Vastering

Embedded Linux
Programming

Second Edition

Unleash the full potential of Embedded Linux

T

Mastering Embedded Linux Programming

Second Edition

Unleash the full potential of Embedded Linux

Chris Simmonds

Packh

BIRMINGHAM - MUMBAI

Mastering Embedded Linux Programming

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: December 2015
Second edition: June 2017
Production reference: 1280617

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78728-328-2

www.packtpub.com

http://www.packtpub.com

Author
Chris Simmonds

Reviewers
Daiane Angolini
Otavio Salvador
Alex Tereschenko

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prateek Bharadwaj

Content Development Editor
Sharon Raj

Technical Editor
Vishal Kamal Mewada

Credits

Copy Editors
Madhusudan Uchil
Stuti Shrivastava

Project Coordinator
Virginia Dias
Proofreader

Safis Editing

Indexer
Rekha Nair

Graphics
Kirk D'Penha

Production Coordinator
Melwyn Dsa

About the Author

Chris Simmonds is a software consultant and trainer living in southern England. He has
almost two decades of experience in designing and building open-source embedded
systems. He is the founder and chief consultant at 2net Ltd, which provides professional
training and mentoring services in embedded Linux, Linux device drivers, and Android
platform development. He has trained engineers at many of the biggest companies in the
embedded world, including ARM, Qualcomm, Intel, Ericsson, and General Dynamics. He is
a frequent presenter at open source and embedded conferences, including the Embedded
Linux Conference and Embedded World. You can see some of his work on the Inner
Penguin blog at www.2net.co.uk.

I would like to thank Shirley Simmonds for being so supportive during the long hours that
I was shut in my home office researching and writing this book. I would also like to thank
all the people who have helped me with the research of the technical aspects of this book,
whether they realized that is what they were doing or not. In particular, I would like to
mention Klaas van Gend, Thomas Petazzoni, and Ralph Nguyen for their help and advice.
Lastly, I would like to thank Sharon Raj, Vishal Mewada, and the team at Packt Publishing
for keeping me on track and bringing the book to fruition.

About the Reviewers

Daiane Angolini has been working with embedded Linux since 2008. She has been working
as an application engineer at NXP, acting on internal development, porting custom
applications from Android, and on-customer support for i.MX architectures in areas such as
Linux kernel, u-boot, Android, Yocto Project, and user-space applications. However, it was
on the Yocto Project that she found her place. She has coauthored the books Embedded Linux
Development with Yocto Project and Heading for the Yocto Project, and learned a lot in the
process.

Otavio Salvador loves technology and started his free software activities in 1999. In 2002, he
founded O.S. Systems, a company focused on embedded system development services and
consultancy worldwide, creating and maintaining customized BSPs, and helping companies
with their product's development challenges. This resulted in him joining the
OpenEmbedded community in 2008, when he became an active contributor to the
OpenEmbedded project. He has coauthored the books Embedded Linux Development with
Yocto Project and Heading for the Yocto Project.

Alex Tereschenko is an embedded systems engineer by day, and an avid maker by night,
who is convinced that computers can do a lot of good for people when they are interfaced
with real-world objects, as opposed to just crunching data in a dusty corner. That's what's
driving him in his projects, and this is why embedded systems and the Internet of Things
are the topics he enjoys the most.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787283283.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283
https://www.amazon.com/dp/1787283283

Table of Contents

Preface 1
Chapter 1: Starting Out 8
Selecting the right operating system 9
The players 10
Project life cycle 12
The four elements of embedded Linux 12
Open source 13
Licenses 13
Hardware for embedded Linux 15
Hardware used in this book 16
The BeagleBone Black 16
QEMU 17
Software used in this book 18
Summary 19
Chapter 2: Learning About Toolchains 20
Introducing toolchains 21
Types of toolchains 22
CPU architectures 23
Choosing the C library 25
Finding a toolchain 26
Building a toolchain using crosstool-NG 28
Installing crosstool-NG 28
Building a toolchain for BeagleBone Black 28
Building a toolchain for QEMU 30
Anatomy of a toolchain 31
Finding out about your cross compiler 31
The sysroot, library, and header files 34
Other tools in the toolchain 34
Looking at the components of the C library 35
Linking with libraries — static and dynamic linking 36
Static libraries 37
Shared libraries 38
Understanding shared library version numbers 39

The art of cross compiling 40

Simple makefiles 40
Autotools 41

An example: SQLite 43
Package configuration 44
Problems with cross compiling 45
Summary 46
Chapter 3: All About Bootloaders 47
What does a bootloader do? 48
The boot sequence 48
Phase 1 — ROM code 49
Phase 2 — secondary program loader 50
Phase 3 — TPL 51
Booting with UEFI firmware 52
Moving from bootloader to kernel 53
Introducing device trees 54
Device tree basics 55
The reg property 56
Labels and interrupts 57
Device tree include files 58
Compiling a device tree 60
Choosing a bootloader 60
U-Boot 61
Building U-Boot 61
Installing U-Boot 63
Using U-Boot 65
Environment variables 66

Boot image format 66

Loading images 67
Booting Linux 69
Automating the boot with U-Boot scripts 69
Porting U-Boot to a new board 70
Board-specific files 71
Configuring header files 73
Building and testing 73
Falcon mode 75
Barebox 75
Getting barebox 75
Building barebox 76
Using barebox 77
Summary 78

[ii]

Chapter 4: Configuring and Building the Kernel 79

What does the kernel do? 80
Choosing a kernel 82
Kernel development cycle 82
Stable and long term support releases 83
Vendor support 84
Licensing 84
Building the kernel 85
Getting the source 85
Understanding kernel configuration — Kconfig 86
Using LOCALVERSION to identify your kernel 90
Kernel modules 91
Compiling — Kbuild 92
Finding out which kernel target to build 92
Build artifacts 93
Compiling device trees 95
Compiling modules 95
Cleaning kernel sources 96
Building a kernel for the BeagleBone Black 96
Building a kernel for QEMU 96
Booting the kernel 97
Booting the BeagleBone Black 97
Booting QEMU 98
Kernel panic 98
Early user space 98
Kernel messages 99
Kernel command line 100
Porting Linux to a new board 101
A new device tree 102
Setting the board compatible property 103
Additional reading 105
Summary 105
Chapter 5: Building a Root Filesystem 107
What should be in the root filesystem? 108
The directory layout 109
The staging directory 110
POSIX file access permissions 111
File ownership permissions in the staging directory 112

[iii]

Programs for the root filesystem

The init program

Shell

Utilities

BusyBox to the rescue!

Building BusyBox

ToyBox — an alternative to BusyBox
Libraries for the root filesystem

Reducing the size by stripping
Device nodes

The proc and sysfs filesystems
Mounting filesystems

Kernel modules
Transferring the root filesystem to the target
Creating a boot initramfs

Standalone initramfs

Booting the initramfs

Booting with QEMU

Booting the BeagleBone Black

Mounting proc
Building an initramfs into the kernel image
Building an initramfs using a device table
The old initrd format
The init program
Starting a daemon process
Configuring user accounts
Adding user accounts to the root filesystem
A better way of managing device nodes
An example using devtmpfs
An example using mdev
Are static device nodes so bad after all?
Configuring the network
Network components for glibc
Creating filesystem images with device tables
Booting the BeagleBone Black
Mounting the root filesystem using NFS
Testing with QEMU
Testing with the BeagleBone Black
Problems with file permissions
Using TFTP to load the kernel
Additional reading

113
113
113
114
114
115
116

116
118

119

120
121

122
122
123
123
124
124

124
125

125
126
127
127
128
129
131
131
131
132
133
133
134
135
137
137
139
140
140
140
141

[iv]

Summary 142
Chapter 6: Selecting a Build System 143
Build systems 143
Package formats and package managers 145
Buildroot 146
Background 146
Stable releases and long-term support 147
Installing 147
Configuring 147
Running 148
Creating a custom BSP 150
U-Boot 150

Linux 152

Build 153
Adding your own code 156
Overlays 156

Adding a package 157
License compliance 158
The Yocto Project 159
Background 159
Stable releases and supports 161
Installing the Yocto Project 161
Configuring 162
Building 163
Running the QEMU target 164
Layers 165
BitBake and recipes 167
Customizing images via local.conf 170
Writing an image recipe 171
Creating an SDK 172
The license audit 174
Further reading 174
Summary 175
Chapter 7: Creating a Storage Strategy 176
Storage options 177
NOR flash 177
NAND flash 178
Managed flash 180
MultiMediaCard and Secure Digital cards 180

eMMC

181

[v]

Other types of managed flash

181

Accessing flash memory from the bootloader 182
U-Boot and NOR flash 182
U-Boot and NAND flash 183
U-Boot and MMC, SD, and eMMC 183

Accessing flash memory from Linux 183
Memory technology devices 183

MTD partitions 184
MTD device drivers 187
The MTD character device, mtd 187
The MTD block device, mtdblock 189
Logging kernel oops to MTD 189
Simulating NAND memory 189
The MMC block driver 190

Filesystems for flash memory 190
Flash translation layers 190

Filesystems for NOR and NAND flash memory 191
JFFS2 192

Summary nodes 192
Clean markers 193
Creating a JFFS2 filesystem 193
YAFFS2 194
Creating a YAFFS2 filesystem 195
UBI and UBIFS 196
uBl 196
UBIFS 199

Filesystems for managed flash 201
Flashbench 201
Discard and TRIM 202
Ext4 203
F2FS 204
FAT16/32 205

Read-only compressed filesystems 205
squashfs 206

Temporary filesystems 207

Making the root filesystem read-only 208

Filesystem choices 209

Further reading 209

Summary 210

Chapter 8: Updating Software in the Field 211

What to update? 212

[vil

Bootloader 213

Kernel 213
Root filesystem 213
System applications 214
Device-specific data 214
Components that need to be updated 214
The basics of software update 214
Making updates robust 215
Making updates fail-safe 216
Making updates secure 218
Types of update mechanism 219
Symmetric image update 219
Asymmetric image update 220
Atomic file updates 221
OTA updates 223
Using Mender for local updates 224
Building the Mender client 224
Installing an update 226
Using Mender for OTA updates 229
Summary 233
Chapter 9: Interfacing with Device Drivers 235
The role of device drivers 236
Character devices 237
Block devices 239
Network devices 240
Finding out about drivers at runtime 241
Getting information from sysfs 244
The devices: /sys/devices 244

The drivers: /sys/class 245

The block drivers: /sys/block 246
Finding the right device driver 246
Device drivers in user space 247
GPIO 248
Handling interrupts from GPIO 249

LEDs 251
12C 252
Serial Peripheral Interface (SPI) 254
Writing a kernel device driver 254
Designing a character driver interface 255

[vii]

The anatomy of a device driver 256
Compiling kernel modules 259
Loading kernel modules 260
Discovering the hardware configuration 261
Device trees 261
The platform data 262
Linking hardware with device drivers 263
Additional reading 265
Summary 265
Chapter 10: Starting Up — The init Program 266
After the kernel has booted 266
Introducing the init programs 267
BusyBox init 268
Buildroot init scripts 269
System V init 270
inittab 272
The init.d scripts 274
Adding a new daemon 275
Starting and stopping services 276
systemd 277
Building systemd with the Yocto Project and Buildroot 277
Introducing targets, services, and units 278
Units 278
Services 280

Targets 280

How systemd boots the system 281
Adding your own service 281
Adding a watchdog 283
Implications for embedded Linux 284
Further reading 284
Summary 285
Chapter 11: Managing Power 286
Measuring power usage 287
Scaling the clock frequency 289
The CPUFreq driver 290
Using CPUFreq 291
Selecting the best idle state 294
The CPUldle driver 295
Tickless operation 298

[viii]

Powering down peripherals 298
Putting the system to sleep 300
Power states 301
Wakeup events 302
Timed wakeups from the real-time clock 303
Further reading 303
Summary 304
Chapter 12: Learning About Processes and Threads 305
Process or thread? 306
Processes 308
Creating a new process 308
Terminating a process 309
Running a different program 310
Daemons 313
Inter-process communication 313
Message-based IPC 314

Unix (or local) sockets 315

FIFOs and named pipes 315

POSIX message queues 315

Summary of message-based IPC 316

Shared memory-based IPC 316

POSIX shared memory 316

Threads 320
Creating a new thread 321
Terminating a thread 322
Compiling a program with threads 322
Inter-thread communication 323
Mutual exclusion 324
Changing conditions 324
Partitioning the problem 326
Scheduling 327
Fairness versus determinism 328
Time-shared policies 328
Niceness 329
Real-time policies 330
Choosing a policy 331
Choosing a real-time priority 332
Further reading 332
Summary 333
Chapter 13: Managing Memory 334

[ix]

Virtual memory basics 335
Kernel space memory layout 336
How much memory does the kernel use? 337
User space memory layout 339
The process memory map 341
Swapping 342
Swapping to compressed memory (zram) 343
Mapping memory with mmap 343
Using mmap to allocate private memory 344
Using mmap to share memory 344
Using mmap to access device memory 344
How much memory does my application use? 345
Per-process memory usage 346
Using top and ps 347
Using smem 348
Other tools to consider 350
Identifying memory leaks 350
mtrace 350
Valgrind 351
Running out of memory 353
Further reading 355
Summary 355
Chapter 14: Debugging with GDB 356
The GNU debugger 356
Preparing to debug 357
Debugging applications 358
Remote debugging using gdbserver 358
Setting up the Yocto Project for remote debugging 359
Setting up Buildroot for remote debugging 360
Starting to debug 361
Connecting GDB and gdbserver 361

Setting the sysroot 362

GDB command files 364
Overview of GDB commands 365
Breakpoints 365

Running and stepping 365

Getting information 366

Running to a breakpoint 366

Native debugging 367
The Yocto Project 367
Buildroot 368

[x]

Just-in-time debugging 368

Debugging forks and threads 369
Core files 369
Using GDB to look at core files 371
GDB user interfaces 372
Terminal user interface 372
Data display debugger 373
Eclipse 374
Debugging kernel code 374
Debugging kernel code with kgdb 375

A sample debug session 376
Debugging early code 377
Debugging modules 378
Debugging kernel code with kdb 379
Looking at an Oops 380
Preserving the Oops 383
Further reading 384
Summary 385
Chapter 15: Profiling and Tracing 386
The observer effect 387
Symbol tables and compile flags 387
Beginning to profile 388
Profiling with top 389
Poor man's profiler 390
Introducing perf 391
Configuring the kernel for perf 391
Building perf with the Yocto Project 392
Building perf with Buildroot 392
Profiling with perf 393
Call graphs 395
perf annotate 396
Other profilers — OProfile and gprof 397
Tracing events 399
Introducing Ftrace 400
Preparing to use Ftrace 400
Using Ftrace 401
Dynamic Ftrace and trace filters 403
Trace events 404
Using LTTng 406

[xi]

LTTng and the Yocto Project 406
LTTng and Buildroot 406
Using LTTng for kernel tracing 407
Using Valgrind 410
Callgrind 410
Helgrind 411
Using strace 411
Summary 414
Chapter 16: Real-Time Programming 415
What is real time? 416
Identifying sources of non-determinism 418
Understanding scheduling latency 419
Kernel preemption 420
The real-time Linux kernel (PREEMPT_RT) 421
Threaded interrupt handlers 422
Preemptible kernel locks 424
Getting the PREEMPT_RT patches 424
The Yocto Project and PREEMPT_RT 426
High-resolution timers 426
Avoiding page faults 427
Interrupt shielding 428
Measuring scheduling latencies 428
cyclictest 428
Using Ftrace 432
Combining cyclictest and Ftrace 434
Further reading 435
Summary 435
Index 437

[xii]

Preface

Linux has been the mainstay of embedded computing for many years. And yet, there are
remarkably few books that cover the topic as a whole: this book is intended to fill that gap.
The term embedded Linux is not well-defined, and can be applied to the operating system
inside a wide range of devices ranging from thermostats to Wi-Fi routers to industrial
control units. However, they are all built on the same basic open source software. Those are
the technologies that I describe in this book, based on my experience as an engineer and the
materials I have developed for my training courses.

