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Chapter 1

Introduction

This book deals with the implementation of the Linux Kernel Networking stack and the theory behind it. You will find 
in the following pages an in-depth and detailed analysis of the networking subsystem and its architecture. I will not 
burden you with topics not directly related to networking, which you may encounter while reading kernel networking 
code (for example, locking and synchronization, SMP, atomic operations, and so on). There are plenty of resources 
about such topics. On the other hand, there are very few up-to-date resources that focus on kernel networking proper. 
By this I mean primarily describing the traversal of the packet in the Linux Kernel Networking stack and its interaction 
with various networking layers and subsystems—and how various networking protocols are implemented.

This book is also not a cumbersome, line-by-line code walkthrough. I focus on the essence of the implementation 
of each network layer and the theory guidelines and principles that led to this implementation. The Linux operating 
system has proved itself in recent years as a successful, reliable, stable, and popular operating system. And it seems 
that its popularity is growing steadily, in a wide variety of flavors, from mainframes, data centers, core routers, and 
web servers to embedded devices like wireless routers, set-top boxes, medical instruments, navigation equipment 
(like GPS devices), and consumer electronics devices. Many semiconductor vendors use Linux as the basis for their 
Board Support Packages (BSPs). The Linux operating system, which started as a project of a Finnish student named 
Linus Torvalds back in 1991, based on the UNIX operating system, proved to be a serious and reliable operating 
system and a rival for veteran proprietary operating systems.

Linux began as an Intel x86-based operating system but has been ported to a very wide range of processors, 
including ARM, PowerPC, MIPS, SPARC, and more. The Android operating system, based upon the Linux kernel, is 
common today in tablets and smartphones, and seems likely to gain popularity in the future in smart TVs. Apart from 
Android, Google has also contributed some kernel networking features that were merged into the mainline kernel.

Linux is an open source project, and as such it has an advantage over other proprietary operating systems: its 
source code is freely available under the General Public License (GPL). Other open source operating systems, like the 
different types of BSD, have much less popularity. I should also mention in this context the OpenSolaris project, based 
on the Common Development and Distribution License (CDDL). This project, started by Sun Microsystems, has not 
achieved the popularity that Linux has. Among the large community of active Linux developers, some contribute 
code on behalf of the companies they work for, and some contribute code voluntarily. All of the kernel development 
process is accessible via the kernel mailing lists. There is one central mailing list, the Linux Kernel Mailing List 
(LKML), and many subsystems have their own mailing lists. Contributing code is done via sending patches to the 
appropriate kernel mailing lists and to the maintainers, and these patches are discussed over the mailing lists.

The Linux Kernel Networking stack is a very important subsystem of the Linux kernel. It is quite difficult to find 
a Linux-based system, whether it is a desktop, a server, a mobile device or any other embedded device, that does not 
use any kind of networking. Even in the rare case when a machine doesn't have any hardware network devices, you 
will still be using networking (maybe unconsciously) when you use X-Windows, as X-Windows itself is based upon 
client-server networking. A wide range of projects are related to the Linux Networking stack, from core routers to small 
embedded devices. Some of these projects deal with adding vendor-specific features. For example, some hardware 
vendors implement Generic Segmentation Offload (GSO) in some network devices. GSO is a networking feature of the 
kernel network stack that divides a large packet into smaller ones in the Tx path. Many hardware vendors implement 
checksumming in hardware in their network devices. Checksum is a mechanism to verify that a packet was not 
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damaged on transit by calculating some hash from the packet and attaching it to the packet. Many projects provide 
some security enhancements for Linux. Sometimes these enhancements require some changes in the networking 
subsystem, as you will see, for example, in Chapter 3, when discussing the Openwall GNU/*/Linux project. In the 
embedded device arena there are, for example, many wireless routers that are Linux based; one example is the 
WRT54GL Linksys router, which runs Linux. There is also an open source, Linux-based operating system that can run 
on this device (and on some other devices), named OpenWrt, with a large and active community of developers (see 
https://openwrt.org/). Learning about how the various protocols are implemented by the Linux Kernel Networking 
stack and becoming familiar with the main data structures and the main paths of a packet in it are essential to 
understanding it better.

The Linux Network Stack
There are seven logical networking layers according to the Open Systems Interconnection (OSI) model. The lowest 
layer is the physical layer, which is the hardware, and the highest layer is the application layer, where userspace 
software processes are running. Let’s describe these seven layers:

	 1.	 The physical layer: Handles electrical signals and the low level details.

	 2.	 The data link layer: Handles data transfer between endpoints. The most common data link 
layer is Ethernet. The Linux Ethernet network device drivers reside in this layer.

	 3.	 The network layer: Handles packet forwarding and host addressing. In this book I discuss 
the most common network layers of the Linux Kernel Networking subsystem: IPv4 or IPv6. 
There are other, less common network layers which Linux implements, like DECnet, but 
they are not discussed.

	 4.	 The protocol layer/transport layer: Handles data sending between nodes. The TCP and 
UDP protocols are the best-known protocols.

	 5.	 The session layer: Handles sessions between endpoints.

	 6.	 The presentation layer: Handles delivery and formatting.

	 7.	 The application layer: Provides network services to end-user applications.

Figure 1-1 shows the seven layers according to the OSI model.

https://openwrt.org/
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Figure 1-2 shows the three layers that the Linux Kernel Networking stack handles. The L2, L3, and L4 layers 
in this figure correspond to the data link layer, the network layer, and the transport layer in the seven-layer model, 
respectively. The essence of the Linux kernel stack is passing incoming packets from L2 (the network device drivers)  
to L3 (the network layer, usually IPv4 or IPv6) and then to L4 (the transport layer, where you have, for example, 
TCP or UDP listening sockets) if they are for local delivery, or back to L2 for transmission when the packets should 
be forwarded. Outgoing packets that were locally generated are passed from L4 to L3 and then to L2 for actual 
transmission by the network device driver. Along this way there are many stages, and many things can happen.  
For example:

The packet can be changed due to protocol rules (for example, due to an IPsec  •	
rule or to a NAT rule).

The packet can be discarded.•	

The packet can cause an error message to be sent.•	

The packet can be fragmented.•	

The packet can be defragmented.•	

A checksum should be calculated for the packet.•	

Figure 1-1.  The OSI seven-layer model
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The kernel does not handle any layer above L4; those layers (the session, presentation, and application layers) are 
handled solely by userspace applications. The physical layer (L1) is also not handled by the Linux kernel.

If you feel overwhelmed, don’t worry. You will learn a lot more about everything described here in a lot more 
depth in the following chapters.

The Network Device
The lower layer, Layer 2 (L2), as seen in Figure 1-2, is the link layer. The network device drivers reside in this layer. This book 
is not about network device driver development, because it focuses on the Linux kernel networking stack. I will briefly 
describe here the net_device structure, which represents a network device, and some of the concepts that are related to 
it. You should have a basic familiarity with the network device structure in order to better understand the network stack. 
Parameters of the device—like the size of MTU, which is typically 1,500 bytes for Ethernet devices—determine whether a 
packet should be fragmented. The net_device is a very large structure, consisting of device parameters like these:

The IRQ number of the device.•	

The MTU of the device.•	

The MAC address of the device.•	

The name of the device (like •	 eth0 or eth1).

The flags of the device (for example, whether it is up or down).•	

A list of multicast addresses associated with the device.•	

The •	 promiscuity counter (discussed later in this section).

The features that the device supports (like GSO or GRO offloading).•	

An object of network device callbacks (•	 net_device_ops object), which consists of function 
pointers, such as for opening and stopping a device, starting to transmit, changing the MTU of 
the network device, and more.

An object of •	 ethtool callbacks, which supports getting information about the device by 
running the command-line ethtool utility.

The number of Tx and Rx queues, when the device supports multiqueues.•	

The timestamp of the last transmit of a packet on this device.•	

The timestamp of the last reception of a packet on this device.•	

Figure 1-2.  The Linux Kernel Networking layers
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The following is the definition of some of the members of the net_device structure to give you a first impression:
 
struct net_device {
    unsigned int            irq;            /* device IRQ number    */
    . . .
    const struct net_device_ops *netdev_ops;
    . . .
    unsigned int            mtu;
    . . .
    unsigned int            promiscuity;
    . . .
    unsigned char           *dev_addr;
    . . .
};
(include/linux/netdevice.h)
 

Appendix A of the book includes a very detailed description of the net_device structure and most of its members. 
In that appendix you can see the irq, mtu, and other members mentioned earlier in this chapter.

When the promiscuity counter is larger than 0, the network stack does not discard packets that are not destined 
to the local host. This is used, for example, by packet analyzers (“sniffers”) like tcpdump and wireshark, which open 
raw sockets in userspace and want to receive also this type of traffic. It is a counter and not a Boolean in order to 
enable opening several sniffers concurrently: opening each such sniffer increments the counter by 1. When a sniffer is 
closed, the promiscuity counter is decremented by 1; and if it reaches 0, there are no more sniffers running, and the 
device exits the promiscuous mode.

When browsing kernel networking core source code, in various places you will probably encounter the term 
NAPI (New API), which is a feature that most network device drivers implement nowadays. You should know what it is 
and why network device drivers use it.

 New API (NAPI) in Network Devices
The old network device drivers worked in interrupt-driven mode, which means that for every received packet, there was 
an interrupt. This proved to be inefficient in terms of performance under high load traffic. A new software technique 
was developed, called New API (NAPI), which is now supported on almost all Linux network device drivers. NAPI was 
first introduced in the 2.5/2.6 kernel and was backported to the 2.4.20 kernel. With NAPI, under high load, the network 
device driver works in polling mode and not in interrupt-driven mode. This means that each received packet does not 
trigger an interrupt. Instead the packets are buffered in the driver, and the kernel polls the driver from time to time to 
fetch the packets. Using NAPI improves performance under high load. For sockets applications that need the lowest 
possible latency and are willing to pay a cost of higher CPU utilization, Linux has added a capability for Busy Polling on 
Sockets from kernel 3.11 and later. This technology is discussed in Chapter 14, in the “Busy Poll Sockets” section.

With your new knowledge about network devices under your belt, it is time to learn about the traversal of a 
packet inside the Linux Kernel Networking stack.

Receiving and Transmitting Packets
The main tasks of the network device driver are these:

To receive packets destined to the local host and to pass them to the network layer (L3), and •	
from there to the transport layer (L4)

To transmit outgoing packets generated on the local host and sent outside, or to forward •	
packets that were received on the local host
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For each packet, incoming or outgoing, a lookup in the routing subsystem is performed. The decision about 
whether a packet should be forwarded and on which interface it should be sent is done based on the result of 
the lookup in the routing subsystem, which I describe in depth in Chapters 5 and 6. The lookup in the routing 
subsystem is not the only factor that determines the traversal of a packet in the network stack. For example, 
there are five points in the network stack where callbacks of the netfilter subsystem (often referred to as netfilter 
hooks) can be registered. The first netfilter hook point of a received packet is NF_INET_PRE_ROUTING, before a 
routing lookup was performed. When a packet is handled by such a callback, which is invoked by a macro named 
NF_HOOK(), it will continue its traversal in the networking stack according to the result of this callback (also called 
verdict). For example, if the verdict is NF_DROP, the packet will be discarded, and if the verdict is NF_ACCEPT, 
the packet will continue its traversal as usual. Netfilter hooks callbacks are registered by the nf_register_hook() 
method or by the nf_register_hooks() method, and you will encounter these invocations, for example, in 
various netfilter kernel modules. The kernel netfilter subsystem is the infrastructure for the well-known iptables 
userspace package. Chapter 9 describes the netfilter subsystem and the netfilter hooks, along with the connection 
tracking layer of netfilter.

Besides the netfilter hooks, the packet traversal can be influenced by the IPsec subsystem—for example, when it 
matches a configured IPsec policy. IPsec provides a network layer security solution, and it uses the ESP and the AH 
protocols. IPsec is mandatory according to IPv6 specification and optional in IPv4, though most operating systems, 
including Linux, implemented IPsec also in IPv4. IPsec has two modes of operation: transport mode and tunnel 
mode. It is used as a basis for many virtual private network (VPN) solutions, though there are also non-IPsec VPN 
solutions. You learn about the IPsec subsystem and about IPsec policies in Chapter 10, which also discusses the 
problems that occur when working with IPsec through a NAT, and the IPsec NAT traversal solution.

Still other factors can influence the traversal of the packet—for example, the value of the ttl field in the IPv4 
header of a packet being forwarded. This ttl is decremented by 1 in each forwarding device. When it reaches 0, the 
packet is discarded, and an ICMPv4 message of “Time Exceeded” with “TTL Count Exceeded” code is sent back. This 
is done to avoid an endless journey of a forwarded packet because of some error. Moreover, each time a packet is 
forwarded successfully and the ttl is decremented by 1, the checksum of the IPv4 header should be recalculated, as 
its value depends on the IPv4 header, and the ttl is one of the IPv4 header members. Chapter 4, which deals with the 
IPv4 subsystem, talks more about this. In IPv6 there is something similar, but the hop counter in the IPv6 header is 
named hop_limit and not ttl. You will learn about this in Chapter 8, which deals with the IPv6 subsystem. You will 
also learn about ICMP in IPv4 and in IPv6 in Chapter 3, which deals with ICMP.

A large part of the book discusses the traversal of a packet in the networking stack, whether it is in the receive 
path (Rx path, also known as ingress traffic) or the transmit path (Tx path, also known as egress traffic). This traversal 
is complex and has many variations: large packets could be fragmented before they are sent; on the other hand, 
fragmented packets should be assembled (discussed in Chapter 4). Packets of different types are handled differently. 
For example, multicast packets are packets that can be processed by a group of hosts (as opposed to unicast packets, 
which are destined to a specified host). Multicast can be used, for example, in applications of streaming media in 
order to consume less network resources. Handling IPv4 multicast traffic is discussed in Chapter 4. You will also learn 
how a host joins and leaves a multicast group; in IPv4, the Internet Group Management Protocol (IGMP) protocol 
handles multicast membership. Yet there are cases when the host is configured as a multicast router, and multicast 
traffic should be forwarded and not delivered to the local host. These cases are more complex as they should be 
handled in conjunction with a userspace multicast routing daemon, like the pimd daemon or the mrouted daemon. 
These cases, which are called multicast routing, are discussed in Chapter 6.

To better understand the packet traversal, you must learn about how a packet is represented in the Linux kernel. 
The sk_buff structure represents an incoming or outgoing packet, including its headers (include/linux/skbuff.h). 
I refer to an sk_buff object as SKB in many places along this book, as this is the common way to denote sk_buff 
objects (SKB stands for socket buffer). The socket buffer (sk_buff) structure is a large structure—I will only discuss a 
few members of this structure in this chapter.
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The Socket Buffer
The sk_buff structure is described in depth in Appendix A. I recommend referring to this appendix when you need 
to know more about one of the SKB members or how to use the SKB API. Note that when working with SKBs, you 
must adhere to the SKB API. Thus, for example, when you want to advance the skb->data pointer, you do not do 
it directly, but with the skb_pull_inline() method or the skb_pull() method (you will see an example of this 
later in this section). And if you want to fetch the L4 header (transport header) from an SKB, you do it by calling the 
skb_transport_header() method. Likewise if you want to fetch the L3 header (network header), you do it by calling 
the skb_network_header() method, and if you want to fetch the L2 header (MAC header), you do it by calling the 
skb_mac_header() method. These three methods get an SKB as a single parameter.

Here is the (partial) definition of the sk_buff structure:
 
struct sk_buff {
    . . .
    struct sock             *sk;
    struct net_device       *dev;
    . . .
    __u8                    pkt_type:3,
    . . .
    __be16                  protocol;
    . . .
    sk_buff_data_t          tail;
    sk_buff_data_t          end;
    unsigned char           *head,
                            *data;
 
    sk_buff_data_t          transport_header;
    sk_buff_data_t          network_header;
    sk_buff_data_t          mac_header;
    . . .
 
};
(include/linux/skbuff.h)
 

When a packet is received on the wire, an SKB is allocated by the network device driver, typically by  
calling the netdev_alloc_skb() method (or the dev_alloc_skb() method, which is a legacy method that calls the 
netdev_alloc_skb() method with the first parameter as NULL). There are cases along the packet traversal where a  
packet can be discarded, and this is done by calling kfree_skb() or dev_kfree_skb(), both of which get as a single 
parameter a pointer to an SKB. Some members of the SKB are determined in the link layer (L2). For example, the 
pkt_type is determined by the eth_type_trans() method, according to the destination Ethernet address. If this 
address is a multicast address, the pkt_type will be set to PACKET_MULTICAST; if this address is a broadcast address, 
the pkt_type will be set to PACKET_BROADCAST; and if this address is the address of the local host, the pkt_type 
will be set to PACKET_HOST. Most Ethernet network drivers call the eth_type_trans() method in their Rx path. 
The eth_type_trans() method also sets the protocol field of the SKB according to the ethertype of the Ethernet 
header. The eth_type_trans() method also advances the data pointer of the SKB by 14 (ETH_HLEN), which is the size 
of an Ethernet header, by calling the skb_pull_inline() method. The reason for this is that the skb->data should  
point to the header of the layer in which it currently resides. When the packet was in L2, in the network device driver 
Rx path, skb->data pointed to the L2 (Ethernet) header; now that the packet is going to be moved to Layer 3, 
immediately after the call to the eth_type_trans() method, skb->data should point to the network (L3) header, 
which starts immediately after the Ethernet header (see Figure 1-3).
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The SKB includes the packet headers (L2, L3, and L4 headers) and the packet payload. In the packet traversal in 
the network stack, a header can be added or removed. For example, for an IPv4 packet generated locally by a socket 
and transmitted outside, the network layer (IPv4) adds an IPv4 header to the SKB. The IPv4 header size is 20 bytes as 
a minimum. When adding IP options, the IPv4 header size can be up to 60 bytes. IP options are described in Chapter 4,  
which discusses the IPv4 protocol implementation. Figure 1-3 shows an example of an IPv4 packet with L2, L3, and 
L4 headers. The example in Figure 1-3 is a UDPv4 packet. First is the Ethernet header (L2) of 14 bytes. Then there’s the 
IPv4 header (L3) of a minimal size of 20 bytes up to 60 bytes, and after that is the UDPv4 header (L4), of 8 bytes. Then 
comes the payload of the packet.

Each SKB has a dev member, which is an instance of the net_device structure. For incoming packets, it is the 
incoming network device, and for outgoing packets it is the outgoing network device. The network device attached to 
the SKB is sometimes needed to fetch information which might influence the traversal of the SKB in the Linux Kernel 
Networking stack. For example, the MTU of the network device may require fragmentation, as mentioned earlier. Each 
transmitted SKB has a sock object associated to it (sk). If the packet is a forwarded packet, then sk is NULL, because it 
was not generated on the local host.

Each received packet should be handled by a matching network layer protocol handler. For example, an IPv4 
packet should be handled by the ip_rcv() method, and an IPv6 packet should be handled by the ipv6_rcv() method. 
You will learn about the registration of the IPv4 protocol handler with the dev_add_pack() method in Chapter 4, and 
about the registration of the IPv6 protocol handler also with the dev_add_pack() method in Chapter 8. Moreover,  
I will follow the traversal of incoming and outgoing packets both in IPv4 and in IPv6. For example, in the ip_rcv() 
method, mostly sanity checks are performed, and if everything is fine the packet proceeds to an NF_INET_PRE_ROUTING 
hook callback, if such a callback is registered, and the next step, if it was not discarded by such a hook, is the  
ip_rcv_finish() method, where a lookup in the routing subsystem is performed. A lookup in the routing subsystem 
builds a destination cache entry (dst_entry object). You will learn about the dst_entry and about the input and 
output callback methods associated with it in Chapters 5 and 6, which describe the IPv4 routing subsystem.

In IPv4 there is a problem of limited address space, as an IPv4 address is only 32 bit. Organizations use NAT 
(discussed in Chapter 9) to provide local addresses to their hosts, but the IPv4 address space still diminishes over the 
years. One of the main reasons for developing the IPv6 protocol was that its address space is huge compared to the 
IPv4 address space, because the IPv6 address length is 128 bit. But the IPv6 protocol is not only about a larger address 
space. The IPv6 protocol includes many changes and additions as a result of the experience gained over the years with 
the IPv4 protocol. For example, the IPv6 header has a fixed length of 40 bytes as opposed to the IPv4 header, which 
is variable in length (from a minimum of 20 bytes to 60 bytes) due to IP options, which can expand it. Processing IP 
options in IPv4 is complex and quite heavy in terms of performance. On the other hand, in IPv6 you cannot expand 
the IPv6 header at all (it is fixed in length, as mentioned). Instead there is a mechanism of extension headers which 
is much more efficient than the IP options in IPv4 in terms of performance. Another notable change is with the ICMP 
protocol; in IPv4 it was used only for error reporting and for informative messages. In IPv6, the ICMP protocol is used 
for many other purposes: for Neighbour Discovery (ND), for Multicast Listener Discovery (MLD), and more. Chapter 
3 is dedicated to ICMP (both in IPv4 and IPv6). The IPv6 Neighbour Discovery protocol is described in Chapter 7, and 
the MLD protocol is discussed in Chapter 8, which deals with the IPv6 subsystem.

As mentioned earlier, received packets are passed by the network device driver to the network layer, which is IPv4 
or IPv6. If the packets are for local delivery, they will be delivered to the transport layer (L4) for handling by listening 
sockets. The most common transport protocols are UDP and TCP, discussed in Chapter 11, which discusses Layer 4, 
the transport layer. This chapter also covers two newer transport protocols, the Stream Control Transmission Protocol 
(SCTP) and the Datagram Congestion Control Protocol (DCCP). Both SCTP and DCCP adopted some TCP features 
and some UDP features, as you will find out. The SCTP protocol is known to be used in conjunction with the Long 
Term Evolution (LTE) protocol; the DCCP has not been tested so far in larger-scale Internet setups.

Figure 1-3.  An IPv4 packet



Chapter 1 ■ Introduction

9

Packets generated by the local host are created by Layer 4 sockets—for example, by TCP sockets or by UDP 
sockets. They are created by a userspace application with the Sockets API. There are two main types of sockets: 
datagram sockets and stream sockets. These two types of sockets and the POSIX-based socket API are also discussed 
in Chapter 11, where you will also learn about the kernel implementation of sockets (struct socket, which provides 
an interface to userspace, and struct sock, which provides an interface to Layer 3). The packets generated locally are 
passed to the network layer, L3 (described in Chapter 4, in the section “Sending IPv4 Packets”) and then are passed 
to the network device driver (L2) for transmission. There are cases when fragmentation takes place in Layer 3, the 
network layer, and this is also discussed in chapter 4.

Every Layer 2 network interface has an L2 address that identifies it. In the case of Ethernet, this is a 48-bit address, 
the MAC address which is assigned for each Ethernet network interface, provided by the manufacturer, and said 
to be unique (though you should consider that the MAC address for most network interfaces can be changed by 
userspace commands like ifconfig or ip). Each Ethernet packet starts with an Ethernet header, which is 14 bytes 
long. It consists of the Ethernet type (2 bytes), the source MAC address (6 bytes), and the destination MAC address 
(6 bytes). The Ethernet type value is 0x0800, for example, for IPv4, or 0x86DD for IPv6. For each outgoing packet, an 
Ethernet header should be built. When a userspace socket sends a packet, it specifies its destination address (it can be 
an IPv4 or an IPv6 address). This is not enough to build the packet, as the destination MAC address should be known. 
Finding the MAC address of a host based on its IP address is the task of the neighbouring subsystem, discussed in 
Chapter 7. Neighbor Discovery is handled by the ARP protocol in IPv4 and by the NDISC protocol in IPv6. These 
protocols are different: the ARP protocol relies on sending broadcast requests, whereas the NDISC protocol relies on 
sending ICMPv6 requests, which are in fact multicast packets. Both the ARP protocol and the NDSIC protocol are also 
discussed in Chapter 7.

The network stack should communicate with the userspace for tasks such as adding or deleting routes, configuring 
neighboring tables, setting IPsec policies and states, and more. The communication between userspace and the 
kernel is done with netlink sockets, described in Chapter 2. The iproute2 userspace package, based on netlink sockets, 
is also discussed in Chapter 2, as well as the generic netlink sockets and their advantages.

The wireless subsystem is discussed in Chapter 12. This subsystem is maintained separately, as mentioned earlier; 
it has a git tree of its own and a mailing list of its own. There are some unique features in the wireless stack that do not 
exist in the ordinary network stack, such as power save mode (which is when a station or an access point enters a sleep 
state). The Linux wireless subsystem also supports special topologies, like Mesh network, ad-hoc  network, and more. 
These topologies sometimes require using special features. For example, Mesh networking uses a routing protocol 
called Hybrid Wireless Mesh Protocol (HWMP), discussed in Chapter 12. This protocol works in Layer 2 and deals with 
MAC addresses, as opposed to the IPV4 routing protocol. Chapter 12 also discusses the mac80211 framework, which is 
used by wireless device drivers. Another very interesting feature of the wireless subsystem is the block acknowledgment 
mechanism in IEEE 802.11n, also discussed in Chapter 12.

In recent years InfiniBand technology has gained in popularity with enterprise datacenters. InfiniBand is based 
on a technology called Remote Direct Memory Access (RDMA). The RDMA API was introduced to the Linux kernel in 
version 2.6.11. In Chapter 13 you will find a good explanation about the Linux Infiniband implementation, the RDMA 
API, and its fundamental data structures.

Virtualization solutions are also becoming popular, especially due to projects like Xen or KVM. Also hardware 
improvements, like VT-x for Intel processors or AMD-V for AMD processors, have made virtualization more efficient. 
There is another form of virtualization, which may be less known but has its own advantages. This virtualization is 
based on a different approach: process virtualization. It is implemented in Linux by namespaces. There is currently 
support for six namespaces in Linux, and there could be more in the future. The namespaces feature is already used 
by projects like Linux Containers (http://lxc.sourceforge.net/) and Checkpoint/Restore In Userspace (CRIU).  
In order to support namespaces, two system calls were added to the kernel: unshare() and setns(); and six new flags 
were added to the CLONE_* flags, one for each type of namespace. I discuss namespaces and network namespaces 
in particular in Chapter 14. Chapter 14 also deals with the Bluetooth subsystem and gives a brief overview about 
the PCI subsystem, because many network device drivers are PCI devices. I do not delve into the PCI subsystem 
internals, because that is out of the scope of this book. Another interesting subsystem discussed in Chapter 14 is 
the IEEE 8012.15.4, which is for low-power and low-cost devices. These devices are sometimes mentioned in 
conjunction with the Internet of Things (IoT) concept, which involves connecting IP-enabled embedded devices 

http://lxc.sourceforge.net/
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to IP networks. It turns out that using IPv6 for these devices might be a good idea. This solution is termed IPv6 over 
Low Power Wireless Personal Area Networks (6LoWPAN). It has its own challenges, such as expanding the IPv6 
Neighbour Discovery protocol to be suitable for such devices, which occasionally enter sleep mode (as opposed to 
ordinary IPv6 networks). These changes to the IPv6 Neighbour Discovery protocol have not been implemented yet, 
but it is interesting to consider the theory behind these changes. Apart from this, in Chapter 14 there are sections 
about other advanced topics like NFC, cgroups, Android, and more.

To better understand the Linux Kernel Network stack or participate in its development, you must be familiar with 
how its development is handled.

The Linux Kernel Networking Development Model
The kernel networking subsystem is very complex, and its development is quite dynamic. Like any Linux kernel 
subsystem, the development is done by git patches that are sent over a mailing list (sometimes over more than one 
mailing list) and that are eventually accepted or rejected by the maintainer of that subsystem. Learning about the Kernel 
Networking Development Model is important for many reasons. To better understand the code, to debug and solve 
problems in Linux Kernel Networking–based projects, to implement performance improvements and optimizations 
patches, or to implement new features, in many cases you need to learn many things such as the following:

How to apply a patch•	

How to read and interpret a patch•	

How to find which patches could cause a given problem•	

How to revert a patch•	

How to find which patches are relevant to some feature•	

How to adjust a project to an older kernel version (backporting)•	

How to adjust a project to a newer kernel version (upgrading)•	

How to clone a •	 git tree

How to rebase a •	 git tree

How to find out in which kernel version a specified •	 git patch was applied

There are cases when you need to work with new features that were just added, and for this you need to know 
how to work with the latest, bleeding-edge tree. And there are cases when you encounter some bug or you want to add 
some new feature to the network stack, and you need to prepare a patch and submit it. The Linux Kernel Networking 
subsystem, like the other parts of the kernel, is managed by git, a source code management (SCM) system, developed 
by Linus Torvalds. If you intend to send patches for the mainline kernel, or if your project is managed by git, you must 
learn to use the git tool.

Sometimes you may even need to install a git server for development of local projects. Even if you are not 
intending to send any patches, you can use the git tool to retrieve a lot of information about the code and about 
the history of the development of the code. There are many available resources on the web about git; I recommend 
the free online book Pro Git, by Scott Chacon, available at http://git-scm.com/book. If you intend to submit your 
patches to the mainline, you must adhere to some strict rules for writing, checking, and submitting patches so that 
your patch will be applied. Your patch should conform to the kernel coding style and should be tested. You also 
need to be patient, as sometimes even a trivial patch can be applied only after several days. I recommend learning to 
configure a host for using the git send-email command to submit patches (though submitting patches can be done 
with other mail clients, even with the popular Gmail webmail client). There are plenty of guides on the web about how 
to use git to prepare and send kernel patches. I also recommend reading Documentation/SubmittingPatches and 
Documentation/CodingStyle in the kernel tree before submitting your first patch.

http://git-scm.com/book
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And I recommended using the following PERL scripts:

•	 scripts/checkpatch.pl to check the correctness of a patch

•	 scripts/get_maintainer.pl to find out to which maintainers a patch should be sent

One of the most important resources of information is the Kernel Networking Development mailing list, 
netdev: netdev@vger.kernel.org, archived at www.spinics.net/lists/netdev. This is a high volume list. Most 
of the posts are patches and Request for Comments (RFCs) for new code, along with comments and discussions 
about patches. This mailing list handles the Linux Kernel Networking stack and network device drivers, except 
for cases when dealing with a subsystem that has a specific mailing list and a specific git repository (such as the 
wireless subsystem, discussed in Chapter 12). Development of the iproute2 and the ethtool userspace packages 
is also handled in the netdev mailing list. It should be mentioned here that not every networking subsystem has 
a mailing list of its own; for example, the IPsec subsystem (discussed in Chapter 10), does not have a mailing list, 
nor does the IEEE 802.15.4 subsystem (Chapter 14). Some networking subsystems have their own specific git tree, 
maintainer, and mailing list, such as the wireless mailing list and the Bluetooth mailing list. From time to time 
the maintainers of these subsystems send a pull request for their git trees over the netdev mailing list. Another 
source of information is Documentation/networking in the kernel tree. It has a lot of information in many files 
about various networking topics, but keep in mind that the file that you find there is not always up to date.

The Linux Kernel Networking subsystem is maintained in two git repositories. Patches and RFCs are sent to the 
netdev mailing list for both repositories. Here are the two git trees:

•	 net: http://git.kernel.org/?p=linux/kernel/git/davem/net.git: for fixes to existing code 
already in the mainline tree

•	 net-next: http://git.kernel.org/?p=linux/kernel/git/davem/net-next.git: new code for 
the future kernel release

From time to time the maintainer of the networking subsystem, David Miller, sends pull requests for mainline 
for these git trees to Linus over the LKML. You should be aware that there are periods of time, during merge with 
mainline, when the net-next git tree is closed, and no patches should be sent. An announcement about when this 
period starts and another one when it ends is sent over the netdev mailing list.

Note■■  T his book is based on kernel 3.9. All the code snippets are from this version, unless explicitly specified otherwise. 
The kernel tree is available from www.kernel.org as a tar file. Alternatively, you can download a kernel git tree with git 
clone (for example, using the URLs of the git net tree or the git net-next tree, which were mentioned earlier, or other 
git kernel repositories). There are plenty of guides on the Internet covering how to configure, build, and boot a Linux kernel. 
You can also browse various kernel versions online at http://lxr.free-electrons.com/. This website lets you follow 
where each method and each variable is referenced; moreover, you can navigate easily with a click of a mouse to previous 
versions of the Linux kernel. In case you are working with your own version of a Linux kernel tree, where some changes 
were made locally, you can locally install and configure a Linux Cross-Referencer server (LXR) on a local Linux machine.  
See http://lxr.sourceforge.net/en/index.shtml.

http://www.spinics.net/lists/netdev
http://git.kernel.org/?p=linux/kernel/git/davem/net.git
http://git.kernel.org/?p=linux/kernel/git/davem/net-next.git
http://www.kernel.org/
http://lxr.free-electrons.com/
http://lxr.sourceforge.net/en/index.shtml
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Summary
This chapter is a short introduction to the Linux Kernel Networking subsystem. I described the benefits of using Linux, 
a popular open source project, and the Kernel Networking Development Model. I also described the network device 
structure (net_device) and the socket buffer structure (sk_buff), which are the two most fundamental structures 
of the networking subsystem. You should refer to Appendix A for a detailed description of almost all the members of 
these structures and their uses. This chapter covered other important topics related to the traversal of a packet in the 
kernel networking stack, such as the lookup in the routing subsystem, fragmentation and defragmentation, protocol 
handler registration, and more. Some of these protocols are discussed in later chapters, including IPv4, IPv6, ICMP4 
and ICMP6, ARP, and Neighbour Discovery. Several important subsystems, including the wireless subsystem, the 
Bluetooth subsystem, and the IEEE 812.5.4 subsystem, are also covered in later chapters. Chapter 2 starts the journey 
in the kernel network stack with netlink sockets, which provide a way for bidirectional communication between the 
userspace and the kernel, and which are talked about in several other chapters.
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Chapter 2

Netlink Sockets

Chapter 1 discusses the roles of the Linux kernel networking subsystem and the three layers in which it operates.  
The netlink socket interface appeared first in the 2.2 Linux kernel as AF_NETLINK socket. It was created as a more 
flexible alternative to the awkward IOCTL communication method between userspace processes and the kernel.  
The IOCTL handlers cannot send asynchronous messages to userspace from the kernel, whereas netlink sockets can. 
In order to use IOCTL, there is another level of complexity: you need to define IOCTL numbers. The operation model 
of netlink is quite simple: you open and register a netlink socket in userspace using the socket API, and this netlink 
socket handles bidirectional communication with a kernel netlink socket, usually sending messages to configure 
various system settings and getting responses back from the kernel.

This chapter describes the netlink protocol implementation and API and discusses its advantages and 
drawbacks. I also talk about the new generic netlink protocol, discuss its implementation and its advantages, and give 
some illustrative examples using the libnl library. I conclude with a discussion of the socket monitoring interface.

The Netlink Family
The netlink protocol is a socket-based Inter Process Communication (IPC) mechanism, based on RFC 3549,  
“Linux Netlink as an IP Services Protocol.” It provides a bidirectional communication channel between userspace and 
the kernel or among some parts of the kernel itself. Netlink is an extension of the standard socket implementation. 
The netlink protocol implementation resides mostly under net/netlink, where you will find the following four files:

•	 af_netlink.c

•	 af_netlink.h

•	 genetlink.c

•	 diag.c

Apart from them, there are a few header files. In fact, the af_netlink module is the most commonly used; it provides the 
netlink kernel socket API, whereas the genetlink module provides a new generic netlink API with which it should be easier 
to create netlink messages. The diag monitoring interface module (diag.c) provides an API to dump and to get information 
about the netlink sockets. I discuss the diag module later in this chapter in the section “Socket monitoring interface.”

I should mention here that theoretically netlink sockets can be used to communicate between two userspace 
processes, or more (including sending multicast messages), though this is usually not used, and was not the 
original goal of netlink sockets. The UNIX domain sockets provide an API for IPC, and they are widely used for 
communication between two userspace processes.

Netlink has some advantages over other ways of communication between userspace and the kernel. For example, 
there is no need for polling when working with netlink sockets. A userspace application opens a socket and then calls 
recvmsg(), and enters a blocking state if no messages are sent from the kernel; see, for example, the rtnl_listen() 
method of the iproute2 package (lib/libnetlink.c). Another advantage is that the kernel can be the initiator of 
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sending asynchronous messages to userspace, without any need for the userspace to trigger any action (for example, 
by calling some IOCTL or by writing to some sysfs entry). Yet another advantage is that netlink sockets support 
multicast transmission.

You create netlink sockets from userspace with the socket() system call. The netlink sockets can be SOCK_RAW 
sockets or SOCK_DGRAM sockets.

Netlink sockets can be created in the kernel or in userspace; kernel netlink sockets are created by the 
 netlink_kernel_create() method; and userspace netlink sockets are created by the socket() system call. Creating 
a netlink socket from userspace or from the kernel creates a netlink_sock object. When the socket is created from 
userspace, it is handled by the netlink_create() method. When the socket is created in the kernel, it is handled by 
__netlink_kernel_create(); this method sets the NETLINK_KERNEL_SOCKET flag. Eventually both methods call 
__netlink_create() to allocate a socket in the common way (by calling the sk_alloc() method) and initialize it. 
Figure 2-1 shows how a netlink socket is created in the kernel and in userspace.

Figure 2-1.  Creating a netlink socket in the kernel and in userspace

You can create a netlink socket from userspace in a very similar way to ordinary BSD-style sockets, like this, for 
example: socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE). Then you should create a sockaddr_nl object (instance 
of the netlink socket address structure), initialize it, and use the standard BSD sockets API (such as bind(), sendmsg(), 
recvmsg(), and so on). The sockaddr_nl structure represents a netlink socket address in userspace or in the kernel.

Netlink socket libraries provide a convenient API to netlink sockets. I discuss them in the next section.

Netlink Sockets Libraries
I recommend you use the libnl API to develop userspace applications, which send or receive data by netlink sockets. 
The libnl package is a collection of libraries providing APIs to the netlink protocol-based Linux kernel interfaces. 
The iproute2 package uses the libnl library, as mentioned. Besides the core library (libnl), it includes support for the 
generic netlink family (libnl-genl), routing family (libnl-route), and netfilter family (libnl-nf). The package was 
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developed mostly by Thomas Graf (www.infradead.org/~tgr/libnl/). I should mention here also that there is a 
library called libmnl, which is a minimalistic userspace library oriented to netlink developers. The libmnl library 
was mostly written by Pablo Neira Ayuso, with contributions from Jozsef Kadlecsik and Jan Engelhardt.  
(http://netfilter.org/projects/libmnl/).

The sockaddr_nl Structure
Let’s take a look at the sockaddr_nl structure, which represents a netlink socket address:
 
struct sockaddr_nl {
    __kernel_sa_family_t    nl_family;    /* AF_NETLINK                */
    unsigned short          nl_pad;       /* zero                      */
    __u32                   nl_pid;       /* port ID                   */
    __u32                   nl_groups;    /* multicast groups mask     */
};
 

(include/uapi/linux/netlink.h)

•	 nl_family: Should always be AF_NETLINK.

•	 nl_pad: Should always be 0.

•	 nl_pid: The unicast address of a netlink socket. For kernel netlink sockets, it should be 0. 
Userspace applications sometimes set the nl_pid to be their process id (pid). In a userspace 
application, when you set nl_pid explicitly to 0, or don’t set it at all, and afterwards call 
bind(), the kernel method netlink_autobind() assigns a value to nl_pid. It tries to assign 
the process id of the current thread.  If you’re creating two sockets in userspace, then you are 
responsible that their nl_pids are unique in case you don't call bind. Netlink sockets are not 
used only for networking; other subsystems, such as SELinux, audit, uevent, and others, use 
netlink sockets. The rtnelink sockets are netlink sockets specifically used for networking; they 
are used for routing messages, neighbouring messages, link messages, and more networking 
subsystem messages.

•	 nl_groups: The multicast group (or multicast group mask).

The next section discusses the iproute2 and the older net-tools packages. The iproute2 package is based upon 
netlink sockets, and you’ll see an example of using netlink sockets in iproute2 in the section “Adding and deleting a 
routing entry in a routing table”, later in this chapter. I mention the net-tools package, which is older and might be 
deprecated in the future, to emphasize that as an alternative to iproute2, it has less power and less abilities.

Userspace Packages for Controlling TCP/IP Networking
There are two userspace packages for controlling TCP/IP networking and handling network devices: net-tools and 
iproute2. The iproute2 package includes commands like the following: 

•	 ip: For management of network tables and network interfaces

•	 tc: For traffic control management

•	 ss: For dumping socket statistics

•	 lnstat: For dumping linux network statistics

•	 bridge: For management of bridge addresses and devices

http://www.infradead.org/~tgr/libnl/
http://netfilter.org/projects/libmnl/
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The iproute2 package is based mostly on sending requests to the kernel from userspace and getting replies back 
over netlink sockets. There are a few exceptions where IOCTLs are used in iproute2. For example, the ip tuntap 
command uses IOCTLs to add/remove a TUN/TAP device. If you look at the TUN/TAP software driver code, you’ll 
find that it defines some IOCTL handlers, but it does not use the rtnetlink sockets. The net-tools package is based on 
IOCTLs and includes known commands like these:

•	 ifconifg

•	 arp

•	 route

•	 netstat

•	 hostname

•	 rarp

Some of the advanced functionalities of the iproute2 package are not available in the net-tools package.
The next section discusses kernel netlink sockets—the core engine of handling communication between 

userspace and the kernel by exchanging netlink messages of different types. Learning about kernel netlink sockets is 
essential for understanding the interface that the netlink layer provides to userspace.

Kernel Netlink Sockets 
You create several netlink sockets in the kernel networking stack. Each kernel socket handles messages of different 
types: so for example, the netlink socket, which should handle NETLINK_ROUTE messages, is created in 
rtnetlink_net_init():
 
static int __net_init rtnetlink_net_init(struct net *net) {
    ...
    struct netlink_kernel_cfg cfg = {
        .groups    = RTNLGRP_MAX,
        .input        = rtnetlink_rcv,
        .cb_mutex    = &rtnl_mutex,
        .flags        = NL_CFG_F_NONROOT_RECV,
    };
 
    sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
    ...
}
 

Note that the rtnetlink socket is aware of network namespaces; the network namespace object (struct net) 
contains a member named rtnl (rtnetlink socket). In the rtnetlink_net_init() method, after the rtnetlink socket 
was created by calling netlink_kernel_create(), it is assigned to the rtnl pointer of the corresponding network 
namespace object.
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Let’s look in netlink_kernel_create() prototype: 
 
struct sock *netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg)
 

The first parameter (•	 net) is the network namespace.

The second parameter is the netlink protocol (for example, NETLINK_ROUTE for rtnetlink •	
messages, or NETLINK_XFRM for IPsec or NETLINK_AUDIT for the audit subsystem). There 
are over 20 netlink protocols, but their number is limited by 32 (MAX_LINKS). This is one of 
the reasons for creating the generic netlink protocol, as you’ll see later in this chapter. The full 
list of netlink protocols is in include/uapi/linux/netlink.h.

The third parameter is a reference to •	 netlink_kernel_cfg, which consists of optional 
parameters for the netlink socket creation:
 
struct netlink_kernel_cfg {
    unsigned int    groups;
    unsigned int    flags;
    void        (*input)(struct sk_buff *skb);
    struct mutex    *cb_mutex;
    void        (*bind)(int group);
};
(include/uapi/linux/netlink.h)
 

The groups member is for specifying a multicast group (or a mask of multicast groups). It’s possible to join a 
multicast group by setting nl_groups of the sockaddr_nl object (you can also do this with the nl_join_groups() 
method of libnl). However, in this way you are limited to joining only 32 groups. Since kernel version 2.6.14,  
you can use the NETLINK_ADD_MEMBERSHIP/ NETLINK_DROP_MEMBERSHIP socket option to join/leave  
a multicast group, respectively. Using the socket option enables you to join a much higher number of groups.  
The nl_socket_add_memberships()/nl_socket_drop_membership() methods of libnl use this socket option.

The flags member can be NL_CFG_F_NONROOT_RECV or NL_CFG_F_NONROOT_SEND.
When CFG_F_NONROOT_RECV is set, a non-superuser can bind to a multicast group; in netlink_bind() there 

is the following code:   
 
static int netlink_bind(struct socket *sock, struct sockaddr *addr,
                         int addr_len)
 {
  ...
  if (nladdr->nl_groups) {
         if (!netlink_capable(sock, NL_CFG_F_NONROOT_RECV))
                         return -EPERM;
    }
 

For a non-superuser, if the NL_CFG_F_NONROOT_RECV is not set, then when binding to a multicast group the 
netlink_capable() method will return 0, and you get –EPRM error.

When the NL_CFG_F_NONROOT_SEND flag is set, a non-superuser is allowed to send multicasts.
The input member is for a callback; when the input member in netlink_kernel_cfg is NULL, the kernel socket 

won’t be able to receive data from userspace (sending data from the kernel to userspace is possible, though). For the 
rtnetlink kernel socket, the rtnetlink_rcv() method was declared to be the input callback; as a result, data sent from 
userspace over the rtnelink socket will be handled by the rtnetlink_rcv() callback.
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For uevent kernel events, you need only to send data from the kernel to userspace; so, in lib/kobject_uevent.c, 
you have an example of a netlink socket where the input callback is undefined:
 
static int uevent_net_init(struct net *net)
{
    struct uevent_sock *ue_sk;
    struct netlink_kernel_cfg cfg = {
        .groups    = 1,
        .flags    = NL_CFG_F_NONROOT_RECV,
    };
 
    ...
    ue_sk->sk = netlink_kernel_create(net, NETLINK_KOBJECT_UEVENT, &cfg);
    ...
}
(lib/kobject_uevent.c)
 

The mutex (cb_mutex) in the netlink_kernel_cfg object is optional; when not defining a mutex, you use the 
default one, cb_def_mutex (an instance of a mutex structure; see net/netlink/af_netlink.c). In fact, most netlink 
kernel sockets are created without defining a mutex in the netlink_kernel_cfg object. For example, the uevent 
kernel netlink socket (NETLINK_KOBJECT_UEVENT), mentioned earlier. Also, the audit kernel netlink socket 
(NETLINK_AUDIT) and other netlink sockets don’t define a mutex. The rtnetlink socket is an exception—it uses the 
rtnl_mutex. Also the generic netlink socket, discussed in the next section, defines a mutex of its own: genl_mutex.

The netlink_kernel_create() method makes an entry in a table named nl_table by calling the netlink_insert() 
method. Access to the nl_table is protected by a read write lock named nl_table_lock; lookup in this table is done by the 
netlink_lookup() method, specifying the protocol and the port id. Registration of a callback for a specified message type 
is done by rtnl_register(); there are several places in the networking kernel code where you register such callbacks. 
For example, in rtnetlink_init() you register callbacks for some messages, like RTM_NEWLINK (creating a new link), 
RTM_DELLINK (deleting a link), RTM_GETROUTE (dumping the route table), and more. In net/core/neighbour.c, you 
register callbacks for RTM_NEWNEIGH messages (creating a new neighbour), RTM_DELNEIGH (deleting a neighbour), 
RTM_GETNEIGHTBL message (dumping the neighbour table), and more. I discuss these actions in depth in  
Chapters 5 and 7. You also register callbacks to other types of messages in the FIB code (ip_fib_init()), in the multicast 
code (ip_mr_init()), in the IPv6 code, and in other places.

The first step you should take to work with a netlink kernel socket is to register it. Let’s take a look at the  
rtnl_register() method prototype:
 
extern void rtnl_register(int protocol, int msgtype,
                  rtnl_doit_func,
                  rtnl_dumpit_func,
                  rtnl_calcit_func);
 

The first parameter is the protocol family (when you don't aim at a specific protocol, it is PF_UNSPEC); you’ll 
find a list of all the protocol families in include/linux/socket.h.

The second parameter is the netlink message type, like RTM_NEWLINK or RTM_NEWNEIGH. These are 
private netlink message types which the rtnelink protocol added. The full list of message types is in  
include/uapi/linux/rtnetlink.h.

The last three parameters are callbacks: doit, dumpit, and calcit. The callbacks are the actions you want to 
perform for handling the message, and you usually specify only one callback.

The doit callback is for actions like addition/deletion/modification; the dumpit callback is for retrieving information, 
and the calcit callback is for calculation of buffer size. The rtnetlink module has a table named rtnl_msg_handlers. This 
table is indexed by protocol number. Each entry in the table is a table in itself, indexed by message type. Each element 
in the table is an instance of rtnl_link, which is a structure that consists of pointers for these three callbacks. When 
registering a callback with rtnl_register(), you add the specified callback to this table.
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Registering a callback is done like this, for example: rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, 
NULL, NULL) in net/core/rtnetlink.c. This adds rtnl_newlink as the doit callback for RTM_NEWLINK messages 
in the corresponding rtnl_msg_handlers entry.

Sending of rtnelink messages is done with rtmsg_ifinfo(). For example, in dev_open() you create a new link,  
so you call: rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); in the rtmsg_ifinfo() method, first the  
nlmsg_new() method is called to allocate an sk_buff with the proper size. Then two objects are created: the netlink 
message header (nlmsghdr) and an ifinfomsg object, which is located immediately after the netlink message header. 
These two objects are initialized by the rtnl_fill_ifinfo() method. Then rtnl_notify() is called to send the packet; 
sending the packet is actually done by the generic netlink method, nlmsg_notify() (in net/netlink/af_netlink.c). 
Figure 2-2 shows the stages of sending rtnelink messages with the rtmsg_ifinfo() method.

Figure 2-2.  Sending of rtnelink messages with the rtmsg_ifinfo() method

The next section is about netlink messages, which are exchanged between userspace and the kernel. A netlink 
message always starts with a netlink message header, so your first step in learning about netlink messages will be to 
study the netlink message header format.

The Netlink Message Header
A netlink message should obey a certain format, specified in RFC 3549, “Linux Netlink as an IP Services Protocol”, 
section 2.2, “Message Format.” A netlink message starts with a fixed size netlink header, and after it there is a payload. 
This section describes the Linux implementation of the netlink message header.

The netlink message header is defined by struct nlmsghdr in include/uapi/linux/netlink.h:
 
struct nlmsghdr
{
  __u32 nlmsg_len;
  __u16 nlmsg_type;
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  __u16 nlmsg_flags;
  __u32 nlmsg_seq;
  __u32 nlmsg_pid;
};
(include/uapi/linux/netlink.h)
 

Every netlink packet starts with a netlink message header, which is represented by struct nlmsghdr. The length 
of nlmsghdr is 16 bytes. It contains five fields:

•	 nlmsg_len is the length of the message including the header.

•	 nlmsg_type is the message type; there are four basic netlink message header types:

NLMSG_NOOP: No operation, message must be discarded.•	

NLMSG_ERROR: Error occurred.•	

NLMSG_DONE: A multipart message is terminated.•	

NLMSG_OVERRUN: Overrun notification: error, data was lost.•	

(include/uapi/linux/netlink.h)

However, families can add netlink message header types of their own. For example,  
the rtnetlink protocol family adds message header types such as RTM_NEWLINK,  
RTM_DELLINK, RTM_NEWROUTE, and a lot more (see include/uapi/linux/
rtnetlink.h). For a full list of the netlink message header types that were added by the 
rtnelink family with detailed explanation on each, see: man 7 rtnetlink. Note that 
message type values smaller than NLMSG_MIN_TYPE (0x10) are reserved for control 
messages and may not be used.

•	 nlmsg_flags field can be as follows:

NLM_F_REQUEST: When it’s a request message.•	

NLM_F_MULTI: When it’s a multipart message. Multipart messages are used for table •	
dumps. Usually the size of messages is limited to a page (PAGE_SIZE). So large  
messages are divided into smaller ones, and each of them (except the last one) has the 
NLM_F_MULTI flag set. The last message has the NLMSG_DONE flag set.

NLM_F_ACK: When you want the receiver of the message to reply with ACK. Netlink ACK •	
messages are sent by the netlink_ack() method (net/netlink/af_netlink.c).

NLM_F_DUMP: Retrieve information about a table/entry.•	

NLM_F_ROOT: Specify the tree root.•	

NLM_F_MATCH: Return all matching entries.•	

NLM_F_ATOMIC: This flag is deprecated.•	

The following flags are modifiers for creation of an entry:

NLM_F_REPLACE: Override existing entry.•	

NLM_F_EXCL:  Do not touch entry, if it exists.•	

NLM_F_CREATE: Create entry, if it does not exist.•	
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NLM_F_APPEND: Add entry to end of list.•	

NLM_F_ECHO: Echo this request.•	

I’ve shown the most commonly used flags. For a full list, see  
include/uapi/linux/netlink.h.

•	 nlmsg_seq is the sequence number (for message sequences). Unlike some Layer 4 transport 
protocols, there is no strict enforcement of the sequence number.

•	 nlmsg_pid is the sending port id. When a message is sent from the kernel, the nlmsg_pid is 0. 
When a message is sent from userspace, the nlmsg_pid can be set to be the process id of that 
userspace application which sent the message.

Figure 2-3 shows the netlink message header.

Figure 2-3.  nlmsg header

After the header comes the payload. The payload of netlink messages is composed 
of a set of attributes which are represented in Type-Length-Value (TLV) format. With 
TLV, the type and length are fixed in size (typically 1–4 bytes), and the value field is of 
variable size. The TLV representation is used also in other places in the networking 
code—for example, in IPv6 (see RFC 2460). TLV provides flexibility which makes 
future extensions easier to implement. Attributes can be nested, which enables 
complex tree structures of attributes.

Each netlink attribute header is defined by struct nlattr:
 
struct nlattr {
   __u16   nla_len;
   __u16   nla_type;
};
(include/uapi/linux/netlink.h)
 

•	 nla_len: The size of the attribute in bytes.

•	 nla_type: The attribute type. The value of nla_type can be, for example, NLA_U32  
(for a 32-bit unsigned integer), NLA_STRING for a variable length string, NLA_NESTED for a 
nested attribute, NLA_UNSPEC for arbitrary type and length, and more. You can find the list of 
available types in include/net/netlink.h.
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Every netlink attribute must be aligned by a 4-byte boundary (NLA_ALIGNTO).
Each family can define an attribute validation policy, which represents the expectations regarding the received 

attributes. This validation policy is represented by the nla_policy object. In fact, the nla_policy struct has exactly 
the same content as struct nlattr:
 
 struct nla_policy {
   u16  type;
   u16  len;
};
(include/uapi/linux/netlink.h)
 

The attribute validation policy is an array of nla_policy objects; this array is indexed by the attribute number. For 
each attribute (except the fixed-length attributes), if the value of len in the nla_policy object is 0, no validation should 
be performed. If the attribute is one of the string types (such as NLA_STRING), len should be the maximum length of the 
string, without the terminating NULL byte. If the attribute type is NLA_UNSPEC or unknown, len should be set to the 
exact length of the attribute's payload. If the attribute type is NLA_FLAG, len is unused. (The reason is that the presence 
of the attribute itself implies a value of true, and the absence of the attribute implies a value of false).

Receiving a generic netlink message in the kernel is handled by genl_rcv_msg(). In case it is a dump request 
(when the NLM_F_DUMP flag is set), you dump the table by calling the netlink_dump_start() method. If it’s not a 
dump request, you parse the payload by the nlmsg_parse() method. The nlmsg_parse() method performs attribute 
validation by calling validate_nla() (lib/nlattr.c). If there are attributes with a type exceeding maxtype, they  
will be silently ignored for backwards compatibility. In case validation fails, you don’t continue to the next step in 
genl_rcv_msg() (which is running the doit() callback), and the genl_rcv_msg() returns an error code.

The next section describes the NETLINK_ROUTE messages, which are the most commonly used messages in the 
networking subsystem.

NETLINK_ROUTE Messages
The rtnetlink (NETLINK_ROUTE) messages are not limited to the networking routing subsystem: there are 
neighbouring subsystem messages as well, interface setup messages, firewalling message, netlink queuing messages, 
policy routing messages, and many other types of rtnetlink messages, as you’ll see in later chapters.

The NETLINK_ROUTE messages can be divided into families:

LINK (network interfaces)•	

ADDR (network addresses)•	

ROUTE (routing messages)•	

NEIGH (neighbouring subsystem messages)•	

RULE (policy routing rules)•	

QDISC (queueing discipline)•	

TCLASS (traffic classes)•	

ACTION (packet action API, see •	 net/sched/act_api.c)

NEIGHTBL (neighbouring table)•	

ADDRLABEL (address labeling)•	
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Each of these families has three types of messages: for creation, deletion, and retrieving information. So, for 
routing messages, you have the RTM_NEWROUTE message type for creating a route, the RTM_DELROUTE message 
type for deleting a route, and the RTM_GETROUTE message type for retrieving a route. With LINK messages there is, 
apart from the three methods for creation, deletion and information retrieval, an additional message for modifying a 
link: RTM_SETLINK.

There are cases in which an error occurs, and you send an error message as a reply. The netlink error message is 
represented by the nlmsgerr struct:
 
struct nlmsgerr {
    int        error;
    struct nlmsghdr msg;
};
(include/uapi/linux/netlink.h)
 

In fact, as you can see in Figure 2-4, the netlink error message is built from a netlink message header and an 
error code. When the error code is not 0, the netlink message header of the original request which caused the error is 
appended after the error code field.

Figure 2-4.  Netlink error message

If you send a message that was constructed erroneously (for example, the nlmsg_type is not valid) then a netlink 
error message is sent back, and the error code is set according to the error that occurred. For example, when the 
nlmsg_type is not valid (a negative value, or a value higher than the maximum value permitted) the error code is set 
to –EOPNOTSUPP. See the rtnetlink_rcv_msg() method in net/core/rtnetlink.c. In error messages, the sequence 
number is set to be the sequence number of the request that caused the error.

The sender can request to get an ACK for a netlink message. This is done by setting the netlink message header 
type (nlmsg_type) to be NLM_F_ACK. When the kernel sends an ACK, it uses an error message (the netlink message 
header type of this message is set to be NLMSG_ERROR) with an error code of 0. In this case, the original netlink 
header of the request is not appended to the error message. For implementation details, see the netlink_ack() 
method implementation in net/netlink/af_netlink.c.

After learning about NETLINK_ROUTE messages, you’re ready to look at an example of adding and deleting a 
routing entry in a routing table using NETLINK_ROUTE messages.
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Adding and Deleting a Routing Entry in a Routing Table
Behind the scenes, let’s see what happens in the kernel in the context of netlink protocol when adding and deleting a 
routing entry. You can add a routing entry to the routing table by running, for example, the following:
 
ip route add 192.168.2.11 via 192.168.2.20
 

This command sends a netlink message from userspace (RTM_NEWROUTE) over an rtnetlink socket for adding 
a routing entry. The message is received by the rtnetlink kernel socket and handled by the rtnetlink_rcv() method. 
Eventually, adding the routing entry is done by invoking inet_rtm_newroute() in net/ipv4/fib_frontend.c. 
Subsequently, insertion into the Forwarding Information Base (FIB), which is the routing database, is accomplished with 
the fib_table_insert() method; however, inserting into the routing table is not the only task of fib_table_insert(). 
You should notify all listeners who performed registration for RTM_NEWROUTE messages. How? When inserting a new 
routing entry, you call the rtmsg_fib() method with RTM_NEWROUTE. The rtmsg_fib() method builds a netlink 
message and sends it by calling rtnl_notify() to notify all listeners who are registered to the RTNLGRP_IPV4_ROUTE 
group. These RTNLGRP_IPV4_ROUTE listeners can be registered in the kernel as well as in userspace (as is done in 
iproute2, or in some userspace routing daemons, like xorp). You’ll see shortly how userspace daemons of iproute2 can 
subscribe to various rtnelink multicast groups.

When deleting a routing entry, something quite similar happens. You can delete the routing entry earlier by 
running the following:
 
ip route del 192.168.2.11
 

That command sends a netlink message from userspace (RTM_DELROUTE) over an rtnetlink socket for deleting 
a routing entry. The message is again received by the rtnetlink kernel socket and handled by the rtnetlink_rcv() 
callback. Eventually, deleting the routing entry is done by invoking inet_rtm_delroute() callback in net/ipv4/
fib_frontend.c. Subsequently, deletion from the FIB is done with fib_table_delete(), which calls rtmsg_fib(), 
this time with the RTM_DELROUTE message.

You can monitor networking events with iproute2 ip command like this:
 
ip monitor route
 

For example, if you open one terminal and run ip monitor route there, and then open another terminal and 
run ip route add 192.168.1.10 via 192.168.2.200, on the first terminal you’ll see this line: 192.168.1.10 via 
192.168.2.200 dev em1. And when you run, on the second terminal, ip route del 192.168.1.10, on the first 
terminal the following text will appear: Deleted 192.168.1.10 via 192.168.2.200 dev em1.

Running ip monitor route runs a daemon that opens a netlink socket and subscribes to the RTNLGRP_IPV4_ROUTE 
multicast group. Now, adding/deleting a route, as done in this example, will result in this: the message that was sent with 
rtnl_notify() will be received by the daemon and displayed on the terminal.

You can subscribe to other multicast groups in this way. For example, to subscribe to the RTNLGRP_LINK multicast 
group, run ip monitor link. This daemon receives netlink messages from the kernel—when adding/deleting a link, 
for example. So if you open one terminal and run ip monitor link, and then open another terminal and  add a VLAN 
interface by vconfig add eth1 200, on the first terminal you’ll see lines like this:
 
4: eth1.200@eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
    link/ether 00:e0:4c:53:44:58 brd ff:ff:ff:ff:ff:ff
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And if you will add a bridge on the second terminal by brctl addbr mybr, on the first terminal you’ll see lines 
like this:
 
5: mybr: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN
    link/ether a2:7c:be:62:b5:b6 brd ff:ff:ff:ff:ff:ff
 

You’ve seen what a netlink message is and how it is created and handled. You’ve seen how netlink sockets are 
handled. Next you’ll learn why the generic netlink family (introduced in kernel 2.6.15) was created, and you’ll learn 
about its Linux implementation.

Generic Netlink Protocol
One of the drawbacks of the netlink protocol is that the number of protocol families is limited to 32 (MAX_LINKS). 
This is one of the main reasons that the generic netlink family was created—to provide support for adding a higher 
number of families. It acts as a netlink multiplexer and works with a single netlink family (NETLINK_GENERIC). The 
generic netlink protocol is based on the netlink protocol and uses its API.

To add a netlink protocol family, you should add a protocol family definition in include/linux/netlink.h. But 
with generic netlink protocol, there is no need for that. The generic netlink protocol is also intended to be used in 
other subsystems besides networking, because it provides a general purpose communication channel. For example, 
it’s used also by the acpi subsystem (see the definition of acpi_event_genl_family in drivers/acpi/event.c), by the 
task stats code (see kernel/taskstats.c), by the thermal events code, and more.

The generic netlink kernel socket is created by the netlink_kernel_create() method like this:
 
static int __net_init genl_pernet_init(struct net *net) {
    ..
           struct netlink_kernel_cfg cfg = {
                 .input          = genl_rcv,
                 .cb_mutex       = &genl_mutex,
                 .flags          = NL_CFG_F_NONROOT_RECV,
         };
         net->genl_sock = netlink_kernel_create(net, NETLINK_GENERIC, &cfg);
 ...
 }
(net/netlink/genetlink.c)
 

Note that, like the netlink sockets described earlier, the generic netlink socket is also aware of network 
namespaces; the network namespace object (struct net) contains a member named genl_sock (a generic netlink 
socket). As you can see, the network namespace genl_sock pointer is assigned in the genl_pernet_init() method.

The genl_rcv() method is defined to be the input callback of the genl_sock object, which was created earlier by 
the genl_pernet_init() method. As a result, data sent from userspace over generic netlink sockets is handled in the 
kernel by the genl_rcv() callback.

You can create a generic netlink userspace socket with the socket() system call, though it is better to use the 
libnl-genl API (discussed later in this section).

Immediately after creating the generic netlink kernel socket, register the controller family (genl_ctrl):
 
static struct genl_family genl_ctrl = {
         .id = GENL_ID_CTRL,
         .name = "nlctrl",
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         .version = 0x2,
         .maxattr = CTRL_ATTR_MAX,
         .netnsok = true,
};
 
static int __net_init genl_pernet_init(struct net *net) {
...
err = genl_register_family_with_ops(&genl_ctrl, &genl_ctrl_ops, 1)
...
 

The genl_ctrl has a fixed id of 0x10 (GENL_ID_CTRL); it is in fact the only instance of genl_family that’s 
initialized with a fixed id; all other instances are initialized with GENL_ID_GENERATE as an id, which subsequently is 
replaced by a dynamically assigned value.

There is support for registering multicast groups in generic netlink sockets by defining a genl_multicast_group 
object and calling genl_register_mc_group(); for example, in the Near Field Communication (NFC) subsystem, 
you have the following:
 
static struct genl_multicast_group nfc_genl_event_mcgrp = {
         .name = NFC_GENL_MCAST_EVENT_NAME,
 };
 
int __init nfc_genl_init(void)
{
...
 rc = genl_register_mc_group(&nfc_genl_family, &nfc_genl_event_mcgrp);
...
}
(net/nfc/netlink.c)
 

The name of a multicast group should be unique, because it is the primary key for lookups.
In the multicast group, the id is also generated dynamically when registering a multicast group by calling the 

find_first_zero_bit() method in genl_register_mc_group(). There is only one multicast group, the notify_grp, 
that has a fixed id, GENL_ID_CTRL.

To work with generic netlink sockets in the kernel, you should do the following:

Create a •	 genl_family object and register it by calling genl_register_family().

Create a •	 genl_ops object and register it by calling genl_register_ops().

Alternatively, you can call genl_register_family_with_ops() and pass to it a genl_family object, an array of 
genl_ops, and its size. This method will first call genl_register_family() and then, if successful, will call  
genl_register_ops() for each genl_ops element of the specified array of genl_ops.

The genl_register_family() and genl_register_ops() as well as the genl_family and genl_ops are defined 
in include/net/genetlink.h.

The wireless subsystem uses generic netlink sockets:
 
int nl80211_init(void)
{
    int err;
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    err = genl_register_family_with_ops(&nl80211_fam,
        nl80211_ops, ARRAY_SIZE(nl80211_ops));
...
}
(net/wireless/nl80211.c)
 

The generic netlink protocol is used by some userspace packages, such as the hostapd package and the iw 
package. The hostapd package (http://hostap.epitest.fi) provides a userspace daemon for wireless access  
point and authentication servers. The iw package is for manipulating wireless devices and their configuration  
(see http://wireless.kernel.org/en/users/Documentation/iw).

The iw package is based on nl80211 and the libnl library. Chapter 12 discusses nl80211 in more detail. The old 
userspace wireless package is called wireless-tools and is based on sending IOCTLs.

Here are the genl_family and genl_ops definitions in nl80211:
 
static struct genl_family nl80211_fam = {
    .id        = GENL_ID_GENERATE, /* don't bother with a hardcoded ID */
    .name      = "nl80211",    /* have users key off the name instead */
    .hdrsize   = 0,        /* no private header */
    .version   = 1,        /* no particular meaning now */
    .maxattr   = NL80211_ATTR_MAX,
    .netnsok   = true,
    .pre_doit  = nl80211_pre_doit,
    .post_doit = nl80211_post_doit,
};
 

•	 name: Must be a unique name.

•	 id: id is GENL_ID_GENERATE in this case, which is in fact 0. GENL_ID_GENERATE tells the 
generic netlink controller to assign the channel a unique channel number when you register 
the family with genl_register_family(). The genl_register_family() assigns an id in the 
range 16 (GENL_MIN_ID, which is 0x10) to 1023 (GENL_MAX_ID).

•	 hdrsize: Size of a private header.

•	 maxattr:  NL80211_ATTR_MAX, which is the maximum number of attributes supported.

The nl80211_policy validation policy array has NL80211_ATTR_MAX elements (each 
attribute has an entry in the array):

•	 netnsok: true, which means the family can handle network namespaces.

•	 pre_doit: A hook that’s called before the doit() callback.

•	 post_doit: A hook that can, for example, undo locking or any required private tasks after the 
doit() callback.

You can add a command or several commands with the genl_ops structure. Let’s take a 
look at the definition of genl_ops struct and then at its usage in nl80211:
 
struct genl_ops {
   u8                      cmd;
   u8                      internal_flags;
   unsigned int            flags;
   const struct nla_policy *policy;
   int                    (*doit)(struct sk_buff *skb,

http://hostap.epitest.fi/
http://wireless.kernel.org/en/users/Documentation/iw
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                                  struct genl_info *info);
   int                    (*dumpit)(struct sk_buff *skb,
                                    struct netlink_callback *cb);
   int                    (*done)(struct netlink_callback *cb);
   struct list_head        ops_list;
};
 

•	 cmd: Command identifier (the genl_ops struct defines a single command and its 
doit/dumpit handlers).

