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CHAPTER 1

Introduction

This book deals with the implementation of the Linux Kernel Networking stack and the theory behind it. You will find
in the following pages an in-depth and detailed analysis of the networking subsystem and its architecture. I will not
burden you with topics not directly related to networking, which you may encounter while reading kernel networking
code (for example, locking and synchronization, SMP, atomic operations, and so on). There are plenty of resources
about such topics. On the other hand, there are very few up-to-date resources that focus on kernel networking proper.
By this I mean primarily describing the traversal of the packet in the Linux Kernel Networking stack and its interaction
with various networking layers and subsystems—and how various networking protocols are implemented.

This book is also not a cumbersome, line-by-line code walkthrough. I focus on the essence of the implementation
of each network layer and the theory guidelines and principles that led to this implementation. The Linux operating
system has proved itself in recent years as a successful, reliable, stable, and popular operating system. And it seems
that its popularity is growing steadily, in a wide variety of flavors, from mainframes, data centers, core routers, and
web servers to embedded devices like wireless routers, set-top boxes, medical instruments, navigation equipment
(like GPS devices), and consumer electronics devices. Many semiconductor vendors use Linux as the basis for their
Board Support Packages (BSPs). The Linux operating system, which started as a project of a Finnish student named
Linus Torvalds back in 1991, based on the UNIX operating system, proved to be a serious and reliable operating
system and a rival for veteran proprietary operating systems.

Linux began as an Intel x86-based operating system but has been ported to a very wide range of processors,
including ARM, PowerPC, MIPS, SPARC, and more. The Android operating system, based upon the Linux kernel, is
common today in tablets and smartphones, and seems likely to gain popularity in the future in smart TVs. Apart from
Android, Google has also contributed some kernel networking features that were merged into the mainline kernel.

Linux is an open source project, and as such it has an advantage over other proprietary operating systems: its
source code is freely available under the General Public License (GPL). Other open source operating systems, like the
different types of BSD, have much less popularity. I should also mention in this context the OpenSolaris project, based
on the Common Development and Distribution License (CDDL). This project, started by Sun Microsystems, has not
achieved the popularity that Linux has. Among the large community of active Linux developers, some contribute
code on behalf of the companies they work for, and some contribute code voluntarily. All of the kernel development
process is accessible via the kernel mailing lists. There is one central mailing list, the Linux Kernel Mailing List
(LKML), and many subsystems have their own mailing lists. Contributing code is done via sending patches to the
appropriate kernel mailing lists and to the maintainers, and these patches are discussed over the mailing lists.

The Linux Kernel Networking stack is a very important subsystem of the Linux kernel. It is quite difficult to find
a Linux-based system, whether it is a desktop, a server, a mobile device or any other embedded device, that does not
use any kind of networking. Even in the rare case when a machine doesn't have any hardware network devices, you
will still be using networking (maybe unconsciously) when you use X-Windows, as X-Windows itself is based upon
client-server networking. A wide range of projects are related to the Linux Networking stack, from core routers to small
embedded devices. Some of these projects deal with adding vendor-specific features. For example, some hardware
vendors implement Generic Segmentation Offload (GSO) in some network devices. GSO is a networking feature of the
kernel network stack that divides a large packet into smaller ones in the Tx path. Many hardware vendors implement
checksumming in hardware in their network devices. Checksum is a mechanism to verify that a packet was not
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damaged on transit by calculating some hash from the packet and attaching it to the packet. Many projects provide
some security enhancements for Linux. Sometimes these enhancements require some changes in the networking
subsystem, as you will see, for example, in Chapter 3, when discussing the Openwall GNU/*/Linux project. In the
embedded device arena there are, for example, many wireless routers that are Linux based; one example is the
WRT54GL Linksys router, which runs Linux. There is also an open source, Linux-based operating system that can run
on this device (and on some other devices), named OpenWrt, with a large and active community of developers (see
https://openwrt.org/). Learning about how the various protocols are implemented by the Linux Kernel Networking
stack and becoming familiar with the main data structures and the main paths of a packet in it are essential to
understanding it better.

The Linux Network Stack

There are seven logical networking layers according to the Open Systems Interconnection (OSI) model. The lowest
layer is the physical layer, which is the hardware, and the highest layer is the application layer, where userspace
software processes are running. Let’s describe these seven layers:

1. The physical layer: Handles electrical signals and the low level details.

2. Thedata link layer: Handles data transfer between endpoints. The most common data link
layer is Ethernet. The Linux Ethernet network device drivers reside in this layer.

3.  The network layer: Handles packet forwarding and host addressing. In this book I discuss
the most common network layers of the Linux Kernel Networking subsystem: IPv4 or IPv6.
There are other, less common network layers which Linux implements, like DECnet, but
they are not discussed.

4.  The protocol layer/transport layer: Handles data sending between nodes. The TCP and
UDP protocols are the best-known protocols.

5. The session layer: Handles sessions between endpoints.
6. The presentation layer: Handles delivery and formatting.
7. The application layer: Provides network services to end-user applications.

Figure 1-1 shows the seven layers according to the OSI model.
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Figure 1-1. The OSI seven-layer model

Figure 1-2 shows the three layers that the Linux Kernel Networking stack handles. The L2, L3, and L4 layers
in this figure correspond to the data link layer, the network layer, and the transport layer in the seven-layer model,
respectively. The essence of the Linux kernel stack is passing incoming packets from L2 (the network device drivers)
to L3 (the network layer, usually IPv4 or IPv6) and then to L4 (the transport layer, where you have, for example,
TCP or UDP listening sockets) if they are for local delivery, or back to L2 for transmission when the packets should
be forwarded. Outgoing packets that were locally generated are passed from L4 to L3 and then to L2 for actual
transmission by the network device driver. Along this way there are many stages, and many things can happen.
For example:

e  The packet can be changed due to protocol rules (for example, due to an IPsec
rule or to a NAT rule).

e  The packet can be discarded.

e The packet can cause an error message to be sent.
e The packet can be fragmented.

e  The packet can be defragmented.

e  Achecksum should be calculated for the packet.
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Figure 1-2. The Linux Kernel Networking layers

The kernel does not handle any layer above L4; those layers (the session, presentation, and application layers) are
handled solely by userspace applications. The physical layer (L1) is also not handled by the Linux kernel.

If you feel overwhelmed, don’t worry. You will learn a lot more about everything described here in a lot more
depth in the following chapters.

The Network Device

The lower layer, Layer 2 (1.2), as seen in Figure 1-2, is the link layer. The network device drivers reside in this layer. This book
is not about network device driver development, because it focuses on the Linux kernel networking stack. I will briefly
describe here the net_device structure, which represents a network device, and some of the concepts that are related to

it. You should have a basic familiarity with the network device structure in order to better understand the network stack.
Parameters of the device—like the size of MTU, which is typically 1,500 bytes for Ethernet devices—determine whether a
packet should be fragmented. The net_device is a very large structure, consisting of device parameters like these:

e  The IRQ number of the device.

e The MTU of the device.

e  The MAC address of the device.

e The name of the device (like etho or eth1).

e  The flags of the device (for example, whether it is up or down).

e  Alist of multicast addresses associated with the device.

e The promiscuity counter (discussed later in this section).

e  The features that the device supports (like GSO or GRO offloading).

e Anobject of network device callbacks (net_device ops object), which consists of function
pointers, such as for opening and stopping a device, starting to transmit, changing the MTU of
the network device, and more.

e  Anobject of ethtool callbacks, which supports getting information about the device by
running the command-line ethtool utility.

e  The number of Tx and Rx queues, when the device supports multiqueues.
e The timestamp of the last transmit of a packet on this device.

e The timestamp of the last reception of a packet on this device.
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The following is the definition of some of the members of the net_device structure to give you a first impression:

struct net_device {
unsigned int irq; /* device IRQ number */

const struct net_device ops *netdev_ops;

unsigned int mtu;
unsigned int promiscuity;
unsigned char *dev_addr;

};

(include/linux/netdevice.h)

Appendix A of the book includes a very detailed description of the net_device structure and most of its members.
In that appendix you can see the irq, mtu, and other members mentioned earlier in this chapter.

When the promiscuity counter is larger than 0, the network stack does not discard packets that are not destined
to the local host. This is used, for example, by packet analyzers (“sniffers”) like tcpdump and wireshark, which open
raw sockets in userspace and want to receive also this type of traffic. It is a counter and not a Boolean in order to
enable opening several sniffers concurrently: opening each such sniffer increments the counter by 1. When a sniffer is
closed, the promiscuity counter is decremented by 1; and if it reaches 0, there are no more sniffers running, and the
device exits the promiscuous mode.

When browsing kernel networking core source code, in various places you will probably encounter the term
NAPI (New API), which is a feature that most network device drivers implement nowadays. You should know what it is
and why network device drivers use it.

New API (NAPI) in Network Devices

The old network device drivers worked in interrupt-driven mode, which means that for every received packet, there was
an interrupt. This proved to be inefficient in terms of performance under high load traffic. A new software technique
was developed, called New API (NAPI), which is now supported on almost all Linux network device drivers. NAPI was
firstintroduced in the 2.5/2.6 kernel and was backported to the 2.4.20 kernel. With NAPI, under high load, the network
device driver works in polling mode and not in interrupt-driven mode. This means that each received packet does not
trigger an interrupt. Instead the packets are buffered in the driver, and the kernel polls the driver from time to time to
fetch the packets. Using NAPI improves performance under high load. For sockets applications that need the lowest
possible latency and are willing to pay a cost of higher CPU utilization, Linux has added a capability for Busy Polling on
Sockets from kernel 3.11 and later. This technology is discussed in Chapter 14, in the “Busy Poll Sockets” section.

With your new knowledge about network devices under your belt, it is time to learn about the traversal of a
packet inside the Linux Kernel Networking stack.

Receiving and Transmitting Packets
The main tasks of the network device driver are these:

e To receive packets destined to the local host and to pass them to the network layer (L3), and
from there to the transport layer (L4)

e To transmit outgoing packets generated on the local host and sent outside, or to forward
packets that were received on the local host
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For each packet, incoming or outgoing, a lookup in the routing subsystem is performed. The decision about
whether a packet should be forwarded and on which interface it should be sent is done based on the result of
the lookup in the routing subsystem, which I describe in depth in Chapters 5 and 6. The lookup in the routing
subsystem is not the only factor that determines the traversal of a packet in the network stack. For example,
there are five points in the network stack where callbacks of the netfilter subsystem (often referred to as netfilter
hooks) can be registered. The first netfilter hook point of a received packet is NF_INET_PRE_ROUTING, before a
routing lookup was performed. When a packet is handled by such a callback, which is invoked by a macro named
NF_HOOK(), it will continue its traversal in the networking stack according to the result of this callback (also called
verdict). For example, if the verdict is NF_DROP, the packet will be discarded, and if the verdict is NF_ACCEPT,
the packet will continue its traversal as usual. Netfilter hooks callbacks are registered by the nf_register hook()
method or by the nf_register_hooks() method, and you will encounter these invocations, for example, in
various netfilter kernel modules. The kernel netfilter subsystem is the infrastructure for the well-known iptables
userspace package. Chapter 9 describes the netfilter subsystem and the netfilter hooks, along with the connection
tracking layer of netfilter.

Besides the netfilter hooks, the packet traversal can be influenced by the IPsec subsystem—for example, when it
matches a configured IPsec policy. IPsec provides a network layer security solution, and it uses the ESP and the AH
protocols. IPsec is mandatory according to IPv6 specification and optional in IPv4, though most operating systems,
including Linux, implemented IPsec also in IPv4. IPsec has two modes of operation: transport mode and tunnel
mode. It is used as a basis for many virtual private network (VPN) solutions, though there are also non-IPsec VPN
solutions. You learn about the IPsec subsystem and about IPsec policies in Chapter 10, which also discusses the
problems that occur when working with IPsec through a NAT, and the IPsec NAT traversal solution.

Still other factors can influence the traversal of the packet—for example, the value of the tt1 field in the IPv4
header of a packet being forwarded. This tt1 is decremented by 1 in each forwarding device. When it reaches 0, the
packet is discarded, and an ICMPv4 message of “Time Exceeded” with “TTL Count Exceeded” code is sent back. This
is done to avoid an endless journey of a forwarded packet because of some error. Moreover, each time a packet is
forwarded successfully and the tt1 is decremented by 1, the checksum of the IPv4 header should be recalculated, as
its value depends on the IPv4 header, and the ttl is one of the IPv4 header members. Chapter 4, which deals with the
IPv4 subsystem, talks more about this. In IPv6 there is something similar, but the hop counter in the IPv6 header is
named hop_limit and not ttl. You will learn about this in Chapter 8, which deals with the IPv6 subsystem. You will
also learn about ICMP in IPv4 and in IPv6 in Chapter 3, which deals with ICMP.

