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Abstract As a general rule, copycats produce most
of malware variants from an original malware strain.
For this purpose, they widely perform black-box anal-
yses of commercial scanners aiming at extracting mal-
ware detection patterns. In this paper, we first study
the malware detection pattern extraction problem from
a complexity point of view and provide the results of
a wide-scale study of commercial scanners’ black-box
analysis. These results clearly show that most of the
tested commercial products fail to thwart black-box anal-
ysis. Such weaknesses therefore urge copycats to pro-
duce even more malware variants. Then, we present a
new model of malware detection pattern based on Bool-
ean functions and identify some properties that a reli-
able detection pattern should have. Lastly, we describe
a combinatorial, probabilistic malware pattern scanning
scheme that, on the one hand, highly limits black-box
analysis and on the other hand can only be bypassed
in the case where there is collusion between a number
of copycats. This scheme can incidentally provide some
useful technical information to malware crime investi-
gators, thus allowing a faster identification of copycats.

1 Introduction
Malware detection in most commercial scanners highly

relies on string pattern search. In contrast to the claims
usually put forward by most antivirus software publish-
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ers, practical experience shows that pattern-based detec-
tion techniques are widely used:

e Either as direct detection techniques (first genera-
tion techniques like string scanning, wildcards, mis-
matches...). As an illustration, this kind of techniques
is widely used by On-demand scanners;

e Or they take place as a final, decisive step once other
detection techniques have been first applied, both
in On-demand scanners or On-access scanners (sec-
ond generation scanning techniques, malware spe-
cific detection techniques, static decryptor detection,
code emulation...).

Because of this above-mentionned strong dependence
on malware pattern detection techniques — scanning for
strings — every commercial antivirus software can be by-
passed once a given malware pattern has been extracted
and identified through a simple black-box analysis. This
problem has previously been initiated [2] even though
very simple instances of this problem have been taken
into consideration.

A great deal of malware samples that are currently
spreading nowadays are produced by copycats from an
original malware strain or from its already detected
variants.! Let us take a significant example: about 27
variants of W32/Bagle have been produced from the
original code. This proliferation of malware variants not
only makes life far more difficult from the computer
users’ point of view and affects the general security of

' Virus prevalence table regularly illustrates this fact. As an exam-
ple, 2005 and 2006 statistics [9] show that more than 60% of most
prevalent malware were variants of known codes such as W32/
Bagle, W32/Netsky or W32/Mytob.
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networks but also significantly increases the malware
analysts” amount of work in AV companies. These com-
panies who have too much work as it is, do not stop
updating their malware database? and share their tech-
nical information with other AV companies. As a result,
the general computer and network protection are far
from being acceptable, as is pointed out by the British
Department of Trade and Industry in its 2004 Informa-
tion Security Breaches Survey [22].

More surprisingly, AV companies never made any
attempt nor effort to thwart black-box analysis and copy-
cats’ activities. Somehow, this attitude encourage copy-
cats to produce malware variants. In this respect, AV
companies are partly responsible for malware prolifer-
ation. It is all the more surprising that official, reference
technical recommendations for protection profile [24]
have not considered resistance against black-box analy-
sis as a target of evaluation (TOE).

In this paper, we study the general problem of mal-
ware pattern extraction. For that purpose, we have first
defined a new model for pattern detection based on
Boolean functions under their disjunctive normal form
(DNF). Moreover, we have identified some properties
that efficient malware detection patterns should at least
share, such as resistance against pattern extraction. Our
model enables black-box analysis and malware detec-
tion pattern to be considered as a DNF learning prob-
lem. While the issue of determining whether DNF
formulae are learnable or not is still an open problem,
we show that available commercial scanners represent
very weak instances of this problem. The extraction of
detection patterns is actually very easy perform.

We then present a new malware pattern scanning
scheme that offers a good resistance level against black-
box analysis under the assumption that a significantly
large number N of copycats do not collude. We give
some constructions in which the parameter N can be
chosen according to the desirable level of resistance.
Lastly, we provide possible implementations of this
scheme which enable computer crime investigators to
trace copycats that have been involved in the production
and spreading of malware variants.

The paper is organised as follows. In Sect. 2, we first
present our mathematical model for malware detec-
tion pattern and then detail the properties that reliable
detection patterns should inevitably exhibit. Section 3
is devoted to the malware pattern detection problem
and presents some mathematical measures of the exist-

2 During some malware outbreak period or intense malware
activity, it has been observed on test platforms in our laboratory
that most AV software are updated at least twice or three times a
day.
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ing products. Section 4 deals with the detection pattern
scanning scheme secure against black-box extraction. Fi-
nally, Section 5 contains both a general conclusion and
a summary of different open problems which have been
identified in relation to the malware detection problem.

2 Mathematical model for malware detection pattern

In this section, our purpose is to define what a malware
pattern (or signature’) is. Our definition slightly differs
from generally accepted ones. The purpose is to consider
at the same time both defence (efficient detection) and
attack (copycats’ action). Another advantage of our gen-
eral definition is that it enables to study which properties
should exhibit reliable malware detection patterns.

2.1 Mathematical definition of malware patterns

Let us consider a file F of size n. It describes a potentially
infected file or a malware sample. F is then a sequence
of bytes, in other words, a sequence of n symbols over
¥ =Njys5={0,1,...,255}. Hence F is an element of X".

We describe Spq a malware pattern of size s with
respect to a given malware M as a finite sequence of X°.
Thus

SM = {blabz""vbs}'

The ith byte of F (respectively of Sy) will be denoted
F (i) (resp. Spq(D)).

We say that F is infected by malware M if they are s
locations in F (byte indices), denoted {ij, i, .. ., i} such
that

F(j) =bsgy 1=<j<s,

where o denotes a bijective permutation over the byte
of Sp¢. The use of permutation o enables taking into
account potential modifications of M made by any copy-
cat. Indeed, different code obfuscation or polymor-
phism/metamorphism techniques [7,23] can modify the
structure (byte ordering or indexing) of Sy:

e By modifying S byte indexing (e.g. dummy code
insertion). Then, o = ldys;

e By modifying Sy byte ordering (e.g. by obfusca-
tion). Then o # Idy;. However the execution flow
re-orders bytes of Sy, during the execution of F.

3 The term malware pattern or more precisely malware detection
pattern will be preferred to the term malware signature or signa-
ture for short. Indeed, the latter term is used in other context like
cryptography with a very specialized meaning.
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Second generation detection techniques or heuris-
tics aim at bypassing permutation o while simple
malware pattern scanning (first generation detection
techniques) operates the detection itself in a final
step.

Thus in our approach, we consider the indices in 7 where
the bytes of S are effectively located (up to a permuta-
tion) rather than the malware pattern bytes themselves.
Our notation describes in a better way the action of
any copycat which tries to produce an undetected mal-
ware variant without too much effort. In a context of
black-box analysis, we denote S a¢ the set of indices
{i1, 02, ..., 0s).

Let us now mathematically describe the action of a
given malware detector D. Let us first define the s binary
variables X; (1 < j <) as follows:

1 if F@Q) = bog)

X = .
] 0 otherwise.