•	 internal_flags: Private flags which are defined and used by the family. For example,  
in nl80211, there are many operations that define internal flags (such as NL80211_FLAG_
NEED_NETDEV_UP, NL80211_FLAG_NEED_RTNL, and more). The nl80211 pre_doit() and 
post_doit() callbacks perform actions according to these flags. See net/wireless/nl80211.

•	 flags: Operation flags. Values can be the following:

GENL_ADMIN_PERM: When this flag is set, it means that the operation requires the  •	
CAP_NET_ADMIN privilege; see the genl_rcv_msg() method in net/netlink/genetlink.c.

GENL_CMD_CAP_DO:  This flag is set if the •	 genl_ops struct implements the doit() 
callback.

GENL_CMD_CAP_DUMP: This flag is set if the •	 genl_ops struct implements the 
dumpit() callback.

GENL_CMD_CAP_HASPOL: This flag is set if the •	 genl_ops struct defines attribute 
validation policy (nla_policy array).

•	 policy : Attribute validation policy is discussed later in this section when describing the 
payload.

•	 doit: Standard command callback.

•	 dumpit: Callback for dumping.

•	 done: Completion callback for dumps.

•	 ops_list: Operations list.
 
static struct genl_ops nl80211_ops[] = {
    {
 
    ...
      {
        .cmd = NL80211_CMD_GET_SCAN,
        .policy = nl80211_policy,
        .dumpit = nl80211_dump_scan,
      },
    ...
}
 

Note that either a doit or a dumpit callback must be specified for every element of genl_ops (nl80211_ops in  
this case) or the function will fail with -EINVAL.
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This entry in genl_ops adds the nl80211_dump_scan() callback as a handler of the NL80211_CMD_GET_SCAN 
command. The nl80211_policy is an array of nla_policy objects and defines the expected datatype of the attributes 
and their length.

When running a scan command from userspace, for example by iw dev wlan0 scan, you send from userspace a 
generic netlink message whose command is NL80211_CMD_GET_SCAN over a generic netlink socket. Messages are 
sent by the nl_send_auto_complete() method or by nl_send_auto() in the newer libnl versions. nl_send_auto() 
fills the missing bits and pieces in the netlink message header. If you don’t require any of the automatic message 
completion functionality, you can use nl_send() directly.

The message is handled by the nl80211_dump_scan() method, which is the dumpit callback for this command  
(net/wireless/nl80211.c). There are more than 50 entries in the nl80211_ops object for handling commands, 
including NL80211_CMD_GET_INTERFACE, NL80211_CMD_SET_INTERFACE, NL80211_CMD_START_AP, and so on.

To send commands to the kernel, a userspace application should know the family id. The family name is known 
in the userspace, but the family id is unknown in the userspace because it’s determined only in runtime in the kernel.  
To get the family id, the userspace application should send a generic netlink CTRL_CMD_GETFAMILY request to the 
kernel. This request is handled by the ctrl_getfamily() method. It returns the family id as well as other information, 
such as the operations the family supports. Then the userspace can send commands to the kernel specifying the 
family id that it got in the reply. I discuss this more in the next section.

Creating and Sending Generic Netlink Messages
A generic netlink message starts with a netlink header, followed by the generic netlink message header, and then there 
is an optional user specific header. Only after all that do you find the optional payload, as you can see in Figure 2-5.

Figure 2-5.  Generic netlink message.

This is the generic netlink message header:
 
struct genlmsghdr {
   __u8    cmd;
   __u8    version;
  __u16    reserved;
};
(include/uapi/linux/genetlink.h)
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•	 cmd is a generic netlink message type; each generic family that you register adds its own 
commands. For example, for the nl80211_fam family mentioned above, the commands it adds 
(like NL80211_CMD_GET_INTERFACE) are represented by the nl80211_commands enum. 
There are more than 60 commands (see include/linux/nl80211.h).

•	 version can be used for versioning support. With nl80211 it is 1, with no particular meaning. 
The version member allows changing the format of a message without breaking backward 
compatibility.

•	 reserved is for future use.

Allocating a buffer for a generic netlink message is done by the following method:
 
sk_buff *genlmsg_new(size_t payload, gfp_t flags)
 

This is in fact a wrapper around nlmsg_new().
After allocating a buffer with genlmsg_new(), the genlmsg_put() is called to create the generic netlink header, 

which is an instance of genlmsghdr. You send a unicast generic netlink message with genlmsg_unicast(), which is in 
fact a wrapper around nlmsg_unicast(). You can send a multicast generic netlink message in two ways:

•	 genlmsg_multicast(): This method sends the message to the default network namespace, 
net_init.

•	 genlmsg_multicast_allns(): This method sends the message to all network namespaces.

(All prototypes of the methods mentioned in this section are in include/net/genetlink.h.)
You can create a generic netlink socket from userspace like this: socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); 

this call is handled in the kernel by the netlink_create() method, like an ordinary, non-generic netlink socket, as you 
saw in the previous section. You can use the socket API to perform further calls like bind() and sendmsg() or recvmsg(); 
however, using the libnl library instead is recommended.

libnl-genl provides generic netlink API, for management of controller, family, and command registration. 
With libnl-genl, you can call genl_connect() to create a local socket file descriptor and bind the socket to the 
NETLINK_GENERIC netlink protocol.

Let’s take a brief look at what happens in a short typical userspace-kernel session when sending a command to 
the kernel via generic netlink sockets using the libnl library and the libnl-genl library.

The iw package uses the libnl-genl library. When you run a command like iw dev wlan0 list, the following 
sequence occurs (omitting unimportant details):
 
state->nl_sock = nl_socket_alloc()
 

Allocate a socket (note the use here of libnl core API and not the generic netlink family (libnl-genl) yet.
 
genl_connect(state->nl_sock)
 

Call socket() with NETLINK_GENERIC and call bind() on this socket; the genl_connect() is a method of the 
libnl-genl library.
 
genl_ctrl_resolve(state->nl_sock, "nl80211");
 

This method resolves the generic netlink family name ("nl80211") to the corresponding numeric family 
identifier. The userspace application must send its subsequent messages to the kernel, specifying this id.

The genl_ctrl_resolve() method calls genl_ctrl_probe_by_name(), which in fact sends a generic netlink 
message to the kernel with the CTRL_CMD_GETFAMILY command.
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In the kernel, the generic netlink controller ("nlctrl") handles the CTRL_CMD_GETFAMILY command by the 
ctrl_getfamily() method and returns the family id to userspace. This id was generated when the socket was created.

Note■■   You can get various parameters (such as generated id, header size, max attributes, and more) of all the 
registered generic netlink families with the userspace tool genl (of iproute2) by running genl ctrl list.

You’re now ready to learn about the socket monitoring interface, which lets you get information about sockets. 
The socket monitoring interface is used in userspace tools like ss, which displays socket information and statistics for 
various socket types, and in other projects, as you’ll see in the next section.

Socket Monitoring Interface 
The sock_diag netlink sockets provide a netlink-based subsystem that can be used to get information about sockets. This 
feature was added to the kernel to support checkpoint/restore functionality for Linux in userspace (CRIU). To support this 
functionality, additional data about sockets was needed. For example, /procfs doesn’t say which are the peers of a UNIX 
domain socket (AF_UNIX), and this info is needed for checkpoint/restore support. This additional data is not exported via 
/proc, and to make changes to procfs entries isn’t always desirable because it might break userspace applications. The 
sock_diag netlink sockets give an API which enables access to this additional data. This API is used in the CRIU project as 
well as in the ss util. Without the sock_diag, after checkpointing a process (saving the state of a process to the filesystem), 
you can’t reconstruct its UNIX domain sockets because you don’t know who the peers are.

To support the monitoring interface used by the ss tool, a netlink-based kernel socket is created  
(NETLINK_SOCK_DIAG). The ss tool, which is part of the iproute2 package, enables you to get socket statistics  
in a similar way to netstat. It can display more TCP and state information than other tools.

You create a netlink kernel socket for sock_diag like this:
 
static int __net_init diag_net_init(struct net *net)
{
    struct netlink_kernel_cfg cfg = {
        .input    = sock_diag_rcv,
    };
 
    net->diag_nlsk = netlink_kernel_create(net, NETLINK_SOCK_DIAG, &cfg);
    return net->diag_nlsk == NULL ? -ENOMEM : 0;
}
(net/core/sock_diag.c)
 

The sock_diag module has a table of sock_diag_handler objects named sock_diag_handlers. This table is 
indexed by the protocol number (for the list of protocol numbers, see include/linux/socket.h).

The sock_diag_handler struct is very simple:
 
struct sock_diag_handler {
__u8 family;
int (*dump)(struct sk_buff *skb, struct nlmsghdr *nlh);
};
(net/core/sock_diag.c)
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Each protocol that wants to add a socket monitoring interface entry to this table first defines a handler and then 
calls sock_diag_register(), specifying its handler. For example, for UNIX sockets, there is the following in  
net/unix/diag.c:

The first step is definition of the handler:
 
static const struct sock_diag_handler unix_diag_handler = {
    .family = AF_UNIX,
    .dump = unix_diag_handler_dump,
};
 

The second step is registration of the handler:
 
static int __init unix_diag_init(void)
{
    return sock_diag_register(&unix_diag_handler);
}
 

Now, with ss –x or ss --unix, you can dump the statistics that are gathered by the UNIX diag module. In quite 
a similar way, there are diag modules for other protocols, such as UDP (net/ipv4/udp_diag.c), TCP (net/ipv4/
tcp_diag.c), DCCP (/net/dccp/diag.c), and AF_PACKET (net/packet/diag.c).

There’s also a diag module for the netlink sockets themselves. The /proc/net/netlink entry provides 
information about the netlink socket (netlink_sock object) like the portid, groups, the inode number of the socket, 
and more. If you want the details, dumping /proc/net/netlink is handled by netlink_seq_show() in net/netlink/
af_netlink.c. There are some netlink_sock fields which /proc/net/netlink doesn’t provide—for example,  
dst_group or dst_portid or groups above 32. For this reason, the netlink socket monitoring interface was added 
(net/netlink/diag.c). You should be able to use the ss tool of iproute2 to read netlink sockets information.  
The netlink diag code can be built also as a kernel module.

Summary
This chapter covered netlink sockets, which provide a mechanism for bidirectional communication between the 
userspace and the kernel and are widely used by the networking subsystem. You’ve seen some examples of netlink 
sockets usage. I also discussed netlink messages, how they’re created and handled. Another important subject the 
chapter dealt with is the generic netlink sockets, including their advantages and their usage. The next chapter covers 
the ICMP protocol, including its usage and its implementation in IPv4 and IPv6.

Quick Reference
I conclude this chapter with a short list of important methods of the netlink and generic netlink subsystems. Some of 
them were mentioned in this chapter: 

int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, struct nlmsghdr *)) 
This method handles receiving netlink messages. It’s called from the input callback of netlink families (for example, 
in the rtnetlink_rcv() method for the rtnetlink family, or in the sock_diag_rcv() method for the sock_diag family. 
The method performs sanity checks, like making sure that the length of the netlink message header does not exceed 
the permitted max length (NLMSG_HDRLEN). It also avoids invoking the specified callback in case that the message 
is a control message. In case the ACK flag (NLM_F_ACK) is set, it sends an error message by invoking the netlink_
ack() method.
 



Chapter 2 ■ Netlink Sockets

33

struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,  
u32 dst_portid, gfp_t gfp_mask) 
This method allocates an SKB with the specified size and gfp_mask; the other parameters (ssk, dst_portid) are used 
when working with memory mapped netlink IO (NETLINK_MMAP). This feature is not discussed in this chapter, and 
is located here: net/netlink/af_netlink.c. 

struct netlink_sock *nlk_sk(struct sock *sk) 
This method returns the netlink_sock object, which has an sk as a member, and is located here:  
net/netlink/af_netlink.h. 

struct sock *netlink_kernel_create(struct net *net, int unit, struct netlink_kernel_cfg *cfg) 
This method creates a kernel netlink socket. 

struct nlmsghdr *nlmsg_hdr(const struct sk_buff *skb) 
This method returns the netlink message header pointed to by skb->data. 

struct nlmsghdr *__nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq,  
int type, int len, int flags) 
This method builds a netlink message header according to the specified parameters, and puts it in the skb, and is 
located here:  include/linux/netlink.h. 

struct sk_buff *nlmsg_new(size_t payload, gfp_t flags) 
This method allocates a new netlink message with the specified message payload by calling alloc_skb(). If the 
specified payload is 0, alloc_skb() is called with NLMSG_HDRLEN (after alignment with the NLMSG_ALIGN macro). 

int nlmsg_msg_size(int payload) 
This method returns the length of a netlink message (message header length and payload), not including padding. 

void rtnl_register(int protocol, int msgtype, rtnl_doit_func doit,  
rtnl_dumpit_func dumpit, rtnl_calcit_func calcit) 
This method registers the specified rtnetlink message type with the three specified callbacks. 

static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh) 
This method processes an rtnetlink message. 
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static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev, int type, u32 pid, 
u32 seq, u32 change, unsigned int flags, u32 ext_filter_mask) 
This method creates two objects: a netlink message header (nlmsghdr) and an ifinfomsg object, located immediately 
after the netlink message header. 

void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group, struct 
nlmsghdr *nlh, gfp_t flags) 
This method sends an rtnetlink message. 

int genl_register_mc_group(struct genl_family *family,  
struct genl_multicast_group *grp) 
This method registers the specified multicast group, notifies the userspace, and returns 0 on success or a negative 
error code. The specified multicast group must have a name. The multicast group id is generated dynamically in this 
method by the find_first_zero_bit() method for all multicast groups, except for notify_grp, which has a fixed id 
of 0x10 (GENL_ID_CTRL). 

void genl_unregister_mc_group(struct genl_family *family,  
struct genl_multicast_group *grp) 
This method unregisters the specified multicast group and notifies the userspace about it. All current listeners 
on the group are removed. It’s not necessary to unregister all multicast groups before unregistering the family—
unregistering the family causes all assigned multicast groups to be unregistered automatically. 

int genl_register_ops(struct genl_family *family, struct genl_ops *ops) 
This method registers the specified operations and assigns them to the specified family. Either a doit() or a dumpit() 
callback must be specified or the operation will fail with -EINVAL. Only one operation structure per command 
identifier may be registered. It returns 0 on success or a negative error code. 

int genl_unregister_ops(struct genl_family *family, struct genl_ops *ops) 
This method unregisters the specified operations and unassigns them from the specified family. The operation blocks 
until the current message processing has finished and doesn't start again until the unregister process has finished. 
It’s not necessary to unregister all operations before unregistering the family—unregistering the family causes all 
assigned operations to be unregistered automatically. It returns 0 on success or a negative error code. 

int genl_register_family(struct genl_family *family) 
This method registers the specified family after validating it first. Only one family may be registered with the same 
family name or identifier. The family id may equal GENL_ID_GENERATE, causing a unique id to be automatically 
generated and assigned. 
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int genl_register_family_with_ops(struct genl_family *family,  
struct genl_ops *ops, size_t n_ops) 
This method registers the specified family and operations. Only one family may be registered with the same family 
name or identifier. The family id may equal GENL_ID_GENERATE, causing a unique id to be automatically generated 
and assigned. Either a doit or a dumpit callback must be specified for every registered operation or the function 
will fail. Only one operation structure per command identifier may be registered. This is equivalent to calling genl_
register_family() followed by genl_register_ops() for every operation entry in the table, taking care to unregister 
the family on the error path. The method returns 0 on success or a negative error code. 

int genl_unregister_family(struct genl_family *family) 
This method unregisters the specified family and returns 0 on success or a negative error code. 

void *genlmsg_put(struct sk_buff *skb, u32 portid, u32 seq,  
struct genl_family *family, int flags, u8 cmd) 
This method adds a generic netlink header to a netlink message. 

int genl_register_family(struct genl_family *family) int genl_unregister_
family(struct genl_family *family) 
This method registers/unregisters a generic netlink family. 

int genl_register_ops(struct genl_family *family, struct genl_ops *ops) int genl_
unregister_ops(struct genl_family *family, struct genl_ops *ops) 
This method registers/unregisters generic netlink operations. 

void genl_lock(void)
void genl_unlock(void) 
This method locks/unlocks the generic netlink mutex (genl_mutex). Used for example in net/l2tp/l2tp_netlink.c.
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Chapter 3

Internet Control Message  
Protocol (ICMP)

Chapter 2 discusses the netlink sockets implementation and how netlink sockets are used as a communication 
channel between the kernel and userspace. This chapter deals with the ICMP protocol, which is a Layer 4 protocol. 
Userspace applications can use the ICMP protocol (to send and receive ICMP packets) by using the sockets API (the 
best-known example is probably the ping utility). This chapter discusses how these ICMP packets are handled in the 
kernel and gives some examples.

The ICMP protocol is used primarily as a mandatory mechanism for sending error and control messages about 
the network layer (L3). The protocol enables getting feedback about problems in the communication environment 
by sending ICMP messages. These messages provide error handling and diagnostics. The ICMP protocol is relatively 
simple but is very important for assuring correct system behavior. The basic definition of ICMPv4 is in RFC 792, 
“Internet Control Message Protocol.” This RFC defines the goals of the ICMPv4 protocol and the format of various 
ICMPv4 messages. I also mention in this chapter RFC 1122 (“Requirements for Internet Hosts—Communication 
Layers”) which defines some requirements about several ICMP messages; RFC 4443, which defines the ICMPv6 
protocol; and RFC 1812, which defines requirements for routers. I also describe which types of ICMPv4 and ICMPv6 
messages exist, how they are sent, and how they are processed. I cover ICMP sockets, including why they were added 
and how they are used. Keep in mind that the ICMP protocol is also used for various security attacks; for example, the 
Smurf Attack is a denial-of-service attack in which large numbers of ICMP packets with the intended victim’s spoofed 
source IP are sent as broadcasts to a computer network using an IP broadcast address.

ICMPv4
ICMPv4 messages can be classified into two categories: error messages and information messages (they are termed 
“query messages” in RFC 1812). The ICMPv4 protocol is used in diagnostic tools like ping and traceroute. The 
famous ping utility is in fact a userspace application (from the iputils package) which opens a raw socket and sends 
an ICMP_ECHO message and should get back an ICMP_REPLY message as a response. Traceroute is a utility to find 
the path between a host and a given destination IP address. The traceroute utility is based on setting varying values 
to the Time To Live (TTL), which is a field in the IP header representing the hop count. The traceroute utility takes 
advantage of the fact that a forwarding machine will send back an ICMP_TIME_EXCEED message when the TTL 
of the packet reaches 0. The traceroute utility starts by sending messages with a TTL of 1, and with each received 
ICMP_DEST_UNREACH with code ICMP_TIME_EXCEED as a reply, it increases the TTL by 1 and sends again to the 
same destination. It uses the returned ICMP “Time Exceeded” messages to build a list of the routers that the packets 
traverse, until the destination is reached and returns an ICMP “Echo Reply” message. Traceroute uses the UDP 
protocol by default. The ICMPv4 module is net/ipv4/icmp.c. Note that ICMPv4 cannot be built as a kernel module.
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ICMPv4 Initialization
ICMPv4 initialization is done in the inet_init() method, which is invoked in boot phase. The inet_init() method 
invokes the icmp_init() method, which in turn calls the icmp_sk_init() method to create a kernel ICMP socket 
for sending ICMP messages and to initialize some ICMP procfs variables to their default values. (You will encounter 
some of these procfs variables later in this chapter.)

Registration of the ICMPv4 protocol, like registration of other IPv4 protocols, is done in inet_init():
 
static const struct net_protocol icmp_protocol = {
    .handler        =  icmp_rcv,
    .err_handler    =  icmp_err,
    .no_policy      =  1,
    .netns_ok       =  1,
};
 
(net/ipv4/af_inet.c)

•	 icmp_rcv: The handler callback. This means that for incoming packets whose protocol field in 
the IP header equals IPPROTO_ICMP (0x1), icmp_rcv() will be invoked.

•	 no_policy: This flag is set to 1, which implies that there is no need to perform IPsec policy 
checks; for example, the xfrm4_policy_check() method is not called in ip_local_deliver_
finish() because the no_policy flag is set.

•	 netns_ok: This flag is set to 1, which indicates that the protocol is aware of network 
namespaces. Network namespaces are described in Appendix A, in the net_device section. 
The inet_add_protocol() method will fail for protocols whose netns_ok field is 0 with an 
error of -EINVAL.
 
static int __init inet_init(void) {
. . .
    if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0)
        pr_crit("%s: Cannot add ICMP protocol\n", __func__);
. . .
 
int __net_init icmp_sk_init(struct net *net)
{
    . . .
    for_each_possible_cpu(i) {
        struct sock *sk;
 
        err = inet_ctl_sock_create(&sk, PF_INET,
                       SOCK_RAW, IPPROTO_ICMP, net);
        if (err < 0)
            goto fail;
 
                net->ipv4.icmp_sk[i] = sk;
             . . .
                sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
        inet_sk(sk)->pmtudisc = IP_PMTUDISC_DONT;
    }
    . . .
 
}
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In the icmp_sk_init() method, a raw ICMPv4 socket is created for each CPU and is kept in an array. The current 
sk can be accessed with the icmp_sk(struct net *net) method. These sockets are used in the icmp_push_reply() 
method. The ICMPv4 procfs entries are initialized in the icmp_sk_init() method; I mention them in this chapter 
and summarize them in the “Quick Reference” section at the end of this chapter. Every ICMP packet starts with 
an ICMPv4 header. Before discussing how ICMPv4 messages are received and transmitted, the following section 
describes the ICMPv4 header, so that you better understand how ICMPv4 messages are built.

ICMPv4 Header
The ICMPv4 header consists of type (8 bits), code (8 bits), and checksum (16 bits), and a 32 bits variable part member 
(its content varies based on the ICMPv4 type and code), as you can see in Figure 3-1. After the ICMPv4 header comes 
the payload, which should include the IPv4 header of the originating packet and a part of its payload. According to 
RFC 1812, it should contain as much of the original datagram as possible without the length of the ICMPv4 datagram 
exceeding 576 bytes. This size is in accordance to RFC 791, which specifies that “All hosts must be prepared to accept 
datagrams of up to 576 octets.”

Figure 3-1.  The ICMPv4 header

The ICMPv4 header is represented by struct icmphdr: 
 
struct icmphdr {
  __u8        type;
  __u8        code;
  __sum16    checksum;
  union {
    struct {
        __be16    id;
        __be16    sequence;
    } echo;
    __be32    gateway;
    struct {
        __be16    __unused;
        __be16    mtu;
    } frag;
  } un;
};
 
(include/uapi/linux/icmp.h)
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You’ll find the current complete list of assigned ICMPv4 message type numbers and codes at  
www.iana.org/assignments/icmp-parameters/icmp-parameters.xml.

The ICMPv4 module defines an array of icmp_control objects, named icmp_pointers, which is indexed by 
ICMPv4 message type. Let’s take a look at the icmp_control structure definition and at the icmp_pointers array:
 
struct icmp_control {
    void (*handler)(struct sk_buff *skb);
    short error;        /* This ICMP is classed as an error message */
};
 
static const struct icmp_control icmp_pointers[NR_ICMP_TYPES+1];
 

NR_ICMP_TYPES is the highest ICMPv4 type, which is 18.

(include/uapi/linux/icmp.h)

The error field of the icmp_control objects of this array is 1 only for error message types, like the “Destination 
Unreachable” message (ICMP_DEST_UNREACH), and it is 0 (implicitly) for information messages, like echo  
(ICMP_ECHO). Some handlers are assigned to more than one type. Next I discuss handlers and the ICMPv4 message 
types they manage.

ping_rcv() handles receiving a ping reply (ICMP_ECHOREPLY). The ping_rcv() method is implemented 
in the ICMP sockets code, net/ipv4/ping.c. In kernels prior to 3.0, in order to send ping, you had to create a raw 
socket in userspace. When receiving a reply to a ping (ICMP_ECHOREPLY message), the raw socket that sent the ping 
processed it. In order to understand how this is implemented, let’s take a look in ip_local_deliver_finish(), which 
is the method which handles incoming IPv4 packets and passes them to the sockets which should process them:
 
static int ip_local_deliver_finish(struct sk_buff *skb)
{
    . . .
        int protocol = ip_hdr(skb)->protocol;
        const struct net_protocol *ipprot;
        int raw;
 
    resubmit:
        raw = raw_local_deliver(skb, protocol);
        ipprot = rcu_dereference(inet_protos[protocol]);
            if (ipprot != NULL) {
                    int ret;
                    . . .
                    ret = ipprot->handler(skb);
                    . . .
 
(net/ipv4/ip_input.c)

When the ip_local_deliver_finish() method receives an ICMP_ECHOREPLY packet, it first tries to deliver  
it to a listening raw socket, which will process it. Because a raw socket that was opened in userspace handles the  
ICMP_ECHOREPLY message, there is no need to do anything further with it. So when the ip_local_deliver_finish() 
method receives ICMP_ECHOREPLY, the raw_local_deliver() method is invoked first to process it by a raw socket, 
and afterwards the ipprot->handler(skb) is invoked (this is the icmp_rcv() callback in the case of ICMPv4 packet). 
And because the packet was already processed by a raw socket, there is nothing more to do with it. So the packet is 
discarded silently by calling the icmp_discard() method, which is the handler for ICMP_ECHOREPLY messages.

When the ICMP sockets (“ping sockets”) were integrated into the Linux kernel in kernel 3.0, this was changed. 
Ping sockets are discussed in the “ICMP Sockets (“Ping Sockets”)” section later in this chapter. In this context I should 

http://www.iana.org/assignments/icmp-parameters/icmp-parameters.xml
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note that with ICMP sockets, the sender of ping can be also not a raw socket. For example, you can create a socket like 
this: socket (PF_INET, SOCK_DGRAM, PROT_ICMP) and use it to send ping packets. This socket is not a raw socket.  
As a result, the echo reply is not delivered to any raw socket, since there is no corresponding raw socket which listens. 
To avoid this problem, the ICMPv4 module handles receiving ICMP_ECHOREPLY messages with the ping_rcv() 
callback. The ping module is located in the IPv4 layer (net/ipv4/ping.c). Nevertheless, most of the code in net/
ipv4/ping.c is a dual-stack code (intended for both IPv4 and IPv6). As a result, the ping_rcv() method also handles 
ICMPV6_ECHO_REPLY messages for IPv6 (see icmpv6_rcv() in net/ipv6/icmp.c). I talk more about ICMP sockets 
later in this chapter.

icmp_discard() is an empty handler used for nonexistent message types (message types whose numbers are 
without corresponding declarations in the header file) and for some messages that do not need any handling, for 
example ICMP_TIMESTAMPREPLY. The ICMP_TIMESTAMP and the ICMP_TIMESTAMPREPLY messages are used 
for time synchronization; the sender sends the originate timestamp in an ICMP_TIMESTAMP request; the receiver 
sends ICMP_TIMESTAMPREPLY with three timestamps: the originating timestamp which was sent by the sender of 
the timestamp request, as well as a receive timestamp and a transmit timestamp. There are more commonly used 
protocols for time synchronization than ICMPv4 timestamp messages, like the Network Time Protocol (NTP). I should 
also mention the Address Mask request (ICMP_ADDRESS), which is normally sent by a host to a router in order to 
obtain an appropriate subnet mask. Recipients should reply to this message with an address mask reply message. The 
ICMP_ADDRESS and the ICMP_ADDRESSREPLY messages, which were handled in the past by the icmp_address() 
method and by the icmp_address_reply() method, are now handled also by icmp_discard(). The reason is that 
there are other ways to get the subnet masks, such as with DHCP.

icmp_unreach() handles ICMP_DEST_UNREACH, ICMP_TIME_EXCEED, ICMP_PARAMETERPROB, and 
ICMP_QUENCH message types.

An ICMP_DEST_UNREACH message can be sent under various conditions. Some of these conditions are described in 
the “Sending ICMPv4 Messages: Destination Unreachable” section in this chapter.

An ICMP_TIME_EXCEEDED message is sent in two cases:
In ip_forward(), each packet decrements its TTL. According to RFC 1700, the recommended TTL for the IPv4 

protocol is 64. If the TTL reaches 0, this is indication that the packet should be dropped because probably there was 
some loop. So, if the TTL reaches 0 in ip_forward(), the icmp_send() method is invoked:
 
icmp_send(skb, ICMP_TIME_EXCEEDED, ICMP_EXC_TTL, 0);
 
(net/ipv4/ip_forward.c)

In such a case, an ICMP_TIME_EXCEEDED message with code ICMP_EXC_TTL is sent, the SKB is freed, the 
InHdrErrors SNMP counter (IPSTATS_MIB_INHDRERRORS) is incremented, and the method returns  
NET_RX_DROP.

In ip_expire(), the following occurs when a timeout of a fragment exists:
 
icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
 
(net/ipv4/ip_fragment.c)

An ICMP_PARAMETERPROB message is sent when parsing the options of an IPv4 header fails, in the  
ip_options_compile() method or in the ip_options_rcv_srr() method (net/ipv4/ip_options.c). The options are 
an optional, variable length field (up to 40 bytes) of the IPv4 header. IP options are discussed in Chapter 4.

An ICMP_QUENCH message type is in fact deprecated. According to RFC 1812, section 4.3.3.3 (Source Quench): 
“A router SHOULD NOT originate ICMP Source Quench messages”, and also, “A router MAY ignore any ICMP Source 
Quench messages it receives.” The ICMP_QUENCH message was intended to reduce congestion, but it turned out that 
this is an ineffective solution.

icmp_redirect() handles ICMP_REDIRECT messages; according to RFC 1122, section 3.2.2.2, hosts  
should not send an ICMP redirect message; redirects are to be sent only by gateways. icmp_redirect() handles 
ICMP_REDIRECT messages. In the past, icmp_redirect() called ip_rt_redirect(), but an ip_rt_redirect() 
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invocation is not needed anymore as the protocol handlers now all properly propagate the redirect back into the 
routing code. In fact, in kernel 3.6, the ip_rt_redirect() method was removed. So the icmp_redirect() method 
first performs sanity checks and then calls icmp_socket_deliver(), which delivers the packet to the raw sockets and 
invokes the protocol error handler (in case it exists). Chapter 6 discusses ICMP_REDIRECT messages in more depth.

icmp_echo() handles echo (“ping”) requests (ICMP_ECHO) by sending echo replies (ICMP_ECHOREPLY) with 
icmp_reply(). If case net->ipv4.sysctl_icmp_echo_ignore_all is set, a reply will not be sent. For configuring 
ICMPv4 procfs entries, see the “Quick Reference” section at the end of this chapter, and also Documentation/
networking/ip-sysctl.txt.

icmp_timestamp() handles ICMP Timestamp requests (ICMP_TIMESTAMP) by sending ICMP_
TIMESTAMPREPLY with icmp_reply().

Before discussing sending ICMP messages by the icmp_reply() method and by the icmp_send() method,  
I should describe the icmp_bxm (“ICMP build xmit message”) structure, which is used in both methods:
 
struct icmp_bxm {
    struct sk_buff *skb;
    int offset;
    int data_len;
 
    struct {
        struct icmphdr icmph;
        __be32           times[3];
    } data;
    int head_len;
    struct ip_options_data replyopts;
};
 

•	 skb: For the icmp_reply() method, this skb is the request packet; the icmp_param object 
(instance of icmp_bxm) is built from it (in the icmp_echo() method and in the icmp_timestamp() 
method). For the icmp_send() method, this skb is the one that triggered sending an ICMPv4 
message due to some conditions; you will see several examples of such messages in this section.

•	 offset: Difference (offset) between skb_network_header(skb) and skb->data. 

•	 data_len: ICMPv4 packet payload size.

•	 icmph: The ICMP v4 header.

•	 times[3]: Array of three timestamps, filled in icmp_timestamp().

•	 head_len: Size of the ICMPv4 header (in case of icmp_timestamp(), there are additional 12 
bytes for the timestamps).

•	 replyopts: An ip_options data object. IP options are optional fields after the IP header, up 
to 40 bytes. They enable advanced features like strict routing/loose routing, record routing, 
time stamping, and more. They are initialized with the ip_options_echo() method. Chapter 4 
discusses IP options. 

Receiving ICMPv4 Messages
The ip_local_deliver_finish() method handles packets for the local machine. When getting an ICMP packet, the 
method delivers the packet to the raw sockets that had performed registration of ICMPv4 protocol. In the  
icmp_rcv() method, first the InMsgs SNMP counter (ICMP_MIB_INMSGS) is incremented. Subsequently, the 
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checksum correctness is verified. If the checksum is not correct, two SNMP counters are incremented, InCsumErrors 
and InErrors (ICMP_MIB_CSUMERRORS and ICMP_MIB_INERRORS, respectively), the SKB is freed, and the 
method returns 0. The icmp_rcv() method does not return an error in this case. In fact, the icmp_rcv() method 
always returns 0; the reason for returning 0 in case of checksum error is that no special thing should be done 
when receiving an erroneous ICMP message except to discard it; when a protocol handler returns a negative 
error, another attempt to process the packet is performed, and it is not needed in this case. For more details, refer 
to the implementation of the ip_local_deliver_finish() method. Then the ICMP header is examined in order 
to find its type; the corresponding procfs message type counter is incremented (each ICMP message type has a 
procfs counter), and a sanity check is performed to verify that it is not higher than the highest permitted value 
(NR_ICMP_TYPES). According to section 3.2.2 of RFC 1122, if an ICMP message of unknown type is received, it must 
be silently discarded. So if the message type is out of range, the InErrors SNMP counter (ICMP_MIB_INERRORS) is 
incremented, and the SKB is freed.

In case the packet is a broadcast or a multicast, and it is an ICMP_ECHO message or an ICMP_TIMESTAMP 
message, there is a check whether broadcast/multicast echo requests are permitted by reading the variable  
net->ipv4.sysctl_icmp_echo_ignore_broadcasts. This variable can be configured via procfs by writing to  
/proc/sys/net/ipv4/icmp_echo_ignore_broadcasts, and by default its value is 1. If this variable is set, the packet  
is dropped silently. This is done according to section 3.2.2.6 of RFC 1122: “An ICMP Echo Request destined to an  
IP broadcast or IP multicast address MAY be silently discarded.” And according to section 3.2.2.8 of this RFC,  
“An ICMP Timestamp Request message to an IP broadcast or IP multicast address MAY be silently discarded.” Then a 
check is performed to detect whether the type is allowed for broadcast/multicast (ICMP_ECHO, ICMP_TIMESTAMP, 
ICMP_ADDRESS, and ICMP_ADDRESSREPLY). If it is not one of these message types, the packet is dropped and 
0 is returned. Then according to its type, the corresponding entry in the icmp_pointers array is fetched and the 
appropriate handler is called. Let’s take a look in the ICMP_ECHO entry in the icmp_control dispatch table:
 
static const struct icmp_control icmp_pointers[NR_ICMP_TYPES + 1] = {
...
  [ICMP_ECHO] = {
        .handler = icmp_echo,
    },
...
}
 

So when receiving a ping (the type of the message is “Echo Request,” ICMP_ECHO), it is handled by the  
icmp_echo() method. The icmp_echo() method changes the type in the ICMP header to be ICMP_ECHOREPLY and 
sends a reply by calling the icmp_reply() method. Apart from ping, the only other ICMP message which requires a 
response is the timestamp message (ICMP_TIMESTAMP); it is handled by the icmp_timestamp() method, which, 
much like in the ICMP_ECHO case, changes the type to ICMP_TIMESTAMPREPLY and sends a reply by calling the 
icmp_reply() method. Sending is done by ip_append_data() and by ip_push_pending_frames(). Receiving a ping 
reply (ICMP_ECHOREPLY) is handled by the ping_rcv() method.

You can disable replying to pings with the following:
 
echo 1 >  /proc/sys/net/ipv4/icmp_echo_ignore_all
 

There are some callbacks that handle more than one ICMP type. The icmp_discard() callback, for example, 
handles ICMPv4 packets whose type is not handled by the Linux ICMPv4 implementation, and messages like  
ICMP_TIMESTAMPREPLY, ICMP_INFO_REQUEST , ICMP_ADDRESSREPLY, and more.
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Sending ICMPv4 Messages: “Destination Unreachable”
There are two methods for sending an ICMPv4 message: the first is the icmp_reply() method, which is sent as a 
response for two types of ICMP requests, ICMP_ECHO and ICMP_TIMESTAMP. The second one is the icmp_send() 
method, where the local machine initiates sending an ICMPv4 message under certain conditions (described in this 
section). Both these methods eventually invoke icmp_push_reply() for actually sending the packet. The  
icmp_reply() method is called as a response to an ICMP_ECHO message from the icmp_echo() method, and as 
a response to an ICMP_TIMESTAMP message from the icmp_timestamp() method. The icmp_send() method is 
invoked from many places in the IPv4 network stack—for example, from netfilter, from the forwarding code  
(ip_forward.c), from tunnels like ipip and ip_gre, and more.

This section looks into some of the cases when a “Destination Unreachable” message is sent (the type is  
ICMP_DEST_UNREACH).

Code 2: ICMP_PROT_UNREACH (Protocol Unreachable)
When the protocol of the IP header (which is an 8-bit field) is a nonexistent protocol, an ICMP_DEST_UNREACH/
ICMP_PROT_UNREACH is sent back to the sender because there is no protocol handler for such a protocol (the 
protocol handler array is indexed by the protocol number, so for nonexistent protocols there will be no handler). By 
nonexistent protocol I mean either that because of some error indeed the protocol number of the IPv4 header does not 
appear in the protocol number list (which you can find in include/uapi/linux/in.h, for IPv4), or that the kernel was 
built without support for that protocol, and, as a result, this protocol is not registered and there is no entry for it in the 
protocol handlers array. Because such a packet can’t be handled, an ICMPv4 message of “Destination Unreachable” 
should be replied back to the sender; the ICMP_PROT_UNREACH code in the ICMPv4 reply signifies the cause of the 
error, “protocol is unreachable.” See the following: 
 
static int ip_local_deliver_finish(struct sk_buff *skb)
  {
    ...
    int protocol = ip_hdr(skb)->protocol;
    const struct net_protocol *ipprot;
    int raw;
 
resubmit:
    raw = raw_local_deliver(skb, protocol);
 
    ipprot = rcu_dereference(inet_protos[protocol]);
    if (ipprot != NULL) {
        ...
    } else {
    if (!raw) {
    if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
            IP_INC_STATS_BH(net, IPSTATS_MIB_INUNKNOWNPROTOS);
            icmp_send(skb, ICMP_DEST_UNREACH,ICMP_PROT_UNREACH, 0);
              }
        ...
  }
 
(net/ipv4/ip_input.c)

In this example, a lookup in the inet_protos array by protocol is performed; and because no entry was found, 
this means that the protocol is not registered in the kernel.
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Code 3: ICMP_PORT_UNREACH (“Port Unreachable”)
When receiving UDPv4 packets, a matching UDP socket is searched for. If no matching socket is found, the checksum 
correctness is verified. If it is wrong, the packet is dropped silently. If it is correct, the statistics are updated and a 
“Destination Unreachable”/”Port Unreachable” ICMP message is sent back:
 
int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto)
{
        struct sock *sk;
        ...
        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable)
        ...
        if (sk != NULL) {
        ...
        }
     
        /* No socket. Drop packet silently, if checksum is wrong */
    if (udp_lib_checksum_complete(skb))
        goto csum_error;
 
        UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
        ...
        }
...
         
}
 
(net/ipv4/udp.c)

A lookup is being performed by the __udp4_lib_lookup_skb() method, and if there is no socket, the statistics are 
updated and an ICMP_DEST_UNREACH message with ICMP_PORT_UNREACH code is sent back.

Code 4: ICMP_FRAG_NEEDED
When forwarding a packet with a length larger than the MTU of the outgoing link, if the don’t fragment (DF) bit  
in the IPv4 header (IP_DF) is set, the packet is discarded and an ICMP_DEST_UNREACH message with  
ICMP_FRAG_NEEDED code is sent back to the sender:
 
int ip_forward(struct sk_buff *skb)
{
        ...
        struct rtable *rt;      /* Route we use */
        ...
        if (unlikely(skb->len > dst_mtu(&rt->dst) && !skb_is_gso(skb) &&
                     (ip_hdr(skb)->frag_off & htons(IP_DF))) && !skb->local_df) {
                IP_INC_STATS(dev_net(rt->dst.dev), IPSTATS_MIB_FRAGFAILS);
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                icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
                          htonl(dst_mtu(&rt->dst)));
                goto drop;
        }
        ...
}
 
(net/ipv4/ip_forward.c)

Code 5: ICMP_SR_FAILED
When forwarding a packet with the strict routing option and gatewaying set, a “Destination Unreachable” message 
with ICMP_SR_FAILED code is sent back, and the packet is dropped:
 
int ip_forward(struct sk_buff *skb)
 {
         struct ip_options *opt  = &(IPCB(skb)->opt);
         ...
         if (opt->is_strictroute && rt->rt_uses_gateway)
                 goto sr_failed;
         ...
sr_failed:
          icmp_send(skb, ICMP_DEST_UNREACH, ICMP_SR_FAILED, 0);
          goto drop;
}
 
(net/ipv4/ip_forward.c)

For a full list of all IPv4 “Destination Unreachable” codes, see Table 3-1 in the “Quick Reference” section at the 
end of this chapter. Note that a user can configure some rules with the iptables REJECT target and the --reject-with  
qualifier, which can send “Destination Unreachable” messages according to the selection; more in the “Quick 
Reference” section at the end of this chapter.

Both the icmp_reply() and the icmp_send() methods support rate limiting; they call icmpv4_xrlim_allow(), 
and if the rate limiting check allows sending the packet (the icmpv4_xrlim_allow() returns true), they send the 
packet. It should be mentioned here that rate limiting is not performed automatically on all types of traffic. Here are 
the conditions under which rate limiting check will not be performed:

The message type is unknown.•	

The packet is of PMTU discovery.•	

The device is a loopback device.•	

The ICMP type is not enabled in the rate mask.•	

If all these conditions are not matched, rate limiting is performed by calling the inet_peer_xrlim_allow() 
method. You’ll find more info about rate mask in the “Quick Reference” section at the end of this chapter.

Let’s look inside the icmp_send() method. First, this is its prototype:
 
void icmp_send(struct sk_buff *skb_in, int type, int code, __be32 info)
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skb_in is the SKB which caused the invocation of the icmp_send() method, type and code are the ICMPv4 

message type and code, respectively. The last parameter, info, is used in the following cases:

For the ICMP_PARAMETERPROB message type it is the offset in the IPv4 header where the •	
parsing problem occurred.

For the ICMP_DEST_UNREACH message type with ICMP_FRAG_NEEDED code, it is the MTU.•	

For the ICMP_REDIRECT message type with ICMP_REDIR_HOST code, it is the IP address of •	
the destination address in the IPv4 header of the provoking SKB.

When further looking into the icmp_send() method, first there are some sanity checks. Then multicast/broadcast 
packets are rejected. A check of whether the packet is a fragment is performed by inspecting the frag_off field of 
the IPv4 header. If the packet is fragmented, an ICMPv4 message is sent, but only for the first fragment. According 
to section 4.3.2.7 of RFC 1812, an ICMP error message must not be sent as the result of receiving an ICMP error 
message. So first a check is performed to find out whether the ICMPv4 message to be sent is an error message, and if 
it is so, another check is performed to find out whether the provoking SKB contained an error ICMPv4 message, and 
if so, then the method returns without sending the ICMPv4 message. Also if the type is an unknown ICMPv4 type 
(higher than NR_ICMP_TYPES), the method returns without sending the ICMPv4 message, though this isn’t specified 
explicitly by the RFC. Then the source address is determined according to the value of net->ipv4.sysctl_icmp_
errors_use_inbound_ifaddr value (more details in the “Quick Reference” section at the end of this chapter). Then 
the ip_options_echo() method is invoked to copy the IP options of the IPv4 header of the invoking SKB. An icmp_bxm 
object (icmp_param) is being allocated and initialized, and a lookup in the routing subsystem is performed with the 
icmp_route_lookup() method. Then the icmp_push_reply() method is invoked.

Let’s take a look at the icmp_push_reply() method, which actually sends the packet. The icmp_push_reply() 
first finds the socket on which the packet should be sent by calling:
 
sk = icmp_sk(dev_net((*rt)->dst.dev));
 

The dev_net() method returns the network namespace of the outgoing network device. (The dev_net() method 
and network namespaces are discussed in chapter 14 and in Appendix A.) Then, the icmp_sk() method fetches the 
socket (because in SMP there is a socket per CPU). Then the ip_append_data() method is called to move the packet 
to the IP layer. If the ip_append_data() method fails, the statistics are updated by incrementing the ICMP_MIB_
OUTERRORS counter and the ip_flush_pending_frames() method is called to free the SKB. I discuss the  
ip_append_data() method and the ip_flush_pending_frames() method in Chapter 4.

Now that you know all about ICMPv4, it’s time to move on to ICMPv6.

ICMPv6
ICMPv6 has many similarities to ICMPv4 when it comes to reporting errors in the network layer (L3). There are 
additional tasks for ICMPv6 which are not performed in ICMPv4. This section discusses the ICMPv6 protocol, its 
new features (which are not implemented in ICMPv4), and the features which are similar. ICMPv6 is defined in RFC 
4443. If you delve into ICMPv6 code you will probably encounter, sooner or later, comments that mention RFC 1885. 
In fact, RFC 1885, “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6),” is the base 
ICMPv6 RFC. It was obsoleted by RFC 2463, which was in turn obsoleted by RFC 4443. The ICMPv6 implementation is 
based upon IPv4, but it is more complicated; the changes and additions that were added are discussed in this section.

The ICMPv6 protocol has a next header value of 58, according to RFC 4443, section 1 (Chapter 8 discusses IPv6 
next headers). ICMPv6 is an integral part of IPv6 and must be fully implemented by every IPv6 node. Apart from error 
handling and diagnostics, ICMPv6 is used for the Neighbour Discovery (ND) protocol in IPv6, which replaces and 
enhances functions of ARP in IPv4, and for the Multicast Listener Discovery (MLD) protocol, which is the counterpart 
of the IGMP protocol in IPv4, shown in Figure 3-2.
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This section covers the ICMPv6 implementation. As you will see, it has many things in common with the 
ICMPv4 implementation in the way messages are handled and sent. There are even cases when the same methods 
are called in ICMPv4 and in ICMPv6 (for example, ping_rcv() and inet_peer_xrlim_allow()). There are some 
differences, and some topics are unique to ICMPv6. The ping6 and traceroute6 utilities are based on ICMPv6 and 
are the counterparts of ping and traceroute utilities of IPv4 (mentioned in the ICMPv4 section in the beginning of 
this chapter). ICMPv6 is implemented in net/ipv6/icmp.c and in net/ipv6/ip6_icmp.c. As with ICMPv4, ICMPv6 
cannot be built as a kernel module.

ICMPv6 Initialization
ICMPv6 initialization is done by the icmpv6_init() method and by the icmpv6_sk_init() method. Registration of 
the ICMPv6 protocol is done by icmpv6_init() (net/ipv6/icmp.c):
 
static const struct inet6_protocol icmpv6_protocol = {
         .handler        =       icmpv6_rcv,
         .err_handler    =       icmpv6_err,
         .flags          =       INET6_PROTO_NOPOLICY|INET6_PROTO_FINAL,
 };
 

The handler callback is icmpv6_rcv(); this means that for incoming packets whose protocol field equals 
IPPROTO_ICMPV6 (58), icmpv6_rcv() will be invoked.

When the INET6_PROTO_NOPOLICY flag is set, this implies that IPsec policy checks should not be performed; 
for example, the xfrm6_policy_check() method is not called in ip6_input_finish() because the  
INET6_PROTO_NOPOLICY flag is set:
 
int __init icmpv6_init(void)
 {
         int err;
         ...
         if (inet6_add_protocol(&icmpv6_protocol, IPPROTO_ICMPV6) < 0)
                 goto fail;
         return 0;
 }
 

Figure 3-2.  ICMP in IPv4 and IPv6. The counterpart of the IGMP protocol in IPv6 is the MLD protocol, and the 
counterpart of the ARP protocol in IPv6 is the ND protocol
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static int __net_init icmpv6_sk_init(struct net *net)
{
    struct sock *sk;
        ...
    for_each_possible_cpu(i) {
        err = inet_ctl_sock_create(&sk, PF_INET6,
                       SOCK_RAW, IPPROTO_ICMPV6, net);
        ...
        net->ipv6.icmp_sk[i] = sk;
        ...
 
}
 

As in ICMPv4, a raw ICMPv6 socket is created for each CPU and is kept in an array. The current sk can be 
accessed by the icmpv6_sk() method.

ICMPv6 Header
The ICMPv6 header consists of type (8 bits), code (8 bits), and checksum (16 bits), as you can see in Figure 3-3.

Figure 3-3.  ICMPv6 header

The ICMPv6 header is represented by struct icmp6hdr:
 
struct icmp6hdr {
    __u8        icmp6_type;
    __u8        icmp6_code;
    __sum16    icmp6_cksum;
    ...
}
 

There is not enough room to show all the fields of struct icmp6hdr because it is too large (it is defined in 
include/uapi/linux/icmpv6.h). When the high-order bit of the type field is 0 (values in the range from 0 to 127), 
it indicates an error message; when the high-order bit is 1 (values in the range from 128 to 255), it indicates an 
information message. Table 3-1 shows the ICMPv6 message types by their number and kernel symbol.
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The current complete list of assigned ICMPv6 types and codes can be found at  
www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml.

ICMPv6 performs some tasks that are not performed by ICMPv4. For example, Neighbour Discovery is done  
by ICMPv6, whereas in IPv4 it is done by the ARP/RARP protocols. Multicast group memberships are handled by  
ICMPv6 in conjunction with the MLD (Multicast Listener Discovery) protocol, whereas in IPv4 this is performed  
by IGMP (Internet Group Management Protocol). Some ICMPv6 messages are similar in meaning to ICMPv4  
messages; for example, ICMPv6 has these messages: “Destination Unreachable,” (ICMPV6_DEST_UNREACH),  
“Time Exceeded” (ICMPV6_TIME_EXCEED), “Parameter Problem” (ICMPV6_PARAMPROB), “Echo Request” 
(ICMPV6_ECHO_REQUEST), and more. On the other hand, some ICMPv6 messages are unique to IPv6, such as  
the NDISC_NEIGHBOUR_SOLICITATION message.

Receiving ICMPv6 Messages
When getting an ICMPv6 packet, it is delivered to the icmpv6_rcv() method, which gets only an SKB as a parameter. 
Figure 3-4 shows the Rx path of a received ICMPv6 message.

Table 3-1.  ICMPv6 Messages

Type Kernel symbol Error/Info Description

1 ICMPV6_DEST_UNREACH Error Destination Unreachable

2 ICMPV6_PKT_TOOBIG Error Packet too big

3 ICMPV6_TIME_EXCEED Error Time Exceeded

4 ICMPV6_PARAMPROB Error Parameter problem

128 ICMPV6_ECHO_REQUEST Info Echo Request

129 ICMPV6_ECHO_REPLY Info Echo Reply

130 ICMPV6_MGM_QUERY Info Multicast group membership management 
query

131 ICMPV6_MGM_REPORT Info Multicast group membership management 
report

132 ICMPV6_MGM_REDUCTION Info Multicast group membership management 
reduction

133 NDISC_ROUTER_SOLICITATION Info Router solicitation

134 NDISC_ROUTER_ADVERTISEMENT Info Router advertisement

135 NDISC_NEIGHBOUR_SOLICITATION Info Neighbour solicitation

136 NDISC_NEIGHBOUR_ADVERTISEMENT Info Neighbour advertisement

137 NDISC_REDIRECT Info Neighbour redirect

http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml
http://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xml
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In the icmpv6_rcv() method, after some sanity checks, the InMsgs SNMP counter (ICMP6_MIB_INMSGS) is 
incremented. Subsequently, the checksum correctness is verified. If the checksum is not correct, the InErrors SNMP 
counter (ICMP6_MIB_INERRORS) is incremented, and the SKB is freed. The icmpv6_rcv() method does not return 
an error in this case (in fact it always returns 0, much like its IPv4 counterpart, icmp_rcv()).Then the ICMPv6 header 
is read in order to find its type; the corresponding procfs message type counter is incremented by the ICMP6MSGIN_
INC_STATS_BH macro (each ICMPv6 message type has a procfs counter). For example, when receiving ICMPv6 
ECHO requests (“pings”), the /proc/net/snmp6/Icmp6InEchos counter is incremented, and when receiving ICMPv6 
Neighbour Solicitation requests, the /proc/net/snmp6/Icmp6InNeighborSolicits counter is incremented.

In ICMPv6, there is no dispatch table like the icmp_pointers table in ICMPv4. The handlers are invoked 
according to the ICMPv6 message type, in a long switch(type) command:

“Echo Request” (ICMPV6_ECHO_REQUEST) is handled by the •	 icmpv6_echo_reply() 
method.

“Echo Reply” (ICMPV6_ECHO_REPLY) is handled by the •	 ping_rcv() method. The  
ping_rcv() method is in the IPv4 ping module (net/ipv4/ping.c); this method is a dual-
stack method (it handles both IPv4 and IPv6—discussed in the beginning of this chapter).

Packet too big (ICMPV6_PKT_TOOBIG).•	

First a check is done to verify that the data block area (pointed to by •	 skb->data) contains 
a block of data whose size is at least as big as an ICMP header. This is done by the  
pskb_may_pull() method. If this condition is not met, the packet is dropped.

Then the •	 icmpv6_notify() method is invoked. This method eventually calls the  
raw6_icmp_error() method so that the registered raw sockets will handle the  
ICMP messages.

Figure 3-4.  Receive path of ICMPv6 message
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“Destination Unreachable,” “Time Exceeded,” and “Parameter Problem”  •	
(ICMPV6_DEST_UNREACH, ICMPV6_TIME_EXCEED, and ICMPV6_PARAMPROB 
respectively) are also handled by icmpv6_notify().

Neighbour Discovery (ND) messages:•	

NDISC_ROUTER_SOLICITATION: Messages which are sent usually to the •	 all-routers 
multicast address of FF02::2, and which are answered by router advertisements. (Special 
IPv6 multicast addresses are discussed in Chapter 8).

NDISC_ROUTER_ADVERTISEMENT: Messages which are sent periodically by routers •	
or as an immediate response to router solicitation requests. Router advertisements 
contain prefixes that are used for on-link determination and/or address configuration, a 
suggested hop limit value, and so on.

NDISC_NEIGHBOUR_SOLICITATION: The counterpart of ARP request in IPv4.•	

NDISC_NEIGHBOUR_ADVERTISEMENT: The counterpart of ARP reply in IPv4.•	

NDISC_REDIRECT: Used by routers to inform hosts of a better first hop for a destination.•	

All the Neighbour Discovery (ND) messages are handled by the neighbour discovery •	
method, ndisc_rcv() (net/ipv6/ndisc.c). The ndisc_rcv() method is discussed in 
Chapter 7.

ICMPV6_MGM_QUERY (Multicast Listener Report) is handled by •	 igmp6_event_query().

ICMPV6_MGM_REPORT (Multicast Listener Report) is handled by •	 igmp6_event_report(). 
Note: Both ICMPV6_MGM_QUERY and ICMPV6_MGM_REPORT are discussed in more detail 
in Chapter 8.

Messages of unknown type, and the following messages, are all handled by the  •	
icmpv6_notify() method:

ICMPV6_MGM_REDUCTION: When a host leaves a multicast group, it sends an MLDv2 •	
ICMPV6_MGM_REDUCTION message; see the igmp6_leave_group() method in net/
ipv6/mcast.c.

ICMPV6_MLD2_REPORT: MLDv2 Multicast Listener Report packet; usually sent •	
with destination address of the all MLDv2-capable routers Multicast Group Address 
(FF02::16).

ICMPV6_NI_QUERY- ICMP: Node Information Query.•	

ICMPV6_NI_REPLY: ICMP Node Information Response.•	

ICMPV6_DHAAD_REQUEST: ICMP Home Agent Address Discovery Request Message; •	
see section 6.5, RFC 6275, “Mobility Support in IPv6.”

ICMPV6_DHAAD_REPLY: ICMP Home Agent Address Discovery Reply Message; See •	
section 6.6, RFC 6275.

ICMPV6_MOBILE_PREFIX_SOL: ICMP Mobile Prefix Solicitation Message Format; see •	
section 6.7, RFC 6275.

ICMPV6_MOBILE_PREFIX_ADV: ICMP Mobile Prefix Advertisement Message Format; •	
see section 6.8, RFC 6275.
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Notice that the switch(type) command ends like this:
 
    default:
        LIMIT_NETDEBUG(KERN_DEBUG "icmpv6: msg of unknown type\n");
 
        /* informational */
        if (type & ICMPV6_INFOMSG_MASK)
            break;
 
        /*
         * error of unknown type.
         * must pass to upper level
         */
 
        icmpv6_notify(skb, type, hdr->icmp6_code, hdr->icmp6_mtu);
    }
 

Informational messages fulfill the condition (type & ICMPV6_INFOMSG_MASK), so they are discarded, whereas the 
other messages which do not fulfill this condition (and therefore should be error messages) are passed to the upper 
layer. This is done in accordance with section 2.4 (“Message Processing Rules”) of RFC 4443.

Sending ICMPv6 Messages
The main method for sending ICMPv6 messages is the icmpv6_send() method. The method is called when the  
local machine initiates sending an ICMPv6 message under conditions described in this section. There is also the 
icmpv6_echo_reply() method, which is called only as a response to an ICMPV6_ECHO_REQUEST (“ping”) message.  
The icmp6_send() method is invoked from many places in the IPv6 network stack. This section looks at several examples.

Example: Sending “Hop Limit Time Exceeded” ICMPv6 Messages
When forwarding a packet, every machine decrements the Hop Limit Counter by 1. The Hop Limit Counter is a  
member of the IPv6 header—it is the IPv6 counterpart to Time To Live in IPv4. When the value of the Hop Limit 
Counter header reaches 0, an ICMPV6_TIME_EXCEED message is sent with ICMPV6_EXC_HOPLIMIT code by 
calling the icmpv6_send() method, then the statistics are updated and the packet is dropped:
 
int ip6_forward(struct sk_buff *skb)
{
    ...
        if (hdr->hop_limit <= 1) {
                 /* Force OUTPUT device used as source address */
                 skb->dev = dst->dev;
                 icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0);
                 IP6_INC_STATS_BH(net,
                                  ip6_dst_idev(dst), IPSTATS_MIB_INHDRERRORS);
  
                 kfree_skb(skb);
                 return -ETIMEDOUT;
         }
    ...
}
 
(net/ipv6/ip6_output.c)
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Example:  Sending “Fragment Reassembly Time Exceeded” ICMPv6 Messages
When a timeout of a fragment occurs, an ICMPV6_TIME_EXCEED message with ICMPV6_EXC_FRAGTIME code is 
sent back, by calling the icmpv6_send() method:
 
void ip6_expire_frag_queue(struct net *net, struct frag_queue *fq,
                            struct inet_frags *frags)
 {
        . . .
        icmpv6_send(fq->q.fragments, ICMPV6_TIME_EXCEED, ICMPV6_EXC_FRAGTIME, 0);
        . . .
 }
 
(net/ipv6/reassembly.c)

Example: Sending “Destination Unreachable”/“Port Unreachable” ICMPv6 Messages
When receiving UDPv6 packets, a matching UDPv6 socket is searched for. If no matching socket is found,  
the checksum correctness is verified. If it is wrong, the packet is dropped silently. If it is correct, the statistics  
(UDP_MIB_NOPORTS MIB counter, which is exported to procfs by /proc/net/snmp6/Udp6NoPorts) is updated  
and a “Destination Unreachable”/“Port Unreachable” ICMPv6 message is sent back with icmpv6_send():
 
int __udp6_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, int proto)
{
        ...
       sk = __udp6_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
        if (sk != NULL) {
        ...
        }
        ...
        if (udp_lib_checksum_complete(skb))
                goto discard;
          
        UDP6_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
        icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_PORT_UNREACH, 0);
        ...
         
}
 

This case is very similar to the UDPv4 example given earlier in this chapter.

Example: Sending “Fragmentation Needed” ICMPv6 Messages
When forwarding a packet, if its size is larger than the MTU of the outgoing link, and the local_df bit in the SKB is not 
set, the packet is discarded and an ICMPV6_PKT_TOOBIG message is sent back to the sender. The information in  
this message is used as part of the Path MTU (PMTU) discovery process.
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Note that as opposed to the parallel case in IPv4, where an ICMP_DEST_UNREACH message with ICMP_
FRAG_NEEDED code is sent, in this case an ICMPV6_PKT_TOOBIG message is sent back, and not a “Destination 
Unreachable” (ICMPV6_DEST_UNREACH) message. The ICMPV6_PKT_TOOBIG message has a message type 
number of its own in ICMPv6:
 
int ip6_forward(struct sk_buff *skb)
{
...
         if ((!skb->local_df && skb->len > mtu && !skb_is_gso(skb)) ||
             (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu)) {
                 /* Again, force OUTPUT device used as source address */
                 skb->dev = dst->dev;
                 icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu);
                 IP6_INC_STATS_BH(net,
                                  ip6_dst_idev(dst), IPSTATS_MIB_INTOOBIGERRORS);
                 IP6_INC_STATS_BH(net,
                                  ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS);
                 kfree_skb(skb);
                 return -EMSGSIZE;
         }
...
}
 
(net/ipv6/ip6_output.c)

Example: Sending “Parameter Problem” ICMPv6 Messages
When encountering a problem in parsing extension headers, an ICMPV6_PARAMPROB message with  
ICMPV6_UNK_OPTION code is sent back:
 
static bool ip6_tlvopt_unknown(struct sk_buff *skb, int optoff) {
        switch ((skb_network_header(skb)[optoff] & 0xC0) >> 6) {
        ...
        case 2: /* send ICMP PARM PROB regardless and drop packet */
                 icmpv6_param_prob(skb, ICMPV6_UNK_OPTION, optoff);
                 return false;
         }
 
(net/ipv6/exthdrs.c)

The icmpv6_send() method supports rate limiting by calling icmpv6_xrlim_allow(). I should mention here that, 
as in ICMPv4, rate limiting is not performed automatically in ICMPv6 on all types of traffic. Here are the conditions 
under which rate limiting check will not be performed:

Informational messages•	

PMTU discovery•	

Loopback device•	

If all these conditions are not matched, rate limiting is performed by calling the inet_peer_xrlim_allow() 
method, which is shared between ICMPv4 and ICMPv6. Note that unlike IPv4, you can’t set a rate mask in IPv6. It is 
not forbidden by the ICMPv6 spec, RFC 4443, but it was never implemented.
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Let’s look inside the icmp6_send() method. First, this is its prototype:
 
static void icmp6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info)
 

The parameters are similar to those of the icmp_send() method of IPv4, so I won’t repeat the explanation here. 
When further looking into the icmp6_send() code, you find some sanity checks. Checking whether the provoking 
message is an ICMPv6 error message is done by calling the is_ineligible() method; if it is, the icmp6_send() method 
terminates. The length of the message should not exceed 1280, which is IPv6 minimum MTU (IPV6_MIN_MTU, 
defined in include/linux/ipv6.h). This is done in accordance with RFC 4443, section 2.4 (c), which says that every 
ICMPv6 error message must include as much of the IPv6 offending (invoking) packet (the packet that caused the 
error) as possible without making the error message packet exceed the minimum IPv6 MTU. Then the message is 
passed to the IPv6 layer, by the ip6_append_data() method and by the icmpv6_push_pending_frame() method, to 
free the SKB.

Now I’ll turn to the icmpv6_echo_reply() method; as a reminder, this method is called as a response to 
an ICMPV6_ECHO message. The icmpv6_echo_reply() method gets only one parameter, the SKB. It builds an 
icmpv6_msg object and sets its type to ICMPV6_ECHO_REPLY. Then it passes the message to the IPv6 layer, by the 
ip6_append_data() method and by the icmpv6_push_pending_frame() method. If the ip6_append_data() method 
fails, an SNMP counter (ICMP6_MIB_OUTERRORS) is incremented, and ip6_flush_pending_frames() is invoked to 
free the SKB.

Chapters 7 and 8 also discuss ICMPv6. The next section introduces ICMP sockets and the purpose they serve.

ICMP Sockets (“Ping sockets”)
A new type of sockets (IPPROTO_ICMP) was added by a patch from the Openwall GNU/*/Linux distribution (Owl), 
which provides security enhancements over other distributions. The ICMP sockets enable a setuid-less “ping.” For 
Openwall GNU/*/Linux, it was the last step on the road to a setuid-less distribution. With this patch, a new ICMPv4 
ping socket (which is not a raw socket) is created with:
 
socket(PF_INET, SOCK_DGRAM, IPPROTO_ICMP);
 

instead of with:
 
socket(PF_INET, SOCK_RAW, IPPROTO_ICMP);
 

There is also support for IPPROTO_ICMPV6 sockets, which was added later, in net/ipv6/icmp.c. A new ICMPv6 
ping socket is created with:
 
socket(PF_INET6, SOCK_DGRAM, IPPROTO_ICMPV6);
 

instead of with:
 
socket(PF_INET6, SOCK_RAW, IPPROTO_ICMP6);
 

Similar functionality (non-privileged ICMP) is implemented in Mac OS X; see: www.manpagez.com/man/4/icmp/.
Most of the code for ICMP sockets is in net/ipv4/ping.c; in fact, large parts of the code in net/ipv4/ping.c 

are dual-stack (IPv4 and IPv6). In net/ipv6/ping.c there are only few IPv6-specific bits. Using ICMP sockets is 
disabled by default. You can enable ICMP sockets by setting the following procfs entry: /proc/sys/net/ipv4/
ping_group_range. It is “1 0” by default, meaning that nobody (not even root) may create ping sockets. So, if you want 
to allow a user with uid and gid of 1000 to use the ICMP socket, you should run this from the command line (with 
root privileges): echo 1000 1000 > /proc/sys/net/ipv4/ping_group_range, and then you can ping from this user 

http://www.manpagez.com/man/4/icmp/
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account using ICMP sockets. If you want to set privileges for a user in the system, you should run from the command 
line echo 0  2147483647 > /proc/sys/net/ipv4/ping_group_range. (2147483647 is the value of GID_T_MAX; 
see include/net/ping.h.) There are no separate security settings for IPv4 and IPv6; everything is controlled by /
proc/sys/net/ipv4/ping_group_range. The ICMP sockets support only ICMP_ECHO for IPv4 or ICMPV6_ECHO_
REQUEST for IPv6, and the code of the ICMP message must be 0 in both cases.

The ping_supported() helper method checks whether the parameters for building the ICMP message (both for 
IPv4 and IPv6) are valid. It is invoked from ping_sendmsg():
 
static inline int ping_supported(int family, int type, int code)
{
    return (family == AF_INET && type == ICMP_ECHO && code == 0) ||
           (family == AF_INET6 && type == ICMPV6_ECHO_REQUEST && code == 0);
}
 
(net/ipv4/ping.c)

ICMP sockets export the following entries to procfs: /proc/net/icmp for IPv4 and /proc/net/icmp6 for IPv6.
For more info about ICMP sockets see http://openwall.info/wiki/people/segoon/ping and  

http://lwn.net/Articles/420799/.

Summary 
This chapter covered the implementation of ICMPv4 and ICMPv6. You learned about the ICMP header format of both 
protocols and about receiving and sending messages with both protocols. The new features of ICMPv6, which you 
will encounter in upcoming chapters, were also discussed. The Neighbouring Discovery protocol, which uses ICMPv6 
messages, is discussed in Chapter 7, and the MLD protocol, which also uses ICMPv6 messages, is covered in  
Chapter 8. The next chapter, Chapter 4, talks about the implementation of the IPv4 network layer.

In the “Quick Reference” section that follows, I cover the top methods related to the topics discussed in this 
chapter, ordered by their context. Then two tables mentioned in the chapter, some important relevant procfs entries 
and a short section about ICMP messages usage in iptables reject rules are all covered.

Quick Reference
I conclude this chapter with a short list of important methods of ICMPv4 and ICMPv6, 6 tables, a section about 
procfs entries, and a short section about using a reject target in iptables and ip6tables to create ICMP “Destination 
Unreachable” messages.