A large part of the book discusses the traversal of a packet in the networking stack, whether it is in the receive
path (Rx path, also known as ingress traffic) or the transmit path (Tx path, also known as egress traffic). This traversal
is complex and has many variations: large packets could be fragmented before they are sent; on the other hand,
fragmented packets should be assembled (discussed in Chapter 4). Packets of different types are handled differently.
For example, multicast packets are packets that can be processed by a group of hosts (as opposed to unicast packets,
which are destined to a specified host). Multicast can be used, for example, in applications of streaming media in
order to consume less network resources. Handling IPv4 multicast traffic is discussed in Chapter 4. You will also learn
how a host joins and leaves a multicast group; in IPv4, the Internet Group Management Protocol (IGMP) protocol
handles multicast membership. Yet there are cases when the host is configured as a multicast router, and multicast
traffic should be forwarded and not delivered to the local host. These cases are more complex as they should be
handled in conjunction with a userspace multicast routing daemon, like the pimd daemon or the mrouted daemon.
These cases, which are called multicast routing, are discussed in Chapter 6.

To better understand the packet traversal, you must learn about how a packet is represented in the Linux kernel.
The sk_buff structure represents an incoming or outgoing packet, including its headers (include/linux/skbuff.h).
Irefer to an sk_buff object as SKB in many places along this book, as this is the common way to denote sk_buff
objects (SKB stands for socket buffer). The socket buffer (sk_buff) structure is a large structure—I will only discuss a
few members of this structure in this chapter.
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The Socket Buffer

The sk_buff structure is described in depth in Appendix A. I recommend referring to this appendix when you need
to know more about one of the SKB members or how to use the SKB API. Note that when working with SKBs, you
must adhere to the SKB API. Thus, for example, when you want to advance the skb->data pointer, you do not do
it directly, but with the skb_pull inline() method or the skb_pull() method (you will see an example of this
later in this section). And if you want to fetch the L4 header (transport header) from an SKB, you do it by calling the
skb_transport_header () method. Likewise if you want to fetch the L3 header (network header), you do it by calling
the skb_network header () method, and if you want to fetch the L2 header (MAC header), you do it by calling the
skb_mac_header () method. These three methods get an SKB as a single parameter.

Here is the (partial) definition of the sk_buff structure:

struct sk _buff {

struct sock *sk;
struct net_device *dev;
_u8 pkt_type:3,
__be16 protocol;
sk_buff data_t tail;
sk_buff data_t end;
unsigned char *head,

*data;
sk_buff_data_t transport_header;
sk_buff data_t network_header;

sk_buff data t mac_header;

};
(include/linux/skbuff.h)

When a packet is received on the wire, an SKB is allocated by the network device driver, typically by
calling the netdev_alloc_skb() method (or the dev_alloc_skb() method, which is a legacy method that calls the
netdev_alloc_skb() method with the first parameter as NULL). There are cases along the packet traversal where a
packet can be discarded, and this is done by calling kfree_skb() or dev_kfree_skb(), both of which get as a single
parameter a pointer to an SKB. Some members of the SKB are determined in the link layer (L2). For example, the
pkt_type is determined by the eth_type trans() method, according to the destination Ethernet address. If this
address is a multicast address, the pkt_type will be set to PACKET_MULTICAST; if this address is a broadcast address,
the pkt_type will be set to PACKET_BROADCAST; and if this address is the address of the local host, the pkt_type
will be set to PACKET_HOST. Most Ethernet network drivers call the eth_type trans() method in their Rx path.
The eth_type_trans() method also sets the protocol field of the SKB according to the ethertype of the Ethernet
header. The eth_type trans() method also advances the data pointer of the SKB by 14 (ETH_HLEN), which is the size
of an Ethernet header, by calling the skb_pull_inline() method. The reason for this is that the skb->data should
point to the header of the layer in which it currently resides. When the packet was in L2, in the network device driver
Rx path, skb->data pointed to the L2 (Ethernet) header; now that the packet is going to be moved to Layer 3,
immediately after the call to the eth_type_trans() method, skb->data should point to the network (L3) header,
which starts immediately after the Ethernet header (see Figure 1-3).
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Ethernet header IPv4 header UDP header

14 bytes 20 bytes - 60 bytes 8 bytes Payload

Figure 1-3. An IPv4 packet

The SKB includes the packet headers (L2, L3, and L4 headers) and the packet payload. In the packet traversal in
the network stack, a header can be added or removed. For example, for an IPv4 packet generated locally by a socket
and transmitted outside, the network layer (IPv4) adds an IPv4 header to the SKB. The IPv4 header size is 20 bytes as
a minimum. When adding IP options, the IPv4 header size can be up to 60 bytes. IP options are described in Chapter 4,
which discusses the IPv4 protocol implementation. Figure 1-3 shows an example of an IPv4 packet with L2, L3, and
L4 headers. The example in Figure 1-3 is a UDPv4 packet. First is the Ethernet header (L2) of 14 bytes. Then there’s the
IPv4 header (L3) of a minimal size of 20 bytes up to 60 bytes, and after that is the UDPv4 header (L4), of 8 bytes. Then
comes the payload of the packet.

Each SKB has a dev member, which is an instance of the net_device structure. For incoming packets, it is the
incoming network device, and for outgoing packets it is the outgoing network device. The network device attached to
the SKB is sometimes needed to fetch information which might influence the traversal of the SKB in the Linux Kernel
Networking stack. For example, the MTU of the network device may require fragmentation, as mentioned earlier. Each
transmitted SKB has a sock object associated to it (sk). If the packet is a forwarded packet, then sk is NULL, because it
was not generated on the local host.

Each received packet should be handled by a matching network layer protocol handler. For example, an IPv4
packet should be handled by the ip_rcv() method, and an IPv6 packet should be handled by the ipv6_rcv() method.
You will learn about the registration of the IPv4 protocol handler with the dev_add_pack() method in Chapter 4, and
about the registration of the IPv6 protocol handler also with the dev_add_pack() method in Chapter 8. Moreover,

I will follow the traversal of incoming and outgoing packets both in IPv4 and in IPv6. For example, in the ip_rcv()
method, mostly sanity checks are performed, and if everything is fine the packet proceeds to an NF_INET_PRE_ROUTING
hook callback, if such a callback is registered, and the next step, if it was not discarded by such a hook, is the

ip rcv_finish() method, where a lookup in the routing subsystem is performed. A lookup in the routing subsystem
builds a destination cache entry (dst_entry object). You will learn about the dst_entry and about the input and
output callback methods associated with it in Chapters 5 and 6, which describe the IPv4 routing subsystem.

In IPv4 there is a problem of limited address space, as an IPv4 address is only 32 bit. Organizations use NAT
(discussed in Chapter 9) to provide local addresses to their hosts, but the IPv4 address space still diminishes over the
years. One of the main reasons for developing the IPv6 protocol was that its address space is huge compared to the
IPv4 address space, because the IPv6 address length is 128 bit. But the IPv6 protocol is not only about a larger address
space. The IPv6 protocol includes many changes and additions as a result of the experience gained over the years with
the IPv4 protocol. For example, the IPv6 header has a fixed length of 40 bytes as opposed to the IPv4 header, which
is variable in length (from a minimum of 20 bytes to 60 bytes) due to IP options, which can expand it. Processing IP
options in IPv4 is complex and quite heavy in terms of performance. On the other hand, in IPv6 you cannot expand
the IPv6 header at all (it is fixed in length, as mentioned). Instead there is a mechanism of extension headers which
is much more efficient than the IP options in IPv4 in terms of performance. Another notable change is with the ICMP
protocol; in IPv4 it was used only for error reporting and for informative messages. In IPv6, the ICMP protocol is used
for many other purposes: for Neighbour Discovery (ND), for Multicast Listener Discovery (MLD), and more. Chapter
3is dedicated to ICMP (both in IPv4 and IPv6). The IPv6 Neighbour Discovery protocol is described in Chapter 7, and
the MLD protocol is discussed in Chapter 8, which deals with the IPv6 subsystem.

As mentioned earlier, received packets are passed by the network device driver to the network layer, which is IPv4
or IPv6. If the packets are for local delivery, they will be delivered to the transport layer (L4) for handling by listening
sockets. The most common transport protocols are UDP and TCP, discussed in Chapter 11, which discusses Layer 4,
the transport layer. This chapter also covers two newer transport protocols, the Stream Control Transmission Protocol
(SCTP) and the Datagram Congestion Control Protocol (DCCP). Both SCTP and DCCP adopted some TCP features
and some UDP features, as you will find out. The SCTP protocol is known to be used in conjunction with the Long
Term Evolution (LTE) protocol; the DCCP has not been tested so far in larger-scale Internet setups.
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Packets generated by the local host are created by Layer 4 sockets—for example, by TCP sockets or by UDP
sockets. They are created by a userspace application with the Sockets API. There are two main types of sockets:
datagram sockets and stream sockets. These two types of sockets and the POSIX-based socket API are also discussed
in Chapter 11, where you will also learn about the kernel implementation of sockets (struct socket, which provides
an interface to userspace, and struct sock, which provides an interface to Layer 3). The packets generated locally are
passed to the network layer, L3 (described in Chapter 4, in the section “Sending IPv4 Packets”) and then are passed
to the network device driver (L2) for transmission. There are cases when fragmentation takes place in Layer 3, the
network layer, and this is also discussed in chapter 4.

Every Layer 2 network interface has an L2 address that identifies it. In the case of Ethernet, this is a 48-bit address,
the MAC address which is assigned for each Ethernet network interface, provided by the manufacturer, and said
to be unique (though you should consider that the MAC address for most network interfaces can be changed by
userspace commands like ifconfig or ip). Each Ethernet packet starts with an Ethernet header, which is 14 bytes
long. It consists of the Ethernet type (2 bytes), the source MAC address (6 bytes), and the destination MAC address
(6 bytes). The Ethernet type value is 0x0800, for example, for IPv4, or 0x86DD for [Pv6. For each outgoing packet, an
Ethernet header should be built. When a userspace socket sends a packet, it specifies its destination address (it can be
an [Pv4 or an IPv6 address). This is not enough to build the packet, as the destination MAC address should be known.
Finding the MAC address of a host based on its IP address is the task of the neighbouring subsystem, discussed in
Chapter 7. Neighbor Discovery is handled by the ARP protocol in IPv4 and by the NDISC protocol in IPv6. These
protocols are different: the ARP protocol relies on sending broadcast requests, whereas the NDISC protocol relies on
sending ICMPv6 requests, which are in fact multicast packets. Both the ARP protocol and the NDSIC protocol are also
discussed in Chapter 7.

The network stack should communicate with the userspace for tasks such as adding or deleting routes, configuring
neighboring tables, setting IPsec policies and states, and more. The communication between userspace and the
kernel is done with netlink sockets, described in Chapter 2. The iproute2 userspace package, based on netlink sockets,
is also discussed in Chapter 2, as well as the generic netlink sockets and their advantages.

The wireless subsystem is discussed in Chapter 12. This subsystem is maintained separately, as mentioned earlier;
ithas a git tree of its own and a mailing list of its own. There are some unique features in the wireless stack that do not
exist in the ordinary network stack, such as power save mode (which is when a station or an access point enters a sleep
state). The Linux wireless subsystem also supports special topologies, like Mesh network, ad-hoc network, and more.
These topologies sometimes require using special features. For example, Mesh networking uses a routing protocol
called Hybrid Wireless Mesh Protocol (HWMP), discussed in Chapter 12. This protocol works in Layer 2 and deals with
MAC addresses, as opposed to the IPV4 routing protocol. Chapter 12 also discusses the mac80211 framework, which is
used by wireless device drivers. Another very interesting feature of the wireless subsystem is the block acknowledgment
mechanism in IEEE 802.11n, also discussed in Chapter 12.

In recent years InfiniBand technology has gained in popularity with enterprise datacenters. InfiniBand is based
on a technology called Remote Direct Memory Access (RDMA). The RDMA API was introduced to the Linux kernel in
version 2.6.11. In Chapter 13 you will find a good explanation about the Linux Infiniband implementation, the RDMA
API, and its fundamental data structures.