This notation enables to clearly describe the modifica-
tion of S)q bytes by any copycat who tries to bypass
a given detector D. Thus X; equals 0 means that the
copycat has indeed modified Sp(j).

Letus now consider a Boolean function fo4 : F, — [,
where [F, is the binary finite field. We say that a given
detector decides that F is infected by the malware M
with respect to the detection function fy, and the mal-
ware pattern Sy, is and only if faq (X1, X2,..., X)) = 1.
In other words:

1 Fisinfected by M,

Ia X, X, s Xo) = [0 F is not infected by M.

We will represent detection functions by their DNF, that
is to say the logical disjunction of terms, each term being
a conjunction of litterals X;. By construction, literals do
not appear under negated form X;. Thus, detection func-
tions are modelled by monotone DNF. We will see in
Sect. 3.1.2 that any scanning scheme can be described
by a detection function f4.

Since copycats obviously show a great interest in the
different ways of bypassing any given malware detection
pattern, we will consider the non-detection function f
as the negation of the detection function f, instead. In
other words faq = 1 @ faq. This function describes the
way malware pattern bytes can be modified to bypass
detection with respect to fa4. These modifications cor-
respond to the s-tuples (x, x2, .. ., X,) for which the non-
detection equals 1. For a given such s-tuple, the modifi-
cation that can be applied is defined as follows:

ifx; =0 byteiin S must be modified,
ifx; =1 byteiin Sy may be left unmodified.

In the rest of the paper, we will indifferently consider
either the detection function or the non-detection func-
tion.

Remark The malware M is uniquely characterized by
both Sy and the detection function f4. This function
allows to greatly reduce the false positive rate.

In order to have a compact description of how
sequence-based detection actually works, let us propose
the two following definitions.

Definition 1 A malware detection scheme with respect to
a given malware M is the pair {Saq, ). If we consider
sequence-based detection the set Syq will contain bytes
whereas if function-based detection is considered instead,
this set contains program functions.

Definition 2 A malware bypassing scheme with respect
to a given malware M is the pair {Sq, faq). If we consider
sequence-based detection the set S g will contain bytes
whereas if function-based detection is considered instead,
this set contains program functions.

2.2 Properties of malware patterns

Many questions arise about the kind of properties that
areliable malware detection pattern must exhibit. What
are the best parameters to consider? Besides the prob-
lem of choosing good patterns, having some mathemat-
ical measures enables existing commercial scanners to
be evaluated. As a matter of fact, antivirus software
evaluation is mostly a subjective process which greatly
differs from one test to another. Here are some proper-
ties that we have identified. Section 3 will be devoted to
the accurate evaluation of these properties.

2.2.1 Malware pattern entropy and transinformation

The purpose is to determine the uncertainty that a detec-
tor black-box analyst must face when trying to extract
a given malware pattern Sy, with respect to a given
detector D.

For that purpose, we use the entropy function as de-
fined by Shannon [21]. Given a random variable X that
takes a finite set of values with probabilities py, p2, . . ., pn,
the uncertainty or entropy of X is defined by:

H(X) == pilog(pi)-
k=1

In the present context, the variable X represents Sz g
and any of its parameters. Indeed, the analyst has no
information about any of the parameters of the detec-
tion pattern (its size s, the pattern bytes or equivalently
their location in F and the detection function f).
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The difficulty to extract Sz through a black-box
analysis increases with H(Sz n) and H(Srnm) = 0
when no uncertainty exists.

Since in our case computing H(X) is very complex,
we will use the concept of mutual information or trans-
information instead. If we consider that Sy and fa are
random variables (for the analyst) we then define:

I (SEM: M SM) = H (SF M) — H (SE MM SM)

as the amount of information that f, and Sx together
reveal about Sx o¢. In other words, the transinforma-
tion describes the consequence for the analyst to have a
detector D at his disposal (D contains and leaks all the
information about fx and Spy).

By construction, it is obvious to define the same prop-
erty when considering the non-detection function fy.
Then

1(Srati st Sat) =1 (St Pt Sm) -
Malware pattern resistance

Once the analyst has succeeded in extracting the pattern
bytes of a given detection scheme {S4, fa1}, he tries to
bypass it in order to produce a non-detected variant.
‘We then define the detection scheme resistance, denoted
R(Sam»fa) as the more or less difficulty that a copycat
has to face in order to bypass it. This property obviously
depends not only on the size of the set Syq, but also
on the weight of the detection function fy (denoted

wt (fr) = {X € Flfm(X) =1}):

e The number of possible modifications that enable
the copycat to effectively produce a non-detected
variant increase with the size of Sp;

e The lower the weight of the detection function, the
easier it is to bypass the search mode with respect to

SmMm.

Thus, according to these characteristics, we define the
scheme resistance as follows:

X=X, X2,...,Xs X)=0
R(SM,fM)z{ (X1,X2 = )N (X) =0} )
X =XX, L XM X) = 1)
- 523 ’
(2

Consequently, we have:

0=RESEM M) =1,

The lower R (Sa,fam), the easier the detection scheme
bypassing is. In the extreme, if R (Saq,fa1) = 0, there is
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no record for the malware M in the viral pattern data-
base.

It it worth noticing that R(Sxaq,faq) relates to the
number of possible byte modification configurations
(since X; € {0,1}). A copycat may modify every byte
involved in a given configuration (e.g. an entry of the
detection function) and replace it with any of the 255
remaining values. Thus, the effective grand total of pos-
sible byte modifications tremendously increases. This
number conversely relates to R (Saq, far). More pre-
cisely, if we denote X = (X1,X2,...,Xy) € [, and if
wt(X) denote the Hamming weight of X (in other words
the number of ones in the binary representation of X),
then the grand total A of possible byte modifications
that may be performed by a copycat is given by:

A= ). (2565*“"[()() - 1) . 3)

Xel5

We will examine some particular cases in Sect. 3.3.2.

2.2.2 Malware pattern efficiency

The efficiency of a malware pattern relates to its capacity
to uniquely detect and identify a given malware. More-
over, any detection pattern must be frameproof with
respect to other malware and any other (non-infected)
file. This last requirement is linked both with false alarm
probability (better known as false positive probability)
and to malware phylogeny issues as defined in [10,12].

Previous results [11] showed that determining false
positive probability is not as easy as it seems. Typically,
malware pattern size ranges between 12 and 36 [11]. The
probability for an s-byte sequence to be present in a text
is 1/256°. Thus as soon as s is large enough, this prob-
ability tends towards 0 and theoretically no file could
be falsely detected as infected unless it indeed contains
the malware code. Unfortunately, theory greatly differs
from practice. As pointed out in [11], there is a 34%
chance of finding a random 24-byte sequence twice in a
corpus of approximately half a gigabyte whereas theory
of probability gives a 0.85 x 10~%°.

This discrepancy comes from the fact that bytes in
an executable file cannot be described by independent,
identically distributed variables (of probability
p = 1/256. As an example, we have P[bg =" M'] = 1 and
Plby =' Z'|bp =’ M'] =1 in a Win32-executable. There
exists a strong dependence between bytes in a execut-
able code. Markov processes appear to be a better model
when it comes to describing probabilistic behaviour of
executable bytes.