Methods
The following methods were covered in this chapter.

int icmp_rcv(struct sk_buff *skb);
This method is the main handler for processing incoming ICMPv4 packets.

extern void icmp_send(struct sk_buff *skb_in,  int type, int code, __be32 info);
This method sends an ICMPv4 message. The parameters are the provoking SKB, ICMPv4 message type, ICMPv4 
message code, and info (which is dependent on type).

http://openwall.info/wiki/people/segoon/ping
http://lwn.net/Articles/420799/
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struct icmp6hdr *icmp6_hdr(const struct sk_buff *skb);
This method returns the ICMPv6 header, which the specified skb contains.

void icmpv6_send(struct sk_buff *skb, u8 type, u8 code, __u32 info);
This method sends an ICMPv6 message. The parameters are the provoking SKB, ICMPv6 message type, ICMPv6 
message code, and info (which is dependent on type).

void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos);
This method is a convenient version of the icmp6_send() method, which all it does is call icmp6_send() with 
ICMPV6_PARAMPROB as a type, and with the other specified parameters, skb, code and pos, and frees the SKB 
afterwards.

Tables
The following tables were covered in this chapter.

Table 3-2.  ICMPv4 “Destination Unreachable” (ICMP_DEST_UNREACH) Codes

Code Kernel Symbol Description

0 ICMP_NET_UNREACH Network Unreachable

1 ICMP_HOST_UNREACH Host Unreachable

2 ICMP_PROT_UNREACH Protocol Unreachable

3 ICMP_PORT_UNREACH Port Unreachable

4 ICMP_FRAG_NEEDED Fragmentation Needed, but the DF flag is set.

5 ICMP_SR_FAILED Source route failed

6 ICMP_NET_UNKNOWN Destination network unknown

7 ICMP_HOST_UNKNOWN Destination host unknown

8 ICMP_HOST_ISOLATED Source host isolated

9 ICMP_NET_ANO The destination network is administratively prohibited.

10 ICMP_HOST_ANO The destination host is administratively prohibited.

11 ICMP_NET_UNR_TOS The network is unreachable for Type Of Service.

12 ICMP_HOST_UNR_TOS The host is unreachable for Type Of Service.

13 ICMP_PKT_FILTERED Packet filtered

14 ICMP_PREC_VIOLATION Precedence violation

15 ICMP_PREC_CUTOFF Precedence cut off

16 NR_ICMP_UNREACH Number of unreachable codes
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Table 3-3.  ICMPv4 Redirect (ICMP_REDIRECT) Codes

Code Kernel Symbol Description

0 ICMP_REDIR_NET Redirect Net

1 ICMP_REDIR_HOST Redirect Host

2 ICMP_REDIR_NETTOS Redirect Net for TOS

3 ICMP_REDIR_HOSTTOS Redirect Host for TOS

Table 3-4.  ICMPv4 Time Exceeded (ICMP_TIME_EXCEEDED) Codes

Code Kernel Symbol Description

0 ICMP_EXC_TTL TTL count exceeded

1 ICMP_EXC_FRAGTIME Fragment Reassembly time exceeded

Table 3-5.  ICMPv6 “Destination Unreachable” (ICMPV6_DEST_UNREACH) Codes

Code Kernel Symbol Description

0 ICMPV6_NOROUTE No route to destination

1 ICMPV6_ADM_PROHIBITED Communication with destination 
administratively prohibited

2 ICMPV6_NOT_NEIGHBOUR Beyond scope of source address

3 ICMPV6_ADDR_UNREACH Address Unreachable

4 ICMPV6_PORT_UNREACH Port Unreachable

Table 3-6.  ICMPv6 Time Exceeded (ICMPV6_TIME_EXCEED) Codes

Code Kernel Symbol Description

0 ICMPV6_EXC_HOPLIMIT Hop limit exceeded in transit

1 ICMPV6_EXC_FRAGTIME Fragment reassembly time exceeded

Note that ICMPV6_PKT_TOOBIG, which is the counterpart of IPv4 ICMP_DEST_UNREACH /ICMP_FRAG_
NEEDED, is not a code of ICMPV6_DEST_UNREACH, but an ICMPv6 type in itself.

Table 3-7.  ICMPv6 Parameter Problem (ICMPV6_PARAMPROB) Codes

Code Kernel Symbol Description

0 ICMPV6_HDR_FIELD Erroneous header field encountered

1 ICMPV6_UNK_NEXTHDR Unknown Next Header type encountered

2 ICMPV6_UNK_OPTION Unknown IPv6 option encountered
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procfs entries
The kernel provides a way of configuring various settings for various subsystems from the userspace by way of writing 
values to entries under /proc. These entries are referred to as procfs entries. All of the ICMPv4 procfs entries are 
represented by variables in the netns_ipv4 structure (include/net/netns/ipv4.h), which is an object in the network 
namespace (struct net). Network namespaces and their implementation are discussed in Chapter 14. The following 
are the names of the sysctl variables that correspond to the ICMPv4 netns_ipv4 elements, explanations about their 
usage, and the default values to which they are initialized, specifying also in which method the initialization takes place.

sysctl_icmp_echo_ignore_all
When icmp_echo_ignore_all is set, echo requests (ICMP_ECHO) will not be replied.

procfs entry: /proc/sys/net/ipv4/icmp_echo_ignore_all
Initialized to 0 in icmp_sk_init()

sysctl_icmp_echo_ignore_broadcasts
When receiving a broadcast or a multicast echo (ICMP_ECHO) message or a timestamp (ICMP_TIMESTAMP) 
message, you check whether broadcast/multicast requests are permitted by reading sysctl_icmp_echo_ignore_
broadcasts. If this variable is set, you drop the packet and return 0.

procfs entry: /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
Initialized to 1 in icmp_sk_init()

sysctl_icmp_ignore_bogus_error_responses
Some routers violate RFC1122 by sending bogus responses to broadcast frames. In the icmp_unreach() method, you 
check this flag. If this flag is set to TRUE, the kernel will not log these warnings (“<IPv4Addr>sent an invalid ICMP type. . .”).

procfs entry: /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses
Initialized to 1 in icmp_sk_init()

sysctl_icmp_ratelimit
Limit the maximal rates for sending ICMP packets whose type matches the icmp ratemask (icmp_ratemask, see later 
in this section) to specific targets.

A value of 0 means disable any limiting; otherwise it is the minimal space between responses in milliseconds.
procfs entry: /proc/sys/net/ipv4/icmp_ratelimit
Initialized to 1 * HZ in icmp_sk_init()

sysctl_icmp_ratemask
Mask made of ICMP types for which rates are being limited. Each bit is an ICMPv4 type.

procfs entry: /proc/sys/net/ipv4/icmp_ratemask
Initialized to 0x1818 in icmp_sk_init()

sysctl_icmp_errors_use_inbound_ifaddr
The value of this variable is checked in icmp_send(). When it’s not set, the ICMP error messages are sent with the 
primary address of the interface on which the packet will be sent. When it is set, the ICMP message will be sent with 
the primary address of the interface that received the packet that caused the icmp error.

procfs entry: /proc/sys/net/ipv4/icmp_errors_use_inbound_ifaddr
Initialized to 0 in icmp_sk_init()
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Note■■  S ee also more about the ICMP sysctl variables, their types and their default values in

Documentation/networking/ip-sysctl.txt.

Creating “Destination Unreachable” Messages with iptables
The iptables userspace tool enables us to set rules which dictate what the kernel should do with traffic according 
to filters set by these rules. Handling iptables rules is done in the netfilter subsystem, and is discussed in Chapter 
9. One of the iptables rules is the reject rule, which discards packets without further processing them. When 
setting an iptables reject target, the user can set a rule to send a “Destination Unreachable” ICMPv4 messages 
with various codes using the -j REJECT and --reject-with qualifiers. For example, the following iptables rule will 
discard any packet from any source with sending back an ICMP message of “ICMP Host Prohibited”:
 
iptables -A INPUT -j REJECT --reject-with icmp-host-prohibited
 

These are the possible values to the --reject-with qualifier for setting an ICMPV4 message which will be sent in 
reply to the sending host:
 
icmp-net-unreachable   - ICMP_NET_UNREACH
icmp-host-unreachable  - ICMP_HOST_UNREACH
icmp-port-unreachable  - ICMP_PORT_UNREACH
icmp-proto-unreachable - ICMP_PROT_UNREACH
icmp-net-prohibited    - ICMP_NET_ANO
icmp-host-prohibited   - ICMP_HOST_ANO
icmp-admin-prohibited  - ICMP_PKT_FILTERED
 

You can also use --reject-with tcp-reset which will send a TCP RST packet in reply to the sending host.
 
(net/ipv4/netfilter/ipt_REJECT.c)
 

With ip6tables in IPv6, there is also a REJECT target. For example:
 
ip6tables -A INPUT -s 2001::/64 -p ICMPv6  -j REJECT --reject-with icmp6-adm-prohibited
 

These are the possible values to the --reject-with qualifier for setting an ICMPv6 message which will be sent in 
reply to the sending host:
 
no-route, icmp6-no-route              - ICMPV6_NOROUTE.
adm-prohibited, icmp6-adm-prohibited  - ICMPV6_ADM_PROHIBITED.
port-unreach, icmp6-port-unreachable  - ICMPV6_NOT_NEIGHBOUR.
addr-unreach, icmp6-addr-unreachable  - ICMPV6_ADDR_UNREACH.
 
(net/ipv6/netfilter/ip6t_REJECT.c)
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Chapter 4

IPv4

Chapter 3 deals with the implementation of the ICMP protocol in IPv4 and in IPv6. This chapter, which deals with the 
IPv4 protocol, shows how ICMP messages are used for reporting Internet protocol errors under certain circumstances. 
The IPv4 protocol (Internet Protocol version 4) is one of the core protocols of today’s standards-based Internet and 
routes most of the traffic on the Internet. The base definition is in RFC 791, “Internet Protocol,” from 1981. The IPv4 
protocol provides an end-to-end connectivity between any two hosts. Another important function of the IP layer is 
forwarding packets (also called routing) and managing tables that store routing information. Chapters 5 and 6 discuss 
IPv4 routing. This chapter describes the IPv4 Linux implementation: receiving and sending IPv4 packets, including 
multicast packets, IPv4 forwarding, and handling IPv4 options. There are cases when the packet to be sent is bigger 
than the MTU of the outgoing interface; in such cases the packet should be fragmented into smaller fragments. When 
fragmented packets are received, they should be assembled into one big packet, which should be identical to the packet 
that was sent before it was fragmented. These are also important tasks of the IPv4 protocol discussed in this chapter.

Every IPv4 packet starts with an IP header, which is at least 20 bytes long. If IP options are used, the IPv4 header can 
be up to 60 bytes. After the IP header, there is the transport header (TCP header or UDP header, for example), and after it 
is the payload data. To understand the IPv4 protocol, you must first learn how the IPv4 header is built. In Figure 4-1 you 
can see the IPv4 header, which consists of two parts: the first part of 20 bytes (until the beginning of the options field in the 
IPv4 header) is the basic IPv4 header, and after it there is the IP options part, which can be from 0 to 40 bytes in length.

Figure 4-1.  IPv4 header
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IPv4 Header
The IPv4 header consists of information that defines how a packet should be handled by the kernel network stack: 
the protocol being used, the source and destination address, the checksum, the identification (id) of the packet that 
is needed for fragmentation, the ttl that helps avoiding packets being forwarded endlessly because of some error, 
and more. This information is stored in 13 members of the IPv4 header (the 14th member, IP Options, which is an 
extension to the IPv4 header, is optional). The various members of the IPv4 and the various IP options are described 
next. The IPv4 header is represented by the iphdr structure. Its members, which appear in Figure 4-1, are described  
in the next section. The IP options and their use are described in the “IP Options” section later in this chapter.

Figure 4-1 shows the IPv4 header. All members always exist—except for the last one, the IP options, which is 
optional. The content of the IPv4 members determines how it will be handled in the IPv4 network stack: the packet 
is discarded when there is some problem (for example, if the version, which is the first member, is not 4, or if the 
checksum is incorrect). Each IPv4 packet starts with IPv4 header, and after it there is the payload:
 
struct iphdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
    __u8    ihl:4,
            version:4;
#elif defined (__BIG_ENDIAN_BITFIELD)
    __u8    version:4,
            ihl:4;
#else
#error    "Please fix <asm/byteorder.h>"
#endif
    __u8          tos;
    __be16        tot_len;
    __be16        id;
    __be16        frag_off;
    __u8          ttl;
    __u8          protocol;
    __sum16       check;
    __be32        saddr;
    __be32        daddr;
    /*The options start here. */
};
 
(include/uapi/linux/ip.h)



Chapter 4 ■ IPv4

65

The following is a description of the IPv4 header members:

•	 ihl: This stands for Internet Header Length. The length of the IPv4 header, measured in 
multiples of 4 bytes. The length of the IPv4 header is not fixed, as opposed to the header 
of IPv6, where the length is fixed (40 bytes). The reason is that the IPv4 header can include 
optional, varying length options. The minimum size of the IPv4 header is 20 bytes, when there 
are no options, and the maximum size is 60 bytes. The corresponding ihl values are 5 for 
minimum IPv4 header size, and 15 for the maximum size. The IPv4 header must be aligned to 
a 4-byte boundary.

•	 version: Should be 4.

•	 tos: The tos field of the IPv4 header was originally intended for Quality of Service (QoS) 
services; tos stands for Type of Service. Over the years this field took on a different meaning, 
as follows: RFC 2474 defines the Differentiated Services Field (DS Field) in the IPv4 and IPv6 
headers, which is bits 0–5 of the tos. It is also named Differentiated Services Code Point 
(DSCP). RFC 3168 from 2001 defines the Explicit Congestion Notification (ECN) of the IP 
header; it is bits 6 and 7 of the tos field.

•	 tot_len: The total length, including the header, measured in bytes. Because tot_len is a  
16-bit field, it can be up to 64KB. According to RFC 791, the minimum size is 576 bytes.

•	 id: Identification of the IPv4 header. The id field is important for fragmentation: when 
fragmenting an SKB, the id value of all the fragments of that SKB should be the same. 
Reassembling fragmented packets is done according to the id of the fragments.

•	 frag_off: The fragment offset, a 16-bit field. The lower 13 bits are the offset of the fragment.  
In the first fragment, the offset is 0. The offset is measured in units of 8 bytes. The higher 3 bits 
are the flags:

001 is MF (More Fragments). It is set for all fragments, except the last one.•	

010 is DF (Don’t Fragment).•	

100 is CE (Congestion).•	

See the IP_MF, IP_DF, and IP_CE flags declaration in include/net/ip.h.

•	 ttl: Time To Live: this is a hop counter. Each forwarding node decreases the ttl by 1. When 
it reaches 0, the packet is discarded, and a time exceeded ICMPv4 message is sent back; this 
avoids packets from being forwarded endlessly, for this reason or another.

•	 protocol: The L4 protocol of the packet—for example, IPPROTO_TCP for TCP traffic or 
IPPROTO_UDP for UDP traffic (for a list of all available protocols see include/linux/in.h).

•	 check: The checksum (16-bit field). The checksum is calculated only over the IPv4  
header bytes.

•	 saddr: Source IPv4 address, 32 bits.

•	 daddr: Destination IPv4 address, 32 bits.

In this section you have learned about the various IPv4 header members and their purposes. The initialization of 
the IPv4 protocol, which sets the callback to be invoked when receiving an IPv4 header, is discussed in the next section.
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IPv4 Initialization
IPv4 packets are packets with Ethernet type 0x0800 (Ethernet type is stored in the first two bytes of the 14-byte 
Ethernet header). Each protocol should define a protocol handler, and each protocol should be initialized so that 
the network stack can handle packets that belong to this protocol. So that you understand what causes received IPv4 
packets to be handled by IPv4 methods, this section describes the registration of the IPv4 protocol handler :
 
static struct packet    _type ip_packet_type __read_mostly = {
    .type = cpu_to_be16(ETH_P_IP),
    .func = ip_rcv,
};
 
static int __init inet_init(void)
{
  ...
  dev_add_pack(&ip_packet_type);
  ...
}
 
(net/ipv4/af_inet.c)

The dev_add_pack() method adds the ip_rcv() method as a protocol handler for IPv4 packets. These are 
packets with Ethernet type 0x0800 (ETH_P_IP, defined in include/uapi/linux/if_ether.h). The inet_init() 
method performs various IPv4 initializations and is called during the boot phase.

The main functionality of the IPv4 protocol is divided into the Rx (receive) path and the Tx (transmit) path.  
Now that you learned about the registration of the IPv4 protocol handler, you know which protocol handler manages  
IPv4 packets (the ip_rcv callback) and how this protocol handler is registered. You are ready now to start to learn 
about the IPv4 Rx path and how received IPv4 packets are handled. The Tx path is described in a later section,  
“Sending IPv4 Packets.”

Receiving IPv4 Packets
The main IPv4 receive method is the ip_rcv() method, which is the handler for all IPv4 packets (including multicasts 
and broadcasts). In fact, this method consists mostly of sanity checks. The real work is done in the ip_rcv_finish() 
method it invokes. Between the ip_rcv() method and the ip_rcv_finish() method is the NF_INET_PRE_ROUTING 
netfilter hook, invoked by calling the NF_HOOK macro (see code snippet later in this section). In this chapter, you 
will encounter many invocations of the NF_HOOK macros—these are the netfilter hooks. The netfilter subsystem 
allows you to register callbacks in five points along the journey of a packet in the network stack. These points will be 
mentioned by their names shortly. The reason for adding the netfilter hooks is to enable loading the netfilter kernel 
modules at runtime. The NF_HOOK macro invokes the callbacks of a specified point, if such callbacks were registered. 
You might also encounter the NF_HOOK macro called NF_HOOK_COND, which is a variation of the NF_HOOK 
macro. In some places in the network stack, the NF_HOOK_COND macro includes a Boolean parameter (the last 
parameter), which must be true for the hook to be executed (Chapter 9 discusses netfilter hooks). Note that the 
netfilter hooks can discard the packet and in such a case it will not continue on its ordinary path. Figure 4-2 shows the 
receiving path (Rx) of a packet received by the network driver. This packet can either be delivered to the local machine 
or be forwarded to another host. It is the lookup in the routing table that determines which of these two options will 
take place.
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Figure 4-2 shows the paths for a received IPv4 packet. The packet is received by the IPv4 protocol handler, the 
ip_rcv() method (see the upper left side of the figure). First of all, a lookup in the routing subsystem should be 
performed, immediately after calling the ip_rcv_finish() method. The result of the routing lookup determines 
whether the packet is for local delivery to the local host or is to be forwarded (routing lookup is explained in Chapter 5).  
If the packet is destined for the local host, it will first reach the ip_local_deliver() method, and subsequently it  
will reach the ip_local_deliver_finish() method. When the packet is to be forwarded, it will be handled  
by the ip_forward() method. Some netfilter hooks appear in the figure, like NF_INET_PRE_ROUTING  
and NF_INET_LOCAL_IN. Note that multicast traffic is handled by the ip_mr_input() method, discussed in  
the “Receiving IPv4 Multicast Packets” section later in this chapter. The NF_INET_PRE_ROUTING,  

Figure 4-2.  Receiving IPv4 packets. For simplicity, the diagram does not include the fragmentation/defragmentation/
options/IPsec methods
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NF_INET_LOCAL_IN, NF_INET_FORWARD, and NF_INET_POST_ROUTING are four of the five entry points of the 
netfilter hooks. The fifth one, NF_INET_LOCAL_OUT, is mentioned in the “Sending IPv4 packets” section later in  
this chapter. These five entry points are defined in include/uapi/linux/netfilter.h. Note that the same enum  
for these five hooks is also used in IPv6; for example, in the ipv6_rcv() method, a hook is being registered on  
NF_INET_PRE_ROUTING (net/ipv6/ip6_input.c). Let’s take a look at the ip_rcv() method:
 
int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device 
*orig_dev)
{
 

First some sanity checks are performed, and I mention some of them in this section. The length of the IPv4 
header (ihl) is measured in multiples of 4 bytes. The IPv4 header must be at least 20 bytes in size, which means that 
the ihl size must be at least 5. The version should be 4 (for IPv4). If one of these conditions is not met, the packet is 
dropped and the statistics (IPSTATS_MIB_INHDRERRORS) are updated.
 
        if (iph->ihl < 5 || iph->version != 4)
                goto inhdr_error;
 

According to section 3.2.1.2 of RFC 1122, a host must verify the IPv4 header checksum on every received 
datagram and silently discard every datagram that has a bad checksum. This is done by calling the ip_fast_csum() 
method, which should return 0 on success. The IPv4 header checksum is calculated only over the IPv4 header bytes:
 
        if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
                goto inhdr_error;
 

Then the NF_HOOK macro is invoked:
 
         return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, dev, NULL,
                        ip_rcv_finish);
 

When the registered netfilter hook method returns NF_DROP, it means that the packet should be dropped, and the 
packet traversal does not continue. When the registered netfilter hook returns NF_STOLEN, it means that the packet 
was taken over by the netfilter subsystem, and the packet traversal does not continue. When the registered netfilter 
hook returns NF_ACCEPT, the packet continues its traversal. There are other return values (also termed verdicts) from 
netfilter hooks, like NF_QUEUE, NF_REPEAT, and NF_STOP, which are not discussed in this chapter. (As mentioned 
earlier, netfilter hooks are discussed in Chapter 9.) Let’s assume for a moment that there are no netfilter callbacks 
registered in the NF_INET_PRE_ROUTING entry point, so the NF_HOOK macro will not invoke any netfilter callbacks 
and the ip_rcv_finish() method will be invoked. Let’s take a look at the ip_rcv_finish() method:
 
static int ip_rcv_finish(struct sk_buff *skb)
{
       const struct iphdr *iph = ip_hdr(skb);
       struct rtable *rt;
 

The skb_dst() method checks whether there is a dst object attached to the SKB; dst is an instance of dst_entry 
(include/net/dst.h) and represents the result of a lookup in the routing subsystem. The lookup is done according 
to the routing tables and the packet headers. The lookup in the routing subsystem also sets the input and /or the 
output callbacks of the dst. For example, if the packet is to be forwarded, the lookup in the routing subsystem will set 
the input callback to be ip_forward(). When the packet is destined to the local machine, the lookup in the routing 
subsystem will set the input callback to be ip_local_deliver(). For a multicast packet it can be ip_mr_input() 
under some conditions (I discuss multicast packets in the next section). The contents of the dst object determine 
how the packet will proceed in its journey; for example, when forwarding a packet, the decision about which input 
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callback should be called when invoking dst_input(), or on which interface it should be transmitted, is taken 
according to the dst.(I discuss the routing subsystem in depth in the next chapter).

If there is no dst attached to the SKB, a lookup in the routing subsystem is performed by the  
ip_route_input_noref() method. If the lookup fails, the packet is dropped. Note that handling multicast packets is 
different than handling unicast packets (discussed in the section “Receiving IPv4 Multicast Packets” later in this chapter).
 
       ...
       if (!skb_dst(skb)) {
 

Perform a lookup in the routing subsystem:
 
            int err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
                                           iph->tos, skb->dev);
            if (unlikely(err)) {
                if (err == -EXDEV)
                    NET_INC_STATS_BH(dev_net(skb->dev),
                                     LINUX_MIB_IPRPFILTER);
                goto drop;
            }
       }
 

Note■■  T he -EXDEV (“Crossdevice link”) error is returned by the __fib_validate_source() method under certain 
circumstances when the Reverse Path Filter (RPF) is set. The RPF can be set via an entry in the procfs. In such cases  
the packet is dropped, the statistics (LINUX_MIB_IPRPFILTER) are updated, and the method returns NET_RX_DROP.  
Note that you can display the LINUX_MIB_IPRPFILTER counter by looking in the IPReversePathFilter column in the 
output of cat /proc/net/netstat.

Now a check is performed to see whether the IPv4 header includes options. Because the length of the IPv4 header 
(ihl) is measured in multiples of 4 bytes, if it is greater than 5 this means that it includes options, so the ip_rcv_options() 
method should be invoked to handle these options. Handling IP options is discussed in depth in the “IP Options” 
section later in this chapter. Note that the ip_rcv_options() method can fail, as you will shortly see. If it is a multicast 
entry or a broadcast entry, the IPSTATS_MIB_INMCAST statistics or the IPSTATS_MIB_INBCAST statistics is updated, 
respectively. Then the dst_input() method is invoked. This method in turn simply invokes the input callback 
method by calling skb_dst(skb)->input(skb):
 
    if (iph->ihl > 5 && ip_rcv_options(skb))
            goto drop;
 
    rt = skb_rtable(skb);
    if (rt->rt_type == RTN_MULTICAST) {
        IP_UPD_PO_STATS_BH(dev_net(rt->dst.dev), IPSTATS_MIB_INMCAST,
                skb->len);
    } else if (rt->rt_type == RTN_BROADCAST)
        IP_UPD_PO_STATS_BH(dev_net(rt->dst.dev), IPSTATS_MIB_INBCAST,
                skb->len);
 
    return dst_input(skb);
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In this section you learned about the various stages in the reception of IPv4 packets: the sanity checks performed, 
the lookup in the routing subsystem, the ip_rcv_finish() method which performs the actual work. You also learned 
about which method is called when the packet should be forwarded and which method is called when the packet is 
for local delivery. IPv4 multicasting is a special case. Handling the reception of IPv4 multicast packets is discussed in 
the next section.

Receiving IPv4 Multicast Packets
The ip_rcv() method is also a handler for multicast packets. As mentioned earlier, after some sanity checks, it 
invokes the ip_rcv_finish() method, which performs a lookup in the routing subsystem by calling ip_route_
input_noref(). In the ip_route_input_noref() method, first a check is performed to see whether the local machine 
belongs to a multicast group of the destination multicast address, by calling the ip_check_mc_rcu() method. If it is so, 
or if the local machine is a multicast router (CONFIG_IP_MROUTE is set), the ip_route_input_mc() method is invoked; 
let’s take a look at the code:
 
int ip_route_input_noref(struct sk_buff *skb, __be32 daddr, __be32 saddr,
                         u8 tos, struct net_device *dev)
{
        int res;
        rcu_read_lock();
        . . .
        if (ipv4_is_multicast(daddr)) {
                struct in_device *in_dev = __in_dev_get_rcu(dev);
                if (in_dev) {
                        int our = ip_check_mc_rcu(in_dev, daddr, saddr,
                                                  ip_hdr(skb)->protocol);
                        if (our
#ifdef CONFIG_IP_MROUTE
                                ||
                            (!ipv4_is_local_multicast(daddr) &&
                             IN_DEV_MFORWARD(in_dev))
#endif
                           ) {
                                int res = ip_route_input_mc(skb, daddr, saddr,
                                                            tos, dev, our);
                                rcu_read_unlock();
                                return res;
                        }
                }
           . . .
 
        }
        . . .
 

Let’s further look into the ip_route_input_mc() method. If the local machine belongs to a multicast group of  
the destination multicast address (the value of the variable our is 1), then the input callback of dst is set to be  
ip_local_deliver. If the local host is a multicast router and IN_DEV_MFORWARD(in_dev) is set, then the input  
callback of dst is set to be ip_mr_input. The ip_rcv_finish() method, which calls dst_input(skb), invokes thus 
either the ip_local_deliver() method or the ip_mr_input() method, according to the input callback of dst. 
The IN_DEV_MFORWARD macro checks the procfs multicast forwarding entry. Note that the procfs multicast 
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forwarding entry, /proc/sys/net/ipv4/conf/all/mc_forwarding , is a read-only entry (as opposed to the IPv4 
unicast procfs forwarding entry), so you cannot set it simply by running from the command line: echo 1 >  
/proc/sys/net/ipv4/conf/all/mc_forwarding. Starting the pimd daemon, for example, sets it to 1, and stopping 
the daemon sets it to 0. pimd is a lightweight standalone PIM-SM v2 multicast routing daemon. If you are interested 
in learning about multicast routing daemon implementation, you might want to look into the pimd source code in 
https://github.com/troglobit/pimd/:
 
static int ip_route_input_mc(struct sk_buff *skb, __be32 daddr, __be32 saddr,
                                 u8 tos, struct net_device *dev, int our)
 {
         struct rtable *rth;
         struct in_device *in_dev = __in_dev_get_rcu(dev);
 
        . . .
 
         if (our) {
                 rth->dst.input= ip_local_deliver;
                 rth->rt_flags |= RTCF_LOCAL;
         }
  
 #ifdef CONFIG_IP_MROUTE
         if (!ipv4_is_local_multicast(daddr) && IN_DEV_MFORWARD(in_dev))
                 rth->dst.input = ip_mr_input;
 #endif
        . . .
 

The multicast layer holds a data structure called the Multicast Forwarding Cache (MFC). I don’t discuss the 
details of the MFC or of the ip_mr_input() method here (I discuss them in Chapter 6). What is important in this 
context is that if a valid entry is found in the MFC, the ip_mr_forward() method is called. The ip_mr_forward() 
method performs some checks and eventually calls the ipmr_queue_xmit() method. In the ipmr_queue_xmit() 
method, the ttl is decreased, and the checksum is updated by calling the ip_decrease_ttl() method (the same is 
done in the ip_forward() method, as you will see later in this chapter). Then the ipmr_forward_finish() method is 
invoked by calling the NF_INET_FORWARD NF_HOOK macro (let’s assume that there are no registered IPv4 netfilter 
hooks on NF_INET_FORWARD):
 
static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
{
       . . .
 
       ip_decrease_ttl(ip_hdr(skb));
       ...
       NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
                       ipmr_forward_finish);
       return;
 
}
 

https://github.com/troglobit/pimd/
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The ipmr_forward_finish() method is very short and is shown here in its entirety. All it does is update the 
statistics, call the ip_forward_options() method if there are options in the IPv4 header (IP options are described in 
the next section), and call the dst_output() method:
 
static inline int ipmr_forward_finish(struct sk_buff *skb)
{
        struct ip_options *opt = &(IPCB(skb)->opt);
  
        IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);

IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
  
        if (unlikely(opt->optlen))
                ip_forward_options(skb);
  
        return dst_output(skb);
}
 

This section discussed how receiving IPv4 multicast packets is handled. The pimd was mentioned as an example 
of a multicast routing daemon, which interacts with the kernel in multicast packet forwarding. The next section 
describes the various IP options, which enable using special features of the network stack, such as tracking the route 
of a packet, tracking timestamps of packets, specifying network nodes which a packet should traverse. I also discuss 
how these IP options are handled in the network stack.

IP Options
The IP options field of the IPv4 header is optional and is not often used for security reasons and because of processing 
overhead. Which options might be helpful? Suppose, for example, that your packets are being dropped by a certain 
firewall. You may be able to specify a different route with the Strict or Loose Source Routing options. Or if you want to 
find out the packets’ path to some destination addresses, you can use the Record Route option.

The IPv4 header may contain zero, one, or more options. The IPv4 header size is 20 bytes when there are no 
options. The length of the IP options field can be 40 bytes at most. The reason the IPv4 maximum length is 60 bytes is 
because the IPv4 header length is a 4-bit field, which expresses the length in multiples of 4 bytes. Hence the maximum 
value of the field is 15, which gives an IPv4 maximum header length of 60 bytes. When using more than one option, 
options are simply concatenated one after the other. The IPv4 header must be aligned to a 4-byte boundary, so 
sometimes padding is needed. The following RFCs discuss IP options: 781 (Timestamp Option), 791, 1063, 1108, 1393 
(Traceroute Using an IP Option), and 2113 (IP Router Alert Option). There are two forms of IP options:

•	 Single byte option (option type): The “End of Option List” and “No Operation” are the only 
single byte options.

•	 Multibyte option: When using a multibyte option after the option type byte there are the 
following three fields:

•	 Length (1 byte): Length of the option in bytes.

•	 Pointer (1 byte): Offset from option start.

•	 Option data: This is a space where intermediate hosts can store data, for example, 
timestamps or IP addresses.

In Figure 4-3 the Option type is shown.
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When set, copied flag means that the option should be copied in all fragments. When it is not set, the option 
should be copied only in the first fragment. The IPOPT_COPIED macro checks whether the copied flag of a specified 
IP option is set. It is used in the ip_options_fragment() method for detecting options which may not be copied and 
for inserting IPOPT_NOOP instead. The ip_options_fragment() method is discussed later in this section.

The option class can be one of the following 4 values:

00: control class (IPOPT_CONTROL)•	

01: reserved1 (IPOPT_RESERVED1)•	

10: debugging and measurement (IPOPT_MEASUREMENT)•	

11: reserved2 (IPOPT_RESERVED2)•	

In the Linux network stack, only the IPOPT_TIMESTAMP option belongs to the debugging and measurement 
class. All the other options are control classes.

The Option Number specifies an option by a unique number; possible values are 0–31, but not all are used by the 
Linux kernel.

Table 4-1 shows all options according to their Linux symbol, option number, option class, and copied flag.

Figure 4-3.  Option type

Table 4-1.  Options Table

Linux Symbol Option Number Class Copied Flag Description

IPOPT_END 0 0 0 End of Option List

IPOPT_NOOP 1 0 0 No Operation

IPOPT_SEC 2 0 1 Security

IPOPT_LSRR 3 0 1 Loose Source Record Route

IPOPT_TIMESTAMP 4 2 0 Timestamp

IPOPT_CIPSO 6 0 1 Commercial Internet Protocol Security Option

IPOPT_RR 7 0 0 Record Route

IPOPT_SID 8 0 1 Stream ID

IPOPT_SSRR 9 0 1 Strict Source Record Route

IPOPT_RA 20 0 1 Router Alert
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The option names (IPOPT_*) declarations are in include/uapi/linux/ip.h.
The Linux network stack does not include all the IP options. For a full list, see  

www.iana.org/assignments/ip-parameters/ip-parameters.xml.
I will describe the five options shortly, and then describe the Timestamp Option and the Record Route option  

in depth:

•	 End of Option List (IPOPT_END): 1-byte option used to indicate the end of the options field. 
This is a single zero byte option (all its bits are ‘0’). There can be no IP options after it.

•	 No Operation (IPOPT_NOOP): 1-byte option is used for internal padding, which is used for 
alignment.

•	 Security (IPOPT_SEC): This option provides a way for hosts to send security, handling 
restrictions, and TCC (closed user group) parameters. See RFC 791 and RFC 1108. Initially 
intended to be used by military applications.

•	 Loose Source Record Route (IPOPT_LSRR): This option specifies a list of routers that the packet 
should traverse. Between each two adjacent nodes in the list there can be intermediate routers 
which do not appear in the list, but the order should be kept.

•	 Commercial Internet Protocol Security Option (IPOPT_CIPSO): CIPSO is an IETF draft that has 
been adopted by several vendors. It deals with a network labeling standard. CIPSO labeling 
of a socket means adding the CIPSO IP options to all packets leaving the system through 
that socket. This option is validated upon reception of the packet. For more info about the 
CIPSO option, see Documentation/netlabel/draft-ietf-cipso-ipsecurity-01.txt and 
Documentation/netlabel/cipso_ipv4.txt.

Timestamp Option
Timestamp (IPOPT_TIMESTAMP): The Timestamp option is specified in RFC 781, “A Specification of the Internet 
Protocol (IP) Timestamp Option.” This option stores timestamps of hosts along the packet route. The stored 
timestamp is a 32-bit timestamp in milliseconds since midnight UTC of the current day. In addition, it can also store 
the addresses of all hosts in the packet route or timestamps of only selected hosts along the route. The maximum 
Timestamp option length is 40. The Timestamp option is not copied for fragments; it is carried only in the first 
fragment. The Timestamp option begins with three bytes of option type, length, and pointer (offset). The higher 4 bits 
of the fourth byte are the overflow counter, which is incremented in each hop where there is no available space to 
store the required data. When the overflow counter exceeds 15, an ICMP message of Parameter Problem is sent back. 
The lower 4 bits is the flag. The value of the flag can be one of the following:

•	 0: Timestamp only (IPOPT_TS_TSONLY)

•	 1: Timestamps and addresses (IPOPT_TS_TSANDADDR)

•	 3: Timestamps of specified hops only (IPOPT_TS_PRESPEC)

http://www.iana.org/assignments/ip-parameters/ip-parameters.xml
http://www.iana.org/assignments/ip-parameters/ip-parameters.xml
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Note■■   You can use the command-line ping utility with the Timestamp option and with the three subtypes  
mentioned earlier:

ping -T tsonly     (IPOPT_TS_TSONLY)

ping -T tsandaddr  (IPOPT_TS_TSANDADDR)

ping -T tsprespec  (IPOPT_TS_PRESPEC)

Figure 4-4 shows the Timestamp option with timestamp only (the IPOPT_TS_TSONLY flag is set). Each router on 
the path adds its IPv4 address. When there is no more space, the overflow counter is incremented.

Figure 4-4.  Timestamp option (with timestamp only, flag = 0)

Figure 4-5 shows the Timestamp option with timestamps and addresses (the IPOPT_TS_TSANDADDR flag is set). 
Each router on the path adds its IPv4 address and its timestamp. Again, when there is no more space, the overflow 
counter is incremented.
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Figure 4-6 shows the Timestamp option with timestamps (the IPOPT_TS_PRESPEC flag is set). Each router on the 
path adds its timestamp only if it is in the pre-specified list. Again, when there is no more space, the overflow counter 
is incremented.

Figure 4-5.  Timestamp option (with timestamps and addresses, flag = 1)
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Record Route Option
Record Route (IPOPT_RR): The route of a packet is recorded. Each router on the way adds its address (see Figure 4-7). 
The length is set by the sending device. The command-line utility ping –R uses the Record Route IP Option. Note that 
the IPv4 header is only large enough for nine such routes (or even less, if more options are used). When the header is 
full and there is no room to insert an additional address, the datagram is forwarded without inserting the address to 
the IP options. See section 3.1, RFC 791.

Figure 4-6.  Timestamp option (with timestamps of specified hops only, flag = 3)
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Though ping –R uses the Record Route IP Option, in many cases, if you will try it, you will not get the expected 
result of all the network nodes along the way, because for security reasons many network nodes ignore this IP option. 
The manpage of ping mentions this explicitly. From man ping:
 
. . .
-R
Includes the RECORD_ROUTE option in the ECHO_REQUEST packet and displays the route buffer on 
returned packets.
. . .
Many hosts ignore or discard this option.
. . .
 

•	 Stream ID (IPOPT_SID): This option provides a way for the 16-bit SATNET stream identifier to 
be carried through networks that do not support the stream concept.

•	 Strict Source Record Route (IPOPT_SSRR): This option specifies a list of routers that the packet 
should traverse. The order should be kept, and no changes in traversal are permitted. Many 
routers block the Loose Source Record Route (LSRR) and Strict Source Record Route (SSRR) 
options because of security reasons.

•	 Router Alert (IPOPT_RA): The IP Router Alert option can be used to notify transit routers 
to more closely examine the contents of an IP packet. This is useful, for example, for new 
protocols but requires relatively complex processing in routers along the path. Specified in 
RFC 2113, “IP Router Alert Option.”

Figure 4-7.  Record Route option
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IP options are represented in Linux by the ip_options structure:
 
struct ip_options {
        __be32          faddr;
        __be32          nexthop;
        unsigned char   optlen;
        unsigned char   srr;
        unsigned char   rr;
        unsigned char   ts;
        unsigned char   is_strictroute:1,
        srr_is_hit:1,
        is_changed:1,
        rr_needaddr:1,
        ts_needtime:1,
        ts_needaddr:1;
        unsigned char   router_alert;
        unsigned char   cipso;
        unsigned char   __pad2;
        unsigned char   __data[0];
};
 
(include/net/inet_sock.h)

Here are short descriptions of the members of the IP options structure:

•	 faddr: Saved first hop address. Set in ip_options_compile() when handling loose and strict 
routing, when the method was not invoked from the Rx path (SKB is NULL).

•	 nexthop: Saved nexthop address in LSRR and SSRR.

•	 optlen: The option length, in bytes. Cannot exceed 40 bytes.

•	 is_strictroute: A flag specifing usage of strict source route. The flag is set in the  
ip_options_compile() method when parsing strict route option type (IPOPT_SSRR);  
note that it is not set for loose route (IPOPT_LSRR).

•	 srr_is_hit: A flag specifing that the packet destination addr was the local host The  
srr_is_hit flag is set in ip_options_rcv_srr().

•	 is_changed: IP checksum is not valid anymore (the flag is set when one of the IP options is changed).

•	 rr_needaddr: Need to record IPv4 address of the outgoing device. The flag is set for the 
Record Route option (IPOPT_RR).

•	 ts_needtime: Need to record timestamp. The flag is set for these flags of the Timestamp IP 
Option: IPOPT_TS_TSONLY, IPOPT_TS_TSANDADDR and IPOPT_TS_PRESPEC  
(see a detailed explanation about the difference between these flags later in this section).

•	 ts_needaddr: Need to record IPv4 address of the outgoing device. This flag is set only when 
the IPOPT_TS_TSANDADDR flag is set, and it indicates that the IPv4 address of each node 
along the route of the packet should be added. 

•	 router_alert: Set in the ip_options_compile() method when parsing a router alert option 
(IPOPT_RR).

•	 __data[0]: A buffer to store options that are received from userspace by setsockopt().

See ip_options_get_from_user() and ip_options_get_finish() (net/ipv4/ip_options.c).
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Let’s take a look at the ip_rcv_options() method:
 
static inline bool ip_rcv_options(struct sk_buff *skb)
{
         struct ip_options *opt;
         const struct iphdr *iph;
         struct net_device *dev = skb->dev;
       . . .
 

Fetch the IPv4 header from the SKB:
 
         iph = ip_hdr(skb);
 

Fetch the ip_options object from the inet_skb_parm object which is associated to the SKB:
 
         opt = &(IPCB(skb)->opt);
 

Calculate the expected options length:
 
         opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
 

Call the ip_options_compile() method to build an ip_options object out of the SKB:
 
         if (ip_options_compile(dev_net(dev), opt, skb)) {
                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
                 goto drop;
         }
 

When the ip_options_compile() method is called in the Rx path (from the ip_rcv_options() method), it 
parses the IPv4 header of the specified SKB and builds an ip_options object out of it, according to the IPv4 header 
content, after verifying the validity of the options. The ip_options_compile() method can also be invoked from 
the ip_options_get_finish() method when getting options from userspace via the setsockopt() system call with 
IPPROTO_IP and IP_OPTIONS. In this case, data is copied from userspace into opt->data, and the third parameter 
for ip_options_compile(), the SKB, is NULL; the ip_options_compile() method builds the ip_options object 
in such a case from opt->__data. If some error is found while parsing the options, and it is in the Rx path (the 
ip_options_compile() method was invoked from ip_rcv_options()), a “Parameter Problem” ICMPv4 message 
(ICMP_PARAMETERPROB) is sent back. An error with the code –EINVAL is returned in case of error, regardless of how 
the method was invoked. Naturally, it is more convenient to work with the ip_options object than with the raw IPv4 
header, because access to the IP options fields is much simpler this way. In the Rx path, the ip_options object that 
the ip_options_compile() method builds is stored in the control buffer (cb) of the SKB; this is done by setting the opt 
object to &(IPCB(skb)->opt). The IPCB(skb) macro is defined like this:
 
#define IPCB(skb) ((struct inet_skb_parm*)((skb)->cb))
 

And the inet_skb_parm structure (which includes an ip_options object) is defined like this:
 
struct inet_skb_parm {
        struct ip_options       opt;            /* Compiled IP options          */
        unsigned char           flags;
        u16                     frag_max_size;
};
 
(include/net/ip.h)
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So &(IPCB(skb)->opt points to the ip_options object inside the inet_skb_parm object. I will not delve into all 
the small, tedious technical details of parsing the IPv4 header in the ip_options_compile() method in this book, 
because there is an abundance of such details and they are self-explanatory. I will discuss briefly how the  
ip_options_compile() parses some single byte options, like IPOPT_END and IPOPT_NOOP, and some more 
complex options like IPOPT_RR and IPOPT_TIMESTAMP in the Rx path and show some examples of which checks 
are done in this method and how it is implemented in the following code snippet:
 
int ip_options_compile(struct net *net, struct ip_options *opt, struct sk_buff *skb)
{
 
         ...
         unsigned char *pp_ptr = NULL;
         struct rtable *rt = NULL;
         unsigned char *optptr;
         unsigned char *iph;
         int optlen, l;
 

For starting the parsing process, the optptr pointer should point to the start of the IP options object and iterate 
over all the options in a loop. For the Rx path (when the ip_options_compile() method is invoked from the  
ip_rcv_options() method), the SKB that was received in the ip_rcv() method is passed as a parameter to  
ip_options_compile() and, needless to say, cannot be NULL. In such a case, the IP options start immediately  
after the initial fixed size (20 bytes) of the IPv4 header. When the ip_options_compile() was invoked from  
ip_options_get_finish(), the optptr pointer was set to opt->__data, because the ip_options_get_from_user() 
method copied the options that were sent from userspace into opt->__data. To be accurate, I should mention that  
if alignment is needed, the ip_options_get_finish() method also writes into opt->__data (it writes IPOPT_END  
in the proper place).
 
         if (skb != NULL) {
             rt = skb_rtable(skb);
             optptr = (unsigned char *)&(ip_hdr(skb)[1]);
         } else
             optptr = opt->__data;
 

In this case, iph = ip_hdr(skb) cannot be used instead, because the case when SKB is NULL should be 
considered. The following assignment is correct also for the non-Rx path:
 
        iph = optptr - sizeof(struct iphdr);
 

The variable l is initialized to be the options length (it can be 40 bytes at most). It is decremented by the length of 
the current option in each iteration of the following for loop:
 
        for (l = opt->optlen; l > 0; ) {
            switch (*optptr) {
 

If an IPOPT_END option is encountered, it indicates that this is the end of the options list—there must be no 
other option after it. In such a case you write IPOPT_END for each byte which is different than IPOPT_END until the 
end of the options list. The is_changed Boolean flag should also be set, because it indicates that the IPv4 header was 
changed (and as a result, recalculation of checksum is pending—there is no justification for calculating the checksum 
right now or inside the for loop, because there might be other changes in the IPv4 header during the loop):
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                case IPOPT_END:
                  for (optptr++, l--; l>0; optptr++, l--) {
                     if (*optptr != IPOPT_END) {
                         *optptr = IPOPT_END;
                         opt->is_changed = 1;
                     }
                  }
         goto eol;
 

If an option type of No Operation (IPOPT_NOOP), which is a single byte option, is encountered, simply 
decrement l by 1, increment optptr by 1, and move forward to the next option type:
 
                case IPOPT_NOOP:
                  l--;
                  optptr++;
                  continue;
            }
 

Optlen is set to be the length of the option that is read (as optptr[1] holds the option length):
 
            optlen = optptr[1];
 

The No Operation (IPOPT_NOOP) option and the End of Option List (IPOPT_END) option are the only single 
byte options. All other options are multibyte options and must have at least two bytes (option type and option length). 
Now a check is made that there are at least two option bytes and the option list length was not exceeded. If there was 
some error, the pp_ptr pointer is set to point to the source of the problem and exit the loop. If it is in the Rx path, an 
ICMPv4 message of “Parameter Problem” is sent back, passing as a parameter the offset where the problem occurred, 
so that the other side can analyze the problem:
 
            if (optlen<2 || optlen>l) {
                pp_ptr = optptr;
                goto error;
            }
            switch (*optptr) {
                case IPOPT_SSRR:
                case IPOPT_LSRR:
                ...
                case IPOPT_RR:
 

The option length of the Record Route option must be at least 3 bytes: option type, option length, and pointer 
(offset):
 
                  if (optlen < 3) {
                      pp_ptr = optptr + 1;
                      goto error;
                  }
 

The option pointer offset of the Record Route option must be at least 4 bytes, since the space reserved for the 
address list must start after the three initial bytes (option type, option length, and pointer):
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                  if (optptr[2] < 4) {
                             pp_ptr = optptr + 2;
                             goto error;
                  }
                  if (optptr[2] <= optlen) {
 

If the offset (optptr[2]) plus the three initial bytes exceeds the option length, there is an error:
 
                      if (optptr[2]+3 > optlen) {
                           pp_ptr = optptr + 2;
                           goto error;
                      }
                      if (rt) {
                          spec_dst_fill(&spec_dst, skb);
 

Copy the IPv4 address to the Record Route buffer:
 
                          memcpy(&optptr[optptr[2]-1], &spec_dst, 4);
 

Set the is_changed Boolean flag, which indicates that the IPv4 header was changed (recalculation of checksum  
is pending):
 
                          opt->is_changed = 1;
                      }
 

Increment the pointer (offset) by 4 for the next address in the Record Route buffer (each IPv4 address is 4 bytes):
 
                      optptr[2] += 4;
 

Set the rr_needaddr flag (this flag is checked in the ip_forward_options() method):
 
                      opt->rr_needaddr = 1;
                  }
                  opt->rr = optptr - iph;
                  break;
 
                       case IPOPT_TIMESTAMP:
                         ...
 

The option length for Timestamp option must be at least 4 bytes: option type, option length, pointer (offset), 
and the fourth byte is divided into two fields: the higher 4 bits are the overflow counter, which is incremented in each 
hop where there is no available space to store the required data, and the lower 4 bits are the flag: timestamp only, 
timestamp and address, and timestamp by a specified hop:
 
                         if (optlen < 4) {
                               pp_ptr = optptr + 1;
                               goto error;
                         }
 

optptr[2] is the pointer (offset). Because, as stated earlier, each Timestamp option starts with 4 bytes, it implies 
that the pointer (offset) must be at least 5:
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                         if (optptr[2] < 5) {
                                 pp_ptr = optptr + 2;
                                 goto error;
                         }
                         if (optptr[2] <= optlen) {
                                 unsigned char *timeptr = NULL;
                                 if (optptr[2]+3 > optptr[1]) {
                                         pp_ptr = optptr + 2;
                                         goto error;
                                 }
 

In the switch command, the value of optptr[3]&0xF is checked. It is the flag (4 lower bits of the fourth byte) of the 
Timestamp option:
 
                                 switch (optptr[3]&0xF) {
                                       case IPOPT_TS_TSONLY:
                                         if (skb)
                                                 timeptr = &optptr[optptr[2]-1];
                                         opt->ts_needtime = 1;
 

For the Timestamp option with timestamps only flag (IPOPT_TS_TSONLY), 4 bytes are needed; so the pointer 
(offset) is incremented by 4:
 
                                         optptr[2] += 4;
                                         break;
 
                                       case IPOPT_TS_TSANDADDR:
                                         if (optptr[2]+7 > optptr[1]) {
                                                 pp_ptr = optptr + 2;
                                                 goto error;
                                         }
                                         if (rt)  {
                                                  spec_dst_fill(&spec_dst, skb);
                                                  memcpy(&optptr[optptr[2]-1],
                                                         &spec_dst, 4);
                                                  timeptr = &optptr[optptr[2]+3];
                                         }
                                         opt->ts_needaddr = 1;
                                         opt->ts_needtime = 1;
 

For the Timestamp option with timestamps and addresses flag (IPOPT_TS_TSANDADDR), 8 bytes are needed; so 
the pointer (offset) is incremented by 8:
 
                                         optptr[2] += 8;
                                         break;
 
                                       case IPOPT_TS_PRESPEC:
                                         if (optptr[2]+7 > optptr[1]) {
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                                                 pp_ptr = optptr + 2;
                                                 goto error;
                                         }
                                         {
                                          __be32 addr;
                                          memcpy(&addr, &optptr[optptr[2]-1], 4);
                                             if (inet_addr_type(net,addr) == RTN_UNICAST)
                                                break;
                                          if (skb)
                                               timeptr = &optptr[optptr[2]+3];
                                         }
                                         opt->ts_needtime = 1;
 

For the Timestamp option with timestamps and pre-specified hops flag (IPOPT_TS_PRESPEC), 8 bytes are 
needed, so the pointer (offset) is incremented by 8:
 
                                         optptr[2] += 8;
                                         break;
                                       default:
                                         ...
                                }
                          ...
 

After the ip_options_compile() method has built the ip_options object, strict routing is handled. First, a check 
is performed to see whether the device supports source routing. This means that the /proc/sys/net/ipv4/conf/all/
accept_source_route is set, and the /proc/sys/net/ipv4/conf/<deviceName>/accept_source_route is set. If these 
conditions are not met, the packet is dropped:
 
             . . .
         if (unlikely(opt->srr)) {
             struct in_device *in_dev = __in_dev_get_rcu(dev);
  
             if (in_dev) {
                     if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
                     . . .
                                 goto drop;
                     }
             }
  
             if (ip_options_rcv_srr(skb))
                     goto drop;
         }
 

Let’s take a look at the ip_options_rcv_srr() method (again, I will focus on the important points, not little 
details). The list of source route addresses is iterated over. During the parsing process some sanity checks are made in 
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the loop to see if there are errors. When the first nonlocal address is encountered, the loop is exited, and the following 
actions take place:

Set the •	 srr_is_hit flag of the IP option object (opt->srr_is_hit = 1). 

Set •	 opt->nexthop to be the nexthop address that was found.

Set the •	 opt->is_changed flag to 1.

The packet should be forwarded. When the method ip_forward_finish() is reached, the ip_forward_options()  
method is called. In this method, if the srr_is_hit flag of the IP option object is set, the daddr of the ipv4 header is 
changed to be opt->nexthop, the offset is incremented by 4 (to point to the next address in the source route addresses list), 
and—because the IPv4 header was changed—the checksum is recalculated by calling the ip_send_check() method.

IP Options and Fragmentation
When describing the option type in the beginning of this section, I mentioned a copied flag in the option type byte 
which indicates whether or not to copy the option when forwarding a fragmented packet. Handling IP options in 
fragmentation is done by the ip_options_fragment() method, which is invoked from the method which prepares 
fragments, ip_fragment(). It is called only for the first fragment. Let’s take a look at the ip_options_fragment() 
method, which is very simple:
 
void ip_options_fragment(struct sk_buff *skb)
{
        unsigned char *optptr = skb_network_header(skb) + sizeof(struct iphdr);
        struct ip_options *opt = &(IPCB(skb)->opt);
        int  l = opt->optlen;
        int  optlen;
 

The while loop simply iterates over the options, reading each option type. optptr is a pointer to the option 
list (which starts at the end of the 20 first bytes of the IPv4 header). l is the size of the option list, which is being 
decremented by 1 in each loop iteration:
 
        while (l > 0) {
                switch (*optptr) {
 

When the option type is IPOPT_END, which terminates the option string, it means that reading the options is 
finished:
 
                case IPOPT_END:
                        return;
 
                case IPOPT_NOOP:
 

When the option type is IPOPT_NOOP, used for padding between options, the optptr pointer is incremented  
by 1, l is decremented, and the next option is processed:
 
                        l--;
                        optptr++;
                        continue;
                }
 

Perform a sanity check on the option length:
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                optlen = optptr[1];
                if (optlen<2 || optlen>l)
                  return;
 

Check whether the option should be copied; if not, simply put one or several IPOPT_NOOP options instead of it 
with the memset() function. The number of IPOPT_NOOP bytes that memset() writes is the size of the option that was 
read, namely optlen:
 
                if (!IPOPT_COPIED(*optptr))
                        memset(optptr, IPOPT_NOOP, optlen);
 

Now go to the next option:
 
                l -= optlen;
                optptr += optlen;        }
 

IPOPT_TIMESTAMP and IPOPT_RR are options for which the copied flag is 0 (see Table 4-1). They are replaced 
by IPOPT_NOOP in the loop you saw earlier, and their relevant fields in the IP option object are reset to 0:
 
        opt->ts = 0;
        opt->rr = 0;
        opt->rr_needaddr = 0;
        opt->ts_needaddr = 0;
        opt->ts_needtime = 0;
}
 
(net/ipv4/ip_options.c)

In this section you have learned how the ip_rcv_options() handles the reception of packets with IP options and 
how IP options are parsed by the ip_options_compile() method. Fragmentation in IP options was also discussed. 
The next section covers the process of building IPv4 options, which involves setting the IP options of an IPv4 header 
based on a specified ip_options object.

Building IP Options
The ip_options_build() method can be thought of as the reverse of the ip_options_compile() method you saw 
earlier in this chapter. It takes an ip_options object as an argument and writes its content to the IPv4 header. Let’s 
take a look at it:
 
void ip_options_build(struct sk_buff *skb, struct ip_options *opt,
                      __be32 daddr, struct rtable *rt, int is_frag)
{
        unsigned char *iph = skb_network_header(skb);
 
        memcpy(&(IPCB(skb)->opt), opt, sizeof(struct ip_options));
        memcpy(iph+sizeof(struct iphdr), opt->__data, opt->optlen);
        opt = &(IPCB(skb)->opt);
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        if (opt->srr)
                memcpy(iph+opt->srr+iph[opt->srr+1]-4, &daddr, 4);
 
        if (!is_frag) {
                if (opt->rr_needaddr)
                        ip_rt_get_source(iph+opt->rr+iph[opt->rr+2]-5, skb, rt);
                if (opt->ts_needaddr)
                        ip_rt_get_source(iph+opt->ts+iph[opt->ts+2]-9, skb, rt);
                if (opt->ts_needtime) {
                        struct timespec tv;
                        __be32 midtime;
                        getnstimeofday(&tv);
                        midtime = htonl((tv.tv_sec % 86400) *
                                         MSEC_PER_SEC + tv.tv_nsec / NSEC_PER_MSEC);
                        memcpy(iph+opt->ts+iph[opt->ts+2]-5, &midtime, 4);
                }
                return;
        }
        if (opt->rr) {
                memset(iph+opt->rr, IPOPT_NOP, iph[opt->rr+1]);
                opt->rr = 0;
                opt->rr_needaddr = 0;
        }
        if (opt->ts) {
                memset(iph+opt->ts, IPOPT_NOP, iph[opt->ts+1]);
                opt->ts = 0;
                opt->ts_needaddr = opt->ts_needtime = 0;
        }
}
 

The ip_forward_options() method handles forwarding fragmented packets (net/ipv4/ip_options.c). In this 
method the Record Route and Strict Record route options are handled, and the ip_send_check() method is invoked 
to calculate the checksum for packets whose IPv4 header was changed (the opt->is_changed flag is set) and to reset 
the opt->is_changed flag to 0. The IPv4 Tx path—namely, how packets are sent—is discussed in the next section.

My discussion on the Rx path is finished. The next section talks about the Tx path—what happens when IPv4 
packets are sent.

Sending IPv4 Packets
The IPv4 layer provides the means for the layer above it, the transport layer (L4), to send packets by passing these 
packets to the link layer (L2). I discuss how that is implemented in this section, and you’ll see some differences 
between handling transmission of TCPv4 packets in IPv4 and handling transmission of UDPv4 packets in IPv4. There 
are two main methods for sending IPv4 packets from Layer 4, the transport layer: The first one is the ip_queue_xmit() 
method, used by the transport protocols that handle fragmentation by themselves, like TCPv4. The ip_queue_xmit() 
method is not the only transmission method used by TCPv4, which uses also the ip_build_and_send_pkt() method, 
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for example, to send SYN ACK messages (see the tcp_v4_send_synack() method implementation in net/ipv4/ 
tcp_ipv4.c). The second method is the ip_append_data() method, used by the transport protocols that do not handle  
fragmentation, like the UDPv4 protocol or the ICMPv4 protocol. The ip_append_data() method does not send any 
packet—it only prepares the packet. The ip_push_pending_frames() method is for actually sending the packet, and 
it is used by ICMPv4 or raw sockets, for example. Calling ip_push_pending_frames() actually starts the transmission 
process by calling the ip_send_skb() method, which eventually calls the ip_local_out() method. The ip_push_
pending_frames() method was used for carrying out the transmission in UDPv4 prior to kernel 2.6.39; with the new 
ip_finish_skb API in 2.6.39, the ip_send_skb() method is used instead. Both methods are implemented in  
net/ipv4/ip_output.c.

There are cases where the dst_output() method is called directly, without using the ip_queue_xmit() method 
or the ip_append_data() method; for example, when sending with a raw socket which uses IP_HDRINCL socket 
option, there is no need to prepare an IPv4 header. Userspace applications that build an IPv4 by their own use the 
IPv4 IP_HDRINCL socket option. For example, the well-known ping of iputils and nping of nmap both enable the 
user to set the ttl of the IPv4 header like this:
 
ping –ttl ipDestAddress
 

or:
 
nping –ttl ipDestAddress
 

Sending packets by raw sockets whose IP_HDRINCL socket option is set is done like this:
 
static int raw_send_hdrinc(struct sock *sk, struct flowi4 *fl4,
               void *from, size_t length,
               struct rtable **rtp,
               unsigned int flags)
{
        ...
        err = NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
              rt->dst.dev, dst_output);
        ...
}
 

Figure 4-8 shows the paths for sending IPv4 packets from the transport layer.
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Figure 4-8.  Sending IPv4 packets
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In figure 4-8 you can see the different paths for transmitted packets that come from the transport layer (L4);  
these packets are handled by the ip_queue_xmit() method or by the ip_append_data() method.

Let’s start with the ip_queue_xmit() method, which is the simpler method of the two:
 
int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
    . . .
    /* Make sure we can route this packet. */
    rt = (struct rtable *)__sk_dst_check(sk, 0);
 

The rtable object is the result of a lookup in the routing subsystem. First I discuss the case where the rtable 
instance is NULL and you need to perform a lookup in the routing subsystem. If the strict routing option flag is set,  
the destination address is set to be the first address of the IP options:
 
    if (rt == NULL) {
        __be32 daddr;
 
        /* Use correct destination address if we have options. */
        daddr = inet->inet_daddr;
        if (inet_opt && inet_opt->opt.srr)
            daddr = inet_opt->opt.faddr;
 

Now a lookup in the routing subsystem is performed with the ip_route_output_ports() method: if the lookup 
fails, the packet is dropped, and an error of –EHOSTUNREACH is returned:
 
        /* If this fails, retransmit mechanism of transport layer will
         * keep trying until route appears or the connection times
         * itself out.
         */
        rt = ip_route_output_ports(sock_net(sk), fl4, sk,
                       daddr, inet->inet_saddr,
                       inet->inet_dport,
                       inet->inet_sport,
                       sk->sk_protocol,
                       RT_CONN_FLAGS(sk),
                       sk->sk_bound_dev_if);
        if (IS_ERR(rt))
            goto no_route;
        sk_setup_caps(sk, &rt->dst);
    }
    skb_dst_set_noref(skb, &rt->dst);
    . . .
 

If the lookup succeeds, but both the is_strictroute flag in the options and the rt_uses_gateway flag in the 
routing entry are set, the packet is dropped, and an error of –EHOSTUNREACH is returned:
 
    if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
        goto no_route;
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Now the IPv4 header is being built. You should remember that the packet arrived from Layer 4, where skb->data 
pointed to the transport header. The skb->data pointer is moved back by the skb_push() method; the offset needed 
to move it back is the size of the IPv4 header plus the size of the IP options list (optlen), if IP options are used:
 
    /* OK, we know where to send it, allocate and build IP header. */
    skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
 

Set the L3 header (skb->network_header) to point to skb->data:
 
    skb_reset_network_header(skb);
    iph = ip_hdr(skb);
    *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
    if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
        iph->frag_off = htons(IP_DF);
    else
        iph->frag_off = 0;
    iph->ttl      = ip_select_ttl(inet, &rt->dst);
    iph->protocol = sk->sk_protocol;
    ip_copy_addrs(iph, fl4);
 

The options length (optlen) is divided by 4, and the result is added to the IPv4 header length (iph->ihl) because 
the IPv4 header is measured in multiples of 4 bytes. Then the ip_options_build() method is invoked to build the options 
in the IPv4 header based on the content of the specified IP options. The last parameter of the ip_options_build() 
method, is_frag, specifies that there are no fragments. The ip_options_build() method was discussed in the  
“IP Option” section earlier in this chapter.
 
         if (inet_opt && inet_opt->opt.optlen) {
         iph->ihl += inet_opt->opt.optlen >> 2;
         ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
         }
 

Set the id in the IPv4 header:
 
         ip_select_ident_more(iph, &rt->dst, sk,
                  (skb_shinfo(skb)->gso_segs ?: 1) - 1);
 
         skb->priority = sk->sk_priority;
         skb->mark = sk->sk_mark;
 

Send the packet:
 
         res = ip_local_out(skb);
 

Before discussing the ip_append_data() method, I want to mention a callback which is a parameter to the 
ip_append_data() method: the getfrag() callback. The getfrag() method is a callback to copy the actual data from 
userspace into the SKB. In UDPv4, the getfrag() callback is set to be the generic method, ip_generic_getfrag().  
In ICMPv4, the getfrag() callback is set to be a protocol-specific method, icmp_glue_bits(). Another issue I should 
mention here is the UDPv4 corking feature. The UDP_CORK socket option was added in kernel 2.5.44; when this 
option is enabled, all data output on this socket is accumulated into a single datagram that is transmitted when the 
option is disabled. You can enable and disable this socket option with the setsockopt() system call; see man 7 udp. 
In kernel 2.6.39, a lockless transmit fast path was added to the UDPv4 implementation. With this addition, when 
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the corking feature is not used, the socket lock is not used. So when the UDP_CORK socket option is set (with the 
setsockopt() system call), or the MSG_MORE flag is set, the ip_append_data() method is invoked. And when  
the UDP_CORK socket option is not set, another path in the udp_sendmsg() method is used, which does not hold the 
socket lock and is faster as a result, and the ip_make_skb() method is invoked. Calling the ip_make_skb() method is 
similar to the ip_append_data() and the ip_push_pending_frames() methods rolled into one, except that it does not 
send the SKB produced. Sending the SKB is carried out by the ip_send_skb() method.

Let’s take a look now at the ip_append_data() method:
 
int ip_append_data(struct sock *sk, struct flowi4 *fl4,
                   int getfrag(void *from, char *to, int offset, int len,
                               int odd, struct sk_buff *skb),
                   void *from, int length, int transhdrlen,
                   struct ipcm_cookie *ipc, struct rtable **rtp,
                   unsigned int flags)
{
        struct inet_sock *inet = inet_sk(sk);
        int err;
 

If the MSG_PROBE flag us used, it means that the caller is interested only in some information (usually MTU, for 
PMTU discovery), so there is no need to actually send the packet, and the method returns 0:
 
        if (flags&MSG_PROBE)
                return 0;
 

The value of transhdrlen is used to indicate whether it is a first fragment or not. The ip_setup_cork() method 
creates a cork IP options object if it does not exist and copies the IP options of the specified ipc (ipcm_cookie object) 
to the cork IP options:
 
        if (skb_queue_empty(&sk->sk_write_queue)) {
                err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
                if (err)
                        return err;
        } else {
                transhdrlen = 0;
        }
 

The real work is done by the __ip_append_data() method; this is a long and a complex method, and I can’t  
delve into all its details. I will mention that there are two different ways to handle fragments in this method, according 
to whether the network device supports Scatter/Gather (NETIF_F_SG) or not. When the NETIF_F_SG flag is set,  
skb_shinfo(skb)->frags is used, whereas when the NETIF_F_SG flag is not set, skb_shinfo(skb)->frag_list is 
used. There is also a different memory allocation when the MSG_MORE flag is set. The MSG_MORE flag indicates  
that soon another packet will be sent. Since Linux 2.6, this flag is also supported for UDP sockets.
 
        return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
                                sk_page_frag(sk), getfrag,
                                from, length, transhdrlen, flags);
}
 

In this section you have learned about the Tx path—how sending IPv4 packets is implemented. When the packet 
length is higher than the network device MTU, the packet can’t be sent as is. The next section covers fragmentation in 
the Tx path and how it is handled.
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Fragmentation
The network interface has a limit on the size of a packet. Usually in 10/100/1000 Mb/s Ethernet networks, it is 1500 
bytes, though there are network interfaces that allow using an MTU of up to 9K (called jumbo frames). When sending a 
packet that is larger than the MTU of the outgoing network card, it should be broken into smaller pieces. This is done 
within the ip_fragment() method (net/ipv4/ip_output.c). Received fragmented packets should be reassembled 
into one packet. This is done by the ip_defrag() method, (net/ipv4/ip_fragment.c), discussed in the next section, 
“Defragmentation.”

Let’s take a look first at the ip_fragment() method. Here’s its prototype:
 
int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
 

The output callback is the method of transmission to be used. When the ip_fragment() method is invoked 
from ip_finish_output(), the output callback is the ip_finish_output2() method. There are two paths in the 
ip_fragment() method: the fast path and the slow path. The fast path is for packets where the frag_list of the SKB is 
not NULL, and the slow path is for packets that do not meet this condition.