Virtualization solutions are also becoming popular, especially due to projects like Xen or KVM. Also hardware
improvements, like VT-x for Intel processors or AMD-V for AMD processors, have made virtualization more efficient.
There is another form of virtualization, which may be less known but has its own advantages. This virtualization is
based on a different approach: process virtualization. It is implemented in Linux by namespaces. There is currently
support for six namespaces in Linux, and there could be more in the future. The namespaces feature is already used
by projects like Linux Containers (http://1xc.sourceforge.net/) and Checkpoint/Restore In Userspace (CRIU).
In order to support namespaces, two system calls were added to the kernel: unshare() and setns(); and six new flags
were added to the CLONE_* flags, one for each type of namespace. I discuss namespaces and network namespaces
in particular in Chapter 14. Chapter 14 also deals with the Bluetooth subsystem and gives a brief overview about
the PCI subsystem, because many network device drivers are PCI devices. I do not delve into the PCI subsystem
internals, because that is out of the scope of this book. Another interesting subsystem discussed in Chapter 14 is
the IEEE 8012.15.4, which is for low-power and low-cost devices. These devices are sometimes mentioned in
conjunction with the Internet of Things (I0T) concept, which involves connecting IP-enabled embedded devices
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to IP networks. It turns out that using IPv6 for these devices might be a good idea. This solution is termed IPv6 over
Low Power Wireless Personal Area Networks (6LOWPAN). It has its own challenges, such as expanding the IPv6
Neighbour Discovery protocol to be suitable for such devices, which occasionally enter sleep mode (as opposed to
ordinary IPv6 networks). These changes to the IPv6 Neighbour Discovery protocol have not been implemented yet,
but it is interesting to consider the theory behind these changes. Apart from this, in Chapter 14 there are sections
about other advanced topics like NFC, cgroups, Android, and more.

To better understand the Linux Kernel Network stack or participate in its development, you must be familiar with
how its development is handled.

The Linux Kernel Networking Development Model

The kernel networking subsystem is very complex, and its development is quite dynamic. Like any Linux kernel
subsystem, the development is done by git patches that are sent over a mailing list (sometimes over more than one
mailing list) and that are eventually accepted or rejected by the maintainer of that subsystem. Learning about the Kernel
Networking Development Model is important for many reasons. To better understand the code, to debug and solve
problems in Linux Kernel Networking-based projects, to implement performance improvements and optimizations
patches, or to implement new features, in many cases you need to learn many things such as the following:

e Howto apply a patch

e  Howtoread and interpret a patch

e  How to find which patches could cause a given problem

e Howto revert a patch

¢  How to find which patches are relevant to some feature

e How to adjust a project to an older kernel version (backporting)

e  How to adjust a project to a newer kernel version (upgrading)

e Howtocloneagittree

e Howtorebaseagit tree

¢ How to find out in which kernel version a specified git patch was applied

There are cases when you need to work with new features that were just added, and for this you need to know
how to work with the latest, bleeding-edge tree. And there are cases when you encounter some bug or you want to add
some new feature to the network stack, and you need to prepare a patch and submit it. The Linux Kernel Networking
subsystem, like the other parts of the kernel, is managed by git, a source code management (SCM) system, developed
by Linus Torvalds. If you intend to send patches for the mainline kernel, or if your project is managed by git, you must
learn to use the git tool.

Sometimes you may even need to install a git server for development of local projects. Even if you are not
intending to send any patches, you can use the git tool to retrieve a lot of information about the code and about
the history of the development of the code. There are many available resources on the web about git; I recommend
the free online book Pro Git, by Scott Chacon, available at http://git-scm.com/book. If you intend to submit your
patches to the mainline, you must adhere to some strict rules for writing, checking, and submitting patches so that
your patch will be applied. Your patch should conform to the kernel coding style and should be tested. You also
need to be patient, as sometimes even a trivial patch can be applied only after several days. I recommend learning to
configure a host for using the git send-email command to submit patches (though submitting patches can be done
with other mail clients, even with the popular Gmail webmail client). There are plenty of guides on the web about how
to use git to prepare and send kernel patches. I also recommend reading Documentation/SubmittingPatches and
Documentation/CodingStyle in the kernel tree before submitting your first patch.
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And I recommended using the following PERL scripts:
e scripts/checkpatch.pl to check the correctness of a patch
e scripts/get_maintainer.pl to find out to which maintainers a patch should be sent

One of the most important resources of information is the Kernel Networking Development mailing list,
netdev: netdev@vger.kernel.org, archived at waw.spinics.net/lists/netdev. This is a high volume list. Most
of the posts are patches and Request for Comments (RFCs) for new code, along with comments and discussions
about patches. This mailing list handles the Linux Kernel Networking stack and network device drivers, except
for cases when dealing with a subsystem that has a specific mailing list and a specific git repository (such as the
wireless subsystem, discussed in Chapter 12). Development of the iproute2 and the ethtool userspace packages
is also handled in the netdev mailing list. It should be mentioned here that not every networking subsystem has
a mailing list of its own; for example, the IPsec subsystem (discussed in Chapter 10), does not have a mailing list,
nor does the IEEE 802.15.4 subsystem (Chapter 14). Some networking subsystems have their own specific git tree,
maintainer, and mailing list, such as the wireless mailing list and the Bluetooth mailing list. From time to time
the maintainers of these subsystems send a pull request for their git trees over the netdev mailing list. Another
source of information is Documentation/networking in the kernel tree. It has a lot of information in many files
about various networking topics, but keep in mind that the file that you find there is not always up to date.

The Linux Kernel Networking subsystem is maintained in two git repositories. Patches and RFCs are sent to the
netdev mailing list for both repositories. Here are the two git trees:

e net:http://git.kernel.org/?p=1inux/kernel/git/davem/net.git: for fixes to existing code
already in the mainline tree

e net-next:http://git.kernel.org/?p=1linux/kernel/git/davem/net-next.git: new code for
the future kernel release

From time to time the maintainer of the networking subsystem, David Miller, sends pull requests for mainline
for these git trees to Linus over the LKML. You should be aware that there are periods of time, during merge with
mainline, when the net-next git tree is closed, and no patches should be sent. An announcement about when this
period starts and another one when it ends is sent over the netdev mailing list.

Note This book is based on kernel 3.9. All the code snippets are from this version, unless explicitly specified otherwise.
The kernel tree is available from www. kernel.org as a tar file. Alternatively, you can download a kernel git tree with git
clone (for example, using the URLs of the git net tree or the git net-next tree, which were mentioned earlier, or other
git kernel repositories). There are plenty of guides on the Internet covering how to configure, build, and boot a Linux kernel.
You can also browse various kernel versions online at http://1xr.free-electrons.com/. This website lets you follow
where each method and each variable is referenced; moreover, you can navigate easily with a click of a mouse to previous
versions of the Linux kernel. In case you are working with your own version of a Linux kernel tree, where some changes
were made locally, you can locally install and configure a Linux Cross-Referencer server (LXR) on a local Linux machine.
See http://1xr.sourceforge.net/en/index. shtml.
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Summary

This chapter is a short introduction to the Linux Kernel Networking subsystem. I described the benefits of using Linux,
a popular open source project, and the Kernel Networking Development Model. I also described the network device
structure (net_device) and the socket buffer structure (sk_buff), which are the two most fundamental structures

of the networking subsystem. You should refer to Appendix A for a detailed description of almost all the members of
these structures and their uses. This chapter covered other important topics related to the traversal of a packet in the
kernel networking stack, such as the lookup in the routing subsystem, fragmentation and defragmentation, protocol
handler registration, and more. Some of these protocols are discussed in later chapters, including IPv4, IPv6, ICMP4
and ICMPS6, ARP, and Neighbour Discovery. Several important subsystems, including the wireless subsystem, the
Bluetooth subsystem, and the IEEE 812.5.4 subsystem, are also covered in later chapters. Chapter 2 starts the journey
in the kernel network stack with netlink sockets, which provide a way for bidirectional communication between the
userspace and the kernel, and which are talked about in several other chapters.
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CHAPTER 2

Netlink Sockets

Chapter 1 discusses the roles of the Linux kernel networking subsystem and the three layers in which it operates.
The netlink socket interface appeared first in the 2.2 Linux kernel as AF_NETLINK socket. It was created as a more
flexible alternative to the awkward IOCTL communication method between userspace processes and the kernel.
The IOCTL handlers cannot send asynchronous messages to userspace from the kernel, whereas netlink sockets can.
In order to use IOCTL, there is another level of complexity: you need to define IOCTL numbers. The operation model
of netlink is quite simple: you open and register a netlink socket in userspace using the socket API, and this netlink
socket handles bidirectional communication with a kernel netlink socket, usually sending messages to configure
various system settings and getting responses back from the kernel.

This chapter describes the netlink protocol implementation and API and discusses its advantages and
drawbacks. I also talk about the new generic netlink protocol, discuss its implementation and its advantages, and give
some illustrative examples using the 1ibnl library. I conclude with a discussion of the socket monitoring interface.

The Netlink Family

The netlink protocol is a socket-based Inter Process Communication (IPC) mechanism, based on RFC 3549,

“Linux Netlink as an IP Services Protocol”” It provides a bidirectional communication channel between userspace and
the kernel or among some parts of the kernel itself. Netlink is an extension of the standard socket implementation.
The netlink protocol implementation resides mostly under net/netlink, where you will find the following four files:

e af netlink.c
e af netlink.h
e genetlink.c
e diag.c

Apart from them, there are a few header files. In fact, the af_netlink module is the most commonly used; it provides the
netlink kernel socket API, whereas the genetlink module provides a new generic netlink API with which it should be easier
to create netlink messages. The diag monitoring interface module (diag. c) provides an API to dump and to get information
about the netlink sockets. I discuss the diag module later in this chapter in the section “Socket monitoring interface.”

I should mention here that theoretically netlink sockets can be used to communicate between two userspace
processes, or more (including sending multicast messages), though this is usually not used, and was not the
original goal of netlink sockets. The UNIX domain sockets provide an API for IPC, and they are widely used for
communication between two userspace processes.

Netlink has some advantages over other ways of communication between userspace and the kernel. For example,
there is no need for polling when working with netlink sockets. A userspace application opens a socket and then calls
recvmsg(), and enters a blocking state if no messages are sent from the kernel; see, for example, the rtnl listen()
method of the iproute2 package (1ib/1libnetlink.c). Another advantage is that the kernel can be the initiator of
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sending asynchronous messages to userspace, without any need for the userspace to trigger any action (for example,
by calling some IOCTL or by writing to some sysfs entry). Yet another advantage is that netlink sockets support
multicast transmission.

You create netlink sockets from userspace with the socket () system call. The netlink sockets can be SOCK_RAW
sockets or SOCK_DGRAM sockets.

Netlink sockets can be created in the kernel or in userspace; kernel netlink sockets are created by the
netlink kernel create() method; and userspace netlink sockets are created by the socket () system call. Creating
anetlink socket from userspace or from the kernel creates a netlink_sock object. When the socket is created from
userspace, it is handled by the netlink create() method. When the socket is created in the kernel, it is handled by
__netlink kernel create(); this method sets the NETLINK_KERNEL_SOCKET flag. Eventually both methods call
__netlink_create() to allocate a socket in the common way (by calling the sk_alloc() method) and initialize it.
Figure 2-1 shows how a netlink socket is created in the kernel and in userspace.

socket(AF_NETLINK, SOCK_RAW| SOCK_CLOEXEC,NETLINK_ROUTE)

Userspace Userspace Netlink socket

Kernel netlink_create()

v

netlink_create()

netlink_kernel_create()

Y

Kernel Netlink socket

sk_alloc()
sock_init_data(sock, sk);

Figure 2-1. Creating a netlink socket in the kernel and in userspace

You can create a netlink socket from userspace in a very similar way to ordinary BSD-style sockets, like this, for
example: socket (AF_NETLINK, SOCK RAW, NETLINK ROUTE).Then you should create a sockaddr nl object (instance
of the netlink socket address structure), initialize it, and use the standard BSD sockets API (such as bind(), sendmsg(),
recvmsg(), and so on). The sockaddr_n1 structure represents a netlink socket address in userspace or in the kernel.

Netlink socket libraries provide a convenient API to netlink sockets. I discuss them in the next section.

Netlink Sockets Libraries

Irecommend you use the 1ibnl API to develop userspace applications, which send or receive data by netlink sockets.
The 1ibnl package is a collection of libraries providing APIs to the netlink protocol-based Linux kernel interfaces.
The iproute2 package uses the 1ibnl library, as mentioned. Besides the core library (1ibnl), it includes support for the
generic netlink family (1ibnl-genl), routing family (1ibnl-route), and netfilter family (1ibnl-nf). The package was
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developed mostly by Thomas Graf (www. infradead.org/~tgr/1ibnl/). I should mention here also that there is a
library called 1ibmnl, which is a minimalistic userspace library oriented to netlink developers. The 1ibmnl library
was mostly written by Pablo Neira Ayuso, with contributions from Jozsef Kadlecsik and Jan Engelhardt.
(http://netfilter.org/projects/libmnl/).