As pointed out in [11], “Cleverness, be it human or
algorithmic, is an essential ingredient in choosing good
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computer viruses’ signatures.” Most commercial scan-
ners use relatively efficient malware patterns, up to a
more or less limited false positive probability.

Remark The malware pattern efficiency primarily de-
pends on the pattern size. This is the reason why some
commercial scanners are more sensitive to false positive
probability than others due to pattern sizes which are
too small. Moreover, the detection function may have
some effect on the false positive probability as well. This
point is still an open problem.

3 The detection pattern extraction problem
and the mathematical evaluation of viral pattern
scanners

3.1 Viral pattern extraction

AV scanners’ efficiency has recently been studied by
Christodorescu and Jha [2]. However their malware pat-
tern extraction algorithm exhibit limitations. In addition
to minor algorithmic flaws*, their extraction algorithm
considers only a limited number of detection function
classes. We are now presenting two extraction algo-
rithms, the second one being able to manage any detec-
tion function classes.

Given a malware detector D, we aim at extracting the
detection pattern of a given malware M, with respect
to D. The extraction process is performed through a
black-box analysis. No reverse-engineering is required.
According to our previous notation, we must retrieve
the non-detection function fis and the pattern bytes
indices. Since the file F is the malware sample M itsef,
we denote Spq pq instead of Sz aq.

We consider the non-detection function rather than
the detection function for the following reasons:

e In order to evaluate resistance of malware scan-
ners with respect to black-box analysis, the copycat’s
point of view yields more information;

e Extracting the detection function would require to
compute its negation in a second step. Unfortunately,
computing the negation of a DNF formula has expo-
nential worst case complexity.” Consequently, Algo-

4 In particular, we identified some pattern configurations that
lead to infinite loops in the FINDLEFTMosT and FINDRIGHTMOST
procedures.

5 Computing the negation of a DNF formula is equivalent to turn
a conjuntive normal form into its corresponding disjunctive nor-
mal form. This transformation has exponential worst-case com-
plexity [18, Theorem 4.1].

rithm E-2 will directly extract the non-detection func-
tion.

3.1.1 The naive approach: Algorithm E-1

A first algorithm has been considered in order to extract
the most frequent detection pattern and the most com-
mon detection function. As compared with the algo-
rithm given in [2], it may seem, at first sight, less efficient
and rather naive. However, practical experience actually
showed it was not. On the contrary, it succeeded in sys-
tematically extracting detection patterns as well as its
corresponding detection function, whereas the Christ-
odorescu and Jha’s algorithm failed to do it in a few
cases in which the detection pattern contained bytes
scattered over the malware code.

Let us consider a malware code M of size n. Here fol-
lows our first extraction algorithm. The algorithm suc-
cessively modifies each byte of the malware sample M
(the byte is xored with a constant value) and performs
a detection scanning with D. If the detector still detects
M (with our notation D(M) = o), the modified byte is
not involved in the detection pattern. On the contrary,
the byte index belongs to Syq ¢ (Table 1).

The complexity of Algorithm 1 is linear in the mal-
ware size, that is to say O(n). The main interest of
Algorithm 1 lies in its capacity to manage malware pat-
tern whatever their structure may be (sparse number of
bytes, bytes randomly scattered over the code...). Unfor-
tunately, its efficiency is limited to a single kind of detec-
tion function whose DNF formula is given by
mMX1, X2, X3,..., X)) = X1 AXo A X3 A - A KX

This detection function corresponds to the most cur-
rently used detection technique: string scanning with no
wildcards (first generation scanning techniques). We will
use the AND function to denote this detection function.
Contrary to what most commercial scanner publishers
are generally claiming, the results show that this tech-
nique is still widely used. Appendix A presents detailed
results about some variants of the W32/Bagle family.

Remark The non-detection function of the AND detec-
tion function is very easy to compute using simple Bool-
ean calculus rules. We then have:

X1, X2, X3,...,X) =X1 VXa VX3V v X,

This non-detection function is the or function. Modi-

fying any of the pattern bytes enables the malware to
remain undetected.
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Table 1 Malware detection
pattern extraction Algorithm
E-1

Smm —1{}

end if
end for

return Sy, m

3.1.2 DNF formulae learning approach: Algorithm E-2

In order to extract any malware detection pattern and
whatever the detection function may be (or equivalently
the non-detection function), we are now considering
another more powerful extraction algorithm based on
learning techniques. Let us first recall some fundamen-
tal concepts in learning theory. The interested reader
will refer to [13] for a detailed presentation on the sub-
ject.

We will focus on Boolean concept learning in which
the learner’s goal —in other words any black-box analysts
in our context — is to infer how an unknown target func-
tion — the non-detection function in our case — classifies
(as positive or negative) examples from a given domain.
The instance space or domain X is the set of all possible
objects (instances) to be classified — bytes of a malware
detection pattern. We will consider the Boolean hyper-
cube {0,1}" as reference domain. This corresponds to
the non-detection function inputs as defined in Sect. 2.1.
A concept is a Boolean function over domain X. A con-
cept class C is a collection of subsets of X'. In other words
X € 2. In our case study, C describes the set of all pos-
sible non-detection function DNFs. Then each x € X' is
classified according to membership of a target concept
f € C —the malware non-detection function f54. A point
x € X is a positive example of f if f(x) = 1 or a negative
example of f otherwise. This case of learning method is
denoted Query Learning Model.

In our context, the DNF formula to learn is the non-
detection function fy4 DNF. Each litteral X; describes
a byte of the malware sample M where i = 1,2,...,n
(n = |M]). A DNF is then the union of conjunctions of
litterals that may be either X; or X; (see in Appendix B
the exact meaning of this notation).
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Input: A malware sample M = {m,mao,..
ware detector D and a malware name o.
Output: The malware pattern Sy (pattern indices).

fori =1 ton do
modify only byte m; in M
If D(M) # o then
Smm — Smm U {mi}

., My}, a mal-

It is worth noticing the following important point.
The problem of learning general DNF formulae is a
long-standing open problem even if efficient learning
methods have been found for some particular DNF sub-
classes. However, the time and memory complexity of
any learning algorithm obviously highly depends on the
complexity of the underlying target concept. In the case
of Boolean DNF formulae, it depends on the number of
terms which ranges from O (the null function) to 2" (the
constant function f(x) = 1). The anD detection function
that we have just considered in Sect. 3.1.1 contains a
single term. This explains why Algorithm E-1 is suitable
for this very particular function and is better than any
other learning algorithm whose complexity is likely to
be very high.