First a check is performed to see whether fragmentation is permitted, and if not, a “Destination Unreachable” 
ICMPv4 message with code of fragmentation needed is sent back to the sender, the statistics (IPSTATS_MIB_
FRAGFAILS) are updated, the packet is dropped, and an error code of –EMSGSIZE is returned:
 
int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
        {
        unsigned int mtu, hlen, left, len, ll_rs;
        . . .
        struct rtable *rt = skb_rtable(skb);
        int err = 0;
         
        dev = rt->dst.dev;
         
        . . .
 
        iph = ip_hdr(skb);
         
        if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
              (IPCB(skb)->frag_max_size &&
               IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
           IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
           icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
                     htonl(ip_skb_dst_mtu(skb)));
           kfree_skb(skb);
           return -EMSGSIZE;
        }
        . . .
        . . .
 

The next section discusses the fast path in fragmentation and its implementation.
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Fast Path
Now let’s look into the fast path. First a check is performed to see whether the packet should be handled in the 
fast path by calling the skb_has_frag_list() method, which simply checks that skb_shinfo(skb)->frag_list is 
not NULL; if it is NULL, some sanity checks are made, and if something is not valid, the fallback to the slow path 
mechanism is activated (simply by calling goto slow_path). Then an IPv4 header is built for the first fragment. The 
frag_off of this IPv4 header is set to be htons(IP_MF), which indicates more fragments ahead. The frag_off field of 
the IPv4 header is a 16-bit field; the lower 13 bits are the fragment offset, and the higher 3 bits are the flags. For the first 
fragment, the offset should be 0, and the flag should be IP_MF (More Fragments). For all other fragments except the 
last one, the IP_MF flag should be set, and the lower 13 bits should be the fragment offset (measured in units of  
8 bytes). For the last fragment, the IP_MF flag should not be set, but the lower 13 bits will still hold the fragment offset.

Here’s how to set hlen to the IPv4 header size in bytes:
 
    hlen = iph->ihl * 4;
    . . .
    if (skb_has_frag_list(skb)) {
        struct sk_buff *frag, *frag2;
        int first_len = skb_pagelen(skb);
        . . .
        err     = 0;
        offset = 0;
        frag = skb_shinfo(skb)->frag_list;
 

set skb_shinfo(skb)->frag_list to NULL by skb_frag_list_init(skb):
 
        skb_frag_list_init(skb);
        skb->data_len = first_len - skb_headlen(skb);
        skb->len = first_len;
        iph->tot_len = htons(first_len);
 

Set the IP_MF (More Fragments) flag for the first fragment:
 
        iph->frag_off = htons(IP_MF);
 

Because the value of some IPv4 header fields were changed, the checksum needs to be recalculated:
 
        ip_send_check(iph);
 

Now take a look at the loop that traverses frag_list and builds fragments:
 
        for (;;) {
           /* Prepare header of the next frame,
            * before previous one went down. */
           if (frag) {
             frag->ip_summed = CHECKSUM_NONE;
             skb_reset_transport_header(frag);
 

The ip_fragment() was invoked from the transport layer (L4), so skb->data points to the transport header.  
The skb->data pointer should be moved back by hlen bytes so that it will point to the IPv4 header (hlen is the size of 
the IPv4 header in bytes):
 
             __skb_push(frag, hlen);
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Set the L3 header (skb->network_header) to point to skb->data:
 
             skb_reset_network_header(frag);
 

Copy the IPv4 header which was created into the L3 network header; in the first iteration of this for loop, it is the 
header which was created outside the loop for the first fragment:
 
             memcpy(skb_network_header(frag), iph, hlen);
 

Now the IPv4 header and its tot_len of the next frag are initialized:
 
             iph = ip_hdr(frag);
             iph->tot_len = htons(frag->len);
 

Copy various SKB fields (like pkt_type, priority, protocol) from SKB into frag:
 
             ip_copy_metadata(frag, skb);
 

Only for the first fragment (where the offset is 0) should the ip_options_fragment() method be called:
 
             if (offset == 0)
                 ip_options_fragment(frag);
             offset += skb->len - hlen;
 

The frag_off field of the IPv4 header is measured in multiples of 8 bytes, so divide the offset by 8:
 
             iph->frag_off = htons(offset>>3);
 

Each fragment, except the last one, should have the IP_MF flag set:
 
             if (frag->next != NULL)
                 iph->frag_off |= htons(IP_MF);
 

The value of some IPv4 header fields were changed, so the checksum should be recalculated:
 
             /* Ready, complete checksum */
             ip_send_check(iph);
           }
 

Now send the fragment with the output callback. If sending it succeeded, increment IPSTATS_MIB_FRAGCREATES. 
If there was an error, exit the loop:
 
           err = output(skb);
         
           if (!err)
              IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
           if (err || !frag)
              break;
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Fetch the next SKB:
 
           skb = frag;
           frag = skb->next;
           skb->next = NULL;
 

The following closing bracket is the end of the for loop:
 
        }
 

The for loop is terminated, and the return value of the last call to output(skb) should be checked. If it is 
successful, the statistics (IPSTATS_MIB_FRAGOKS) are updated, and the method returns 0:
 
    if (err == 0) {
         IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
         return 0;
     }
 

If the last call to output(skb) failed in one of the loop iterations, including the last one, the SKBs are freed, the 
statistics (IPSTATS_MIB_FRAGFAILS) are updated, and the error code (err) is returned:
 
    while (frag) {
         skb = frag->next;
         kfree_skb(frag);
         frag = skb;
     }
     IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
     return err;
 

You should now have a good understanding of the fast path in fragmentation and how it is implemented.

Slow Path
Let’s now take a look at how to implement the slow path in fragmentation:
 
        . . .
 
        iph = ip_hdr(skb);
 
        left = skb->len - hlen;         /* Space per frame */
        . . .
 
        while (left > 0) {
                len = left;
                /* IF: it doesn't fit, use 'mtu' - the data space left */
                if (len > mtu)
                        len = mtu;
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Each fragment (except the last one) should be aligned on a 8-byte boundary:
 
                if (len < left) {
                        len &= ~7;
                }
 

Allocate an SKB:
 
                if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
                        NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
                        err = -ENOMEM;
                        goto fail;
                }
 
                /*
                 *      Set up data on packet
                 */
 

Copy various SKB fields (like pkt_type, priority, protocol) from skb into skb2:
 
                ip_copy_metadata(skb2, skb);
                skb_reserve(skb2, ll_rs);
                skb_put(skb2, len + hlen);
                skb_reset_network_header(skb2);
                skb2->transport_header = skb2->network_header + hlen;
 
                /*
                 *      Charge the memory for the fragment to any owner
                 *      it might possess
                 */
 
                if (skb->sk)
                        skb_set_owner_w(skb2, skb->sk);
 
                /*
                 *      Copy the packet header into the new buffer.
                 */
 
                skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
 
                /*
                 *      Copy a block of the IP datagram.
                 */
                if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
                        BUG();
                left -= len;
 
                /*
                 *      Fill in the new header fields.
                 */
                iph = ip_hdr(skb2);
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frag_off is measured in multiples of 8 bytes, so divide the offset by 8:
 
                iph->frag_off = htons((offset >> 3));
                . . .
 

Handle options only once for the first fragment:
 
                if (offset == 0)
                        ip_options_fragment(skb);
 

The MF flag (More Fragments) should be set on any fragment but the last:
 
                if (left > 0 || not_last_frag)
                        iph->frag_off |= htons(IP_MF);
                ptr += len;
                offset += len;
 
                /*
                 *      Put this fragment into the sending queue.
                 */
                iph->tot_len = htons(len + hlen);
 

Because the value of some IPv4 header fields were changed, the checksum should be recalculated:
 
                ip_send_check(iph);
 

Now send the fragment with the output callback. If sending it succeeded, increment IPSTATS_MIB_
FRAGCREATES. If there was an error, then free the packet, update the statistics (IPSTATS_MIB_FRAGFAILS),  
and return the error code:
 
                err = output(skb2);
                if (err)
                        goto fail;
 
                IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
        }
 

Now the while (left > 0) loop has terminated, and the consume_skb() method is invoked to free the SKB,  
the statistics (IPSTATS_MIB_FRAGOKS) are updated, and the value of err is returned:
 
        consume_skb(skb);
        IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
        return err;
 

This section dealt with the implementation of slow path in fragmentation, and this ends the discussion of 
fragmentation in the Tx path. Remember that received fragmented packets, which are received on a host, should be 
reconstructed again so that applications can handle the original packet. The next section discusses defragmentation—the  
opposite of fragmentation.
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Defragmentation
Defragmentation is the process of reassembling all the fragments of a packet, which all have the same id in the IPv4 
header, into one buffer. The main method that handles defragmentation in the Rx path is ip_defrag() (net/ipv4/
ip_fragment.c), which is called from ip_local_deliver(). There are other places where defragmentation might be 
needed, such as in firewalls, where the content of the packet should be known in order to be able to inspect it. In the 
ip_local_deliver() method, the ip_is_fragment() method is invoked to check whether the packet is fragmented; 
if it is, the ip_defrag() method is invoked. The ip_defrag() method has two arguments: the first is the SKB and the 
second is a 32-bit field which indicates the point where the method was invoked. Its value can be the following:

IP_DEFRAG_LOCAL_DELIVER when it was called •	 from ip_local_deliver().

IP_DEFRAG_CALL_RA_CHAIN when it was called from •	 ip_call_ra_chain().

IP_DEFRAG_VS_IN or IP_DEFRAG_VS_FWD or IP_DEFRAG_VS_OUT when it was called •	
from IPVS.

For a full list of possible values for the second argument of ip_defrag(), look in the ip_defrag_users enum 
definition in include/net/ip.h.

Let’s look at the ip_defrag() invocation in ip_local_deliver():
 
int ip_local_deliver(struct sk_buff *skb)
{
    /*
     *    Reassemble IP fragments.
     */
 
    if (ip_is_fragment(ip_hdr(skb))) {
        if (ip_defrag(skb, IP_DEFRAG_LOCAL_DELIVER))
            return 0;
    }
 
    return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, skb, skb->dev, NULL,
               ip_local_deliver_finish);
}
 
(net/ipv4/ip_input.c)

The ip_is_fragment() is a simple helper method that takes as a sole argument the IPv4 header and returns true 
when it is a fragment, like this:
 
static inline bool ip_is_fragment(const struct iphdr *iph)
{
         return (iph->frag_off & htons(IP_MF | IP_OFFSET)) != 0;
}
 
(include/net/ip.h)

The ip_is_fragment() method returns true in either of two cases (or both):

The IP_MF flag is set. •	

The fragment offset is not 0. •	
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Thus it will return true on all fragments:

On the first fragment, where •	 frag_off is 0 but the IP_MF flag is set.

On the last fragment, where •	 frag_off is not 0 but the IP_MF flag is not set.

On all other fragments, where •	 frag_off is not 0 and the IP_MF flag is set.

The implementation of defragmentation is based on a hash table of ipq objects. The hash function (ipqhashfn) 
has four arguments: fragment id, source address, destination address, and protocol:
 
struct ipq {
        struct inet_frag_queue q;
 
        u32                 user;
        __be32              saddr;
        __be32              daddr;
        __be16              id;
        u8                  protocol;
        u8                  ecn; /* RFC3168 support */
        int                 iif;
        unsigned int        rid;
        struct inet_peer    *peer;
};
 

Note that the logic of IPv4 defragmentation is shared with its IPv6 counterpart. So, for example, the inet_frag_
queue structure and methods like the inet_frag_find() method and the inet_frag_evictor() method are not 
specific to IPv4; they are also used in IPv6 (see net/ipv6/reassembly.c and net/ipv6/nf_conntrack_reasm.c).

The ip_defrag() method is quite short. First it makes sure there is enough memory by calling the ip_evictor() 
method. Then it tries to find an ipq for the SKB by calling the ip_find() method; if it does not find one, it creates 
an ipq object. The ipq object that the ip_find() method returns is assigned to a variable named qp (a pointer to 
an ipq object). Then it calls the ip_frag_queue() method to add the fragment to a linked list of fragments (qp->q.
fragments). The addition to the list is done according to the fragment offset, because the list is sorted by the fragment 
offset. After all fragments of an SKB were added, the ip_frag_queue() method calls the ip_frag_reasm() method 
to build a new packet from all its fragments. The ip_frag_reasm() method also stops the timer (of ip_expire()) by 
calling the ipq_kill() method. If there was some error, and the size of the new packet exceeds the highest permitted 
size (which is 65535), the ip_frag_reasm() method updates the statistics (IPSTATS_MIB_REASMFAILS) and  
returns -E2BIG. If the call to skb_clone() method in ip_frag_reasm() fails, it returns –ENOMEM. The  
IPSTATS_MIB_REASMFAILS statistics is updated in this case as well. Constructing a packet from all its fragments 
should be done in a specified time interval. If it’s not completed within that interval, the ip_expire() method will send 
an ICMPv4 message of “Time Exceeded” with “Fragment Reassembly Time Exceeded” code. The defragmentation time 
interval can be set by the following procfs entry: /proc/sys/net/ipv4/ipfrag_time. It is 30 seconds by default.

Let’s take a look at the ip_defrag() method:
 
int ip_defrag(struct sk_buff *skb, u32 user)
{
        struct ipq *qp;
        struct net *net;
 
        net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
        IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
 
        /* Start by cleaning up the memory. */
        ip_evictor(net);
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        /* Lookup (or create) queue header */
        if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
                int ret;
 
                spin_lock(&qp->q.lock);
                ret = ip_frag_queue(qp, skb);
                spin_unlock(&qp->q.lock);
                ipq_put(qp);
                return ret;
        }
 
        IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
        kfree_skb(skb);
        return -ENOMEM;
}
 

Before looking at the ip_frag_queue() method, consider the following macro, which simply returns the  
ipfrag_skb_cb object which is associated with the specified SKB:
 
#define FRAG_CB(skb)    ((struct ipfrag_skb_cb *)((skb)->cb))
 

Now let’s look at the ip_frag_queue() method. I will not describe all the details because the method is very 
complicated and takes into account problems that might arise from overlapping (overlapping fragments may occur 
due to retransmissions). In the following snippet, qp->q.len is set to be the total length of the packet, including all its 
fragments; when the IP_MF flag is not set, this means that this is the last fragment:
 
static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
{
        struct sk_buff *prev, *next;
        . . .
        /* Determine the position of this fragment. */
        end = offset + skb->len - ihl;
        err = -EINVAL;
         
        /* Is this the final fragment? */
        if ((flags & IP_MF) == 0) {
                /* If we already have some bits beyond end
                 * or have different end, the segment is corrupted.
                 */
                if (end < qp->q.len ||
                    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
                        goto err;
                qp->q.last_in |= INET_FRAG_LAST_IN;
                qp->q.len = end;
        } else {
           . . .
        }
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Now the location for adding the fragment is found by looking for the first place which is after the fragment offset 
(the linked list of fragments is ordered by offset):
 
        . . .
        prev = NULL;
        for (next = qp->q.fragments; next != NULL; next = next->next) {
               if (FRAG_CB(next)->offset >= offset)
                       break;  /* bingo! */
               prev = next;
        }
 

Now, prev points to where to add the new fragment if it is not NULL. Skipping handling overlapping and some 
other checks, let’s continue to the insertion of the fragment into the list:
 
        FRAG_CB(skb)->offset = offset;
        /* Insert this fragment in the chain of fragments. */
        skb->next = next;
        if (!next)
            qp->q.fragments_tail = skb;
        if (prev)
            prev->next = skb;
        else
            qp->q.fragments = skb;
        . . .
        qp->q.meat += skb->len;
 

Note that the qp->q.meat is incremented by skb->len for each fragment. As mentioned earlier, qp->q.len is the 
total length of all fragments, and when it is equal to qp->q.meat, it means that all fragments were added and should be 
reassembled into one packet with the ip_frag_reasm() method.

Now you can see how and where reassembly takes place: (reassembly is done by calling the ip_frag_reasm() 
method):
 
    if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
        qp->q.meat == qp->q.len) {
        unsigned long orefdst = skb->_skb_refdst;
 
        skb->_skb_refdst = 0UL;
        err = ip_frag_reasm(qp, prev, dev);
        skb->_skb_refdst = orefdst;
        return err;
    }
 

Let’s take a look at the ip_frag_reasm() method:
 
static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
                         struct net_device *dev)
{
        struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
        struct iphdr *iph;
        struct sk_buff *fp, *head = qp->q.fragments;
        int len;
      ...
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         /* Allocate a new buffer for the datagram. */
         ihlen = ip_hdrlen(head);
         len = ihlen + qp->q.len;
         
         err = -E2BIG;
         if (len > 65535)
                goto out_oversize;
         ...
         skb_push(head, head->data - skb_network_header(head));

Forwarding
The main handler for forwarding a packet is the ip_forward() method:
 
int ip_forward(struct sk_buff *skb)
{
    struct iphdr          *iph;    /* Our header */
    struct rtable         *rt;     /* Route we use */
    struct ip_options     *opt    = &(IPCB(skb)->opt);
 

I should describe why Large Receive Offload (LRO) packets are dropped in forwarding. LRO is a performance-
optimization technique that merges packets together, creating one large SKB, before they are passed to higher 
network layers. This reduces CPU overhead and thus improves the performance. Forwarding a large SKB, which was 
built by LRO, is not acceptable because it will be larger than the outgoing MTU. Therefore, when LRO is enabled the 
SKB is freed and the method returns NET_RX_DROP. Generic Receive Offload (GRO) design included forwarding 
ability, but LRO did not:
 
    if (skb_warn_if_lro(skb))
        goto drop;
 

If the router_alert option is set, the ip_call_ra_chain() method should be invoked to handle the packet. When 
calling setsockopt() with IP_ROUTER_ALERT on a raw socket, the socket is added to a global list named ip_ra_chain 
(see include/net/ip.h). The ip_call_ra_chain() method delivers the packet to all raw sockets. You might wonder 
why is the packet delivered to all raw sockets and not to a single raw socket? In raw sockets there are no ports on which 
the sockets listen, as opposed to TCP or UDP.

If the pkt_type—which was determined by the eth_type_trans() method, which should be called from the 
network driver, and which is discussed in Appendix A—is not PACKET_HOST, the packet is discarded:
 
    if (IPCB(skb)->opt.router_alert && ip_call_ra_chain(skb))
        return NET_RX_SUCCESS;
 
    if (skb->pkt_type != PACKET_HOST)
        goto drop;
 

The ttl (Time To Live) field of the IPv4 header is a counter which is decreased by 1 in each forwarding device. 
If the ttl reaches 0, that is an indication that the packet should be dropped and that a corresponding time exceeded 
ICMPv4 message with “TTL Count Exceeded” code should be sent:
 
    if (ip_hdr(skb)->ttl <= 1)
        goto too_many_hops;. . .
        . . .
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too_many_hops:
    /* Tell the sender its packet died... */
    IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_INHDRERRORS);
    icmp_send(skb, ICMP_TIME_EXCEEDED, ICMP_EXC_TTL, 0);
    . . .
 

Now a check is performed if both the strict route flag (is_strictroute) is set and the rt_uses_gateway flag is 
set; in such a case, strict routing cannot be applied, and a “Destination Unreachable” ICMPv4 message with “Strict 
Routing Failed” code is sent back:
 
    rt = skb_rtable(skb);
   
    if (opt->is_strictroute && rt->rt_uses_gateway)
        goto sr_failed;
    . . .
sr_failed:
    icmp_send(skb, ICMP_DEST_UNREACH, ICMP_SR_FAILED, 0);
    goto drop;
    . . .
 

Now a check is performed to see whether the length of the packet is larger than the outgoing device MTU. If it is, 
that means the packet is not permitted to be sent as it is. Another check is performed to see whether the DF (Don’t 
Fragment) field in the IPv4 header is set and whether the local_df flag in the SKB is not set. If these conditions  
are met, it means that when the packet reaches the ip_output() method, it will not be fragmented with the  
ip_fragment() method. This means the packet cannot be sent as is, and it also cannot be fragmented; so a  
destination unreachable ICMPv4 message with “Fragmentation Needed” code is sent back, the packet is dropped,  
and the statistics (IPSTATS_MIB_FRAGFAILS) are updated:
 
      if (unlikely(skb->len > dst_mtu(&rt->dst) &&
          !skb_is_gso(skb) && (ip_hdr(skb)->frag_off & htons(IP_DF)))
            && !skb->local_df) {
      IP_INC_STATS(dev_net(rt->dst.dev), IPSTATS_MIB_FRAGFAILS);
      icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
              htonl(dst_mtu(&rt->dst)));
      goto drop;    }
 

Because the ttl and checksum of the IPv4 header are going to be changed, a copy of the SKB should be kept:
 
        /* We are about to mangle packet. Copy it! */
         if (skb_cow(skb, LL_RESERVED_SPACE(rt->dst.dev)+rt->dst.header_len))
                 goto drop;
         iph = ip_hdr(skb);
 

As mentioned earlier, each node that forwards the packet should decrease the ttl. As a result of the ttl change, 
the checksum is also updated accordingly in the ip_decrease_ttl() method:
 
         /* Decrease ttl after skb cow done */
         ip_decrease_ttl(iph);
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Now a redirect ICMPv4 message is sent back. If the RTCF_DOREDIRECT flag of the routing entry is set then a 
“Redirect To Host” code is used for this message (I discuss ICMPv4 redirect messages in Chapter 5).
 
         /*
          *      We now generate an ICMP HOST REDIRECT giving the route
          *      we calculated.
          */
         if (rt->rt_flags&RTCF_DOREDIRECT && !opt->srr && !skb_sec_path(skb))
                 ip_rt_send_redirect(skb);
 

The skb->priority in the Tx path is set to be the socket priority (sk->sk_priority)—see, for example,  
the ip_queue_xmit() method. The socket priority, in turn, can be set by calling the setsockopt() system call with 
SOL_SOCKET and SO_PRIORITY. However, when forwarding the packet, there is no socket attached to the SKB.  
So, in the ip_forward() method, the skb->priority is set according to a special table called ip_tos2prio. This table 
has 16 entries (see include/net/route.h).
 
         skb->priority = rt_tos2priority(iph->tos);
 

Now, assuming that there are no netfilter NF_INET_FORWARD hooks, the ip_forward_finish() method  
is invoked:
 
         return NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev,
                        rt->dst.dev, ip_forward_finish);
 

In ip_forward_finish(), the statistics are updated, and we check that the IPv4 packet includes IP options.  
If it does, the ip_forward_options() method is invoked to handle the options. If it does not have options, the  
dst_output() method is called. The only thing this method does is invoke skb_dst(skb)->output(skb):
 
static int ip_forward_finish(struct sk_buff *skb)
     {
     struct ip_options *opt  = &(IPCB(skb)->opt);
   
     IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
 
     IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
                   
   
     if (unlikely(opt->optlen))
             ip_forward_options(skb);
   
     return dst_output(skb);
     }
 

In this section you learned about the methods for forwarding packets (ip_forward() and ip_forward_finish()), 
about cases when a packet is discarded in forwarding, about cases when an ICMP redirect is sent, and more.
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Summary
This chapter dealt with the IPv4 protocol—how an IPv4 packet is built, the IPv4 header structure and IP options, and 
how they are handled. You learned how the IPv4 protocol handler is registered. You also learned about the Rx path 
(how the reception of IPv4 packets is handled) and about the Tx path in IPv4 (how the transmission of IPv4 packets 
is handled). There are cases when packets are larger than the network interface MTU, and as a result they can’t be 
sent without being fragmented on the sender side and later defragmented on the receiver side. You learned about 
the implementation of fragmentation in IPv4 (including how the slow path and the fast path are implemented and 
when they are used) and the implementation of defragmentation in IPv4. The chapter also covered IPv4 forwarding—
sending an incoming packet on a different network interface without passing it to the upper layer. And you saw 
some examples of when a packet is discarded in the forwarding process and when an ICMP redirect is sent. The next 
chapter discusses the IPv4 routing subsystem. The “Quick Reference” section that follows covers the top methods that 
are related to the topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important methods and macros of the IPv4 subsystem that were mentioned 
in this chapter.

Methods
The following is a short list of important methods of the IPv4 layer, which were mentioned in this chapter.

int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl);
This method moves packets from L4 (the transport layer) to L3 (the network layer), invoked for example from TCPv4.

int ip_append_data(struct sock *sk, struct flowi4 *fl4, int getfrag(void *from, char *to, 
int offset, int len, int odd, struct sk_buff *skb), void *from, int length, int transhdrlen, 
struct ipcm_cookie *ipc, struct rtable **rtp, unsigned int flags);
This method moves packets from L4 (the transport layer) to L3 (the network layer); invoked for example from UDPv4 
when working with corked UDP sockets and from ICMPv4.

struct sk_buff *ip_make_skb(struct sock *sk, struct flowi4 *fl4,  
int getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb), 
void *from, int length, int transhdrlen, struct ipcm_cookie *ipc, struct rtable **rtp, 
unsigned int flags);
This method was added in kernel 2.6.39 for enabling lockless transmit fast path to the UDPv4 implementation; called 
when not using the UDP_CORK socket option.
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int ip_generic_getfrag(void *from, char *to, int offset, int len, int odd,  
struct sk_buff *skb);
This method is a generic method for copying data from userspace into the specified skb.

static int icmp_glue_bits(void *from, char *to, int offset, int len, int odd,  
struct sk_buff *skb);
This method is the ICMPv4 getfrag callback. The ICMPv4 module calls the ip_append_data() method with icmp_
glue_bits() as the getfrag callback.

int ip_options_compile(struct net *net,struct ip_options *opt, struct sk_buff *skb);
This method builds an ip_options object by parsing IP options.

void ip_options_fragment(struct sk_buff *skb);
This method fills the options whose copied flag is not set with NOOPs and resets the corresponding fields of these IP 
options. Invoked only for the first fragment.

void ip_options_build(struct sk_buff *skb, struct ip_options *opt, __be32 daddr, 
struct rtable *rt, int is_frag);
This method takes the specified ip_options object and writes its content to the IPv4 header. The last parameter, 
is_frag, is in practice 0 in all invocations of the ip_options_build() method.

void ip_forward_options(struct sk_buff *skb);
This method handles IP options forwarding.

int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,  
struct net_device *orig_dev);
This method is the main Rx handler for IPv4 packets.

ip_rcv_options(struct sk_buff *skb);
This method is the main method for handling receiving a packet with options.

int ip_options_rcv_srr(struct sk_buff *skb);
This method handles receiving a packet with strict route option.
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int ip_forward(struct sk_buff *skb);
This method is the main handler for forwarding IPv4 packets.

static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,  
struct sk_buff *skb, struct mfc_cache *c, int vifi);
This method is the multicast transmission method.

static int raw_send_hdrinc(struct sock *sk, struct flowi4 *fl4, void *from,  
size_t length, struct rtable **rtp, unsigned int flags);
This method is used by raw sockets for transmission when the IPHDRINC socket option is set. It calls the dst_
output() method directly.

int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *));
This method is the main fragmentation method.

int ip_defrag(struct sk_buff *skb, u32 user);
This method is the main defragmentation method. It processes an incoming IP fragment. The second parameter, 
user, indicates where this method was invoked from. For a full list of possible values for the second parameter, look in 
the ip_defrag_users enum definition in include/net/ip.h.

bool skb_has_frag_list(const struct sk_buff *skb);
This method returns true if skb_shinfo(skb)->frag_list is not NULL. The method skb_has_frag_list() was 
named skb_has_frags() in the past, and was renamed skb_has_frag_list() in kernel 2.6.37. (The reason was that 
the name was confusing.) SKBs can be fragmented in two ways: via a page array (called skb_shinfo(skb)->frags[]) 
and via a list of SKBs (called skb_shinfo(skb)->frag_list). Because skb_has_frags() tests the latter, its name is 
confusing because it sounds more like it’s testing the former.

int ip_local_deliver(struct sk_buff *skb);
This method handles delivering packets to Layer 4.

int ip_options_get_from_user(struct net *net, struct ip_options_rcu **optp, 
unsigned char __user *data, int optlen);
This method handles setting options from userspace by the setsockopt() system call with IP_OPTIONS.

bool ip_is_fragment(const struct iphdr *iph);
This method returns true if the packet is a fragment.
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int ip_decrease_ttl(struct iphdr *iph);
This method decrements the ttl of the specified IPv4 header by 1 and, because one of the IPv4 header fields had 
changed (ttl), recalculates the IPv4 header checksum.

int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk, __be32 saddr,  
__be32 daddr, struct ip_options_rcu *opt); 
This method is used by TCPv4 to send SYN ACK. See the tcp_v4_send_synack() method in net/ipv4/tcp_ipv4.c.

int ip_mr_input(struct sk_buff *skb);
This method handles incoming multicast packets.

int ip_mr_forward(struct net *net, struct mr_table *mrt, struct sk_buff *skb,  
struct mfc_cache *cache, int local);
This method forwards multicast packets.

bool ip_call_ra_chain(struct sk_buff *skb);
This method handles the Router Alert IP option.

Macros
This section mentions some macros from this chapter that deal with mechanisms encountered in the IPv4 stack, such 
as fragmentation, netfilter hooks, and IP options.

IPCB(skb)
This macro returns the inet_skb_parm object which skb->cb points to. It is used to access the ip_options object 
stored in the inet_skb_parm object (include/net/ip.h).

FRAG_CB(skb)
This macro returns the ipfrag_skb_cb object which skb->cb points to (net/ipv4/ip_fragment.c).

int NF_HOOK(uint8_t pf, unsigned int hook, struct sk_buff *skb,  
struct net_device *in, struct net_device *out, int (*okfn)(struct sk_buff *))
This macro is the netilter hook; the first parameter, pf, is the protocol family; for IPv4 it is NFPROTO_IPV4, and for 
IPv6 it is NFPROTO_IPV6. The second parameter is one of the five netfilter hook points in the network stack; these five 
points are defined in include/uapi/linux/netfilter.h and can be used both by IPv4 and IPv6. The okfn callback is 
to be called if there is no hook registered or if the registered netfilter hook does not discard or reject the packet.
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int NF_HOOK_COND(uint8_t pf, unsigned int hook, struct sk_buff *skb,  
struct net_device *in, struct net_device *out, int (*okfn)(struct sk_buff *), bool cond)
This macro is same as the NF_HOOK() macro, but with an additional Boolean parameter, cond, which must be true so 
that the netfilter hook will be called.

IPOPT_COPIED()
This macro returns the copied flag of the option type.
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Chapter 5

The IPv4 Routing Subsystem

Chapter 4 discussed the IPv4 subsystem. In this chapter and the next I discuss one of the most important Linux 
subsystems, the routing subsystem, and its implementation in Linux. The Linux routing subsystem is used in a wide 
range of routers—from home and small office routers, to enterprise routers (which connect organizations or ISPs) 
and core high speed routers on the Internet backbone. It is impossible to imagine the modern world without these 
devices. The discussion in these two chapters is limited to the IPv4 routing subsystem, which is very similar to the 
IPv6 implementation. This chapter is mainly an introduction and presents the main data structures that are used 
by the IPv4 routing subsystem, like the routing tables, the Forwarding Information Base (FIB) info and the FIB alias, 
the FIB TRIE and more. (TRIE is not an acronym, by the way, but it is derived from the word retrieval). The TRIE is a 
data structure, a special tree that replaced the FIB hash table. You will learn how a lookup in the routing subsystem is 
performed, how and when ICMP Redirect messages are generated, and about the removal of the routing cache code. 
Note that the discussion and the code examples in this chapter relate to kernel 3.9, except for two sections where a 
different kernel version is explicitly mentioned.

Forwarding and the FIB
One of the important goals of the Linux Networking stack is to forward traffic. This is relevant especially when 
discussing core routers, which operate in the Internet backbone. The Linux IP stack layer, responsible for forwarding 
packets and maintaining the forwarding database, is called the routing subsystem. For small networks, management 
of the FIB can be done by a system administrator, because most of the network topology is static. When discussing 
core routers, the situation is a bit different, as the topology is dynamic and there is a vast amount of ever-changing 
information. In this case, management of the FIB is done usually by userspace routing daemons, sometimes in 
conjunction with special hardware enhancements. These userspace daemons usually maintain routing tables of their 
own, which sometimes interact with the kernel routing tables.

Let’s start with the basics: what is routing? Take a look at a very simple forwarding example: you have two 
Ethernet Local Area Networks, LAN1 and LAN2. On LAN1 you have a subnet of 192.168.1.0/24, and on LAN2 you have 
a subnet of 192.168.2.0/24. There is a machine between these two LANs, which will be called a “forwarding router.” 
There are two Ethernet network interface cards (NICs) in the forwarding router. The network interface connected to 
LAN1 is eth0 and has an IP address of 192.168.1.200, and the network interface connected to LAN2 is eth1 and has 
an IP address of 192.168.2.200, as you can see in Figure 5-1. For the sake of simplicity, let’s assume that no firewall 
daemon runs on the forwarding router. You start sending traffic from LAN1, which is destined to LAN2. The process 
of forwarding incoming packets, which are sent from LAN1 and which are destined to LAN2 (or vice versa), according 
to data structures that are called routing tables, is called routing. I discuss this process and the routing table data 
structures in this chapter and in the next as well.
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In Figure 5-1, packets that arrive on eth0 from LAN1, which are destined to LAN2, are forwarded via eth1 as the 
outgoing device. In this process, the incoming packets move from Layer 2 (the link layer) in the kernel networking 
stack, to Layer 3, the network layer, in the forwarding router machine. As opposed to the case where the traffic is 
destined to the forwarding router machine (“Traffic to me”), however, there is no need to move the packets to Layer 
4 (the transport layer) because this traffic in not intended to be handled by any Layer 4 transport socket. This traffic 
should be forwarded. Moving to Layer 4 has a performance cost, which is better to avoid whenever possible. This 
traffic is handled in Layer 3, and, according to the routing tables configured on the forwarding router machine, 
packets are forwarded on eth1 as the outgoing interface (or rejected).

Figure 5-2 shows the three network layers handled by the kernel that were mentioned earlier.

Figure 5-1.  Forwarding packets between two LANs

Figure 5-2.  The three layers that are handled by the networking kernel stack

Two additional terms that I should mention here, which are commonly used in routing, are default gateway and 
default route. When you are defining a default gateway entry in a routing table, every packet that is not handled by the 
other routing entries (if there are such entries) must be forwarded to it, regardless of the destination address in the IP 
header of this packet. The default route is designated as 0.0.0.0/0 in Classless Inter-Domain Routing (CIDR) notation. 
As a simple example, you can add a machine with an IPv4 address of 192.168.2.1 as a default gateway as follows:
 
ip route add default via 192.168.2.1
 

Or, when using the route command, like this:

route add default gateway 192.168.2.1
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In this section you learned what forwarding is and saw a simple example illustrating how packets are forwarded 
between two LANs. You also learned what a default gateway is and what a default route is, and how to add them. 
Now that you know the basic terminology and what forwarding is, let’s move on and see how a lookup in the routing 
subsystem is performed.

Performing a Lookup in the Routing Subsystem
A lookup in the routing subsystem is done for each packet, both in the Rx path and in the Tx path. In kernels prior to 3.6, 
each lookup, both in the Rx path and in the Tx path, consisted of two phases: a lookup in the routing cache and, in case 
of a cache miss, a lookup in the routing tables (I discuss the routing cache at the end of this chapter, in the “IPv4 Routing 
Cache” section). A lookup is done by the fib_lookup() method. When the fib_lookup() method finds a proper entry 
in the routing subsystem, it builds a fib_result object, which consists of various routing parameters, and it returns 0.  
I discuss the fib_result object in this section and in other sections of this chapter. Here is the fib_lookup() prototype:
 
int fib_lookup(struct net *net, const struct flowi4 *flp, struct fib_result *res)
 

The flowi4 object consists of fields that are important to the IPv4 routing lookup process, including the 
destination address, source address, Type of Service (TOS), and more. In fact the flowi4 object defines the key to the 
lookup in the routing tables and should be initialized prior to performing a lookup with the fib_lookup() method. 
For IPv6 there is a parallel object named flowi6; both are defined in include/net/flow.h. The fib_result object 
is built in the IPv4 lookup process. The fib_lookup() method first searches the local FIB table. If the lookup fails, it 
performs a lookup in the main FIB table (I describe these two tables in the next section, “FIB tables”). After a lookup 
is successfully done, either in the Rx path or the Tx path, a dst object is built (an instance of the dst_entry structure, 
the destination cache, defined in include/net/dst.h). The dst object is embedded in a structure called rtable, as 
you will soon see. The rtable object, in fact, represents a routing entry which can be associated with an SKB. The 
most important members of the dst_entry object are two callbacks named input and output. In the routing lookup 
process, these callbacks are assigned to be the proper handlers according to the routing lookup result. These two 
callbacks get only an SKB as a parameter:
 
struct dst_entry {
    ...
    int  (*input)(struct sk_buff *);
    int  (*output)(struct sk_buff *);
    ...
}
 

The following is the rtable structure; as you can see, the dst object is the first object in this structure:
 
struct rtable {
    struct dst_entry  dst;
 
    int               rt_genid;
    unsigned int      rt_flags;
    __u16             rt_type;
    __u8              rt_is_input;
    __u8              rt_uses_gateway;
 
    int               rt_iif;
 
    /* Info on neighbour */
    __be32            rt_gateway;
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    /* Miscellaneous cached information */
    u32               rt_pmtu;
 
    struct list_head  rt_uncached;
};
 
(include/net/route.h)

The following is a description of the members of the rtable structure: 

•	 rt_flags: The rtable object flags; some of the important flags are mentioned here:

RTCF_BROADCAST: When set, the destination address is a broadcast address. This flag is •	
set in the __mkroute_output() method and in the ip_route_input_slow() method.

RTCF_MULTICAST: When set, the destination address is a multicast address. This flag is •	
set in the ip_route_input_mc() method and in the __mkroute_output() method.

RTCF_DOREDIRECT: When set, an ICMPv4 Redirect message should be sent as a •	
response for an incoming packet. Several conditions should be fulfilled for this flag 
to be set, including that the input device and the output device are the same and the 
corresponding procfs send_redirects entry is set. There are more conditions, as you 
will see later in this chapter. This flag is set in the __mkroute_input() method.

RTCF_LOCAL: When set, the destination address is local. This flag is set in the following •	
methods: ip_route_input_slow(), __mkroute_output(), ip_route_input_mc() and 
__ip_route_output_key(). Some of the RTCF_XXX flags can be set simultaneously. For 
example, RTCF_LOCAL can be set when RTCF_BROADCAST or RTCF_MULTICAST are 
set. For the complete list of RTCF_ XXX flags, look in include/uapi/linux/in_route.h. 
Note that some of them are unused.

•	 rt_is_input: A flag that is set to 1 when this is an input route.

•	 rt_uses_gateway: Gets a value according to the following:

When the nexthop is a gateway, •	 rt_uses_gateway is 1.

When the nexthop is a direct route, •	 rt_uses_gateway is 0.

•	 rt_iif: The ifindex of the incoming interface. (Note that the rt_oif member was removed 
from the rtable structure in kernel 3.6; it was set to the oif of the specified flow key, but was 
used in fact only in one method).

•	 rt_pmtu: The Path MTU (the smallest MTU along the route).

Note that in kernel 3.6, the fib_compute_spec_dst() method was added, which gets an 
SKB as a parameter. This method made the rt_spec_dst member of the rtable structure 
unneeded, and rt_spec_dst was removed from the rtable structure as a result. The fib_
compute_spec_dst() method is needed in special cases, such as in the icmp_reply() method, 
when replying to the sender using its source address as a destination for the reply.

For incoming unicast packets destined to the local host, the input callback of the dst object is set to  
ip_local_deliver(), and for incoming unicast packets that should be forwarded, this input callback is set to  
ip_forward(). For a packet generated on the local machine and sent away, the output callback is set to be ip_output(). 
For a multicast packet, the input callback can be set to ip_mr_input() (under some conditions which are not detailed 
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in this chapter). There are cases when the input callback is set to be ip_error(), as you will see later in the PROHIBIT 
rule example in this chapter. Let’s take a look in the fib_result object:
 
struct fib_result {
         unsigned char    prefixlen;
         unsigned char    nh_sel;
         unsigned char    type;
         unsigned char    scope;
         u32              tclassid;
         struct fib_info  *fi;
         struct fib_table *table;
         struct list_head *fa_head;
};
 
(include/net/ip_fib.h)

•	 prefixlen: The prefix length, which represents the netmask. Its values are in the range 0 to 32. 
It is 0 when using the default route. When adding, for example, a routing entry by ip route 
add 192.168.2.0/24 dev eth0, the prefixlen is 24, according to the netmask which was 
specified when adding the entry. The prefixlen is set in the check_leaf() method  
(net/ipv4/fib_trie.c).

•	 nh_sel: The nexthop number. When working with one nexthop only, it is 0. When working 
with Multipath Routing, there can be more than one nexthop. The nexthop objects are stored 
in an array in the routing entry (inside the fib_info object), as discussed in the next section.

•	 type: The type of the fib_result object is the most important field because it determines in 
fact how to handle the packet: whether to forward it to a different machine, deliver it locally, 
discard it silently, discard it with replying with an ICMPv4 message, and so on. The type 
of the fib_result object is determined according to the packet content (most notably the 
destination address) and according to routing rules set by the administrator, routing daemons, 
or a Redirect message. You will see how the type of the fib_result object is determined in 
the lookup process later in this chapter and in the next. The two most common types of the 
fib_result objects are the RTN_UNICAST type, which is set when the packet is for forwarding 
via a gateway or a direct route, and the RTN_LOCAL type, which is set when the packet is for 
the local host. Other types you will encounter in this book are the RTN_BROADCAST type, 
for packets that should be accepted locally as broadcasts, the RTN_MULTICAST type, for 
multicast routes, the RTN_UNREACHABLE type, for packets which trigger sending back an 
ICMPv4 "Destination Unreachable" message, and more. There are 12 route types in all. For a 
complete list of all available route types, see include/uapi/linux/rtnetlink.h.

•	 fi: A pointer to a fib_info object, which represents a routing entry. The fib_info object 
holds a reference to the nexthop (fib_nh). I discuss the FIB info structure in the section “FIB 
Info” later in this chapter.

•	 table: A pointer to the FIB table on which the lookup is done. It is set in the check_leaf() 
method (net/ipv4/fib_trie.c).

•	 fa_head: A pointer to a fib_alias list (a list of fib_alias objects associated with this route); 
optimization of routing entries is done when using fib_alias objects, which avoids creating 
a separate fib_info object for each routing entry, regardless of the fact that there are other 
fib_info objects which are very similar. All FIB aliases are sorted by fa_tos descending and 
fib_priority (metric) ascending. Aliases whose fa_tos is 0 are the last and can match any 
TOS. I discuss the fib_alias structure in the section “FIB Alias” later in this chapter.
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In this section you learned how a lookup in the routing subsystem is performed. You also found out about 
important data structures that relate to the routing lookup process, like fib_result and rtable. The next section 
discusses how the FIB tables are organized.

FIB Tables
The main data structure of the routing subsystem is the routing table, which is represented by the fib_table 
structure. A routing table can be described, in a somewhat simplified way, as a table of entries where each entry 
determines which nexthop should be chosen for traffic destined to a subnet (or to a specific IPv4 destination address). 
This entry has other parameters, of course, discussed later in this chapter. Each routing entry contains a fib_info 
object (include/net/ip_fib.h), which stores the most important routing entry parameters (but not all, as you will see 
later in this chapter). The fib_info object is created by the fib_create_info() method (net/ipv4/fib_semantics.c) 
and is stored in a hash table named fib_info_hash. When the route uses prefsrc, the fib_info object is added also 
to a hash table named fib_info_laddrhash.

There is a global counter of fib_info objects named fib_info_cnt which is incremented when creating a  
fib_info object, by the fib_create_info() method, and decremented when freeing a fib_info object, by the  
free_fib_info() method. The hash table is dynamically resized when it grows over some threshold. A lookup in  
the fib_info_hash hash table is done by the fib_find_info() method (it returns NULL when not finding an entry).  
Serializing access to the fib_info members is done by a spinlock named fib_info_lock. Here’s the fib_table 
structure:
 
struct fib_table {
        struct hlist_node       tb_hlist;
        u32                     tb_id;
        int                     tb_default;
        int                     tb_num_default;
        unsigned long           tb_data[0];
};
 
(include/net/ip_fib.h)

•	 tb_id: The table identifier. For the main table, tb_id is 254 (RT_TABLE_MAIN), and for the 
local table, tb_id is 255 (RT_TABLE_LOCAL). I talk about the main table and the local table 
soon—for now, just note that when working without Policy Routing, only these two FIB tables, 
the main table and the local table, are created in boot.

•	 tb_num_default: The number of the default routes in the table. The fib_trie_table() 
method, which creates a table, initializes tb_num_default to 0. Adding a default route 
increments tb_num_default by 1, by the fib_table_insert() method. Deleting a default 
route decrements tb_num_default by 1, by the fib_table_delete() method.

•	 tb_data[0] : A placeholder for a routing entry (trie) object.

This section covered how a FIB table is implemented. Next you will learn about the FIB info, which represents a 
single routing entry.
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FIB Info
A routing entry is represented by a fib_info structure. It consists of important routing entry parameters, such as  
the outgoing network device (fib_dev), the priority (fib_priority), the routing protocol identifier of this route  
(fib_protocol), and more. Let’s take a look at the fib_info structure:
 
struct fib_info {
    struct hlist_node    fib_hash;
    struct hlist_node    fib_lhash;
    struct net        *fib_net;
    int               fib_treeref;
    atomic_t          fib_clntref;
    unsigned int      fib_flags;
    unsigned char     fib_dead;
    unsigned char     fib_protocol;
    unsigned char     fib_scope;
    unsigned char     fib_type;
    __be32            fib_prefsrc;
    u32               fib_priority;
    u32               *fib_metrics;
#define fib_mtu fib_metrics[RTAX_MTU-1]
#define fib_window fib_metrics[RTAX_WINDOW-1]
#define fib_rtt fib_metrics[RTAX_RTT-1]
#define fib_advmss fib_metrics[RTAX_ADVMSS-1]
    int               fib_nhs;
#ifdef CONFIG_IP_ROUTE_MULTIPATH
    int               fib_power;
#endif
    struct rcu_head   rcu;
    struct fib_nh     fib_nh[0];
#define fib_dev       fib_nh[0].nh_dev
};
 
(include/net/ip_fib.h)

•	 fib_net: The network namespace the fib_info object belongs to.

•	 fib_treeref: A reference counter that represents the number of fib_alias objects which 
hold a reference to this fib_info object. This reference counter is incremented in the fib_
create_info() method and decremented in the fib_release_info() method. Both methods 
are in net/ipv4/fib_semantics.c.

•	 fib_clntref: A reference counter that is incremented by the fib_create_info() method 
(net/ipv4/fib_semantics.c) and decremented by the fib_info_put() method (include/
net/ip_fib.h). If, after decrementing it by 1 in the fib_info_put() method, it reaches zero, 
than the associated fib_info object is freed by the free_fib_info() method.

•	 fib_dead: A flag that indicates whether it is permitted to free the fib_info object with the 
free_fib_info() method; fib_dead must be set to 1 before calling the free_fib_info() 
method. If the fib_dead flag is not set (its value is 0), then it is considered alive, and trying to 
free it with the free_fib_info() method will fail.
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•	 fib_protocol: The routing protocol identifier of this route. When adding a routing rule from 
userspace without specifying the routing protocol ID, the fib_protocol is assigned to be 
RTPROT_BOOT. The administrator may add a route with the “proto static” modifier, which 
indicates that the route was added by an administrator; this can be done, for example, like 
this: ip route add proto static 192.168.5.3 via 192.168.2.1. The fib_protocol can be 
assigned one of these flags:

RTPROT_UNSPEC: An error value.•	

RTPROT_REDIRECT: When set, the routing entry was created as a result of receiving an •	
ICMP Redirect message. The RTPROT_REDIRECT protocol identifier is used only in IPv6.

RTPROT_KERNEL: When set, the routing entry was created by the kernel (for example, •	
when creating the local IPv4 routing table, explained shortly).

RTPROT_BOOT: When set, the admin added a route without specifying the “proto static” •	
modifier.

RTPROT_STATIC: Route installed by system administrator.•	

RTPROT_RA: Don’t misread this— this protocol identifier is not for Router Alert; it is for •	
RDISC/ND Router Advertisements, and it is used in the kernel by the IPv6 subsystem 
only; see: net/ipv6/route.c. I discuss it in Chapter 8.

The routing entry could also be added by userspace routing daemons, like ZEBRA, XORP, 
MROUTED, and more. Then it will be assigned the corresponding value from a list of protocol 
identifiers (see the RTPROT_XXX definitions in include/uapi/linux/rtnetlink.h). For example,  
for the XORP daemon it will be RTPROT_XORP. Note that these flags (like RTPROT_KERNEL or 
RTPROT_STATIC) are also used by IPv6, for the parallel field (the rt6i_protocol field in the 
rt6_info structure; the rt6_info object is the IPv6 parallel to the rtable object).

•	 fib_scope: The scope of the destination address. In short, scopes are assigned to addresses 
and routes. Scope indicates the distance of the host from other nodes. The ip address show 
command shows the scopes of all configured IP addresses on a host. The ip route show 
command displays the scopes of all the route entries of the main table. A scope can be one  
of these:

host (RT_SCOPE_HOST): The node cannot communicate with the other network nodes. •	
The loopback address has scope host.

global (RT_SCOPE_UNIVERSE): The address can be used anywhere. This is the most •	
common case.

link (RT_SCOPE_LINK): This address can be accessed only from directly attached hosts.•	

site (RT_SCOPE_SITE): This is used in IPv6 only (I discuss it in Chapter 8).•	

nowhere (RT_SCOPE_NOWHERE): Destination doesn't exist.•	

When a route is added by an administrator without specifying a scope, the fib_scope field is 
assigned a value according to these rules:

global scope (RT_SCOPE_UNIVERSE): For all gatewayed unicast routes.•	

scope link (RT_SCOPE_LINK): For direct unicast and broadcast routes.•	

scope host (RT_SCOPE_HOST): For local routes.•	
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•	 fib_type: The type of the route. The fib_type field was added to the fib_info structure as a 
key to make sure there is differentiation among fib_info objects by their type. The fib_type 
field was added to the fib_info struct in kernel 3.7. Originally this type was stored only 
in the fa_type field of the FIB alias object (fib_alias). You can add a rule to block traffic 
according to a specified category, for example, by: ip route add prohibit 192.168.1.17 
from 192.168.2.103.

The •	 fib_type of the generated fib_info object is RTN_PROHIBIT.

Sending traffic from 192.168.2.103 to 192.168.1.17 results in an ICMPv4 message of •	
“Packet Filtered” (ICMP_PKT_FILTERED).

•	 fib_prefsrc: There are cases when you want to provide a specific source address to the 
lookup key. This is done by setting fib_prefsrc.

•	 fib_priority: The priority of the route, by default, is 0, which is the highest priority. The 
higher the value of the priority, the lower the priority is. For example, a priority of 3 is lower 
than a priority of 0, which is the highest priority. You can configure it, for example, with the ip 
command, in one of the following ways:

•	 ip route add 192.168.1.10 via 192.168.2.1 metric 5

•	 ip route add 192.168.1.10 via 192.168.2.1 priority 5

•	 ip route add 192.168.1.10 via 192.168.2.1 preference 5

Each of these three commands sets the fib_priority to 5; there is no difference at all between 
them. Moreover, the metric parameter of the ip route command is not related in any way to 
the fib_metrics field of the fib_info structure.

•	 fib_mtu, fib_window, fib_rtt, and fib_advmss simply give more convenient names to 
commonly used elements of the fib_metrics array.

fib_metrics is an array of 15 (RTAX_MAX) elements consisting of various metrics. It is 
initialized to be dst_default_metrics in net/core/dst.c. Many metrics are related to the 
TCP protocol, such as the Initial Congestion Window (initcwnd) metric. Table 5-1, at the 
end of the chapter shows all the available metrics and displays whether each is a TCP-related 
metric or not.

From userspace, the TCPv4 initcwnd metric can be set thus, for example:
 
ip route add 192.168.1.0/24 initcwnd 35
 
There are metrics which are not TCP specific—for example, the mtu metric, which can be set 
from userspace like this:
 
ip route add 192.168.1.0/24 mtu 800
 
or like this:
 
ip route add 192.168.1.0/24 mtu lock 800
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The difference between the two commands is that when specifying the modifier lock, no path 
MTU discovery will be tried. When not specifying the modifier lock, the MTU may be updated 
by the kernel due to Path MTU discovery. For more about how this is implemented, see the 
__ip_rt_update_pmtu() method, in net/ipv4/route.c:
 
static void __ip_rt_update_pmtu(struct rtable *rt, struct flowi4 *fl4, u32 mtu)
{
 
Avoiding Path MTU update when specifying the mtu lock modifier is achieved by calling the 
dst_metric_locked()  method :
 
. . .
if (dst_metric_locked(dst, RTAX_MTU))
      return;
. . .
}
 

•	 fib_nhs: The number of nexthops. When Multipath Routing (CONFIG_IP_ROUTE_MULTIPATH) 
is not set, it cannot be more than 1. The Multipath Routing feature sets multiple alternative paths 
for a route, possibly assigning different weights to these paths. This feature provides benefits such 
as fault tolerance, increased bandwidth, or improved security (I discuss it in Chapter 6).

•	 fib_dev: The network device that will transmit the packet to the nexthop.

•	 fib_nh[0]: The fib_nh[0] member represents the nexthop. When working with Multipath 
Routing, you can define more than one nexthop in a route, and in this case there is an array 
of nexthops. Defining two nexthop nodes can be done like this, for example: ip route add 
default scope global nexthop dev eth0 nexthop dev eth1.

As mentioned, when the fib_type is RTN_PROHIBIT, an ICMPv4 message of “Packet Filtered” (ICMP_PKT_
FILTERED) is sent. How is it implemented? An array named fib_props consists of 12 (RTN_MAX) elements (defined 
in net/ipv4/fib_semantics.c). The index of this array is the route type. The available route types, such as RTN_
PROHIBIT or RTN_UNICAST, can be found in include/uapi/linux/rtnetlink.h. Each element in the array is an 
instance of struct fib_prop; the fib_prop structure is a very simple structure:
 
struct fib_prop {
          int     error;
          u8      scope;
  };
 
(net/ipv4/fib_lookup.h)

For every route type, the corresponding fib_prop object contains the error and the scope for that route. For example, 
for the RTN_UNICAST route type (gateway or direct route), which is a very common route, the error value is 0, which 
means that there is no error, and the scope is RT_SCOPE_UNIVERSE. For the RTN_PROHIBIT route type (a rule which a 
system administrator configures in order to block traffic), the error is –EACCES, and the scope is RT_SCOPE_UNIVERSE:
 
const struct fib_prop fib_props[RTN_MAX + 1] = {
 . . .
         [RTN_PROHIBIT] = {
                 .error  = -EACCES,
                 .scope  = RT_SCOPE_UNIVERSE,
         },
 
. . .
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Table 5-2 at the end of this chapter shows all available route types, their error codes, and their scopes.
When you configure a rule like the one mentioned earlier, by ip route add prohibit 192.168.1.17 from 

192.168.2.103—and when a packet is sent from 192.168.2.103 to 192.168.1.17, what happens is the following: a 
lookup in the routing tables is performed in the Rx path. When a corresponding entry, which is in fact a leaf in the FIB 
TRIE, is found, the check_leaf() method is invoked. This method accesses the fib_props array with the route type of 
the packet as an index (fa->fa_type):
 
static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
                      t_key key,  const struct flowi4 *flp,
                      struct fib_result *res, int fib_flags)
{
    . . .
       fib_alias_accessed(fa);
       err = fib_props[fa->fa_type].error;
       if (err) {
                . . .
                return err;
                 }
    . . .
 

Eventually, the fib_lookup() method, which initiated the lookup in the IPv4 routing subsystem, returns an 
error of –EACCES (in our case). It propagates all the way back from check_leaf() via fib_table_lookup() and so on 
until it returns to the method which triggered this chain, namely the fib_lookup() method. When the fib_lookup() 
method returns an error in the Rx path, it is handled by the ip_error() method. According to the error, an action is 
taken. In the case of –EACCES, an ICMPv4 of destination unreachable with code of Packet Filtered  
(ICMP_PKT_FILTERED) is sent back, and the packet is dropped.

This section covered the FIB info, which represents a single routing entry. The next section discusses caching in 
the IPv4 routing subsystem (not to be confused with the IPv4 routing cache, which was removed from the network 
stack, and is discussed in the “IPv4 Routing Cache” section at the end of this chapter).

Caching
Caching the results of a routing lookup is an optimization technique that improves the performance of the routing 
subsystem. The results of a routing lookup are usually cached in the nexthop (fib_nh) object; when the packet is not 
a unicast packet or realms are used (the packet itag is not 0), the results are not cached in the nexthop. The reason is 
that if all types of packets are cached, then the same nexthop can be used by different kinds of routes—that should be 
avoided. There are some minor exceptions to this which I do not discuss in this chapter. Caching in the Rx and the Tx 
path are performed as follows:

In the Rx path, caching the •	 fib_result object in the nexthop (fib_nh) object is done by 
setting the nh_rth_input field of the nexthop (fib_nh) object.

In the Tx path, caching the •	 fib_result object in the nexthop (fib_nh) object is done by 
setting the nh_pcpu_rth_output field of the nexthop (fib_nh) object.

Both •	 nh_rth_input and nh_pcpu_rth_output are instances of the rtable structure.

Caching the •	 fib_result is done by the rt_cache_route() method both in the Rx and the Tx 
paths (net/ipv4/route.c).

Caching of Path MTU and ICMPv4 redirects is done with FIB exceptions.•	
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For performance, the nh_pcpu_rth_output is a per-CPU variable, meaning there is a copy for each CPU of the 
output dst entry. Caching is used almost always. The few exceptions are when an ICMPv4 Redirect message is sent,  
or itag (tclassid) is set, or there is not enough memory.

In this section you have learned how caching is done using the nexthop object. The next section discusses the 
fib_nh structure, which represents the nexthop, and the FIB nexthop exceptions.

Nexthop (fib_nh)
The fib_nh structure represents the nexthop. It consists of information such as the outgoing nexthop network device 
(nh_dev), outgoing nexthop interface index (nh_oif), the scope (nh_scope), and more. Let’s take a look:
 
struct fib_nh {
    struct net_device       *nh_dev;
    struct hlist_node       nh_hash;
    struct fib_info         *nh_parent;
    unsigned int            nh_flags;
    unsigned char           nh_scope;
#ifdef CONFIG_IP_ROUTE_MULTIPATH
    int                     nh_weight;
    int                     nh_power;
#endif
#ifdef CONFIG_IP_ROUTE_CLASSID
    __u32                   nh_tclassid;
#endif
    int                     nh_oif;
    __be32                  nh_gw;
    __be32                  nh_saddr;
    int                     nh_saddr_genid;
    struct rtable __rcu * __percpu *nh_pcpu_rth_output;
    struct rtable __rcu     *nh_rth_input;
    struct fnhe_hash_bucket *nh_exceptions;
};
 
(include/net/ip_fib.h)

The nh_dev field represents the network device (net_device object) on which traffic to the nexthop will be 
transmitted. When a network device associated with one or more routes is disabled, a NETDEV_DOWN notification  
is sent. The FIB callback for handling this event is the fib_netdev_event() method; it is the callback of the  
fib_netdev_notifier notifier object, which is registered in the ip_fib_init() method by calling the  
register_netdevice_notifier() method (notification chains are discussed in Chapter 14). The fib_netdev_event() 
method calls the fib_disable_ip() method upon receiving a NETDEV_DOWN notification. In the fib_disable_ip() 
method, the following steps are performed:

First, the •	 fib_sync_down_dev() method is called (net/ipv4/fib_semantics.c). In the  
fib_sync_down_dev() method, the RTNH_F_DEAD flag of the nexthop flags (nh_flags) is set 
and the FIB info flags (fib_flags) is set.

The routes are flushed by the •	 fib_flush() method.

The •	 rt_cache_flush() method and the arp_ifdown() method are invoked. The arp_ifdown() 
method is not on any notifier chain.
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FIB Nexthop Exceptions
FIB nexthop exceptions were added in kernel 3.6 to handle cases when a routing entry is changed not as a result of a 
userspace action, but as a result of an ICMPv4 Redirect message or as a result of Path MTU discovery. The hash key  
is the destination address. The FIB nexthop exceptions are based on a 2048 entry hash table; reclaiming (freeing  
hash entries) starts at a chain depth of 5. Each nexthop object (fib_nh) has a FIB nexthop exceptions hash table,  
nh_exceptions (an instance of the fnhe_hash_bucket structure). Let's take a look at the fib_nh_exception structure: 
 
struct fib_nh_exception {
    struct fib_nh_exception __rcu    *fnhe_next;
    __be32                           fnhe_daddr;
    u32                              fnhe_pmtu;
    __be32                           fnhe_gw;
    unsigned long                    fnhe_expires;
    struct rtable __rcu              *fnhe_rth;
    unsigned long                    fnhe_stamp;
};
 
(include/net/ip_fib.h)

The fib_nh_exception objects are created by the update_or_create_fnhe() method (net/ipv4/route.c). 
Where are FIB nexthop exceptions generated? The first case is when receiving an ICMPv4 Redirect message  
(“Redirect to Host”) in the __ip_do_redirect() method. The “Redirect to Host” message includes a new gateway.  
The fnhe_gw field of the fib_nh_exception is set to be the new gateway when creating the FIB nexthop exception 
object (in the update_or_create_fnhe() method):
 
static void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4 *fl4,
                 bool kill_route)
{
  ...
  __be32 new_gw = icmp_hdr(skb)->un.gateway;
  ...
  update_or_create_fnhe(nh, fl4->daddr, new_gw, 0, 0);
  ...
 
}
 

The second case of generating FIB nexthop exceptions is when the Path MTU has changed, in the __ip_rt_
update_pmtu() method. In such a case, the fnhe_pmtu field of the fib_nh_exception object is set to be the new MTU 
when creating the FIB nexthop exception object (in the update_or_create_fnhe() method). PMTU value is expired if 
it was not updated in the last 10 minutes (ip_rt_mtu_expires). This period is checked on every dst_mtu() call via the 
ipv4_mtu() method, which is a dst->ops->mtu handler. The ip_rt_mtu_expires, which is by default 600 seconds, can 
be configured via the procfs entry /proc/sys/net/ipv4/route/mtu_expires:
 
static void __ip_rt_update_pmtu(struct rtable *rt, struct flowi4 *fl4, u32 mtu)
{
    . . .
    if (fib_lookup(dev_net(dst->dev), fl4, &res) == 0) {
        struct fib_nh *nh = &FIB_RES_NH(res);
 
        update_or_create_fnhe(nh, fl4->daddr, 0, mtu,
                      jiffies + ip_rt_mtu_expires);
    }
    . . .
}
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Note■■   FIB nexthop exceptions are used in the Tx path. Starting with Linux 3.11, they are also used in the Rx path.  
As a result, instead of fnhe_rth, there are fnhe_rth_input and fnhe_rth_output.

Since kernel 2.4, Policy Routing is supported. With Policy Routing, the routing of a packet depends not only on 
the destination address, but on several other factors, such as the source address or the TOS. The system administrator 
can add up to 255 routing tables.

Policy Routing
When working without Policy Routing (CONFIG_IP_MULTIPLE_TABLES is not set), two routing tables are created:  
the local table and the main table. The main table id is 254 (RT_TABLE_MAIN), and the local table id is 255  
(RT_TABLE_LOCAL). The local table contains routing entries of local addresses. These routing entries can be added 
to the local table only by the kernel. Adding routing entries to the main table (RT_TABLE_MAIN) is done by a system 
administrator (via ip route add, for example). These tables are created by the fib4_rules_init() method of  
net/ipv4/fib_frontend.c. These tables were called ip_fib_local_table and ip_fib_main_table in kernels prior  
to 2.6.25, but they were removed in favor of using unified access to the routing tables with the fib_get_table() 
method with appropriate argument. By unified access, I mean that access to the routing tables is done in the same 
way, with the fib_get_table() method, both when Policy Routing support is enabled and when it is disabled. The 
fib_get_table() method gets only two arguments: the network namespace and the table id. Note that there is a 
different method with the same name, fib4_rules_init(), for the Policy Routing case, in net/ipv4/fib_rules.c, 
which is invoked when working with Policy Routing support. When working with Policy Routing support  
(CONFIG_IP_MULTIPLE_TABLES is set), there are three initial tables (local, main, and default), and there can  
be up to 255 routing tables. I talk more about Policy Routing in Chapter 6. Access to the main routing table can be  
done as follows:

By a system administrator command (using •	 ip route or route):

Adding a route by •	 ip route add is implemented by sending RTM_NEWROUTE message 
from userspace, which is handled by the inet_rtm_newroute() method. Note that a route 
is not necessarily always a rule that permits traffic. You can also add a route that blocks 
traffic, for example, by ip route add prohibit 192.168.1.17 from 192.168.2.103. 
As a result of applying this rule, all packets sent from 192.168.2.103 to 192.168.1.17 will be 
blocked.

Deleting a route by •	 ip route del is implemented by sending RTM_DELROUTE message 
from userspace, which is handled by the inet_rtm_delroute() method.

Dumping a routing table by •	 ip route show is implemented by sending RTM_GETROUTE 
message from userspace, which is handled by the inet_dump_fib() method.

Note that ip route show displays the main table. For displaying the local table, you should 
run ip route show table local.

Adding a route by •	 route add is implemented by sending SIOCADDRT IOCTL, which is 
handled by the ip_rt_ioctl() method (net/ipv4/fib_frontend.c).

Deleting a route by •	 route del is implemented by sending SIOCDELRT IOCTL, which is 
handled by the ip_rt_ioctl() method (net/ipv4/fib_frontend.c).



Chapter 5 ■ The IPv4 Routing Subsystem

127

By userspace routing daemons which implement routing protocols like BGP (Border Gateway •	
Protocol), EGP (Exterior Gateway Protocol), OSPF (Open Shortest Path First), or others. These 
routing daemons run on core routers, which operate in the Internet backbone, and can handle 
hundreds of thousands of routes.

I should mention here that routes that were changed as a result of an ICMPv4 REDIRECT message or as a result of 
Path MTU discovery are cached in the nexthop exception table, discussed shortly. The next section describes the FIB 
alias, which helps in routing optimizations.

FIB Alias (fib_alias)
There are cases when several routing entries to the same destination address or to the same subnet are created. These 
routing entries differ only in the value of their TOS. Instead of creating a fib_info for each such route, a fib_alias 
object is created. A fib_alias is smaller, which reduces memory consumption. Here is a simple example of creating 3 
fib_alias objects:
 
ip route add 192.168.1.10 via 192.168.2.1 tos 0x2
ip route add 192.168.1.10 via 192.168.2.1 tos 0x4
ip route add 192.168.1.10 via 192.168.2.1 tos 0x6
 

Let’s take a look at the fib_alias structure definition:
 
struct fib_alias {
        struct list_head        fa_list;
        struct fib_info         *fa_info;
        u8                      fa_tos;
        u8                      fa_type;
        u8                      fa_state;
        struct rcu_head         rcu;
};
 
(net/ipv4/fib_lookup.h)

Note that there was also a scope field in the fib_alias structure (fa_scope), but it was moved in kernel 2.6.39 to 
the fib_info structure.

The fib_alias object stores routes to the same subnet but with different parameters. You can have one fib_info 
object which will be shared by many fib_alias objects. The fa_info pointer in all these fib_alias objects, in this 
case, will point to the same shared fib_info object. In Figure 5-3, you can see one fib_info object which is shared by 
three fib_alias objects, each with a different fa_tos. Note that the reference counter value of the fib_info object is 
3 (fib_treeref).
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Let’s take a look at what happens when you try to add a key for which a fib_node was already added before  
(as in the earlier example with the three TOS values 0x2, 0x4, and 0x6); suppose you had created the first rule with TOS 
of 0x2, and now you create the second rule, with TOS of 0x4.

A fib_alias object is created by the fib_table_insert() method, which is the method that handles adding a 
routing entry:
 
int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
 {
         struct trie *t = (struct trie *) tb->tb_data;
         struct fib_alias *fa, *new_fa;
         struct list_head *fa_head = NULL;
         struct fib_info *fi;
      . . .
 