The sockaddr_nl Structure

Let’s take a look at the sockaddr_n1 structure, which represents a netlink socket address:

struct sockaddr nl {

__kernel sa family t nl_family; /* AF_NETLINK */
unsigned short nl_pad; /* zero */
_u32 nl_pid; /* port ID */
_u32 nl_groups; /* multicast groups mask */

};

(include/uapi/linux/netlink.h)
e nl_family: Should always be AF_NETLINK.
e nl_pad: Should always be 0.

e nl pid: The unicast address of a netlink socket. For kernel netlink sockets, it should be 0.
Userspace applications sometimes set the n1_pid to be their process id (pid). In a userspace
application, when you set n1_pid explicitly to 0, or don’t set it at all, and afterwards call
bind(), the kernel method netlink autobind() assigns a value to nl_pid. It tries to assign
the process id of the current thread. If you're creating two sockets in userspace, then you are
responsible that their n1_pids are unique in case you don't call bind. Netlink sockets are not
used only for networking; other subsystems, such as SELinux, audit, uevent, and others, use
netlink sockets. The rtnelink sockets are netlink sockets specifically used for networking; they
are used for routing messages, neighbouring messages, link messages, and more networking
subsystem messages.

e nl_groups: The multicast group (or multicast group mask).

The next section discusses the iproute2 and the older net-tools packages. The iproute2 package is based upon
netlink sockets, and you’ll see an example of using netlink sockets in iproute2 in the section “Adding and deleting a
routing entry in a routing table’, later in this chapter. | mention the net-tools package, which is older and might be
deprecated in the future, to emphasize that as an alternative to iproute2, it has less power and less abilities.

Userspace Packages for Controlling TCP/IP Networking

There are two userspace packages for controlling TCP/IP networking and handling network devices: net-tools and
iproute2. The iproute2 package includes commands like the following:

e  ip:For management of network tables and network interfaces
e tc: For traffic control management

e ss: For dumping socket statistics

e Instat: For dumping linux network statistics

e  bridge: For management of bridge addresses and devices
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The iproute2 package is based mostly on sending requests to the kernel from userspace and getting replies back
over netlink sockets. There are a few exceptions where IOCTLs are used in iproute2. For example, the ip tuntap
command uses IOCTLs to add/remove a TUN/TAP device. If you look at the TUN/TAP software driver code, you'll
find that it defines some IOCTL handlers, but it does not use the rtnetlink sockets. The net-tools package is based on
IOCTLs and includes known commands like these:

e ifconifg
e arp

e route

e netstat
e  hostname
e rarp

Some of the advanced functionalities of the iproute2 package are not available in the net-tools package.

The next section discusses kernel netlink sockets—the core engine of handling communication between
userspace and the kernel by exchanging netlink messages of different types. Learning about kernel netlink sockets is
essential for understanding the interface that the netlink layer provides to userspace.

Kernel Netlink Sockets

You create several netlink sockets in the kernel networking stack. Each kernel socket handles messages of different
types: so for example, the netlink socket, which should handle NETLINK_ROUTE messages, is created in
rtnetlink net_init():

static int _ net_init rtnetlink net_init(struct net *net) {

struct netlink_kernel cfg cfg = {

.groups = RTNLGRP_MAX,
.input = rtnetlink rcv,
.cb_mutex = 8rtnl_mutex,

.flags = NL_CFG_F_NONROOT_RECV,

};

sk = netlink kernel create(net, NETLINK ROUTE, &cfg);

Note that the rtnetlink socket is aware of network namespaces; the network namespace object (struct net)
contains a member named rtnl (rtnetlink socket). In the rtnetlink net_init() method, after the rtnetlink socket
was created by calling netlink kernel create(), itis assigned to the rtnl pointer of the corresponding network
namespace object.
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Let’slook in netlink kernel create() prototype:
struct sock *netlink kernel create(struct net *net, int unit, struct netlink kernel cfg *cfg)

e  The first parameter (net) is the network namespace.

e The second parameter is the netlink protocol (for example, NETLINK_ROUTE for rtnetlink
messages, or NETLINK_XFRM for IPsec or NETLINK_AUDIT for the audit subsystem). There
are over 20 netlink protocols, but their number is limited by 32 (MAX_LINKS). This is one of
the reasons for creating the generic netlink protocol, as you'll see later in this chapter. The full
list of netlink protocols is in include/uapi/linux/netlink.h.

e  The third parameter is a reference to netlink_kernel cfg, which consists of optional
parameters for the netlink socket creation:

struct netlink_kernel cfg {
unsigned int groups;
unsigned int flags;

void (*input) (struct sk _buff *skb);
struct mutex *cb_mutex;
void (*bind) (int group);

35
(include/uapi/linux/netlink.h)

The groups member is for specifying a multicast group (or a mask of multicast groups). It’s possible to join a
multicast group by setting n1_groups of the sockaddr_n1 object (you can also do this with the n1_join_groups()
method of 1ibnl). However, in this way you are limited to joining only 32 groups. Since kernel version 2.6.14,
you can use the NETLINK_ADD_MEMBERSHIP/ NETLINK_DROP_MEMBERSHIP socket option to join/leave
a multicast group, respectively. Using the socket option enables you to join a much higher number of groups.

The nl_socket_add memberships()/nl_socket drop membership() methods of 1ibnl use this socket option.

The flags member can be NL_CFG_F_NONROOT_RECV or NL_ CFG_F_NONROOT_SEND.

When CFG_F_NONROOT_RECV is set, a non-superuser can bind to a multicast group; in netlink_bind() there
is the following code:

static int netlink bind(struct socket *sock, struct sockaddr *addr,
int addr_len)
{

if (nladdr->nl_groups) {
if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
return -EPERM;
}

For a non-superuser, if the NL_ CFG_F_NONROOT_RECYV is not set, then when binding to a multicast group the
netlink_capable() method will return 0, and you get -EPRM error.

When the NL_CFG_F_NONROOT_SEND flag is set, a non-superuser is allowed to send multicasts.

The input member is for a callback; when the input member in netlink_kernel cfgis NULL, the kernel socket
won't be able to receive data from userspace (sending data from the kernel to userspace is possible, though). For the
rtnetlink kernel socket, the rtnetlink rcv() method was declared to be the input callback; as a result, data sent from
userspace over the rtnelink socket will be handled by the rtnetlink rcv() callback.
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For uevent kernel events, you need only to send data from the kernel to userspace; so, in 1ib/kobject_uevent.c,
you have an example of a netlink socket where the input callback is undefined:

static int uevent net_init(struct net *net)

{
struct uevent_sock *ue_sk;
struct netlink_kernel cfg cfg = {
.groups =1,
.flags = NL_CFG_F_NONROOT RECV,
};
ue_sk->sk = netlink kernel create(net, NETLINK KOBJECT UEVENT, &cfg);
}

(1ib/kobject_uevent.c)

The mutex (cb_mutex) in the netlink kernel cfg object is optional; when not defining a mutex, you use the
default one, cb_def mutex (an instance of a mutex structure; see net/netlink/af_netlink.c). In fact, most netlink
kernel sockets are created without defining a mutex in the netlink _kernel cfg object. For example, the uevent
kernel netlink socket (NETLINK_KOBJECT_UEVENT), mentioned earlier. Also, the audit kernel netlink socket
(NETLINK_AUDIT) and other netlink sockets don’t define a mutex. The rtnetlink socket is an exception—it uses the
rtnl_mutex. Also the generic netlink socket, discussed in the next section, defines a mutex of its own: genl_mutex.

The netlink kernel create() method makes an entry in a table named nl_table by calling the netlink insert()
method. Access to the n1_table is protected by a read write lock named nl_table_lock; lookup in this table is done by the
netlink lookup() method, specifying the protocol and the port id. Registration of a callback for a specified message type
isdone by rtnl_register(); there are several places in the networking kernel code where you register such callbacks.
For example, in rtnetlink init() you register callbacks for some messages, like RTM_NEWLINK (creating a new link),
RTM_DELLINK (deleting a link), RTM_GETROUTE (dumping the route table), and more. In net/core/neighbour. c, you
register callbacks for RTM_NEWNEIGH messages (creating a new neighbour), RTM_DELNEIGH (deleting a neighbour),
RTM_GETNEIGHTBL message (dumping the neighbour table), and more. I discuss these actions in depth in
Chapters 5 and 7. You also register callbacks to other types of messages in the FIB code (ip_fib_init()), in the multicast
code (ip_mr_init()), in the IPv6 code, and in other places.

The first step you should take to work with a netlink kernel socket is to register it. Let’s take a look at the
rtnl_register() method prototype:

extern void rtnl register(int protocol, int msgtype,
rtnl _doit_func,
rtnl_dumpit_func,
rtnl_calcit_func);

The first parameter is the protocol family (when you don't aim at a specific protocol, it is PF_UNSPEC); you'll
find a list of all the protocol families in include/1inux/socket.h.

The second parameter is the netlink message type, like RTM_NEWLINK or RTM_NEWNEIGH. These are
private netlink message types which the rtnelink protocol added. The full list of message types is in
include/uapi/linux/rtnetlink.h.

The last three parameters are callbacks: doit, dumpit, and calcit. The callbacks are the actions you want to
perform for handling the message, and you usually specify only one callback.

The doit callback is for actions like addition/deletion/modification; the dumpit callback is for retrieving information,
and the calcit callback s for calculation of buffer size. The rtnetlink module has a table named rtnl_msg_handlers. This
table is indexed by protocol number. Each entry in the table is a table in itself, indexed by message type. Each element
in the table is an instance of rtnl_link, which is a structure that consists of pointers for these three callbacks. When
registering a callback with rtnl_register(), you add the specified callback to this table.
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Registering a callback is done like this, for example: rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink,
NULL, NULL) in net/core/rtnetlink.c. This adds rtnl newlink as the doit callback for RTM_NEWLINK messages
in the corresponding rtnl_msg_handlers entry.

Sending of rtnelink messages is done with rtmsg_ifinfo(). For example, in dev_open() you create a new link,
soyou call: rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); inthe rtmsg ifinfo() method, first the
nlmsg_new() method is called to allocate an sk_buff with the proper size. Then two objects are created: the netlink
message header (nlmsghdr) and an ifinfomsg object, which is located immediately after the netlink message header.
These two objects are initialized by the rtnl_fill ifinfo() method. Then rtnl notify() is called to send the packet;
sending the packet is actually done by the generic netlink method, nlmsg_notify() (in net/netlink/af netlink.c).
Figure 2-2 shows the stages of sending rtnelink messages with the rtmsg_ifinfo() method.

rtmsg_ifinfo{RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING)

skb=nlmsg_new()

rtnl_fill_ifinfo()
create nimsghdr object
create ifinfomsg object

rtnl_notify()

l

nimsg_notify()

Figure 2-2. Sending of rtnelink messages with the rtmsq_ifinfo() method

The next section is about netlink messages, which are exchanged between userspace and the kernel. A netlink
message always starts with a netlink message header, so your first step in learning about netlink messages will be to
study the netlink message header format.

The Netlink Message Header

A netlink message should obey a certain format, specified in RFC 3549, “Linux Netlink as an IP Services Protocol’,
section 2.2, “Message Format.” A netlink message starts with a fixed size netlink header, and after it there is a payload.
This section describes the Linux implementation of the netlink message header.

The netlink message header is defined by struct nlmsghdr in include/uapi/linux/netlink.h:

struct nlmsghdr
{

__u32 nlmsg_len;
__u16 nlmsg_type;
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__u16 nlmsg_flags;
__u32 nlmsg_seq;
__u32 nlmsg_pid;

};

(include/uapi/linux/netlink.h)

Every netlink packet starts with a netlink message header, which is represented by struct nlmsghdr. The length
of nlmsghdr is 16 bytes. It contains five fields:

e nlmsg_lenis the length of the message including the header.

e nlmsg_type is the message type; there are four basic netlink message header types:

NLMSG_NOOP: No operation, message must be discarded.
NLMSG_ERROR: Error occurred.

NLMSG_DONE: A multipart message is terminated.
NLMSG_OVERRUN: Overrun notification: error, data was lost.
(include/uapi/linux/netlink.h)

However, families can add netlink message header types of their own. For example,
the rtnetlink protocol family adds message header types such as RTM_NEWLINK,
RTM_DELLINK, RTM_NEWROUTE, and a lot more (see include/uapi/linux/
rtnetlink.h). For a full list of the netlink message header types that were added by the
rtnelink family with detailed explanation on each, see: man 7 rtnetlink. Note that
message type values smaller than NLMSG_MIN_TYPE (0x10) are reserved for control
messages and may not be used.

e nlmsg_flags field can be as follows:

20

NLM_F_REQUEST: When it’s a request message.