Our DNF formulae learning extraction algorithm is
presented in Table 2. For the sake of clarity, we pro-
vide here a non-recursive version. The notation X =
1;(X1, X2, ..., X,) describes the construction of a logi-
cal term in the DNF as follows using the characteristic
function with respect to the interval 1. Each litteral X;
or its negated form appears according to the following
rule:

X, ifiel,
Xi = [X,- ifigl

Algorithm 2 is organised in three parts:

1. The first part is an initial learning step. It consists in
modifying sections of contiguous bytes of malware
code M. These modifications are made through a
dichotomic approach in log,(n) steps. Sections of
bytes are of decreasing length (a power of two).
As in the Christodorescu and Jha’s algorithm [2],
the main purpose is to first identify the bytes which
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Table 2 Malware detection
pattern extraction Algorithm

Input: A malware sample M = {my,ma,..

., my}, a malware detector

E-2 D and a malware name o.

While S > 0 do

End If

End For
End While
Sm,m < COMBINATORIALMINIMIZE(S g, M)
DNFy,, < LoGicALMINIMIZE(DNF ¢, Sap,m)

are involved in the detection pattern Spaq aq. This
step enables some logical terms of the non-detection
DNF to be found. This first step has complexity in
O(2n) (WHILE loop).

2. The second part, denoted COMBINATORIALMINIMIZE,
is a combinatorial minimisation step. Its aim is to
eliminate the DNF terms which are redundant. The
set Spq. a1 which has been output by the previous
step generally contains a few terms whose support
interval (see previous notation) are included in some
other support interval. To illustrate this point, logi-
cal terms X1 X2 X3X4 and X1 X> have support inter-
vals [1,4] and [1,2], respectively. The second one is
included in the first one. This implies that variables
X3 and X4 are not involved in the detection pattern.
We only keep the X7 X, term in the DNF. Thus, this
combinatorial minimisation step is keeping the min-
imal elements in poset whose partial ordering is set
inclusion. This step has a worst-case complexity in
O(tlog(t) + tn) (a sort plus a comparison of consec-
utive terms) where t = |Spq | before entering the
COMBINATORIALMINIMIZE procedure. The result is a
set of size s.

3. The LoGgicALMINIMIZE procedure whose purpose is
twofold:

e Tocomplete the DNF learning process by exhaus-
tively trying any s-tuple of variables. With the
previous notations, to any s-tuple of [, corre-
sponds a byte modification configuration in
Sm.m- The M code is then modified according

S 5iq—
Fori=0toq-1do
binf < i x S; bsup « binf 4+ S
modify bytes in I = [binf, bsup[ in M
If D(M) # o then
Smm = Smm +1
X = 17(X1, Xo, ..., Xn)
DNF,,, — DNF;, UX

Output: The malware pattern Syqa (pattern indices) and the non-
detection function fr DNF.

Smm — {}; DNFy, —{}
5 allog,(m+1, g gllog,m)+1

this configuration and then tested with respect to
the detector D. If the code is no longer detected,
the logical term corrsponding to this configura-
tion is added to the DNF formula;

e Then, a logical minimisation step is performed.
Indeed, the output DNF contains terms which are
logically redundant. Consequently, by applying
Boolean calculus [5,17] and the Quine-McCluskey
method to simplify Boolean expressions [15,19,
20]. The logical minimisation problem is NP-hard
[17, Sect. 5.8.3]. It has a complexity in O(s2%) [26].

Finally, the LoGicALMINIMIZE procedure has a com-
plexity in O(2° 4 52°) if s = |Spq m before entering
this step.

As a conclusion, we have the following result.

Theorem 1 The Algorithm 2 given in Fig. 2 succeeds in
extracting the detection scheme of a malware M of size n
whose detection pattern has size s with a time complexity
in O(sn + s2%).

Proof When considering the previous elements, the gen-
eral (worst-case) complexity is in O(2n + ¢ log(¢) + tn +
§%2%). The terms 2n and ¢ are negligible compared to 2°
and we have ¢ = s as well (as confirmed by our experi-
ments). Hence the result. O

Remarks

1. Algorithm 1 is a particular case of Algorithm 2 when
the detection function is the AND function. Being
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the most frequent case, using Algorithm 1 is a better
choice since we suppress the logic and combinatorial
minimization steps.

2. Learning the monotone DNF formula of the detec-
tion function requires a far better complexity when
using Angluin’s algorithm [1]. Using membership
and equivalence queries, this algorithm exactly learns
an unknown m-term monotone DNF formula over
the domain {0,1}" with only O(nm) membership
queries overall. But the DNF negation step must
then be applied to get the non-detection function.
This step has exponential worst-case complexity.

3. Algorithm E-2 succeeds in finding the exact non-
detection function DNF unlike most learning meth-
ods which only produce equivalent function DNF.

3.2 Examples of detection functions

To any string based detection method corresponds a
detection function DNF whose litterals are bytes of
any malware undergoing a scanning process. In order
to illustrate this point, let us consider some examples
of pattern-based detection techniques that can be de-
scribed by detection function DNFs which are different
from the AnD function.

3.2.1 Wildcard detection

Wildcard detection generally considers patterns in which
variable bytes indices are involved. Let us consider the
following detection pattern extract taken from
[23, Sect. 11.1.2].

07BB 2?02 %3 33C9

This detection pattern extract then is represented by the
following detection function DNF (extract):

. (Xi = 07) A (Xis1 = BB) A (Xiy3 = 02)
A Xit4 =33) A (Xips = C9)

vV (Xi = 07) A (Xjs1 = BB) A (Xi43 = 02)
AN Xiys = 33) A (Xip6 = C9)

vV (Xi =07) A (Xip1 = BB) A (Xip3 = 02)
A Xiye = 33) A (Xip7 = C9)

3.2.2 Techniques of mismatches

These techniques were developped by IBM as part of its
antivirus scanner research. Techniques of mismatches
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allow N number of bytes in the detection pattern to rep-
resent any value, regardless of their byte location indices
in the pattern. Let us consider the following detection
pattern 01 02 03 04 with a mismatch value of 2 (this
example has been extracted from [23, Sect. 11.1.3]. Then
the corresponding detection function DNF (extract) is
given by:

X =0 A X =02) v (X =01) A (X2 =03)
vV (Xit1 = 02) A (Xip2 = 03) v (X; = 01) A (Xip3 = 04)
V' (Xip1 = 02) A (Xiy3 = 04) v (X2 = 03) A (Xip3 = 04).

In this case, for a pattern of size s with mismatch value
u (u < ), it is obvious that the DNF formula contains
(;,) terms, each of them having s — u litterals (it is called
a (s — n)-DNF).

3.2.3 Nearly exact identification

This method is used to increase the accuracy of detec-
tion. Instead of considering only one detection pattern,
we consider two such patterns [23, Sect. 11.2.3]. In other
words, we have to consider in this case two detection
schemes (S}M, f/l\/l) and (S%,./%,). It is easy to prove
that this case can be described by a unique scheme
(Smsfa) such that Sy = Sk US3 and fiag = fL, VI3,
or faq = f}w A f/2v1 according to the way both schemes
are combined (up to a minimization step).

This case also applies when two or more detection
engines are involved. Our model enables to consider a
single engine instead.