Technology does not stand still. The industry based around embedded computing is just as
susceptible to Moore's law as mainstream computing. The exponential growth that this
implies has meant that a surprisingly large number of things have changed since the first
edition of this book was published. This second edition is fully revised to use the latest
versions of the major open source components, which include Linux 4.9, Yocto Project 2.2
Morty, and Buildroot 2017.02. Since it is clear that embedded Linux will play an important
part in the Internet of Things, there is a new chapter on the updating of devices in the field,
including Over the Air updates. Another trend is the quest to reduce power consumption,
both to extend the battery life of mobile devices and to reduce energy costs. The chapter on
power management shows how this is done.

Mastering Embedded Linux Programming covers the topics in roughly the order that you
will encounter them in a real-life project. The first 6 chapters are concerned with the early
stages of the project, covering basics such as selecting the toolchain, the bootloader, and the
kernel. At the conclusion of this this section, I introduce the idea of using an embedded
build tool, using Buildroot and the Yocto Project as examples.

The middle part of the book, chapters 7 through to 13, will help you in the implementation
phase of the project. It covers the topics of filesystems, the init program, multithreaded
programming, software update, and power management. The third section, chapters 14 and
15, show you how to make effective use of the many debug and profiling tools that Linux
has to offer in order to detect problems and identify bottlenecks. The final chapter brings
together several threads to explain how Linux can be used in real-time applications.

Each chapter introduces a major area of embedded Linux. It describes the background so
that you can learn the general principles, but it also includes detailed worked examples that
illustrate each of these areas. You can treat this as a book of theory, or a book of examples. It
works best if you do both: understand the theory and try it out in real life.

Preface

What this book covers

Chapter 1, Starting Out, sets the scene by describing the embedded Linux ecosystem and
the choices available to you as you start your project.

Chapter 2, Learning About Toolchains, describes the components of a toolchain and shows
you how to create a toolchain for cross-compiling code for the target board. It describes
where to get a toolchain and provides details on how to build one from the source code.

Chapter 3, All About Bootloaders, explains the role of the bootloader in loading the Linux
kernel into memory, and uses U-Boot and Bareboot as examples. It also introduces device
trees as the mechanism used to encode the details of hardware in almost all embedded
Linux systems.

Chapter 4, Configuring and Building the Kernel, provides information on how to select a
Linux kernel for an embedded system and configure it for the hardware within the device.
It also covers how to port Linux to the new hardware.

Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part of an
embedded Linux implementation by means of a step-by-step guide on how to configure a
root filesystem.

Chapter 6, Selecting a Build System, covers two commonly used embedded Linux build
systems, Buildroot and Yocto Project, which automate the steps described in the previous
four chapters.

Chapter 7, Creating a Storage Strategy, discusses the challenges created by managing flash
memory, including raw flash chips and embedded MMC (eMMC) packages. It describes the
filesystems that are applicable to each type of technology.

Chapter 8, Updating Software in the Field, examines various ways of updating the software
after the device has been deployed, and includes fully managed Over the Air (OTA)
updates. The key topics under discussion are reliability and security.

Chapter 9, Interfacing with Device Drivers, describes how kernel device drivers interact with
the hardware with worked examples of a simple driver. It also describes the various ways
of calling device drivers from the user space.

Chapter 10, Starting Up — The Init Program, shows how the first user space program--init--
starts the rest of the system. It describes the three versions of the init program, each suitable
for a different group of embedded systems, ranging from the simplicity of the BusyBox init,
through System V init, to the current state-of-the-art, systemd.

[2]

Preface

Chapter 11, Managing Power, considers the various ways that Linux can be tuned to reduce
power consumption, including Dynamic Frequency and Voltage scaling, selecting deeper
idle states, and system suspend. The aim is to make devices that run for longer on a battery
charge and also run cooler.

Chapter 12, Learning About Processes and Threads, describes embedded systems from the
point of view of the application programmer. This chapter looks at processes and threads,
inter-process communications, and scheduling policies

Chapter 13, Managing Memory, introduces the ideas behind virtual memory and how the
address space is divided into memory mappings. It also describes how to measure memory
usage accurately and how to detect memory leaks.

Chapter 14, Debugging with GDB, shows you how to use the GNU debugger, GDB, together
with the debug agent, gdbserver, to debug applications running remotely on the target
device. It goes on to show how you can extend this model to debug kernel code, making use
of the kernel debug stubs, KGDB.

Chapter 15, Profiling and Tracing, covers the techniques available to measure the system
performance, starting from whole system profiles and then zeroing in on particular areas
where bottlenecks are causing poor performance. It also describes how to use Valgrind to
check the correctness of an application's use of thread synchronization and memory
allocation.

Chapter 16, Real-Time Programming, provides a detailed guide to real-time programming on
Linux, including the configuration of the kernel and the PREEMPT_RT real-time kernel
patch. The kernel trace tool, Ftrace, is used to measure kernel latencies and show the effect
of the various kernel configurations.

What you need for this book

The software used in this book is entirely open source. In almost all cases, I have used the
latest stable versions available at the time of writing. While I have tried to describe the main
features in a manner that is not version-specific, it is inevitable that some of the examples
will need adaptation to work with later software.

Embedded development involves two systems: the host, which is used for developing the
programs, and the target, which runs them. For the host system, I have used Ubuntu 16.04,
but most Linux distributions will work with just a little modification. You may decide to
run Linux as a guest in a virtual machine, but you should be aware that some tasks, such as
building a distribution using the Yocto Project, are quite demanding and are better run on a
native installation of Linux.

[3]

Preface

I chose two exemplar targets: the QEMU emulator and the BeagleBone Black. Using QEMU
means that you can try out most of the examples without having to invest in any additional
hardware. On the other hand, some things work better if you do have real hardware, for
which, I have chosen the BeagleBone Black because it is not expensive, it is widely available,
and it has very good community support. Of course, you are not limited to just these two
targets. The idea behind the book is to provide you with general solutions to problems so
that you can apply them to a wide range of target boards.

Who this book is for

This book is written for developers who have an interest in embedded computing and
Linux, and want to extend their knowledge into the various branches of the subject. In
writing the book, I assume a basic understanding of the Linux command line, and in the
programming examples, a working knowledge of the C language. Several chapters focus on
the hardware that goes into an embedded target board, and, so, a familiarity with hardware
and hardware interfaces will be a definite advantage in these cases.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "You
configure tap0 in exactly the same way as any other interface."

A block of code is set as follows:

/A

#address-cells = <2>;

#size-cells = <2>;

memory@80000000 {

device_type = "memory";

reg = <0x00000000 0x80000000 0 0x80000000>;
bi
bi

Any command-line input or output is written as follows:

$ mipsel-unkown-linux—-gnu—gcc —dumpmachine
milsel-unknown-linux—-gnu

[4]

Preface

New terms and important words are shown in bold.

0 Warnings or important notes appear in a box like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub. com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.

SN

[5]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e TAR for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Mastering-Embedded-Linux-Programming-Second-Edition. We also have other
code bundles from our rich catalog of books and videos available at https://github.com/p
acktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https://www.packtpub.com/sites/default/files/down

loads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https://www.packtpub.com/book
s/content/supportand enter the name of the book in the search field. The required
information will appear under the Errata section.

[6]

https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/Mastering-Embedded-Linux-Programming-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringEmbeddedLinuxProgrammingSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[7]

Starting Out

You are about to begin working on your next project, and this time it is going to be running
Linux. What should you think about before you put finger to keyboard? Let's begin with a
high-level look at embedded Linux and see why it is popular, what are the implications of
open source licenses, and what kind of hardware you will need to run Linux.

Linux first became a viable choice for embedded devices around 1999. That was when Axis
(https://www.axis.com), released their first Linux-powered network camera and TiVo (ht
tps://business.tivo.com/) their first Digital Video Recorder (DVR). Since 1999, Linux
has become ever more popular, to the point that today it is the operating system of choice
for many classes of product. At the time of writing, in 2017, there are about two billion
devices running Linux. That includes a large number of smartphones running Android,
which uses a Linux kernel, and hundreds of millions of set-top-boxes, smart TVs, and Wi-Fi
routers, not to mention a very diverse range of devices such as vehicle diagnostics,
weighing scales, industrial devices, and medical monitoring units that ship in smaller
volumes.

So, why does your TV run Linux? At first glance, the function of a TV is simple: it has to
display a stream of video on a screen. Why is a complex Unix-like operating system like
Linux necessary?

The simple answer is Moore's Law: Gordon Moore, co-founder of Intel, observed in 1965
that the density of components on a chip will double approximately every two years. That
applies to the devices that we design and use in our everyday lives just as much as it does
to desktops, laptops, and servers. At the heart of most embedded devices is a highly
integrated chip that contains one or more processor cores and interfaces with main memory,
mass storage, and peripherals of many types. This is referred to as a System on Chip, or
SoC, and SoCs are increasing in complexity in accordance with Moore's Law. A typical SoC
has a technical reference manual that stretches to thousands of pages. Your TV is not simply
displaying a video stream as the old analog sets used to do.

https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://www.axis.com
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/
https://business.tivo.com/

Starting Out

The stream is digital, possibly encrypted, and it needs processing to create an image. Your
TV is (or soon will be) connected to the Internet. It can receive content from smartphones,
tablets, and home media servers. It can be (or soon will be) used to play games. And so on
and so on. You need a full operating system to manage this degree of complexity.

Here are some points that drive the adoption of Linux:

e Linux has the necessary functionality. It has a good scheduler, a good network
stack, support for USB, Wi-Fi, Bluetooth, many kinds of storage media, good
support for multimedia devices, and so on. It ticks all the boxes.

¢ Linux has been ported to a wide range of processor architectures, including some
that are very commonly found in SoC designs—ARM, MIPS, x86, and PowerPC.

e Linux is open source, so you have the freedom to get the source code and modify
it to meet your needs. You, or someone working on your behalf, can create a
board support package for your particular SoC board or device. You can add
protocols, features, and technologies that may be missing from the mainline
source code. You can remove features that you don't need to reduce memory and
storage requirements. Linux is flexible.

¢ Linux has an active community; in the case of the Linux kernel, very active. There
is a new release of the kernel every 8 to 10 weeks, and each release contains code
from more than 1,000 developers. An active community means that Linux is up to
date and supports current hardware, protocols, and standards.

e Open source licenses guarantee that you have access to the source code. There is
no vendor tie-in.

For these reasons, Linux is an ideal choice for complex devices. But there are a few caveats I
should mention here. Complexity makes it harder to understand. Coupled with the fast
moving development process and the decentralized structures of open source, you have to
put some effort into learning how to use it and to keep on re-learning as it changes. I hope
that this book will help in the process.

Selecting the right operating system

Is Linux suitable for your project? Linux works well where the problem being solved
justifies the complexity. It is especially good where connectivity, robustness, and complex
user interfaces are required. However, it cannot solve every problem, so here are some
things to consider before you jump in:

[9]

Starting Out

e Is your hardware up to the job? Compared to a traditional real-time operating
system (RTOS) such as VxWorks, Linux requires a lot more resources. It needs at
least a 32-bit processor and lots more memory. I will go into more detail in the
section on typical hardware requirements.

¢ Do you have the right skill set? The early parts of a project, board bring-up,
require detailed knowledge of Linux and how it relates to your hardware.
Likewise, when debugging and tuning your application, you will need to be able
to interpret the results. If you don't have the skills in-house, you may want to
outsource some of the work. Of course, reading this book helps!

e Is your system real-time? Linux can handle many real-time activities so long as
you pay attention to certain details, which I will cover in detail in Chapter 16,
Real-Time Programming.

Consider these points carefully. Probably the best indicator of success is to look around for
similar products that run Linux and see how they have done it; follow best practice.

The players

Where does open source software come from? Who writes it? In particular, how does this
relate to the key components of embedded development—the toolchain, bootloader, kernel,
and basic utilities found in the root filesystem?

The main players are:

e The open source community: This, after all, is the engine that generates the
software you are going to be using. The community is a loose alliance of
developers, many of whom are funded in some way, perhaps by a not-for-profit
organization, an academic institution, or a commercial company. They work
together to further the aims of the various projects. There are many of
them —some small, some large. Some that we will be making use of in the
remainder of this book are Linux itself, U-Boot, BusyBox, Buildroot, the Yocto
Project, and the many projects under the GNU umbrella.

e CPU architects: These are the organizations that design the CPUs we use. The
important ones here are ARM/Linaro (ARM-based SoCs), Intel (x86 and x86_64),
Imagination Technologies (MIPS), and IBM (PowerPC). They implement or, at the
very least, influence support for the basic CPU architecture.

[10]

Starting Out

e SoC vendors (Atmel, Broadcom, Intel, Qualcomm, TI, and many others). They
take the kernel and toolchain from the CPU architects and modify them to
support their chips. They also create reference boards: designs that are used by
the next level down to create development boards and working products.

¢ Board vendors and OEMs: These people take the reference designs from SoC
vendors and build them in to specific products, for instance, set-top-boxes or
cameras, or create more general purpose development boards, such as those from
Avantech and Kontron. An important category are the cheap development
boards such as BeagleBoard/BeagleBone and Raspberry Pi that have created their
own ecosystems of software and hardware add-ons.