NLM_F_MULTL: When it’s a multipart message. Multipart messages are used for table
dumps. Usually the size of messages is limited to a page (PAGE_SIZE). So large
messages are divided into smaller ones, and each of them (except the last one) has the
NLM_F_MULTI flag set. The last message has the NLMSG_DONE flag set.

NLM_F_ACK: When you want the receiver of the message to reply with ACK. Netlink ACK
messages are sent by the netlink ack() method (net/netlink/af netlink.c).

NLM_F_DUMP: Retrieve information about a table/entry.
NLM_F_ROOT: Specify the tree root.

NLM_F_MATCH: Return all matching entries.
NLM_F_ATOMIC: This flag is deprecated.

The following flags are modifiers for creation of an entry:
NLM_F_REPLACE: Override existing entry.
NLM_F_EXCL: Do not touch entry, if it exists.
NLM_F_CREATE: Create entry, if it does not exist.



e nlmsg_seqis the sequence number (for message sequences). Unlike some Layer 4 transport

CHAPTER 2

NLM_F_APPEND: Add entry to end of list.
NLM_F_ECHO: Echo this request.

I've shown the most commonly used flags. For a full list, see
include/uapi/linux/netlink.h.

protocols, there is no strict enforcement of the sequence number.

e nlmsg_pidisthe sending port id. When a message is sent from the kernel, the nlmsg_pid is 0.
When a message is sent from userspace, the nlmsg_pid can be set to be the process id of that

userspace application which sent the message.

Figure 2-3 shows the netlink message header.

31

length

type

flags

sequence n umber

port number

Figure 2-3. nlmsg header

After the header comes the payload. The payload of netlink messages is composed
of a set of attributes which are represented in Type-Length-Value (TLV) format. With
TLV, the type and length are fixed in size (typically 1-4 bytes), and the value field is of
variable size. The TLV representation is used also in other places in the networking
code—for example, in IPv6 (see RFC 2460). TLV provides flexibility which makes
future extensions easier to implement. Attributes can be nested, which enables
complex tree structures of attributes.

Each netlink attribute header is defined by struct nlattr:

struct nlattr {

_ui6 nla_len;

_u16 nla_type;

b
(include/uapi/linux/netlink.h)

e nla_len: The size of the attribute in bytes.

e nla_type: The attribute type. The value of nla_type can be, for example, NLA_U32

(for a 32-bit unsigned integer), NLA_STRING for a variable length string, NLA_NESTED for a
nested attribute, NLA_UNSPEC for arbitrary type and length, and more. You can find the list of

available types in include/net/netlink.h.

NETLINK SOCKETS
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Every netlink attribute must be aligned by a 4-byte boundary (NLA_ALIGNTO).

Each family can define an attribute validation policy, which represents the expectations regarding the received
attributes. This validation policy is represented by the nla_policy object. In fact, the nla_policy struct has exactly
the same content as struct nlattr:

struct nla_policy {

ul6 type;

ui6 len;
};
(include/uapi/linux/netlink.h)

The attribute validation policy is an array of nla_policy objects; this array is indexed by the attribute number. For
each attribute (except the fixed-length attributes), if the value of len in the nla_policy object is 0, no validation should
be performed. If the attribute is one of the string types (such as NLA_STRING), 1len should be the maximum length of the
string, without the terminating NULL byte. If the attribute type is NLA_UNSPEC or unknown, len should be set to the
exact length of the attribute's payload. If the attribute type is NLA_FLAG, len is unused. (The reason is that the presence
of the attribute itself implies a value of true, and the absence of the attribute implies a value of false).

Receiving a generic netlink message in the kernel is handled by genl rcv_msg(). In case it is a dump request
(when the NLM_F_DUMP flag is set), you dump the table by calling the netlink dump_start() method. Ifit’s not a
dump request, you parse the payload by the nlmsg_parse() method. The nlmsg_parse() method performs attribute
validation by calling validate nla() (1ib/nlattr.c). If there are attributes with a type exceeding maxtype, they
will be silently ignored for backwards compatibility. In case validation fails, you don’t continue to the next step in
genl_rcv_msg() (which is running the doit() callback), and the genl_rcv_msg() returns an error code.

The next section describes the NETLINK_ROUTE messages, which are the most commonly used messages in the
networking subsystem.

NETLINK_ROUTE Messages

The rtnetlink (NETLINK_ROUTE) messages are not limited to the networking routing subsystem: there are
neighbouring subsystem messages as well, interface setup messages, firewalling message, netlink queuing messages,
policy routing messages, and many other types of rtnetlink messages, as you'll see in later chapters.

The NETLINK_ROUTE messages can be divided into families:

e  LINK (network interfaces)

e  ADDR (network addresses)

¢  ROUTE (routing messages)

e NEIGH (neighbouring subsystem messages)

e  RULE (policy routing rules)

e QDISC (queueing discipline)

e  TCLASS (traffic classes)

e  ACTION (packet action AP], see net/sched/act_api.c)
e  NEIGHTBL (neighbouring table)

e ADDRLABEL (address labeling)
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Each of these families has three types of messages: for creation, deletion, and retrieving information. So, for
routing messages, you have the RTM_NEWROUTE message type for creating a route, the RTM_DELROUTE message
type for deleting a route, and the RTM_GETROUTE message type for retrieving a route. With LINK messages there is,
apart from the three methods for creation, deletion and information retrieval, an additional message for modifying a
link: RTM_SETLINK.

There are cases in which an error occurs, and you send an error message as a reply. The netlink error message is
represented by the nlmsgerr struct:

struct nlmsgerr {

int error,;

struct nlmsghdr msg;
};
(include/uapi/linux/netlink.h)

In fact, as you can see in Figure 2-4, the netlink error message is built from a netlink message header and an
error code. When the error code is not 0, the netlink message header of the original request which caused the error is
appended after the error code field.

length

type flags

sequence number

port number

Error code

Original netlink
message header

Figure 2-4. Netlink error message

If you send a message that was constructed erroneously (for example, the nlmsg_type is not valid) then a netlink
error message is sent back, and the error code is set according to the error that occurred. For example, when the
nlmsg_type is not valid (a negative value, or a value higher than the maximum value permitted) the error code is set
to ~-EOPNOTSUPP. See the rtnetlink rcv_msg() method in net/core/rtnetlink.c. In error messages, the sequence
number is set to be the sequence number of the request that caused the error.

The sender can request to get an ACK for a netlink message. This is done by setting the netlink message header
type (n1lmsg_type) to be NLM_F_ACK. When the kernel sends an ACK, it uses an error message (the netlink message
header type of this message is set to be NLMSG_ERROR) with an error code of 0. In this case, the original netlink
header of the request is not appended to the error message. For implementation details, see the netlink_ack()
method implementation in net/netlink/af_netlink.c.

After learning about NETLINK_ROUTE messages, you're ready to look at an example of adding and deleting a
routing entry in a routing table using NETLINK_ROUTE messages.
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Adding and Deleting a Routing Entry in a Routing Table

Behind the scenes, let’s see what happens in the kernel in the context of netlink protocol when adding and deleting a
routing entry. You can add a routing entry to the routing table by running, for example, the following:

ip route add 192.168.2.11 via 192.168.2.20

This command sends a netlink message from userspace (RTM_NEWROUTE) over an rtnetlink socket for adding
arouting entry. The message is received by the rtnetlink kernel socket and handled by the rtnetlink rcv() method.
Eventually, adding the routing entry is done by invoking inet_rtm newroute() in net/ipv4/fib_frontend.c.
Subsequently, insertion into the Forwarding Information Base (FIB), which is the routing database, is accomplished with
the fib_table insert() method; however, inserting into the routing table is not the only task of fib_table insert().
You should notify all listeners who performed registration for RTM_NEWROUTE messages. How? When inserting a new
routing entry, you call the rtmsg_fib() method with RTM_NEWROUTE. The rtmsg_fib() method builds a netlink
message and sends it by calling rtnl_notify() to notify all listeners who are registered to the RTNLGRP_IPV4_ROUTE
group. These RTNLGRP_IPV4_ROUTE listeners can be registered in the kernel as well as in userspace (as is done in
iproute2, or in some userspace routing daemons, like xorp). You'll see shortly how userspace daemons of iproute2 can
subscribe to various rtnelink multicast groups.

When deleting a routing entry, something quite similar happens. You can delete the routing entry earlier by
running the following:

ip route del 192.168.2.11

That command sends a netlink message from userspace (RTM_DELROUTE) over an rtnetlink socket for deleting
arouting entry. The message is again received by the rtnetlink kernel socket and handled by the rtnetlink rcv()
callback. Eventually, deleting the routing entry is done by invoking inet_rtm_delroute() callbackin net/ipv4/
fib_frontend.c. Subsequently, deletion from the FIB is done with fib_table delete(), which calls rtmsg_fib(),
this time with the RTM_DELROUTE message.

You can monitor networking events with iproute2 ip command like this:

ip monitor route

For example, if you open one terminal and run ip monitor route there, and then open another terminal and
run ip route add 192.168.1.10 via 192.168.2.200, on the first terminal you'll see this line: 192.168.1.10 via
192.168.2.200 dev eml. And when you run, on the second terminal, ip route del 192.168.1.10, on the first
terminal the following text will appear: Deleted 192.168.1.10 via 192.168.2.200 dev emi.

Running ip monitor routerunsadaemon that opens a netlink socket and subscribes to the RTNLGRP_IPV4_ROUTE
multicast group. Now, adding/deleting a route, as done in this example, will result in this: the message that was sent with
rtnl_notify() will be received by the daemon and displayed on the terminal.

You can subscribe to other multicast groups in this way. For example, to subscribe to the RTNLGRP_LINK multicast
group, run ip monitor link.This daemon receives netlink messages from the kernel—when adding/deleting a link,
for example. So if you open one terminal and run ip monitor link, and then open another terminal and add a VLAN
interface by vconfig add ethi 200, on the first terminal you'll see lines like this:

4: eth1.200@eth1: <BROADCAST,MULTICAST> mtu 1500 gdisc noop state DOWN
link/ether 00:e0:4c:53:44:58 brd ff:ff:ff:ff:ff:ff
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And if you will add a bridge on the second terminal by brctl addbr mybr, on the first terminal you'll see lines
like this:

5: mybr: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
link/ether a2:7c:be:62:b5:b6 brd ff:ff:ff:ff:ff:ff

You've seen what a netlink message is and how it is created and handled. You've seen how netlink sockets are
handled. Next you'll learn why the generic netlink family (introduced in kernel 2.6.15) was created, and you'll learn
about its Linux implementation.

Generic Netlink Protocol

One of the drawbacks of the netlink protocol is that the number of protocol families is limited to 32 (MAX_LINKS).
This is one of the main reasons that the generic netlink family was created—to provide support for adding a higher
number of families. It acts as a netlink multiplexer and works with a single netlink family (NETLINK_GENERIC). The
generic netlink protocol is based on the netlink protocol and uses its APIL.

To add a netlink protocol family, you should add a protocol family definition in include/1inux/netlink.h. But
with generic netlink protocol, there is no need for that. The generic netlink protocol is also intended to be used in
other subsystems besides networking, because it provides a general purpose communication channel. For example,
it's used also by the acpi subsystem (see the definition of acpi_event_genl family in drivers/acpi/event.c), by the
task stats code (see kernel/taskstats.c), by the thermal events code, and more.

The generic netlink kernel socket is created by the netlink kernel create() method like this:

static int _ net_init genl pernet init(struct net *net) {

struct netlink kernel cfg cfg = {

.input = genl rcv,
.cb_mutex = 8genl_mutex,
.flags = NL_CFG_F_NONROOT RECV,

};
net->genl sock = netlink kernel create(net, NETLINK GENERIC, 8cfg);

}
(net/netlink/genetlink.c)

Note that, like the netlink sockets described earlier, the generic netlink socket is also aware of network
namespaces; the network namespace object (struct net) contains a member named genl_sock (a generic netlink
socket). As you can see, the network namespace genl_sock pointer is assigned in the genl pernet_init() method.

The genl_rcv() method is defined to be the input callback of the genl_sock object, which was created earlier by
the genl_pernet_init() method. As a result, data sent from userspace over generic netlink sockets is handled in the
kernel by the genl _rcv() callback.

You can create a generic netlink userspace socket with the socket () system call, though it is better to use the
libnl-genl API (discussed later in this section).

Immediately after creating the generic netlink kernel socket, register the controller family (genl_ctrl):

static struct genl family genl ctrl = {

.id = GENL_ID CTRL,
.name = "nlctrl",
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.version = 0x2,
.maxattr = CTRL_ATTR MAX,
.netnsok = true,

};
static int _ net_init genl pernet init(struct net *net) {

err = genl register family with ops(&genl ctrl, &genl ctrl ops, 1)

The genl_ctrl has a fixed id of 0x10 (GENL_ID_CTRL); it is in fact the only instance of genl_family that’s
initialized with a fixed id; all other instances are initialized with GENL_ID GENERATE as an id, which subsequently is
replaced by a dynamically assigned value.