3.2.4 Other detection techniques

Other sequence-based techniques like bookmark tech-
niques, smart scanning, skeleton detection, static decryp-
tor techniques, sequence-based heuristics..., and such like
(see [23, Chap. 11]) can be similarly described. In these
cases:

e The parameter s (the number of bytes involved) is
very large (the detection pattern spans the whole
code);

e The detection function may be generally far more
complex (the number of logical terms is close to 2%).
However, it is not certain that the corresponding
non-detection function is complex as well. This is an
open problem (see Sect. 5); detection pattern spans
the whole code);

e Particular combinatorial structures in the detection
function DNF may be considered in addition to its
weight.
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As far as hashing or checksum techniques are consid-
ered, our approach can be easily generalized by consid-
ering bitwise approach instead of a bytewise approach.
Any checksum value or hashing value can be described
as a set of Boolean functions as demonstrated in [6].
The resulting detection function is then described as the
logical intersection of these functions [8, Chap. 3].

3.3 Mathematical measures of AV scanners

Algorithms 1 and 2 enable to systematically extract
detection pattern of the malware samples we used for
testing (see Appendix A). The tested commercial scan-
ners have shown some very interesting yet surprising
results. As a general result, we can assert that the over-
all quality of detection pattern (including the detection
and non-detection functions) tends to be weak, and, ex-
tremely weak in some cases. The main results are sum-
marized hereafter.

3.3.1 Malware pattern transinformation

Whatever the commercial scanner we considered may
be, the extraction of different malware pattern parame-
ters (non-detection function fy, pattern size s and pat-
tern bytes indices set Sy ) has been easily performed.
In other words, as the scanner leaks all the information
on the detection pattern, the transinformation value is
consequently maximal. Thus we can write

I<SM,M§maSM) = H(SEMmM)-

This means that the only thing to do for a copycat who
wants to get rid of the problem of uncertainty as far as
a detection pattern is concerned, is to simply have the
detector to bypass at one’s disposal. In this respect, all
the commercial scanners that we have tested are rather
weak.

3.3.2 Malware pattern resistance

The scheme resistance quantifies the copycat’s effort
in bypassing a given detection scheme, once the latter
has been successfully extracted. This property relates
to the total number of possible byte modifications in
order to delude a given detector D. Equations 1 and 2,
in Sect. 2.2.1 show that both the parameter s and the
detection function fa (or equivalently the non-detec-
tion function fy) have an impact on this number.

The precise evaluation of the scheme resistance re-
quire to enumerate the set {X = (X1, X2,... ,XS)|]W

(X) = 1}. Formula (3) in Sect. 2.2.1 then enables to
compute the expected total number of possible byte
modifications.

To summarize:

e As far as the AND detection function is concerned,
when considering a detection pattern of size s, we
have:

A =256° — 1.

Consequently, short detection patterns are far better
than longer ones. The latter yields more possible byte
modifications, that may result in a non-detection;

e As far as other non-detection functions are con-

cerned, evaluating A has a worst-case complexity in
O(2%). In this context, the copycat’s effort increases
with s. Long detection pattern are far better than
short ones.
The in-depth analysis of the antivirus that we have
tested shows that detection pattern size are rather
weak (about 15bytes in average). Copycats’ effort
has consequently not to be very intense in practice,
despite the overall complexity of Algorithm E-2. The
parameter s should be larger (s > 45 at least).

Lastly, it is worth noticing that the weight of the non-
detection function has a relatively high impact on the
scheme resistance and on the parameter A. Since wt

(M) +wt (faoq) = 2%, detection functions that we should

consider in order to thwart copycat’s action, are those
that present a large weight. The experimental results
that we have obtained with respect to the tested antivi-
rus prove the latter to be rather weak when considering
the resistance property.

The search and exploration of suitable detection func-
tions are major issues and much research work must be
carried out further. Another interesting point would be
to determine whether some other structural properties
can be considered in order to increase both detection
efficiency and resistance against copycat’s extraction
and manipulations. Most of these issues still remain open
problems.

3.3.3 Malware pattern efficiency

The black-box analysis revealed that the tested antivi-
rus mostly used rather short malware detection patterns.
As far as detection scheme efficiency is concerned, let us
summarize our most important results and observations.

e Antivirus software can be divided into two groups,
according to the average size s of the detection pat-
terns:
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— Short-size patterns (from a few bytes to a few
tens of bytes). This group contains most of the
commercial products;

- Long-size patterns (a few thousands of bytes).
Only a few products belong to this group.

We observed a trade-off between efficiency and resis-
tance. As the resistance of the pattern grows, the
number of false positives increase with it. This can be
explained by the fact that detection function are AND
functions. Other non-trivial functions should greatly
enable to suppress this trade-off.

e The structure of the detection patterns (bytes in-
volved, detection functions) presents striking simi-
larities from one antivirus publisher to another (see
Appendix A). This proves that malware analyses are
obviously a joint work within the community of an-
tivirus publishers. Moreover, contrary to what they
generally claim, sharing information does not, as it
is, contribute to make products any different — with
the notable exception of Avast and AVG. The most
relevant case is that of F-Secure and Kaspersky who
share exactly the same detection patterns. The struc-
tural properties of a PE file cannot justify alone the
very close similarities among these products.

e Whenever possible, heuristic engine have been tested
separately. At least for the W32/Bagle family, heu-
ristic detection does generally not provide any sig-
nificantly better detection. The difference with other
traditional engine proved to be rather disappointing.

4 Secure malware pattern scanning schemes

In this section, we present a new scanning scheme de-
signed to detect malware that strongly limits copycats’
analyses. By using suitable combinatorial structures to
describe malware detection patterns as well as probabi-
listic approach to manage them, we can then thwart pat-
tern black-box analysis and extraction under reasonable
security assumptions. Unless a relatively high number of
other analysts collude, it is impossible for any copycat to
extract all the pattern parameters (pattern size, pattern
bytes, non-detection function). Any of their potential at-
tempts to produce malware variants from previous ones
will be inevitably doomed to failure, thus contributing
to strongly limited malware spreading.

4.1 Combinatorial and probabilistic constructions
4.1.1 General description

Our main purpose is to consider a general malware
detection pattern of s bytes (generally scattered over
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the malware code). Whenever the scanning engine is in-
volved in a detection process, only a sub-pattern of size
k is used under the following constraints:

e The value k must be relatively small compared to s;

e Any sub-pattern is chosen at random,;

e Any sub-pattern is a fixed value which depends on
the user/computer identification data;

e The whole detection pattern cannot be reconstructed
unless we know (extract) at least T sub-patterns;

e The number 7 of sub-patterns and the value t must
be large.

These constraints have been chosen in such a way to
maximize the copycat’s uncertainty and effort when fac-
ing the malware detection pattern extraction problem.
In other words, the copycat will not be able to recon-
struct the whole pattern except under conditions that
become very difficult to implement in practice. Lastly,
if he succeeds in producing any variant which becomes
undetected with respect to a given sub-pattern, the prob-
ability to remain detected for other sub-patterns (other
users) must remain high. The proliferation of the variant
will be, as a result, extremely limited.