These form a chain, with your project usually at the end, which means that you do not have
a free choice of components. You cannot simply take the latest kernel from https://www.ke
rnel.org/, except in a few rare cases, because it does not have support for the chip or
board that you are using.

This is an ongoing problem with embedded development. Ideally, the developers at each
link in the chain would push their changes upstream, but they don't. It is not uncommon to
find a kernel which has many thousands of patches that are not merged. In addition, SoC
vendors tend to actively develop open source components only for their latest chips,
meaning that support for any chip more than a couple of years old will be frozen and not
receive any updates.

The consequence is that most embedded designs are based on old versions of software.
They do not receive security fixes, performance enhancements, or features that are in newer
versions. Problems such as Heartbleed (a bug in the OpenSSL libraries) and ShellShock (a
bug in the bash shell) go unfixed. I will talk more about this later in this chapter under the
topic of security.

What can you do about it? First, ask questions of your vendors: what is their update policy,
how often do they revise kernel versions, what is the current kernel version, what was the
one before that, and what is their policy for merging changes up-stream? Some vendors are
making great strides in this way. You should prefer their chips.

Secondly, you can take steps to make yourself more self-sufficient. The chapters in section 1
explain the dependencies in more detail and show you where you can help yourself. Don't
just take the package offered to you by the SoC or board vendor and use it blindly without
considering the alternatives.

[11]

https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/
https://www.kernel.org/

Starting Out

Project life cycle

This book is divided into four sections that reflect the phases of a project. The phases are not
necessarily sequential. Usually they overlap and you will need to jump back to revisit
things that were done previously. However, they are representative of a developer's
preoccupations as the project progresses:

¢ Elements of embedded Linux (Chapters 1 to 6) will help you set up the
development environment and create a working platform for the later phases. It
is often referred to as the board bring-up phase.

¢ System architecture and design choices (Chapters 7 to 11) will help you to look at
some of the design decisions you will have to make concerning the storage of
programs and data, how to divide work between kernel device drivers and
applications, and how to initialize the system.

e Writing embedded applications (Chapters 12 and 13) shows how to make
effective use of the Linux process and threads model, and how to manage
memory in a resource-constrained device.

¢ Debugging and optimizing performance (Chapters 14 and 15) describes how to
trace, profile, and debug your code in both the applications and the kernel.

The fifth section on real-time (Chapter 16, Real-Time Programming) stands somewhat alone
because it is a small, but important, category of embedded systems. Designing for real-time
behavior has an impact on each of the four main phases.

The four elements of embedded Linux

Every project begins by obtaining, customizing, and deploying these four elements: the
toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of the first
section of this book.

e Toolchain: The compiler and other tools needed to create code for your target
device. Everything else depends on the toolchain.

¢ Bootloader: The program that initializes the board and loads the Linux kernel.

e Kernel: This is the heart of the system, managing system resources and
interfacing with hardware.

* Root filesystem: Contains the libraries and programs that are run once the kernel
has completed its initialization.

[12]

Starting Out

Of course, there is also a fifth element, not mentioned here. That is the collection of
programs specific to your embedded application which make the device do whatever it is
supposed to do, be it weigh groceries, display movies, control a robot, or fly a drone.

Typically, you will be offered some or all of these elements as a package when you buy
your SoC or board. But, for the reasons mentioned in the preceding paragraph, they may
not be the best choices for you. I will give you the background to make the right selections
in the first six chapters and I will introduce you to two tools that automate the whole
process for you: Buildroot and the Yocto Project.

Open source

The components of embedded Linux are open source, so now is a good time to consider
what that means, why open sources work the way they do, and how this affects the often
proprietary embedded device you will be creating from: it.

Licenses

When talking about open source, the word free is often used. People new to the subject often
take it to mean nothing to pay, and open source software licenses do indeed guarantee that
you can use the software to develop and deploy systems for no charge. However, the more
important meaning here is freedom, since you are free to obtain the source code, modify it
in any way you see fit, and redeploy it in other systems. These licenses give you this right.
Compare that with shareware licenses which allow you to copy the binaries for no cost but
do not give you the source code, or other licenses that allow you to use the software for free
under certain circumstances, for example, for personal use but not commercial. These are
not open source.

I will provide the following comments in the interest of helping you understand the
implications of working with open source licenses, but I would like to point out that I am an
engineer and not a lawyer. What follows is my understanding of the licenses and the way
they are interpreted.

Open source licenses fall broadly into two categories: the copyleft licenses such as the
General Public License (GPL) and the permissive licenses such as those from the Berkeley
Software Distribution (BSD), the Apache Foundation, and others.

[13]

Starting Out

The permissive licenses say, in essence, that you may modify the source code and use it in
systems of your own choosing so long as you do not modify the terms of the license in any
way. In other words, with that one restriction, you can do with it what you want, including
building it into possibly proprietary systems.

The GPL licenses are similar, but have clauses which compel you to pass the rights to obtain
and modify the software on to your end users. In other words, you share your source code.
One option is to make it completely public by putting it onto a public server. Another is to
offer it only to your end users by means of a written offer to provide the code when
requested. The GPL goes further to say that you cannot incorporate GPL code into
proprietary programs. Any attempt to do so would make the GPL apply to the whole. In
other words, you cannot combine a GPL and proprietary code in one program.

So, what about libraries? If they are licensed with the GPL, any program linked with them
becomes GPL also. However, most libraries are licensed under the Lesser General Public
License (LGPL). If this is the case, you are allowed to link with them from a proprietary
program.

All the preceding description relates specifically to GLP v2 and LGPL v2.1. I should
mention the latest versions of GLP v3 and LGPL v3. These are controversial, and I will
admit that I don't fully understand the implications. However, the intention is to ensure
that the GPLv3 and LGPL v3 components in any system can be replaced by the end user,
which is in the spirit of open source software for everyone. It does pose some problems
though. Some Linux devices are used to gain access to information according to a
subscription level or another restriction, and replacing critical parts of the software may
compromise that. Set-top-boxes fit into this category. There are also issues with security. If
the owner of a device has access to the system code, then so might an unwelcome intruder.
Often the defense is to have kernel images that are signed by an authority, the vendor, so
that unauthorized updates are not possible. Is that an infringement of my right to modify
my device? Opinions differ.

The TiVo set-top-box is an important part of this debate. It uses a Linux
kernel, which is licensed under GPL v2. TiVo have released the source
code of their version of the kernel and so comply with the license. TiVo
also has a bootloader that will only load a kernel binary that is signed by
them. Consequently, you can build a modified kernel for a TiVo box but
you cannot load it on the hardware. The Free Software Foundation (FSF)
takes the position that this is not in the spirit of open source software and
refers to this procedure as Tivoization. The GPL v3 and LGPL v3 were
written to explicitly prevent this happening. Some projects, the Linux
kernel in particular, have been reluctant to adopt the version three licenses
because of the restrictions it would place on device manufacturers.

[14]

Starting Out

Hardware for embedded Linux

If you are designing or selecting hardware for an embedded Linux project, what do you
look out for?

Firstly, a CPU architecture that is supported by the kernel —unless you plan to add a new
architecture yourself, of course! Looking at the source code for Linux 4.9, there are 31
architectures, each represented by a sub-directory in the arch/ directory. They are all 32- or
64-bit architectures, most with a memory management unit (MMU), but some without. The
ones most often found in embedded devices are ARM, MIPS PowerPC, and X86, each in 32-
and 64-bit variants, and all of which have memory management units.

Most of this book is written with this class of processor in mind. There is another group that
doesn't have an MMU that runs a subset of Linux known as microcontroller Linux or
uClinux. These processor architectures include ARC, Blackfin, MicroBlaze, and Nios. I will
mention uClinux from time to time but I will not go into detail because it is a rather
specialized topic.

Secondly, you will need a reasonable amount of RAM. 16 MiB is a good minimum,
although it is quite possible to run Linux using half that. It is even possible to run Linux
with 4 MiB if you are prepared to go to the trouble of optimizing every part of the system. It
may even be possible to get lower, but there comes a point at which it is no longer Linux.

Thirdly, there is non-volatile storage, usually flash memory. 8 MiB is enough for a simple
device such as a webcam or a simple router. As with RAM, you can create a workable Linux
system with less storage if you really want to, but the lower you go, the harder it becomes.
Linux has extensive support for flash storage devices, including raw NOR and NAND flash
chips, and managed flash in the form of SD cards, eMMC chips, USB flash memory, and so
on.

Fourthly, a debug port is very useful, most commonly an RS-232 serial port. It does not
have to be fitted on production boards, but makes board bring-up, debugging, and
development much easier.

Fifthly, you need some means of loading software when starting from scratch. A few years
ago, boards would have been fitted with a Joint Test Action Group (JTAG) interface for
this purpose, but modern SoCs have the ability to load boot code directly from removable
media, especially SD and micro SD cards, or serial interfaces such as RS-232 or USB.

[15]

Starting Out

In addition to these basics, there are interfaces to the specific bits of hardware your device
needs to get its job done. Mainline Linux comes with open source drivers for many
thousands of different devices, and there are drivers (of variable quality) from the SoC
manufacturer and from the OEMs of third-party chips that may be included in the design,
but remember my comments on the commitment and ability of some manufacturers. As a
developer of embedded devices, you will find that you spend quite a lot of time evaluating
and adapting third-party code, if you have it, or liaising with the manufacturer if you don't.
Finally, you will have to write the device support for interfaces that are unique to the
device, or find someone to do it for you.

Hardware used in this book

The worked examples in this book are intended to be generic, but to make them relevant
and easy to follow, I have had to choose specific hardware. I have chosen two exemplar
devices: the BeagleBone Black and QEMU. The first is a widely-available and cheap
development board which can be used in serious embedded hardware. The second is a
machine emulator that can be used to create a range of systems that are typical of
embedded hardware. It was tempting to use QEMU exclusively, but, like all emulations, it
is not quite the same as the real thing. Using a BeagleBone Black, you have the satisfaction
of interacting with real hardware and seeing real LEDs flash. I could have selected a board
that is more up-to-date than the BeagleBone Black, which is several years old now, but I
believe that its popularity gives it a degree of longevity and it means that it will continue to
be available for some years yet.

In any case, I encourage you to try out as many of the examples as you can, using either of
these two platforms, or indeed any embedded hardware you may have to hand.

The BeagleBone Black

The BeagleBone and the later BeagleBone Black are open hardware designs for a small,
credit card sized development board produced by CircuitCo LLC. The main repository of
information is at https://beagleboard.org/. The main points of the specifications are:

o TT AM335x 1 GHz ARM® Cortex-A8 Sitara SoC
512 MiB DDR3 RAM

2 or 4 GiB 8-bit eMMC on-board flash storage
Serial port for debug and development

MicroSD connector, which can be used as the boot device
Mini USB OTG client/host port that can also be used to power the board

[16]

https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/
https://beagleboard.org/

Starting Out

e Full size USB 2.0 host port
¢ 10/100 Ethernet port
e HDMI for video and audio output

In addition, there are two 46-pin expansion headers for which there are a great variety of
daughter boards, known as capes, which allow you to adapt the board to do many different
things. However, you do not need to fit any capes in the examples in this book.

In addition to the board itself, you will need:

¢ A mini USB to full-size USB cable (supplied with the board) to provide power,
unless you have the last item on this list.

e An RS-232 cable that can interface with the 6-pin 3.3V TTL level signals provided
by the board. The Beagleboard website has links to compatible cables.

¢ A microSD card and a means of writing to it from your development PC or
laptop, which will be needed to load software onto the board.

¢ An Ethernet cable, as some of the examples require network connectivity.

e Optional, but recommended, a 5V power supply capable of delivering 1 A or
more.

QEMU

QEMU is a machine emulator. It comes in a number of different flavors, each of which can
emulate a processor architecture and a number of boards built using that architecture. For
example, we have the following:

e gemu-system—arm: ARM

® gemu-system-mips: MIPS

® gemu-system-ppc: PowerPC

® gemu-system-x86: x86 and x86_64

For each architecture, QEMU emulates a range of hardware, which you can see by using the
option—machine help. Each machine emulates most of the hardware that would normally
be found on that board. There are options to link hardware to local resources, such as using
a local file for the emulated disk drive. Here is a concrete example:

$ gemu-system—arm -machine vexpress—a9 -m 256M —-drive
file=rootfs.ext4,sd —-net nic —net use -kernel zImage -dtb vexpress-
v2p-ca9.dtb -append "console=ttyAMAO, 115200 root=/dev/mmcblk0" -
serial stdio —-net nic,model=1an9118 -net tap,ifname=tap0

[17]

Starting Out

The options used in the preceding command line are:

® —machine vexpress-a9: Creates an emulation of an ARM Versatile Express
development board with a Cortex A-9 processor

e —m 256M: Populates it with 256 MiB of RAM

e —drive file=rootfs.ext4, sd: Connects the SD interface to the local file
rootfs.ext4 (which contains a filesystem image)

e —kernel zImage: Loads the Linux kernel from the local file named zImage

e —dtb vexpress-v2p-ca9.dtb: Loads the device tree from the local file
vexpress—-v2p-ca9.dtb

e —append "...":Supplies this string as the kernel command-line

e —serial stdio: Connects the serial port to the terminal that launched QEMU,
usually so that you can log on to the emulated machine via the serial console

e —net nic,model=1an9118: Creates a network interface

® —net tap, ifname=tap0: Connects the network interface to the virtual network
interface tap0

To configure the host side of the network, you need the tunct1l command from the User
Mode Linux (UML) project; on Debian and Ubuntu, the package is named uml-utilites:

$ sudo tunctl -u $(whoami) -t tapO

This creates a network interface named t ap0 which is connected to the network controller
in the emulated QEMU machine. You configure tap0 in exactly the same way as any other
interface.

All of these options are described in detail in the following chapters. I will be using
Versatile Express for most of my examples, but it should be easy to use a different machine
or architecture.

Software used in this book

I have used only open source software, both for the development tools and the target
operating system and applications. I assume that you will be using Linux on your
development system. I tested all the host commands using Ubuntu 14.04 and so there is a
slight bias towards that particular version, but any modern Linux distribution is likely to
work just fine.

[18]

Starting Out

Summary

Embedded hardware will continue to get more complex, following the trajectory set by
Moore's Law. Linux has the power and the flexibility to make use of hardware in an
efficient way.