There is support for registering multicast groups in generic netlink sockets by defining a genl_multicast_group
object and calling genl_register mc_group(); for example, in the Near Field Communication (NFC) subsystem,
you have the following:

static struct genl multicast_group nfc_genl_event_mcgrp = {
.name = NFC_GENL MCAST EVENT NAME,
};

int _init nfc_genl init(void)

{
rc = genl register mc_group(8nfc_genl family, &nfc_genl event mcgrp);

}
(net/nfc/netlink.c)

The name of a multicast group should be unique, because it is the primary key for lookups.

In the multicast group, the id is also generated dynamically when registering a multicast group by calling the
find_first zero bit() methodingenl register mc_group(). There is only one multicast group, the notify grp,
that has a fixed id, GENL_ID_CTRL.

To work with generic netlink sockets in the kernel, you should do the following:

e Createagenl family object and register it by calling genl register family().

e Createagenl ops object and register it by calling genl_register ops().

Alternatively, you can call genl register family with ops() and passtoitagenl family object, an array of
genl_ops, and its size. This method will first call genl_register family() and then, if successful, will call
genl register ops() for each genl ops element of the specified array of genl_ops.

The genl register family() and genl register ops() aswell as the genl family and genl ops are defined
in include/net/genetlink.h.

The wireless subsystem uses generic netlink sockets:

int nl80211 init(void)

{

int err;
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err = genl_register family with_ops(&nl80211_fam,
n180211 ops, ARRAY SIZE(n180211 ops));

(net/wireless/nl80211.c)

The generic netlink protocol is used by some userspace packages, such as the hostapd package and the iw
package. The hostapd package (http://hostap.epitest.fi) provides a userspace daemon for wireless access
point and authentication servers. The iw package is for manipulating wireless devices and their configuration
(see http://wireless.kernel.org/en/users/Documentation/iw).

The iw package is based on n180211 and the 1ibnl library. Chapter 12 discusses n180211 in more detail. The old
userspace wireless package is called wireless-tools and is based on sending IOCTLs.

Here are the genl_family and genl_ops definitions in n180211:

static struct genl family nl80211 fam = {

.id = GENL_ID GENERATE, /* don't bother with a hardcoded ID */
.name = "nl80211", /* have users key off the name instead */
.hdrsize =0, /* no private header */

.version =1, /* no particular meaning now */

.maxattr = NL80211_ATTR_MAX,

.netnsok = true,

.pre_doit = nl80211 pre doit,
.post_doit = nl80211 post_doit,
};
e name: Must be a unique name.

e id:idis GENL_ID_GENERATE in this case, which is in fact 0. GENL_ID_GENERATE tells the
generic netlink controller to assign the channel a unique channel number when you register
the family with genl_register family().The genl_register family() assigns anid in the
range 16 (GENL_MIN_ID, which is 0x10) to 1023 (GENL_MAX_ID).

e hdrsize: Size of a private header.
e maxattr: NL80211_ATTR_MAX, which is the maximum number of attributes supported.

The n180211_policy validation policy array has NL80211_ATTR_MAX elements (each
attribute has an entry in the array):

e netnsok: true, which means the family can handle network namespaces.
e pre_doit: Ahook that's called before the doit() callback.

e post_doit: Ahookthat can, for example, undo locking or any required private tasks after the
doit() callback.

You can add a command or several commands with the genl_ops structure. Let’s take a
look at the definition of genl _ops struct and then at its usage in n180211:

struct genl ops {

u8 cmd;

ud internal_flags;

unsigned int flags;

const struct nla_policy *policy;

int (*doit)(struct sk _buff *skb,
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struct genl info *info);

int (*dumpit) (struct sk _buff *skb,

struct netlink callback *cb);
int (*done) (struct netlink callback *cb);
struct list_head ops_list;

};
e cmd: Command identifier (the genl_ops struct defines a single command and its
doit/dumpit handlers).

e internal flags: Private flags which are defined and used by the family. For example,
in n180211, there are many operations that define internal flags (such as NL80211_FLAG_
NEED_NETDEV_UP, NL80211_FLAG_NEED_RTNL, and more). The n180211 pre_doit() and
post_doit() callbacks perform actions according to these flags. See net/wireless/n180211.

e  flags: Operation flags. Values can be the following:

e GENL_ADMIN_PERM: When this flag is set, it means that the operation requires the
CAP_NET_ADMIN privilege; see the genl_rcv_msg() method in net/netlink/genetlink.c.

¢ GENL_CMD_CAP_DO: This flagis setif the genl_ops struct implements the doit()
callback.

e GENL_CMD_CAP_DUMP: This flag is set if the genl_ops struct implements the
dumpit() callback.

e GENL_CMD_CAP_HASPOL: This flag is set if the genl_ops struct defines attribute
validation policy (nla_policy array).

e policy: Attribute validation policy is discussed later in this section when describing the
payload.

e doit: Standard command callback.
e  dumpit: Callback for dumping.
e done: Completion callback for dumps.

e ops_list: Operations list.

static struct genl ops nl80211 ops[] = {

{

{
.cmd = NL80211_CMD_GET_SCAN,
.policy = nl80211 policy,
.dumpit = nl80211 dump_scan,
b
}

Note that either a doit or a dumpit callback must be specified for every element of genl_ops (n180211_ops in
this case) or the function will fail with -EINVAL.
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This entry in genl_ops adds the n180211_dump_scan() callback as a handler of the NL80211_CMD_GET_SCAN
command. The n180211 policyis an array of nla_policy objects and defines the expected datatype of the attributes
and their length.

When running a scan command from userspace, for example by iw dev wlan0 scan, you send from userspace a
generic netlink message whose command is NL80211_CMD_GET_SCAN over a generic netlink socket. Messages are
sent by thenl_send_auto_complete() method or bynl send auto() in the newer 1ibnl versions. nl_send_auto()
fills the missing bits and pieces in the netlink message header. If you don’t require any of the automatic message
completion functionality, you can use n1_send() directly.

The message is handled by the n180211_dump_scan() method, which is the dumpit callback for this command
(net/wireless/n180211.c). There are more than 50 entries in the n180211_ops object for handling commands,
including NL80211_CMD_GET_INTERFACE, NL80211_CMD_SET_INTERFACE, NL80211_CMD_START AP, and so on.

To send commands to the kernel, a userspace application should know the family id. The family name is known
in the userspace, but the family id is unknown in the userspace because it’s determined only in runtime in the kernel.
To get the family id, the userspace application should send a generic netlink CTRL_CMD_GETFAMILY request to the
kernel. This request is handled by the ctrl _getfamily() method. It returns the family id as well as other information,
such as the operations the family supports. Then the userspace can send commands to the kernel specifying the
family id that it got in the reply. I discuss this more in the next section.

Creating and Sending Generic Netlink Messages

A generic netlink message starts with a netlink header, followed by the generic netlink message header, and then there
is an optional user specific header. Only after all that do you find the optional payload, as you can see in Figure 2-5.

netlink message header
(nimsghdr)

generic netlink message header
(genlmsghdr)

user specific message header
(optional)

Generic Netlink message payload
(optional)

Figure 2-5. Generic netlink message.

This is the generic netlink message header:

struct genlmsghdr {
_us8 cmd;
_u8 version;
_u16 reserved;
};
(include/uapi/linux/genetlink.h)
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e cmdis a generic netlink message type; each generic family that you register adds its own
commands. For example, for the n180211_fam family mentioned above, the commands it adds
(like NL80211_CMD_GET_INTERFACE) are represented by the n180211_commands enum.
There are more than 60 commands (see include/1inux/n180211.h).

e version can be used for versioning support. With n180211 it is 1, with no particular meaning.
The version member allows changing the format of a message without breaking backward
compatibility.

e reserved is for future use.

Allocating a buffer for a generic netlink message is done by the following method:
sk_buff *genlmsg new(size t payload, gfp_ t flags)

This is in fact a wrapper around nlmsg_new().

After allocating a buffer with genlmsg_new(), the genlmsg_put() is called to create the generic netlink header,
which is an instance of genlmsghdr. You send a unicast generic netlink message with genlmsg_unicast(), which is in
fact a wrapper around nlmsg_unicast(). You can send a multicast generic netlink message in two ways:

e genlmsg multicast(): This method sends the message to the default network namespace,
net_init.

e genlmsg multicast_allns(): This method sends the message to all network namespaces.

(All prototypes of the methods mentioned in this section are in include/net/genetlink.h.)

You can create a generic netlink socket from userspace like this: socket (AF_NETLINK, SOCK RAW, NETLINK GENERIC);
this call is handled in the kernel by the netlink create() method, like an ordinary, non-generic netlink socket, as you
saw in the previous section. You can use the socket API to perform further calls like bind() and sendmsg() or recvmsg();
however, using the 1ibnl library instead is recommended.

libnl-genl provides generic netlink API, for management of controller, family, and command registration.
With 1libnl-genl, you can call genl_connect() to create a local socket file descriptor and bind the socket to the
NETLINK_GENERIC netlink protocol.

Let’s take a brief look at what happens in a short typical userspace-kernel session when sending a command to
the kernel via generic netlink sockets using the 1ibnl library and the 1ibnl-genl library.

The iw package uses the 1ibnl-genl library. When you run a command like iw dev wlano 1list, the following
sequence occurs (omitting unimportant details):

state->nl_sock = nl socket alloc()
Allocate a socket (note the use here of 1ibnl core API and not the generic netlink family (1ibnl-genl) yet.
genl_connect(state->nl_sock)

Call socket () with NETLINK_GENERIC and call bind() on this socket; the genl_connect() is a method of the
libnl-genllibrary.

genl ctrl resolve(state->nl_sock, "nl80211");
This method resolves the generic netlink family name ("n180211") to the corresponding numeric family
identifier. The userspace application must send its subsequent messages to the kernel, specifying this id.

The genl ctrl resolve() method calls genl ctrl probe by name(), which in fact sends a generic netlink
message to the kernel with the CTRL_CMD_GETFAMILY command.
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In the kernel, the generic netlink controller ("nlctrl") handles the CTRL_CMD_GETFAMILY command by the
ctrl getfamily() method and returns the family id to userspace. This id was generated when the socket was created.

Note You can get various parameters (such as generated id, header size, max attributes, and more) of all the
registered generic netlink families with the userspace tool genl (of iproute2) by running genl ctrl list.

You're now ready to learn about the socket monitoring interface, which lets you get information about sockets.
The socket monitoring interface is used in userspace tools like ss, which displays socket information and statistics for
various socket types, and in other projects, as you'll see in the next section.

Socket Monitoring Interface

The sock_diag netlink sockets provide a netlink-based subsystem that can be used to get information about sockets. This
feature was added to the kernel to support checkpoint/restore functionality for Linux in userspace (CRIU). To support this
functionality, additional data about sockets was needed. For example, /procfs doesn’t say which are the peers of a UNIX
domain socket (AF_UNIX), and this info is needed for checkpoint/restore support. This additional data is not exported via
/proc, and to make changes to procfs entries isn’t always desirable because it might break userspace applications. The
sock_diag netlink sockets give an API which enables access to this additional data. This API is used in the CRIU project as
well as in the ss util. Without the sock_diag, after checkpointing a process (saving the state of a process to the filesystem),
you can’t reconstruct its UNIX domain sockets because you don’t know who the peers are.

To support the monitoring interface used by the ss tool, a netlink-based kernel socket is created
(NETLINK_SOCK_DIAG). The ss tool, which is part of the iproute2 package, enables you to get socket statistics
in a similar way to netstat. It can display more TCP and state information than other tools.

You create a netlink kernel socket for sock_diag like this:

static int _ net_init diag net_init(struct net *net)

{
struct netlink_kernel cfg cfg = {
.input = sock_diag rcv,
};
net->diag nlsk = netlink_kernel create(net, NETLINK SOCK_DIAG, &cfg);
return net->diag nlsk == NULL ? -ENOMEM : O;
}

(net/core/sock_diag.c)

The sock_diag module has a table of sock_diag_handler objects named sock_diag_handlers. This table is
indexed by the protocol number (for the list of protocol numbers, see include/linux/socket.h).
The sock_diag_handler struct isverysimple:

struct sock diag handler {

__u8 family;

int (*dump)(struct sk buff *skb, struct nlmsghdr *nlh);
};

(net/core/sock_diag.c)
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Each protocol that wants to add a socket monitoring interface entry to this table first defines a handler and then
calls sock_diag register(), specifying its handler. For example, for UNIX sockets, there is the following in
net/unix/diag.c:

The first step is definition of the handler:

static const struct sock diag handler unix_diag handler = {
.family = AF_UNIX,
.dump = unix_diag_handler_dump,

};

The second step is registration of the handler:

static int _ init unix_diag init(void)

{
}

return sock diag register(&unix_diag handler);

Now, with ss -xorss --unix, you can dump the statistics that are gathered by the UNIX diag module. In quite
a similar way, there are diag modules for other protocols, such as UDP (net/ipv4/udp_diag.c), TCP (net/ipv4/
tcp_diag.c), DCCP (/net/dccp/diag.c), and AF_PACKET (net/packet/diag.c).