The main issue was to find suitable combinatorial ob-
jects exhibiting the required properties. The best candi-
dates are undoubtedly combinatorial designs [3,4]. In-
deed, these objects show all the more interesting prop-
erties as their implementation only requires a limited
amount of space/memory. The fourth constraint strongly
suggested to consider (1, 7) threshold schemes [16, Chap.
12]. In our context, the secret to share is the whole detec-
tion pattern and each sub-pattern would then describe
a share of the secret. Unfortunately, known threshold
scheme contructions have been proposed when shares
are numbers. In our case, the shares are more complex
objects (typically collection of numbers). Some con-
structions have been proposed to extend classical thresh-
old schemes to more complex objects like graphs [14].
However, up to now, these extensions require too much
memory/space. Thus, they are not suitable for commer-
cial antivirus products.

Let us notice that the third constraint aims at help-
ing computer crime investigation in order to trace and
identify copycats who would be responsible for the pro-
duction and spreading of new variants.

4.1.2 Technical description of the scheme

In this respect, two aspects must be considered: the com-
binatorial object which describes the pattern Sy itself
and the detection function fy (and consequently fi4).
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The combinatorial object We have considered2—(s, k, )
designs (known as Balanced Incomplete Block Designs
also or BIBD for short). For the sake of clarity, we will
recall the definition of these objects as well as their most
interesting properties.

Definition 3 A balanced incomplete block design (BIBD)
is a pair (V, B) where V is a v-set and B is a collection of b
k-subsets of V such that each element of V is exactly con-
tained in r blocks and any 2-subset of V is contained in
exactly A blocks. The numbers v,b,r, k, A are parameters
of the BIBD.

The following properties hold for a BIBD:

e A BIBD exists if and only if vir = bk and if r(k — 1)

=Ai(v—1).
e r=0Qv—-1)/k—-1
e b=vr/k.

An exhaustive presentation and classification of BIB-
Ds as well as other combinatorial designs are provided
in [3,4].

In our context, we have Syy = V,s = v,m = b =
Av(v—1)/k(k —1) and B describes the collection of sub-
patterns 35\/1 with Sy = U,»Sj'w

The detection function We choose a Boolean function
f : 5, — IF; as the detection function. The DNF formula
of foq has weight 251, For any sub-pattern Sy ;, we then
consider the restriction f , of foq with respect to Sy ;.
The weight of o represents the maximal effort a copy-
cat will face to extract the non-detection function (when
considering the LOGICALMINIMIZE step) while maintain-
ing a high level of pattern efficiency. According to the
formalism developed in Sect. 2.1, the inputs of fjvt are
the k byte indices of the sub-pattern we consider. One
of the best choices, from an algebraic and combinatorial
point of view, is to consider the following function:

This function can be implemented in a very reduced way
(see Sect.4.3). Let us notice that from the copycat’s point
of view, the only way to retrieve this (simplified) alge-
braic normal form is from the DNF. This transformation
has a general complexity of O(2°). It goes without saying
that not only many other detection functions could be
chosen but also 7 different detection functions may be
considered, one for each sub-pattern.

The scanning protocol During its installation, the anti-
virus sofware gathered some information on both the
system and the user:

e The serial number of the processor (cpuip) and that
of the hard disk (HDID);
e The MAC address (denoted MACadr);

e The user name USRname and his email address @adr;
e A secret value hidden in the antivirus software v.

Let us notice that other additional parameters can be
considered.

Then, the sofware computes the sub-pattern index i
as follows:

i = g(H(cruip @ HDID @ MACadr
@USRname @ @adr @ v) ® N).

The function H is a hash function whose input is the xor
sum of the data encoded as integers while the function
g outputs a random value which ranges from 1 to =, by
means of a nonce N This value represents the indices of
the detection sub-pattern that will be used for detection.
The function g is chosen in such a way that the value is
fixed for a given user from one scanning to another. The
purpose is two-fold. Firstly, it ensures that a user (or a
copycat) will always use the same sub-pattern. Lastly,
in case of computer crime investigation, the investiga-
tor will be able to prove whether a suspected copycat is
involved or not in the building of a new variant.

During each detection process in which scanning is in-
volved, the software uses only the ith-sub-pattern along
with the detection function f.

4.2 Mathematical analysis

Let us now analyze our scanning scheme. In order to
make things clearer, let us note S 4, the whole detection
pattern (in other words the 2 — (s, k, 1) design we con-
sider) whereas S’ . will denote its ith-sub-pattern and
fj\A the detection function taking the ith-sub-pattern as
input.

Scheme transinformation According to our notation and
the definition of the scheme, we obviously have:

1(SnatiFuas Sa) = H (S ni) << H (Sman)
—H (SpmlfivgShy) -

The black-box analyst manages to retrieve information
on a very limited part of the detection pattern only.

Scheme resistance As previously stated, this property
directly depends on both the weight of function wt (f} ,)
and k. For our scheme, we consequently have:

o 2k—1 1 1 1
t L = = - — — = — 1.
R (Sho i) = ok rk Y (k)
As a result, small values of k are better to get the best

possible scheme resistance property (see Sect. 2.2.1).

Impact of copycat collusion We can imagine that a num-
ber of copycats try to collude in order to extract both
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the whole detection pattern Sy and detection function
fa- Let us determine how many copycats must collude
for that purpose.

Proposition 1 Sy and faq can be extracted with a collu-
sion of at least T = [s/k] analysts.

Proof The proof is obvious since each block contains k
points and since that t > [s/k]. This corresponds to the
situation in which the blocks involved in the collusion
have a null intersection. In this case, the design is said
resolvable.® O

When 7 copycats collude, they then have to face a
detection pattern of size s. As far as the detection func-
tion DNF formula is concerned, we obtain the following
result:

Proposition 2 The detection function DNF formula ex-
tract by a collusion of t = [s/k] analysts contains at most
s/k (251) terms.

Proof The proof is obvious since the intersection of any
collection of blocks does not contain any block of the
design and since any two blocks may have a non-empty
intersection. There is equality only when blocks involved
in the collusion are paiwise disjoint (parallel class). O

This implies that even 7 analysts would collude, the
complexity of the LocicALMINIMIZE step would be intrac-
table and thus the non-detection function could be re-
trieved.

New variant probability of non-detection Let us now
suppose that a copycat succeeds in extracting both Sj\/l
and f), , from a detector that implements our scanning
scheme. He can thus produce a new variant from a
known, detected one. What, then is, the probability for
this variant to remain undetected while it is “in the
wild”?

Proposition 3 The knowledge of both Sj\/l and fjvl en-
ables to produce a variant which is still detected with a
probability Pyetection Such that

z < Petection < 1.

Proof Assume that the copycat uses 5§\4 and fjw to
produce his variants. Let us now suppose that this var-
iant has spread throughout a computer whose detector
selects the jth sub-pattern. The modifications designed

6 In a resolvable BIBD, denoted RBIBD, the collection B can be
partitioned into parallel classes. A parallel class is a set of blocks
that partitions the point set V. Two necessary conditions for BIBD
to be resolvable are (1) klvand 2) b > v +r— 1.
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to produce the variant will affect the detection by means
of the sub-pattern j with a probability equal to 1/2 unless
sub-patterns / and j have an empty intersection (detec-
tion probability is then equal to 1). Hence the result.