Linux is just one component of open source software out of the many that you need to
create a working product. The fact that the code is freely available means that people and
organizations at many different levels can contribute. However, the sheer variety of
embedded platforms and the fast pace of development lead to isolated pools of software
which are not shared as efficiently as they should be. In many cases, you will become
dependent on this software, especially the Linux kernel that is provided by your SoC or
Board vendor, and to a lesser extent, the toolchain. Some SoC manufacturers are getting
better at pushing their changes upstream and the maintenance of these changes is getting
easier.

Fortunately, there are some powerful tools that can help you create and maintain the
software for your device. For example, Buildroot is ideal for small systems and the Yocto
Project for larger ones. Before I describe these build tools, I will describe the four elements
of embedded Linux, which you can apply to all embedded Linux projects, however they are
created.

The next chapter is all about the first of these, the toolchain, which you need to compile
code for your target platform.

[19]

Learning About Toolchains

The toolchain is the first element of embedded Linux and the starting point of your project.
You will use it to compile all the code that will run on your device. The choices you make at
this early stage will have a profound impact on the final outcome. Your toolchain should be
capable of making effective use of your hardware by using the optimum instruction set for
your processor. It should support the languages that you require, and have a solid
implementation of the Portable Operating System Interface (POSIX) and other system
interfaces. Not only that, but it should be updated when security flaws are discovered or
bugs are found. Finally, it should be constant throughout the project. In other words, once
you have chosen your toolchain, it is important to stick with it. Changing compilers and
development libraries in an inconsistent way during a project will lead to subtle bugs.

Obtaining a toolchain can be as simple as downloading and installing a TAR file, or it can
be as complex as building the whole thing from source code. In this chapter, I take the latter
approach, with the help of a tool called crosstool-NG, so that I can show you the details of
creating a toolchain. Later on in chapter 6, Selecting a Build System, I will switch to using
the toolchain generated by the build system, which is the more usual means of obtaining a
toolchain.

In this chapter, we will cover the following topics:

¢ Introducing toolchains

Finding a toolchain
Building a toolchain using the crosstool-NG tool

Anatomy of a toolchain
Linking with libraries —static and dynamic linking
The art of cross compiling

Learning About Toolchains

Introducing toolchains

A toolchain is the set of tools that compiles source code into executables that can run on
your target device, and includes a compiler, a linker, and run-time libraries. Initially you
need one to build the other three elements of an embedded Linux system: the bootloader,
the kernel, and the root filesystem. It has to be able to compile code written in assembly, C,
and C++ since these are the languages used in the base open source packages.

Usually, toolchains for Linux are based on components from the GNU project (http://www.
gnu.org), and that is still true in the majority of cases at the time of writing. However, over
the past few years, the Clang compiler and the associated Low Level Virtual Machine
(LLVM) project (http://11lvm.org) have progressed to the point that it is now a viable
alternative to a GNU toolchain. One major distinction between LLVM and GNU-based
toolchains is the licensing; LLVM has a BSD license while GNU has the GPL. There are
some technical advantages to Clang as well, such as faster compilation and better
diagnostics, but GNU GCC has the advantage of compatibility with the existing code base
and support for a wide range of architectures and operating systems. Indeed, there are still
some areas where Clang cannot replace the GNU C compiler, especially when it comes to
compiling a mainline Linux kernel. It is probable that, in the next year or so, Clang will be
able to compile all the components needed for embedded Linux and so will become an
alternative to GNU. There is a good description of how to use Clang for cross compilation at
http://clang.llvm.org/docs/CrossCompilation.html. If you would like to use it as part
of an embedded Linux build system, the EmbToolkit (https://www.embtoolkit.org) fully
supports both GNU and LLVM/Clang toolchains, and various people are working on using
Clang with Buildroot and the Yocto Project. I will cover embedded build systems in
Chapter 6, Selecting a Build System. Meanwhile, this chapter focuses on the GNU toolchain
as it is the only complete option at this time.

A standard GNU toolchain consists of three main components:

¢ Binutils: A set of binary utilities including the assembler and the linker. It is
available at http://www.gnu.org/software/binutils.

¢ GNU Compiler Collection (GCC): These are the compilers for C and other
languages which, depending on the version of GCC, include C++, Objective-C,
Objective-C+t, Java, Fortran, Ada, and Go. They all use a common backend
which produces assembler code, which is fed to the GNU assembler. It is
available at http://gcc.gnu.org/.

e Clibrary: A standardized application program interface (API) based on the
POSIX specification, which is the main interface to the operating system kernel
for applications. There are several C libraries to consider, as we shall see later on
in this chapter.

[21]

http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://www.gnu.org
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://llvm.org/
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
http://clang.llvm.org/docs/CrossCompilation.html
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
https://www.embtoolkit.org
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/

Learning About Toolchains

As well as these, you will need a copy of the Linux kernel headers, which contain
definitions and constants that are needed when accessing the kernel directly. Right now,
you need them to be able to compile the C library, but you will also need them later when
writing programs or compiling libraries that interact with particular Linux devices, for
example, to display graphics via the Linux frame buffer driver. This is not simply a question
of making a copy of the header files in the include directory of your kernel source code.
Those headers are intended for use in the kernel only and contain definitions that will cause
conflicts if used in their raw state to compile regular Linux applications.

Instead, you will need to generate a set of sanitized kernel headers, which I have illustrated
in Chapter 5, Building a Root Filesystem.

It is not usually crucial whether the kernel headers are generated from the exact version of
Linux you are going to be using or not. Since the kernel interfaces are always backwards-
compatible, it is only necessary that the headers are from a kernel that is the same as, or
older than, the one you are using on the target.

Most people would consider the GNU Debugger (GDB) to be part of the toolchain as well,
and it is usual that it is built at this point. I will talk about GDB in Chapter 14, Debugging
with GDB.

Types of toolchains

For our purposes, there are two types of toolchain:

e Native: This toolchain runs on the same type of system (sometimes the same
actual system) as the programs it generates. This is the usual case for desktops
and servers, and it is becoming popular on certain classes of embedded devices.
The Raspberry Pi running Debian for ARM, for example, has self-hosted native
compilers.

e Cross: This toolchain runs on a different type of system than the target, allowing
the development to be done on a fast desktop PC and then loaded onto the
embedded target for testing.

Almost all embedded Linux development is done using a cross development toolchain,
partly because most embedded devices are not well suited to program development since
they lack computing power, memory, and storage, but also because it keeps the host and
target environments separate. The latter point is especially important when the host and the
target are using the same architecture, x86_64, for example. In this case, it is tempting to
compile natively on the host and simply copy the binaries to the target.

[22]

Learning About Toolchains

This works up to a point, but it is likely that the host distribution will receive updates more
often than the target, or that different engineers building code for the target will have
slightly different versions of the host development libraries. Over time, the development
and target systems will diverge and you will violate the principle that the toolchain should
remain constant throughout the life of the project. You can make this approach work if you
ensure that the host and the target build environments are in lockstep with each other.
However, a much better approach is to keep the host and the target separate, and a cross
toolchain is the way to do that.

However, there is a counter argument in favor of native development. Cross development
creates the burden of cross-compiling all the libraries and tools that you need for your
target. We will see later in this chapter that cross-compiling is not always simple because
many open source packages are not designed to be built in this way. Integrated build tools,
including Buildroot and the Yocto Project, help by encapsulating the rules to cross compile
a range of packages that you need in typical embedded systems, but if you want to compile
a large number of additional packages, then it is better to natively compile them. For
example, building a Debian distribution for the Raspberry Pi or BeagleBone using a cross
compiler would be very hard. Instead, they are natively compiled. Creating a native build
environment from scratch is not easy. You would still need a cross compiler at first to create
the native build environment on the target, which you then use to build the packages. Then,
in order to perform the native build in a reasonable amount of time, you would need a
build farm of well-provisioned target boards, or you may be able to use QEMU to emulate
the target.

Meanwhile, in this chapter, I will focus on the more mainstream cross compiler
environment, which is relatively easy to set up and administer.

CPU architectures

The toolchain has to be built according to the capabilities of the target CPU, which includes:

e CPU architecture: ARM, MIPS, x86_64, and so on

e Big- or little-endian operation: Some CPUs can operate in both modes, but the
machine code is different for each

e Floating point support: Not all versions of embedded processors implement a
hardware floating point unit, in which case the toolchain has to be configured to
call a software floating point library instead

e Application Binary Interface (ABI): The calling convention used for passing
parameters between function calls

[23]

Learning About Toolchains

With many architectures, the ABI is constant across the family of processors. One notable
exception is ARM. The ARM architecture transitioned to the Extended Application Binary
Interface (EABI) in the late 2000s, resulting in the previous ABI being named the Old
Application Binary Interface (OABI). While the OABI is now obsolete, you continue to see
references to EABI. Since then, the EABI has split into two, based on the way the floating
point parameters are passed. The original EABI uses general purpose (integer) registers,
while the newer Extended Application Binary Interface Hard-Float (EABIHF) uses floating
point registers. The EABIHEF is significantly faster at floating point operations, since it
removes the need for copying between integer and floating point registers, but it is not
compatible with CPUs that do not have a floating point unit. The choice, then, is between
two incompatible ABIs; you cannot mix and match the two, and so you have to decide at
this stage.

GNU uses a prefix to the name of each tool in the toolchain, which identifies the various
combinations that can be generated. It consists of a tuple of three or four components
separated by dashes, as described here:

e CPU: This is the CPU architecture, such as ARM, MIPS, or x86_64. If the CPU has
both endian modes, they may be differentiated by adding e1 for little-endian or
eb for big-endian. Good examples are little-endian MIPS, mipsel and big-endian
ARM, armeb.

¢ Vendor: This identifies the provider of the toolchain. Examples include
buildroot, poky, Or just unknown. Sometimes it is left out altogether.

e Kernel: For our purposes, it is always 1inux.
¢ Operating system: A name for the user space component, which might be gnu or

mus 1. The ABI may be appended here as well, so for ARM toolchains, you may
see gnueabi, gnueabihf, musleabi, or musleabihf.

You can find the tuple used when building the toolchain by using the ~dumpmachine
option of gcc. For example, you may see the following on the host computer:

$ gcc —dumpmachine
x86_64-1linux—gnu

When a native compiler is installed on a machine, it is normal to create
links to each of the tools in the toolchain with no prefixes, so that you can
call the C compiler with the gcc command.

[24]

Learning About Toolchains

Here is an example using a cross compiler:

$ mipsel-unknown-linux—-gnu-gcc —dumpmachine
mipsel-unknown-linux—gnu

Choosing the C library

The programming interface to the Unix operating system is defined in the C language,
which is now defined by the POSIX standards. The C library is the implementation of that
interface; it is the gateway to the kernel for Linux programs, as shown in the following
diagram. Even if you are writing programs in another language, maybe Java or Python, the
respective run-time support libraries will have to call the C library eventually, as shown
here:

Application

C library

Linux Kernel

Whenever the C library needs the services of the kernel, it will use the kernel system call
interface to transition between user space and kernel space. It is possible to bypass the C
library by making the kernel system calls directly, but that is a lot of trouble and almost
never necessary.

There are several C libraries to choose from. The main options are as follows:

e glibc: This is the standard GNU C library, available at http://www.gnu.org/sof
tware/libe. Itis big and, until recently, not very configurable, but it is the most
complete implementation of the POSIX API. The license is LGPL 2.1.

o musl libc: This is available at https://www.musl-1libc.org. The musl libc
library is comparatively new, but has been gaining a lot of attention as a small
and standards-compliant alternative to GNU libc. It is a good choice for systems
with a limited amount of RAM and storage. It has an MIT license.

[25]

https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/
https://www.musl-libc.org/

Learning About Toolchains

¢ uClibc-ng: This is available at https://uclibc-ng.org/. uis really a Greek mu
character, indicating that this is the micro controller C library. It was first
developed to work with uClinux (Linux for CPUs without memory management
units), but has since been adapted to be used with full Linux. The uClibc-ng
library is a fork of the original uClibc project (https://uclibc.org/), which has
unfortunately fallen into disrepair. Both are licensed with LGPL 2.1.

¢ eglibc: This is available at http://www.eglibc.org/home. Now obsolete, eglibc
was a fork of glibc with changes to make it more suitable for embedded usage.
Among other things, eglibc added configuration options and support for
architectures not covered by glibc, in particular the PowerPC e500 CPU core.
The code base from eglibc was merged back into glibc in version 2.20. The
eglibc library is no longer maintained.

So, which to choose? My advice is to use uClibc-ng only if you are using uClinux. If you
have very limited amount of storage or RAM, then mus1 libc is a good choice, otherwise,
use glibc, as shown in this flow chart:

Yes uClibc-ng
—(me
glibc L—>| uClibc-ng

No

<32 MiB
storage?

No

Finding a toolchain

You have three choices for your cross development toolchain: you may find a ready built
toolchain that matches your needs, you can use the one generated by an embedded build
tool which is covered in chapter ¢, Selecting a Build System, or you can create one yourself
as described later in this chapter.

[26]

https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc-ng.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
https://uclibc.org/
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home
http://www.eglibc.org/home

Learning About Toolchains

A pre-built cross toolchain is an attractive option in that you only have to download and
install it, but you are limited to the configuration of that particular toolchain and you are
dependent on the person or organization you got it from. Most likely, it will be one of these:

e An SoC or board vendor. Most vendors offer a Linux toolchain.

e A consortium dedicated to providing system-level support for a given
architecture. For example, Linaro, (https://www.linaro.org/) have pre-built
toolchains for the ARM architecture.

e A third-party Linux tool vendor, such as Mentor Graphics, TimeSys, or
MontaVista.

¢ The cross tool packages for your desktop Linux distribution. For example,
Debian-based distributions have packages for cross compiling for ARM, MIPS,
and PowerPC targets.

¢ A binary SDK produced by one of the integrated embedded build tools. The
Yocto Project has some examples at
http://downloads.yoctoproject.org/releases/yocto/yocto-[version
]/toolchain.

¢ A link from a forum that you can't find any more.

In all of these cases, you have to decide whether the pre-built toolchain on offer meets your
requirements. Does it use the C library you prefer? Will the provider give you updates for
security fixes and bugs, bearing in mind my comments on support and updates from
Chapter 1, Starting Out. If your answer is no to any of these, then you should consider
creating your own.

Unfortunately, building a toolchain is no easy task. If you truly want to do the whole thing
yourself, take a look at Cross Linux From Scratch (http://trac.clfs.org). There you will
find step-by-step instructions on how to create each component.

A simpler alternative is to use crosstool-NG, which encapsulates the process into a set of
scripts and has a menu-driven frontend. You still need a fair degree of knowledge, though,
just to make the right choices.