There’s also a diag module for the netlink sockets themselves. The /proc/net/netlink entry provides
information about the netlink socket (netlink sock object) like the portid, groups, the inode number of the socket,
and more. If you want the details, dumping /proc/net/netlink is handled by netlink_seq_show() in net/netlink/
af_netlink.c. There are some netlink_sock fields which /proc/net/netlink doesn’t provide—for example,
dst_group or dst_portid or groups above 32. For this reason, the netlink socket monitoring interface was added
(net/netlink/diag.c). You should be able to use the ss tool of iproute2 to read netlink sockets information.

The netlink diag code can be built also as a kernel module.

Summary

This chapter covered netlink sockets, which provide a mechanism for bidirectional communication between the
userspace and the kernel and are widely used by the networking subsystem. You've seen some examples of netlink
sockets usage. I also discussed netlink messages, how they’re created and handled. Another important subject the
chapter dealt with is the generic netlink sockets, including their advantages and their usage. The next chapter covers
the ICMP protocol, including its usage and its implementation in IPv4 and IPv6.

Quick Reference

I conclude this chapter with a short list of important methods of the netlink and generic netlink subsystems. Some of
them were mentioned in this chapter:

int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nimsghdr *))

This method handles receiving netlink messages. It’s called from the input callback of netlink families (for example,
in the rtnetlink_rcv() method for the rtnetlink family, or in the sock_diag rcv() method for the sock diag family.
The method performs sanity checks, like making sure that the length of the netlink message header does not exceed
the permitted max length (NLMSG_HDRLEN). It also avoids invoking the specified callback in case that the message
is a control message. In case the ACK flag (NLM_F_ACK) is set, it sends an error message by invoking the netlink
ack() method.
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struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
u32 dst_portid, gfp_t gfp_mask)

This method allocates an SKB with the specified size and gfp_mask; the other parameters (ssk, dst_portid) are used
when working with memory mapped netlink IO (NETLINK_MMAP). This feature is not discussed in this chapter, and
islocated here: net/netlink/af_netlink.c.

struct netlink_sock *nlk_sk(struct sock *sk)

This method returns the netlink_sock object, which has an sk as a member, and is located here:
net/netlink/af_netlink.h.

struct sock *netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg)

This method creates a kernel netlink socket.

struct nimsghdr *nimsg_hdr(const struct sk_buff *skb)

This method returns the netlink message header pointed to by skb->data.

struct nimsghdr *__nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq,
int type, int len, int flags)

This method builds a netlink message header according to the specified parameters, and puts it in the skb, and is
located here: include/linux/netlink.h.

struct sk_buff *nlmsg_new(size_t payload, gfp_t flags)

This method allocates a new netlink message with the specified message payload by calling alloc_skb(). If the
specified payload is 0, alloc_skb() is called with NLMSG_HDRLEN (after alignment with the NLMSG_ALIGN macro).

int nimsg_msg_size(int payload)

This method returns the length of a netlink message (message header length and payload), not including padding.

void rtnl_register(int protocol, int msgtype, rtnl_doit_func doit,
rtnl_dumpit_func dumpit, rtnl_calcit_func calcit)

This method registers the specified rtnetlink message type with the three specified callbacks.

static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nimsghdr *nlh)

This method processes an rtnetlink message.
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static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev, int type, u32 pid,
u32 seq, u32 change, unsigned int flags, u32 ext_filter_mask)

This method creates two objects: a netlink message header (nImsghdr) and an ifinfomsg object, located immediately
after the netlink message header.

void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group, struct
nimsghdr *nih; gfp_t flags)

This method sends an rtnetlink message.

int genl_register_mc_group(struct genl_family *family,
struct genl_multicast_group *grp)

This method registers the specified multicast group, notifies the userspace, and returns 0 on success or a negative
error code. The specified multicast group must have a name. The multicast group id is generated dynamically in this
method by the find_first zero bit() method for all multicast groups, except for notify grp, which has a fixed id
of 0x10 (GENL_ID_CTRL).

void genl_unregister_mc_group(struct genl_family *family,
struct genl_multicast_group *grp)

This method unregisters the specified multicast group and notifies the userspace about it. All current listeners
on the group are removed. It’s not necessary to unregister all multicast groups before unregistering the family—
unregistering the family causes all assigned multicast groups to be unregistered automatically.

int genl_register_ops(struct genl_family *family, struct genl_ops *ops)

This method registers the specified operations and assigns them to the specified family. Either a doit() or a dumpit()
callback must be specified or the operation will fail with -EINVAL. Only one operation structure per command
identifier may be registered. It returns 0 on success or a negative error code.

int genl_unregister_ops(struct genl_family *family, struct genl_ops *ops)

This method unregisters the specified operations and unassigns them from the specified family. The operation blocks
until the current message processing has finished and doesn't start again until the unregister process has finished.

It’s not necessary to unregister all operations before unregistering the family—unregistering the family causes all
assigned operations to be unregistered automatically. It returns 0 on success or a negative error code.

int genl_register_family(struct genl_family *family)

This method registers the specified family after validating it first. Only one family may be registered with the same
family name or identifier. The family id may equal GENL_ID_GENERATE, causing a unique id to be automatically
generated and assigned.
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int genl_register_family_with_ops(struct genl_family *family,
struct genl_ops *ops, size_t n_ops)

This method registers the specified family and operations. Only one family may be registered with the same family
name or identifier. The family id may equal GENL_ID_GENERATE, causing a unique id to be automatically generated
and assigned. Either a doit or a dumpit callback must be specified for every registered operation or the function

will fail. Only one operation structure per command identifier may be registered. This is equivalent to calling genl
register family() followed by genl_register ops() for every operation entry in the table, taking care to unregister
the family on the error path. The method returns 0 on success or a negative error code.

int genl_unregister_family(struct genl_family *family)

This method unregisters the specified family and returns 0 on success or a negative error code.

void *genimsg_put(struct sk_buff *skb, u32 portid, u32 seq,
struct genl_family *family, int flags, u8 cmd)

This method adds a generic netlink header to a netlink message.

int genl_register_family(struct genl_family *family) int genl_unregister_
family(struct genl_family *family)

This method registers/unregisters a generic netlink family.

int genl_register_ops(struct genl_family *family, struct genl_ops *ops) int genl_
unregister_ops(struct genl_family *family, struct genl_ops *ops)

This method registers/unregisters generic netlink operations.

void genl_lock(void)
void genl_unlock(void)

This method locks/unlocks the generic netlink mutex (genl_mutex). Used for example in net/12tp/12tp netlink.c.
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CHAPTER 3

Internet Control Message
Protocol (ICMP)

Chapter 2 discusses the netlink sockets implementation and how netlink sockets are used as a communication
channel between the kernel and userspace. This chapter deals with the ICMP protocol, which is a Layer 4 protocol.
Userspace applications can use the ICMP protocol (to send and receive ICMP packets) by using the sockets API (the
best-known example is probably the ping utility). This chapter discusses how these ICMP packets are handled in the
kernel and gives some examples.

The ICMP protocol is used primarily as a mandatory mechanism for sending error and control messages about
the network layer (L3). The protocol enables getting feedback about problems in the communication environment
by sending ICMP messages. These messages provide error handling and diagnostics. The ICMP protocol is relatively
simple but is very important for assuring correct system behavior. The basic definition of ICMPv4 is in RFC 792,
“Internet Control Message Protocol” This RFC defines the goals of the ICMPv4 protocol and the format of various
ICMPv4 messages. I also mention in this chapter RFC 1122 (“Requirements for Internet Hosts—Communication
Layers”) which defines some requirements about several ICMP messages; RFC 4443, which defines the ICMPv6
protocol; and RFC 1812, which defines requirements for routers. I also describe which types of ICMPv4 and ICMPv6
messages exist, how they are sent, and how they are processed. I cover ICMP sockets, including why they were added
and how they are used. Keep in mind that the ICMP protocol is also used for various security attacks; for example, the
Smurf Attack is a denial-of-service attack in which large numbers of ICMP packets with the intended victim’s spoofed
source IP are sent as broadcasts to a computer network using an IP broadcast address.

ICMPv4

ICMPv4 messages can be classified into two categories: error messages and information messages (they are termed
“query messages” in RFC 1812). The ICMPv4 protocol is used in diagnostic tools like ping and traceroute. The
famous ping utility is in fact a userspace application (from the iputils package) which opens a raw socket and sends
an ICMP_ECHO message and should get back an ICMP_REPLY message as a response. Traceroute is a utility to find
the path between a host and a given destination IP address. The traceroute utility is based on setting varying values
to the Time To Live (TTL), which is a field in the IP header representing the hop count. The traceroute utility takes
advantage of the fact that a forwarding machine will send back an ICMP_TIME_EXCEED message when the TTL

of the packet reaches 0. The traceroute utility starts by sending messages with a TTL of 1, and with each received
ICMP_DEST_UNREACH with code ICMP_TIME_EXCEED as a reply, it increases the TTL by 1 and sends again to the
same destination. It uses the returned ICMP “Time Exceeded” messages to build a list of the routers that the packets
traverse, until the destination is reached and returns an ICMP “Echo Reply” message. Traceroute uses the UDP
protocol by default. The ICMPv4 module is net/ipv4/icmp.c. Note that ICMPv4 cannot be built as a kernel module.
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ICMPv4 Initialization

ICMPv4 initialization is done in the inet_init() method, which is invoked in boot phase. The inet_init() method
invokes the icmp_init() method, which in turn calls the icmp_sk_init() method to create a kernel ICMP socket
for sending ICMP messages and to initialize some ICMP procfs variables to their default values. (You will encounter
some of these procfs variables later in this chapter.)

Registration of the ICMPv4 protocol, like registration of other IPv4 protocols, is done in inet_init():

static const struct net_protocol icmp protocol = {

.handler = icmp_rcv,
.err_handler = icmp_err,
.no_policy = 1,
.netns_ok = 1,

};

(net/ipv4/af_inet.c)

e icmp_rcv: The handler callback. This means that for incoming packets whose protocol field in
the IP header equals IPPROTO_ICMP (0x1), icmp_rcv() will be invoked.

e no_policy: This flag s set to 1, which implies that there is no need to perform IPsec policy
checks; for example, the xfrm4_policy check() method is notcalled in ip_local_deliver_
finish() because the no_policy flagis set.

e netns_ok: This flag is set to 1, which indicates that the protocol is aware of network
namespaces. Network namespaces are described in Appendix A, in the net_device section.
The inet_add protocol() method will fail for protocols whose netns_ok field is 0 with an
error of -EINVAL.

static int _ init inet init(void) {
if (inet_add protocol(8icmp_protocol, IPPROTO ICMP) < 0)
pr_crit("%s: Cannot add ICMP protocol\n", func_);

int _net_init icmp sk init(struct net *net)

{
for_each possible cpu(i) {
struct sock *sk;
err = inet _ctl sock create(&sk, PF_INET,
SOCK_RAW, IPPROTO ICMP, net);
if (err < 0)
goto fail;
net->ipv4.icmp_sk[i] = sk;
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
inet_sk(sk)->pmtudisc = IP_PMTUDISC_DONT;
}
}
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In the icmp_sk_init() method, a raw ICMPv4 socket is created for each CPU and is kept in an array. The current
sk can be accessed with the icmp_sk(struct net *net) method. These sockets are used in the icmp_push_reply()
method. The ICMPv4 procfs entries are initialized in the icmp_sk_init() method; I mention them in this chapter
and summarize them in the “Quick Reference” section at the end of this chapter. Every ICMP packet starts with
an ICMPv4 header. Before discussing how ICMPv4 messages are received and transmitted, the following section
describes the ICMPv4 header, so that you better understand how ICMPv4 messages are built.

ICMPv4 Header

The ICMPv4 header consists of type (8 bits), code (8 bits), and checksum (16 bits), and a 32 bits variable part member
(its content varies based on the ICMPv4 type and code), as you can see in Figure 3-1. After the ICMPv4 header comes
the payload, which should include the IPv4 header of the originating packet and a part of its payload. According to
RFC 1812, it should contain as much of the original datagram as possible without the length of the ICMPv4 datagram
exceeding 576 bytes. This size is in accordance to RFC 791, which specifies that “All hosts must be prepared to accept
datagrams of up to 576 octets.”