Figure 5-3.  A fib_info which is shared by three fib_alias objects. Each fib_alias object has a different fa_tos value
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First, a fib_info object is created. Note that in the fib_create_info() method, after allocating and creating a 
fib_info object, a lookup is performed to check whether a similar object already exists by calling the fib_find_info() 
method. If such an object exists, it will be freed, and the reference counter of the object that was found (ofi in the code 
snippet you will shortly see) will be incremented by 1:
 
fi = fib_create_info(cfg);
 

Let’s take a look at the code snippet in the fib_create_info() method mentioned earlier; for creating the second 
TOS rule, the fib_info object of the first rule and the fib_info object of the second rule are identical. You should 
remember that the TOS field exists in the fib_alias object but not in the fib_info object:
 
struct fib_info *fib_create_info(struct fib_config *cfg)
{
    struct fib_info *fi = NULL;
    struct fib_info *ofi;
    . . .
    fi = kzalloc(sizeof(*fi)+nhs*sizeof(struct fib_nh), GFP_KERNEL);
    if (fi == NULL)
            goto failure;
    . . .
link_it:
        ofi = fib_find_info(fi);
 

If a similar object is found, free the fib_info object and increment the fib_treeref reference count:
 
        if (ofi) {
                fi->fib_dead = 1;
                free_fib_info(fi);
                ofi->fib_treeref++;
                return ofi;
        }
    . . .
}
 

Now a check is performed to find out whether there is an alias to the fib_info object; in this case, there will be 
no alias because the TOS of the second rule is different than the TOS of the first rule:
 
     l = fib_find_node(t, key);
     fa = NULL;
  
     if (l) {
             fa_head = get_fa_head(l, plen);
             fa = fib_find_alias(fa_head, tos, fi->fib_priority);
     }
 
if (fa && fa->fa_tos == tos &&
    fa->fa_info->fib_priority == fi->fib_priority) {
    . . .
       }
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Now a fib_alias is created, and its fa_info pointer is assigned to point the fib_info of the first rule that was 
created:
 
new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
if (new_fa == NULL)
    goto out;
 
new_fa->fa_info = fi;
    . . .
 

Now that I have covered the FIB Alias, you are ready to look at the ICMPv4 redirect message, which is sent when 
there is a suboptimal route.

ICMPv4 Redirect Message
There are cases when a routing entry is suboptimal. In such cases, an ICMPv4 redirect message is sent. The main 
criterion for a suboptimal entry is that the input device and the output device are the same. But there are more 
conditions that should be fulfilled so that an ICMPv4 redirect message is sent, as you will see in this section. There are 
four codes of ICMPv4 redirect message:

ICMP_REDIR_NET: Redirect Net•	

ICMP_REDIR_HOST: Redirect Host•	

ICMP_REDIR_NETTOS: Redirect Net for TOS•	

ICMP_REDIR_HOSTTOS: Redirect Host for TOS•	

Figure 5-4 shows a setup where there is a suboptimal route. There are three machines in this setup, all on the 
same subnet (192.168.2.0/24) and all connected via a gateway (192.168.2.1). The AMD server (192.168.2.200) added 
the Windows server (192.168.2.10) as a gateway for accessing 192.168.2.7 (the laptop) by ip route add 192.168.2.7 
via 192.168.2.10. The AMD server sends traffic to the laptop, for example, by ping 192.168.2.7. Because the 
default gateway is 192.168.2.10, the traffic is sent to 192.168.2.10. The Windows server detects that this is a 
suboptimal route, because the AMD server could send directly to 192.168.2.7, and sends back to the AMD server an 
ICMPv4 redirect message with ICMP_REDIR_HOST code.

Now that you have a better understanding of redirects, let’s look at how an ICMPv4 message is generated.

Figure 5-4.  Redirect to Host (ICMP_REDIR_HOST), a simple setup
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Generating an ICMPv4 Redirect Message
An ICMPv4 Redirect message is sent when there is some suboptimal route. The most notable condition for a 
suboptimal route is that the input device and the output device are the same, but there are some more conditions 
which should be met. Generating an ICMPv4 Redirect message is done in two phases:

In the •	 __mkroute_input() method: Here the RTCF_DOREDIRECT flag is set if needed.

In the •	 ip_forward() method: Here the ICMPv4 Redirect message is actually sent by calling the 
ip_rt_send_redirect() method.
 
static int __mkroute_input(struct sk_buff *skb,
                   const struct fib_result *res,
                   struct in_device *in_dev,
                   __be32 daddr, __be32 saddr, u32 tos)
{
    struct rtable *rth;
    int err;
    struct in_device *out_dev;
    unsigned int flags = 0;
    bool do_cache;
 

All of the following conditions should be sustained so that the RTCF_DOREDIRECT flag is set:

The input device and the output device are the same.•	

The •	 procfs entry, /proc/sys/net/ipv4/conf/<deviceName>/send_redirects, is set.

Either this outgoing device is a shared media or the source address (•	 saddr) and the nexthop 
gateway address (nh_gw) are on the same subnet:
 
if (out_dev == in_dev && err && IN_DEV_TX_REDIRECTS(out_dev) &&
  (IN_DEV_SHARED_MEDIA(out_dev) ||
   inet_addr_onlink(out_dev, saddr, FIB_RES_GW(*res)))) {
 
  flags |= RTCF_DOREDIRECT;
  do_cache = false;
}
  . . .
 

Setting the rtable object flags is done by:
 
    rth->rt_flags = flags;
    . . .
 
}
 

Sending the ICMPv4 Redirect message is done in the second phase, by the ip_forward() method:
 
int ip_forward(struct sk_buff *skb)
{
    struct iphdr          *iph;    /* Our header */
    struct rtable         *rt;     /* Route we use */
    struct ip_options     *opt     = &(IPCB(skb)->opt);
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Next a check is performed to see whether the RTCF_DOREDIRECT flag is set, whether an IP option of  
strict route does not exist (see chapter 4), and whether it is not an IPsec packet. (With IPsec tunnels, the input  
device of the tunneled packet can be the same as the decapsulated packet outgoing device; see  
http://lists.openwall.net/netdev/2007/08/24/29):
 
if (rt->rt_flags&RTCF_DOREDIRECT && !opt->srr && !skb_sec_path(skb))
    ip_rt_send_redirect(skb);
 

In the ip_rt_send_redirect() method, the ICMPv4 Redirect message is actually sent. The third parameter is the 
IP address of the advised new gateway, which will be 192.168.2.7 in this case (The address of the laptop):
 
void ip_rt_send_redirect(struct sk_buff *skb)
  {
      . . .
      icmp_send(skb, ICMP_REDIRECT, ICMP_REDIR_HOST,
            rt_nexthop(rt, ip_hdr(skb)->daddr))
      . . .
  }
 
(net/ipv4/route.c)

Receiving an ICMPv4 Redirect Message
For an ICMPv4 Redirect message to be processed, it should pass some sanity checks. Handling an ICMPv4 Redirect 
message is done by the __ip_do_redirect() method:
 
static void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4
    *fl4,bool kill_route)
{
    __be32 new_gw = icmp_hdr(skb)->un.gateway;
    __be32 old_gw = ip_hdr(skb)->saddr;
    struct net_device *dev = skb->dev;
    struct in_device *in_dev;
    struct fib_result res;
    struct neighbour *n;
    struct net *net;
      . . .
 

Various checks are performed, such as that the network device is set to accept redirects. The redirect is rejected if 
necessary:
 
if (rt->rt_gateway != old_gw)
    return;
 
in_dev = __in_dev_get_rcu(dev);
if (!in_dev)
    return;
 
net = dev_net(dev);
if (new_gw == old_gw || !IN_DEV_RX_REDIRECTS(in_dev) ||
    ipv4_is_multicast(new_gw) || ipv4_is_lbcast(new_gw) ||

http://lists.openwall.net/netdev/2007/08/24/29
http://lists.openwall.net/netdev/2007/08/24/29
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    ipv4_is_zeronet(new_gw))
    goto reject_redirect;
 
if (!IN_DEV_SHARED_MEDIA(in_dev)) {
    if (!inet_addr_onlink(in_dev, new_gw, old_gw))
        goto reject_redirect;
    if (IN_DEV_SEC_REDIRECTS(in_dev) && ip_fib_check_default(new_gw, dev))
        goto reject_redirect;
} else {
    if (inet_addr_type(net, new_gw) != RTN_UNICAST)
        goto reject_redirect;
}
 

A lookup in the neighboring subsystem is performed; the key to the lookup is the address of the advised gateway, 
new_gw, which was extracted from the ICMPv4 message in the beginning of this method:
 
n = ipv4_neigh_lookup(&rt->dst, NULL, &new_gw);
if (n) {
    if (!(n->nud_state & NUD_VALID)) {
        neigh_event_send(n, NULL);
    } else {
           if (fib_lookup(net, fl4, &res) == 0) {
              struct fib_nh *nh = &FIB_RES_NH(res);
 

Create / update a FIB nexthop exception, specifying the IP address of an advised gateway (new_gw):
 
                update_or_create_fnhe(nh, fl4->daddr, new_gw,
                              0, 0);
            }
            if (kill_route)
                rt->dst.obsolete = DST_OBSOLETE_KILL;
            call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, n);
        }
        neigh_release(n);
    }
    return;
 
reject_redirect:
      . . .
 
(net/ipv4/route.c)

Now that we’ve covered how a received ICMPv4 message is handled, we can next tackle the IPv4 routing cache 
and the reasons for its removal.

IPv4 Routing Cache
In kernels prior to 3.6, there was an IPv4 routing cache with a garbage collector. The IPv4 routing cache was removed 
in kernel 3.6 (around July 2012). The FIB TRIE / FIB hash was a choice in the kernel for years, but not as the default. 
Having the FIB TRIE made it possible to remove the IPv4 routing cache, as it had Denial of Service (DoS) issues. FIB 
TRIE (also known as LC-trie) is the longest matching prefix lookup algorithm that performs better than FIB hash for 
large routing tables. It consumes more memory and is more complex, but since it performs better, it made the removal 
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of the routing cache feasible. The FIB TRIE code was in the kernel for a long time before it was merged, but it was not 
the default. The main reason for the removal of the IPv4 routing cache was that launching DoS attacks against it was 
easy because the IPv4 routing cache created a cache entry for each unique flow. Basically that meant that by sending 
packets to random destinations, you could generate an unlimited amount of routing cache entries.

Merging the FIB TRIE entailed the removal of the routing cache and of some of the cumbersome FIB hash  tables 
and of the routing cache garbage collector methods. This chapter discusses the routing cache very briefly. Because 
the novice reader may wonder what it is needed for, note that in the Linux-based software industry, in commercial 
distributions like RedHat Enterprise, the kernels are fully maintained and fully supported for a very long period of 
time (RedHat, for example, gives support for its distributions for up to seven years). So it is very likely that some 
readers will be involved in projects based on kernels prior to 3.6, where you will find the routing cache and the FIB 
hash-based routing tables. Delving into the theory and implementation details of the FIB TRIE data structure is 
beyond the scope of this book. To learn more, I recommend the article “TRASH—A dynamic LC-trie and hash data 
structure” by Robert Olsson and Stefan Nilsson, www.nada.kth.se/~snilsson/publications/TRASH/trash.pdf.

Note that with the IPv4 routing cache implementation, there is a single cache, regardless of how many routing 
tables are used (there can be up to 255 routing tables when using Policy Routing). Note that there was also support 
for IPv4 Multipath Routing cache, but it was removed in kernel 2.6.23, in 2007. In fact, it never did work very well and 
never got out of the experimental state.

For kernels prior to the 3.6 kernel, where the FIB TRIE is not yet merged, the lookup in the IPv4 routing 
subsystem was different: access to routing tables was preceded by access to the routing cache, the tables were 
organized differently, and there was a routing cache garbage collector, which was both asynchronous (periodic timer) 
and synchronous (activated under specific conditions, for example when the number of the cache entries exceeded 
some threshold). The cache was basically a big hash with the IP flow source address, destination address, and TOS as 
a key, associated with all flow-specific information like neighbor entry, PMTU, redirect, TCPMSS info, and so on. The 
benefit here is that cached entries were fast to look up and contained all the information needed by higher layers.

Note■■  T he following two sections (“Rx Path” and “Tx Path”) refer to the 2.6.38 kernel.

Rx Path
In the Rx path, first the ip_route_input_common() method is invoked. This method performs a lookup in the IPv4 
routing cache, which is much quicker than the lookup in the IPv4 routing tables. Lookup in these routing tables is based 
on the Longest Prefix Match (LPM) search algorithm. With the LPM search, the most specific table entry—the one 
with the highest subnet mask—is called the Longest Prefix Match. In case the lookup in the routing cache fails (“cache 
miss”), a lookup in the routing tables is being performed by calling the ip_route_input_slow() method. This method 
calls the fib_lookup() method to perform the actual lookup. Upon success, it calls the ip_mkroute_input() method 
which (among other actions) inserts the routing entry into the routing cache by calling the rt_intern_hash() method.

Tx Path
In the Tx path, first the ip_route_output_key() method is invoked. This method performs a lookup in the IPv4 routing 
cache. In case of a cache miss, it calls the ip_route_output_slow() method, which calls the fib_lookup() method 
to perform a lookup in the routing subsystem. Subsequently, upon success, it calls the ip_mkroute_output() method 
which (among other actions) inserts the routing entry into the routing cache by calling the rt_intern_hash() method.

http://www.nada.kth.se/~snilsson/publications/TRASH/trash.pdf
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Summary
This chapter covered various topics of the IPv4 routing subsystem. The routing subsystem is essential for handling 
both incoming and outgoing packets. You learned about various topics like forwarding, lookup in the routing 
subsystem, organization of the FIB tables, Policy Routing and the routing subsystem, and ICMPv4 Redirect message. 
You also learned about optimization which is gained with the FIB alias and the fact that the routing cache was 
removed, and why. The next chapter covers advanced topics of the IPv4 routing subsystem.

Quick Reference
I conclude this chapter with a short list of important methods, macros, and tables of the IPv4 routing subsystem, along 
with a short explanation about routing flags.

Note■■  T he IPv4 routing subsystem is implemented in these modules under net/ipv4: fib_frontend.c, fib_trie.c, 
fib_semantics.c, route.c.

The fib_rules.c module implements Policy Routing and is compiled only when CONFIG_IP_MULTIPLE_TABLES is set. 
Among the most important header files are fib_lookup.h, include/net/ip_fib.h, and include/net/route.h.

The destination cache (dst) implementation is in net/core/dst.c and in include/net/dst.h.

CONFIG_IP_ROUTE_MULTIPATH should be set for Multipath Routing Support.

Methods
This section lists the methods that were mentioned in this chapter.

int fib_table_insert(struct fib_table *tb, struct fib_config *cfg);
This method inserts an IPv4 routing entry to the specified FIB table (fib_table object), based on the specified  
fib_config object.

int fib_table_delete(struct fib_table *tb, struct fib_config *cfg);
This method deletes an IPv4 routing entry from the specified FIB table (fib_table object), based on the specified 
fib_config object.

struct fib_info *fib_create_info(struct fib_config *cfg);
This method creates a fib_info object derived from the specified fib_config object.

void free_fib_info(struct fib_info *fi);
This method frees a fib_info object in condition that it is not alive (the fib_dead flag is not 0) and decrements the 
global fib_info objects counter (fib_info_cnt).
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void fib_alias_accessed(struct fib_alias *fa);
This method sets the fa_state flag of the specified fib_alias to be FA_S_ACCESSED. Note that the only fa_state 
flag is FA_S_ACCESSED.

void ip_rt_send_redirect(struct sk_buff *skb);
This method sends an ICMPV4 Redirect message, as a response to a suboptimal path.

void __ip_do_redirect(struct rtable *rt, struct sk_buff *skb, struct flowi4*fl4, bool 
kill_route);
This method handles receiving an ICMPv4 Redirect message.

void update_or_create_fnhe(struct fib_nh *nh, __be32 daddr, __be32 gw, u32 
pmtu, unsigned long expires);
This method creates a FIB nexthop exception table (fib_nh_exception) in the specified nexthop object (fib_nh), if it 
does not already exist, and initializes it. It is invoked when there should be a route update due to ICMPv4 redirect or 
due to PMTU discovery.

u32 dst_metric(const struct dst_entry *dst, int metric);
This method returns a metric of the specified dst object.

struct fib_table *fib_trie_table(u32 id);
This method allocates and initializes a FIB TRIE table.

struct leaf *fib_find_node(struct trie *t, u32 key);
This method performs a TRIE lookup with the specified key. It returns a leaf object upon success, or NULL in case of 
failure.

Macros
This section is a list of macros of the IPv4 routing subsystem, some of which were mentioned in this chapter.

FIB_RES_GW()
This macro returns the nh_gw field (nexthop gateway address) associated with the specified fib_result object.

FIB_RES_DEV()
This macro returns the nh_dev field (Next hop net_device object) associated with the specified fib_result object.
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FIB_RES_OIF()
This macro returns the nh_oif field (nexthop output interface index) associated with the specified fib_result object.

FIB_RES_NH()
This macro returns the nexthop (fib_nh object) of the fib_info of the specified fib_result object. When Multipath 
Routing is set, you can have multiple nexthops; the value of nh_sel field of the specified fib_result object is taken 
into account in this case, as an index to the array of the nexthops which is embedded in the fib_info object.

(include/net/ip_fib.h)

IN_DEV_FORWARD()
This macro checks whether the specified network device (in_device object) supports IPv4 forwarding.

IN_DEV_RX_REDIRECTS()
This macro checks whether the specified network device (in_device object) supports accepting ICMPv4 Redirects.

IN_DEV_TX_REDIRECTS()
This macro checks whether the specified network device (in_device object) supports sending ICMPv4 Redirects.

IS_LEAF()
This macro checks whether the specified tree node is a leaf.

IS_TNODE()
This macro checks whether the specified tree node is an internal node (trie node or tnode).

change_nexthops()
This macro iterates over the nexthops of the specified fib_info object (net/ipv4/fib_semantics.c).

Tables
There are 15 (RTAX_MAX) metrics for routes. Some of them are TCP related, and some are general. Table 5-1 shows 
which of these metrics are related to TCP.
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(include/uapi/linux/rtnetlink.h)

Table 5-2 shows the error value and the scope of all the route types.

Table 5-1.  Route Metrics

Linux Symbol TCP Metric (Y/N)

RTAX_UNSPEC N

RTAX_LOCK N

RTAX_MTU N

RTAX_WINDOW Y

RTAX_RTT Y

RTAX_RTTVAR Y

RTAX_SSTHRESH Y

RTAX_CWND Y

RTAX_ADVMSS Y

RTAX_REORDERING Y

RTAX_HOPLIMIT N

RTAX_INITCWND Y

RTAX_FEATURES N

RTAX_RTO_MIN Y

RTAX_INITRWND Y

Table 5-2.  Route Types

Linux Symbol Error Scope

RTN_UNSPEC 0 RT_SCOPE_NOWHERE

RTN_UNICAST 0 RT_SCOPE_UNIVERSE

RTN_LOCAL 0 RT_SCOPE_HOST

RTN_BROADCAST 0 RT_SCOPE_LINK

RTN_ANYCAST 0 RT_SCOPE_LINK

RTN_MULTICAST 0 RT_SCOPE_UNIVERSE

RTN_BLACKHOLE -EINVAL RT_SCOPE_UNIVERSE

RTN_UNREACHABLE -EHOSTUNREACH RT_SCOPE_UNIVERSE

RTN_PROHIBIT -EACCES RT_SCOPE_UNIVERSE

RTN_THROW -EAGAIN RT_SCOPE_UNIVERSE

RTN_NAT -EINVAL RT_SCOPE_NOWHERE

RTN_XRESOLVE -EINVAL RT_SCOPE_NOWHERE
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Route Flags
When running the route –n command, you get an output that shows the route flags. Here are the flag values and a 
short example of the output of route –n:

U (Route is up)

H (Target is a host)

G (Use gateway)

R (Reinstate route for dynamic routing)

D (Dynamically installed by daemon or redirect)

M (Modified from routing daemon or redirect)

A (Installed by addrconf)

! (Reject route)

Table 5-3 shows an example of the output of running route –n (the results are organized into a table form):

Table 5-3.  Kernel IP Routing Table

Destination Gateway Genmask Flags Metric Ref Use Iface

169.254.0.0 0.0.0.0 255.255.0.0 U 1002 0 0 eth0

192.168.3.0 192.168.2.1 255.255.255.0 UG 0 0 0 eth1
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Chapter 6

Advanced Routing

Chapter 5 dealt with the IPv4 routing subsystem. This chapter continues with the routing subsystem and discusses 
advanced IPv4 routing topics such as Multicast Routing, Multipath Routing, Policy Routing, and more. This book 
deals with the Linux Kernel Networking implementation—it does not delve into the internals of userspace Multicast 
Routing daemons implementation, which are quite complex and beyond the scope of the book. I do, however, discuss 
to some extent the interaction between a userspace multicast routing daemon and the multicast layer in the kernel.  
I also briefly discuss the Internet Group Management Protocol (IGMP) protocol, which is the basis of multicast group 
membership management; adding and deleting multicast group members is done by the IGMP protocol. Some basic 
knowledge of IGMP is needed to understand the interaction between a multicast host and a multicast router.

Multipath Routing is the ability to add more than one nexthop to a route. Policy Routing enables configuring 
routing policies that are not based solely on the destination address. I start with describing Multicast Routing.

Multicast Routing
Chapter 4 briefly mentions Multicast Routing, in the “Receiving IPv4 Multicast Packets” section. I will now discuss 
it in more depth. Sending multicast traffic means sending the same packet to multiple recipients. This feature can 
be useful in streaming media, audio/video conferencing, and more. It has a clear advantage over unicast traffic 
in terms of saving network bandwidth. Multicast addresses are defined as Class D addresses. The Classless Inter-
Domain Routing (CIDR) prefix of this group is 224.0.0.0/4. The range of IPv4 multicast addresses is from 224.0.0.0 to 
239.255.255.255. Handling Multicast Routing must be done in conjunction with a userspace routing daemon which 
interacts with the kernel. According to the Linux implementation, Multicast Routing cannot be handled solely by 
the kernel code without this userspace Routing daemon, as opposed to Unicast Routing. There are various multicast 
daemons: for example: mrouted, which is based on an implementation of the Distance Vector Multicast Routing 
Protocol (DVMRP), or pimd, which is based on the Protocol-Independent Multicast protocol (PIM). The DVMRP protocol 
is defined in RFC 1075, and it was the first multicast routing protocol. It is based on the Routing Information Protocol 
(RIP) protocol.

The PIM protocol has two versions, and the kernel supports both of them (CONFIG_IP_PIMSM_V1 and 
CONFIG_IP_PIMSM_V2). PIM has four different modes: PIM-SM (PIM Sparse Mode), PIM-DM (PIM Dense Mode), 
PIM Source-Specific Multicast (PIM-SSM) and Bidirectional PIM. The protocol is called protocol-independent because 
it is not dependent on any particular routing protocol for topology discovery. This section discusses the interaction 
between the userspace daemon and the kernel multicast routing layer. Delving into the internals of the PIM protocol 
or the DVMRP protocol (or any other Multicast Routing protocol) is beyond the scope of this book. Normally, the 
Multicast Routing lookup is based on the source and destination addresses. There is a “Multicast Policy Routing" 
kernel feature, which is the parallel to the unicast policy routing kernel feature that was mentioned in Chapter 5 and 
which is also discussed in the course of this chapter. The multicast policy routing protocol is implemented using the 
Policy Routing API (for example, it calls the fib_rules_lookup() method to perform a lookup, creates a fib_rules_
ops object, and registers it with the fib_rules_register() method, and so on). With Multicast Policy Routing, the 
routing can be based on additional criteria, like the ingress network interfaces. Moreover, you can work with more 
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than one multicast routing table. In order to work with Multicast Policy Routing, IP_MROUTE_MULTIPLE_TABLES 
must be set.

Figure 6-1 shows a simple IPv4 Multicast Routing setup. The topology is very simple: the laptop, on the left, 
joins a multicast group (224.225.0.1) by sending an IGMP packet (IP_ADD_MEMBERSHIP). The IGMP protocol is 
discussed in the next section, “The IGMP Protocol.” The AMD server, in the middle, is configured as a multicast router, 
and a userspace multicast routing daemon (like pimd or mrouted) runs on it. The Windows server, on the right, which 
has an IP address of 192.168.2.10, sends multicast traffic to 224.225.0.1; this traffic is forwarded to the laptop via the 
multicast router. Note that the Windows server itself did not join the 224.225.0.1 multicast group. Running ip route 
add 224.0.0.0/4 dev <networkDeviceName> tells the kernel to send all multicast traffic via the specified network 
device.

The next section discusses the IGMP protocol, which is used for the management of multicast group 
membership.

The IGMP Protocol
The IGMP protocol is an integral part of IPv4 multicast. It must be implemented on each node that supports IPv4 
multicast. In IPv6, multicast management is handled by the MLD (Multicast Listener Discovery) protocol, which uses 
ICMPv6 messages, discussed in Chapter 8. With the IGMP protocol, multicast group memberships are established 
and managed. There are three versions of IGMP:

	 1.	 IGMPv1 (RFC 1112): Has two types of messages—host membership report and host 
membership query. When a host wants to join a multicast group, it sends a membership 
report message. Multicast routers send membership queries to discover which host 
multicast groups have members on their attached local networks. Queries are addressed to 
the all-hosts group address (224.0.0.1, IGMP_ALL_HOSTS) and carry a TTL of 1 so that the 
membership query will not travel outside of the LAN.

Figure 6-1.  Simple Multicast Routing setup
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	 2.	 IGMPv2 (RFC 2236): This is an extension of IGMPv1. The IGMPv2 protocol adds three new 
messages:

a.	 Membership Query (0x11): There are two sub-types of Membership Query messages: 
General Query, used to learn which groups have members on an attached network, 
and Group-Specific Query, used to learn whether a particular group has any members 
on an attached network.

b.	 Version 2 Membership Report (0x16). 

c.	 Leave Group (0x17).

Note■■  IG MPv2 also supports Version 1 Membership Report message, for backward compatibility with IGMPv1. See 
RFC 2236, section 2.1.

	 3.	 IGMPv3 (RFC 3376, updated by RFC 4604): This major revision of the protocol adds a 
feature called source filtering. This means that when a host joins a multicast group, it can 
specify a set of source addresses from which it will receive multicast traffic. The source 
filters can also exclude source addresses. To support the source filtering feature, the socket 
API was extended; see RFC 3678, “Socket Interface Extensions for Multicast Source Filters.” 
I should also mention that the multicast router periodically (about every two minutes) 
sends a membership query to 224.0.0.1, the all-hosts multicast group address. A host that 
receives a membership query responds with a membership report. This is implemented 
in the kernel by the igmp_rcv() method: getting an IGMP_HOST_MEMBERSHIP_QUERY 
message is handled by the igmp_heard_query() method.

Note■■  T he kernel implementation of IPv4 IGMP is in net/core/igmp.c, include/linux/igmp.h and include/uapi/
linux/igmp.h.

The next section examines the fundamental data structure of IPv4 Multicast Routing, the multicast routing table, 
and its Linux implementation.

The Multicast Routing Table
The multicast routing table is represented by a structure named mr_table. Let’s take a look at it:
 
struct mr_table {
    struct list_head     list;
#ifdef CONFIG_NET_NS
    struct net           *net;
#endif
    u32                  id;
    struct sock __rcu    *mroute_sk;
    struct timer_list    ipmr_expire_timer;
    struct list_head     mfc_unres_queue;
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    struct list_head     mfc_cache_array[MFC_LINES];
    struct vif_device    vif_table[MAXVIFS];
    . . .
};
 

(net/ipv4/ipmr.c)

The following is a description of some members of the mr_table structure:

•	 net: The network namespace associated with the multicast routing table; by default it is the 
initial network namespace, init_net. Network namespaces are discussed in Chapter 14.

•	 id: The multicast routing table id; it is RT_TABLE_DEFAULT (253) when working with a single 
table.

•	 mroute_sk: This pointer represents a reference to the userspace socket that the kernel 
keeps. The mroute_sk pointer is initialized by calling setsockopt() from the userspace with 
the MRT_INIT socket option and is nullified by calling setsockopt() with the MRT_DONE 
socket option. The interaction between the userspace and the kernel is based on calling the 
setsockopt() method, on sending IOCTLs from userspace, and on building IGMP packets 
and passing them to the Multicast Routing daemon by calling the sock_queue_rcv_skb() 
method from the kernel.

•	 ipmr_expire_timer: Timer of cleaning unresolved multicast routing entries. This timer is 
initialized when creating a multicast routing table, in the ipmr_new_table() method, and 
removed when removing a multicast routing table, by the ipmr_free_table() method.

•	 mfc_unres_queue: A queue of unresolved routing entries. 

•	 mfc_cache_array: A cache of the routing entries, with 64 (MFC_LINES) entries, discussed 
shortly in the next section.

•	 vif_table[MAXVIFS]: An array of 32 (MAXVIFS) vif_device objects. Entries are added by 
the vif_add() method and deleted by the vif_delete() method. The vif_device structure 
represents a virtual multicast routing network interface; it can be based on a physical device or 
on an IPIP (IP over IP) tunnel. The vif_device structure is discussed later in “The Vif Device” 
section.

I have covered the multicast routing table and mentioned its important members, such as the Multicast 
Forwarding Cache (MFC) and the queue of unresolved routing entries. Next I will look at the MFC, which is 
embedded in the multicast routing table object and plays an important role in Multicast Routing.

The Multicast Forwarding Cache (MFC)
The most important data structure in the multicast routing table is the MFC, which is in fact an array of cache entries 
(mfc_cache objects). This array, named mfc_cache_array, is embedded in the multicast routing table (mr_table) 
object. It has 64 (MFC_LINES) elements. The index of this array is the hash value (the hash function takes two 
parameters—the multicast group address and the source IP address; see the description of the MFC_HASH macro in 
the “Quick Reference” section at the end of this chapter).

Usually there is only one multicast routing table, which is an instance of the mr_table structure, and a reference 
to it is kept in the IPv4 network namespace (net->ipv4.mrt). The table is created by the ipmr_rules_init() method, 
which also assigns net->ipv4.mrt to point to the multicast routing table that was created. When working with the 
multicast policy routing feature mentioned earlier, there can be multiple multicast policy routing tables. In both 
cases, you get the routing table using the same method, ipmr_fib_lookup(). The ipmr_fib_lookup() method gets 
three parameters as an input: the network namespace, the flow, and a pointer to the mr_table object which it should 
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fill. Normally, it simply sets the specified mr_table pointer to be net->ipv4.mrt; when working with multiple tables 
(IP_MROUTE_MULTIPLE_TABLES is set), the implementation is more complex. Let’s take a look at the mfc_cache 
structure:
 
struct mfc_cache {
    struct list_head list;
    __be32 mfc_mcastgrp;
    __be32 mfc_origin;
    vifi_t mfc_parent;
    int mfc_flags;
    union {
            struct {
                    unsigned long expires;
                    struct sk_buff_head unresolved; /* Unresolved buffers */
            } unres;
            struct {
                    unsigned long last_assert;
                    int minvif;
                    int maxvif;
                    unsigned long bytes;
                    unsigned long pkt;
                    unsigned long wrong_if;
                    unsigned char ttls[MAXVIFS];    /* TTL thresholds */
            } res;
    } mfc_un;
    struct rcu_head rcu;
 };
 
(include/linux/mroute.h)

The following is a description of some members of the mfc_cache structure:

•	 mfc_mcastgrp: the address of the multicast group that the entry belongs to.

•	 mfc_origin: The source address of the route. 

•	 mfc_parent: The source interface. 

•	 mfc_flags: The flags of the entry. Can have one of these values:

MFC_STATIC: When the route was added statically and not by a multicast routing •	
daemon.

MFC_NOTIFY: When the RTM_F_NOTIFY flag of the routing entry was set. See the  •	
rt_fill_info() method and the ipmr_get_route() method for more details.

The •	 mfc_un union consists of two elements:

•	 unres: Unresolved cache entries.

•	 res: Resolved cache entries.



Chapter 6 ■ Advanced Routing

146

The first time an SKB of a certain flow reaches the kernel, it is added to the queue of unresolved entries  
(mfc_un.unres.unresolved), where up to three SKBs can be saved. If there are three SKBs in the queue, the packet is 
not appended to the queue but is freed, and the ipmr_cache_unresolved() method returns -ENOBUFS (“No buffer 
space available”):
 
static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
{
         . . .
         if (c->mfc_un.unres.unresolved.qlen > 3) {
                 kfree_skb(skb);
                 err = -ENOBUFS;
        } else {
            . . .
 
}
 
(net/ipv4/ipmr.c)

This section described the MFC and its important members, including the queue of resolved entries and the queue 
of unresolved entries. The next section briefly describes what a multicast router is and how it is configured in Linux.

Multicast Router
In order to configure a machine as a multicast router, you should set the CONFIG_IP_MROUTE kernel configuration 
option. You should also run some routing daemon such as pimd or mrouted, as mentioned earlier. These routing 
daemons create a socket to communicate with the kernel. In pimd, for example, you create a raw IGMP socket 
by calling socket(AF_INET, SOCK_RAW, IPPROTO_IGMP). Calling setsockopt() on this socket triggers sending 
commands to the kernel, which are handled by the ip_mroute_setsockopt() method. When calling setsockopt() 
on this socket from the routing daemon with MRT_INIT, the kernel is set to keep a reference to the userspace socket 
in the mroute_sk field of the mr_table object that is used, and the mc_forwarding procfs entry (/proc/sys/net/
ipv4/conf/all/mc_forwarding) is set by calling IPV4_DEVCONF_ALL(net, MC_FORWARDING)++. Note that the 
mc_forwarding procfs entry is a read-only entry and can’t be set from userspace. You can’t create another instance 
of a multicast routing daemon: when handling the MRT_INIT option, the ip_mroute_setsockopt() method checks 
whether the mroute_sk field of the mr_table object is initialized and returns -EADDRINUSE if so. Adding a network 
interface is done by calling setsockopt() on this socket with MRT_ADD_VIF, and deleting a network interface is done 
by calling setsockopt() on this socket with MRT_DEL_VIF. You can pass the parameters of the network interface to 
these setsockopt() calls by passing a vifctl object as the optval parameter of the setsockopt() system call. Let’s 
take a look at the vifctl structure:
 
struct vifctl {
    vifi_t    vifc_vifi;                /* Index of VIF */
    unsigned char vifc_flags;            /* VIFF_ flags */
    unsigned char vifc_threshold;        /* ttl limit */
    unsigned int vifc_rate_limit;        /* Rate limiter values (NI) */
    union {
        struct in_addr vifc_lcl_addr;     /* Local interface address */
        int            vifc_lcl_ifindex;  /* Local interface index   */
    };
    struct in_addr vifc_rmt_addr;    /* IPIP tunnel addr */
};
 
(include/uapi/linux/mroute.h)
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The following is a description of some members of the vifctl structure:

•	 vifc_flags can be:

VIFF_TUNNEL: When you want to use an IPIP tunnel.•	

VIFF_REGISTER: When you want to register the interface.•	

VIFF_USE_IFINDEX: When you want to use the local interface index and not the local •	
interface IP address; in such a case, you will set the vifc_lcl_ifindex to be the local 
interface index. The VIFF_USE_IFINDEX flag is available for 2.6.33 kernel and above.

•	 vifc_lcl_addr: The local interface IP address. (This is the default—no flag should be set for 
using it).

•	 vifc_lcl_ifindex: The local interface index. It should be set when the VIFF_USE_IFINDEX 
flag is set in vifc_flags.

•	 vifc_rmt_addr: The address of the remote node of a tunnel.

When the multicast routing daemon is closed, the setsockopt() method is called with an MRT_DONE option. 
This triggers calling the mrtsock_destruct() method to nullify the mroute_sk field of the mr_table object that is used 
and to perform various cleanups.

This section covered what a multicast router is and how it is configured in Linux. I also examined the vifctl 
structure. Next, I look at the Vif device, which represents a multicast network interface.

The Vif Device
Multicast Routing supports two modes: direct multicast and multicast encapsulated in a unicast packet over a tunnel. 
In both cases, the same object is used (an instance of the vif_device structure) to represent the network interface. 
When working over a tunnel, the VIFF_TUNNEL flag will be set. Adding and deleting a multicast interface is done by 
the vif_add() method and by the vif_delete() method, respectively. The vif_add() method also sets the device 
to support multicast by calling the dev_set_allmulti(dev, 1) method, which increments the allmulti counter of 
the specified network device (net_device object). The vif_delete() method calls dev_set_allmulti(dev, -1) to 
decrement the allmulti counter of the specified network device (net_device object). For more details about the 
dev_set_allmulti() method, see appendix A. Let’s take a look at the vif_device structure; its members are quite 
self-explanatory:
 
struct vif_device {
        struct net_device       *dev;       /* Device we are using */
        unsigned long   bytes_in,bytes_out;
        unsigned long   pkt_in,pkt_out;     /* Statistics                   */
        unsigned long   rate_limit;         /* Traffic shaping (NI)         */
        unsigned char   threshold;          /* TTL threshold                */
        unsigned short  flags;              /* Control flags                */
        __be32          local,remote;       /* Addresses(remote for tunnels)*/
        int             link;               /* Physical interface index     */
};
 
(include/linux/mroute.h)

In order to receive multicast traffic, a host must join a multicast group. This is done by creating a socket in 
userspace and calling setsockopt() with IPPROTO_IP and with the IP_ADD_MEMBERSHIP socket option. The 
userspace application also creates an ip_mreq object where it initializes the request parameters, like the desired group 
multicast address and the source IP address of the host (see the netinet/in.h userspace header). The setsockopt() 
call is handled in the kernel by the ip_mc_join_group() method, in net/ipv4/igmp.c. Eventually, the multicast 
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address is added by the ip_mc_join_group() method to a list of multicast addresses (mc_list), which is a member 
of the in_device object. A host can leave a multicast group by calling setsockopt() with IPPROTO_IP and with the 
IP_DROP_MEMBERSHIP socket option. This is handled in the kernel by the ip_mc_leave_group() method, in net/
ipv4/igmp.c. A single socket can join up to 20 multicast groups (sysctl_igmp_max_memberships). Trying to join more 
than 20 multicast groups by the same socket will fail with the -ENOBUFS error (“No buffer space available.”) See the 
ip_mc_join_group() method implementation in net/ipv4/igmp.c.

IPv4 Multicast Rx Path
Chapter 4’s “Receiving IPv4 Multicast Packets” section briefly discusses how multicast packets are handled. I will now 
describe this in more depth. My discussion assumes that our machine is configured as a multicast router; this means, 
as was mentioned earlier, that CONFIG_IP_MROUTE is set and a routing daemon like pimd or mrouted runs on this 
host. Multicast packets are handled by the ip_route_input_mc() method, in which a routing table entry (an rtable 
object) is allocated and initialized, and in which the input callback of the dst object is set to be ip_mr_input(), in 
case CONFIG_IP_MROUTE is set. Let’s take a look at the ip_mr_input() method:
 
int ip_mr_input(struct sk_buff *skb)
{
        struct mfc_cache *cache;
        struct net *net = dev_net(skb->dev);
 

First the local flag is set to true if the packet is intended for local delivery, as the ip_mr_input() method also 
handles local multicast packets.
 
int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
struct mr_table *mrt;
 
/* Packet is looped back after forward, it should not be
* forwarded second time, but still can be delivered locally.
*/
if (IPCB(skb)->flags & IPSKB_FORWARDED)
        goto dont_forward;
 

Normally, when working with a single multicast routing table, the ipmr_rt_fib_lookup() method simply returns 
the net->ipv4.mrt object:
 
mrt = ipmr_rt_fib_lookup(net, skb);
if (IS_ERR(mrt)) {
        kfree_skb(skb);
        return PTR_ERR(mrt);
}
if (!local) {
 

IGMPv3 and some IGMPv2 implementations set the router alert option (IPOPT_RA) in the IPv4 header when 
sending JOIN or LEAVE packets. See the igmpv3_newpack() method in net/ipv4/igmp.c:
 
if (IPCB(skb)->opt.router_alert) {
 

The ip_call_ra_chain() method (net/ipv4/ip_input.c) calls the raw_rcv() method to pass the packet to the 
userspace raw socket, which listens. The ip_ra_chain object contains a reference to the multicast routing socket, 
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which is passed as a parameter to the raw_rcv() method. For more details, look at the ip_call_ra_chain() method 
implementation, in net/ipv4/ip_input.c:
 
if (ip_call_ra_chain(skb))
        return 0;
 

There are implementations where the router alert option is not set, as explained in the following comment; these 
cases must be handled as well, by calling the raw_rcv() method directly:
 
} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
        /* IGMPv1 (and broken IGMPv2 implementations sort of
        * Cisco IOS <= 11.2(8)) do not put router alert
        * option to IGMP packets destined to routable
        * groups. It is very bad, because it means
        * that we can forward NO IGMP messages.
        */
        struct sock *mroute_sk;
 

The mrt->mroute_sk socket is a copy in the kernel of the socket that the multicast routing userspace application 
created:
 
mroute_sk = rcu_dereference(mrt->mroute_sk);
        if (mroute_sk) {
        nf_reset(skb);
        raw_rcv(mroute_sk, skb);
        return 0;
        }
     }
}
 

First a lookup in the multicast routing cache, mfc_cache_array, is performed by calling the ipmr_cache_find() 
method. The hash key is the destination multicast group address and the source IP address of the packet, taken from 
the IPv4 header:
 
cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
if (cache == NULL) {
 

A lookup in the virtual devices array (vif_table) is performed to see whether there is a corresponding entry 
which matches the incoming network device (skb->dev):
 
int vif = ipmr_find_vif(mrt, skb->dev);
 

The ipmr_cache_find_any() method handles the advanced feature of multicast proxy support (which is not 
discussed in this book):
 
        if (vif >= 0)
                cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
                                            vif);
}
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/*
*      No usable cache entry
*/
if (cache == NULL) {
        int vif;
 

If the packet is destined to the local host, deliver it:
 
if (local) {
        struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
        ip_local_deliver(skb);
        if (skb2 == NULL)
                return -ENOBUFS;
        skb = skb2;
}
 
read_lock(&mrt_lock);
vif = ipmr_find_vif(mrt, skb->dev);
if (vif >= 0) {
 

The ipmr_cache_unresolved() method creates a multicast routing entry (mfc_cache object) by calling the ipmr_
cache_alloc_unres() method. This method creates a cache entry (mfc_cache object) and initializes its expiration time 
interval (by setting mfc_un.unres.expires). Let’s take a look at this very short method, ipmr_cache_alloc_unres():
 
static struct mfc_cache *ipmr_cache_alloc_unres(void)
{
    struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 
    if (c) {
        skb_queue_head_init(&c->mfc_un.unres.unresolved);
 

Setting the expiration time interval:
 
        c->mfc_un.unres.expires = jiffies + 10*HZ;
    }
    return c;
}
 

If the routing daemon does not resolve the routing entry within its expiration interval, the entry is removed from 
the queue of the unresolved entries. When creating a multicast routing table (by the ipmr_new_table() method), 
its timer (ipmr_expire_timer) is set. This timer invokes the ipmr_expire_process() method periodically. The 
ipmr_expire_process() method iterates over all the unresolved cache entries in the queue of unresolved entries 
(mfc_unres_queue of the mrtable object) and removes the expired unresolved cache entries.

After creating the unresolved cache entry, the ipmr_cache_unresolved() method adds it to the queue of 
unresolved entries (mfc_unres_queue of the multicast table, mrtable) and increments by 1 the unresolved queue 
length (cache_resolve_queue_len of the multicast table, mrtable). It also calls the ipmr_cache_report() method, 
which builds an IGMP message (IGMPMSG_NOCACHE) and delivers it to the userspace multicast routing daemon by 
calling eventually the sock_queue_rcv_skb() method.

I mentioned that the userspace routing daemon should resolve the routing within some time interval. I will not 
delve into how this is implemented in userspace. Note, however, that once the routing daemon decides it should 
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resolve an unresolved entry, it builds the cache entry parameters (in an mfcctl object) and calls setsockopt() 
with the MRT_ADD_MFC socket option, then it passes the mfcctl object embedded in the optval parameter of the 
setsockopt() system call; this is handled in the kernel by the ipmr_mfc_add() method:
 
                int err2 = ipmr_cache_unresolved(mrt, vif, skb);
                read_unlock(&mrt_lock);
 
                return err2;
        }
        read_unlock(&mrt_lock);
        kfree_skb(skb);
        return -ENODEV;
}
 
read_lock(&mrt_lock);
 

If a cache entry was found in the MFC, call the ip_mr_forward() method to continue the packet traversal:
 
        ip_mr_forward(net, mrt, skb, cache, local);
        read_unlock(&mrt_lock);
 
        if (local)
                return ip_local_deliver(skb);
 
        return 0;
 
dont_forward:
        if (local)
                return ip_local_deliver(skb);
        kfree_skb(skb);
        return 0;
}
 

This section detailed the IPv4 Multicast Rx path and the interaction with the routing daemon in this path. The 
next section describes the multicast routing forwarding method, ip_mr_forward().

The ip_mr_forward() Method
Let’s take a look at the ip_mr_forward() method:
 
static int ip_mr_forward(struct net *net, struct mr_table *mrt,
             struct sk_buff *skb, struct mfc_cache *cache,
             int local)
{
    int psend = -1;
    int vif, ct;
    int true_vifi = ipmr_find_vif(mrt, skb->dev);
 
    vif = cache->mfc_parent;
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Here you can see update statistics of the resolved cache object (mfc_un.res):
 
cache->mfc_un.res.pkt++;
cache->mfc_un.res.bytes += skb->len;
 
if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
    struct mfc_cache *cache_proxy;
 

The expression (*, G) means traffic from any source sending to the group G:
 
    /* For an (*,G) entry, we only check that the incomming
    * interface is part of the static tree.
    */
    cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
    if (cache_proxy &&
        cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
        goto forward;
}
/*
 * Wrong interface: drop packet and (maybe) send PIM assert.
 */
if (mrt->vif_table[vif].dev != skb->dev) {
    if (rt_is_output_route(skb_rtable(skb))) {
        /* It is our own packet, looped back.
         * Very complicated situation...
         *
         * The best workaround until routing daemons will be
         * fixed is not to redistribute packet, if it was
         * send through wrong interface. It means, that
         * multicast applications WILL NOT work for
         * (S,G), which have default multicast route pointing
         * to wrong oif. In any case, it is not a good
         * idea to use multicasting applications on router.
         */
        goto dont_forward;
    }
 
    cache->mfc_un.res.wrong_if++;
 
    if (true_vifi >= 0 && mrt->mroute_do_assert &&
        /* pimsm uses asserts, when switching from RPT to SPT,
         * so that we cannot check that packet arrived on an oif.
         * It is bad, but otherwise we would need to move pretty
         * large chunk of pimd to kernel. Ough... --ANK
         */
        (mrt->mroute_do_pim ||
        cache->mfc_un.res.ttls[true_vifi] < 255) &&
        time_after(jiffies,
               cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
        cache->mfc_un.res.last_assert = jiffies;
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Call the ipmr_cache_report() method to build an IGMP message (IGMPMSG_WRONGVIF) and to deliver it to 
the userspace multicast routing daemon by calling the sock_queue_rcv_skb() method:
 
        ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
    }
    goto dont_forward;
}
 

The frame is now ready to be forwarded:
 
forward:
    mrt->vif_table[vif].pkt_in++;
    mrt->vif_table[vif].bytes_in += skb->len;
 
    /*
     *    Forward the frame
     */
    if (cache->mfc_origin == htonl(INADDR_ANY) &&
        cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
        if (true_vifi >= 0 &&
            true_vifi != cache->mfc_parent &&
            ip_hdr(skb)->ttl >
                cache->mfc_un.res.ttls[cache->mfc_parent]) {
            /* It's an (*,*) entry and the packet is not coming from
             * the upstream: forward the packet to the upstream
             * only.
             */
            psend = cache->mfc_parent;
            goto last_forward;
        }
        goto dont_forward;
    }
    for (ct = cache->mfc_un.res.maxvif - 1;
         ct >= cache->mfc_un.res.minvif; ct--) {
        /* For (*,G) entry, don't forward to the incoming interface */
        if ((cache->mfc_origin != htonl(INADDR_ANY) ||
             ct != true_vifi) &&
            ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
            if (psend != -1) {
                struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
 

Call the ipmr_queue_xmit() method to continue with the packet forwarding:
 
                if (skb2)
                    ipmr_queue_xmit(net, mrt, skb2, cache,
                            psend);
            }
            psend = ct;
        }
    }
last_forward:
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    if (psend != -1) {
        if (local) {
            struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
 
            if (skb2)
                ipmr_queue_xmit(net, mrt, skb2, cache, psend);
        } else {
            ipmr_queue_xmit(net, mrt, skb, cache, psend);
            return 0;
        }
    }
 
dont_forward:
    if (!local)
        kfree_skb(skb);
    return 0;
}
 

Now that I have covered the multicast routing forwarding method, ip_mr_forward(), it is time to examine the 
ipmr_queue_xmit() method.

The ipmr_queue_xmit() Method
Let’s take a look at the ipmr_queue_xmit() method:
 
static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
                            struct sk_buff *skb, struct mfc_cache *c, int vifi)
{
        const struct iphdr *iph = ip_hdr(skb);
        struct vif_device *vif = &mrt->vif_table[vifi];
        struct net_device *dev;
        struct rtable *rt;
        struct flowi4 fl4;
 

The encap field is used when working with a tunnel:
 
        int encap = 0;
 
        if (vif->dev == NULL)
                goto out_free;
 
#ifdef CONFIG_IP_PIMSM
        if (vif->flags & VIFF_REGISTER) {
                vif->pkt_out++;
                vif->bytes_out += skb->len;
                vif->dev->stats.tx_bytes += skb->len;
                vif->dev->stats.tx_packets++;
                ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
                goto out_free;
        }
#endif
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When working with a tunnel, a routing lookup is performed with the vif->remote and vif->local, which 
represent the destination and local addresses, respectively. These addresses are the end points of the tunnel. When 
working with a vif_device object which represents a physical device, a routing lookup is performed with the 
destination of the IPv4 header and 0 as a source address:
 
if (vif->flags & VIFF_TUNNEL) {
        rt = ip_route_output_ports(net, &fl4, NULL,
                                   vif->remote, vif->local,
                                   0, 0,
                                   IPPROTO_IPIP,
                                   RT_TOS(iph->tos), vif->link);
        if (IS_ERR(rt))
                goto out_free;
        encap = sizeof(struct iphdr);
} else {
       rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
                                  0, 0,
                                  IPPROTO_IPIP,
                                  RT_TOS(iph->tos), vif->link);
       if (IS_ERR(rt))
               goto out_free;
}
 
dev = rt->dst.dev;
 

Note that if the packet size is higher than the MTU, an ICMPv4 message is not sent (as is done in such a case 
under unicast forwarding); only the statistics are updated, and the packet is discarded:
 
if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
        /* Do not fragment multicasts. Alas, IPv4 does not
         * allow to send ICMP, so that packets will disappear
         * to blackhole.
         */
 
        IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
        ip_rt_put(rt);
        goto out_free;
}
 
encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
 
if (skb_cow(skb, encap)) {
        ip_rt_put(rt);
        goto out_free;
}
 
vif->pkt_out++;
vif->bytes_out += skb->len;
 
skb_dst_drop(skb);
skb_dst_set(skb, &rt->dst);
 



Chapter 6 ■ Advanced Routing

156

The TTL is decreased, and the IPv4 header checksum is recalculated (because the TTL is one of the IPv4 fields) 
when forwarding the packet; the same is done in the ip_forward() method for unicast packets:
 
ip_decrease_ttl(ip_hdr(skb));
 
/* FIXME: forward and output firewalls used to be called here.
 * What do we do with netfilter? -- RR
 */
if (vif->flags & VIFF_TUNNEL) {
        ip_encap(skb, vif->local, vif->remote);
        /* FIXME: extra output firewall step used to be here. --RR */
        vif->dev->stats.tx_packets++;
        vif->dev->stats.tx_bytes += skb->len;
}
 
IPCB(skb)->flags |= IPSKB_FORWARDED;
 
/*
 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 * not only before forwarding, but after forwarding on all output
 * interfaces. It is clear, if mrouter runs a multicasting
 * program, it should receive packets not depending to what interface
 * program is joined.
 * If we will not make it, the program will have to join on all
 * interfaces. On the other hand, multihoming host (or router, but
 * not mrouter) cannot join to more than one interface - it will
 * result in receiving multiple packets.
 */
 

Invoke the NF_INET_FORWARD hook:
 
        NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
                ipmr_forward_finish);
        return;
 
out_free:
        kfree_skb(skb);
}

The ipmr_forward_finish() Method
Let’s take a look at the ipmr_forward_finish() method, which is a very short method—it is in fact identical to the 
ip_forward() method:
 
static inline int ipmr_forward_finish(struct sk_buff *skb)
{
        struct ip_options *opt = &(IPCB(skb)->opt);
 
        IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
        IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
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Handle IPv4 options, if set (see Chapter 4):
 
        if (unlikely(opt->optlen))
                ip_forward_options(skb);
 
        return dst_output(skb);
}
 

Eventually, dst_output() sends the packet via the ip_mc_output() method, which calls the ip_finish_output() 
method (both methods are in net/ipv4/route.c).

Now that I have covered these multicast methods, let’s get a better understanding of how the value of the TTL 
field is used in multicast traffic.

The TTL in Multicast Traffic
The TTL field of the IPv4 header has a double meaning when discussing multicast traffic. The first is the same as in 
unicast IPV4 traffic: the TTL represents a hop counter which is decreased by 1 on every device that is forwarding the 
packet. When it reaches 0, the packet is discarded. This is done to avoid endless travelling of packets due to some 
error. The second meaning of the TTL, which is unique to multicast traffic, is a threshold. The TTL values are divided 
into scopes. Routers have a TTL threshold assigned to each of their interfaces, and only packets with a TTL greater 
than the interface's threshold are forwarded. Here are the values of these thresholds:

•	 0: Restricted to the same host (cannot be sent out by any interface)

•	 1: Restricted to the same subnet (will not be forwarded by a router)   

•	 32: Restricted to the same site   

•	 64: Restricted to the same region

•	 128: Restricted to the same continent

•	 255: Unrestricted in scope (global)

See: “IP Multicast Extensions for 4.3BSD UNIX and related systems,” by Steve Deering, available at  
www.kohala.com/start/mcast.api.txt.

Note■■  IP v4 Multicast Routing is implemented in net/ipv4/ipmr.c, include/linux/mroute.h, and  
include/uapi/linux/mroute.h.

This completes my discussion of Multicast Routing. The chapter now moves on to Policy Routing, which enables 
you to configure routing policies that are not based solely on the destination address.

Policy Routing
With Policy Routing, a system administrator can define up to 255 routing tables. This section discusses IPv4 Policy 
Routing; IPv6 Policy Routing is discussed in Chapter 8. In this section, I use the terms policy or rule for entries that 
are created by Policy Routing, in order to avoid confusing the ordinary routing entries (discussed in Chapter 5) with 
policy rules.
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Policy Routing Management
Policy Routing management is done with the ip rule command of the iproute2 package (there is no parallel for Policy 
Routing management with the route command). Let’s see how to add, delete, and dump all Policy Routing rules:

You add a rule with the •	 ip rule add command; for example: ip rule add tos 0x04 table 
252. After this rule is inserted, every packet which has an IPv4 TOS field matching 0x04 will be 
handled according to the routing rules of table 252. You can add routing entries to this table by 
specifying the table number when adding a route; for example: ip route add default via 
192.168.2.10 table 252. This command is handled in the kernel by the fib_nl_newrule() 
method, in net/core/fib_rules.c. The tos modifier in the ip rule command earlier is one 
of the available SELECTOR modifiers of the ip rule command; see man 8 ip rule, and also 
Table 6-1 in the “Quick Reference” section at the end of this chapter.

You delete a rule with the •	 ip rule del command; for example: ip rule del tos 0x04 table 
252. This command is handled in the kernel by the fib_nl_delrule() method in net/core/
fib_rules.c.

You dump all the rules with the •	 ip rule list command or the ip rule show command. 
Both these commands are handled in the kernel by the fib_nl_dumprule() method in  
net/core/fib_rules.c.

You now have a good idea about the basics of Policy Routing management, so let’s examine the Linux 
implementation of Policy Routing.

Policy Routing Implementation
The core infrastructure of Policy Routing is the fib_rules module, net/core/fib_rules.c. It is used by three 
protocols of the kernel networking stack: IPv4 (including the multicast module, which has a multicast policy routing 
feature, as mentioned in the “Multicast Routing” section earlier in this chapter), IPv6, and DECnet. The IPv4 Policy 
Routing is implemented also in a file named fib_rules.c. Don’t be confused by the identical name (net/ipv4/
fib_rules.c). In IPv6, policy routing is implemented in net/ipv6/fib6_rules.c. The header file, include/net/fib_
rules.h, contains the data structures and methods of the Policy Routing core. Here is the definition of the fib4_rule 
structure, which is the basis for IPv4 Policy Routing:
 
struct fib4_rule {
    struct fib_rule    common;
    u8            dst_len;
    u8            src_len;
    u8            tos;
    __be32            src;
    __be32            srcmask;
    __be32            dst;
    __be32            dstmask;
#ifdef CONFIG_IP_ROUTE_CLASSID
    u32            tclassid;
#endif
};
 
(net/ipv4/fib_rules.c)
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Three policies are created by default at boot time, by calling the fib_default_rules_init() method: the local 
(RT_TABLE_LOCAL) table, the main (RT_TABLE_MAIN) table, and the default (RT_TABLE_DEFAULT) table. Lookup 
is done by the fib_lookup() method. Note that there are two different implementations of the fib_lookup() method 
in include/net/ip_fib.h. The first one, which is wrapped in the #ifndef CONFIG_IP_MULTIPLE_TABLES block, 
is for non-Policy Routing, and the second is for Policy Routing. When working with Policy Routing, the lookup is 
performed like this: if there were no changes to the initial policy routing rules (net->ipv4.fib_has_custom_rules 
is not set), that means the rule must be in one of the three initial routing tables. So, first a lookup is done in the local 
table, then in the main table, and then the default table. If there is no corresponding entry, a network unreachable 
(-ENETUNREACH) error is returned. If there was some change in the initial policy routing rules (net->ipv4.
fib_has_custom_rules is set), the_fib_lookup() method is invoked, which is a heavier method, because it iterates 
over the list of rules and calls fib_rule_match() for each rule in order to decide whether it matches or not. See the 
implementation of the fib_rules_lookup() method in net/core/fib_rules.c. (The fib_rules_lookup() method 
is invoked from the __fib_lookup() method). I should mention here that the net->ipv4.fib_has_custom_rules 
variable is set to false in the initialization phase, by the fib4_rules_init() method, and to true in the fib4_rule_
configure() method and the fib4_rule_delete() method. Note that CONFIG_IP_MULTIPLE_TABLES should be set 
for working with Policy Routing.

This concludes my Multicast Routing discussion. The next section talks about Multipath Routing, which is the 
ability to add more than one nexthop to a route.

Multipath Routing
Multipath Routing provides the ability to add more than one nexthop to a route. Defining two nexthop nodes can be 
done like this, for example: ip route add default scope global nexthop dev eth0 nexthop dev eth1. A system 
administrator can also assign weights for each nexthop—like this, for example: ip route add 192.168.1.10 nexthop 
via 192.168.2.1 weight 3 nexthop via 192.168.2.10 weight 5. The fib_info structure represents an IPv4 
routing entry that can have more than one FIB nexthop. The fib_nhs member of the fib_info object represents the 
number of FIB nexthop objects; the fib_info object contains an array of FIB nexthop objects named fib_nh. So in 
this case, a single fib_info object is created, with an array of two FIB nexthop objects. The kernel keeps the weight 
of each next hop in the nh_weight field of the FIB nexthop object (fib_nh). If weight was not specified when adding a 
multipath route, it is set by default to 1, in the fib_create_info() method. The fib_select_multipath() method is 
called to determine the nexthop when working with Multipath Routing. This method is invoked from two places: from 
the __ip_route_output_key() method, in the Tx path, and from the ip_mkroute_input() method, in the Rx path. 
Note that when the output device is set in the flow, the fib_select_multipath() method is not invoked, because the 
output device is known:
 
struct rtable *__ip_route_output_key(struct net *net, struct flowi4 *fl4) {
. . .
#ifdef CONFIG_IP_ROUTE_MULTIPATH
    if (res.fi->fib_nhs > 1 && fl4->flowi4_oif == 0)
        fib_select_multipath(&res);
    else
#endif
. . .
 
}
 

In the Rx path there is no need for checking whether fl4->flowi4_oif is 0, because it is set to 0 in the beginning 
of this method. I won’t delve into the details of the fib_select_multipath() method. I will only mention that there 
is an element of randomness in the method, using jiffies, for helping in creating a fair weighted route distribution, 
and that the weight of each next hop is taken in account. The FIB nexthop to use is assigned by setting the FIB nexthop 



Chapter 6 ■ Advanced Routing

160

selector (nh_sel) of the specified fib_result object. In contrast to Multicast Routing, which is handled by a dedicated 
module (net/ipv4/ipmr.c), the code of Multipath Routing appears scattered in the existing routing code, enclosed 
in #ifdef CONFIG_IP_ROUTE_MULTIPATH conditionals, and no separate module was added in the source code for 
supporting it. As mentioned in Chapter 5, there was support for IPv4 multipath routing cache, but it was removed in 
2007 in kernel 2.6.23; in fact, it never did work very well, and never got out of the experimental state. Do not confuse 
the removal of the multipath routing cache with the removal of the routing cache; these are two different caches. The 
removal of the routing cache took place five years later, in kernel 3.6 (2012). 

NOTE■■   CONFIG_IP_ROUTE_MULTIPATH should be set for Multipath Routing Support.

Summary
This chapter covered advanced IPv4 routing topics, like Multicast Routing, the IGMP protocol, Policy Routing, and 
Multipath Routing. You learned about the fundamental structures of Multicast Routing, such as the multicast table 
(mr_table), the multicast forwarding cache (MFC), the Vif device, and more. You also learned what should be done 
to set a host to be a multicast router, and all about the use of the ttl field in Multicast Routing. Chapter 7 deals with 
the Linux neighbouring subsystem. The “Quick Reference” section that follows covers the top methods related to the 
topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important routing subsystem methods (some of which were mentioned in 
this chapter), a list of macros, and procfs multicast entries and tables.

Methods
Let’s start with the methods:

int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, 
unsigned int optlen);
This method handles setsockopt() calls from the multicast routing daemon. The supported socket options are: 
MRT_INIT, MRT_DONE, MRT_ADD_VIF, MRT_DEL_VIF, MRT_ADD_MFC, MRT_DEL_MFC, MRT_ADD_MFC_PROXY, 
MRT_DEL_MFC_PROXY, MRT_ASSERT, MRT_PIM (when PIM support is set), and MRT_TABLE (when Multicast 
Policy Routing is set).

int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int 
__user *optlen);
This method handles getsockopt() calls from the multicast routing daemon. The supported socket options are  
MRT_VERSION, MRT_ASSERT and MRT_PIM.
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struct mr_table *ipmr_new_table(struct net *net, u32 id);
This method creates a new multicast routing table. The id of the table will be the specified id.

void ipmr_free_table(struct mr_table *mrt);
This method frees the specified multicast routing table and the resources attached to it.

int ip_mc_join_group(struct sock *sk , struct ip_mreqn *imr);
This method is for joining a multicast group. The address of the multicast group to be joined is specified in the given 
ip_mreqn object. The method returns 0 on success.

static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt, __be32 origin, 
__be32 mcastgrp);
This method performs a lookup in the IPv4 multicast routing cache. It returns NULL when no entry is found.

bool ipv4_is_multicast(__be32 addr);
This method returns true if the address is a multicast address.

int ip_mr_input(struct sk_buff *skb);
This method is the main IPv4 multicast Rx method (net/ipv4/ipmr.c).

struct mfc_cache *ipmr_cache_alloc(void);
This method allocates a multicast forwarding  cache (mfc_cache) entry.

static struct mfc_cache *ipmr_cache_alloc_unres(void);
This method allocates a multicast routing cache (mfc_cache) entry for the unresolved cache and sets the expires field 
of the queue of unresolved entries.

void fib_select_multipath(struct fib_result *res);
This method is called to determine the nexthop when working with Multipath Routing.

int dev_set_allmulti(struct net_device *dev, int inc);
This method increments/decrements the allmulti counter of the specified network device according to the specified 
increment (the increment can be a positive number or a negative number).
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int igmp_rcv(struct sk_buff *skb);
This method is the receive handler for IGMP packets.

static int ipmr_mfc_add(struct net *net, struct mr_table *mrt, struct mfcctl *mfc, int 
mrtsock, int parent);
This method adds a multicast cache entry; it is invoked by calling setsockopt() from userspace with MRT_ADD_MFC.

static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent);
This method deletes a multicast cache entry; it is invoked by calling setsockopt() from userspace with MRT_DEL_MFC.

static int vif_add(struct net *net, struct mr_table *mrt, struct vifctl *vifc, int 
mrtsock);
This method adds a multicast virtual interface; it is invoked by calling setsockopt() from userspace with  
MRT_ADD_VIF.

static int vif_delete(struct mr_table *mrt, int vifi, int notify, struct list_head *head);
This method deletes a multicast virtual interface; it is invoked by calling setsockopt() from userspace with  
MRT_DEL_VIF.

static void ipmr_expire_process(unsigned long arg);
This method removes expired entries from the queue of unresolved entries.

static int ipmr_cache_report(struct mr_table *mrt, struct sk_buff *pkt, vifi_t vifi, int 
assert); 
This method builds an IGMP packet, setting the type in the IGMP header to be the specified assert value and the 
code to be 0. This IGMP packet is delivered to the userspace multicast routing daemon by calling the sock_queue_
rcv_skb() method. The assert parameter can be assigned one of these values: IGMPMSG_NOCACHE, when an 
unresolved cache entry is added to the queue of unresolved entries and wants to notify the userspace routing daemon 
that it should resolve it, IGMPMSG_WRONGVIF, and IGMPMSG_WHOLEPKT.

static int ipmr_device_event(struct notifier_block *this, unsigned long event,  
void *ptr);
This method is a notifier callback which is registered by the register_netdevice_notifier() method; when some 
network device is unregistered, a NETDEV_UNREGISTER event is generated; this callback receives this event and 
deletes the vif_device objects in the vif_table, whose device is the one that was unregistered.



Chapter 6 ■ Advanced Routing

163

static void mrtsock_destruct(struct sock *sk);
This method is called when the userspace routing daemon calls setsockopt() with MRT_DONE. This method 
nullifies the multicast routing socket (mroute_sk of the multicast routing table), decrements the mc_forwarding 
procfs entry, and calls the mroute_clean_tables() method to free resources.

Macros
This section describes our macros.

MFC_HASH(a,b) 
This macro calculates the hash value for adding entries to the MFC cache. It takes the group multicast address and the 
source IPv4 address as parameters.

VIF_EXISTS(_mrt, _idx) 
This macro checks the existence of an entry in the vif_table; it returns true if the array of multicast virtual devices 
(vif_table) of the specified multicast routing table (mrt) has an entry with the specified index (_idx).

Procfs Multicast Entries
The following is a description of two important procfs multicast entries:

/proc/net/ip_mr_vif
Lists all the multicast virtual interfaces; it displays all the vif_device objects in the multicast virtual device table  
(vif_table). Displaying the /proc/net/ip_mr_vif entry is handled by the ipmr_vif_seq_show() method.

/proc/net/ip_mr_cache
The state of the Multicast Forwarding Cache (MFC). This entry shows the following fields of all the cache entries: group 
multicast address (mfc_mcastgrp), source IP address (mfc_origin), input interface index (mfc_parent), forwarded 
packets (mfc_un.res.pkt), forwarded bytes (mfc_un.res.bytes), wrong interface index (mfc_un.res.wrong_if), 
the index of the forwarding interface (an index in the vif_table), and the entry in the mfc_un.res.ttls array 
corresponding to this index. Displaying the /proc/net/ip_mr_cache entry is handled by the ipmr_mfc_seq_show()  
method.
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Table
And finally, here in Table 6-1, is the table of rule selectors.