It is simpler still to use a build system such as Buildroot or the Yocto Project, since they
generate a toolchain as part of the build process. This is my preferred solution, as I have
shown in chapter 6, Selecting a Build System.

[27]

https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
https://www.linaro.org/
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org
http://trac.clfs.org

Learning About Toolchains

Building a toolchain using crosstool-NG

Some years ago, Dan Kegel wrote a set of scripts and makefiles for generating cross
development toolchains and called it crosstool (http://kegel.com/crosstool/). In 2007,
Yann E. Morin used that base to create the next generation of crosstool, crosstool-NG (http
://crosstool-ng.github.io/). Today it is by far the most convenient way to create a
stand-alone cross toolchain from source.

Installing crosstool-NG

Before you begin, you will need a working native toolchain and build tools on your host
PC. To work with crosstool-NG on an Ubuntu host, you will need to install the packages
using the following command:

$ sudo apt-get install automake bison chrpath flex g++ git gperf \
gawk libexpatl-dev libncurses5-dev libsdll.2-dev libtool \
python2.7-dev texinfo

Next, get the current release from the crosstool-NG Git repository. In my examples, I have
used version 1.22.0. Extract it and create the frontend menu system, ct -ng, as shown in the
following commands:

git clone https://github.com/crosstool-ng/crosstool-ng.git
cd crosstool-ng

git checkout crosstool-ng-1.22.0

. /bootstrap

./configure --enable-local

make

make install

v v n

The ——enable-local option means that the program will be installed into the current
directory, which avoids the need for root permissions, as would be required if you were to
install it in the default location /usr/local/bin. Type ./ct-ng from the current directory
to launch the crosstool menu.

Building a toolchain for BeagleBone Black

Crosstool-NG can build many different combinations of toolchains. To make the initial
configuration easier, it comes with a set of samples that cover many of the common use-
cases. Use . /ct-ng list-samples to generate the list.

[28]

http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://kegel.com/crosstool/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/
http://crosstool-ng.github.io/

Learning About Toolchains

The BeagleBone Black has a TI AM335x SoC, which contains an ARM Cortex A8 core and a
VFPv3 floating point unit. Since the BeagleBone Black has plenty of RAM and storage, we
can use glibc as the C library. The closest sample is arm-cortex_a8-linux-gnueabi.
You can see the default configuration by prefixing the name with show-, as demonstrated
here:

$./ct-ng show—arm-cortex_a8-linux—gnueabi

[L..] arm-cortex_a8-linux-gnueabi

0S : linux-4.3

Companion libs : gmp-6.0.0a mpfr-3.1.3 mpc-1.0.3 libelf-0.8.13 expat-2.1.0
ncurses—6.0

binutils : binutils-2.25.1

C compilers : gcc | 5.2.0

Languages : C,C++

C library : glibc-2.22 (threads: nptl)

Tools : dmalloc-5.5.2 duma-2_5_15 gdb-7.10 ltrace-0.7.3 strace-4.10

This is a close match with our requirements, except that it using the eabi binary interface,
which passes floating point arguments in integer registers. We would prefer to use
hardware floating point registers for that purpose because it would speed up function calls
that have float and double parameter types. You can change the configuration later on, so
for now you should select this target configuration:

$./ct-ng arm-cortex_a8-linux—gnueabi

At this point, you can review the configuration and make changes using the configuration
menu command menuconfig:

$./ct—-ng menuconfig

The menu system is based on the Linux kernel menuconfig, and so navigation of the user
interface will be familiar to anyone who has configured a kernel. If not, refer to chapter 4,
Configuring and Building the Kernel for a description of menuconfig.

There are two configuration changes that I would recommend you make at this point:

¢ In Paths and misc options, disable Render the toolchain read-only
(CT_INSTALL_DIR_RO)

e In Target options | Floating point, select hardware (FPU) (CT_ARCH_FLOAT_HW)

[29]

Learning About Toolchains

The first is necessary if you want to add libraries to the toolchain after it has been installed,
which I describe later in this chapter. The second selects the eabihf binary interface for the
reasons discussed earlier. The names in parentheses are the configuration labels stored in
the configuration file. When you have made the changes, exit the menuconfig menu and
save the configuration as you do so.

Now you can use crosstool-NG to get, configure, and build the components according to
your specification, by typing the following command:

$./ct-ng build

The build will take about half an hour, after which you will find your toolchain is present in
~/x-tools/arm—-cortex_a8-linux—gnueabihf.

Building a toolchain for QEMU

On the QEMU target, you will be emulating an ARM-versatile PB evaluation board that has
an ARM926E]-S processor core, which implements the ARMvV5TE instruction set. You need
to generate a crosstool-NG toolchain that matches with the specification. The procedure is
very similar to the one for the BeagleBone Black.

You begin by running . /ct-ng list-samples to find a good base configuration to work
from. There isn't an exact fit, so use a generic target, arm-unknown-1linux-gnueabi. You
select it as shown, running distclean first to make sure that there are no artifacts left over
from a previous build:

$./ct-ng distclean
$./ct-ng arm-unknown-linux-gnueabi

As with the BeagleBone Black, you can review the configuration and make changes using
the configuration menu command . /ct-ng menuconfig. There is only one change
necessary:

¢ In Paths and misc options, disable Render the toolchain read-only
(CT_INSTALL_DIR_RO)

Now, build the toolchain with the command as shown here:
$./ct-ng build

As before, the build will take about half an hour. The toolchain will be installed in ~/x-
tools/arm-unknown-linux—-gnueabi.

[30]

Learning About Toolchains

Anatomy of a toolchain

To get an idea of what is in a typical toolchain, I want to examine the crosstool-NG
toolchain you have just created. The examples use the ARM Cortex A8 toolchain created for
the BeagleBone Black, which has the prefix arm-cortex_a8-1linux-gnueabihf-.If you
built the ARM926E]-S toolchain for the QEMU target, then the prefix will be arm-unknown-
linux-gnueabi instead.

The ARM Cortex A8 toolchain is in the directory ~/x-tools/arm-cortex_a8-linux—
gnueabihf/bin. In there you will find the cross compiler, arm-cortex_a8-linux—
gnueabihf-gcc. To make use of it, you need to add the directory to your path using the
following command:

$ PATH=~/x-tools/arm-cortex_a8-linux-gnueabihf/bin:$PATH

Now you can take a simple helloworld program, which in the C language looks like this:

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv([])
{
printf ("Hello, world!\n");
return O;

}

You compile it like this:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -o helloworld

You can confirm that it has been cross compiled by using the £ile command to print the
type of the file:

$ file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 4.3.0, not stripped

Finding out about your cross compiler

Imagine that you have just received a toolchain and that you would like to know more
about how it was configured. You can find out a lot by querying gcc. For example, to find
the version, you use ~~version:

[31]

Learning About Toolchains

$ arm-cortex_a8-linux—-gnueabihf-gcc --version
arm-cortex_a8-linux—-gnueabihf-gcc (crosstool-NG crosstool-ng-1.22.0) 5.2.0
Copyright (C) 2015 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

To find how it was configured, use —v:

$ arm-cortex_a8-linux-gnueabihf-gcc -v

Using built-in specs.

COLLECT_GCC=arm-cortex_a8-linux—-gnueabihf-gcc
COLLECT_LTO_WRAPPER=/home/chris/x-tools/arm-cortex_a8-linux—
gnueabihf/libexec/gcc/arm-cortex_a8-linux—-gnueabihf/5.2.0/lto-wrapper
Target: arm-cortex_a8-linux—-gnueabihf

Configured with: /home/chris/crosstool-ng/.build/src/gcc-5.2.0/configure —-
build=x86_64-build_pc-linux-gnu —--host=x86_64-build_pc-linux-gnu —-—
target=arm-cortex_a8-linux—-gnueabihf --prefix=/home/chris/x-tools/arm-
cortex_a8-linux—gnueabihf —--with-sysroot=/home/chris/x-tools/arm-cortex_a8-—

linux—gnueabihf/arm-cortex_a8-linux—-gnueabihf/sysroot —--enable-
languages=c, c++ —--with-cpu=cortex—-a8 —--with-float=hard --with-
pkgversion='crosstool-NG crosstool-ng-1.22.0' --enable-__ cxa_atexit --

disable-libmudflap —--disable-libgomp —--disable-libssp —--disable-libgquadmath
——disable-libquadmath-support —--disable-libsanitizer —--with-
gmp=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm-

cortex_a8-linux—gnueabihf/buildtools —--with-
mpfr=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm-
cortex_a8-linux—gnueabihf/buildtools —--with-
mpc=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm—
cortex_a8-linux—gnueabihf/buildtools —--with-
isl=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm-
cortex_a8-linux—gnueabihf/buildtools —--with-
cloog=/media/chris/android/home/training/MELP/ch02/crosstool-ng/.build/arm—
cortex_a8-linux—gnueabihf/buildtools —--with-

libelf=/media/chris/android/home/training/MELP/ch02/crosstool-
ng/.build/arm-cortex_a8-linux—gnueabihf/buildtools —--enable-lto —--with-
host-libstdcxx="'-static-libgcc -Wl,-Bstatic, -1lstdc++, -Bdynamic -1lm' --
enable-threads=posix —-—-enable-target-optspace —--enable-plugin --enable-gold
——disable-nls —--disable-multilib —--with-local-prefix=/home/chris/x—
tools/arm-cortex_a8-linux—gnueabihf/arm-cortex_a8-linux—gnueabihf/sysroot -
—enable-long-long

Thread model: posix

gcc version 5.2.0 (crosstool-NG crosstool-ng-1.22.0)

[32]

Learning About Toolchains

There is a lot of output there, but the interesting things to note are:

e ——with-sysroot=/home/chris/x-tools/arm-cortex_a8-linux-
gnueabihf/arm-cortex_a8-linux-gnueabihf/sysroot: Thisis the default
sysroot directory; see the following section for an explanation

e ——enable-languages=c, c++: Using this, we have both C and C++ languages
enabled

e ——with-cpu=cortex-a8: The code is generated for an ARM Cortex A8 core

e ——with-float=hard: Generates opcodes for the floating point unit and uses the
VEFP registers for parameters

e ——enable-threads=posix: This enables the POSIX threads

These are the default settings for the compiler. You can override most of them on the gcc
command line. For example, if you want to compile for a different CPU, you can override
the configured setting, ——with-cpu, by adding -mcpu to the command line, as follows:

$ arm-cortex_a8-linux—-gnueabihf-gcc -mcpu=cortex-a5 helloworld.c \
—-o helloworld

You can print out the range of architecture-specific options available using ——target -
help, as follows:

$ arm-cortex_a8-linux—gnueabihf-gcc —--target-help

You may be wondering if it matters that you get the configuration exactly right at this point,
since you can always change it as shown here. The answer depends on the way you
anticipate using it. If you plan to create a new toolchain for each target, then it makes sense
to set everything up at the beginning, because it will reduce the risks of getting it wrong
later on. Jumping ahead a little to chapter 6, Selecting a Build System, I call this the
Buildroot philosophy. If, on the other hand, you want to build a toolchain that is generic
and you are prepared to provide the correct settings when you build for a particular target,
then you should make the base toolchain generic, which is the way the Yocto Project
handles things. The preceding examples follow the Buildroot philosophy.

[33]

Learning About Toolchains

The sysroot, library, and header files

The toolchain sysroot is a directory which contains subdirectories for libraries, header
files, and other configuration files. It can be set when the toolchain is configured through —-
with-sysroot=, or it can be set on the command line using --sysroot=. You can see the
location of the default sysroot by using -print-sysroot:

$ arm-cortex_a8-linux—gnueabihf-gcc -print-sysroot

/home/chris/x-tools/arm-cortex_a8-linux—-gnueabihf/arm-cortex_a8-linux-
gnueabihf/sysroot

You will find the following subdirectories in sysroot:

e 1ib: Contains the shared objects for the C library and the dynamic linker/loader,
ld-linux

e usr/lib, the static library archive files for the C library, and any other libraries
that may be installed subsequently

e usr/include: Contains the headers for all the libraries

¢ usr/bin: Contains the utility programs that run on the target, such as the 1dd
command

e use/share: Used for localization and internationalization

¢ sbin: Provides the 1dconfig utility, used to optimize library loading paths

Plainly, some of these are needed on the development host to compile programs, and others
- for example, the shared libraries and 1d-1inux - are needed on the target at runtime.

Other tools in the toolchain

The following table shows various other components of a GNU toolchain, together with a
brief description:

Command |Description

addr2line | Converts program addresses into filenames and numbers by reading the
debug symbol tables in an executable file. It is very useful when decoding
addresses printed out in a system crash report.

ar The archive utility is used to create static libraries.

as This is the GNU assembler.

c++filt | Thisis used to demangle C++ and Java symbols.

[34]

Learning About Toolchains

Command |Description

cpp This is the C preprocessor and is used to expand #define, #include, and other
similar directives. You seldom need to use this by itself.

elfedit |Thisis used to update the ELF header of the ELF files.

g++ This is the GNU C++ frontend, which assumes that source files contain C++ code.

gcc This is the GNU C frontend, which assumes that source files contain C code.

gcov This is a code coverage tool.

gdb This is the GNU debugger.

gprof This is a program profiling tool.

1d This is the GNU linker.

nm This lists symbols from object files.

objcopy | Thisis used to copy and translate object files.

objdump |This is used to display information from object files.

ranlib This creates or modifies an index in a static library, making the linking stage
faster.

readelf |This displays information about files in ELF object format.

size This lists section sizes and the total size.

strings | This displays strings of printable characters in files.

strip This is used to strip an object file of debug symbol tables, thus making it smaller.
Typically, you would strip all the executable code that is put onto the target.