0 8 16 32

Type Code Checksum

Variable part (according to type/code)

Payload

Figure 3-1. The ICMPv4 header

The ICMPv4 header is represented by struct icmphdr:

struct icmphdr {

__u8 type;
_u8 code;
__sumi16 checksum;
union {
struct {
__be16 id;
__be16 sequence;
} echo;
__be32 gateway;
struct {
__be16 __unused;
__be16 mtu;
} frag;
} un;

};

(include/uapi/linux/icmp.h)
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You'll find the current complete list of assigned ICMPv4 message type numbers and codes at
www.iana.org/assignments/icmp-parameters/icmp-parameters.xml.

The ICMPv4 module defines an array of icmp_control objects, named icmp_pointers, which is indexed by
ICMPv4 message type. Let’s take a look at the icmp_control structure definition and at the icmp_pointers array:

struct icmp_control {
void (*handler)(struct sk buff *skb);
short error; /* This ICMP is classed as an error message */

};

static const struct icmp control icmp pointers[NR_ICMP_TYPES+1];
NR_ICMP_TYPES is the highest ICMPv4 type, which is 18.

(include/uapi/linux/icmp.h)

The error field of the icmp_control objects of this array is 1 only for error message types, like the “Destination
Unreachable” message (ICMP_DEST_UNREACH), and it is 0 (implicitly) for information messages, like echo
(ICMP_ECHO). Some handlers are assigned to more than one type. Next I discuss handlers and the ICMPv4 message
types they manage.

ping rcv() handles receiving a ping reply (ICMP_ECHOREPLY). The ping_rcv() method is implemented
in the ICMP sockets code, net/ipv4/ping.c. In kernels prior to 3.0, in order to send ping, you had to create a raw
socket in userspace. When receiving a reply to a ping ICMP_ECHOREPLY message), the raw socket that sent the ping
processed it. In order to understand how this is implemented, let’s take a look in ip_local_deliver_finish(), which
is the method which handles incoming IPv4 packets and passes them to the sockets which should process them:

static int ip_local deliver finish(struct sk buff *skb)
{

int protocol = ip hdr(skb)->protocol;
const struct net protocol *ipprot;
int raw;

resubmit:
raw = raw_local deliver(skb, protocol);
ipprot = rcu_dereference(inet protos[protocol]);
if (ipprot != NULL) {
int ret;

ret = ipprot->handler(skb);

(net/ipv4/ip_input.c)

When the ip_local deliver finish() method receives an ICMP_ECHOREPLY packet, it first tries to deliver
it to a listening raw socket, which will process it. Because a raw socket that was opened in userspace handles the
ICMP_ECHOREPLY message, there is no need to do anything further with it. So when the ip_local deliver finish()
method receives ICMP_ECHOREPLY, the raw_local deliver() method is invoked first to process it by a raw socket,
and afterwards the ipprot->handler(skb) is invoked (this is the icmp_rcv() callback in the case of ICMPv4 packet).
And because the packet was already processed by a raw socket, there is nothing more to do with it. So the packet is
discarded silently by calling the icmp_discard() method, which is the handler for ICMP_ECHOREPLY messages.

When the ICMP sockets (“ping sockets”) were integrated into the Linux kernel in kernel 3.0, this was changed.
Ping sockets are discussed in the “ICMP Sockets (“Ping Sockets”)” section later in this chapter. In this context I should
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note that with ICMP sockets, the sender of ping can be also not a raw socket. For example, you can create a socket like
this: socket (PF_INET, SOCK_DGRAM, PROT ICMP) and use it to send ping packets. This socket is not a raw socket.
As aresult, the echo reply is not delivered to any raw socket, since there is no corresponding raw socket which listens.
To avoid this problem, the ICMPv4 module handles receiving ICMP_ECHOREPLY messages with the ping rcv()
callback. The ping module is located in the IPv4 layer (net/ipv4/ping.c). Nevertheless, most of the code in net/
ipv4/ping.cis a dual-stack code (intended for both IPv4 and IPv6). As a result, the ping_rcv() method also handles
ICMPV6_ECHO_REPLY messages for IPv6 (see icmpv6_rcv() in net/ipv6/icmp.c).Italk more about ICMP sockets
later in this chapter.

icmp_discard() is an empty handler used for nonexistent message types (message types whose numbers are
without corresponding declarations in the header file) and for some messages that do not need any handling, for
example ICMP_TIMESTAMPREPLY. The ICMP_TIMESTAMP and the ICMP_TIMESTAMPREPLY messages are used
for time synchronization; the sender sends the originate timestamp in an ICMP_TIMESTAMP request; the receiver
sends ICMP_TIMESTAMPREPLY with three timestamps: the originating timestamp which was sent by the sender of
the timestamp request, as well as a receive timestamp and a transmit timestamp. There are more commonly used
protocols for time synchronization than ICMPv4 timestamp messages, like the Network Time Protocol (NTP). I should
also mention the Address Mask request (ICMP_ADDRESS), which is normally sent by a host to a router in order to
obtain an appropriate subnet mask. Recipients should reply to this message with an address mask reply message. The
ICMP_ADDRESS and the ICMP_ADDRESSREPLY messages, which were handled in the past by the icmp_address()
method and by the icmp_address_reply() method, are now handled also by icmp_discard(). The reason is that
there are other ways to get the subnet masks, such as with DHCP.

icmp_unreach() handles ICMP_DEST_UNREACH, ICMP_TIME_EXCEED, ICMP_PARAMETERPROB, and
ICMP_QUENCH message types.

An ICMP_DEST UNREACH message can be sent under various conditions. Some of these conditions are described in
the “Sending ICMPv4 Messages: Destination Unreachable” section in this chapter.

An ICMP_TIME_EXCEEDED message is sent in two cases:

Inip forward(), each packet decrements its TTL. According to RFC 1700, the recommended TTL for the IPv4
protocol is 64. If the TTL reaches 0, this is indication that the packet should be dropped because probably there was
some loop. So, if the TTL reaches 0in ip_forward(), the icmp_send() method is invoked:

icmp_send(skb, ICMP_TIME_EXCEEDED, ICMP_EXC_TTL, 0);

(net/ipva/ip forward.c)

In such a case, an ICMP_TIME_EXCEEDED message with code ICMP_EXC_TTL is sent, the SKB is freed, the
InHdrErrors SNMP counter (IPSTATS_MIB_INHDRERRORS) is incremented, and the method returns
NET_RX_DROP.

Inip_expire(), the following occurs when a timeout of a fragment exists:

icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);

(net/ipv4/ip_fragment.c)

An ICMP_PARAMETERPROB message is sent when parsing the options of an IPv4 header fails, in the
ip_options_compile() method orinthe ip_options rcv_srr() method (net/ipv4/ip options.c). The options are
an optional, variable length field (up to 40 bytes) of the IPv4 header. IP options are discussed in Chapter 4.

An ICMP_QUENCH message type is in fact deprecated. According to RFC 1812, section 4.3.3.3 (Source Quench):
“A router SHOULD NOT originate ICMP Source Quench messages’, and also, “A router MAY ignore any ICMP Source
Quench messages it receives.” The ICMP_QUENCH message was intended to reduce congestion, but it turned out that
this is an ineffective solution.

icmp_redirect() handles ICMP_REDIRECT messages; according to RFC 1122, section 3.2.2.2, hosts
should not send an ICMP redirect message; redirects are to be sent only by gateways. icmp_redirect() handles
ICMP_REDIRECT messages. In the past, icmp_redirect() called ip_rt redirect(), butan ip_rt redirect()
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invocation is not needed anymore as the protocol handlers now all properly propagate the redirect back into the
routing code. In fact, in kernel 3.6, the ip_rt_redirect() method was removed. So the icmp_redirect() method
first performs sanity checks and then calls icmp_socket_deliver(), which delivers the packet to the raw sockets and
invokes the protocol error handler (in case it exists). Chapter 6 discusses ICMP_REDIRECT messages in more depth.

icmp_echo() handles echo (“ping”) requests (ICMP_ECHO) by sending echo replies ICMP_ECHOREPLY) with
icmp_reply().If case net->ipv4.sysctl icmp_echo_ignore all is set, a reply will not be sent. For configuring
ICMPv4 procfs entries, see the “Quick Reference” section at the end of this chapter, and also Documentation/
networking/ip-sysctl.txt.

icmp_timestamp() handles ICMP Timestamp requests (ICMP_TIMESTAMP) by sending ICMP_
TIMESTAMPREPLY with icmp_reply().

Before discussing sending ICMP messages by the icmp_reply() method and by the icmp_send() method,
I'should describe the icmp_bxm (“ICMP build xmit message”) structure, which is used in both methods:

struct icmp_bxm {
struct sk_buff *skb;
int offset;
int data_len;

struct {
struct icmphdr icmph;
__be32 times[3];
} data;

int head_len;
struct ip options_data replyopts;
};

e skb:Forthe icmp_reply() method, this skb is the request packet; the icmp_param object
(instance of icmp_bxm) is built from it (in the icmp_echo() method and in the icmp_timestamp()
method). For the icmp_send() method, this skb is the one that triggered sending an ICMPv4
message due to some conditions; you will see several examples of such messages in this section.

e offset: Difference (offset) between skb_network header(skb) and skb->data.
e data_len: ICMPv4 packet payload size.

e  icmph: The ICMP v4 header.

e times[3]: Array of three timestamps, filled in icmp_timestamp().

e head_len: Size of the ICMPv4 header (in case of icmp_timestamp(), there are additional 12
bytes for the timestamps).

e replyopts: Anip_options data object. IP options are optional fields after the IP header, up
to 40 bytes. They enable advanced features like strict routing/loose routing, record routing,
time stamping, and more. They are initialized with the ip_options_echo() method. Chapter 4
discusses IP options.

Receiving ICMPv4 Messages

The ip_local deliver finish() method handles packets for the local machine. When getting an ICMP packet, the
method delivers the packet to the raw sockets that had performed registration of ICMPv4 protocol. In the
icmp_rcv() method, first the InMsgs SNMP counter (ICMP_MIB_INMSGS) is incremented. Subsequently, the
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checksum correctness is verified. If the checksum is not correct, two SNMP counters are incremented, InCsumErrors
and InErrors (ICMP_MIB_CSUMERRORS and ICMP_MIB_INERRORS, respectively), the SKB is freed, and the
method returns 0. The icmp_rcv() method does not return an error in this case. In fact, the icmp_rcv() method
always returns 0; the reason for returning 0 in case of checksum error is that no special thing should be done

when receiving an erroneous ICMP message except to discard it; when a protocol handler returns a negative

error, another attempt to process the packet is performed, and it is not needed in this case. For more details, refer

to the implementation of the ip_local deliver finish() method. Then the ICMP header is examined in order

to find its type; the corresponding procfs message type counter is incremented (each ICMP message type has a
procfs counter), and a sanity check is performed to verify that it is not higher than the highest permitted value
(NR_ICMP_TYPES). According to section 3.2.2 of RFC 1122, if an ICMP message of unknown type is received, it must
be silently discarded. So if the message type is out of range, the InErrors SNMP counter (ICMP_MIB_INERRORS) is
incremented, and the SKB is freed.

In case the packet is a broadcast or a multicast, and it is an ICMP_ECHO message or an ICMP_TIMESTAMP
message, there is a check whether broadcast/multicast echo requests are permitted by reading the variable
net->ipv4.sysctl icmp_echo_ignore_ broadcasts. This variable can be configured via procfs by writing to
/proc/sys/net/ipv4/icmp_echo_ignore broadcasts, and by default its value is 1. If this variable is set, the packet
is dropped silently. This is done according to section 3.2.2.6 of RFC 1122: “An ICMP Echo Request destined to an
IP broadcast or IP multicast address MAY be silently discarded.” And according to section 3.2.2.8 of this RFC,

“An ICMP Timestamp Request message to an IP broadcast or IP multicast address MAY be silently discarded.” Then a
check is performed to detect whether the type is allowed for broadcast/multicast (ICMP_ECHO, ICMP_TIMESTAMP,
ICMP_ADDRESS, and ICMP_ADDRESSREPLY). If it is not one of these message types, the packet is dropped and

0 is returned. Then according to its type, the corresponding entry in the icmp_pointers array is fetched and the
appropriate handler is called. Let’s take a look in the ICMP_ECHO entry in the icmp_control dispatch table:

static const struct icmp_control icmp pointers[NR_ICMP_TYPES + 1] = {
[ICMP_ECHO] = {
.handler = icmp_echo