Table 6-1.  IP Rule Selectors 

Linux Symbol Selector Member of fib_rule fib4_rule

FRA_SRC from src (fib4_rule)

FRA_DST to dst (fib4_rule)

FRA_IIFNAME iif iifname (fib_rule)

FRA_OIFNAME oif oifname (fib_rule)

FRA_FWMARK fwmark mark (fib_rule)

FRA_FWMASK fwmark/fwmask mark_mask (fib_rule)

FRA_PRIORITY preference,order,priority pref (fib_rule)

- tos, dsfield tos (fib4_rule)
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Chapter 7

Linux Neighbouring Subsystem

This chapter discusses the Linux neighbouring subsystem and its implementation in Linux. The neighbouring 
subsystem is responsible for the discovery of the presence of nodes on the same link and for translation of L3 (network 
layer) addresses to L2 (link layer) addresses. L2 addresses are needed to build the L2 header for outgoing packets, as 
described in the next section. The protocol that implements this translation is called the Address Resolution Protocol 
(ARP) in IPv4 and Neighbour Discovery protocol (NDISC or ND) in IPv6. The neighbouring subsystem provides a 
protocol-independent infrastructure for performing L3-to-L2 mappings. The discussion in this chapter, however, is 
restricted to the most common cases—namely, the neighbouring subsystem usage in IPv4 and in IPv6. Keep in mind 
that the ARP protocol, like the ICMP protocol discussed in Chapter 3, is subject to security threats—such as ARP 
poisoning attacks and  ARP spoofing attacks (security aspects of the ARP protocol are beyond the scope of this book).

I first discuss the common neighbouring data structures in this chapter and some important API methods, which 
are used both in IPv4 and in IPv6. Then I discuss the particular implementations of the ARP protocol and NDISC 
protocol. You will see how a neighbour is created and how it is freed, and you will learn about the interaction between 
userspace and the neighbouring subsystem. You will also learn about ARP requests and ARP replies, about NDISC 
neighbour solicitation and NDISC neighbour advertisements, and about a mechanism called Duplicate Address 
Detection (DAD), which is used by the NDISC protocol to avoid duplicate IPv6 addresses.

The Neighbouring Subsystem Core
What is the neighbouring subsystem needed for? When a packet is sent over the L2 layer, the L2 destination address is 
needed to build an L2 header. Using the neighbouring subsystem solicitation requests and solicitation replies, the L2 
address of a host can be found out given its L3 address (or  the fact that such L3 address does not exist). In Ethernet, 
which is the most commonly used link layer (L2), the L2 address of a host is its MAC address. In IPv4, ARP is the 
neighbouring protocol, and solicitation requests and solicitation replies are called ARP requests and ARP replies, 
respectively. In IPv6, the neighbouring protocol is NDISC, and solicitation requests and solicitation replies are called 
neighbour solicitations and neighbour advertisements, respectively.

There are cases where the destination address can be found without any help from the neighbouring 
subsystem—for example, when a broadcast is sent. In this case, the destination L2 address is fixed (for example, it 
is FF:FF:FF:FF:FF:FF in Ethernet). Or when the destination address is a multicast address, there is a fixed mapping 
between the L3 multicast address to its L2 address. I discuss such cases in the course of this chapter.

The basic data structure of the Linux neighbouring subsystem is the neighbour. A neighbour represents a network 
node that is attached to the same link (L2). It is represented by the neighbour structure. This representation is not 
unique for a particular protocol. However, as mentioned, the discussion of the neighbour structure will be restricted 
to its use in the IPv4 and in the IPv6 protocols. Let’s take a look in the neighbour structure:
 
struct neighbour {
        struct neighbour __rcu  *next;
        struct neigh_table      *tbl;
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        struct neigh_parms      *parms;
        unsigned long           confirmed;
        unsigned long           updated;
        rwlock_t                lock;
        atomic_t                refcnt;
        struct sk_buff_head     arp_queue;
        unsigned int            arp_queue_len_bytes;
        struct timer_list       timer;
        unsigned long           used;
        atomic_t                probes;
        __u8                    flags;
        __u8                    nud_state;
        __u8                    type;
        __u8                    dead;
        seqlock_t               ha_lock;
        unsigned char           ha[ALIGN(MAX_ADDR_LEN, sizeof(unsigned long))];
        struct hh_cache         hh;
        int                     (*output)(struct neighbour *, struct sk_buff *);
        const struct neigh_ops  *ops;
        struct rcu_head         rcu;
        struct net_device       *dev;
        u8                      primary_key[0];
};
 
(include/net/neighbour.h)

The following is a description of some of the important members of the neighbour structure:

•	 next: A pointer to the next neighbour on the same bucket in the hash table.

•	 tbl: The neighbouring table associated to this neighbour.

•	 parms: The neigh_parms object associated to this neighbour. It is initialized by the 
constructor method of the associated neighbouring table. For example, in IPv4 the  
arp_constructor() method initializes parms to be the arp_parms of the associated network 
device. Do not confuse it with the neigh_parms object of the neighbouring table.

•	 confirmed: Confirmation timestamp (discussed later in this chapter).

•	 refcnt: Reference counter. Incremented by the neigh_hold() macro and decremented by 
the neigh_release() method. The neigh_release() method frees the neighbour object by 
calling the neigh_destroy() method only if after decrementing the reference counter its  
value is 0.

•	 arp_queue: A queue of unresolved SKBs. Despite the name, this member is not unique to ARP 
and is used by other protocols, such as the NDISC protocol.

•	 timer: Every neighbour object has a timer; the timer callback is the neigh_timer_handler() 
method. The neigh_timer_handler() method can change the Network Unreachability 
Detection (NUD) state of the neighbour. When sending solicitation requests, and the state 
of the neighbour is NUD_INCOMPLETE or NUD_PROBE, and the number of solicitation 
requests probes is higher or equal to neigh_max_probes(), then the state of the neighbour is 
set to be NUD_FAILED, and the neigh_invalidate() method is invoked.

•	 ha_lock: Provides access protection to the neighbour hardware address (ha).
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•	 ha: The hardware address of the neighbour object; in the case of Ethernet, it is the MAC 
address of the neighbour.

•	 hh: A hardware header cache of the L2 header (An hh_cache object).

•	 output: A pointer to a transmit method, like the neigh_resolve_output() method or the 
neigh_direct_output() method. It is dependent on the NUD state and as a result can be 
assigned to different methods during a neighbour lifetime. When initializing the neighbour 
object in the neigh_alloc() method, it is set to be the neigh_blackhole() method, which 
discards the packet and returns -ENETDOWN.

And here are the helper methods (methods which set the output callback):

•	 void neigh_connect(struct neighbour *neigh)

Sets the output() method of the specified neighbour to be neigh->ops->connected_output.

•	 void neigh_suspect(struct neighbour *neigh)

Sets the output() method of the specified neighbour to be neigh->ops->output.

•	 nud_state: The NUD state of the neighbour. The nud_state value can be changed 
dynamically during the lifetime of a neighbour object. Table 7-1 in the “Quick Reference” 
section at the end of this chapter describes the basic NUD states and their Linux symbols. The 
NUD state machine is very complex; I do not delve into all of its nuances in this book.

•	 dead: A flag that is set when the neighbour object is alive. It is initialized to 0 when creating a 
neighbour object, at the end of the __neigh_create() method. The neigh_destroy() method 
will fail for neighbour objects whose dead flag is not set. The neigh_flush_dev() method sets 
the dead flag to 1 but does not yet remove the neighbour entry. The removal of neighbours 
marked as dead (their dead flag is set) is done later, by the garbage collectors.

•	 primary_key: The IP address (L3) of the neighbour. A lookup in the neighbouring tables is 
done with the primary_key. The primary_key length is based on which protocol is used. For 
IPv4, for example, it should be 4 bytes. For IPv6 it should be sizeof(struct in6_addr), as 
the in6_addr structure represents an IPv6 address. Therefore, the primary_key is defined as 
an array of 0 bytes, and when allocating a neighbour it should be taken into account which 
protocol is used. See the explanation about entry_size and key_len later in this chapter, in 
the description of the neigh_table structure members.

To avoid sending solicitation requests for each new packet that is transmitted, the kernel keeps the mapping 
between L3 addresses and L2 addresses in a data structure called a neighbouring table; in the case of IPv4, it is the 
ARP table (sometimes also called the ARP cache, though they are the same)—in contrast to what you saw in the IPv4 
routing subsystem in Chapter 5: the routing cache, before it was removed, and the routing table, were two different 
entities, which were represented by two different data structures. In the case of IPv6, the neighbouring table is the 
NDISC table (also known as the NDISC cache). Both the ARP table (arp_tbl) and the NDISC table (nd_tbl) are 
instances of the neigh_table structure. Let’s take a look at the neigh_table structure:
 
struct neigh_table {
        struct neigh_table      *next;
        int                     family;
        int                     entry_size;
        int                     key_len;
        __u32                   (*hash)(const void *pkey,
                                        const struct net_device *dev,
                                        __u32 *hash_rnd);
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        int                     (*constructor)(struct neighbour *);
        int                     (*pconstructor)(struct pneigh_entry *);
        void                    (*pdestructor)(struct pneigh_entry *);
        void                    (*proxy_redo)(struct sk_buff *skb);
        char                    *id;
        struct neigh_parms      parms;
        /* HACK. gc_* should follow parms without a gap! */
        int                     gc_interval;
        int                     gc_thresh1;
        int                     gc_thresh2;
        int                     gc_thresh3;
        unsigned long           last_flush;
        struct delayed_work     gc_work;
        struct timer_list       proxy_timer;
        struct sk_buff_head     proxy_queue;
        atomic_t                entries;
        rwlock_t                lock;
        unsigned long           last_rand;
        struct neigh_statistics __percpu *stats;
        struct neigh_hash_table __rcu *nht;
        struct pneigh_entry     **phash_buckets;
};
 
(include/net/neighbour.h)

Here are some important members of the neigh_table structure:

•	 next: Each protocol creates its own neigh_table instance. There is a linked list of all the 
neighbouring tables in the system. The neigh_tables global variable is a pointer to the 
beginning of the list. The next variable points to the next item in this list.

•	 family: The protocol family: AF_INET for the IPv4 neighbouring table (arp_tbl), and  
AF_INET6 for the IPv6  neighbouring table (nd_tbl).

•	 entry_size: When allocating a neighbour entry by the neigh_alloc() method, the size for 
allocation is tbl->entry_size + dev->neigh_priv_len. Usually the neigh_priv_len value is 0. 
Before kernel 3.3, the entry_size was explicitly initialized to be sizeof(struct neighbour) + 4  
for ARP, and sizeof(struct neighbour) + sizeof(struct in6_addr) for NDISC.  The 
reason for this initialization was that when allocating a neighbour, you want to allocate space 
also for the primary_key[0] member. From kernel 3.3, the enrty_size was removed from 
the static initialization of arp_tbl and ndisc_tbl, and the entry_size initialization is done 
based on the key_len in the core neighbouring layer, by the neigh_table_init_no_netlink() 
method.

•	 key_len: The size of the lookup key; it is 4 bytes for IPv4, because the length of IPv4 address 
is 4 bytes, and it is sizeof(struct in6_addr) for IPv6. The in6_addr structure represents an 
IPv6 address.

•	 hash: The hash function for mapping a key (L3 address) to a specific hash value; for ARP it is 
the arp_hash() method. For NDISC it is the ndisc_hash() method.

•	 constructor: This method performs protocol-specific initialization when creating  
a neighbour object. For example, arp_constructor() for ARP in IPv4 and  
ndisc_constructor() for NDISC in IPv6. The constructor callback is invoked by  
the __neigh_create() method. It returns 0 on success.
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•	 pconstructor: A method for creation of a neighbour proxy entry; it is not used by ARP, 
and it is pndisc_constructor for NDISC. This method should return 0 upon success. The 
pconstructor method is invoked from the pneigh_lookup() method if the lookup fails, on the 
condition that the pneigh_lookup() was invoked with creat = 1.

•	 pdestructor: A method for destroying a neighbour proxy entry. Like the pconstructor 
callback, the pdestructor is not used by ARP, and it is pndisc_destructor for NDISC. The 
pdestructor method is invoked from the pneigh_delete() method and from the  
pneigh_ifdown() method.

•	 id: The name of the table; it is arp_cache for IPv4 and ndisc_cache for IPv6.

•	 parms: A neigh_parms object: each neighbouring table has an associated neigh_parms 
object, which consists of various configuration settings, like reachability information, various 
timeouts, and more. The neigh_parms initialization is different in the ARP table and in the 
NDISC table.

•	 gc_interval: Not used directly by the neighbouring core.

•	 gc_thresh1, gc_thresh2, gc_thresh3: Thresholds of the number of neighbouring table 
entries. Used as criteria to activation of the synchronous garbage collector (neigh_forced_gc) 
and in the neigh_periodic_work() asynchronous garbage collector handler. See the 
explanation about allocating a neighbour object in the “Creating and Freeing a Neighbour” 
section later in this chapter. In the ARP table, the default values are: gc_thresh1 is 128,  
gc_thresh2 is 512, and gc_thresh3 is 1024. These values can be set by procfs. The same 
default values are also used in the NDISC table in IPv6. The IPv4 procfs entries are:

•	 /proc/sys/net/ipv4/neigh/default/gc_thresh1

•	 /proc/sys/net/ipv4/neigh/default/gc_thresh2

•	 /proc/sys/net/ipv4/neigh/default/gc_thresh3

and for IPv6, these are the procfs entries:

•	 /proc/sys/net/ipv6/neigh/default/gc_thresh1

•	 /proc/sys/net/ipv6/neigh/default/gc_thresh2

•	 /proc/sys/net/ipv6/neigh/default/gc_thresh3

•	 last_flush: The most recent time when the neigh_forced_gc() method ran. It is initialized 
to be the current time (jiffies) in the neigh_table_init_no_netlink () method.

•	 gc_work: Asynchronous garbage collector handler. Set to be the neigh_periodic_work() timer  
by the neigh_table_init_no_netlink() method.  The delayed_work struct is a type of a  
work queue. Before kernel 2.6.32, the neigh_periodic_timer() method was the asynchronous  
garbage collector handler; it processed only one bucket and not the entire neighbouring  
hash table. The neigh_periodic_work() method first checks whether the number of the  
entries in the table is less than gc_thresh1, and if so, it exits without doing anything; then it  
recomputes the reachable time (the reachable_time field of parms, which is the neigh_parms  
object associated with the neighbouring table). Then it scans the neighbouring hash table and  
removes entries which their state is not NUD_PERMANENT or NUD_IN_TIMER, and which  
their reference count is 1, and if one of these conditions is met: either they are in the  
NUD_FAILED state or the current time is after their used timestamp + gc_staletime  
(gc_staletime is a member of the neighbour parms object). Removal of the neighbour entry  
is done by setting the dead flag to 1 and calling the neigh_cleanup_and_release() method.
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•	 proxy_timer: When a host is configured as an ARP proxy, it is possible to avoid immediate 
processing of solicitation requests and to process them with some delay. This is due to the fact 
that for an ARP proxy host, there can be a large number of solicitation requests (as opposed 
to the case when the host is not an ARP proxy, when you usually have a small amount of ARP 
requests). Sometimes you may prefer to delay the reply to such broadcasts so that you can give 
priority to hosts that own such IP addresses to be the first to get the request. This delay is a 
random value up to the proxy_delay parameter. The ARP proxy timer handler is the  
neigh_proxy_process() method. The proxy_timer is initialized by the  
neigh_table_init_no_netlink() method.

•	 proxy_queue: Proxy ARP queue of SKBs. SKBs are added with the pneigh_enqueue()  method.

•	 stats: The neighbour statistics (neigh_statistics) object;  consists of per CPU counters 
like allocs, which is the number of neighbour objects allocated by the neigh_alloc() 
method, or destroys, which is the number of neighbour objects which were freed by the 
neigh_destroy() method, and more. The neighbour statistics counters are incremented by 
the NEIGH_CACHE_STAT_INC macro. Note that because the statistics are per CPU counters, 
the macro this_cpu_inc() is used by this macro. You can display the ARP statistics and the 
NDISC statistics with cat /proc/net/stat/arp_cache and cat/proc/net/stat/ndisc_cache, 
respectively. In the “Quick Reference” section at the end of this chapter, there is a description 
of the neigh_statistics structure, specifying in which method each counter is incremented.

•	 nht: The neighbour hash table (neigh_hash_table object).

•	 phash_buckets: The neighbouring proxy hash table; allocated in the  
neigh_table_init_no_netlink() method.

The initialization of the neighbouring table is done with the neigh_table_init() method:

In IPv4, the ARP module defines the ARP table (an instance of the •	 neigh_table structure 
named arp_tbl) and passes it as an argument to the neigh_table_init() method (see the 
arp_init() method in net/ipv4/arp.c).

In IPv6, the NDISC module defines the NDSIC table (which is also an instance of the  •	
neigh_table structure named nd_tbl) and passes it as an argument to the  
neigh_table_init() method (see the ndisc_init() method in net/ipv6/ndisc.c).

The neigh_table_init() method also creates the neighbouring hash table (the nht object) by calling the  
neigh_hash_alloc() method in the neigh_table_init_no_netlink() method, allocating space for eight hash entries:
 
static void neigh_table_init_no_netlink(struct neigh_table *tbl)
{
    . . .
    RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
    . . .
}
 
static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
{
 

The size of the hash table is 1<< shift (when size <= PAGE_SIZE):
 
    size_t size = (1 << shift) * sizeof(struct neighbour *);
    struct neigh_hash_table *ret;
    struct neighbour __rcu **buckets;
    int i;
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    ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
    if (!ret)
        return NULL;
    if (size <= PAGE_SIZE)
        buckets = kzalloc(size, GFP_ATOMIC);
    else
        buckets = (struct neighbour __rcu **)
              __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
                       get_order(size));
    . . .
 
}
 

You may wonder why you need the neigh_table_init_no_netlink() method—why not perform all of the 
initialization in the neigh_table_init() method? The neigh_table_init_no_netlink() method performs all of the 
initializations of the neighbouring tables, except for linking it to the global linked list of neighbouring tables,  
neigh_tables. Originally such initialization, without linking to the neigh_tables linked list, was needed for ATM,  
and as a result the neigh_table_init() method was split, and the ATM clip module called the  
neigh_table_init_no_netlink() method instead of calling the neigh_table_init() method; however, over time, a 
different solution was found in ATM. Though the ATM clip module does not invoke the neigh_table_init_no_netlink() 
method anymore, the split of these methods remained, perhaps in case it is needed in the future.

I should mention that each L3 protocol that uses the neighbouring subsystem also registers a protocol handler: 
for IPv4, the handler for ARP packets (packets whose type in their Ethernet header is 0x0806) is the arp_rcv() 
method:
 
static struct packet_type arp_packet_type __read_mostly = {
         .type = cpu_to_be16(ETH_P_ARP),
         .func = arp_rcv,
 };
  
 void __init arp_init(void)
 {
     . . .
         dev_add_pack(&arp_packet_type);
     . . .
}
 
(net/ipv4/arp.c)

For IPv6, the neighbouring messages are ICMPv6 messages, so they are handled by the icmpv6_rcv() method, 
which is the ICMPv6 handler. There are five ICMPv6 neighbouring messages; when each of them is received (by the 
icmpv6_rcv() method), the ndisc_rcv() method is invoked to handle them (see net/ipv6/icmp.c). The ndisc_rcv() 
method is discussed in a later section in this chapter. Each neighbour object defines a set of methods by the  
neigh_ops structure. This is done by its constructor method. The neigh_ops structure contains a protocol family 
member and four function pointers:
 
struct neigh_ops {
        int      family;
        void     (*solicit)(struct neighbour *, struct sk_buff *);
        void     (*error_report)(struct neighbour *, struct sk_buff *);
        int      (*output)(struct neighbour *, struct sk_buff *);
        int      (*connected_output)(struct neighbour *, struct sk_buff *);
};
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(include/net/neighbour.h)

•	 family: AF_INET for IPv4 and AF_INET6 for IPv6.

•	 solicit: This method is responsible for sending the neighbour solicitation requests: in ARP it 
is the arp_solicit() method, and in NDISC it is the ndisc_solicit() method.

•	 error_report: This method is called from the neigh_invalidate() method when the 
neighbour state is NUD_FAILED. This happens, for example, after some timeout when a 
solicitation request is not replied.

•	 output: When the L3 address of the next hop is known, but the L2 address is not resolved, the 
output callback should be neigh_resolve_output().

•	 connected_output: The output method of the neighbour is set to be connected_output() 
when the neighbour state is NUD_REACHABLE or NUD_CONNECTED. See the invocations of 
neigh_connect() in the neigh_update() method and in the neigh_timer_handler() method.

Creating and Freeing a Neighbour
A neighbour is created by the __neigh_create() method:
 
struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct                    
net_device *dev, bool want_ref)
 

First, the __neigh_create() method allocates a neighbour object by calling the neigh_alloc() method, which 
also performs various initializations. There are cases when the neigh_alloc() method calls the synchronous garbage 
collector (which is the neigh_forced_gc() method):
 
static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
{
        struct neighbour *n = NULL;
        unsigned long now = jiffies;
        int entries;
 
        entries = atomic_inc_return(&tbl->entries) - 1;
 

If the number of table entries is greater than gc_thresh3 (1024 by default) or if the number of table entries is 
greater than gc_thresh2 (512 by default), and the time passed since the last flush is more than 5 Hz, the synchronous 
garbage collector method is invoked (the neigh_forced_gc() method). If after running the neigh_forced_gc() 
method, the number of table entries is greater than gc_thresh3 (1024), you do not allocate a neighbour object and 
return NULL:
 
        if (entries >= tbl->gc_thresh3 ||
            (entries >= tbl->gc_thresh2 &&
            time_after(now, tbl->last_flush + 5 * HZ))) {
               if (!neigh_forced_gc(tbl) &&
                   entries >= tbl->gc_thresh3)
                       goto out_entries;
        }
 

Then the __neigh_create() method performs the protocol-specific setup by calling the constructor method of 
the specified neighbouring table (arp_constructor() for ARP, ndisc_constructor() for NDISC). In the constructor 
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method, special cases like multicast or loopback addresses are handled. In the arp_constructor() method, for 
example, you call the arp_mc_map() method to set the hardware address of the neighbour (ha) according to the 
neighbour IPv4 primary_key address, and you set the nud_state to be NUD_NOARP, because multicast addresses 
don’t need ARP. In the ndisc_constructor() method, for example, you do something quite similar when handling 
multicast addresses: you call the ndisc_mc_map() to set the hardware address of the neighbour (ha) according to 
the neighbour IPv6 primary_key address, and you again set the nud_state to be NUD_NOARP. There’s also special 
treatment for broadcast addresses: in the arp_constructor() method, for example, when the neighbour type is 
RTN_BROADCAST, you set the neighbour hardware address (ha) to be the network device broadcast address (the 
broadcast field of the net_device object), and you set the nud_state to be NUD_NOARP. Note that the IPv6 protocol 
does not implement traditional IP broadcast, so the notion of a broadcast address is irrelevant (there is a link-local all 
nodes multicast group at address ff02::1, though). There are two special cases when additional setup needs to be 
done:

When the •	 ndo_neigh_construct() callback of the netdev_ops is defined, it is invoked. In fact, 
this is done only in the classical IP over ATM code (clip); see net/atm/clip.c.

When the •	 neigh_setup() callback of the neigh_parms object is defined, it is invoked. This is 
used, for example, in the bonding driver; see drivers/net/bonding/bond_main.c.

When trying to create a neighbour object by the __neigh_create() method, and the number of the 
neighbour entries exceeds the hash table size, it must be enlarged. This is done by calling the neigh_hash_grow() 
method, like this:
 
struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
                 struct net_device *dev, bool want_ref)
{
     . . .
 

The hash table size is 1 << nht->hash_shift; the hash table must be enlarged if it is exceeded:
 
     if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
        nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
     . . .
}
 

When the want_ref parameter is true, you will increment the neighbour reference count within this method. You 
also initialize the confirmed field of the neighbour object:
 
n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
 

It is initialized to be a little less than the current time, jiffies (for the simple reason that you want reachability 
confirmation to be required sooner). At the end of the __neigh_create() method, the dead flag is initialized to be 0, 
and the neighbour object is added to the neighbour hash table.

The neigh_release() method decrements the reference counter of the neighbour and frees it when it reaches 
zero by calling the neigh_destroy() method. The neigh_destroy() method will verify that the neighbour is marked 
as dead: neighbours whose dead flag is 0 will not be removed.

In this section, you learned about the kernel methods to create and free a neighbour. Next you will learn how 
adding and deleting a neighbour entry can be triggered from userspace, as well as how to display the neighbouring 
table, with the arp command for IPv4 and the ip command for IPv4/IPv6.
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Interaction Between Userspace and the Neighbouring Subsystem
Management of the ARP table is done with the ip neigh command of the iproute2 package or with the arp 
command of the net-tools package. Thus, you can display the ARP table by running, from the command line, one of 
the following commands:

•	 arp: Handled by the arp_seq_show() method in net/ipv4/arp.c.

•	 ip neigh show  (or ip neighbour show): Handled by the neigh_dump_info() method in net/
core/neighbour.c.

Note that the ip neigh show command shows the NUD states of the neighbouring table entries (like  
NUD_REACHABLE or NUD_STALE).  Note also that the arp command can display only the IPv4 neighbouring table 
(the ARP table), whereas with the ip command you can display both the IPv4 ARP table and the IPv6 neighbouring 
table. If you want to display only the IPv6 neighbouring table, you should run ip -6 neigh show.

The ARP and NDISC modules also export data via procfs. That means you can display the ARP table by running 
cat /proc/net/arp (this procfs entry is handled by the arp_seq_show() method, which is the same method 
that handles the arp command, as mentioned earlier). Or you can display ARP statistics by cat /proc/net/stat/
arp_cache, and you can display the NDISC statistics by cat /proc/net/stat/ndisc_cache (both are handled by the 
neigh_stat_seq_show() method).

You can add an entry with ip neigh add, which is handled by the neigh_add() method. When running ip  
neigh add, you can specify the state of the entry which you are adding (like NUD_PERMANENT, NUD_STALE,  
NUD_REACHABLE and so on). For example:
 
ip neigh add 192.168.0.121 dev eth0 lladdr 00:30:48:5b:cc:45 nud permanent
 

Deleting an entry can be done by ip neigh del, and is handled by the neigh_delete() method. For example:
 
ip neigh del 192.168.0.121 dev eth0
 

Adding an entry to the proxy ARP table can be done with ip neigh add proxy. For example:
 
ip neigh add proxy 192.168.2.11 dev eth0
 

The addition is handled again by the neigh_add() method. In this case, the NTF_PROXY flag is set in the data 
passed from userspace (see the ndm_flags field of the ndm object), and therefore the pneigh_lookup() method is 
called to perform a lookup in the proxy neighbouring hash table (phash_buckets). In case the lookup failed, the 
pneigh_lookup() method adds an entry to the proxy neighbouring hash table.

Deleting an entry from the proxy ARP table can be done with ip neigh del proxy. For example:
 
ip neigh del proxy 192.168.2.11 dev eth0
 

The deletion is handled by the neigh_delete() method. Again, in this case the NTF_PROXY flag is set in the 
data passed from userspace (see the ndm_flags field of the ndm object), and therefore the pneigh_delete() method is 
called to delete the entry from the proxy neighbouring table.

With the ip ntable command, you can control the parameters for the neighbouring tables. For example:

•	 ip ntable show: Shows the parameters for all the neighbouring tables.

•	 ip ntable change: Change a value of a parameter of a neighbouring table. Handled by the 
neightbl_set() method. For example: ip ntable change name arp_cache queue 20 dev 
eth0.
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You can also add entries to the ARP table by arp add. And it is possible to add static entries manually to the 
ARP table, like this: arp –s <IPAddress> <MacAddress>. The static ARP entries are not deleted by the neigbouring 
subsystem garbage collector, but they are not persistent over reboot.

The next section briefly describes how network events are handled in the neighbouring subsystem.

Handling Network Events
The neighbouring core does not register any events with the register_netdevice_notifier() method. On the other 
hand, the ARP module and the NDISC module do register network events. In ARP, the arp_netdev_event() method  
is registered as the callback for netdev events. It handles changes of MAC address events by calling the generic  
neigh_changeaddr() method and by calling the rt_cache_flush() method. From kernel 3.11, you handle a 
NETDEV_CHANGE event when there was a change of the IFF_NOARP flag by calling the neigh_changeaddr() 
method. A NETDEV_CHANGE event is triggered when a device changes its flags, by the __dev_notify_flags() 
method, or when a device changes its state, by the netdev_state_change() method. In NDISC, the ndisc_netdev_
event() method is registered as the callback for netdev events; it handles the NETDEV_CHANGEADDR, NETDEV_
DOWN, and NETDEV_NOTIFY_PEERS events.

After describing the fundamental data structures common to IPv4 and IPv6, like the neighbouring table  
(neigh_table) and the neighbour structure, and after discussing how a neighbour object is created and freed, it is 
time to describe the implementation of the first neighbouring protocol, the ARP protocol.

The ARP protocol (IPv4)
The ARP protocol is defined in RFC 826. When working with Ethernet, the addresses are called MAC addresses 
and are 48-bit values. MAC addresses should be unique, but you must take into account that you may encounter a 
non-unique MAC address. A common reason for this is that on most network interfaces, a system administrator can 
configure MAC addresses with userspace tools like ifconfig or ip.

When sending an IPv4 packet, you know the destination IPv4 address. You should build an Ethernet header, 
which should include a destination MAC address. Finding the MAC address based on a given IPv4 address is done by 
the ARP protocol as you will see shortly. If the MAC address is unknown, you send an ARP request as a broadcast. This 
ARP request contains the IPv4 address you are seeking. If there is a host with such an IPv4 address, this host sends a 
unicast ARP response as a reply. The ARP table (arp_tbl) is an instance of the neigh_table structure. The ARP header 
is represented by the arphdr structure:
 
struct arphdr {
    __be16          ar_hrd;         /* format of hardware address   */
    __be16          ar_pro;         /* format of protocol address   */
    unsigned char   ar_hln;         /* length of hardware address   */
    unsigned char   ar_pln;         /* length of protocol address   */
    __be16          ar_op;          /* ARP opcode (command)         */
#if 0
    *
    *      Ethernet looks like this : This bit is variable sized however...
    */
    unsigned char           ar_sha[ETH_ALEN];       /* sender hardware address      */
    unsigned char           ar_sip[4];              /* sender IP address            */
    unsigned char           ar_tha[ETH_ALEN];       /* target hardware address      */
    unsigned char           ar_tip[4];              /* target IP address            */
#endif
};
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(include/uapi/linux/if_arp.h)
The following is a description of some of the important members of the arphdr structure:

•	 ar_hrd is the hardware type; for Ethernet it is 0x01. For the full list of available ARP header 
hardware identifiers, see ARPHRD_XXX definitions in include/uapi/linux/if_arp.h.

•	 ar_pro is the protocol ID; for IPv4 it is 0x80. For the full list of available protocols IDs, see 
ETH_P_XXX in include/uapi/linux/if_ether.h.

•	 ar_hln is the hardware address length in bytes, which is 6 bytes for Ethernet addresses.

•	 ar_pln is the length of the protocol address in bytes, which is 4 bytes for IPv4 addresses.

•	 ar_op is the opcode, ARPOP_REQUEST for an ARP request, and ARPOP_REPLY for an ARP 
reply. For the full list of available ARP header opcodes look in include/uapi/linux/if_arp.h.

Immediately after the ar_op are the sender hardware (MAC) address and IPv4 address, and the target hardware 
(MAC) address and IPv4 address. These addresses are not part of the ARP header (arphdr) structure. In the  
arp_process() method, they are extracted by reading the corresponding offsets of the ARP header, as you can see in 
the explanation about the arp_process() method in the section “ARP: Receiving Solicitation Requests and Replies” 
later in this chapter. Figure 7-1 shows an ARP header for an ARP Ethernet packet.

In ARP, four neigh_ops objects are defined: arp_direct_ops, arp_generic_ops, arp_hh_ops, and  
arp_broken_ops. The initialization of the ARP table neigh_ops object is done by the arp_constructor() method, 
based on the network device features:

If the •	 header_ops of the net_device object is NULL, the neigh_ops object will be set to 
be arp_direct_ops. In this case, sending the packet will be done with the neigh_direct_
output() method, which is in fact a wrapper around dev_queue_xmit(). In most Ethernet 
network devices, however, the header_ops of the net_device object is initialized to be eth_
header_ops by the generic ether_setup() method; see net/ethernet/eth.c.

If the •	 header_ops of the net_device object contains a NULL cache() callback, then the 
neigh_ops object will be set to be arp_generic_ops.

If the •	 header_ops of the net_device object contains a non-NULL cache() callback, then  
the neigh_ops object will be set to be arp_hh_ops. In the case of using the generic  
eth_header_ops object, the cache() callback is the eth_header_cache() callback.

For three types of devices, the •	 neigh_ops object will be set to be arp_broken_ops (when the 
type of the net_device object is ARPHRD_ROSE, ARPHRD_AX25, or ARPHRD_NETROM).

Now that I’ve covered the ARP protocol and the ARP header (arphdr) object, let’s look at how ARP solicitation 
requests are sent.

Figure 7-1.  ARP header (for Ethernet)
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ARP: Sending Solicitation Requests
Where are solicitation requests being sent? The most common case is in the Tx path, before actually leaving the 
network layer (L3) and moving to the link layer (L2). In the ip_finish_output2() method, you first perform a lookup 
for the next hop IPv4 address in the ARP table by calling the __ipv4_neigh_lookup_noref() method, and if you don’t 
find any matching neighbour entry, you create one by calling the __neigh_create() method:
 
static inline int ip_finish_output2(struct sk_buff *skb)
{
        struct dst_entry *dst = skb_dst(skb);
        struct rtable *rt = (struct rtable *)dst;
        struct net_device *dev = dst->dev;
        unsigned int hh_len = LL_RESERVED_SPACE(dev);
        struct neighbour *neigh;
        u32 nexthop;
        . . .
        . . .
        nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
        neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
        if (unlikely(!neigh))
                neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
        if (!IS_ERR(neigh)) {
                int res = dst_neigh_output(dst, neigh, skb);
     . . .
}
 

Let’s take a look in the dst_neigh_output() method: 
 
static inline int dst_neigh_output(struct dst_entry *dst, struct neighbour *n,
                                   struct sk_buff *skb)
{
        const struct hh_cache *hh;
 
        if (dst->pending_confirm) {
                unsigned long now = jiffies;
 
                dst->pending_confirm = 0;
                /* avoid dirtying neighbour */
                if (n->confirmed != now)
                        n->confirmed = now;
        }
 

When you reach this method for the first time with this flow, nud_state is not NUD_CONNECTED, and the 
output callback is the neigh_resolve_output() method:
 
        hh = &n->hh;
        if ((n->nud_state & NUD_CONNECTED) && hh->hh_len)
                return neigh_hh_output(hh, skb);
        else
                return n->output(n, skb);
}
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(include/net/dst.h)
In the neigh_resolve_output() method, you call the neigh_event_send() method, which eventually puts the 

SKB in the arp_queue of the neighbour by __skb_queue_tail(&neigh->arp_queue, skb); later, the neigh_probe() 
method, invoked from the neighbour timer handler, neigh_timer_handler(), will send the packet by invoking the 
solicit() method (neigh->ops->solicit is the arp_solicit() method in our case):
 
static void neigh_probe(struct neighbour *neigh)
        __releases(neigh->lock)
{
        struct sk_buff *skb = skb_peek(&neigh->arp_queue);
        . . .
        neigh->ops->solicit(neigh, skb);
        atomic_inc(&neigh->probes);
        kfree_skb(skb);
}
 

Let’s take a look at the arp_solicit() method, which actually sends the ARP request:
 
static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
{
        __be32 saddr = 0;
        u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
        struct net_device *dev = neigh->dev;
        __be32 target = *(__be32 *)neigh->primary_key;
        int probes = atomic_read(&neigh->probes);
        struct in_device *in_dev;
 
        rcu_read_lock();
        in_dev = __in_dev_get_rcu(dev);
        if (!in_dev) {
                rcu_read_unlock();
                return;
        }
 

With the arp_announce procfs entry, you can set restrictions for which local source IP address to use for the ARP 
packet you want to send:

•	 0: Use any local address, configured on any interface. This is the default value.

•	 1: First try to use addresses that are on the target subnet. If there are no such addresses, use 
level 2.

•	 2: Use primary IP address.

Note that the max value of these two entries is used:
 
/proc/sys/net/ipv4/conf/all/arp_announce
/proc/sys/net/ipv4/conf/<netdeviceName>/arp_announce
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See also the description of the IN_DEV_ARP_ANNOUNCE macro in the “Quick Reference” section at the end of 
this chapter.
 
        switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
        default:
        case 0:         /* By default announce any local IP */
                 if (skb && inet_addr_type(dev_net(dev),
                                           ip_hdr(skb)->saddr) == RTN_LOCAL)
                         saddr = ip_hdr(skb)->saddr;
                 break;
        case 1:         /* Restrict announcements of saddr in same subnet */
                 if (!skb)
                 break;
                 saddr = ip_hdr(skb)->saddr;
                 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 

The inet_addr_onlink() method checks whether the specified target address and the specified source address 
are on the same subnet:
 
                 /* saddr should be known to target */
                 if (inet_addr_onlink(in_dev, target, saddr))
                         break;
         }
         saddr = 0;
         break;
case 2:         /* Avoid secondary IPs, get a primary/preferred one */
         break;
}
rcu_read_unlock();
 
if (!saddr)
 

The inet_select_addr() method returns the address of the first primary interface of the specified device  
whose scope is smaller than the specified scope (RT_SCOPE_LINK in this case), and which is in the same subnet as 
the target:
 
        saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 
        probes -= neigh->parms->ucast_probes;
        if (probes < 0) {
                if (!(neigh->nud_state & NUD_VALID))
                        pr_debug("trying to ucast probe in NUD_INVALID\n");
                neigh_ha_snapshot(dst_ha, neigh, dev);
                dst_hw = dst_ha;
        } else {
                probes -= neigh->parms->app_probes;
                if (probes < 0) {
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CONFIG_ARPD is set when working with the userspace ARP daemon; there are projects like OpenNHRP, which 
are based on ARPD. Next Hop Resolution Protocol (NHRP) is used to improve the efficiency of routing computer 
network traffic over Non-Broadcast, Multiple Access (NBMA) networks (I don’t discuss the ARPD userspace daemon 
in this book):
 
#ifdef CONFIG_ARPD
                        neigh_app_ns(neigh);
#endif
                        return;
                }
        }
 

Now you call the arp_send() method to send an ARP request. Note that the last parameter, target_hw, is NULL. 
You do not yet know the target hardware (MAC) address. When calling arp_send() with target_hw as NULL, a 
broadcast ARP request is sent:
 
        arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
                 dst_hw, dev->dev_addr, NULL);
}
 

Let’s take a look at the arp_send() method, which is quite short:
 
void arp_send(int type, int ptype, __be32 dest_ip,
              struct net_device *dev, __be32 src_ip,
              const unsigned char *dest_hw, const unsigned char *src_hw,
              const unsigned char *target_hw)
{
        struct sk_buff *skb;
 
        /*
         *      No arp on this interface.
         */
 

You must check whether the IFF_NOARP is supported on this network device. There are cases in which ARP is 
disabled: an administrator can disable ARP, for example, by ifconfig eth1 –arp or by ip link set eth1 arp off. 
Some network devices set the IFF_NOARP flag upon creation—for example, IPv4 tunnel devices, or PPP devices, 
which do not need ARP. See the ipip_tunnel_setup() method in net/ipv4/ipip.c or the ppp_setup() method in 
drivers/net/ppp_generic.c.
 
        if (dev->flags&IFF_NOARP)
                return;
 

The arp_create() method creates an SKB with an ARP header and initializes it according to the specified 
parameters:
 
        skb = arp_create(type, ptype, dest_ip, dev, src_ip,
                         dest_hw, src_hw, target_hw);
        if (skb == NULL)
                return;
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The only thing the arp_xmit() method does is call dev_queue_xmit() by the NF_HOOK() macro:
 
        arp_xmit(skb);
}
 

Now it is time to learn how these ARP requests are processed and how ARP replies are processed.

ARP: Receiving Solicitation Requests and Replies
In IPv4, the arp_rcv() method is responsible for handling ARP packets, as mentioned earlier. Let’s take a look at the 
arp_rcv() method:
 
static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
                   struct packet_type *pt, struct net_device *orig_dev)
{
        const struct arphdr *arp;
 

If the network device on which the ARP packet was received has the IFF_NOARP flag set, or if the packet is not 
destined for the local machine, or if it is for a loopback device, then the packet should be dropped. You continue and 
make some more sanity checks, and if everything is okay, you proceed to the arp_process() method, which performs 
the real work of processing an ARP packet:
 
        if (dev->flags & IFF_NOARP ||
            skb->pkt_type == PACKET_OTHERHOST ||
            skb->pkt_type == PACKET_LOOPBACK)
                goto freeskb;
 

If the SKB is shared, you must clone it because it might be changed by someone else while being processed by the 
arp_rcv() method. The skb_share_check() method creates a clone of the SKB if it is shared (see Appendix A).
 
        skb = skb_share_check(skb, GFP_ATOMIC);
        if (!skb)
                goto out_of_mem;
 
        /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
        if (!pskb_may_pull(skb, arp_hdr_len(dev)))
                goto freeskb;
 
        arp = arp_hdr(skb);
 

The ar_hln of the ARP header represents the length of a hardware address, which should be 6 bytes for Ethernet 
header, and should be equal to the addr_len of the net_device object. The ar_pln of the ARP header represents the 
length of the protocol address and should be equal to the length of an IPv4 address, which is 4 bytes:
 
        if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
                goto freeskb;
 
        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
        return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
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freeskb:
        kfree_skb(skb);
out_of_mem:
        return 0;
}
 

Handling ARP requests is not restricted to packets that have the local host as their destination. When the local 
host is configured as a proxy ARP, or as a private VLAN proxy ARP (see RFC 3069), you also handle packets which have 
a destination that is not the local host. Support for private VLAN proxy ARP was added in kernel 2.6.34.

In the arp_process() method, you handle only ARP requests or ARP responses. For ARP requests you perform  
a lookup in the routing subsystem by the ip_route_input_noref() method. If the ARP packet is for the local host  
(the rt_type of the routing entry is RTN_LOCAL), you proceed to check some conditions (described shortly). If  
all these checks pass, an ARP reply is sent back with the arp_send() method. If the ARP packet is not for the local host 
but should be forwarded (the rt_type of the routing entry is RTN_UNICAST), then you check some conditions (also 
described shortly), and if they are fulfilled you perform a lookup in the proxy ARP table by calling the  
pneigh_lookup() method.

You will now see the implementation details of the main ARP method which handles ARP requests, the  
arp_process() method.

The arp_process( ) Method
Let’s take a look at the arp_process() method, where the real work is done:
 
static int arp_process(struct sk_buff *skb)
{
        struct net_device *dev = skb->dev;
        struct in_device *in_dev = __in_dev_get_rcu(dev);
        struct arphdr *arp;
        unsigned char *arp_ptr;
        struct rtable *rt;
        unsigned char *sha;
        __be32 sip, tip;
        u16 dev_type = dev->type;
        int addr_type;
        struct neighbour *n;
        struct net *net = dev_net(dev);
 
        /* arp_rcv below verifies the ARP header and verifies the device
         * is ARP'able.
         */
 
        if (in_dev == NULL)
                goto out;
 

Fetch the ARP header from the SKB (it is the network header, see the arp_hdr() method):
 
        arp = arp_hdr(skb);
 
        switch (dev_type) {
        default:
                if (arp->ar_pro != htons(ETH_P_IP) ||
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                        htons(dev_type) != arp->ar_hrd)
                            goto out;
                break;
        case ARPHRD_ETHER:
                . . .
                if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
                     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
                    arp->ar_pro != htons(ETH_P_IP))
                        goto out;
                break;
                . . .
 

You want to handle only ARP requests or ARP responses in the arp_process() method, and discard all other 
packets:
 
        /* Understand only these message types */
 
        if (arp->ar_op != htons(ARPOP_REPLY) &&
            arp->ar_op != htons(ARPOP_REQUEST))
                goto out;
 
/*
 *      Extract fields
 */
        arp_ptr = (unsigned char *)(arp + 1); 

The arp_process( ) Method—Extracting Headers:
Immediately after the ARP header, there are the following fields (see the ARP header definition above):

•	 sha: The source hardware address (the MAC address, which is 6 bytes).

•	 sip: The source IPv4 address (4 bytes).

•	 tha: The target hardware address (the MAC address, which is 6 bytes).

•	 tip: The target IPv4 address (4 bytes).

Extract the sip and tip addresses:
 
        sha     = arp_ptr;
        arp_ptr += dev->addr_len;
 

Set sip to be the source IPv4 address after advancing arp_ptr with the corresponding offset:
 
        memcpy(&sip, arp_ptr, 4);
        arp_ptr += 4;
        switch (dev_type) {
        . . .
        default:
                arp_ptr += dev->addr_len;
        }
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Set tip to be the target IPv4 address after advancing arp_ptr with the corresponding offset:
 
        memcpy(&tip, arp_ptr, 4);
 

Discard these two types of packets:

Multicast packets•	

Packets for the loopback device if the use of local routing with loopback addresses is disabled; •	
see also the description of the IN_DEV_ROUTE_LOCALNET macro in the “Quick Reference” 
section at the end of this chapter.

 
/*
 *      Check for bad requests for 127.x.x.x and requests for multicast
 *      addresses.  If this is one such, delete it.
 */
        if (ipv4_is_multicast(tip) ||
            (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
                goto out;
 
        . . .
 

The source IP (sip) is 0 when you use Duplicate Address Detection (DAD). DAD lets you detect the existence 
of double L3 addresses on different hosts on a LAN. DAD is implemented in IPv6 as an integral part of the address 
configuration process, but not in IPv4. However, there is support for correctly handling DAD requests in IPv4, as you 
will soon see. The arping utility of the iputils package is an example for using DAD in IPv4. When sending ARP 
request with arping –D, you send an ARP request where the sip of the ARP header is 0. (The –D modifier tells arping 
to be in DAD mode); the tip is usually the sender IPv4 address (because you want to check whether there is another 
host on the same LAN with the same IPv4 address as yours); if there is a host with the same IP address as the tip of 
the DAD ARP request, it will send back an ARP reply (without adding the sender to its neighbouring table):
 
        /* Special case: IPv4 duplicate address detection packet (RFC2131) */
        if (sip == 0) {
                if (arp->ar_op == htons(ARPOP_REQUEST) &&

The arp_process( ) Method—arp_ignore( ) and arp_filter( ) Methods
The arp_ignore procfs entry provides support for different modes for sending ARP replies as a response for an ARP 
request. The value used is the max value of /proc/sys/net/ipv4/conf/all/arp_ignore and /proc/sys/net/ipv4/
conf/<netDeviceName>/arp_ignore. By default, the value of the arp_ignore procfs entry is 0, and in such a case, 
the arp_ignore() method returns 0. You reply to the ARP request with arp_send(), as you can see in the next code 
snippet (assuming that inet_addr_type(net, tip) returned RTN_LOCAL). The arp_ignore() method checks the 
value of IN_DEV_ARP_IGNORE(in_dev); for more details, see the arp_ignore() implementation in net/ipv4/arp.c 
and the description of the IN_DEV_ARP_IGNORE macro in the “Quick Reference” section at the end of this chapter:
 
                 inet_addr_type(net, tip) == RTN_LOCAL &&
                !arp_ignore(in_dev, sip, tip))
                arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
                         dev->dev_addr, sha);
        goto out;
}
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if (arp->ar_op == htons(ARPOP_REQUEST) &&
    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 
        rt = skb_rtable(skb);
        addr_type = rt->rt_type;
 

When addr_type equals RTN_LOCAL, the packet is for local delivery:

        if (addr_type == RTN_LOCAL) {
                int dont_send;
 
                dont_send = arp_ignore(in_dev, sip, tip);
 

The arp_filter() method fails (returns 1) in two cases:

When the lookup in the routing tables with the •	 ip_route_output() method fails.

When the outgoing network device of the routing entry is different than the network device on •	
which the ARP request was received.

In case of success, the arp_filter() method returns 0 (see also the description of the IN_DEV_ARPFILTER 
macro in the “Quick Reference” section at the end of this chapter):
 
                     if (!dont_send && IN_DEV_ARPFILTER(in_dev))
                        dont_send = arp_filter(sip, tip, dev);
                if (!dont_send) {
 

Before sending the ARP reply, you want to add the sender to your neighbouring table or update it; this is done 
with the neigh_event_ns() method. The neigh_event_ns() method creates a new neighbouring table entry and sets 
its state to be NUD_STALE. If there is already such an entry, it updates its state to be NUD_STALE, with the neigh_
update() method. Adding entries this way is termed passive learning:
 
                        n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
                        if (n) {
                                arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
                                         dev, tip, sha, dev->dev_addr,
                                         sha);
                                neigh_release(n);
                        }
                }
                goto out;
        } else if (IN_DEV_FORWARD(in_dev)) {
 

The arp_fwd_proxy() method returns 1 when the device can be used as an ARP proxy; the arp_fwd_pvlan() 
method returns 1 when the device can be used as an ARP VLAN proxy:
 
               if (addr_type == RTN_UNICAST  &&
                    (arp_fwd_proxy(in_dev, dev, rt) ||
                     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
                     (rt->dst.dev != dev &&
                      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
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Again, call the neigh_event_ns() method to create a neighbour entry of the sender with NUD_STALE, or if such 
an entry exists, update that entry state to be NUD_STALE:
 
                        n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
                        if (n)
                                neigh_release(n);
 
                       if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
                            skb->pkt_type == PACKET_HOST ||
                            in_dev->arp_parms->proxy_delay == 0) {
                                arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
                                         dev, tip, sha, dev->dev_addr,
                                         sha);
                        } else {
 

Delay sending an ARP reply by putting the SKB at the tail of the proxy_queue, by calling the pneigh_enqueue() 
method. Note that the delay is random and is a number between 0 and in_dev->arp_parms->proxy_delay:
 
                                pneigh_enqueue(&arp_tbl,
                                               in_dev->arp_parms, skb);
                                return 0;
                        }
                        goto out;
                }
        }
}
 
        /* Update our ARP tables */
 

Note that the last parameter of calling the __neigh_lookup() method is 0, which means that you only perform a 
lookup in the neighbouring table (and do not create a new neighbour if the lookup failed):
 
        n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 

The IN_DEV_ARP_ACCEPT macro tells you whether the network device is set to accept ARP requests (see also the 
description of the IN_DEV_ARP_ACCEPT macro in the “Quick Reference” section at the end of this of this chapter):
 
        if (IN_DEV_ARP_ACCEPT(in_dev)) {
                /* Unsolicited ARP is not accepted by default.
                   It is possible, that this option should be enabled for some
                   devices (strip is candidate)
                */
 

Unsolicited ARP requests are sent only to update the neighbouring table. In such requests, tip is equal to sip 
(the arping utility supports sending unsolicited ARP requests by arping –U):
 
        if (n == NULL &&
            (arp->ar_op == htons(ARPOP_REPLY) ||
             (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
           inet_addr_type(net, sip) == RTN_UNICAST)
               n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
}
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if (n) {
        int state = NUD_REACHABLE;
        int override;
 
        /* If several different ARP replies follows back-to-back,
           use the FIRST one. It is possible, if several proxy
           agents are active. Taking the first reply prevents
           arp trashing and chooses the fastest router.
        */
        override = time_after(jiffies, n->updated + n->parms->locktime);
 
        /* Broadcast replies and request packets
           do not assert neighbour reachability.
         */
         if (arp->ar_op != htons(ARPOP_REPLY) ||
             skb->pkt_type != PACKET_HOST)
                 state = NUD_STALE;
 

Call neigh_update() to update the neighbouring table:
 
                neigh_update(n, sha, state,
                             override ? NEIGH_UPDATE_F_OVERRIDE : 0);
                neigh_release(n);
        }
 
out:
        consume_skb(skb);
        return 0;
}
 

Now that you know about the IPv4 ARP protocol implementation, it is time to move on to IPv6 NDISC protocol 
implementation. You will soon notice some of the differences between the neighbouring subsystem implementation 
in IPv4 and in IPv6.

The NDISC Protocol (IPv6)
The Neighbour Discovery (NDISC) protocol is based on RFC 2461, “Neighbour Discovery for IP Version 6 (IPv6),” 
which was later obsoleted by RFC 4861 from 2007. IPv6 nodes (hosts or routers) on the same link use the Neighbour 
Discovery protocol to discover each other's presence, to discover routers, to determine each other’s L2 addresses, 
and to maintain neighbour reachability information. Duplicate Address Detection (DAD) was added to avoid 
double L3 addresses on the same LAN. I discuss DAD and handling NDISC neighbour solicitation and neighbour 
advertisements shortly.

Next you learn how IPv6 neighbour discovery protocols avoid creating duplicate IPv6 addresses.

Duplicate Address Detection (DAD)
How can you be sure there is no other same IPv6 address on a LAN? The chances are low, but if such address does 
exist, it may cause trouble. DAD is a solution. When a host tries to configure an address, it first creates a Link Local 
address (a Link Local address starts with FE80). This address is tentative (IFA_F_TENTATIVE ), which means that the 
host can communicate only with ND messages. Then the host starts the DAD process by calling the  
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addrconf_dad_start() method (net/ipv6/addrconf.c). The host sends a Neighbour Solicitation DAD message. 
The target is its tentative address, the source is all zeros (the unspecified address). If there is no answer in a specified 
time interval, the state is changed to permanent (IFA_F_PERMANENT). When Optimistic DAD (CONFIG_IPV6_
OPTIMISTIC_DAD) is set, you don’t wait until DAD is completed, but allow hosts to communicate with peers before 
DAD has finished successfully. See RFC 4429, "Optimistic Duplicate Address Detection (DAD) for IPv6," from 2006.

The neighbouring table for IPv6 is called nd_tbl:
 
struct neigh_table nd_tbl = {
        .family =       AF_INET6,
        .key_len =      sizeof(struct in6_addr),
        .hash =         ndisc_hash,
        .constructor =  ndisc_constructor,
        .pconstructor = pndisc_constructor,
        .pdestructor =  pndisc_destructor,
        .proxy_redo =   pndisc_redo,
        .id =           "ndisc_cache",
        .parms = {
                .tbl                    = &nd_tbl,
                .base_reachable_time    = ND_REACHABLE_TIME,
                .retrans_time           = ND_RETRANS_TIMER,
                .gc_staletime           = 60 * HZ,
                .reachable_time         = ND_REACHABLE_TIME,
                .delay_probe_time       = 5 * HZ,
                .queue_len_bytes        = 64*1024,
                .ucast_probes           = 3,
                .mcast_probes           = 3,
                .anycast_delay          = 1 * HZ,
                .proxy_delay            = (8 * HZ) / 10,
                .proxy_qlen             = 64,
        },
        .gc_interval =    30 * HZ,
        .gc_thresh1 =    128,
        .gc_thresh2 =    512,
        .gc_thresh3 =   1024,
};
(net/ipv6/ndisc.c)
 

Note that some of the members of the NDISC table are equal to the parallel members in the ARP table—for 
example, the values of the garbage collector thresholds (gc_thresh1, gc_thresh2 and gc_thresh3).

The Linux IPv6 Neighbour Discovery implementation is based on ICMPv6 messages to manage the interaction 
between neighbouring nodes. The Neighbour Discovery protocol defines the following five ICMPv6 message types:
 
#define NDISC_ROUTER_SOLICITATION       133
#define NDISC_ROUTER_ADVERTISEMENT      134
#define NDISC_NEIGHBOUR_SOLICITATION    135
#define NDISC_NEIGHBOUR_ADVERTISEMENT   136
#define NDISC_REDIRECT                  137
 
(include/net/ndisc.h)

Note that these five ICMPv6 message types are informational messages. ICMPv6 message types whose values 
are in the range from 0 to 127 are error messages, and ICMPv6 message types whose values are from 128 to 255 are 
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informational messages. For more on that, see Chapter 3, which discusses the ICMP protocol. This chapter discusses 
only the Neighbour Solicitation and the Neighbour Discovery messages.

As mentioned in the beginning of this chapter, because neighbouring discovery messages are ICMPv6 messages, 
they are handled by the icmpv6_rcv() method, which in turn invokes the ndisc_rcv() method for ICMPv6 packets 
whose message type is one of the five types mentioned earlier (see net/ipv6/icmp.c).

In NDISC, there are three neigh_ops objects: ndisc_generic_ops, ndisc_hh_ops, and ndisc_direct_ops:

If the •	 header_ops of the net_device object is NULL, the neigh_ops object will be set to be 
ndisc_direct_ops. As in the case of arp_direct_ops, sending the packet is done with the 
neigh_direct_output() method, which is in fact a wrapper around dev_queue_xmit(). Note 
that, as mentioned in the ARP section earlier, in most Ethernet network devices, the  
header_ops of the net_device object is not NULL.

If the •	 header_ops of the net_device object contains a NULL cache() callback, then the 
neigh_ops object is set to be ndisc_generic_ops.

If the •	 header_ops of the net_device object contains a non-NULL cache() callback, then the 
neigh_ops object is set to be ndisc_hh_ops.

This section discussed the DAD mechanism and how it helps to avoid duplicate addresses. The next section 
describes how solicitation requests are sent.

NIDSC: Sending Solicitation Requests
Similarly to what you saw in IPv6, you also perform a lookup and create an entry if you did not find any match:
 
static int ip6_finish_output2(struct sk_buff *skb)
{
        struct dst_entry *dst = skb_dst(skb);
        struct net_device *dev = dst->dev;
        struct neighbour *neigh;
        struct in6_addr *nexthop;
        int ret;
               . . .
 
               . . .
 
        nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
        neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
        if (unlikely(!neigh))
                neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
        if (!IS_ERR(neigh)) {
                ret = dst_neigh_output(dst, neigh, skb);
               . . .
 

Eventually, much like in the IPv4 Tx path, you call the solicit method neigh->ops->solicit(neigh, skb)  
from the neigh_probe() method. The neigh->ops->solicit in this case is the ndisc_solicit() method.  
The ndisc_solicit() is a very short method; it is in fact a wrapper around the ndisc_send_ns() method:
 
static void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb)
{
        struct in6_addr *saddr = NULL;
        struct in6_addr mcaddr;
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        struct net_device *dev = neigh->dev;
        struct in6_addr *target = (struct in6_addr *)&neigh->primary_key;
        int probes = atomic_read(&neigh->probes);
 
        if (skb && ipv6_chk_addr(dev_net(dev), &ipv6_hdr(skb)->saddr, dev, 1))
                saddr = &ipv6_hdr(skb)->saddr;
 
        if ((probes -= neigh->parms->ucast_probes) < 0) {
                if (!(neigh->nud_state & NUD_VALID)) {
                        ND_PRINTK(1, dbg,
                                  "%s: trying to ucast probe in NUD_INVALID: %pI6\n",
                                  __func__, target);
                }
                ndisc_send_ns(dev, neigh, target, target, saddr);
        } else if ((probes -= neigh->parms->app_probes) < 0) {
#ifdef CONFIG_ARPD
                neigh_app_ns(neigh);
#endif
        } else {
                addrconf_addr_solict_mult(target, &mcaddr);
                ndisc_send_ns(dev, NULL, target, &mcaddr, saddr);
        }
}
 

In order to send the solicitation request, we need to build an nd_msg object:
 
struct nd_msg {
        struct icmp6hdr icmph;
        struct in6_addr target;
        __u8            opt[0];
};
 
(include/net/ndisc.h)

For a solicitation request, the ICMPv6 header type should be set to NDISC_NEIGHBOUR_SOLICITATION, and 
for solicitation reply, the ICMPv6 header type should be set to NDISC_NEIGHBOUR_ADVERTISEMENT. Note that 
with Neighbour Advertisement messages, there are cases when you need to set flags in the ICMPv6 header. The 
ICMPv6 header includes a structure named icmpv6_nd_advt, which includes the override, solicited, and router flags:
 
struct icmp6hdr {
        __u8            icmp6_type;
        __u8            icmp6_code;
        __sum16         icmp6_cksum;
        union {
                . . .
                . . .
                struct icmpv6_nd_advt {
#if defined(__LITTLE_ENDIAN_BITFIELD)
                        __u32           reserved:5,
                                        override:1,
                                        solicited:1,
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                                        router:1,
                                        reserved2:24;
. . .
#endif
                } u_nd_advt;
        } icmp6_dataun;
. . .
#define icmp6_router            icmp6_dataun.u_nd_advt.router
#define icmp6_solicited         icmp6_dataun.u_nd_advt.solicited
#define icmp6_override          icmp6_dataun.u_nd_advt.override
. . .
 
(include/uapi/linux/icmpv6.h)

When a message is sent in response to a Neighbour Solicitation, you set the •	 solicited flag 
(icmp6_solicited).

When you want to override a neighbouring cache entry (update the L2 address), you set the •	
override flag (icmp6_override).

When the host sending the Neighbour Advertisement message is a router, you set the •	 router 
flag (icmp6_router).

You can see the use of these three flags in the ndisc_send_na() method that follows. Let’s take a look at the 
ndisc_send_ns() method:
 
void ndisc_send_ns(struct net_device *dev, struct neighbour *neigh,
                   const struct in6_addr *solicit,
                   const struct in6_addr *daddr, const struct in6_addr *saddr)
{
        struct sk_buff *skb;
        struct in6_addr addr_buf;
        int inc_opt = dev->addr_len;
        int optlen = 0;
        struct nd_msg *msg;
 
        if (saddr == NULL) {
                if (ipv6_get_lladdr(dev, &addr_buf,
                                   (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)))
                        return;
                saddr = &addr_buf;
        }
 
        if (ipv6_addr_any(saddr))
                inc_opt = 0;
        if (inc_opt)
                optlen += ndisc_opt_addr_space(dev);
 
        skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen);
        if (!skb)
                return;
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Build the ICMPv6 header, which is embedded in the nd_msg object:
 
        msg = (struct nd_msg *)skb_put(skb, sizeof(*msg));
        *msg = (struct nd_msg) {
                .icmph = {
                        .icmp6_type = NDISC_NEIGHBOUR_SOLICITATION,
                },
                .target = *solicit,
        };
 
        if (inc_opt)
                ndisc_fill_addr_option(skb, ND_OPT_SOURCE_LL_ADDR,
                                       dev->dev_addr);
 
        ndisc_send_skb(skb, daddr, saddr);
}
 

Let’s take a look at the ndisc_send_na() method:
 
static void ndisc_send_na(struct net_device *dev, struct neighbour *neigh,
                          const struct in6_addr *daddr,
                          const struct in6_addr *solicited_addr,
                          bool router, bool solicited, bool override, bool inc_opt)
{
        struct sk_buff *skb;
        struct in6_addr tmpaddr;
        struct inet6_ifaddr *ifp;
        const struct in6_addr *src_addr;
        struct nd_msg *msg;
        int optlen = 0;
 
        . . .
 
        skb = ndisc_alloc_skb(dev, sizeof(*msg) + optlen);
        if (!skb)
                return;
 

Build the ICMPv6 header, which is embedded in the nd_msg object:
 
        msg = (struct nd_msg *)skb_put(skb, sizeof(*msg));
        *msg = (struct nd_msg) {
                .icmph = {
                        .icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT,
                        .icmp6_router = router,
                        .icmp6_solicited = solicited,
                        .icmp6_override = override,
                },
                .target = *solicited_addr,
        };
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        if (inc_opt)
                ndisc_fill_addr_option(skb, ND_OPT_TARGET_LL_ADDR,
                                       dev->dev_addr);
   
        ndisc_send_skb(skb, daddr, src_addr);
}
 

This section described how solicitation requests are sent. The next section talks about how Neighbour 
Solicitations and Advertisements are handled.