Looking at the components of the C library

The C library is not a single library file. It is composed of four main parts that together
implement the POSIX API:

e libc: The main Clibrary that contains the well-known POSIX functions such as
printf, open, close, read, write, and so on

¢ 1ibm: Contains maths functions such as cos, exp, and log

[35]

Learning About Toolchains

e libpthread: Contains all the POSIX thread functions with names beginning
with pthread_

e librt: Has the real-time extensions to POSIX, including shared memory and
asynchronous I/O

The first one, 1ibc, is always linked in but the others have to be explicitly linked with the -
1 option. The parameter to -1 is the library name with 1ib stripped off. For example, a
program that calculates a sine function by calling sin () would be linked with 1ibm using -
Im:

$ arm-cortex_a8-linux—-gnueabihf-gcc myprog.c —-o myprog -1lm

You can verify which libraries have been linked in this or any other program by using the
readelf command:

$ arm-cortex_a8-linux—-gnueabihf-readelf -a myprog | grep "Shared library"
0x00000001 (NEEDED) Shared library: [libm.so.6]
0x00000001 (NEEDED) Shared library: [libc.so.6]

Shared libraries need a runtime linker, which you can expose using:

$ arm-cortex_a8-linux—-gnueabihf-readelf -a myprog | grep "program
interpreter"
[Requesting program interpreter: /lib/ld-linux-armhf.so.3]

This is so useful that I have a script file named 1ist-1ibs, which you will find in the book
code archive in MELP /1ist~-1ibs. It contains the following commands:

#!/bin/sh
S{CROSS_COMPILE}readelf -a $1 | grep "program interpreter"
S{CROSS_COMPILE}readelf -a $1 | grep "Shared library"

Linking with libraries — static and dynamic
linking

Any application you write for Linux, whether it be in C or C++, will be linked with the C
library 1ibc. This is so fundamental that you don't even have to tell gcc or g++ to do it

because it always links 1ibc. Other libraries that you may want to link with have to be
explicitly named through the -1 option.

[36]

Learning About Toolchains

The library code can be linked in two different ways: statically, meaning that all the library
functions your application calls and their dependencies are pulled from the library archive
and bound into your executable; and dynamically, meaning that references to the library
files and functions in those files are generated in the code but the actual linking is done
dynamically at runtime. You will find the code for the examples that follow in the book
code archive in MELP/chapter_02/library.

Static libraries

Static linking is useful in a few circumstances. For example, if you are building a small
system which consists of only BusyBox and some script files, it is simpler to link BusyBox
statically and avoid having to copy the runtime library files and linker. It will also be
smaller because you only link in the code that your application uses rather than supplying
the entire C library. Static linking is also useful if you need to run a program before the
filesystem that holds the runtime libraries is available.

You tell to link all the libraries statically by adding -static to the command line:

$ arm-cortex_a8-linux-gnueabihf-gcc -static helloworld.c -o helloworld-
static

You will note that the size of the binary increases dramatically:

$ 1s -1
—-rwxrwxr—-x 1 chris chris 5884 Mar 5 09:56 helloworld
—rwxrwxr—x 1 chris chris 614692 Mar 5 10:27 helloworld-static

Static linking pulls code from a library archive, usually named 1ib[name] .a. In the
preceding case, itis 1ibc.a, whichisin [sysroot]/usr/lib:

$ export SYSROOT=$ (arm—cortex_a8-linux—gnueabihf-gcc —-print-sysroot)
$ cd $SYSROOT

$ 1s -1 usr/lib/libc.a

—rw-r-—-r—— 1 chris chris 3457004 Mar 3 15:21 usr/lib/libc.a

Note that the syntax export SYSROOT=$ (arm-cortex_a8-linux-gnueabihf-gcc -
print-sysroot) places the path to the sysroot in the shell variable, SYSROOT, which
makes the example a little clearer.

Creating a static library is as simple as creating an archive of object files using the ar
command. If I have two source files named test1.c and test2.c, and I want to create a
static library named libtest.a, then I would do the following;:

[371]

Learning About Toolchains

$ arm-cortex_a8-linux—-gnueabihf-gcc -c testl.c
$ arm-cortex_a8-linux—-gnueabihf-gcc -c test2.c
$ arm-cortex_a8-linux—-gnueabihf-ar rc libtest.a testl.o test2.o
$ 1s -1
total 24
—-rw-rw-r—— 1 chris chris 2392 Oct 9 09:28 libtest.a
—-rw-rw-r—— 1 chris chris 116 Oct 9 09:26 testl.c
—-rw-rw-r—— 1 chris chris 1080 Oct 9 09:27 testl.o

1 chris chris 121 Oct 9 09:26 test2.c

1 chris chris 1088 Oct 9 09:27 test2.o

—IrW—IXrw—r——
—IrW—IXrw—r——

Then I could link libtest into my helloworld program, using:

$ arm-cortex_a8-linux—-gnueabihf-gcc helloworld.c -ltest \
-L../libs -I../libs -o helloworld

Shared libraries

A more common way to deploy libraries is as shared objects that are linked at runtime,
which makes more efficient use of storage and system memory, since only one copy of the
code needs to be loaded. It also makes it easy to update the library files without having to
re-link all the programs that use them.

The object code for a shared library must be position-independent, so that the runtime
linker is free to locate it in memory at the next free address. To do this, add the -fpIC
parameter to gcc, and then link it using the —shared option:

$ arm-cortex_a8-linux—-gnueabihf-gcc —-fPIC -c testl.c
$ arm-cortex_a8-linux—-gnueabihf-gcc —-fPIC -c test2.c
$ arm-cortex_a8-linux—gnueabihf-gcc —-shared -o libtest.so testl.o test2.o

This creates the shared library, 1ibtest.so. To link an application with this library, you
add -1test, exactly as in the static case mentioned in the preceding section, but this time
the code is not included in the executable. Instead, there is a reference to the library that the
runtime linker will have to resolve:

$ arm-cortex_a8-linux-gnueabihf-gcc helloworld.c -ltest \
-L../libs -I../1libs —-o helloworld

$ MELP/list-libs helloworld

[Requesting program interpreter: /lib/ld-linux-armhf.so.3]
0x00000001 (NEEDED) Shared library: [libtest.so]
0x00000001 (NEEDED) Shared library: [libc.so.6]

[38]

Learning About Toolchains

The runtime linker for this program is /1ib/ld-linux-armhf.so. 3, which must be
present in the target's filesystem. The linker will look for 1ibtest . so in the default search
path: /1ib and /usr/1ib. If you want it to look for libraries in other directories as well,
you can place a colon-separated list of paths in the shell variable LD_LIBRARY_ PATH:

export LD_LIBRARY PATH=/opt/lib:/opt/usr/lib

Understanding shared library version numbers

One of the benefits of shared libraries is that they can be updated independently of the
programs that use them. Library updates are of two types: those that fix bugs or add new
functions in a backwards-compatible way, and those that break compatibility with existing
applications. GNU/Linux has a versioning scheme to handle both these cases.

Each library has a release version and an interface number. The release version is simply a
string that is appended to the library name; for example, the JPEG image library 1ibjpegis
currently at release 8.0.2 and so the library is named 1ibjpeg.so.8.0.2. Thereis a
symbolic link named 1ibjpeg.so to libjpeg.so.8.0.2, so that when you compile a
program with -1 jpeg, you link with the current version. If you install version 8.0.3, the link
is updated and you will link with that one instead.

Now suppose that version 9.0.0. comes along and that breaks the backwards compatibility.
The link from 1ibjpeg.so now points to 1ibjpeg.so.9.0.0, so that any new programs
are linked with the new version, possibly throwing compile errors when the interface to
libjpeg changes, which the developer can fix. Any programs on the target that are not
recompiled are going to fail in some way, because they are still using the old interface. This
is where an object known as the soname helps. The soname encodes the interface number
when the library was built and is used by the runtime linker when it loads the library. It is
formatted as <library name>.so.<interface number>.For libjpeg.so0.8.0.2, the
soname is 1libjpeg.so.8:

$ readelf -a /usr/lib/libjpeg.so.8.0.2 | grep SONAME
0x000000000000000e (SONAME) Library soname:
[1ibjpeg.so0.8]

Any program compiled with it will request 1ibjpeg.so. 8 at runtime, which will be a
symbolic link on the target to 1ibjpeg.so.8.0.2. When version 9.0.0 of 1ibjpeg is
installed, it will have a soname of 1ibjpeg.so. 9, and so it is possible to have two
incompatible versions of the same library installed on the same system. Programs that were
linked with 1ibjpeg.so.8.*.* will load 1ibjpeg.so. 8, and those linked with
libjpeg.so.9.*.* will load 1ibjpeg.so.9.

[39]

Learning About Toolchains

This is why, when you look at the directory listing of <sysroot>/usr/1ib/libjpeg*, you
find these four files:

e libjpeg.a: This is the library archive used for static linking

® libjpeg.so —-> libjpeg.so.8.0.2: Thisis a symbolic link, used for dynamic
linking

e libjpeg.so.8 —-> libjpeg.so.8.0.2: Thisis a symbolic link, used when
loading the library at runtime

® libjpeg.so.8.0.2: This is the actual shared library, used at both compile time
and runtime

The first two are only needed on the host computer for building and the last two are needed
on the target at runtime.

The art of cross compiling

Having a working cross toolchain is the starting point of a journey, not the end of it. At
some point, you will want to begin cross compiling the various tools, applications, and
libraries that you need on your target. Many of them will be open source packages—each of
which has its own method of compiling and its own peculiarities. There are some common
build systems, including;:

e Pure makefiles, where the toolchain is usually controlled by the make variable
CROSS_COMPILE

e The GNU build system known as Autotools

e CMake (https ://cmake. org/)

I will cover only the first two here since these are the ones needed for even a basic
embedded Linux system. For CMake, there are some excellent resources on the CMake
website referenced in the preceding point.

Simple makefiles

Some important packages are very simple to cross compile, including the Linux kernel, the
U-Boot bootloader, and BusyBox. For each of these, you only need to put the toolchain
prefix in the make variable CROSS_COMPILE, for example arm-cortex_a8-linux-
gnueabi-. Note the trailing dash -.

[40]

https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

Learning About Toolchains

So, to compile BusyBox, you would type:

$ make CROSS_COMPILE=arm—cortex_a8-linux—-gnueabihf-

Or, you can set it as a shell variable:

$ export CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-
$ make

In the case of U-Boot and Linux, you also have to set the make variable ARCH to one of the
machine architectures they support, which I will cover in chapter 3, All About Bootloaders,
and chapter 4, Configuring and Building the Kernel.

Autotools

The name Autotools refers to a group of tools that are used as the build system in many
open source projects. The components, together with the appropriate project pages, are:

. CHQL]AlHOCODf(https://www.gnu.orq/software/autoconf/autoconf.html)

¢ GNU Automake (https://www.gnu.org/savannah-checkouts/gnu/automake/)
e GNU Libtool (https://www.gnu.org/software/libtool/libtool.html)

e Gnulib (https://www.gnu.org/software/gnulib/)

The role of Autotools is to smooth over the differences between the many different types of
systems that the package may be compiled for, accounting for different versions of
compilers, different versions of libraries, different locations of header files, and
dependencies with other packages. Packages that use Autotools come with a script named
configure that checks dependencies and generates makefiles according to what it finds.
The configure script may also give you the opportunity to enable or disable certain
features. You can find the options on offer by running . /configure --help.

To configure, build, and install a package for the native operating system, you would
typically run the following three commands:

$./configure
$ make
$ sudo make install

Autotools is able to handle cross development as well. You can influence the behavior of the
configure script by setting these shell variables:

e cC: The C compiler command
e CFLAGS: Additional C compiler flags

[41]

https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/savannah-checkouts/gnu/automake/
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/libtool/libtool.html
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/
https://www.gnu.org/software/gnulib/

Learning About Toolchains

e LDFLAGS: Additional linker flags; for example, if you have libraries in a non-
standard directory <1ib dir>, you would add it to the library search path by
adding -L<1ib dir>

e 1LIBS: Contains a list of additional libraries to pass to the linker; for instance, -1m
for the math library

e CPPFLAGS: Contains C/C++ preprocessor flags; for example, you would add -
I<include dir> to search for headers in a non-standard directory <include
dir>

e cpP: The C preprocessor to use

Sometimes it is sufficient to set only the cC variable, as follows:

$ CC=arm-cortex_a8-linux—-gnueabihf-gcc ./configure
At other times, that will result in an error like this:

[...]

checking whether we are cross compiling... configure: error: in
'/home/chris/MELP/build/sqlite—autoconf-3081101":

configure: error: cannot run C compiled programs.

If you meant to cross compile, use '—-host'.

See 'config.log' for more details

The reason for the failure is that configure often tries to discover the capabilities of the
toolchain by compiling snippets of code and running them to see what happens, which
cannot work if the program has been cross compiled. Nevertheless, there is a hint in the
error message on how to solve the problem. Autotools understands three different types of
machines that may be involved when compiling a package:

e Build is the computer that builds the package, which defaults to the current
machine.

¢ Host is the computer the program will run on; for a native compile, this is left
blank and it defaults to be the same computer as build. When you are cross
compiling, set it to be the tuple of your toolchain.

e Target is the computer the program will generate code for; you would set this
when building a cross compiler, for example.

So, to cross compile, you just need to override the host, as follows:

$ CC=arm-cortex_a8-linux—gnueabihf-gcc \
./configure —--host=arm-cortex_a8-linux—gnueabihf

[42]

Learning About Toolchains

One final thing to note is that the default install directory is <sysroot>/usr/local/*. You
would usually install it in <sysroot>/usr/*, so that the header files and libraries would
be picked up from their default locations. The complete command to configure a typical
Autotools package is as follows:

$ CC=arm-cortex_a8-linux—gnueabihf-gcc \
./configure —-host=arm-cortex_a8-linux—gnueabihf —--prefix=/usr

An example: SQLite

The SQLite library implements a simple relational database and is quite popular on
embedded devices. You begin by getting a copy of SQLite:

$ wget http://www.sqlite.org/2015/sqlite—autoconf-3081101.tar.gz
$ tar xf sqlite—autoconf-3081101.tar.gz
$ cd sglite—autoconf-3081101

Next, run the configure script:

$ CC=arm-cortex_a8-linux-gnueabihf-gcc \
./configure --host=arm-cortex_a8-linux-gnueabihf --prefix=/usr

That seems to work! If it had failed, there would be error messages printed to the Terminal
and recorded in config. log. Note that several makefiles have been created, so now you
can build it:

$ make

Finally, you install it into the toolchain directory by setting the make variable DESTDIR. If
you don't, it will try to install it into the host computer's /usr directory, which is not what
you want:

$ make DESTDIR=$ (arm—cortex_a8-linux—gnueabihf-gcc —-print-sysroot) install

You may find that the final command fails with a file permissions error. A crosstool-NG
toolchain is read-only by default, which is why it is useful to set CT_INSTALL_DIR RO toy
when building it. Another common problem is that the toolchain is installed in a system
directory, such as /opt or /usr/local, in which case you will need root permissions
when running the install.