]

This result shows that both the combinatorial object
and the detection function must be carefully chosen. In
particular, considering RBIBD is a more suitable choice
than BIBD, even if in this case, experiments proved that
Pgetection 18 closer to 1 than 1/2. As a general result
we have Pgetection = @ — 1/7 for RBIBD. Considering
different detection functions, one for each sub-pattern
is a better solution as well.

4.3 Implementation and performance results

The implementation of the proposed scheme is currently
under investigation in our laboratory. We have consid-
ered different combinatorial objects. As far as security is
concerned (especially the probability of non-detection
for new variants), the best results have been obtained
when considering parallel classes of RBIBD. Some inter-
esting BIBD have also been satisfactorily used.

The upper bound of memory/space requirement is
in O (s?/k) when considering a general 2 — (s, k, 1) de-
sign (essentially due to the size of the incidence matrix
describing the design). Consideration about phylogeny
aspects [10,12] should help to choose far better combi-
natorial designs which would enable several variants to
be manage at once. As regards computing resources, we
did not notice any significant increase in the scanning
time.

Even though the implementation of our scheme needs
to be developed further — so that it may become as effi-
cient current scanners — our results turn out to be very
promising insofar as this scheme can be undoubtedly
considered as a practical solution.

5 Open problems, future work and conclusion

In the present paper, we have addressed both the prob-
lem about resistance against black-box analysis and clas-
sical detection scheme bypassing. We have first defined
a new mathematical model for detection schemes that
then enables us to define some properties that any reli-
able detection scheme should basically exhibit. Next,
an in-depth analysis of a great deal of commonly used
commercial antivirus products has been conducted with
respect to this model and the relevant properties. The
results of the experiments indicated that all the tested
products turned out to be very weak. One of the obvi-
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Table 3 Tested antivirus

software (versions and viral Products Version Viral definition
definitions) Avast 4.6.601 0527-2
AVG 7.0.338 267.9.2/52
Bit Defender 7.2 09/16/05
DrWeb 4.33.2.12231 02/25/06 (104186)
eTrust 7.1.194 11.5.8400 (Vet)
eTrust 7.1.194 23.65.44 (InoculatelT)
F-Secure 2005 5.10-480 09/15/05
G-Data AVK 16.0.3 KAV-6.818/BD-16.864
KAV Pro 5.0.383 09/19/05
McAfee 2006 - DAT 4535
NOD 32 2.5 1.1189 (08/08/05)
Norton 2005 11.0.2.4 09/15/05
Panda Titanium 2006 5.01.02 01/17/06
Sophos 5.0.5R2 3.98
Trend Office Scan 6.5-7.100 2.837.00
Table 4 Viral patterns for - - -
W32/Bagle.A Product name Signature size Signature
(in bytes) (indices)
Auvast 29 14,128 — 14,144,
14,146 — 14,157, 14,159
AVG 7,297 0-1-60-200-201-220-469- - -
Bit Defender 6 0-1-60-200-201-206
DrWeb 12 0-1-60-200-201-206-220- - -
222-461-465-469
eTrust/Vet 3,700 0-1-60-200-201-206— - -
eTrust/InoculatelT 3,700 0-1-60-200-201-206—- - -
F-Secure 2005 11 0-1-60-200-201-206
220-240-241-461-469
G-Data 6 0-1-60-200-201-206
KAV Pro 11 The same as F-secure 2005
McAfee 2006 7 0-1-60-200-201-206-220
NOD 32 7,449 0-1-60-200-201-204-205- - -
Norton 2005 0 (not an AND function)
Panda Tit. 2006 9 0-1-60-200-201-206
220-461-541
Sophos 28 0-1-60-200-201-206-220- - -
Trend Office Scan 7 0-1-60-200-201-206-220

ous consequences of these investigations is that these
existing weaknesses facilitate not only copycats’ offences
but also the spreading of variants derived from either
original malware strains or previous variants.

We have presented a new scanning scheme that
strongly prevents copycats’ actions. Interestingly
enough, not only it does succeed in highly limiting the
spreading of variants, its implementation only requires a
few computer resources (memory and computing time).

Lastly, we have identified a number of open problems
that should motivate further research:

e The classification and exploration of good detection
functions f;

e Is it possible to find some structural properties of
detection functions that would increase detection

pattern efficiency while offering a high resistance
level against black-box analysis. In particular, false
positive probability could be significantly reduced
thanks to detection functions which would be more
appropriate than the AND function;

e Find other — more suitable — combinatorial objects
[3,4] offering more interesting properties than those
we used in our scanning scheme (pairwise designs,
parallel designs...).

‘We have just begun applying our model and approach
to the behaviour monitoring detection techniques. In
this new context, the concept of sequence-based detec-
tion has been replaced with that of the function-based
detection and instead of considering detection patterns,
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Table 5 Viral patterns for

W32/Bagle.E Product name Signature size S.ign.ature
(in bytes) (indices)

Avast 9 8,162-8,166-8,170-8,173-8,175

8,180-8,181-8,187-8189
AVG 13,288 0-1-60-216-217-222-236- - -
Bit Defender 87 2,831-2,964—- - -
DrWeb 1,773 0-1-60-216-217-222-236- - -
eTrust/Vet 4,306 0-1-60-216-217-222—- - -
eTrust/Inoculatel T 4,306 0-1-60-216-217-222—- - -
F-Secure 2005 105 0-1-60-216-217-222— - -
G-Data 3 2831-2964-2965
KAV Pro 105 The same as F-secure 2005
McAfee 2006 12,039 0-1-60-216-217-222— - -
NOD 32 4,793 0-1-60-216-217-220-221- - -
Norton 2005 0 (not an AND function)
Panda Tit. 2006 37 0-1-59-60-216-217-222- - -
Sophos 15,028 0-1-2-4-8-12-13-16-24- - -
Trend Office Scan 146 0-1-60-216-217-222—- - -

Table 6 Viral patterns for

Product name Signature size Signature
W32/Bagle.J (in bytes) (indices)
Avast 8 7,256 — 7,259
7,278 — 7,281
AVG 7,276 5739-5864-5866— - -
Bit Defender 3,342 7,385-7,386— - -
DrWeb 2,896 0-1-60-144-145-150-164- - -
eTrust/Vet 4,320 0-1-60-144-145-150-164- - -
eTrust/InoculatelT 1,311 0-1-60-144-145-150-164- - -
F-Secure 2005 3,128 0-1-60-144-145-150-164- - -
G-Data 2,954 0-1-60-144-145-150-445. - -
KAV Pro 3,128 The same as F-secure 2005
McAfee 2006 8,084 0-1-60-144-145-150-164- - -
NOD 32 9,629 0-60-144-145-148-149—. -
Norton 2005 8 0-1-60-144-145
150-164-445
Panda Tit. 2006 437 0-1-32 — 35-60-64- - -
Sophos 3,429 0-1-60-144-145-150-164- - -
Trend Office Scan 63 7,750— - -

we have, in the circumstances, considered malware behav-
iours. According to the very first investigations, there is
every chance that our original model and approach may
be fully transposable.