NDISC: Receiving Neighbour Solicitations and Advertisements
As mentioned, the ndisc_rcv() method handles all five neighbour discovery message types; let’s take a look at this 
method:
 
int ndisc_rcv(struct sk_buff *skb)
{
        struct nd_msg *msg;
 
        if (skb_linearize(skb))
                return 0;
 
        msg = (struct nd_msg *)skb_transport_header(skb);
 
        __skb_push(skb, skb->data - skb_transport_header(skb));
 

According to RFC 4861, the hop limit of neighbour messages should be 255; the hop limit length is 8 bits, so the 
maximum hop limit is 255. A value of 255 assures that the packet was not forwarded, and this assures you that you are 
not exposed to some security attack. Packets that do not fulfill this requirement are discarded:
 
        if (ipv6_hdr(skb)->hop_limit != 255) {
                ND_PRINTK(2, warn, "NDISC: invalid hop-limit: %d\n",
                          ipv6_hdr(skb)->hop_limit);
                return 0;
        }
 

According to RFC 4861, the ICMPv6 code of neighbour messages should be 0, so drop packets that do not fulfill 
this requirement:
 
        if (msg->icmph.icmp6_code != 0) {
                ND_PRINTK(2, warn, "NDISC: invalid ICMPv6 code: %d\n",
                          msg->icmph.icmp6_code);
        return 0;
        }
 
        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 
        switch (msg->icmph.icmp6_type) {
        case NDISC_NEIGHBOUR_SOLICITATION:
                ndisc_recv_ns(skb);
                break;
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        case NDISC_NEIGHBOUR_ADVERTISEMENT:
                ndisc_recv_na(skb);
                break;
 
        case NDISC_ROUTER_SOLICITATION:
                ndisc_recv_rs(skb);
                break;
 
        case NDISC_ROUTER_ADVERTISEMENT:
                ndisc_router_discovery(skb);
                break;
 
        case NDISC_REDIRECT:
                ndisc_redirect_rcv(skb);
                break;
        }
 
        return 0;
}
 

I do not discuss router solicitations and router advertisements in this chapter, since they are discussed in  
Chapter 8. Let’s take a look at the ndisc_recv_ns() method:
 
static void ndisc_recv_ns(struct sk_buff *skb)
{
        struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb);
        const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr;
        const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr;
        u8 *lladdr = NULL;
        u32 ndoptlen = skb->tail - (skb->transport_header +
                                    offsetof(struct nd_msg, opt));
        struct ndisc_options ndopts;
        struct net_device *dev = skb->dev;
        struct inet6_ifaddr *ifp;
        struct inet6_dev *idev = NULL;
        struct neighbour *neigh;
 

The ipv6_addr_any() method returns 1 when saddr is the unspecified address of all zeroes (IPV6_ADDR_ANY). 
When the source address is the unspecified address (all zeroes), this means that the request is DAD:
 
        int dad = ipv6_addr_any(saddr);
        bool inc;
        int is_router = -1;
 

Perform some validity checks:
 
        if (skb->len < sizeof(struct nd_msg)) {
                ND_PRINTK(2, warn, "NS: packet too short\n");
                return;
        }
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if (ipv6_addr_is_multicast(&msg->target)) {
        ND_PRINTK(2, warn, "NS: multicast target address\n");
        return;
}
 
/*
 * RFC2461 7.1.1:
 * DAD has to be destined for solicited node multicast address.
 */
if (dad && !ipv6_addr_is_solict_mult(daddr)) {
        ND_PRINTK(2, warn, "NS: bad DAD packet (wrong destination)\n");
        return;
}
 
if (!ndisc_parse_options(msg->opt, ndoptlen, &ndopts)) {
        ND_PRINTK(2, warn, "NS: invalid ND options\n");
        return;
}
 
if (ndopts.nd_opts_src_lladdr) {
        lladdr = ndisc_opt_addr_data(ndopts.nd_opts_src_lladdr, dev);
        if (!lladdr) {
                ND_PRINTK(2, warn,
                          "NS: invalid link-layer address length\n");
                return;
        }
 
        /* RFC2461 7.1.1:
         *      If the IP source address is the unspecified address,
         *      there MUST NOT be source link-layer address option
         *      in the message.
         */
        if (dad) {
                ND_PRINTK(2, warn,
                          "NS: bad DAD packet (link-layer address option)\n");
                return;
        }
}
 
inc = ipv6_addr_is_multicast(daddr);
 
ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1);
if (ifp) {
 
        if (ifp->flags & (IFA_F_TENTATIVE|IFA_F_OPTIMISTIC)) {
                if (dad) {
                        /*
                         * We are colliding with another node
                         * who is doing DAD
                         * so fail our DAD process
                        */
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                        addrconf_dad_failure(ifp);
                        return;
                } else {
                        /*
                         * This is not a dad solicitation.
                         * If we are an optimistic node,
                         * we should respond.
                         * Otherwise, we should ignore it.
                        */
                        if (!(ifp->flags & IFA_F_OPTIMISTIC))
                                goto out;
                }
        }
 
        idev = ifp->idev;
} else {
        struct net *net = dev_net(dev);
 
        idev = in6_dev_get(dev);
        if (!idev) {
                /* XXX: count this drop? */
                return;
        }
 
        if (ipv6_chk_acast_addr(net, dev, &msg->target) ||
            (idev->cnf.forwarding &&
             (net->ipv6.devconf_all->proxy_ndp || idev->cnf.proxy_ndp) &&
             (is_router = pndisc_is_router(&msg->target, dev)) >= 0)) {
                if (!(NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED) &&
                    skb->pkt_type != PACKET_HOST &&
                    inc != 0 &&
                    idev->nd_parms->proxy_delay != 0) {
                        /*
                         * for anycast or proxy,
                         * sender should delay its response
                         * by a random time between 0 and
                         * MAX_ANYCAST_DELAY_TIME seconds.
                         * (RFC2461) -- yoshfuji
                        */
                        struct sk_buff *n = skb_clone(skb, GFP_ATOMIC);
                        if (n)
                                pneigh_enqueue(&nd_tbl, idev->nd_parms, n);
                        goto out;
                }
        } else
                goto out;
}
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if (is_router < 0)
        is_router = idev->cnf.forwarding;
 
if (dad) {
 

Send a neighbour advertisement message:
 
        ndisc_send_na(dev, NULL, &in6addr_linklocal_allnodes, &msg->target,
                      !!is_router, false, (ifp != NULL), true);
        goto out;
}
 
if (inc)
        NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_mcast);
else
        NEIGH_CACHE_STAT_INC(&nd_tbl, rcv_probes_ucast);
 
/*
 *      update / create cache entry
 *      for the source address
*/
neigh = __neigh_lookup(&nd_tbl, saddr, dev,
                       !inc || lladdr || !dev->addr_len);
if (neigh)
 

Update your neighbouring table with the sender’s L2 address; the nud_state will be set to be NUD_STALE:
 
        neigh_update(neigh, lladdr, NUD_STALE,
                     NEIGH_UPDATE_F_WEAK_OVERRIDE|
                     NEIGH_UPDATE_F_OVERRIDE);
if (neigh || !dev->header_ops) {
 

Send a Neighbour Advertisement message:
 
                ndisc_send_na(dev, neigh, saddr, &msg->target,
                              !!is_router,
                              true, (ifp != NULL && inc), inc);
                if (neigh)
                        neigh_release(neigh);
        }
 
out:
        if (ifp)
                in6_ifa_put(ifp);
        else
                in6_dev_put(idev);
}
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Let’s take a look at the method that handles Neighbour Advertisements, ndisc_recv_na():
 
static void ndisc_recv_na(struct sk_buff *skb)
{
        struct nd_msg *msg = (struct nd_msg *)skb_transport_header(skb);
        const struct in6_addr *saddr = &ipv6_hdr(skb)->saddr;
        const struct in6_addr *daddr = &ipv6_hdr(skb)->daddr;
        u8 *lladdr = NULL;
        u32 ndoptlen = skb->tail - (skb->transport_header +
                                    offsetof(struct nd_msg, opt));
        struct ndisc_options ndopts;
        struct net_device *dev = skb->dev;
        struct inet6_ifaddr *ifp;
        struct neighbour *neigh;
 
        if (skb->len < sizeof(struct nd_msg)) {
                ND_PRINTK(2, warn, "NA: packet too short\n");
                return;
        }
 
        if (ipv6_addr_is_multicast(&msg->target)) {
                ND_PRINTK(2, warn, "NA: target address is multicast\n");
                return;
        }
 
        if (ipv6_addr_is_multicast(daddr) &&
            msg->icmph.icmp6_solicited) {
                ND_PRINTK(2, warn, "NA: solicited NA is multicasted\n");
                return;
        }
 
        if (!ndisc_parse_options(msg->opt, ndoptlen, &ndopts)) {
                ND_PRINTK(2, warn, "NS: invalid ND option\n");
                return;
        }
        if (ndopts.nd_opts_tgt_lladdr) {
                lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, dev);
                if (!lladdr) {
                        ND_PRINTK(2, warn,
                                  "NA: invalid link-layer address length\n");
                        return;
                }
        }
        ifp = ipv6_get_ifaddr(dev_net(dev), &msg->target, dev, 1);
        if (ifp) {
                if (skb->pkt_type != PACKET_LOOPBACK
                    && (ifp->flags & IFA_F_TENTATIVE)) {
                                addrconf_dad_failure(ifp);
                                return;
                }
                /* What should we make now? The advertisement
                   is invalid, but ndisc specs say nothing
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                   about it. It could be misconfiguration, or
                   an smart proxy agent tries to help us :-)
 
                   We should not print the error if NA has been
                   received from loopback - it is just our own
                   unsolicited advertisement.
                 */
                if (skb->pkt_type != PACKET_LOOPBACK)
                        ND_PRINTK(1, warn,
                                  "NA: someone advertises our address %pI6 on %s!\n",
                                  &ifp->addr, ifp->idev->dev->name);
                in6_ifa_put(ifp);
                return;
        }
        neigh = neigh_lookup(&nd_tbl, &msg->target, dev);
 
        if (neigh) {
                u8 old_flags = neigh->flags;
                struct net *net = dev_net(dev);
 
                if (neigh->nud_state & NUD_FAILED)
                        goto out;
 
                /*
                 * Don't update the neighbour cache entry on a proxy NA from
                 * ourselves because either the proxied node is off link or it
                 * has already sent a NA to us.
                 */
                if (lladdr && !memcmp(lladdr, dev->dev_addr, dev->addr_len) &&
                    net->ipv6.devconf_all->forwarding &&
                    net->ipv6.devconf_all->proxy_ndp &&
                    pneigh_lookup(&nd_tbl, net, &msg->target, dev, 0)) {
                        /* XXX: idev->cnf.proxy_ndp */
                        goto out;
                }
 

Update the neighbouring table. When the received message is a Neighbour Solicitation, the icmp6_solicited is 
set, so you want to set the state to be NUD_REACHABLE. When the icmp6_override flag is set, you want the override 
flag to be set (this mean update the L2 address with the specified lladdr, if it is different):
 
                neigh_update(neigh, lladdr,
                             msg->icmph.icmp6_solicited ? NUD_REACHABLE : NUD_STALE,
                             NEIGH_UPDATE_F_WEAK_OVERRIDE|
                             (msg->icmph.icmp6_override ? NEIGH_UPDATE_F_OVERRIDE : 0)|
                             NEIGH_UPDATE_F_OVERRIDE_ISROUTER|
                             (msg->icmph.icmp6_router ? NEIGH_UPDATE_F_ISROUTER : 0));
 
                if ((old_flags & ~neigh->flags) & NTF_ROUTER) {
                        /*
                         * Change: router to host
                         */
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                        struct rt6_info *rt;
                        rt = rt6_get_dflt_router(saddr, dev);
                        if (rt)
                                ip6_del_rt(rt);
                }
 
out:
                neigh_release(neigh);
        }
} 

Summary
This chapter described the neighbouring subsystem in IPv4 and in IPv6. First you learned about the goals of the 
neighbouring subsystem. Then you learned about ARP requests and ARP replies in IPv4, and about NDISC Neighbour 
Solicitation and NDISC Neighbour Advertisements in IPv6. You also found out about how DAD implementation 
avoids duplicate IPv6 addresses, and you saw various methods for handling the neighbouring subsystem requests and 
replies. Chapter 8 discusses the IPv6 subsystem implementation. The “Quick Reference” section that follows covers 
the top methods and macros related to the topics discussed in this chapter, ordered by their context. I also show the 
neigh_statistics structure, which represents statistics collected by the neighbouring subsystem.

Quick Reference
The following are some important methods and macros of the neighbouring subsystem, and a description of the 
neigh_statistics structure.

Note■■  T he core neighbouring code is in net/core/neighbour.c, include/net/neighbour.h and  
include/uapi/linux/neighbour.h.

The ARP code (IPv4) is in net/ipv4/arp.c, include/net/arp.h and in include/uapi/linux/if_arp.h.

The NDISC code (IPv6) is in net/ipv6/ndisc.c and include/net/ndisc.h.

Methods
Let’s start by covering the methods.

void neigh_table_init(struct neigh_table *tbl)
This method invokes the neigh_table_init_no_netlink() method to perform the initialization of the neighbouring 
table, and links the table to the global neighbouring tables linked list (neigh_tables).
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void neigh_table_init_no_netlink(struct neigh_table *tbl)
This method performs all the neighbour initialization apart from linking it to the global neighbouring table linked list, 
which is done by the neigh_table_init(), as mentioned earlier.

int neigh_table_clear(struct neigh_table *tbl)
This method frees the resources of the specified neighbouring table.

struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
This method allocates a neighbour object.

struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
This method allocates a neighbouring hash table.

struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey, struct 
net_device *dev, bool want_ref)
This method creates a neighbour object.

int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
This method adds a neighbour entry; it is the handler for netlink RTM_NEWNEIGH message.

int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
This method deletes a neighbour entry; it is the handler for netlink RTM_DELNEIGH message.

void neigh_probe(struct neighbour *neigh)
This method fetches an SKB from the neighbour arp_queue and calls the corresponding solicit() method to send it. 
In case of ARP, it will be arp_solicit(). It increments the neighbour probes counter and frees the packet.

int neigh_forced_gc(struct neigh_table *tbl)
This method is a synchronous garbage collection method. It removes neighbour entries that are not in the permanent 
state (NUD_PERMANENT) and whose reference count equals 1. The removal and cleanup of a neighbour is done by 
first setting the dead flag of the neighbour to be 1 and then calling the neigh_cleanup_and_release() method, which 
gets a neighbour object as a parameter. The neigh_forced_gc() method is invoked from the neigh_alloc() method 
under some conditions, as described in the “Creating and Freeing a Neighbour” section earlier in this chapter. The 
neigh_forced_gc() method returns 1 if at least one neighbour object was removed, and 0 otherwise.
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void neigh_periodic_work(struct work_struct *work)
This method is the asynchronous garbage collector handler.

static void neigh_timer_handler(unsigned long arg)
This method is the per-neighbour periodic timer garbage collector handler.

struct neighbour *__neigh_lookup(struct neigh_table *tbl, const void *pkey, struct 
net_device *dev, int creat)
This method performs a lookup in the specified neighbouring table by the given key. If the creat parameter is 1, and 
the lookup fails, call the neigh_create() method to create a neighbour entry in the specified neighbouring table and 
return it.

neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
This method initializes the L2 cache (hh_cache object) of the specified neighbour based on the specified routing 
cache entry.

void __init arp_init(void)
This method performs the setup for the ARP protocol: initialize the ARP table, register the arp_rcv() as a handler for 
receiving ARP packets, initialize procfs entries, register sysctl entries,  and register the ARP netdev notifier callback,  
arp_netdev_event().

int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, 
struct net_device *orig_dev)
This method is the Rx handler for ARP packets (Ethernet packets with type 0x0806).

int arp_constructor(struct neighbour *neigh)
This method performs ARP neighbour initialization.

int arp_process(struct sk_buff *skb)
This method, invoked by the arp_rcv() method, handles the main processing of ARP requests and ARP responses.

void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
This method sends the solicitation request (ARPOP_REQUEST) after some checks and initializations, by calling the 
arp_send() method.
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void arp_send(int type, int ptype, __be32 dest_ip, struct net_device *dev, __be32 
src_ip, const unsigned char *dest_hw, const unsigned char *src_hw, const 
unsigned char *target_hw)
This method creates an ARP packet and initializes it with the specified parameters, by calling the arp_create() 
method, and sends it by calling the arp_xmit() method.

void arp_xmit(struct sk_buff *skb)
This method actually sends the packet by calling the NF_HOOK macro with dev_queue_xmit().

struct arphdr *arp_hdr(const struct sk_buff *skb)
This method fetches the ARP header of the specified SKB.

int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
This method translates an IPv4 address to L2 (link layer) address according to the network device type. When the 
device is an Ethernet device, for example, this is done with the ip_eth_mc_map() method; when the device is an 
Infiniband device, this is done with the ip_ib_mc_map() method.

static inline int arp_fwd_proxy(struct in_device *in_dev, struct net_device *dev, 
struct rtable *rt)
This method returns 1 if the specified device can use proxy ARP for the specified routing entry.

static inline int arp_fwd_pvlan(struct in_device *in_dev, struct net_device *dev, 
struct rtable *rt, __be32 sip, __be32 tip)
This method returns 1 if the specified device can use proxy ARP VLAN for the specified routing entry and specified 
IPv4 source and destination addresses.

int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
This method is the ARP handler for netdev notification events.

int ndisc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
This method is the NDISC handler for netdev notification events.

int ndisc_rcv(struct sk_buff *skb)
This method is the main NDISC handler for receiving one of the five types of solicitation packets.
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static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
This method discards the packet and returns –ENETDOWN error (network is down).

static void ndisc_recv_ns(struct sk_buff *skb) and static void  
ndisc_recv_na(struct sk_buff *skb)
These methods handle receiving Neighbour Solicitation and Neighbour Advertisement, respectively.

static void ndisc_recv_rs(struct sk_buff *skb) and static void  
ndisc_router_discovery(struct sk_buff *skb)
These methods handle receiving router solicitation and router advertisement, respectively.

int ndisc_mc_map(const struct in6_addr *addr, char *buf, struct net_device *dev, 
int dir)
This method translates an IPv4 address to a L2 (link layer) address according to the network device type. In Ethernet 
under IPv6, this is done by the ipv6_eth_mc_map() method.

int ndisc_constructor(struct neighbour *neigh)
This method performs NDISC neighbour initialization.

void ndisc_solicit(struct neighbour *neigh, struct sk_buff *skb)
This method sends the solicitation request after some checks and initializations, by calling the ndisc_send_ns() 
method.

int icmpv6_rcv(struct sk_buff *skb)
This method is a handler for receiving ICMPv6 messages.

bool ipv6_addr_any(const struct in6_addr *a)
This method returns 1 when the given IPv6 address is the unspecified address of all zeroes (IPV6_ADDR_ANY).

int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b)
This method checks whether the two specified addresses are on the same subnet.

Macros
Now, let’s look at the macros.
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IN_DEV_PROXY_ARP(in_dev)
This macro returns true if /proc/sys/net/ipv4/conf/<netDevice>/proxy_arp is set or if /proc/sys/net/ipv4/
conf/all/proxy_arp is set, where netDevice is the network device associated with the specified in_dev.

IN_DEV_PROXY_ARP_PVLAN(in_dev)
This macro returns true if /proc/sys/net/ipv4/conf/<netDevice>/proxy_arp_pvlan is set, where netDevice is the 
network device associated with the specified in_dev.

IN_DEV_ARPFILTER(in_dev)
This macro returns true if /proc/sys/net/ipv4/conf/<netDevice>/arp_filter is set or if /proc/sys/net/ipv4/
conf/all/arp_filter is set, where netDevice is the network device associated with the specified in_dev.

IN_DEV_ARP_ACCEPT(in_dev)
This macro returns true if /proc/sys/net/ipv4/conf/<netDevice>/arp_accept is set or if /proc/sys/net/ipv4/
conf/all/arp_accept is set, where netDevice is the network device associated with the specified in_dev.

IN_DEV_ARP_ANNOUNCE(in_dev)
This macro returns the max value of /proc/sys/net/ipv4/conf/<netDevice>/arp_announce and /proc/sys/net/
ipv4/conf/all/arp_announce, where netDevice is the network device associated with the specified in_dev.

IN_DEV_ARP_IGNORE(in_dev)
This macro returns the max value of /proc/sys/net/ipv4/conf/<netDevice>/arp_ignore and /proc/sys/net/ipv4/
conf/all/arp_ignore, where netDevice is the network device associated with the specified in_dev.

IN_DEV_ARP_NOTIFY(in_dev)
This macro returns the max value of /proc/sys/net/ipv4/conf/<netDevice>/arp_notify and /proc/sys/net/ipv4/
conf/all/arp_notify, where netDevice is the network device associated with the specified in_dev.

IN_DEV_SHARED_MEDIA(in_dev)
This macro returns true if /proc/sys/net/ipv4/conf/<netDevice>/shared_media is set or if /proc/sys/net/ipv4/
conf/all/shared_media is set, where netDevice is the network device associated with the specified in_dev.

IN_DEV_ROUTE_LOCALNET(in_dev)
This macro returns true if /proc/sys/net/ipv4/conf/<netDevice>/route_localnet is set or if /proc/sys/net/
ipv4/conf/all/route_localnet is set, where netDevice is the network device associated with the specified in_dev.
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neigh_hold()
This macro increments the reference count of the specified neighbour.

The neigh_statistics Structure
The neigh_statistics structure is important for monitoring the neighbouring subsystem; as mentioned in the 
beginning of the chapter, both ARP and NDISC export this structure members via procfs (/proc/net/stat/arp_cache 
and /proc/net/stat/ndisc_cache, respectively). Following is a description of its members and pointing out where 
they are incremented:
 
struct neigh_statistics {
        unsigned long allocs;           /* number of allocated neighs     */
        unsigned long destroys;         /* number of destroyed neighs     */
        unsigned long hash_grows;       /* number of hash resizes         */
        unsigned long res_failed;       /* number of failed resolutions   */
        unsigned long lookups;          /* number of lookups              */
        unsigned long hits;             /* number of hits (among lookups) */
        unsigned long rcv_probes_mcast; /* number of received mcast ipv6  */
        unsigned long rcv_probes_ucast; /* number of received ucast ipv6  */
        unsigned long periodic_gc_runs; /* number of periodic GC runs     */
        unsigned long forced_gc_runs;   /* number of forced GC runs       */
        unsigned long unres_discards;   /* number of unresolved drops     */
};
 

Here is a description of the members of the neigh_statistics structure:

•	 allocs: The number of the allocated neighbours; incremented by the neigh_alloc() method.

•	 destroys: The number of the destroyed neighbours; incremented by the neigh_destroy() 
method.

•	 hash_grows: The number of times that hash resize was done; incremented by the  
neigh_hash_grow() method.

•	 res_failed: The number of failed resolutions; incremented by the neigh_invalidate() 
method.

•	 lookups: The number of neighbour lookups that were done; incremented by the  
neigh_lookup() method and by the neigh_lookup_nodev() method.

•	 hits: The number of hits when performing a neighbour lookup ; incremented by the  
neigh_lookup() method and by the neigh_lookup_nodev() method, when you have a hit.

•	 rcv_probes_mcast: The number of received multicast probes (IPv6 only); incremented by the 
ndisc_recv_ns() method.

•	 rcv_probes_ucast: The number of received unicast probes (IPv6 only); incremented by the 
ndisc_recv_ns() method.

•	 periodic_gc_runs: The number of periodic GC invocations; incremented by the  
neigh_periodic_work() method.
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•	 forced_gc_runs: The number of forced GC invocations; incremented by the neigh_forced_
gc() method.

•	 unres_discards: The number of unresolved drops; incremented by the __neigh_event_
send()  method when an unresolved packet is discarded.

Table
Here is the table that was covered.

Table 7-1.  Network Unreachability Detection States

Linux Symbol

NUD_INCOMPLETE Address resolution is in progress and the link-layer address of the neighbour has not yet 
been determined. This means that a solicitation request was sent, and you are waiting for a 
solicitation reply or a timeout.

NUD_REACHABLE The neighbour is known to have been reachable recently.

NUD_STALE More than ReachableTime milliseconds have elapsed since the last positive confirmation 
that the forward path was functioning properly was received.

NUD_DELAY The neighbour is no longer known to be reachable. Delay sending probes for a short while in 
order to give upper layer protocols a chance to provide reachability confirmation.

NUD_PROBE The neighbour is no longer known to be reachable, and unicast Neighbour Solicitation 
probes are being sent to verify reachability.

NUD_FAILED Set the neighbour to be unreachable. When you delete a neighbour, you set it to be in the 
NUD_FAILED state.
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Chapter 8

IPv6

In Chapter 7, I dealt with the Linux Neighbouring Subsystem and its implementation. In this chapter, I will discuss  
the IPv6 protocol and its implementation in Linux. IPv6 is the next-generation network layer protocol of the TCP/IP  
protocol stack. It was developed by the Internet Engineering Task Force (IETF), and it is intended to replace IPv4, 
which still carries the vast majority of Internet traffic.

In the early ‘90s, the IETF started an effort to develop the next generation of the IP protocol, due to the 
anticipated Internet growth. The first IPv6 RFC is from 1995: RFC 1883, “Internet Protocol, Version 6 (IPv6) 
Specification.” Later, in 1998, RFC 2460 replaced it. The main problem IPv6 solves is the shortage of addresses: the 
length of an IPv6 address is 128 bits. IPv6 sets a much larger address space. Instead of 2^32 addresses in IPv4, we have 
2^128 addresses in IPv6. This indeed enlarges the address space significantly, probably far more than will be needed 
in the next few decades. But extended address space is not the only advantage of IPv6, as some might think. Based on 
the experience gained with IPv4, many changes were made in IPv6 to improve the IP protocol. We will discuss many 
of these changes in this chapter.

The IPv6 protocol is now gaining momentum as an improved network layer protocol. The growing popularity 
of the Internet all over the globe, and the growing markets for smart mobile devices and tablets, surely make the 
exhaustion of IPv4 addresses a more evident problem. This gives rise to the need for transitioning to the IPv4 
successor, the IPv6 protocol.

IPv6 – Short Introduction
The IPv6 subsystem is undoubtedly a very broad subject, which is growing steadily. Exciting features were added 
during the last decade. Some of these new features are based on IPv4, like ICMPv6 sockets, IPv6 Multicast Routing, 
and IPv6 NAT. IPsec is mandatory in IPv6 and optional in IPv4, though most operating systems implemented IPsec 
also in IPv4. When we delve into the IPv6 kernel internals, we find many similarities. Sometime the names of the 
methods and even the names of some of the variables are similar, except for the addition of “v6” or “6.” There are, 
however, some changes in the implementation in some places.

We chose to discuss in this chapter the important new features of IPv6, show some places where it differs 
from IPv4, and explain why a change was made. The extension headers, the Multicast Listener Discovery (MLD) 
protocol, and the Autoconfiguration process are some of the new features that we discuss and demonstrate with 
some userspace examples. We also discuss how receiving IPv6 packets works, how IPv6 forwarding works, and some 
points of difference when comparing them to IPv4. On the whole, it seems that the developers of IPv6 made a lot of 
improvements based on the past experience with IPv4, and the IPv6 implementation brings a lot of benefits not found 
in IPv4 and a lot of advantages over IPv4. We will discuss IPv6 addresses in the following section, including multicast 
addresses and special addresses.
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IPv6 Addresses
The first step in learning IPv6 is to become familiar with the IPv6 Addressing Architecture, which is defined in RFC 
4291. There are three types of IPv6 addresses:

•	 Unicast: This address uniquely identifies an interface. A packet sent to a unicast address is 
delivered to the interface identified by that address.

•	 Anycast: This address can be assigned for a set of interfaces (usually on different nodes). 
This type of address does not exist in IPv4. It is, in fact, a mixture of a unicast address and a 
multicast address. A packet sent to an anycast address is delivered to one of the interfaces 
identified by that address (the “nearest” one, according to the routing protocols).

•	 Multicast: This address can be assigned for a set of interfaces (usually on different nodes).  
A packet sent to a multicast address is delivered to all the interfaces identified by that address. 
An interface can belong to any number of multicast groups.

There is no broadcast address in IPv6. In IPv6, to get the same result as broadcast, you can send a packet to the 
group multicast address of all nodes (ff02::1). In IPv4, a large part of the functionality of the Address Resolution 
Protocol (ARP) protocol is based on broadcasts. The IPv6 subsystem uses neighbour discovery instead of ARP to 
map L3 addresses to L2 addresses. The IPv6 neighbour discovery protocol is based on ICMPv6, and it uses multicast 
addresses instead of broadcasts, as you saw in the previous chapter. You will see more examples of using multicast 
traffic later in this chapter.

An IPv6 address comprises of 8 blocks of 16 bits, which is 128 bits in total. An IPv6 address looks like this: 
xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx (where x is a hexadecimal digit.) Sometimes you will encounter "::" 
inside an IPv6 address; this is a shortcut for leading zeroes.

In IPv6, address prefixes are used. Prefixes are, in fact, the parallel of IPv4 subnet masks. IPv6 prefixes are 
described in RFC 4291, “IP Version 6 Addressing Architecture.” An IPv6 address prefix is represented by the following 
notation: ipv6-address/prefix-length.

The prefix-length is a decimal value specifying how many of the leftmost contiguous bits of the address comprise 
the prefix. We use "/n" to denote a prefix n bits long. For example, for all IPv6 addresses that begin with the 32 bits 
2001:0da7, the following prefix is used: 2001:da7::/32.

Now that you have learned about the types of IPv6 addresses, you will learn in the following section about some 
special IPv6 addresses and their usage.

Special Addresses
In this section, I describe some special IPv6 addresses and their usage. It is recommended that you be familiar with 
these special addresses because you will encounter some of them later in this chapter (like the unspecified address 
of all zeroes that is used in DAD, or Duplicate Address Detection) and while browsing the code. The following list 
contains special IPv6 addresses and explanations about their usage:

There should be at least one •	 link-local unicast address on each interface. The link-local 
address allows communication with other nodes in the same physical network; it is required 
for neighbour discovery, automatic address configuration, and more. Routers must not 
forward any packets with link-local source or destination addresses. Link-local addresses are 
assigned with the prefix fe80::/64.

The Global Unicast Address general format is as follows: the first •	 n bits are the global 
routing prefix, the next m bits are the subnet ID, and the rest of the 128-n-m bits are the 
interface ID.
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•	 global routing prefix: A value assigned to a site. It represents the network ID or prefix of 
the address.

•	 subnet ID: An identifier of a subnet within the site.

•	 interface ID: An id; its value must be unique within the subnet. This is defined in RFC 3513, 
section 2.5.1.

The Global Unicast Address is described in RFC 3587, “IPv6 Global Unicast Address Format.” The assignable 
Global Unicast Address space is defined in RFC 4291.

The IPv6 loopback address is •	 0:0:0:0:0:0:0:1, or ::1 in short notation.

The address of all zeroes (•	 0:0:0:0:0:0:0:0) is called the unspecified address. It is used in 
DAD (Duplicate Address Detection) as you saw in the previous chapter. It should not be used 
as a destination address. You cannot assign the unspecified address to an interface by using 
userspace tools like the ip command or the ifconfig command.

•	 IPv4-mapped IPv6 addresses are addresses that start with 80 bits of zero. The next 16 bits 
are one, and the remaining 32 bits are the IPv4 address. For example, ::ffff:192.0.2.128 
represents the IPv4 address of 192.0.2.128. For usage of these addresses, see RFC 4038, 
“Application Aspects of IPv6 Transition.”

•	 The IPv4-compatible format is deprecated; in this format, the IPv4 address is in the lower  
32 bits of the IPv6 address and all remaining bits are 0; the address mentioned earlier should be 
::192.0.2.128 in this format. See RFC 4291, section 2.5.5.1.

•	 Site local addresses were originally designed to be used for addressing inside of a site without 
the need for a global prefix, but they were deprecated in RFC 3879, “Deprecating Site Local 
Addresses,” in 2004.

An IPv6 address is represented in Linux by the in6_addr structure; using a union with three arrays (with 8, 16, 
and 32 bit elements) in the in6_addr structure helps in bit-manipulation operations:
 
struct in6_addr {
        union {
                __u8            u6_addr8[16];
                __be16          u6_addr16[8];
                __be32          u6_addr32[4];
        } in6_u;
#define s6_addr                 in6_u.u6_addr8
#define s6_addr16               in6_u.u6_addr16
#define s6_addr32               in6_u.u6_addr32
};
 
(include/uapi/linux/in6.h)

Multicast plays an important role in IPv6, especially for ICMPv6-based protocols like NDISC (which I discussed 
in Chapter 7, which dealt with the Linux Neighbouring Subsystem) and MLD (which is discussed later in this chapter).  
I will now discuss multicast addresses in IPv6 in the next section.
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Multicast Addresses
Multicast addresses provide a way to define a multicast group; a node can belong to one or more multicast groups. 
Packets whose destination is a multicast address should be delivered to every node that belongs to that multicast 
group. In IPv6, all multicast addresses start with FF (8 first bits). Following are 4 bits for flags and 4 bits for scope. 
Finally, the last 112 bits are the group ID. The 4 bits of the flags field have this meaning:

•	 Bit 0: Reserved for future use.

•	 Bit 1: A value of 1 indicates that a Rendezvous Point is embedded in the address. Discussion 
of Rendezvous Points is more related to userspace daemons and is not within the scope of 
this book. For more details, see RFC 3956, “Embedding the Rendezvous Point (RP) Address in 
an IPv6 Multicast Address.” This bit is sometimes referred to as the R-flag (R for Rendezvous 
Point.)

•	 Bit 2: A value of 1 indicates a multicast address that is assigned based on the network prefix. 
(See RFC 3306.) This bit is sometimes referred to as the P-flag (P for Prefix information.)

•	 Bit 3:  A value of 0 indicates a permanently-assigned (“well-known”) multicast address, 
assigned by the Internet Assigned Numbers Authority (IANA). A value of 1 indicates a  
non-permanently-assigned (“transient”) multicast address. This bit is sometimes referred  
to as the T-flag (T for Temporary.)

The scope can be one of the entries in Table 8-1, which shows the various IPv6 scopes by their Linux symbol and 
by their value.

Now that you’ve learned about IPv6 multicast addresses, you will learn about some special multicast addresses in 
the next section.

Special Multicast Addresses
There are some special multicast addresses that I will mention in this chapter. Section 2.7.1 of RFC 4291 defines these 
special multicast addresses:

All Nodes Multicast Address group: •	 ff01::1, ff02::1

All Routers Multicast Address group: •	 ff01::2, ff02::2, ff05::2

According to RFC 3810, there is this special address: All MLDv2-capable routers Multicast Group, which is 
ff02::16. Version 2 Multicast Listener Reports will be sent to this special address; I will discuss it in the “Multicast 
Listener Discovery (MLD)” section later in this chapter.

Table 8-1.  IPv6 scopes

Hex value Description Linux Symbol

0x01 node local IPV6_ADDR_SCOPE_NODELOCAL

0x02 link local IPV6_ADDR_SCOPE_LINKLOCAL

0x05 site local IPV6_ADDR_SCOPE_SITELOCAL

0x08 organization IPV6_ADDR_SCOPE_ORGLOCAL

0x0e global IPV6_ADDR_SCOPE_GLOBAL
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A node is required to compute and join (on the appropriate interface) the associated Solicited-Node multicast 
addresses for all unicast and anycast addresses that have been configured for the node’s interfaces (manually or 
automatically). Solicited-Node multicast addresses are computed based on the node’s unicast and anycast addresses. 
A Solicited-Node multicast address is formed by taking the low-order 24 bits of an address (unicast or anycast) 
and appending those bits to the prefix ff02:0:0:0:0:1:ff00::/104, resulting in a multicast address in the range 
ff02:0:0:0:0:1:ff00:0000 to ff02:0:0:0:0:1:ffff:ffff. See RFC 4291.

The method addrconf_addr_solict_mult() computes a link-local, solicited-node multicast address  
(include/net/addrconf.h). The method addrconf_join_solict() joins to a solicited address multicast group  
(net/ipv6/addrconf.c).

In the previous chapter, you saw that a neighbour advertisement message is sent by the ndisc_send_na() 
method to the link-local, all nodes address (ff02::1). You will see more examples of using special addresses like the 
all nodes multicast group address or all routers multicast group address in later subsections of this chapter. In this 
section, you have seen some multicast addresses, which you will encounter later in this chapter and while browsing 
the IPv6 source code. I will now discuss the IPv6 header in the following section.

IPv6 Header
Each IPv6 packet starts with an IPv6 header, and it is important to learn about its structure to understand fully the 
IPv6 Linux implementation. The IPv6 header has a fixed length of 40 bytes; for this reason, there is no field specifying 
the IPv6 header length (as opposed to IPv4, where the ihl member of the IPv4 header represents the header length). 
Note that there is also no checksum field in the IPv6 header, and this will be explained later in this chapter. In IPv6, 
there is no IP options mechanism as in IPv4. The IP options processing mechanism in IPv4 has a performance cost. 
Instead, IPV6 has a much more efficient mechanism of extension headers, which will be discussed in the next section, 
“extension headers.” Figure 8-1 shows the IPv6 header and its fields.

Note that in the original IPv6 standard, RFC 2460, the priority (Traffic Class) is 8 bits and the flow label is 20 bits. 
In the definition of the ipv6hdr structure, the priority (Traffic Class) field size is 4 bits. In fact, in the Linux IPv6 
implementation, the first 4 bits of flow_lbl are glued to the priority (Traffic Class) field in order to form a “class.” 
Figure 8-1 reflects the Linux definition of the ipv6hdr structure, which is shown here:
 
struct ipv6hdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u8                    priority:4,
                                version:4;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u8                    version:4,

Figure 8-1.  IPv6 header
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                                priority:4;
#else
#error  "Please fix <asm/byteorder.h>"
#endif
        __u8                    flow_lbl[3];
 
        __be16                  payload_len;
        __u8                    nexthdr;
        __u8                    hop_limit;
 
        struct  in6_addr        saddr;
        struct  in6_addr        daddr;
};
 
(include/uapi/linux/ipv6.h)

The following is a description of the members of the ipv6hdr structure:

•	 version: A 4-bit field. It should be set to 6.

•	 priority: Indicates the traffic class or priority of the IPv6 packet. RFC 2460, the base of IPv6, 
does not define specific traffic class or priority values.

•	 flow_lbl: The flow labeling field was regarded as experimental when the base IPv6 standard 
was written (RFC 2460). It provides a way to label sequences of packets of a particular flow; 
this labeling can be used by upper layers for various purposes. RFC 6437, “IPv6 Flow Label 
Specification,” from 2011, suggests using flow labeling to detect address spoofing.

•	 payload_len: A 16-bit field. The size of the packet, without the IPv6 header, can be up 
to 65,535 bytes. I will discuss larger packets (“jumbo frames”) in the next section, when 
presenting the Hop-by-Hop Options header.

•	 nexthdr: When there are no extension headers, this will be the upper layer protocol number, 
like IPPROTO_UDP (17) for UDP or IPPROTO_TCP (6) for TCP. The list of available protocols 
is in include/uapi/linux/in.h. When using extension headers, this will be the type of the 
next header immediately following the IPv6 header. I will discuss extension headers in the 
next section.

•	 hop_limit: One byte field. Every forwarding device decrements the hop_limit counter by  
one. When it reaches zero, an ICMPv6 message is sent back and the packet is discarded.  
This parallels the TTL member in the IPv4 header. See the ip6_forward() method in  
net/ipv6/ip6_output.c.

•	 saddr: IPv6 source address (128 bit).

•	 daddr: IPv6 destination address (128 bit). This is possibly not the final packet destination if a 
Routing Header is used.

Note that, as opposed to the IPv4 header, there is no checksum in the IPv6 header. Checksumming is assumed to 
be assured by both Layer 2 and Layer 4. UDP in IPv4 permits having a checksum of 0, indicating no checksum; UDP 
in IPV6 requires having its own checksum normally. There are some special cases in IPv6 where zero UDP checksum 
is allowed for IPv6 UDP tunnels; see RFC 6935, “IPv6 and UDP Checksums for Tunneled Packets.” In Chapter 4, which 
deals with the IPv4 subsystem, you saw that when forwarding a packet the ip_decrease_ttl() method is invoked. 
This method recomputes the checksum of the IPv4 header because the value of the ttl was changed. In IPv6, there is 
no such a need for recomputation of the checksum when forwarding a packet, because there is no checksum at all in 
the IPv6 header. This results in a performance improvement in software-based routers.
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In this section, you have seen how the IPv6 header is built. You saw some differences between the IPv4 header 
and the IPv6 header—for example, in the IPv6 header there is no checksum and no header length. The next section 
discusses the IPv6 extension headers, which are the counterpart of IPv4 options.

Extension Headers
The IPv4 header can include IP options, which can extend the IPv4 header from a minimum size of 20 bytes to  
60 bytes. In IPv6, we have optional extension headers instead. With one exception (Hop-by-Hop Options header), 
extension headers are not processed by any node along a packet’s delivery path until the packet reaches its final 
destination; this improves the performance of the forwarding process significantly. The base IPv6 standard defines 
extension headers. An IPv6 packet can include 0, 1 or more extension headers. These headers can be placed between 
the IPv6 header and the upper-layer header in a packet. The nexthdr field of the IPv6 header is the number of the next 
header immediately after the IPv6 header. These extension headers are chained; every extension header has a Next 
Header field. In the last extension header, the Next Header indicates the upper-layer protocol (such as TCP, UDP, or 
ICMPv6). Another advantage of extension headers is that adding new extension headers in the future is easy and does 
not require any changes in the IPv6 header.

Extension headers must be processed strictly in the order they appear in the packet. Each extension header 
should occur at most once, except for the Destination Options header, which should occur at most twice. (See more 
detail later in this section in the description of the Destination Options header.) The Hop-by-Hop Options header 
must appear immediately after the IPv6 header; all other options can appear in any order. Section 4.1 of RFC 2460 
(“Extension Header Order”) states a recommended order in which extension headers should appear, but this is 
not mandatory. When an unknown Next Header number is encountered while processing a packet, an ICMPv6 
“Parameter Problem” message with a code of “unknown Next Header” (ICMPV6_UNK_NEXTHDR) will be sent 
back to the sender by calling the icmpv6_param_prob() method. A description of the available ICMPv6 “Parameter 
Problem Codes” appears in Table 8-4 in the “Quick Reference” section at the end of this chapter.

Each extension header must be aligned on an 8-byte boundary. For extension headers of variable size, there is a 
Header Extension Length field, and they use padding if needed to ensure that they are aligned on an 8-byte boundary. 
The numbers of all Linux IPv6 extension headers and their Linux Kernel symbol representation are displayed in 
Table 8-2, “IPv6 extension headers,” in the “Quick Reference” section at the end of this chapter.

A protocol handler is registered for each of the extension headers (except the Hop-by-Hop Options header) with 
the inet6_add_protocol() method. The reason for not registering a protocol handler for the Hop-by-Hop Options 
header is that there is a special method for parsing the Hop-by-Hop Options header, the ipv6_parse_hopopts() method.  
This method is invoked before calling the protocol handlers. (See the ipv6_rcv() method, net/ipv6/ip6_input.c). 
As mentioned before, the Hop-by-Hop Options header must be the first one, immediately following the IPv6 header. 
In this way, for example, the protocol handler for the Fragment extension header is registered:
 
static const struct inet6_protocol frag_protocol =
{
    .handler    =    ipv6_frag_rcv,
    .flags      =    INET6_PROTO_NOPOLICY,
};
 
 
int __init ipv6_frag_init(void)
{
    int ret;
 
    ret = inet6_add_protocol(&frag_protocol, IPPROTO_FRAGMENT);
 
(net/ipv6/reassembly.c)
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Here is a description of all IPv6 Extension headers:

•	 Hop-by-Hop Options header: The Hop-by-Hop Options header must be processed on each 
node. It is parsed by the ipv6_parse_hopopts() method (net/ipv6/exthdrs.c).

The Hop-by-Hop Options header must be immediately after the IPv6 header. It is used, •	
for example, by the Multicast Listener Discovery protocol, as you will see in the “Multicast 
Listener Discovery (MLD)” section later in this chapter. The Hop-by-Hop Options header 
includes a variable-length option field. Its first byte is its type, which can be one of the 
following:

Router Alert (Linux Kernel symbol: IPV6_TLV_ROUTERALERT, value: 5). See RFC 6398, •	
“IP Router Alert Considerations and Usage.”

Jumbo (Linux Kernel symbol: IPV6_TLV_JUMBO, value: 194). The IPv6 packet payload •	
normally can be up to 65,535 bytes long. With the jumbo option, it can be up to 2^32 
bytes. See RFC 2675, “IPv6 Jumbograms.”

Pad1 (Linux Kernel symbol: IPV6_TLV_PAD1, value: 0). The Pad1 option is used to insert •	
one byte of padding. When more than one padding byte is needed, the PadN option (see 
next) should be used (and not multiple Pad1 options). See section 4.2 of RFC 2460.

PadN (Linux Kernel symbol: IPV6_TLV_PADN, value: 1). The PadN option is used to insert •	
two or more octets of padding into the Options area of a header.

•	 Routing Options header: This parallels the IPv4 Loose Source Record Route (IPOPT_LSRR), 
which is discussed in the “IP Options” section in Chapter 4. It provides the ability to specify 
one or more routers that should be visited along the packet’s traversal route to its final 
destination.

•	 Fragment Options header: As opposed to IPv4, fragmentation in IPv6 can occur only  
on the host that sends the packet, not on any of the intermediate nodes. Fragmentation  
is implemented by the ip6_fragment() method, which is invoked from the  
ip6_finish_output() method. In the ip6_fragment() method, there is a slow path and a  
fast path, much the same as in IPv4 fragmentation. The implementation of IPv6 fragmentation 
is in net/ipv6/ip6_output.c, and the implementation of IPv6 defragmentation is in  
net/ipv6/reassembly.c.

•	 Authentication Header: The Authentication header (AH) provides data authentication, data 
integrity, and anti-replay protection. It is described in RFC 4302, “IP Authentication Header,” 
which makes RFC 2402 obsolete.

•	 Encapsulating Security Payload Options header: It is described in RFC 4303, “IP 
Encapsulating Security Payload (ESP),” which makes RFC 2406 obsolete. Note:  
The Encapsulating Security Payload (ESP) protocol is discussed in Chapter 10, which 
discusses the IPsec subsystem.

•	 Destination Options header: The Destination Options header can appear twice in a packet; 
before a Routing Options header, and after it. When it is before the Routing Options header,  
it includes information that should be processed by the routers that are specified by the Router 
Options header. When it is after the Router Options header, it includes information that should 
be processed by the final destination.

In the next section, you will see how the IPv6 protocol handler, which is the ipv6_rcv() method, is associated 
with IPv6 packets.
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IPv6 Initialization
The inet6_init() method performs various IPv6 initializations (like procfs initializations, registration of protocol 
handlers for TCPv6, UDPv6 and other protocols), initialization of IPv6 subsystems (like IPv6 neighbour discovery,  
IPv6 Multicast Routing, and IPv6 routing subsystem) and more. For more details, look in net/ipv6/af_inet6.c.  
The ipv6_rcv() method is registered as a protocol handler for IPv6 packets by defining a packet_type object for IPv6 
and registering it with the dev_add_pack() method, quite similarly to what is done in IPv4:
 
static struct packet_type ipv6_packet_type __read_mostly = {
        .type = cpu_to_be16(ETH_P_IPV6),
        .func = ipv6_rcv,
};
 
static int __init ipv6_packet_init(void)
{
        dev_add_pack(&ipv6_packet_type);
        return 0;
}
 
(net/ipv6/af_inet6.c)

As a result of the registration just shown, each Ethernet packet whose ethertype is ETH_P_IPV6 (0x86DD) will 
be handled by the ipv6_rcv() method. Next, I will discuss the IPv6 Autoconfiguration mechanism for setting IPv6 
addresses.

Autoconfiguration
Autoconfiguration is a mechanism that allows a host to obtain or create a unique address for each of its interfaces. 
The IPv6 autoconfiguration process is initiated at system startup; nodes (both hosts and routers) generate a link-local 
address for their interfaces. This address is regarded as “tentative” (the interface flag IFA_F_TENTATIVE is set); this 
means that it can communicate only with neighbour discovery messages. It should be verified that this address is not 
already in use by another node on the link. This is done with the DAD (Duplicate Address Detection) mechanism, 
which was described in the previous chapter which deals with the Linux Neighbouring Subsystem. If the node is not 
unique, the autoconfiguration process will stop and manual configuration will be needed. In cases where the address 
is unique, the autoconfiguration process will continue. The next phase of autoconfiguration of hosts involves sending 
one or more Router Solicitations to the all routers multicast group address (ff02::2). This is done by calling the 
ndisc_send_rs() method from the addrconf_dad_completed() method. Routers reply with a Router Advertisement 
message, which is sent to the all hosts address, ff02::1. Both the Router Solicitation and the Router Advertisement 
use the Neighbour Discovery Protocol via ICMPv6 messages. The router solicitation ICMPv6 type is NDISC_ROUTER_
SOLICITATION (133), and the router advertisement ICMPv6 type is NDISC_ROUTER_ADVERTISEMENT (134).

The radvd daemon is an example of an open source Router Advertisement daemon that is used for stateless 
autoconfiguration (http://www.litech.org/radvd/). You can set a prefix in the radvd configuration file, which will 
be sent in Router Advertisement messages. The radvd daemon sends Router Advertisements periodically. Apart 
from that, it also listens to Router Solicitations (RS) requests and answers with Router Advertisement (RA) reply 
messages. These Router Advertisement (RA) messages include a prefix field, which plays an important role in the 
autoconfiguration process, as you will immediately see. The prefix must be 64 bits long. When a host receives the 
Router Advertisement (RA) message, it configures its IP address based on this prefix and its own MAC address.  
If the Privacy Extensions feature (CONFIG_IPV6_PRIVACY) was set, there is also an element of randomness added in 
the IPv6 address creation. The Privacy Extensions mechanism avoids getting details about the identity of a machine 
from its IPv6 address, which is generated normally using its MAC address and a prefix, by adding randomness as was 
mentioned earlier. For more details on Privacy Extensions, see RFC 4941, “Privacy Extensions for Stateless Address 
Autoconfiguration in IPv6.”

http://www.litech.org/radvd/
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When a host receives a Router Advertisement message, it can automatically configure its address and some other 
parameters. It can also choose a default router based on these advertisements. It is also possible to set a preferred 
lifetime and a valid lifetime for the addresses that are configured automatically on the hosts. The preferred lifetime 
value specifies the length of time in seconds that the address, which was generated from the prefix via stateless 
address autoconfiguration, remains in a preferred state. When the preferred time is over, this address will stop 
communicating (will not answer ping6, etc.). The valid lifetime value specifies the length of time in seconds that 
the address is valid (i.e., that applications already using it can keep using it); when this time is over, the address is 
removed. The preferred lifetime and the valid lifetime are represented in the kernel by the prefered_lft and the 
valid_lft fields of the inet6_ifaddr object, respectively (include/net/if_inet6.h).

Renumbering is the process of replacing an old prefix with a new prefix, and changing the IPv6 addresses of 
hosts according to a new prefix. Renumbering can also be done quite easily with radvd, by adding a new prefix to its 
configuration settings, setting a preferred lifetime and a valid lifetime, and restarting the radvd daemon. See also RFC 
4192, “Procedures for Renumbering an IPv6 Network without a Flag Day,” and RFCs 5887, 6866, and 6879.

The Dynamic Host Configuration Protocol version 6 (DHCPv6) is an example of stateful address configuration; 
in the stateful autoconfiguration model, hosts obtain interface addresses and/or configuration information and 
parameters from a server. Servers maintain a database that keeps track of which addresses have been assigned to 
which hosts. I will not delve into the details of the DHCPv6 protocol in this book. The DHCPv6 protocol is specified by 
RFC 3315, “Dynamic Host Configuration Protocol for IPv6 (DHCPv6).” The IPv6 Stateless Autoconfiguration standard 
is described in RFC 4862, “IPv6 Stateless Address Autoconfiguration.”

You have learned in this section about the Autoconfiguration process, and you saw how easy it is to replace an old 
prefix with a new prefix by configuring and restarting radvd. The next section discusses how the ipv6_rcv() method, 
which is the IPv6 protocol handler, handles the reception of IPv6 packets in a somewhat similar way to what you saw 
in IPv4.

Receiving IPv6 Packets
The main IPv6 receive method is the ipv6_rcv() method, which is the handler for all IPv6 packets (including 
multicasts; there are no broadcasts in IPv6 as mentioned before). There are many similarities between the Rx path  
in IPv4 and in IPv6. As in IPv4, we first make some sanity checks, like checking that the version of the IPv6 header is  
6 and that the source address is not a multicast address. (According to section 2.7 of RFC 4291, this is forbidden.)  
If there is a Hop-by-Hop Options header, it must be the first one. If the value of the nexthdr of the IPV6 header is 0,  
this indicates a Hop-by-Hop Options header, and it is parsed by calling the ipv6_parse_hopopts() method. The real  
work is done by the ip6_rcv_finish() method, which is invoked by calling the NF_HOOK() macro. If there is a netfilter 
callback that is registered at this point (NF_INET_PRE_ROUTING), it will be invoked. I will discuss netfilter hooks in 
the next chapter. Let’s take a look at the ipv6_rcv() method:
 
int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
             struct net_device *orig_dev)
{
        const struct ipv6hdr *hdr;
        u32             pkt_len;
        struct inet6_dev *idev;
 

Fetch the network namespace from the network device that is associated with the Socket Buffer (SKB):
 
struct net *net = dev_net(skb->dev);
               
        . . .
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Fetch the IPv6 header from the SKB:
 
hdr = ipv6_hdr(skb);
 

Perform some sanity checks, and discard the SKB if necessary:
 
        if (hdr->version != 6)
                goto err;
 
        /*
         * RFC4291 2.5.3
         * A packet received on an interface with a destination address
         * of loopback must be dropped.
         */
        if (!(dev->flags & IFF_LOOPBACK) &&
            ipv6_addr_loopback(&hdr->daddr))
                goto err;
 
        . . .
         
        /*
         * RFC4291 2.7
         * Multicast addresses must not be used as source addresses in IPv6
         * packets or appear in any Routing header.
         */
        if (ipv6_addr_is_multicast(&hdr->saddr))
                goto err;
 
        . . .
        if (hdr->nexthdr == NEXTHDR_HOP) {
                if (ipv6_parse_hopopts(skb) < 0) {
                        IP6_INC_STATS_BH(net, idev, IPSTATS_MIB_INHDRERRORS);
                        rcu_read_unlock();
                        return NET_RX_DROP;
                }
        }
        . . .
 
        return NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, dev, NULL,
                       ip6_rcv_finish);
err:
        IP6_INC_STATS_BH(net, idev, IPSTATS_MIB_INHDRERRORS);
drop:
        rcu_read_unlock();
        kfree_skb(skb);
        return NET_RX_DROP;
}
 



Chapter 8 ■ IPv6

220

(net/ipv6/ip6_input.c)

The ip6_rcv_finish() method first performs a lookup in the routing subsystem by calling the ip6_route_
input() method, in case there is no dst attached to the SKB. The ip6_route_input() method eventually invokes the 
fib6_rule_lookup().
 
int ip6_rcv_finish(struct sk_buff *skb)
 {
      . . .
      if (!skb_dst(skb))
                 ip6_route_input(skb);
 

Invoke the input callback of the dst attached to the SKB:
 
         return dst_input(skb);
 }
 

(net/ipv6/ip6_input.c)

Note■■  T here are two different implementations of the fib6_rule_lookup() method: one when Policy Routing  
(CONFIG_IPV6_MULTIPLE_TABLES) is set, in net/ipv6/fib6_rules.c, and one when Policy Routing is not set, in  
net/ipv6/ip6_fib.c.

As you saw in Chapter 5, which dealt with advanced topics of the IPv4 Routing Subsystem, the lookup in the 
routing subsystem builds a dst object and sets its input and output callbacks; in IPv6, similar tasks are performed. 
After the ip6_rcv_finish() method performs the lookup in the routing subsystem, it calls the dst_input() method, 
which in fact invokes the input callback of the dst object that is associated with the packet.

Figure 8-2 shows the receive path (Rx) of a packet that is received by the network driver. This packet can either be 
delivered to the local machine or be forwarded to another host. It is the result of the lookup in the routing tables that 
determines which of these two options will take place.
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Note■■   For simplicity, the diagram does not include the fragmentation/defragmentation/ parsing of extension headers   
/IPsec methods.

The lookup in the IPv6 routing subsystem will set the input callback of the destination cache (dst) to be:

•	 ip6_input() when the packet is destined to the local machine.

•	 ip6_forward() when the packet is to be forwarded.

•	 ip6_mc_input() when the packet is destined to a multicast address.

•	 ip6_pkt_discard() when the packet is to be discarded. The ip6_pkt_discard() 
method drops the packet and replies to the sender with a destination unreachable  
(ICMPV6_DEST_UNREACH) ICMPv6 message.

Incoming IPv6 packets can be locally delivered or forwarded; in the next section, you will learn about local 
delivery of IPv6 packets.

Figure 8-2.  Receiving IPv6 packets
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Local Delivery
Let’s look first at the local delivery case: the ip6_input() method is a very short method:
 
int ip6_input(struct sk_buff *skb)
{
        return NF_HOOK(NFPROTO_IPV6, NF_INET_LOCAL_IN, skb, skb->dev, NULL,
                       ip6_input_finish);
}
 
(net/ipv6/ip6_input.c)

If there is a netfilter hook registered in this point (NF_INET_LOCAL_IN) it will be invoked. Otherwise, we will 
proceed to the ip6_input_finish() method:
 
static int ip6_input_finish(struct sk_buff *skb)
{
        struct net *net = dev_net(skb_dst(skb)->dev);
        const struct inet6_protocol *ipprot;
 

The inet6_dev structure (include/net/if_inet6.h) is the IPv6 parallel of the IPv4 in_device structure. It 
contains IPv6-related configuration such as the network interface unicast address list (addr_list) and the network 
interface multicast address list (mc_list). This IPv6-related configuration can be set by the user with the ip command 
or with the ifconfig command.
 
        struct inet6_dev *idev;
        unsigned int nhoff;
        int nexthdr;
        bool raw;
 
        /*
         *      Parse extension headers
         */
 
        rcu_read_lock();
resubmit:
        idev = ip6_dst_idev(skb_dst(skb));
        if (!pskb_pull(skb, skb_transport_offset(skb)))
                goto discard;
        nhoff = IP6CB(skb)->nhoff;
 

Fetch the next header number from the SKB:
 
nexthdr = skb_network_header(skb)[nhoff];
 

First in case of a raw socket packet, we try to deliver it to a raw socket:
 
raw = raw6_local_deliver(skb, nexthdr);
 

Every extension header (except the Hop by Hop extension header) has a protocol handler which was registered 
by the inet6_add_protocol() method; this method in fact adds an entry to the global inet6_protos array  
(see net/ipv6/protocol.c).
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if ((ipprot = rcu_dereference(inet6_protos[nexthdr])) != NULL) {
        int ret;
 
        if (ipprot->flags & INET6_PROTO_FINAL) {
                const struct ipv6hdr *hdr;
 
                /* Free reference early: we don't need it any more,
                   and it may hold ip_conntrack module loaded
                   indefinitely. */
                nf_reset(skb);
 
                skb_postpull_rcsum(skb, skb_network_header(skb),
                                   skb_network_header_len(skb));
                hdr = ipv6_hdr(skb);
 

RFC 3810, which is the MLDv2 specification, says: “Note that MLDv2 messages are not subject to source filtering 
and must always be processed by hosts and routers.” We do not want to discard MLD multicast packets due to source 
filtering, since these MLD packets should be always processed according to the RFC. Therefore, before discarding 
the packet we make sure that if the destination address of the packet is a multicast address, the packet is not an MLD 
packet. This is done by calling the ipv6_is_mld() method before discarding it. If this method indicates that the packet 
is an MLD packet, it is not discarded. You can also see more about this in the “Multicast Listener Discovery (MLD)” 
section later in this chapter.
 
        if (ipv6_addr_is_multicast(&hdr->daddr) &&
            !ipv6_chk_mcast_addr(skb->dev, &hdr->daddr,
            &hdr->saddr) &&
            !ipv6_is_mld(skb, nexthdr, skb_network_header_len(skb)))
                goto discard;
}
 

When the INET6_PROTO_NOPOLICY flag is set, this indicates that there is no need to perform IPsec policy 
checks for this protocol:
 
        if (!(ipprot->flags & INET6_PROTO_NOPOLICY) &&
            !xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb))
                goto discard;
        ret = ipprot->handler(skb);
        if (ret > 0)
                goto resubmit;
        else if (ret == 0)
                IP6_INC_STATS_BH(net, idev, IPSTATS_MIB_INDELIVERS);
} else {
        if (!raw) {
                if (xfrm6_policy_check(NULL, XFRM_POLICY_IN, skb)) {
                        IP6_INC_STATS_BH(net, idev,
                                         IPSTATS_MIB_INUNKNOWNPROTOS);
                        icmpv6_send(skb, ICMPV6_PARAMPROB,
                                    ICMPV6_UNK_NEXTHDR, nhoff);
                }
                kfree_skb(skb);
        } else {
 



Chapter 8 ■ IPv6

224

Everything went fine, so increment the INDELIVERS SNMP MIB counter (/proc/net/snmp6/Ip6InDelivers) and 
free the packet with the consume_skb() method:
 
                        IP6_INC_STATS_BH(net, idev, IPSTATS_MIB_INDELIVERS);
                        consume_skb(skb);
                }
        }
        rcu_read_unlock();
        return 0;
 
discard:
        IP6_INC_STATS_BH(net, idev, IPSTATS_MIB_INDISCARDS);
        rcu_read_unlock();
        kfree_skb(skb);
        return 0;
}
 
(net/ipv6/ip6_input.c)

You have seen the implementation details of local delivery, which is performed by the ip6_input() and  
ip6_input_finish() methods. Now is the time to turn to the implementation details of forwarding in IPv6.  
Also here, there are many similarities between forwarding in IPv4 and forwarding in IPv6.

Forwarding
Forwarding in IPv6 is very similar to forwarding in IPv4. There are some slight changes, though. For example, in IPv6, 
a checksum is not calculated when forwarding a packet. (There is no checksum field at all in an IPv6 header, as was 
mentioned before.) Let’s take a look at the ip6_forward() method:
 
int ip6_forward(struct sk_buff *skb)
{
        struct dst_entry *dst = skb_dst(skb);
        struct ipv6hdr *hdr = ipv6_hdr(skb);
        struct inet6_skb_parm *opt = IP6CB(skb);
        struct net *net = dev_net(dst->dev);
        u32 mtu;
 

The IPv6 procfs forwarding entry (/proc/sys/net/ipv6/conf/all/forwarding) should be set:
 
if (net->ipv6.devconf_all->forwarding == 0)
        goto error;
 

When working with Large Receive Offload (LRO), the packet length will exceed the Maximum transmission unit 
(MTU). As in IPv4, when LRO is enabled, the SKB is freed and an error of –EINVAL is returned:
 
if (skb_warn_if_lro(skb))
        goto drop;
 
if (!xfrm6_policy_check(NULL, XFRM_POLICY_FWD, skb)) {
        IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS);
        goto drop;
}
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Drop packets that are not destined to go to the local host. The pkt_type associated with an SKB is determined 
according to the destination MAC address in the Ethernet header of an incoming packet. This is done by the  
eth_type_trans() method, which is typically called in the network device driver when handling an incoming packet. 
See the eth_type_trans() method, net/ethernet/eth.c.
 
if (skb->pkt_type != PACKET_HOST)
        goto drop;

skb_forward_csum(skb);

/*
 *      We DO NOT make any processing on
 *      RA packets, pushing them to user level AS IS
 *      without any WARRANTY that application will be able
 *      to interpret them. The reason is that we
 *      cannot make anything clever here.
 *
 *      We are not end-node, so that if packet contains
 *      AH/ESP, we cannot make anything.
 *      Defragmentation also would be mistake, RA packets
 *      cannot be fragmented, because there is no warranty
 *      that different fragments will go along one path. --ANK
 */
if (opt->ra) {
        u8 *ptr = skb_network_header(skb) + opt->ra;
 

We should try to deliver the packet to sockets that had the IPV6_ROUTER_ALERT socket option set by 
setsockopt(). This is done by calling the ip6_call_ra_chain() method; if the delivery in ip6_call_ra_chain() 
succeeded, the ip6_forward() method returns 0 and the packet is not forwarded. See the implementation of the 
ip6_call_ra_chain() method in net/ipv6/ip6_output.c.
 
        if (ip6_call_ra_chain(skb, (ptr[2]<<8) + ptr[3]))
                return 0;
}
 
/*
 *      check and decrement ttl
 */
if (hdr->hop_limit <= 1) {
        /* Force OUTPUT device used as source address */
        skb->dev = dst->dev;
 

Send back an ICMP error message when the Hop Limit is 1 (or less), much like what we have in IPv4 when 
forwarding a packet and the TTL reaches 0. In this case, the packet is discarded:
 
        icmpv6_send(skb, ICMPV6_TIME_EXCEED, ICMPV6_EXC_HOPLIMIT, 0);
        IP6_INC_STATS_BH(net,
                         ip6_dst_idev(dst), IPSTATS_MIB_INHDRERRORS);
 
        kfree_skb(skb);
        return -ETIMEDOUT;
}
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/* XXX: idev->cnf.proxy_ndp? */
if (net->ipv6.devconf_all->proxy_ndp &&
    pneigh_lookup(&nd_tbl, net, &hdr->daddr, skb->dev, 0)) {
        int proxied = ip6_forward_proxy_check(skb);
        if (proxied > 0)
                return ip6_input(skb);
        else if (proxied < 0) {
                IP6_INC_STATS(net, ip6_dst_idev(dst),
                              IPSTATS_MIB_INDISCARDS);
                goto drop;
        }
}
 
if (!xfrm6_route_forward(skb)) {
        IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_INDISCARDS);
        goto drop;
}
dst = skb_dst(skb);
 
/* IPv6 specs say nothing about it, but it is clear that we cannot
   send redirects to source routed frames.
   We don't send redirects to frames decapsulated from IPsec.
 */
if (skb->dev == dst->dev && opt->srcrt == 0 && !skb_sec_path(skb)) {
        struct in6_addr *target = NULL;
        struct inet_peer *peer;
        struct rt6_info *rt;
 
        /*
         *      incoming and outgoing devices are the same
         *      send a redirect.
         */
 
        rt = (struct rt6_info *) dst;
        if (rt->rt6i_flags & RTF_GATEWAY)
                target = &rt->rt6i_gateway;
        else
                target = &hdr->daddr;
 
        peer = inet_getpeer_v6(net->ipv6.peers, &rt->rt6i_dst.addr, 1);
 
        /* Limit redirects both by destination (here)
           and by source (inside ndisc_send_redirect)
         */
        if (inet_peer_xrlim_allow(peer, 1*HZ))
        ndisc_send_redirect(skb, target);
        if (peer)
        inet_putpeer(peer);
} else {
        int addrtype = ipv6_addr_type(&hdr->saddr);
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        /* This check is security critical. */
        if (addrtype == IPV6_ADDR_ANY ||
            addrtype & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LOOPBACK))
        goto error;
        if (addrtype & IPV6_ADDR_LINKLOCAL) {
                icmpv6_send(skb, ICMPV6_DEST_UNREACH,
                            ICMPV6_NOT_NEIGHBOUR, 0);
                goto error;
        }
}
 

Note that the IPv6 IPV6_MIN_MTU is 1280 bytes, according to section 5, “Packet Size Issues,” of the base IPv6 
standard, RFC 2460.
 
mtu = dst_mtu(dst);
if (mtu < IPV6_MIN_MTU)
        mtu = IPV6_MIN_MTU;
 
if ((!skb->local_df && skb->len > mtu && !skb_is_gso(skb)) ||
    (IP6CB(skb)->frag_max_size && IP6CB(skb)->frag_max_size > mtu)) {
        /* Again, force OUTPUT device used as source address */
        skb->dev = dst->dev;
 

Reply back to the sender with an ICMPv6 message of “Packet Too Big,” and free the SKB; the ip6_forward() 
method returns –EMSGSIZ in this case:
 
        icmpv6_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu);
        IP6_INC_STATS_BH(net,
                         ip6_dst_idev(dst), IPSTATS_MIB_INTOOBIGERRORS);
        IP6_INC_STATS_BH(net,
                         ip6_dst_idev(dst), IPSTATS_MIB_FRAGFAILS);
        kfree_skb(skb);
        return -EMSGSIZE;
}
if (skb_cow(skb, dst->dev->hard_header_len)) {
        IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTDISCARDS);
        goto drop;
}
 
hdr = ipv6_hdr(skb);
 

The packet is to be forwarded, so decrement the hop_limit of the IPv6 header.
 
/* Mangling hops number delayed to point after skb COW */
hdr->hop_limit--;
 
IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTFORWDATAGRAMS);
IP6_ADD_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTOCTETS, skb->len);
return NF_HOOK(NFPROTO_IPV6, NF_INET_FORWARD, skb, skb->dev, dst->dev,
               ip6_forward_finish);
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error:
       IP6_INC_STATS_BH(net, ip6_dst_idev(dst), IPSTATS_MIB_INADDRERRORS);
drop:
       kfree_skb(skb);
       return -EINVAL;
}
 
(net/ipv6/ip6_output.c)

The ip6_forward_finish() method is a one-line method, which simply invokes the destination cache (dst) 
output callback:
 
static inline int ip6_forward_finish(struct sk_buff *skb)
{
return dst_output(skb);
}
 
(net/ipv6/ip6_output.c)

You have seen in this section how the reception of IPv6 packets is handled, either by local delivery or by 
forwarding. You have also seen some differences between receiving IPv6 packets and receiving IPv4 packets. In the 
next section, I will discuss the Rx path for multicast traffic.

Receiving IPv6 Multicast Packets
The ipv6_rcv() method is the IPv6 handler for both unicast packets and multicast packets. As mentioned above,  
after some sanity checks, it invokes the ip6_rcv_finish() method, which performs a lookup in the routing subsystem 
by calling the ip6_route_input() method. In the ip6_route_input() method, the input callback is set to be the 
ip6_mc_input method in cases of receiving a multicast packet. Let’s take a look at the ip6_mc_input() method:
 
int ip6_mc_input(struct sk_buff *skb)
{
        const struct ipv6hdr *hdr;
        bool deliver;
 
        IP6_UPD_PO_STATS_BH(dev_net(skb_dst(skb)->dev),
                         ip6_dst_idev(skb_dst(skb)), IPSTATS_MIB_INMCAST,
                         skb->len);
 
        hdr = ipv6_hdr(skb);
 

The ipv6_chk_mcast_addr() method (net/ipv6/mcast.c) checks whether the multicast address list (mc_list) 
of the specified network device contains the specified multicast address (which is the destination address in the IPv6 
header in this case, hdr->daddr). Note that because the third parameter is NULL, we do not check in this invocation 
whether there are any source filters for the source address; handling source filtering is discussed later in this chapter.
 
deliver = ipv6_chk_mcast_addr(skb->dev, &hdr->daddr, NULL);
 

If the local machine is a multicast router (that is, CONFIG_IPV6_MROUTE is set), we continue after some checks 
to the ip6_mr_input() method. The IPv6 multicast routing implementation is very similar to the IPv4 multicast 
routing implementation, which was discussed in Chapter 6, so I will not discuss it in this book. The IPv6 multicast 
routing implementation is in net/ipv6/ip6mr.c. Support for IPv6 Multicast Routing was added in kernel 2.6.26 
(2008), based on a patch by Mickael Hoerdt.
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#ifdef CONFIG_IPV6_MROUTE
. . .
         if (dev_net(skb->dev)->ipv6.devconf_all->mc_forwarding &&
             !(ipv6_addr_type(&hdr->daddr) &
               (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)) &&
             likely(!(IP6CB(skb)->flags & IP6SKB_FORWARDED))) {
                 /*
                  * Okay, we try to forward - split and duplicate
                  * packets.
                  */
                 struct sk_buff *skb2;
 
                 if (deliver)
                         skb2 = skb_clone(skb, GFP_ATOMIC);
                 else {
                         skb2 = skb;
                         skb = NULL;
                 }
  
                 if (skb2) {
 

Continue to the IPv6 Multicast Routing code, via the ip6_mr_input() method (net/ipv6/ip6mr.c):
 
                         ip6_mr_input(skb2);
                 }
 
            }
#endif
        if (likely(deliver))
                ip6_input(skb);
        else {
                /* discard */
                kfree_skb(skb);
        }
 
        return 0;
}
 
(net/ipv6/ip6_input.c) 

When the multicast packet is not destined to be forwarded by multicast routing (for example, when  
CONFIG_IPV6_MROUTE is not set), we will continue to the ip6_input() method, which is in fact a wrapper around 
the ip6_input_finish() method as you already saw. In the ip6_input_finish() method, we again call the  
ipv6_chk_mcast_addr() method, but this time the third parameter is not NULL, it is the source address from the 
IPv6 header. This time we do check in the ipv6_chk_mcast_addr() method whether source filtering is set, and we 
handle the packet accordingly. Source filtering is discussed in the “Multicast Source Filtering (MSF)” section later 
in this chapter. Next, I will describe the Multicast Listener Discovery protocol, which parallels the  
IPv4 IGMPv3 protocol.
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Multicast Listener Discovery (MLD)
The MLD protocol is used to exchange group information between multicast hosts and routers. The MLD protocol 
is an asymmetric protocol; it specifies different behavior to Multicast Routers and to Multicast Listeners. In IPv4, 
multicast group management is handled by the Internet Group Management Protocol (IGMP) protocol, as you saw in 
Chapter 6. In IPv6, multicast group management is handled by the MLDv2 protocol, which is specified in RFC 3810, 
from 2004. The MLDv2 protocol is derived from the IGMPv3 protocol, which is used by IPv4. However, as opposed to 
the IGMPv3 protocol, MLDv2 is part of the ICMPv6 protocol, while IGMPv3 is a standalone protocol that does not use 
any of the ICMPv4 services; this is the main reason why the IGMPv3 protocol is not used in IPv6. Note that you might 
encounter the term GMP (Group Management Protocol), which is used to refer to both IGMP and MLD.

