, middle network,
and victim host or network. In the rest of this section, we will
discuss several solutions for above attacks. These solutions
should be thorough researched, deployed and tested in further
work.

 When a peer receives a message, it verifies the location
information of source peer firstly by sending a HELLO
request message and then abandons it if no response is
received in a certain time. This solution can avoid
asymmetric attack, routing table reflection attack and
index reflection attack, however, the verifying messages
should be sent to victim and a new UDP attack will rise.
Further more, verifying request message every time will
enlarge the traffic in Kad network, as HELLO and
PUB_SOURCE request messages update frequently.

 Set a timer T, and abandon BOOTSTRAP, HELLO and
PUB_SOURCE request messages coming from same IP
in a certain time. This solution can limit above attacks,
however it is difficult to choose a proper timer and it
might need to distinguish those three types of messages.

 Use trust management mechanism. When a peer receives
a message, it abandons the message according to the trust
degree of source peer. This solution can limit attacks too.
Robust membership management proposed in [16] can
restrict exploiting Kad network to perform DDoS attacks
at certain degree. Our recent work is focusing on this
defense method.

 Close source of these applications and encryption
communication packets. Then the attacker couldn’t
analyze the format of messages and therefore can’t send
spoofed messages. However, some reverse-compile
technique and sniffer technique can be used to get above
information.

 Detect and filter attack packets at victim. The attack
packets generated in Kad networks share some common
characteristics, e.g. true source IP, same first several
bytes (overlay packet header), etc. This solution can limit
attacks too. DOW mechanism proposed in [10] can filter
some attack packets.

VII. CONCLUSION AND FUTURE WORK
In this paper, we showed that it is possible to launch a

DDoS attack against any host on Internet by misusing
Kademlia Protocol. We classify these attacks as three types:
asymmetric attack, routing table reflection attack and index
reflection attack. We ran a limited real-world experiment on
eMule and the results show that these attacks tie up bandwidth
and TCP connection resources of victim. More large scale
DDoS attack can be performed according to a little more effort.

We discuss several solutions for these DDoS attack
methods. Each solution has both advantages and disadvantages.
Our future work will focus on studying and experimenting on
these solutions and proposing new defense methods.

REFERENCES
[1] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of

Service: Attack and Defense Mechanisms, Prentice Hall PTR, 2004.

[2] 2007 NGN forum, http://www.catr.cn/zhthg/ngn/2007/
[3] E. Athanasopoulos, K. Anagnostakis, and E. Markatos. Misusing

Unstructured P2P systems to Perform DoS Attacks: The Network That
Never Forgets, in Proc. ACNS 2006.

[4] N. Naoumov and K. Ross. Exploiting P2P Systems for DDoS Attacks, in
Proc. of INFOSCALE, 2006.

[5] K. Cheung Sia. DDoS Vulnerability Analysis of Bittorrent Protocol,
UCLA Tech. Report, Spring 2006.

[6] J. Liang, N. Naoumov, and K. W. Ross. The Index Poisoning Attack in
P2P File Sharing Systems, In IEEE Conference on Computer
Communication, Barcelona, Spain, April 2006.

[7] K.El Defrawy, M.Gjoka, and A.Markopoulou. Bottorrent: Misusing
BitTorrent to Launch DDoS Attacks, in Usenix SRUTI, Santa Clara,
2007.

[8] R. Brunner. A performance evaluation of the Kad-protocol, Master
Thesis, 2006.

[9] P.Maymounkov and D. Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric, the First International Workshop on
Peer-to-Peer Systems, p.53-65 , 2002.

[10] J. Yu, Z. Li, H. Chen, and X. Chen. A Detection and Offense
Mechanism to Defend Against Application Layer DDoS Attacks,Third
International Conference on Networking and Services, 2007. ICNS.
Page(s): 54-54.

[11] Y. Liu, X. Liu, W. Chen, and X. Li. Defending P2Ps from Overlay
Flooding-based DDoS. ICPP 2007

[12] J. Harrington and C. Kuwanoe, C. Zou. A BitTorrent-Driven Distributed
Denial-of-Service Attack. SecureComm 2007.

[13] Emule, http://sourceforge.net/projects/emule/
[14] China Emule, http://www.emule.com.cn/
[15] X. Sun, R. Torres, and S. Rao. DDoS Attacks by Subverting

Membership Management in P2P Systems, NPSec 2007.
[16] X. Sun, R. Torres, and S. Rao. Preventing DDoS Attacks with P2P

Systems through Robust Membership Management, Tech. Rep., 2007.

http://www.emule.com.cn/

	I. Introduction
	II. Related Work
	III. Overview of Kad
	IV. Vulnerabilities of Kad
	V. Experiment
	A. Experiment Setup
	B. Results and Analysis
	1) The Effect of DDoS Attacks
	
	2) Comparison between Asymmetric Attack and Routing Table Reflection Attack
	3) The Distribution of Attacks

	VI. Further Discussion
	A. Amplifying Attacks
	B. Defending Attacks

	VII. Conclusion and Future Work
	References