After installing, you should find that various files have been added to your toolchain:

e <sysroot>/usr/bin: sqglite3: Thisis a command-line interface for SQLite
that you can install and run on the target

[43]

Learning About Toolchains

e <sysroot>/usr/lib: libsglite3.s0.0.8.6,1libsglite3.s0.0,
libsqglite3.so, libsqglite3.1la, libsqglite3.a: These are the shared and
static libraries

e <sysroot>/usr/lib/pkgconfig: sqglite3.pc: Thisis the package
configuration file, as described in the following section

e <sysroot>/usr/lib/include: sqglite3.h, sqlite3ext.h: These are the
header files

e <sysroot>/usr/share/man/manl: sqlite3.1: This is the manual page

Now you can compile programs that use sqlite3 by adding -1sqglite3 at the link stage:
$ arm-cortex_a8-linux—-gnueabihf-gcc -lsqglite3 sqglite-test.c -o sqlite-test

Here, sqlite-test.c is a hypothetical program that calls SQLite functions. Since sqlite3
has been installed into the sysroot, the compiler will find the header and library files
without any problem. If they had been installed elsewhere, you would have had to add -
L<lib dir>and -I<include dir>.

Naturally, there will be runtime dependencies as well, and you will have to install the
appropriate files into the target directory as described in chapter 5, Building a Root
Filesystem.

Package configuration

Tracking package dependencies is quite complex. The package configuration utility pkg-
config (https://www.freedesktop.org/wiki/Software/pkg-config/) helps track which
packages are installed and which compile flags each needs by keeping a database of
Autotools packages in [sysroot]/usr/lib/pkgconfig. For instance, the one for SQLite3
isnamed sglite3.pc and contains essential information needed by other packages that
need to make use of it:

$ cat $(arm-cortex_a8-linux—gnueabihf-gcc -print-
sysroot) /usr/lib/pkgconfig/sqlite3.pc
Package Information for pkg-config

prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/1lib
includedir=${prefix}/include

Name: SQLite
Description: SQL database engine

[44]

https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/
https://www.freedesktop.org/wiki/Software/pkg-config/

Learning About Toolchains

Version: 3.8.11.1

Libs: -L${libdir} -1lsglite3
Libs.private: -1dl -lpthread
Cflags: -I${includedir}

You can use pkg—-config to extract information in a form that you can feed straight to gcc.
In the case of a library like 1ibsqglite3, you want to know the library name (--1ibs) and
any special C flags (-—cflags):

$ pkg-config sqlite3 —--libs —--cflags

Package sglite3 was not found in the pkg-config search path.

Perhaps you should add the directory containing “sglite3.pc'

to the PKG_CONFIG_PATH environment variable
No package 'sqglite3' found

Oops! That failed because it was looking in the host's sysroot and the development
package for 1ibsglite3 has not been installed on the host. You need to point it at the
sysroot of the target toolchain by setting the shell variable PKG_CONFIG_LIBDIR:

$ export PKG_CONFIG_LIBDIR=$ (arm—cortex_a8-linux—-gnueabihf-gcc \
-print-sysroot) /usr/lib/pkgconfig

$ pkg-config sqlite3 —--libs —--cflags -lsqlite3

Now the output is -1sglite3. In this case, you knew that already, but generally you
wouldn't, so this is a valuable technique. The final commands to compile would be:

$ export PKG_CONFIG_LIBDIR=$ (arm—-cortex_a8-linux—-gnueabihf-gcc \
-print-sysroot) /usr/lib/pkgconfig

$ arm-cortex_a8-linux-gnueabihf-gcc $(pkg-config sqlite3 --cflags --1libs) \
sqlite-test.c -o sqglite-test

Problems with cross compiling

The sqlite3 is a well-behaved package and cross compiles nicely, but not all packages are the
same. Typical pain points include:

¢ Home-grown build systems; z1ib, for example, has a configure script, but it does
not behave like the Autotools configure described in the previous section

e Configure scripts that read pkg-config information, headers, and other files
from the host, disregarding the -~host override

e Scripts that insist on trying to run cross compiled code

[45]

Learning About Toolchains

Each case requires careful analysis of the error and additional parameters to the configure
script to provide the correct information, or patches to the code to avoid the problem
altogether. Bear in mind that one package may have many dependencies, especially with
programs that have a graphical interface using GTK or QT, or that handle multimedia
content. As an example, mplayer, which is a popular tool for playing multimedia content,
has dependencies on over 100 libraries. It would take weeks of effort to build them all.

Therefore, I would not recommend manually cross compiling components for the target in
this way, except when there is no alternative or the number of packages to build is small. A
much better approach is to use a build tool such as Buildroot or the Yocto Project, or avoid
the problem altogether by setting up a native build environment for your target
architecture. Now you can see why distributions like Debian are always compiled natively.

Summary

The toolchain is always your starting point; everything that follows from that is dependent
on having a working, reliable toolchain.

Most embedded build environments are based on a cross development toolchain, which
creates a clear separation between a powerful host computer building the code and a target
computer on which it runs. The toolchain itself consists of the GNU binutils, a C compiler
from the GNU compiler collection—and quite likely the C++ compiler as well —plus one of
the C libraries I have described. Usually, the GNU debugger, GDB, will be generated at this
point, which I describe in chapter 14, Debugging with GDB. Also, keep a watch out for the
Clang compiler, as it will develop over the next few years.

You may start with nothing but a toolchain—perhaps built using crosstool-NG or
downloaded from Linaro—and use it to compile all the packages that you need on your
target, accepting the amount of hard work this will entail. Or you may obtain the toolchain
as part of a distribution which includes a range of packages. A distribution can be generated
from source code using a build system such as Buildroot or the Yocto Project, or it can be a
binary distribution from a third party, maybe a commercial enterprise like Mentor
Graphics, or an open source project such as the Denx ELDK. Beware of toolchains or
distributions that are offered to you for free as part of a hardware package; they are often
poorly configured and not maintained. In any case, you should make your choice according
to your situation, and then be consistent in its use throughout the project.

Once you have a toolchain, you can use it to build the other components of your embedded
Linux system. In the next chapter, you will learn about the bootloader, which brings your
device to life and begins the boot process.

[46]

All About Bootloaders

The bootloader is the second element of embedded Linux. It is the part that starts the
system up and loads the operating system kernel. In this chapter, I will look at the role of
the bootloader and, in particular, how it passes control from itself to the kernel using a data
structure called a device tree, also known as a flattened device tree or FDT. I will cover the
basics of device trees, so that you will be able to follow the connections described in a
device tree and relate it to real hardware.

I will look at the popular open source bootloader, U-Boot, and show you how to use it to
boot a target device, and also how to customize it to run on a new device, using the
BeagleBone Black as an example. Finally, I will take a quick look at Barebox, a bootloader
that shares its past with U-Boot, but which has, arguably, a cleaner design.

In this chapter, we will cover the following topics:

e What does a bootloader do?

¢ The boot sequence.

¢ Booting with UEFI firmware.

e Moving from bootloader to kernel.
e Introducing device trees.

e Choosing a bootloader.

e U-Boot.

e Barebox.

All About Bootloaders

What does a bootloader do?

In an embedded Linux system, the bootloader has two main jobs: to initialize the system to
a basic level and to load the kernel. In fact, the first job is somewhat subsidiary to the
second, in that it is only necessary to get as much of the system working as is needed to
load the kernel.

When the first lines of the bootloader code are executed, following a power-on or a reset,
the system is in a very minimal state. The DRAM controller would not have been set up,
and so the main memory would not be accessible. Likewise, other interfaces would not have
been configured, so storage accessed via NAND flash controllers, MMC controllers, and so
on, would also not be usable. Typically, the only resources operational at the beginning are
a single CPU core and some on-chip static memory. As a result, system bootstrap consists of
several phases of code, each bringing more of the system into operation. The final act of the
bootloader is to load the kernel into RAM and create an execution environment for it. The
details of the interface between the bootloader and the kernel are architecture-specific, but
in each case it has to do two things. First, bootloader has to pass a pointer to a structure
containing information about the hardware configuration, and second it has to pass a
pointer to the kernel command line. The kernel command line is a text string that controls
the behavior of Linux. Once the kernel has begun executing, the bootloader is no longer
needed and all the memory it was using can be reclaimed.

A subsidiary job of the bootloader is to provide a maintenance mode for updating boot
configurations, loading new boot images into memory, and, maybe, running diagnostics.
This is usually controlled by a simple command-line user interface, commonly over a serial
interface.

The boot sequence

In simpler times, some years ago, it was only necessary to place the bootloader in non-
volatile memory at the reset vector of the processor. NOR flash memory was common at
that time and, since it can be mapped directly into the address space, it was the ideal
method of storage. The following diagram shows such a configuration, with the Reset
vector at Oxfffffffc at the top end of an area of flash memory. The bootloader is linked so
that there is a jump instruction at that location that points to the start of the bootloader
code:

[48]

All About Bootloaders

ssssssse L%
W flash

N\

Reset vector

DRAM

0x00000000

From that point, the bootloader code running in NOR flash memory can initialize the
DRAM controller, so that the main memory, the DRAM, becomes available and then it
copies itself into the DRAM. Once fully operational, the bootloader can load the kernel
from flash memory into DRAM and transfer control to it.

However, once you move away from a simple linearly addressable storage medium like
NOR flash, the boot sequence becomes a complex, multi-stage procedure. The details are
very specific to each SoC, but they generally follow each of the following phases.

Phase 1 — ROM code

In the absence of reliable external memory, the code that runs immediately after a reset or
power-on has to be stored on-chip in the SoC; this is known as ROM code. It is loaded into
the chip when it is manufactured, and hence the ROM code is proprietary and cannot be
replaced by an open source equivalent. Usually, it does not include code to initialize the
memory controller, since DRAM configurations are highly device-specific, and so it can
only use Static Random Access Memory (SRAM), which does not require a memory
controller.

[49]

All About Bootloaders

Most embedded SoC designs have a small amount of SRAM on-chip, varying in size from
as little as 4 KB to several hundred KB:

ROM code
M code loads

The ROM code is capable of loading a small chunk of code from one of several pre-
programmed locations into the SRAM. As an example, TI OMAP and Sitara chips try to
load code from the first few pages of NAND flash memory, or from flash memory
connected through a Serial Peripheral Interface (SPI), or from the first sectors of an MMC
device (which could be an eMMC chip or an SD card), or from a file named MLO on the first
partition of an MMC device. If reading from all of these memory devices fails, then it tries
reading a byte stream from Ethernet, USB, or UART,; the latter is provided mainly as a
means of loading code into flash memory during production, rather than for use in normal
operation. Most embedded SoCs have a ROM code that works in a similar way. In SoCs
where the SRAM is not large enough to load a full bootloader like U-Boot, there has to be an
intermediate loader called the secondary program loader, or SPL.

At the end of the ROM code phase, the SPL is present in the SRAM and the ROM code
jumps to the beginning of that code.

Phase 2 — secondary program loader

The SPL must set up the memory controller and other essential parts of the system
preparatory to loading the Tertiary Program Loader (TPL) into DRAM. The functionality of
the SPL is limited by the size of the SRAM. It can read a program from a list of storage
devices, as can the ROM code, once again using pre-programmed offsets from the start of a
flash device. If the SPL has file system drivers built in, it can read well known file names,
such as u-boot . img, from a disk partition. The SPL usually doesn't allow for any user
interaction, but it may print version information and progress messages, which you can see
on the console. The following diagram explains the phase 2 architecture:

[50]

All About Bootloaders

DRAM

SPL loads
TPL TPL into
DRAM

SoC

SRAM
77

e
ROM code zj‘////A
jumps
to SPL

ROM code

[]

The SPL may be open source, as is the case with the TI x-loader and Atmel AT91Bootstrap,
but it is quite common for it to contain proprietary code that is supplied by the
manufacturer as a binary blob.

At the end of the second phase, the TPL is present in DRAM, and the SPL can make a jump
to that area.

Phase 3 - TPL

Now, at last, we are running a full bootloader, such as U-Boot or BareBox. Usually, there is
a simple command-line user interface that lets you perform maintenance tasks, such as
loading new boot and kernel images into flash storage, and loading and booting a kernel,
and there is a way to load the kernel automatically without user intervention.

[51]

All About Bootloaders

The following diagram explains the phase 3 architecture:

DRAM
initramfs TPL loads
kernel (+
FDT optional FDT
and
Kernel initramfs)
image into DRAM
SoC
SPL jumps SRAM
to TPL SPL
ROM code

At the end of the third phase, there is a kernel in memory, waiting to be started.

Embedded bootloaders usually disappear from memory once the kernel is running, and
perform no further part in the operation of the system.

Booting with UEFI firmware

Most embedded x86/x86_64 designs, and some ARM designs, have firmware based on the
Universal Extensible Firmware Interface (UEFI) standard. You can take a look at the UEFI
website at http://www.uefi.org/ for more information. The boot sequence is
fundamentally the same as that described in the preceding section:

e Phase 1: The processor loads the platform initialization firmware from flash
memory. In some designs, it is loaded directly from NOR flash memory, while in
others, there is ROM code on-chip which loads the firmware from SP1I flash
memory into some on-chip static RAM.

[52]

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/

All About Bootloaders

Phase 2: The platform initialization firmware performs the role of SPL. It
initializes the DRAM controller and other system interfaces, so as to be able to
load an EFI boot manager from the EFI System Partition (ESP) on a local disk, or
from a network server via PXE boot. The ESP must be formatted using FAT16 or
FAT32 format and it should have the well-known GUID value of C12A7328-
F81F-11D2-BA4B-00A0C93EC93B. The path name of the boot manager code
must follow the naming convention
<efi_system_partition>/boot/boot<machine_type_short_name>.efi.
For example, the file path to the loader on an x86_64 system would be
/efi/boot/bootx64.efi.

Phase 3: The UEFI boot manager is the tertiary program loader. The TPL in this
case has to be a bootloader that is capable of loading a Linux kernel and an
optional RAM disk into memory. Common choices are:

e systemd-boot: This used to be called gummiboot. It is a simple
UEFI-compatible bootloader, licensed under LGPL v2.1. The
website is https://www.freedesktop.org/wiki/Software/syste
md/systemd-boot/.

e Tummiboot: This is the gummiboot with trusted boot support
(Intel's Trusted Execution Technology (TEX)).

Moving from bootloader to kernel

When the bootloader passes control to the kernel it has to pass some basic information,
which may include some of the following:

The machine number, which is used on PowerPC, and ARM platforms without
support for a device tree, to identify the type of the SoC

Basic details of the hardware detected so far, including at least the size and
location of the physical RAM, and the CPU clock speed

The kernel command line
Optionally, the location and size of a device tree binary

Optionally, the location and size of an initial RAM disk, called the initial RAM
file system (initramfs)

[53]

https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/

All About Bootloaders

The kernel command line is a plain ASCII string which controls the behavior of Linux by
giving, for example, the name of the device that contains the root filesystem. I will look at
the details of this in the next chapter. It is common to provide the root filesystem as a RAM
disk, in which case it is the responsibility of the bootloader to load the RAM disk image into
memory. I will cover the way you create initial RAM disks in chapter 5, Building a Root
Filesystem.