A Antivirus software analysis results

We provide here the results of the black-box signature
extraction performed on some Bagle variants and for
most existing commercial antivirus software (Table 3):
All the variants of the W32/Bagle family have been
used as viral samples for the signature extraction Algo-
rithm E-1 which has been presented in Sect. 3.1.1. The
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naming convention for the viral variants is that used by
VX Heavens [25], where we downloaded them in order
to get a reference viral set (Tables 4, 5, 6, 7, 8).

Whenever several scanning engine were present, we
have tested them separately when possible. The tables
consider the best detection result.

Due to space limitations, the following tables give
results for a few variants (exhaustive results are avail-
able upon request to the author). The table contains the
indices of the bytes signature in the viral code but not
the bytes themselves. As far as possible, the signature
is given in full. If not, only a few beginning indices are
provided in order to illustrate the “antivirus software

phylogeny”.



Malware pattern scanning schemes secure against black-box analysis

Table 7 Viral patterns for

W32/Bagle.N Product name Signature size Signature
(in bytes) (indices)

Avast 10 14,567-14,574 — 14,577

14,581-14,585 — 14,588
AVG 13,112 533 — 663-665— - -
Bit Defender 6,093 0-1-60-128-129-134— - .
DrWeb 6,707 0-1-60-128-129-132-133- -
eTrust/Vet 4,343 0-1-60-128-129-134— -
eTrust/InoculatelT 1,276 0-1-60-128-129-134—- -
F-Secure 2005 54 0-1-60-128-129-548— -
G-Data 53 0-1-60-128-129-548—- -
KAV Pro 54 The same as F-Secure 2005
McAfee 2006 4,076 0-1-60-128-129-134— -
NOD 32 17,777 0-1-60-128-129-132— 133~-~
Norton 2005 51 0-1-60-128—

129-134-429—. .
Panda Tit. 2006 1659 0-1-4-8-12-13- 16 24. .
Sophos 7,538 0-1-60-128-129-134— 148~~
Trend Office Scan 44 0-1-60-128-129-- -

"I)‘;;)ZlstagZ.l?l patterns for Product name S.ignature S'ign'ature
size (indices)
(in bytes)
Avast 8 12,916 — 12,919
12,937 — 12,940

AVG 14,575 533 — 536-538---
Bit Defender 8,330 0-1-60-128-129-134—- - -
DrWeb 6,169 0-1-60-128-129-134— - -
eTrust/Vet 1,284 0-1-60-128-129-134—- - -
eTrust/InoculatelT 1,284 0-1-60-128-129-134— - -
F-Secure 2005 59 0-1-60-128-129-546—- - -
G-Data 54 0-1-60-128-129-546— - -
KAV Pro 59 The same as F-Secure 2005
McAfee 2006 12,1278 0-1-60-128-129-134— - -
NOD 32 21,849 0-1-60-128-129-132-133—- - -
Norton 2005 6 0-1-60-128-129-134
Panda Tit. 2006 7,579 0-1-60-134-148-182-209. - -
Sophos 8,436 0-1-60-128-129-134-148. - -
Trend Office Scan 88 0-1-60-128-129—- - -

B Norton Bagle.E non-detection function and pattern

Whereas the extraction Algorithm E1 did not produce
any AND detection function for Norton on some W32/Ba-
gle variants, Algorithm E2 systematically extracted quite
easily the relevant data (detection pattern Saq ¢ and
the non-detection function fy4. In order to prevent any
misuse, the minimized form of fy( will not be given (that
is to say, we do not give the result after the LoGicCALMIN-
IMIZE procedure action). However, it is worth noticing
that from a logic minimization complexity point of view,

Norton viral non-detection functions are rather weak.
They depend only on a limited number of variables (or
equivalently bytes; around between 15 and 25 accord-
ing to the variants) and terms. Moreover, the function
DNFs are very sparse. This weakness enables the copy-
cat to easily bypass Norton’s scanner.

The viral pattern extraction Algorithm E2 of
Sect. 3.1 has produced the following non-detection func-
tion (before the logic minimization step) for W32/Ba-
gle.E variant. The pattern depends on 15 bytes only,
whose indices are

@ Springer
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E

={0,1,60,61,62,63,216,217,222,

223,236,237,645, 646,647, 648}.

This result has been obtained once the COMBINATORIAL-
MiNmIZE procedure action has occured. The notation x;
means that the byte of the pattern located at index i in
the viral code, has not been modified whereas X; means
that it indeed has been.

Non-detection functions for other variants are avail-

able upon request to the author.

JW32/Bagle E =
X0-X60-X61-X62-X63-X216-X217-X222-X223-X236-X237 X645 X646 -X647-X648

V' X0.X1.X60-X61-X62-X63-X216-X217-X222-X223.X236-X237-X645 X646 -X647 X648
V' X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X236-X237-X645 X646 -X647 X648
V' X0.X1-X60-X61 -X62-X63-X216-X217-X222-X223.X236-X237 X645 X646 -X647-X 648
V' X0.X1.X60-X61-X62-X63-X216-X217-X222-X223-X236 X237 -X 645 -X646 X647 X648
V' X0.X1.X60-X61 -X62-X63-X216-X217-X222-X223.X236-X237 X645 -X646-X647 X648
V' X0.X1.X60-X61 -X62-X63-X216-X217-X222.X223.X236-X237 - X645 -X646-X647 X648
V' X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X236-X237-X645 X646 -X647 X648
V' X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X236 X237 X645 X646 -X647 - X648
V' X0.X1.X60-X61-X63-X216-X217-X222-X223 X236 -X237 X645 X646 -X647-X648

V' X0.X1.X60-X61-X62-X63-X216-X217-X222-X223.X236-X237-X645-X646-X647 X648

\
\%
\
Vv
Vv
\'
\%
\
Vv
\
\
\

Acknowledgements

X0.X1.X60-X61-X62-X63-X216-X222-X223.X236.X237-X645 X646 -X647 X648
X0-X1.X60-X61-X62-X63-X216-X217-X222-X223.X236-X237 X645 -X 646 X647 -X648
X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X236-X237-X645 X646 -X647 X648
X0-X1.X60-X61-X62-X63-X216-X217-X222-X223.X236-X237-X645 X646 X647 X648
X0.X1.X60-X61-X62-X63-X216-X217-X223-X236-X237-X 645 X646 -X647 X648
X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X236-X645 X646 -X647 X648
X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X237-X645 X646 -X647 X648
X0.X1.X60-X61-X62-X63-X216-X217-X222-X223 X237 X645 X646 X647
X0.X1-X60-X61-X62-X63-X216-X217-X222-X223 X237 X645 X646 X647 X648
X0-X1.-X60-X61-X62-X63-X216-X217-X222-X223-X237-X645 X646 -X647 X648
X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X237 X645 -X646-X647 X648
X0.X1.X60-X61-X62-X63-X216-X217-X222.X223.X237.X645-X647 X648

Many thanks to Boris Sharov from DrWeb

and to the G-Data company who provided me with an evaluation
version of their antivirus.
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