The way this information is passed is dependent on the architecture and has changed in
recent years. For instance, with PowerPC, the bootloader simply used to pass a pointer to a
board information structure, whereas, with ARM, it passed a pointer to a list of A tags.
There is a good description of the format of A tags in the kernel source in
Documentation/arm/Booting.

In both cases, the amount of information passed was very limited, leaving the bulk of it to
be discovered at runtime or hard-coded into the kernel as platform data. The widespread
use of platform data meant that each board had to have a kernel configured and modified
for that platform. A better way was needed, and that way is the device tree. In the ARM
world, the move away from A tags began in earnest in February 2013 with the release of
Linux 3.8. Today, almost all ARM systems use device tree to gather information about the
specifics of the hardware platform, allowing a single kernel binary to run on a wide range
of those platforms.

Introducing device trees

If you are working with ARM or PowerPC SoCs, you are almost certainly going to
encounter device trees at some point. This section aims to give you a quick overview of
what they are and how they work, but there are many details that are not discussed.

A device tree is a flexible way to define the hardware components of a computer system.
Usually, the device tree is loaded by the bootloader and passed to the kernel, although it is
possible to bundle the device tree with the kernel image itself to cater for bootloaders that
are not capable of loading them separately.

The format is derived from a Sun Microsystems bootloader known as OpenBoot, which
was formalized as the Open Firmware specification, which is IEEE standard IEEE1275-1994.
It was used in PowerPC-based Macintosh computers and so was a logical choice for the
PowerPC Linux port. Since then, it has been adopted on a large scale by the many ARM
Linux implementations and, to a lesser extent, by MIPS, MicroBlaze, ARC, and other
architectures.

I would recommend visiting https://www.devicetree.org/ for more information.

[54]

https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.devicetree.org/

All About Bootloaders

Device tree basics

The Linux kernel contains a large number of device tree source files in

arch/$ARCH/boot /dts, and this is a good starting point for learning about device trees.
There are also a smaller number of sources in the U-boot source code in arch/$ARCH/dts.
If you acquired your hardware from a third party, the dts file forms part of the board
support package and you should expect to receive one along with the other source files.

The device tree represents a computer system as a collection of components joined together
in a hierarchy, like a tree. The device tree begins with a root node, represented by a forward
slash, /, which contains subsequent nodes representing the hardware of the system. Each
node has a name and contains a number of properties in the form name = "value".Here
is a simple example:

/dts-v1l/;
/4
model = "TI AM335x BeagleBone";
compatible = "ti,am33xx";
#address—cells = <1>;
#size—-cells = <1>;
cpus {
#address—cells = <1>;
#size-cells = <0>;
cpu@0 {
compatible = "arm, cortex-a8";
device_type = "cpu";
reg = <0>;
}i
}i
memory@0x80000000 {
device_type = "memory";
reg = <0x80000000 0x20000000>; /* 512 MB */
}i
}i

Here we have a root node which contains a cpus node and a memory node. The cpus node
contains a single CPU node named cpu@0. It is a common convention that the names of
nodes include an @ followed by an address that distinguishes this node from other nodes of
the same type.

Both the root and CPU nodes have a compatible property. The Linux kernel uses this
property to find a matching device driver by comparing it with the strings exported by each
device driver in a structure of_device_id (more on this in chapter 9, Interfacing with
Device Drivers).

[551]

All About Bootloaders

It is a convention that the value is composed of a manufacturer name and a component
name, to reduce confusion between similar devices made by different manufacturers; hence,
ti,am33xx and arm, cortex-a8. It is also quite common to have more than one value for
the compatible property where there is more than one driver that can handle this device.
They are listed with the most suitable first.

The CPU node and the memory node have a device_type property which describes the
class of device. The node name is often derived from device_type.

The reg property

The memory and cpu nodes have a reg property, which refers to a range of units in a
register space. A reg property consists of two values representing the start address and the
size (length) of the range. Both are written as zero or more 32-bit integers, called cells.
Hence, the memory node refers to a single bank of memory that begins at 0x80000000 and
is 0x20000000 bytes long.

Understanding reg properties becomes more complex when the address or size values
cannot be represented in 32 bits. For example, on a device with 64-bit addressing, you need
two cells for each:

/A
#address-cells = <2>;
#size-cells = <2>;
memory@80000000 {
device_type = "memory";
reg = <0x00000000 0x80000000 0 0x80000000>;
bi
bi

The information about the number of cells required is held in the #address-cells and
#size_cells properties in an ancestor node. In other words, to understand a reg
property, you have to look backwards down the node hierarchy until you find #address-
cells and #size_cells. If there are none, the default values are 1 for each-but it is bad
practice for device tree writers to depend on fall-backs.

Now, let's return to the cpu and cpus nodes. CPUs have addresses as well; in a quad core
device, they might be addressed as 0, 1, 2, and 3. That can be thought of as a one-
dimensional array without any depth, so the size is zero. Therefore, you can see that we
have #address—cells = <1>and #size-cells = <0>in the cpus node, and in the
child node, cpu@0, we assign a single value to the reg property, reg = <0>.

[561]

All About Bootloaders

Labels and interrupts

The structure of the device tree described so far assumes that there is a single hierarchy of
components, whereas in fact there are several. As well as the obvious data connection
between a component and other parts of the system, it might also be connected to an
interrupt controller, to a clock source, and to a voltage regulator. To express these
connections, we can add a label to a node and reference the label from other nodes. These
labels are sometimes referred to as phandles, because when the device tree is compiled,
nodes with a reference from another node are assigned a unique numerical value in a
property called phandle. You can see them if you decompile the device tree binary.

Take as an example a system containing an LCD controller which can generate interrupts
and an interrupt-controller:

/dts-v1/;
{
intc: interrupt-controller@48200000 {
compatible = "ti,am33xx-intc";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x48200000 0x1000>;
bi

lcdc: 1cdc@4830e000 A
compatible = "ti,am33xx-tilcdc";
reg = <0x4830e000 0x1000>;
interrupt—-parent = <&intc>;
interrupts = <36>;
ti, hwmods = "lcdc";
status = "disabled";

bi

bi

Here we have node interrupt—-controller@48200000 with the label intc. The
interrupt-controller property identifies it as an interrupt controller. Like all interrupt
controllers, it has an #interrupt-cells property, which tells us how many cells are
needed to represent an interrupt source. In this case, there is only one which represents the
interrupt request (IRQ) number. Other interrupt controllers may use additional cells to
characterize the interrupt, for example to indicate whether it is edge or level triggered. The
number of interrupt cells and their meanings is described in the bindings for each interrupt
controller. The device tree bindings can be found in the Linux kernel source, in the directory
Documentation/devicetree/bindings/.

[571

All About Bootloaders

Looking at the 1cdc@4830e000 node, it has an interrupt-parent property, which
references the interrupt controller it is connected to, using the label. It also has an
interrupts property, 36 in this case. Note that this node has its own label, lcdc, which is
used elsewhere: any node can have a label.

Device tree include files

A lot of hardware is common between SoCs of the same family and between boards using
the same SoC. This is reflected in the device tree by splitting out common sections into
include files, usually with the extension .dtsi. The Open Firmware standard defines
/include/ as the mechanism to be used, as in this snippet from vexpress-v2p-ca9.dts:

/include/ "vexpress-v2m.dtsi"

Look through the . dts files in the kernel, though, and you will find an alternative include
statement that is borrowed from C, for example in am335x-boneblack.dts:

#include "am33xx.dtsi"
#include "am335x-bone-common.dtsi"

Here is another example from am33xx.dtsi:

#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/pinctrl/am33xx.h>

Lastly, include/dt-bindings/pinctrl/am33xx.h contains normal C macros:

#define PULL_DISABLE (1 << 3)
#define INPUT_EN (1 << 5)
#define SLEWCTRL_SLOW (1 << 6)
#define SLEWCTRL_FAST 0

All of this is resolved if the device tree sources are built using the Kbuild system, which first
runs them through the C pre-processor, CPP, where the #include and #define statements
are processed into text that is suitable for the device tree compiler. The motivation is
illustrated in the previous example; it means that the device tree sources can use the same
definitions of constants as the kernel code.

[581]

All About Bootloaders

When we include files, using either syntax, the nodes are overlaid on top of one another to
create a composite tree in which the outer layers extend or modify the inner ones. For
example, am33xx.dtsi, which is general to all am33xx SoCs, defines the first MMC
controller interface like this:

mmcl: mmc@48060000 A
compatible = "ti, omap4-hsmmc";
ti,hwmods = "mmcl";
ti,dual-volt;
ti,needs-special-reset;
ti,needs-special-hs-handling;
dmas = <&edma 24 &edma 25>;

dma-names = "tx", "rx";
interrupts = <64>;
interrupt-parent = <&intc>;
reg = <0x48060000 0x1000>;
status = "disabled";

}i

Note that the status is disabled, meaning that no device driver should be bound to it,
and also that it has the label mmc1.

Both the BeagleBone and the BeagleBone Black have a microSD card interface attached to
mmc1, hence in am335x-bone-common. dtsi, the same node is referenced by its label,
&mmcl:

gmmcl |
status = "okay";
bus-width = <0x4>;
pinctrl-names = "default";
pinctrl-0 = <&mmcl_pins>;
cd-gpios = <&gpio0 6 GPIO_ACTIVE_HIGH>;
cd-inverted;
bi

The status property is set to okay, which causes the mmc device driver to bind with this
interface at runtime on both variants of the BeagleBone. Also, a label is added to the pin
control configuration, mmc1_pins. Alas, there is not sufficient space here to describe pin
control and pin multiplexing. You will find some information in the Linux kernel source in
directory devicetree/bindings/pinctrl.

[591]

All About Bootloaders

However, interface mmc1 is connected to a different voltage regulator on the BeagleBone
Black. This is expressed in am335x-boneblack.dts, where you will see another reference
to mmc1, which associates it with the voltage regulator via label vmmcsd_fixed:

gmmcl |
vmmc-supply = <&vmmcsd_fixed>;
Vi

So, layering device tree source files like this gives flexibility and reduces the need for
duplicated code.

Compiling a device tree

The bootloader and kernel require a binary representation of the device tree, so it has to be
compiled using the device tree compiler, dtc. The result is a file ending with . dtb, which is
referred to as a device tree binary or a device tree blob.

There is a copy of dtc in the Linux source, in scripts/dtc/dtc, and it is also available as
a package on many Linux distributions. You can use it to compile a simple device tree (one
that does not use #include) like this:

$ dtc simpledts-1.dts -o simpledts-1.dtb
DTC: dts—->dts on file "simpledts-1.dts"

Be wary of the fact that dt c does not give helpful error messages and it makes no checks
other than on the basic syntax of the language, which means that debugging a typing error
in a source file can be a lengthy business.

To build more complex examples, you will have to use the kernel Kbuild, as shown in the
next chapter.

Choosing a bootloader

Bootloaders come in all shapes and sizes. The kind of characteristics you want from a
bootloader are that they be simple and customizable with lots of sample configurations for
common development boards and devices. The following table shows a number of
bootloaders that are in general use:

[60]

All About Bootloaders

Name Main architectures supported

Das U-Boot ARC, ARM, Blackfin, Microblaze, MIPS, Nios2, OpenRiec, PowerPC, SH
Barebox ARM, Blackfin, MIPS, Nios2, PowerPC

GRUB 2 X86, X86_64

Little Kernel ARM

RedBoot ARM, MIPS, PowerPC, SH

CFE Broadcom MIPS

YAMON MIPS

We are going to focus on U-Boot because it supports a good number of processor
architectures and a large number of individual boards and devices. It has been around for a
long time and has a good community for support.

It may be that you received a bootloader along with your SoC or board. As always, take a
good look at what you have and ask questions about where you can get the source code
from, what the update policy is, how they will support you if you want to make changes,
and so on. You may want to consider abandoning the vendor-supplied loader and using the
current version of an open source bootloader instead.

U-Boot

U-Boot, or to give its full name, Das U-Boot, began life as an open source bootloader for
embedded PowerPC boards. Then, it was ported to ARM-based boards and later to other
architectures, including MIPS and SH. It is hosted and maintained by Denx Software
Engineering. There is plenty of information available, and a good place to startis http://ww
w.denx.de/wiki/U-Boot. There is also a mailing list at u-boot@lists.denx.de.

Building U-Boot

Begin by getting the source code. As with most projects, the recommended way is to clone
the . git archive and check out the tag you intend to use, which, in this case, is the version
that was current at the time of writing:

$ git clone git://git.denx.de/u-boot.git

$ cd u-boot
$ git checkout v2017.01

Alternatively, you can get a tarball from ftp://ftp.denx.de/pub/u-boot.

[61]

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot
ftp://ftp.denx.de/pub/u-boot

All About Bootloaders

There are more than 1,000 configuration files for common development boards and devices
in the configs/ directory. In most cases, you can make a good guess of which to use, based
on the filename, but you can get more detailed information by looking through the per-
board README files in the board/ directory, or you can find information in an appropriate
web tutorial or forum.

Taking the BeagleBone Black as an example, we find that there is a likely configuration file
named configs/am335x_boneblack_defconfig and we find the text The binary
produced by this board supports ..Beaglebone Black in the board README files for
the am335x chip, board/ti/am335x/README. With this knowledge, building U-Boot for a
BeagleBone Black is simple. You need to inform U-Boot of the prefix for your cross compiler
by setting the make variable CROSS_COMPILE, and then selecting the configuration file
using a command of the type make [board]_defconfig. Therefore, to build U-Boot
using the Crosstool-NG compiler we created in chapter 2, Learning About Toolchains, you
would type:

$ source MELP/chapter_02/set-path-arm-cortex_a8-linux—-gnueabihf
$ make CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-
am335x_boneblack_defconfig

$ make CROSS_COMPILE=arm—-cortex_a8-linux—gnueabihf-

The results of the compilation are:

e u-boot: U-Boot in ELF object format, suitable for use with a debugger
e u-boot .map: The symbol table
® u-boot .bin: U-Boot in raw binary format, suitable for running on your device

e u-boot.img: Thisis u-boot .bin with a U-Boot header added, suitable for
uploading to a running copy of U-Boot

e u-boot.srec: U-Boot in Motorola S-record (SRECORD or SRE) format, suitable
for transferring over a serial connection

The BeagleBone Black also requires a secondary program loader (SPL), as described earlier.
This is buil<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>