The former version of the Multicast Listener Discovery protocol is MLDv1, and it is specified in RFC 2710; it is 
derived from IGMPv2. MLDv1 is based on the Any-Source Multicast (ASM) model; this means that you do not specify 
interest in receiving multicast traffic from a single source address or from a set of addresses. MLDv2 extends MLDv1 
by adding support for Source Specific Multicast (SSM); this means the ability of a node to specify interest in including 
or excluding listening to packets from specific unicast source addresses. This feature is referred to as source filtering. 
Later in this section, I will show a short, detailed userspace example of how to use source filtering. See more in RFC 
4604, “Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol 
Version 2 (MLDv2) for Source-Specific Multicast.”

The MLDv2 protocol is based on Multicast Listener Reports and Multicast Listener Queries. An MLDv2 Router 
(which is also sometimes termed “Querier”) sends periodically Multicast Listener Queries in order to learn about the 
state of multicast groups of nodes. If there are several MLDv2 Routers on the same link, only one of them is selected 
to be the Querier, and all the other routers are set to be in a Non-Querier state. This is done by a Querier Election 
mechanism, as described in section 7.6.2 of RFC 3810. Nodes respond to these queries with Multicast Listener 
Reports, in which they provide information about multicast groups to which they belong. When a listener wants to 
stop listening on some multicast group, it informs the Querier about it, and the Querier must query for other listeners 
of that multicast group address before deleting it from its Multicast Address Listener state. An MLDv2 router can 
provide state information about listeners to multicast routing protocols.

Now that you have learned generally what the MLD protocol is, I will turn your attention in the following section 
to how joining and leaving a multicast group is handled.

Joining and Leaving a Multicast Group
There are two ways to join or leave a multicast group in IPv6. The first one is from within the kernel, by calling the 
ipv6_dev_mc_inc() method, which gets as a parameter a network device object and a multicast group address. For 
example, when registering a network device, the ipv6_add_dev() method is invoked; each device should join the 
interface-local all nodes multicast group (ff01::1) and the link-local all nodes multicast group (ff02::1).
 
static struct inet6_dev *ipv6_add_dev(struct net_device *dev) {
 
. . .
         /* Join interface-local all-node multicast group */
         ipv6_dev_mc_inc(dev, &in6addr_interfacelocal_allnodes);
  
         /* Join all-node multicast group */
         ipv6_dev_mc_inc(dev, &in6addr_linklocal_allnodes);
  
. . .
}
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(net/ipv6/addrconf.c)
Routers are devices that have their procfs forwarding entry, /proc/sys/net/ipv6/conf/all/forwarding, set. 

Routers join three multicast address groups, in addition to the two multicast group that each host joins and that were 
mentioned earlier. These are the link-local all-routers multicast group (ff02::2), interface-local all routers multicast 
group (ff01::2), and site-local all routers multicast group (ff05::2).

Note that setting the IPv6 procfs forwarding entry value is handled by the addrconf_fixup_forwarding() 
method, which eventually calls the dev_forward_change() method, which causes the specified network interface to 
join or leave these three multicast address groups according to the value of the procfs entry (which is represented by 
idev->cnf.forwarding, as you can see in the following code snippet):
 
static void dev_forward_change(struct inet6_dev *idev)
{
        struct net_device *dev;
        struct inet6_ifaddr *ifa;
     . . .
        dev = idev->dev;
     . . .
        if (dev->flags & IFF_MULTICAST) {
                if (idev->cnf.forwarding) {
                        ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters);
                        ipv6_dev_mc_inc(dev, &in6addr_interfacelocal_allrouters);
                        ipv6_dev_mc_inc(dev, &in6addr_sitelocal_allrouters);
                } else {
                        ipv6_dev_mc_dec(dev, &in6addr_linklocal_allrouters);
                        ipv6_dev_mc_dec(dev, &in6addr_interfacelocal_allrouters);
                        ipv6_dev_mc_dec(dev, &in6addr_sitelocal_allrouters);
                }
        }
. . .
}
 
(net/ipv6/addrconf.c)

To leave a multicast group from within the kernel, you should call the ipv6_dev_mc_dec() method. The second 
way of joining a multicast group is by opening an IPv6 socket in userspace, creating a multicast request (ipv6_mreq 
object) and setting the ipv6mr_multiaddr of the request to be the multicast group address to which this host wants 
to join, and setting the ipv6mr_interface to the ifindex of the network interface it wants to set. Then it should call 
setsockopt() with the IPV6_JOIN_GROUP socket option:
 
int                sockd;
struct ipv6_mreq   mcgroup;
struct addrinfo    *results;
. . .
 
/* read an IPv6 multicast group address to which we want to join */
/* into the address info object (results) */
. . .
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Set the network interface that we want to use (by its ifindex value):
 
mcgroup.ipv6mr_interface=3;
 

Set the multicast group address for the group that we want to join in the request (ipv6mr_multiaddr):
 
memcpy( &(mcgroup.ipv6mr_multiaddr),
     &(((struct sockaddr_in6 *) results->ai_addr)->sin6_addr),
     sizeof(struct in6_addr));
 
sockd  = socket(AF_INET6, SOCK_DGRAM,0);
 

Call setsockopt() with IPV6_JOIN_GROUP to join the multicast group; this call is handled in the kernel by the 
ipv6_sock_mc_join() method (net/ipv6/mcast.c).
 
status = setsockopt(sockd, IPPROTO_IPV6, IPV6_JOIN_GROUP,
                    &mcgroup, sizeof(mcgroup));
. . .
 

The IPV6_ADD_MEMBERSHIP socket option can be used instead of IPV6_JOIN_GROUP. (They are equivalent.) 
Note that we can set the same multicast group address on more than one network device by setting different values of 
network interfaces to mcgroup.ipv6mr_interface. The value of mcgroup.ipv6mr_interface is passed as the ifindex 
parameter to the ipv6_sock_mc_join() method. In such a case, the kernel builds and sends an MLDv2 Multicast 
Listener Report packet (ICMPV6_MLD2_REPORT), where the destination address is ff02::16 (the all MLDv2-capable 
routers Multicast Group Address). According to section 5.2.14 in RFC 3810, all MLDv2-capable multicast routers 
should listen to this multicast address. The number of Multicast Address Records in the MLDv2 header (shown in 
Figure 8-3) will be 1, because only one Multicast Address Record is used, containing the address of the multicast 
group that we want to join. The multicast group address that a host wants to join is part of the ICMPv6 header. The 
Hop-by-Hop Options header with Router Alert is set in this packet. MLD packets contain a Hop-by-Hop Options 
header, which in turn contains a Router Alert options header; the next header of the Hop-by-Hop extension header is 
IPPROTO_ICMPV6 (58), because following the Hop-by-Hop header is the ICMPv6 packet, which contains the  
MLDv2 message.
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A host can leave a multicast group by calling setsockopt() with the IPV6_DROP_MEMBERSHIP socket option, 
which is handled in the kernel by calling the ipv6_sock_mc_drop() method or by closing the socket. Note that  
IPV6_LEAVE_GROUP is equivalent to IPV6_DROP_MEMBERSHIP.

After talking about how joining and leaving a multicast group is handled, it is time to see what an MLDv2 
Multicast Listener Report is.

MLDv2 Multicast Listener Report
The MLDv2 Multicast Listener Report is represented in the kernel by the mld2_report structure:
 
struct mld2_report {
        struct icmp6hdr         mld2r_hdr;
        struct mld2_grec        mld2r_grec[0];
};
 

Figure 8-3.  MLDv2 Multicast Listener Report
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(include/net/mld.h)
The first member of the mld2_report structure is the mld2r_hdr, which is an ICMPv6 header; its icmp6_type 

should be set to ICMPV6_MLD2_REPORT (143). The second member of the mld2_report structure is the  
mld2r_grec[0], an instance of the mld2_grec structure, which represents the MLDv2 group record. (This is the 
Multicast Address Record in Figure 8-3.) Following is the definition of the mld2_grec structure:
 
struct mld2_grec {
        __u8            grec_type;
        __u8            grec_auxwords;
        __be16          grec_nsrcs;
        struct in6_addr grec_mca;
        struct in6_addr grec_src[0];
};
 
(include/net/mld.h)

The following is a description of the members of the mld2_grec structure:

•	 grec_type: Specifies the type of the Multicast Address Record. See Table 8-3, “Multicast 
Address Record (record types)” in the “Quick Reference” section at the end of this chapter.

•	 grec_auxwords: The length of the Auxiliary Data (aux data len in Figure 8-3). The Auxiliary 
Data field, if present, contains additional information that pertains to this Multicast Address 
Record. Usually it is 0. See also section 5.2.10 in RFC 3810.

•	 grec_nsrcs: The number of source addresses.

•	 grec_mca: The multicast address to which this Multicast Address Record pertains.

•	 grec_src[0]: A unicast source address (or an array of unicast source addresses). These are 
addresses that we want to filter (block or allow).

In the next section, I will discuss the Multicast Source Filtering (MSF) feature. You will find in it detailed examples 
of how a Multicast Address Record is used in source filtering.

Multicast Source Filtering (MSF)
With Multicast Source Filtering, the kernel will drop the multicast traffic from sources other than the expected 
ones. This feature, which is also known as Source-Specific Multicast (SSM) was not part of MLDv1. It was 
introduced in MLDv2; see RFC 3810. It is the opposite of Any-Source Multicast (ASM), where a receiver expresses 
interest in a destination multicast address. To understand better what Multicast Source Filtering is all about,  
I will show here an example of a userspace application demonstrating how to join and leave a multicast group 
with source filtering.

Joining and Leaving a Multicast Group with Source Filtering
A host can join a multicast group with source filtering by opening an IPv6 socket in userspace, creating a multicast 
group source request (group_source_req object), and setting three parameters in the request:

•	 gsr_group: The multicast group address that this host wants to join

•	 gsr_source: The multicast group source address that it wants to allow

•	 ipv6mr_interface: The ifindex of the network interface it wants to set
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Then it should call setsockopt() with the MCAST_JOIN_SOURCE_GROUP socket option. Following here is a 
code snippet of a userspace application demonstrating this (checking the success of the system calls was removed,  
for brevity):
 
int                       sockd;
struct group_source_req   mreq;
struct addrinfo           *results1;
struct addrinfo           *results2;
 
/* read an IPv6 multicast group address that we want to join into results1 */
/* read an IPv6 multicast group address which we want to allow into results2 */
memcpy(&(mreq.gsr_group),  results1->ai_addr,  sizeof(struct sockaddr_in6));
memcpy(&(mreq.gsr_source), results2->ai_addr,  sizeof(struct sockaddr_in6));
 
mreq.gsr_interface = 3;
 
sockd = socket(AF_INET6, SOCK_DGRAM, 0);
setsockopt(sockd, IPPROTO_IPV6, MCAST_JOIN_SOURCE_GROUP, &mreq, sizeof(mreq));
 

This request is handled in the kernel first by the ipv6_sock_mc_join() method, and then by the ip6_mc_source()  
method. To leave the group, you should call setsockopt() with the MCAST_LEAVE_SOURCE_GROUP socket option 
or close the socket that you opened.

You can set another address that you want to allow and again call setsockopt() with this socket with the 
MCAST_UNBLOCK_SOURCE socket option. This will add additional addresses to the source filter list. Each such 
call to setsockopt() will trigger sending an MLDv2 Multicast Listener Report message with one Multicast Address 
Record; the Record Type will be 5 (“Allow new sources”), and the number of sources will be 1 (the unicast address that 
you want to unblock). I will show now an example of using the MCAST_MSFILTER socket option for source filtering.

Example: Using MCAST_MSFILTER for Source Filtering
You can also block or permit multicast traffic from several multicast addresses in one setsockopt() call using 
MCAST_MSFILTER and a group_filter object. First, let’s take a look at the definition of the group_filter structure 
definition in userspace, which is quite self-explanatory:
 
struct group_filter
  {
    /* Interface index.  */
    uint32_t gf_interface;
 
    /* Group address.  */
    struct sockaddr_storage gf_group;
 
    /* Filter mode.  */
    uint32_t gf_fmode;
 
    /* Number of source addresses.  */
    uint32_t gf_numsrc;
    /* Source addresses.  */
    struct sockaddr_storage gf_slist[1];
};
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(include/netinet/in.h)
The Filter mode (gf_fmode) can be MCAST_INCLUDE (when you want to allow multicast traffic from some 

unicast address) or MCAST_EXCLUDE (when you want to disallow multicast traffic from some unicast address). 
Following are two examples for this; the first will allow multicast traffic from three resources, and the second will 
disallow multicast traffic from two resources:
 
struct ipv6_mreq        mcgroup;
struct group_filter     filter;
struct sockaddr_in6     *psin6;
 
int                     sockd[2];
 

Set the multicast group address that we want to join, ffff::9.
 
inet_pton(AF_INET6,"ffff::9", &mcgroup.ipv6mr_multiaddr);
 

Set the network interface that we want to use by its ifindex (here, we use eth0, which has an ifindex value of 2):

mcgroup.ipv6mr_interface=2;
 

Set the filter parameters: use the same ifindex (2), use MCAST_INCLUDE to set the filter to allow traffic from 
the sources that are specified by the filter, and set gf_numsrc to 3, because we want to prepare a filter of 3 unicast 
addresses:
 
filter.gf_interface = 2;
 

We want to prepare two filters: the first one will allow traffic from a set of three multicast addresses, and the 
second one will permit traffic from a set of two multicast addresses. First set the filter mode to MCAST_INCLUDE, 
which means to allow traffic from this filter:
 
filter.gf_fmode = MCAST_INCLUDE;
 

Set the number of source addresses of the filter (gf_numsrc) to be 3:
 
filter.gf_numsrc = 3;
 

Set the group address of the filter (gf_group) to be the same one that we use for the mcgrouop earlier, ffff::9:
 
psin6 = (struct sockaddr_in6 *)&filter.gf_group;
psin6->sin6_family = AF_INET6;
inet_pton(PF_INET6, "ffff::9", &psin6->sin6_addr);
 

The three unicast addresses that we want to allow are 2000::1, 2000::2, and 2000::3.
Set filter.gf_slist[0], filter.gf_slist[1], and filter.gf_slist[2] accordingly:

 
psin6 = (struct sockaddr_in6 *)&filter.gf_slist[0];
psin6->sin6_family = AF_INET6;
inet_pton(PF_INET6, "2000::1", &psin6->sin6_addr);
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psin6 = (struct sockaddr_in6 *)&filter.gf_slist[1];
psin6->sin6_family = AF_INET6;
inet_pton(PF_INET6, "2000::2", &psin6->sin6_addr);
 
psin6 = (struct sockaddr_in6 *)&filter.gf_slist[2];
psin6->sin6_family = AF_INET6;
inet_pton(PF_INET6, "2000::3",&psin6->sin6_addr);
 

Create a socket, and join a multicast group:
 
sockd[0] = socket(AF_INET6, SOCK_DGRAM,0);
status = setsockopt(sockd[0], IPPROTO_IPV6, IPV6_JOIN_GROUP,
        &mcgroup, sizeof(mcgroup));
 

Activate the filter we created:
 
status=setsockopt(sockd[0], IPPROTO_IPV6, MCAST_MSFILTER, &filter,
   GROUP_FILTER_SIZE(filter.gf_numsrc));
 

This will trigger sending of an MLDv2 Multicast Listener Report (ICMPV6_MLD2_REPORT) to all MLDv2  
routers (ff02::16) with a Multicast Address Record object (mld2_grec) embedded in it. (See the description of the  
mld2_report structure and Figure 8-3 earlier.) The values of the fields of mld2_grec will be as follows:

•	 grec_type will be MLD2_CHANGE_TO_INCLUDE (3).

•	 grec_auxwords will be 0. (We do not use Auxiliary Data.)

•	 grec_nsrcs is 3 (because we want to use a filter with 3 source addresses and  
we set gf_numsrc to 3).

•	 grec_mca will be ffff::9; this is the multicast group address that the Multicast Address 
Record pertains to.

The following three unicast source addresses:

•	 grec_src[0] is 2000::1

•	 grec_src[1] is 2000::2

•	 grec_src[2] is 2000::3

Now we want to create a filter of 2 unicast source addresses that we want to exclude. So first create a new 
userspace socket:
 
sockd[1] = socket(AF_INET6, SOCK_DGRAM,0);
 

Set the filter mode to EXCLUDE, and set the number of sources of the filter to be 2:
 
filter.gf_fmode = MCAST_EXCLUDE;
filter.gf_numsrc = 2;
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Set the two addresses we want to exclude, 2001::1 and 2001::2:
 
psin6 = (struct sockaddr_in6 *)&filter.gf_slist[0];
psin6->sin6_family = AF_INET6;
inet_pton(PF_INET6, "2001::1", &psin6->sin6_addr);
 
psin6 = (struct sockaddr_in6 *)&filter.gf_slist[1];
psin6->sin6_family = AF_INET6;
inet_pton(PF_INET6, "2001::2", &psin6->sin6_addr);
 

Create a socket, and join a multicast group:
 
status = setsockopt(sockd[1], IPPROTO_IPV6, IPV6_JOIN_GROUP,
        &mcgroup, sizeof(mcgroup));
 

Activate the filter:
 
status=setsockopt(sockd[1], IPPROTO_IPV6, MCAST_MSFILTER, &filter,
       GROUP_FILTER_SIZE(filter.gf_numsrc));
 

This again will trigger the sending of an MLDv2 Multicast Listener Report (ICMPV6_MLD2_REPORT) to all 
MLDv2 routers (ff02::16). This time the content of the Multicast Address Record object (mld2_grec) will be different:

•	 grec_type will be MLD2_CHANGE_TO_EXCLUDE (4).

•	 grec_auxwords will be 0. (We do not use Auxiliary Data.)

•	 grec_nsrcs is 2 (because we want to use 2 source addresses and we set gf_numsrc to 2).

•	 grec_mca will be ffff::9, as before; this is the multicast group address that the Multicast 
Address Record pertains to.

The following two unicast source addresses:•	

•	 grec_src[0] is 2001::1

•	 grec_src[1] is 2002::2

Note■■   We can display the source filtering mapping that we created by cat/proc/net/mcfilter6; this is handled in 
the kernel by the igmp6_mcf_seq_show() method.

For example, the first three entries in this mapping will show that for the ffff::9 multicast address, we permit 
(INCLUDE) multicast traffic from 2000::1, 2000::2, and 2000::3. Note that for the first three entries the value in the 
INC (Include) column is 1. For the fourth and fifth entries, we disallow traffic from 2001::1 and 2001::2. Note that the 
value in the EX (Exclude) column is 1 for the fourth and fifth entries.
 
cat  /proc/net/mcfilter6
Idx Device Multicast Address               Source Address                   INC    EXC
  2   eth0 ffff0000000000000000000000000009 20000000000000000000000000000001 1      0
  2   eth0 ffff0000000000000000000000000009 20000000000000000000000000000002 1      0
  2   eth0 ffff0000000000000000000000000009 20000000000000000000000000000003 1      0
  2   eth0 ffff0000000000000000000000000009 20010000000000000000000000000001 0      1
  2   eth0 ffff0000000000000000000000000009 20010000000000000000000000000002 0      1 
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Note■■   Creating filters by calling the setsockopt() method with MCAST_MSFILTER is handled in the kernel by the 
ip6_mc_msfilter() method, in net/ipv6/mcast.c.

An MLD router (which is also sometimes known as the “Querier”) joins the all MLDv2-capable routers Multicast 
Group (ff02::16) when it is started. It periodically sends Multicast Listener Query packets in order to know which 
hosts belong to a Multicast group, and to which Multicast group they belong. These are ICMPv6 packets whose type 
is ICMPV6_MGM_QUERY. The destination address of these query packets is the all-hosts multicast group (ff02::1). 
When a host receives an ICMPv6 Multicast Listener Query packet, the ICMPv6 Rx handler (the icmpv6_rcv() method) 
calls the igmp6_event_query() method to handle that query. Note that the igmp6_event_query() method handles 
both MLDv2 queries and MLDv1 queries (because both use ICMPV6_MGM_QUERY as the ICMPv6 type). The  
igmp6_event_query() method finds out whether the message is MLDv1 or MLDv2 by checking its length; in MLDv1 
the length is 24 bytes, and in MLDv2 it is 28 bytes at least. Handling MLDv1 and MLDv2 messages is different; for 
MLDv2, we should support source filtering, as was mentioned before in this section, while this feature is not available 
in MLDv1. The host sends back a Multicast Listener Report by calling the igmp6_send() method. The Multicast 
Listener Report packet is an ICMPv6 packet.

An example of an IPv6 MLD router is the mld6igmp daemon of the open source XORP project: http://www.xorp.org. 
The MLD router keeps information about the multicast address groups of network nodes (MLD listeners) and updates 
this information dynamically. This information can be provided to Multicast Routing daemons. Delving into the 
implementation of MLDv2 routing daemons like the mld6igmp daemon, or into the implementation of other Multicast 
Routing daemons, is beyond the scope of this book because it is implemented in userspace.

According to RFC 3810, MLDv2 should be interoperable with nodes that implement MLDv1; an implementation 
of MLDv2 must support the following two MLDv1 message types:

MLDv1 Multicast Listener Report (ICMPV6_MGM_REPORT, decimal 131)•	

MLDv1 Multicast Listener Done (ICMPV6_MGM_REDUCTION, decimal 132)•	
We can use the MLDv1 protocol for Multicast Listener messages instead of MLDv2; this can be done by using the 

following:
 
echo 1 > /proc/sys/net/ipv6/conf/all/force_mld_version
 

In such a case, when a host joins a multicast group, a Multicast Listener Report message will be sent by the 
igmp6_send() method. This message will  use ICMPV6_MGM_REPORT (131) of MLDv1 as the ICMPv6 type, not 
ICMPV6_MLD2_REPORT(143) as in MLDv2. Note that in this case you cannot use source filtering request for this 
message, as MLDv1 does not support it. We will join the multicast group by calling the igmp6_join_group() method. 
When you leave the multicast group, a Multicast Listener Done message will be sent. In this message, the ICMPv6 type 
is ICMPV6_MGM_REDUCTION (132).

In the next section, I will very briefly talk about the IPv6 Tx path, which is quite similar to the IPv4 Tx path, and 
which I do not cover in depth in this chapter.

Sending IPv6 Packets
The IPv6 Tx path is very similar to the IPv4 Tx path; even the names of the methods are very similar. Also in IPv6, there 
are two main methods for sending IPv6 packets from Layer 4, the transport layer: the first is the ip6_xmit() method, 
which is used by the TCP, Stream Control Transmission Protocol (SCTP), and Datagram Congestion Control Protocol 
(DCCP) protocols. The second method is the ip6_append_data() method, which is used, for example, by UDP and Raw 
sockets. Packets that are created on the local host are sent out by the ip6_local_out() method. The ip6_output() 
method is set to be the output callback of the protocol-independent dst_entry; it first calls the NF_HOOK() macro for 
the NF_INET_POST_ROUTING hook, and then it calls the ip6_finish_output() method. If fragmentation is needed, the  

http://www.xorp.org/
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ip6_finish_output() method calls the ip6_fragment() method to handle it; otherwise, it calls the ip6_finish_output2()  
method, which eventually sends the packet. For implementation details, look in the IPv6 Tx path code; it is mostly in 
net/ipv6/ip6_output.c.

In the next section, I will very briefly talk about IPv6 routing, which is, again, quite similar to the IPv4 routing, and 
which I do not cover in depth in this chapter.

IPv6 Routing
The implementation of IPv6 routing is very similar to the IPv4 routing implementation that was discussed in Chapter 
5, which dealt with the IPv4 routing subsystem. Like in the IPv4 routing subsystem, Policy routing is also supported 
in IPv6 (when CONFIG_IPV6_MULTIPLE_TABLES is set). A routing entry is represented in IPv6 by the rt6_info 
structure (include/net/ip6_fib.h). The rt6_info object parallels the IPv4 rtable structure, and the flowi6 
structure (include/net/flow.h) parallels the IPv4 flowi4 structure. (In fact, they both have as their first member the 
same flowi_common object.) For implementation details, look in the IPv6 routing modules: net/ipv6/route.c,  
net/ipv6/ip6_fib.c, and the policy routing module, net/ipv6/fib6_rules.c.

Summary
I dealt with the IPv6 subsystem and its implementation in this chapter. I discussed various IPv6 topics, like IPv6 
addresses (including Special Addresses and Multicast Addresses), how the IPv6 header is built, what the IPv6 
extension headers are, the autoconfiguration process, the Rx path in IPv6, and the MLD protocol. In the next 
chapter, we will continue our journey into the kernel networking internals and discuss the netfilter subsystem and its 
implementation. In the “Quick Reference” section that follows, we will cover the top methods related to the topics  
we discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important methods of the IPv6 subsystem. Some of them were mentioned in 
this chapter. Subsequently, there are three tables and two short sections about IPv6 Special Addresses and about the 
management of routing tables in IPv6.

Methods
Let’s start with the methods.

bool ipv6_addr_any(const struct in6_addr *a);
This method returns true if the specified address is the all-zeroes address (“unspecified address”).

bool ipv6_addr_equal(const struct in6_addr *a1, const struct in6_addr *a2);
This method returns true if the two specified IPv6 addresses are equal.
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static inline void ipv6_addr_set(struct in6_addr *addr, __be32 w1, __be32 w2, 
__be32 w3, __be32 w4);
This method sets the IPv6 address according to the four 32-bit input parameters.

bool ipv6_addr_is_multicast(const struct in6_addr *addr);
This method returns true if the specified address is a multicast address.

bool ipv6_ext_hdr(u8 nexthdr);
This method returns true if the specified nexthdr is a well-known extension header.

struct ipv6hdr *ipv6_hdr(const struct sk_buff *skb);
This method returns the IPv6 header (ipv6hdr) of the specified skb.

struct inet6_dev *in6_dev_get(const struct net_device *dev);
This method returns the inet6_dev object associated with the specified device.

bool ipv6_is_mld(struct sk_buff *skb, int nexthdr, int offset);
This method returns true if the specified nexthdr is ICMPv6 (IPPROTO_ICMPV6) and the type of the ICMPv6 header 
located at the specified offset is an MLD type. It should be one of the following:

ICMPV6_MGM_QUERY•	

ICMPV6_MGM_REPORT•	

ICMPV6_MGM_REDUCTION•	

ICMPV6_MLD2_REPORT•	

bool raw6_local_deliver(struct sk_buff *, int);
This method tries to deliver the packet to a raw socket. It returns true on success.

int ipv6_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, 
struct net_device *orig_dev);
This method is the main Rx handler for IPv6 packets.
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bool ipv6_accept_ra(struct inet6_dev *idev);
This method returns true if a host is configured to accept Router Advertisements, in these cases:

If forwarding is enabled, the special hybrid mode should be set, which means that  •	
/proc/sys/net/ipv6/conf/<deviceName>/accept_ra is 2.

If forwarding is not enabled, •	 /proc/sys/net/ipv6/conf/<deviceName>/accept_ra should be 1.

void ip6_route_input(struct sk_buff *skb);
This method is the main IPv6 routing subsystem lookup method in the Rx path. It sets the dst entry of the specified 
skb according to the results of the lookup in the routing subsystem.

int ip6_forward(struct sk_buff *skb);
This method is the main forwarding method.

struct dst_entry *ip6_route_output(struct net *net, const struct sock *sk, struct 
flowi6 *fl6);
This method is the main IPv6 routing subsystem lookup method in the Tx path. The return value is the destination 
cache entry (dst).

Note■■   Both the ip6_route_input() method and the ip6_route_output() method eventually perform the lookup by 
calling the fib6_lookup() method.

void in6_dev_hold(struct inet6_dev *idev); and void __in6_dev_put(struct  
inet6_dev *idev);
This method increments and decrements the reference counter of the specified idev object, respectively.

int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
This method handles a setsockopt() call with MCAST_MSFILTER.

int ip6_mc_input(struct sk_buff *skb);
This method is the main Rx handler for multicast packets.

int ip6_mr_input(struct sk_buff *skb);
This method is the main Rx handler for multicast packets that are to be forwarded.

int ipv6_dev_mc_inc(struct net_device *dev, const struct in6_addr *addr);
This method adds the specified device to a multicast group specified by addr, or creates such a group if not found.
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int __ipv6_dev_mc_dec(struct inet6_dev *idev, const struct in6_addr *addr);
This method removes the specified device from the specified address group.

bool ipv6_chk_mcast_addr(struct net_device *dev, const struct in6_addr *group, 
const struct in6_addr *src_addr);
This method checks if the specified network device belongs to the specified multicast address group. If the third 
parameter is not NULL, it will also check whether source filtering permits receiving multicast traffic from the specified 
address (src_addr) that is destined to the specified multicast address group.

inline void addrconf_addr_solict_mult(const struct in6_addr *addr, struct in6_addr 
*solicited)
This method computes link-local solicited-node multicast addresses.

void addrconf_join_solict(struct net_device *dev, const struct in6_addr *addr);
This method joins to a solicited address multicast group.

int ipv6_sock_mc_join(struct sock *sk, int ifindex, const struct in6_addr *addr);
This method handles socket join on a multicast group.

int ipv6_sock_mc_drop(struct sock *sk, int ifindex, const struct in6_addr *addr);
This method handles socket leave on a multicast group.

int inet6_add_protocol(const struct inet6_protocol *prot, unsigned char protocol);
This method registers an IPv6 protocol handler. It’s used with L4 protocol registration (UDPv6, TCPv6, and more) and 
also with extension headers (like the Fragment Extension Header).

int ipv6_parse_hopopts(struct sk_buff *skb);
This method parses the Hop-by-Hop Options header, which must be the first extension header immediately after the 
IPv6 header.

int ip6_local_out(struct sk_buff *skb);
This method sends out packets that were generated on the local host.



Chapter 8 ■ IPv6

244

int ip6_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *));
This method handles IPv6 fragmentation. It is called from the ip6_finish_output() method.

void icmpv6_param_prob(struct sk_buff *skb, u8 code, int pos);
This method sends an ICMPv6 parameter problem (ICMPV6_PARAMPROB) error. It is called when there is some 
problem in parsing extension headers or in the defragmentation process.

int do_ipv6_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 
unsigned int optlen); static int do_ipv6_getsockopt(struct sock *sk, int level, int 
optname, char __user *optval, int __user *optlen, unsigned int flags);
These methods are the generic IPv6 handlers for calling the setsockopt() and getsockopt() methods on IPv6 
sockets, respectively (net/ipv6/ipv6_sockglue.c).

int igmp6_event_query(struct sk_buff *skb);
This method handles MLDv2 and MLDv1 queries.

void ip6_route_input(struct sk_buff *skb);
This method performs a routing lookup by building a flow6 object, based on the specified skb and invoking the  
ip6_route_input_lookup() method.

Macros
And here are the macros.

IPV6_ADDR_MC_SCOPE( )
This macro returns the scope of the specified IPv6 Multicast address, which is located in bits 11-14 of the multicast 
address.

IPV6_ADDR_MC_FLAG_TRANSIENT( )
This macro returns 1 if the T bit of the flags of the specified multicast address is set.

IPV6_ADDR_MC_FLAG_PREFIX( )
This macro returns 1 if the P bit of the flags of the specified multicast address is set.

IPV6_ADDR_MC_FLAG_RENDEZVOUS( )
This macro returns 1 if the R bit of the flags of the specified multicast address is set.
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Tables
Here are the tables.

Table 8-2 shows the IPv6 extension headers by their Linux symbol, value and description. You can find more 
details in the “extension headers” section of this chapter.

Table 8-3 shows the Multicast Address Record types by their Linux symbol and value. For more details see the 
“MLDv2 Multicast Listener Report” section in this chapter.

Table 8-4 shows the codes of ICMPv6 “Parameter Problem” message by their Linux symbol and value. These 
codes gives more information about the type of problem which occurred.

Table 8-3.  Multicast Address Record (record types)

Linux Symbol Value

MLD2_MODE_IS_INCLUDE 1

MLD2_MODE_IS_EXCLUDE 2

MLD2_CHANGE_TO_INCLUDE 3

MLD2_CHANGE_TO_EXCLUDE 4

MLD2_ALLOW_NEW_SOURCES 5

MLD2_BLOCK_OLD_SOURCES 6

(include/uapi/linux/icmpv6.h)

Table 8-2.  IPv6 extension headers

Linux Symbol Value Description

NEXTHDR_HOP 0 Hop-by-Hop Options header.

NEXTHDR_TCP 6 TCP segment.

NEXTHDR_UDP 17 UDP message.

NEXTHDR_IPV6 41 IPv6 in IPv6.

NEXTHDR_ROUTING 43 Routing header.

NEXTHDR_FRAGMENT 44 Fragmentation/reassembly header.

NEXTHDR_GRE 47 GRE header.

NEXTHDR_ESP 50 Encapsulating security payload.

NEXTHDR_AUTH 51 Authentication header.

NEXTHDR_ICMP 58 ICMP for IPv6.

NEXTHDR_NONE 59 No next header.

NEXTHDR_DEST 60 Destination options header.

NEXTHDR_MOBILITY 135 Mobility header.
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Special Addresses
All of the following variables are instances of the in6_addr structure:

•	 in6addr_any: Represents the unspecified device of all zeroes (::).

•	 in6addr_loopback: Represents the loopback device (::1).

•	 in6addr_linklocal_allnodes: Represents the link-local all nodes multicast address 
(ff02::1).

•	 in6addr_linklocal_allrouters: Represents the link-local all routers multicast address 
(ff02::2).

•	 in6addr_interfacelocal_allnodes: Represents the interface-local all nodes (ff01::1).

•	 in6addr_interfacelocal_allrouters: Represents the interface-local all routers (ff01::2).

•	 in6addr_sitelocal_allrouters: Represents the site-local all routers address (ff05::2).

(include/linux/in6.h)

Routing Tables Management in IPv6
Like in IPv4, we can manage adding and deleting routing entries and displaying the routing tables with the ip route 
command of iproute2 and with the route command of net-tools:

Adding a route by •	 ip -6 route add is handled by the inet6_rtm_newroute() method by 
invoking the ip6_route_add() method.

Deleting a route by •	 ip -6 route del is handled by the inet6_rtm_delroute() method by 
invoking the ip6_route_del() method.

Displaying the routing table by •	 ip -6 route show is handled by the inet6_dump_fib() 
method.

Adding a route by •	 route -A inet6 add is implemented by sending SIOCADDRT IOCTL, 
which is handled by the ipv6_route_ioctl() method, by invoking the ip6_route_add() 
method.

Deleting a route by •	 route -A inet6 del is implemented by sending SIOCDELRT IOCTL, 
which is handled by the ipv6_route_ioctl() method by invoking the ip6_route_del() 
method.

Table 8-4.  ICMPv6 Parameter Problem codes

Linux Symbol Value

ICMPV6_HDR_FIELD 0 Erroneous header field encountered

ICMPV6_UNK_NEXTHDR 1 Unknown header field encountered

ICMPV6_UNK_OPTION 2 Unknown IPv6 option encountered
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Chapter 9

Netfilter

Chapter 8 discusses the IPv6 subsystem implementation. This chapter discusses the netfilter subsystem. The netfilter  
framework was started in 1998 by Rusty Russell, one of the most widely known Linux kernel developers, as an 
improvement of the older implementations of ipchains (Linux 2.2.x) and ipfwadm (Linux 2.0.x). The netfilter 
subsystem provides a framework that enables registering callbacks in various points (netfilter hooks) in the packet 
traversal in the network stack and performing various operations on packets, such as changing addresses or ports, 
dropping packets, logging, and more. These netfilter hooks provide the infrastructure to netfilter kernel modules that 
register callbacks in order to perform various tasks of the netfilter subsystem.

Netfilter Frameworks
The netfilter subsystem provides the following functionalities, discussed in this chapter:

Packet selection (iptables)•	

Packet filtering•	

Network Address Translation (NAT)•	

Packet mangling (modifying the contents of packet headers before or after routing)•	

Connection tracking•	

Gathering network statistics•	

Here are some common frameworks that are based on the Linux kernel netfilter subsystem:

•	 IPVS (IP Virtual Server): A transport layer load-balancing solution (net/netfilter/ipvs). 
There is support for IPv4 IPVS from very early kernels, and support for IPVS in IPv6 is included 
since kernel 2.6.28. The IPv6 kernel support for IPVS was developed by Julius Volz and Vince 
Busam from Google. For more details, see the IPVS official website, www.linuxvirtualserver.org.

•	 IP sets: A framework which consists of a userspace tool called ipset and a kernel part  
(net/netfilter/ipset). An IP set is basically a set of IP addresses. The IP sets framework was 
developed by Jozsef Kadlecsik. For more details, see http://ipset.netfilter.org.

•	 iptables: Probably the most popular Linux firewall, iptables is the front end of netfilter, and 
it provides a management layer for netfilter: for example, adding and deleting netfilter rules, 
displaying statistics, adding a table, zeroing the counters of a table, and more.

http://www.linuxvirtualserver.org/
http://ipset.netfilter.org/
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There are different iptables implementations in the kernel, according to the protocol:

•	 iptables  for IPv4: (net/ipv4/netfilter/ip_tables.c)

•	 ip6tables for IPv6: (net/ipv6/netfilter/ip6_tables.c)

•	 arptables for ARP: (net/ipv4/netfilter/arp_tables.c)

•	 ebtables for Ethernet: (net/bridge/netfilter/ebtables.c)

In userspace, you have the iptables and the ip6tables command-line tools, which are used to set up, maintain, 
and inspect the IPv4 and IPv6 tables, respectively. See man 8 iptables and man 8 ip6tables. Both iptables and 
ip6tables use the setsockopt()/getsockopt() system calls to communicate with the kernel from userspace.  
I should mention here two interesting ongoing netfilter projects. The xtables2 project—being developed primarily by 
Jan Engelhardt, a work in progress as of this writing—uses a netlink-based interface to communicate with the kernel 
netfilter subsystem. See more details on the project website, http://xtables.de. The second project, the nftables 
project, is a new packet filtering engine that is a candidate to replace iptables. The nftables solution is based on 
using a virtual machine and a single unified implementation instead of the four iptables objects mentioned earlier 
(iptables, ip6tables, arptables, and ebtables). The nftables project was first presented in a netfilter workshop in 
2008, by Patrick McHardy. The kernel infrastructure and userspace utility have been developed by Patrick McHardy 
and Pablo Neira Ayuso. For more details, see http://netfilter.org/projects/nftables, and “Nftables: a new 
packet filtering engine” at http://lwn.net/Articles/324989/.

There are a lot of netfilter modules that extend the core functionality of the core netfilter subsystem; apart from 
some examples, I do not describe these modules here in depth. There are a lot of information resources about these 
netfilter extensions from the administration perspective on the web and in various administration guides. See also the 
official netfilter project website: www.netfilter.org.

Netfilter Hooks
There are five points in the network stack where you have netfilter hooks: you have encountered these points in 
previous chapters’ discussions of  the Rx and Tx paths in IPv4 and in IPv6. Note that the names of the hooks are 
common to IPv4 and IPv6:

NF_INET_PRE_ROUTING: This hook is in the •	 ip_rcv() method in IPv4, and in the 
ipv6_rcv() method in IPv6. The ip_rcv() method is the protocol handler of IPv4, and the 
ipv6_rcv() method is the protocol handler of IPv6. It is the first hook point that all incoming 
packets reach, before performing a lookup in the routing subsystem.

NF_INET_LOCAL_IN: This hook is in the •	 ip_local_deliver() method in IPv4, and in the 
ip6_input() method in IPv6. All incoming packets addressed to the local host reach this hook 
point after first passing via the NF_INET_PRE_ROUTING hook point and after performing a 
lookup in the routing subsystem.

NF_INET_FORWARD: This hook is in the •	 ip_forward() method in IPv4, and in the ip6_forward() 
method in IPv6. All forwarded packets reach this hook point after first passing via the  
NF_INET_PRE_ROUTING hook point and after performing a lookup in the routing subsystem.

NF_INET_POST_ROUTING: This hook is in the •	 ip_output() method in IPv4, and in the  
ip6_finish_output2() method in IPv6. Packets that are forwarded reach this hook point after 
passing the NF_INET_FORWARD hook point. Also packets that are created in the local machine 
and sent out arrive to NF_INET_POST_ROUTING after passing the NF_INET_LOCAL_OUT  
hook point.

http://xtables.de/
http://netfilter.org/projects/nftables/
http://lwn.net/Articles/324989/
http://www.netfilter.org/
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NF_INET_LOCAL_OUT: This hook is in the •	 __ip_local_out() method in IPv4, and in the 
__ip6_local_out() method in IPv6. All outgoing packets that were created on the local host 
reach this point before reaching the NF_INET_POST_ROUTING hook point.

(include/uapi/linux/netfilter.h)

The NF_HOOK macro, mentioned in previous chapters, is called in some distinct points along the packet 
traversal in the kernel network stack; it is defined in include/linux/netfilter.h:
 
static inline int NF_HOOK(uint8_t pf, unsigned int hook, struct sk_buff *skb,
                  struct net_device *in, struct net_device *out,
                  int (*okfn)(struct sk_buff *))
{
    return NF_HOOK_THRESH(pf, hook, skb, in, out, okfn, INT_MIN);
}
 

The parameters of the NF_HOOK() are as follows: 

•	 pf: Protocol family. NFPROTO_IPV4 for IPv4 and NFPROTO_IPV6 for IPv6.

•	 hook: One of the five netfilter hooks mentioned earlier (for example, NF_INET_PRE_ROUTING 
or NF_INET_LOCAL_OUT).

•	 skb: The SKB object represents the packet that is being processed.

•	 in: The input network device (net_device object).

•	 out: The output network device (net_device object). There are cases when the output device 
is NULL, as it is yet unknown; for example, in the ip_rcv() method, net/ipv4/ip_input.c, 
which is called before a routing lookup is performed, and you don’t know yet which is the 
output device; the NF_HOOK() macro is invoked in this method with a NULL output device.

•	 okfn: A pointer to a continuation function which will be called when the hook will terminate. 
It gets one argument, the SKB.

The return value from a netfilter hook must be one of the following values (which are also termed netfilter verdicts):

NF_DROP (0): Discard the packet silently.•	

NF_ACCEPT (1): The packet continues its traversal in the kernel network stack as usual.•	

NF_STOLEN (2): Do not continue traversal. The packet is processed by the hook method.•	

NF_QUEUE   (3): Queue the packet for user space.•	

NF_REPEAT (4): The hook function should be called again.•	

(include/uapi/linux/netfilter.h)

Now that you know about the various netfilter hooks, the next section covers how netfilter hooks are registered.

Registration of Netfilter Hooks
To register a hook callback at one of the five hook points mentioned earlier, you first define an nf_hook_ops object 
(or an array of nf_hook_ops objects) and then register it; the nf_hook_ops structure is defined in include/linux/
netfilter.h:
 
struct nf_hook_ops {
    struct list_head list;
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    /* User fills in from here down. */
    nf_hookfn     *hook;
    struct module *owner;
    u_int8_t      pf;
    unsigned int  hooknum;
    /* Hooks are ordered in ascending priority. */
    int           priority;
};
 

The following introduces some of the important members of the nf_hook_ops structure:

•	 hook: The hook callback you want to register. Its prototype is:
 

unsigned int nf_hookfn(unsigned int hooknum,
                       struct sk_buff *skb,
                       const struct net_device *in,
                       const struct net_device *out,
                       int (*okfn)(struct sk_buff *));

 
•	 pf: The protocol family (NFPROTO_IPV4 for IPv4 and NFPROTO_IPV6 for IPv6).

•	 hooknum: One of the five netfilter hooks mentioned earlier.

•	 priority: More than one hook callback can be registered on the same hook. Hook callbacks 
with lower priorities are called first. The nf_ip_hook_priorities enum defines possible values 
for IPv4 hook priorities (include/uapi/linux/netfilter_ipv4.h). See also Table 9-4 in the 
“Quick Reference” section at the end of this chapter.

There are two methods to register netfilter hooks:

•	 int nf_register_hook(struct nf_hook_ops *reg): Registers a single nf_hook_ops object.

•	 int nf_register_hooks(struct nf_hook_ops *reg, unsigned int n): Registers an array of  
n nf_hook_ops objects; the second parameter is the number of the elements in the array.

You will see two examples of registration of an array of nf_hook_ops objects in the next two sections. Figure 9-1 in 
the next section illustrates the use of priorities when registering more than one hook callback on the same hook point.

Connection Tracking
It is not enough to filter traffic only according to the L4 and L3 headers in modern networks. You should also take into 
account cases when the traffic is based on sessions, such as an FTP session or a SIP session. By FTP session, I mean 
this sequence of events, for example: the client first creates a TCP control connection on TCP port 21, which is the 
default FTP port. Commands sent from the FTP client (such as listing the contents of a directory) to the server are 
sent on this control port. The FTP server opens a data socket on port 20, where the destination port on the client side 
is dynamically allocated. Traffic should be filtered according to other parameters, such as the state of a connection or 
timeout. This is one of the main reasons for using the Connection Tracking layer.

Connection Tracking allows the kernel to keep track of sessions. The Connection Tracking layer’s primary goal is 
to serve as the basis of NAT. The IPv4 NAT module (net/ipv4/netfilter/iptable_nat.c) cannot be built if CONFIG_
NF_CONNTRACK_IPV4 is not set. Similarly, the IPv6 NAT module (net/ipv6/netfilter/ip6table_nat.c) cannot 
be built if the CONFIG_NF_CONNTRACK_IPV6 is not set. However, Connection Tracking does not depend on NAT; 
you can run the Connection Tracking module without activating any NAT rule. The IPv4 and IPv6 NAT modules are 
discussed later in this chapter.
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Note■■  T here are some userspace tools (conntrack-tools) for Connection Tracking administration mentioned in the  
“Quick Reference” section at the end of this chapter. These tools may help you to better understand the Connection Tracking layer.

Connection Tracking Initialization
An array of nf_hook_ops objects, called ipv4_conntrack_ops, is defined as follows:
 
static struct nf_hook_ops ipv4_conntrack_ops[] __read_mostly = {
        {
                .hook           = ipv4_conntrack_in,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_PRE_ROUTING,
                .priority       = NF_IP_PRI_CONNTRACK,
        },
        {
                .hook           = ipv4_conntrack_local,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_LOCAL_OUT,
                .priority       = NF_IP_PRI_CONNTRACK,
        },
        {
                .hook           = ipv4_helper,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_POST_ROUTING,
                .priority       = NF_IP_PRI_CONNTRACK_HELPER,
        },
        {
                .hook           = ipv4_confirm,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_POST_ROUTING,
                .priority       = NF_IP_PRI_CONNTRACK_CONFIRM,
        },
        {
                .hook           = ipv4_helper,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_LOCAL_IN,
                .priority       = NF_IP_PRI_CONNTRACK_HELPER,
        },
        {
                .hook           = ipv4_confirm,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
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                .hooknum        = NF_INET_LOCAL_IN,
                .priority       = NF_IP_PRI_CONNTRACK_CONFIRM,
        },
};

(net/ipv4/netfilter/nf_conntrack_l3proto_ipv4.c)
 

The two most important Connection Tracking hooks you register are the NF_INET_PRE_ROUTING hook, 
handled by the ipv4_conntrack_in() method, and the NF_INET_LOCAL_OUT hook, handled by the ipv4_
conntrack_local() method. These two hooks have a priority of NF_IP_PRI_CONNTRACK (-200). The other  
hooks in the ipv4_conntrack_ops array have an NF_IP_PRI_CONNTRACK_HELPER (300) priority and an  
NF_IP_PRI_CONNTRACK_CONFIRM (INT_MAX, which is 2^31-1) priority. In netfilter hooks, a callback with a 
lower-priority value is executed first. (The enum nf_ip_hook_priorities in include/uapi/linux/netfilter_ipv4.h 
represents the possible priority values for IPv4 hooks). Both the ipv4_conntrack_local() method and the ipv4_
conntrack_in() method invoke the nf_conntrack_in() method, passing the corresponding hooknum as a parameter. 
The nf_conntrack_in() method belongs to the protocol-independent NAT core, and is used both in IPv4 Connection 
Tracking and in IPv6 Connection Tracking; its second parameter is the protocol family, specifying whether it is IPv4 
(PF_INET) or IPv6 (PF_INET6). I start the discussion with the nf_conntrack_in() callback. The other hook callbacks, 
ipv4_confirm() and ipv4_help(), are discussed later in this section.

Note■■   When the kernel is built with Connection Tracking support (CONFIG_NF_CONNTRACK is set ), the Connection 
Tracking hook callbacks are called even if there are no iptables rules that are activated. Naturally, this has some performance 
cost. If the performance is very important, and you know beforehand that the device will not use the netfilter subsystem, 
consider building the kernel without Connection Tracking support or building Connection Tracking as a kernel module and 
not loading it.

Registration of IPv4 Connection Tracking hooks is done by calling the nf_register_hooks() method in the 
nf_conntrack_l3proto_ipv4_init() method (net/ipv4/netfilter/nf_conntrack_l3proto_ipv4.c):
 
in nf_conntrack_l3proto_ipv4_init(void) {
       . . .
       ret = nf_register_hooks(ipv4_conntrack_ops,
                                 ARRAY_SIZE(ipv4_conntrack_ops))
       . . .
}
 

In Figure 9-1, you can see the Connection Tracking callbacks  (ipv4_conntrack_in(), ipv4_conntrack_local(), 
ipv4_helper() and ipv4_confirm()), according to the hook points where they are registered.
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Note■■  F or the sake of simplicity, Figure 9-1 does not include more complex scenarios, such as when using IPsec or 
fragmentation or multicasting. It also omits the functions that are called for packets generated on the local host and sent 
out (like the ip_queue_xmit() method or the ip_build_and_send_pkt() method) for the sake of simplicity.

Figure 9-1.  Connection Tracking hooks (IPv4)
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The basic element of Connection Tracking is the nf_conntrack_tuple structure:
 
struct nf_conntrack_tuple {
        struct nf_conntrack_man src;
 
        /* These are the parts of the tuple which are fixed. */
        struct {
                union nf_inet_addr u3;
                union {
                        /* Add other protocols here. */
                        __be16 all;
 
                        struct {
                                __be16 port;
                        } tcp;
                        struct {
                                __be16 port;
                        } udp;
                        struct {
                                u_int8_t type, code;
                        } icmp;
                        struct {
                                __be16 port;
                        } dccp;
                        struct {
                                __be16 port;
                        } sctp;
                        struct {
                                __be16 key;
                        } gre;
                } u;
 
                /* The protocol. */
                u_int8_t protonum;
 
                /* The direction (for tuplehash) */
                u_int8_t dir;
        } dst;
};

(include/net/netfilter/nf_conntrack_tuple.h)
 

The nf_conntrack_tuple structure represents a flow in one direction. The union inside the dst structure 
includes various protocol objects (like TCP, UDP, ICMP, and more). For each transport layer (L4) protocol, there 
is a Connection Tracking module, which implements the protocol-specific part. Thus, for example, you have net/
netfilter/nf_conntrack_proto_tcp.c for the TCP protocol, net/netfilter/nf_conntrack_proto_udp.c for the 
UDP protocol, net/netfilter/nf_conntrack_ftp.c for the FTP protocol, and more; these modules support both 
IPv4 and IPv6. You will see examples of how protocol-specific implementations of Connection Tracking modules 
differ later in this section.
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Connection Tracking Entries
The nf_conn structure represents the Connection Tracking entry:
 
struct nf_conn {
        /* Usage count in here is 1 for hash table/destruct timer, 1 per skb,
           plus 1 for any connection(s) we are `master' for */
        struct nf_conntrack ct_general;
 
        spinlock_t lock;
 
        /* XXX should I move this to the tail ? - Y.K */
        /* These are my tuples; original and reply */
        struct nf_conntrack_tuple_hash tuplehash[IP_CT_DIR_MAX];
 
        /* Have we seen traffic both ways yet? (bitset) */
        unsigned long status;
 
        /* If we were expected by an expectation, this will be it */
        struct nf_conn *master;
 
        /* Timer function; drops refcnt when it goes off. */
        struct timer_list timeout;
 
      . . .
 
        /* Extensions */
        struct nf_ct_ext *ext;
#ifdef CONFIG_NET_NS
        struct net *ct_net;
#endif
 
        /* Storage reserved for other modules, must be the last member */
        union nf_conntrack_proto proto;
};

(include/net/netfilter/nf_conntrack.h)
 

The following is a description of some of the important members of the nf_conn structure :

•	 ct_general: A reference count.

•	 tuplehash: There are two tuplehash objects: tuplehash[0] is the original direction, and 
tuplehash[1] is the reply. They are usually referred to as tuplehash[IP_CT_DIR_ORIGINAL] 
and tuplehash[IP_CT_DIR_REPLY], respectively.

•	 status: The status of the entry. When you start to track a connection entry, it is IP_CT_NEW; 
later on, when the connection is established, it becomes IP_CT_ESTABLISHED. See the  
ip_conntrack_info enum in include/uapi/linux/netfilter/nf_conntrack_common.h.
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•	 master: An expected connection. Set by the init_conntrack() method, when an expected 
packet arrives (this means that the nf_ct_find_expectation() method, which is invoked 
by the init_conntrack() method, finds an expectation). See also the “Connection Tracking 
Helpers and Expectations” section later in this chapter.

•	 timeout: Timer of the connection entry. Each connection entry is expired after some time 
interval when there is no traffic. The time interval is determined according to the protocol. 
When allocating an nf_conn object with the __nf_conntrack_alloc() method, the timeout 
timer is set to be the death_by_timeout() method.

Now that you know about the nf_conn struct and some of its members, let’s take a look at the  
nf_conntrack_in() method:
 
unsigned int nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
                          struct sk_buff *skb)
{
        struct nf_conn *ct, *tmpl = NULL;
        enum ip_conntrack_info ctinfo;
        struct nf_conntrack_l3proto *l3proto;
        struct nf_conntrack_l4proto *l4proto;
        unsigned int *timeouts;
        unsigned int dataoff;
        u_int8_t protonum;
        int set_reply = 0;
        int ret;
 
        if (skb->nfct) {
                /* Previously seen (loopback or untracked)?  Ignore. */
                tmpl = (struct nf_conn *)skb->nfct;
                if (!nf_ct_is_template(tmpl)) {
                        NF_CT_STAT_INC_ATOMIC(net, ignore);
                        return NF_ACCEPT;
                }
                skb->nfct = NULL;
        }
 

First you try to find whether the network layer (L3) protocol can be tracked:
 
        l3proto = __nf_ct_l3proto_find(pf);
 

Now you try to find if the transport layer (L4) protocol can be tracked. For IPv4, it is done by the  
ipv4_get_l4proto() method (net/ipv4/netfilter/nf_conntrack_l3proto_ipv4):
 
        ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
                           &dataoff, &protonum);
        if (ret <= 0) {
           . . .
                ret = -ret;
                goto out;
        }
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        l4proto = __nf_ct_l4proto_find(pf, protonum);
 
        /* It may be an special packet, error, unclean...
         * inverse of the return code tells to the netfilter
         * core what to do with the packet. */
 

Now you check protocol-specific error conditions (see, for example, the udp_error() method in net/netfilter/
nf_conntrack_proto_udp.c, which checks for malformed packets, packets with invalid checksum, and more, or the 
tcp_error() method, in net/netfilter/nf_conntrack_proto_tcp.c):
 
        if (l4proto->error != NULL) {
                ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
                                     pf, hooknum);
                if (ret <= 0) {
                        NF_CT_STAT_INC_ATOMIC(net, error);
                        NF_CT_STAT_INC_ATOMIC(net, invalid);
                        ret = -ret;
                        goto out;
                }
                /* ICMP[v6] protocol trackers may assign one conntrack. */
                if (skb->nfct)
                        goto out;
        }
 

The resolve_normal_ct() method,  which is invoked hereafter immediately, performs the following:

Calculates the hash of the tuple by calling the •	 hash_conntrack_raw() method.

Performs a lookup for a tuple match by calling the •	 __nf_conntrack_find_get() method, 
passing the hash as a parameter.

If no match is found, it creates a new •	 nf_conntrack_tuple_hash object by calling the 
init_conntrack() method. This nf_conntrack_tuple_hash object is added to the list of 
unconfirmed tuplehash objects. This list is embedded in the network namespace object; 
the net structure contains a netns_ct object, which consists of network namespace specific 
Connection Tracking information. One of its members is unconfirmed, which is a list of 
unconfirmed tuplehash objects (see include/net/netns/conntrack.h). Later on, in the 
__nf_conntrack_confirm() method, it will be removed from the unconfirmed list. I discuss 
the __nf_conntrack_confirm() method later in this section.

Each SKB has a member called •	 nfctinfo, which represents the connection state (for example, 
it is IP_CT_NEW for new connections), and also a member called nfct (an instance of the  
nf_conntrack struct) which is in fact a reference counter. The resolve_normal_ct() method 
initializes both of them.
 
ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
                       l3proto, l4proto, &set_reply, &ctinfo);
if (!ct) {
        /* Not valid part of a connection */
        NF_CT_STAT_INC_ATOMIC(net, invalid);
        ret = NF_ACCEPT;
        goto out;
}
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        if (IS_ERR(ct)) {
                /* Too stressed to deal. */
                NF_CT_STAT_INC_ATOMIC(net, drop);
                ret = NF_DROP;
                goto out;
        }
 
        NF_CT_ASSERT(skb->nfct);
 

You now call the nf_ct_timeout_lookup() method to decide what timeout policy you want to apply to this flow. For 
example, for UDP, the timeout is 30 seconds for unidirectional connections and 180 seconds for bidirectional connections; 
see the definition of the udp_timeouts array in net/netfilter/nf_conntrack_proto_udp.c. For TCP, which is a much 
more complex protocol, there are 11 entries in tcp_timeouts array (net/netfilter/nf_conntrack_proto_tcp.c):
 
        /* Decide what timeout policy we want to apply to this flow. */
        timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
 

You now call the protocol-specific packet() method (for example, the udp_packet() for UDP or the tcp_packet() 
method for TCP). The udp_packet() method extends the timeout according to the status of the connection by calling 
the nf_ct_refresh_acct() method. For unreplied connections (where the IPS_SEEN_REPLY_BIT flag is not set), it 
will be set to 30 seconds, and for replied connections, it will be set to 180. Again, in the case of TCP, the tcp_packet() 
method is much more complex, due to the TCP advanced state machine. Moreover, the udp_packet() method always 
returns a verdict of NF_ACCEPT, whereas the tcp_packet() method may sometimes fail:
 
        ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
        if (ret <= 0) {
                 /* Invalid: inverse of the return code tells
                  * the netfilter core what to do */
                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
                 nf_conntrack_put(skb->nfct);
                 skb->nfct = NULL;
                 NF_CT_STAT_INC_ATOMIC(net, invalid);
                 if (ret == -NF_DROP)
                         NF_CT_STAT_INC_ATOMIC(net, drop);
                 ret = -ret;
                 goto out;
        }
  
        if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
                 nf_conntrack_event_cache(IPCT_REPLY, ct);
        out:
        if (tmpl) {
                 /* Special case: we have to repeat this hook, assign the
                  * template again to this packet. We assume that this packet
                  * has no conntrack assigned. This is used by nf_ct_tcp. */
                 if (ret == NF_REPEAT)
                         skb->nfct = (struct nf_conntrack *)tmpl;
                 else
                         nf_ct_put(tmpl);
        }
  
        return ret;
}
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The ipv4_confirm() method, which is called in the NF_INET_POST_ROUTING hook and in the  
NF_INET_LOCAL_IN hook, will normally call the __nf_conntrack_confirm() method, which will remove the tuple 
from the unconfirmed list.

Connection Tracking Helpers and Expectations
Some protocols have different flows for data and for control—for example, FTP, the File Transfer Protocol, and SIP, 
the Session Initiation Protocol, which is a VoIP protocol. Usually in these protocols, the control channel negotiates 
some configuration setup with the other side and agrees with it on which parameters to use for the data flow. These 
protocols are more difficult to handle by the netfilter subsystem, because the netfilter subsystem needs to be aware 
that flows are related to each other. In order to support these types of protocols, the netfilter subsystem provides the 
Connection Tracking Helpers, which extend the Connection Tracking basic functionality. These modules create 
expectations (nf_conntrack_expect objects), and these expectations tell the kernel that it should expect some traffic 
on a specified connection and that two connections are related. Knowing that two connections are related lets you 
define rules on the master connection that pertain also to the related connections. You can use a simple iptables rule 
based on the Connection Tracking state to accept packets whose Connection Tracking state is RELATED:
 
iptables -A INPUT -m conntrack --ctstate RELATED -j ACCEPT 

Note■■   Connections can be related not only as a result of expectation. For example, an ICMPv4 error packet  
such as “ICMP fragmentation needed” will be related if netfilter finds a conntrack entry that matches the tuple in the  
ICMP-embedded L3/L4 header. See the icmp_error_message() method for more details,  
net/ipv4/netfilter/nf_conntrack_proto_icmp.c.

The Connection Tracking Helpers are represented by the nf_conntrack_helper structure (include/net/netfilter/ 
nf_conntrack_helper.h). They are registered and unregistered by the nf_conntrack_helper_register() method 
and the nf_conntrack_helper_unregister() method, respectively. Thus, for example, the nf_conntrack_helper_
register() method is invoked by nf_conntrack_ftp_init() (net/netfilter/nf_conntrack_ftp.c) in order to 
register the FTP Connection Tracking Helpers. The Connection Tracking Helpers are kept in a hash table  
(nf_ct_helper_hash). The ipv4_helper() hook callback is registered in two hook points, NF_INET_POST_ROUTING 
and NF_INET_LOCAL_IN (see the definition of ipv4_conntrack_ops array in the “Connection Tracking Initialization” 
section earlier). Because of this, when the FTP packet reaches the NF_INET_POST_ROUTING callback, ip_output(), 
or the NF_INET_LOCAL_IN callback, ip_local_deliver(), the ipv4_helper() method is invoked, and this method 
eventually calls the callbacks of the registered Connection Tracking Helpers. In the case of FTP, the registered helper 
method is the help() method, net/netfilter/nf_conntrack_ftp.c. This method looks for FTP-specific patterns, like 
the “PORT” FTP command; see the invocation of the find_pattern() method in the help() method, in the following 
code snippet (net/netfilter/nf_conntrack_ftp.c). If there is a match, an nf_conntrack_expect object is created by 
calling the nf_ct_expect_init() method:
 
static int help(struct sk_buff *skb,
         unsigned int protoff,
         struct nf_conn *ct,
         enum ip_conntrack_info ctinfo)
{
       struct nf_conntrack_expect *exp;
    . . .
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       for (i = 0; i < ARRAY_SIZE(search[dir]); i++) {
              found = find_pattern(fb_ptr, datalen,
                            search[dir][i].pattern,
                            search[dir][i].plen,
                            search[dir][i].skip,
                            search[dir][i].term,
                            &matchoff, &matchlen,
                            &cmd,
                            search[dir][i].getnum);
              if (found) break;
       }
 
       if (found == -1) {
             /* We don't usually drop packets.  After all, this is
                connection tracking, not packet filtering.
                However, it is necessary for accurate tracking in
                this case. */
             nf_ct_helper_log(skb, ct, "partial matching of `%s'",
                             search[dir][i].pattern); 

Note■■   Normally, Connection Tracking does not drop packets. There are some cases when, due to some error or  
abnormal situation, packets are dropped. The following is an example of such a case: the invocation of find_pattern() 
earlier returned –1, which means that there is only a partial match; and the packet is dropped due to not finding a full 
pattern match. 

              ret = NF_DROP;
              goto out;
       } else if (found == 0) { /* No match */
              ret = NF_ACCEPT;
              goto out_update_nl;
       }
 
       pr_debug("conntrack_ftp: match `%.*s' (%u bytes at %u)\n",
               matchlen, fb_ptr + matchoff,
               matchlen, ntohl(th->seq) + matchoff);
 
       exp = nf_ct_expect_alloc(ct);
    . . .
       nf_ct_expect_init(exp, NF_CT_EXPECT_CLASS_DEFAULT, cmd.l3num,
                         &ct->tuplehash[!dir].tuple.src.u3, daddr,
                         IPPROTO_TCP, NULL, &cmd.u.tcp.port);
    . . .
}

(net/netfilter/nf_conntrack_ftp.c)
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Later on, when a new connection is created by the init_conntrack() method, you check whether it has 
expectations, and if it does, you set the IPS_EXPECTED_BIT flag and set the master of the connection (ct->master)  
to refer to the connection that created the expectation:
 
static struct nf_conntrack_tuple_hash *
init_conntrack(struct net *net, struct nf_conn *tmpl,
               const struct nf_conntrack_tuple *tuple,
               struct nf_conntrack_l3proto *l3proto,
               struct nf_conntrack_l4proto *l4proto,
               struct sk_buff *skb,
               unsigned int dataoff, u32 hash)
{
        struct nf_conn *ct;
        struct nf_conn_help *help;
        struct nf_conntrack_tuple repl_tuple;
        struct nf_conntrack_ecache *ecache;
        struct nf_conntrack_expect *exp;
        u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
        struct nf_conn_timeout *timeout_ext;
        unsigned int *timeouts;
 
        . . .
        ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
                                  hash);
    . . .
 
        exp = nf_ct_find_expectation(net, zone, tuple);
        if (exp) {
                pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
                         ct, exp);
                /* Welcome, Mr. Bond.  We've been expecting you... */
                __set_bit(IPS_EXPECTED_BIT, &ct->status);
                ct->master = exp->master;
                if (exp->helper) {
                        help = nf_ct_helper_ext_add(ct, exp->helper,
                                                    GFP_ATOMIC);
                        if (help)
                                rcu_assign_pointer(help->helper, exp->helper);
                }
        . . .
 

Note that helpers listen on a predefined port. For example, the FTP Connection Tracking Helper listens on 
port 21 (see FTP_PORT definition in include/linux/netfilter/nf_conntrack_ftp.h). You can set a different port 
(or ports) in one of two ways: the first way is by a module parameter—you can override the default port value by 
supplying a single port or a comma-separated list of ports to the modprobe command:
 
modprobe nf_conntrack_ftp ports=2121
modprobe nf_conntrack_ftp ports=2022,2023,2024
 

The second way is by using the CT target:
 
iptables -A PREROUTING -t raw -p tcp --dport 8888 -j CT --helper ftp
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Note that the CT target (net/netfilter/xt_CT.c) was added in kernel 2.6.34.

Note■■   Xtables target extensions are represented by the xt_target structure and are registered by the xt_register_
target() method for a single target, or by the xt_register_targets() method for an array of targets. Xtables match 
extensions are represented by the xt_match structure and are registered by the xt_register_match() method, or by 
the xt_register_matches() for an array of matches. The match extensions inspect a packet according to some criterion 
defined by the match extension module; thus, for example, the xt_length match module (net/netfilter/xt_length.c) 
inspects packets according to their length (the tot_len of the SKB in case of IPv4 packet), and the xt_connlimit module 
(net/netfilter/xt_connlimit.c) limits the number of parallel TCP connections per IP address.

This section detailed the Connection Tracking initialization. The next section deals with iptables, which is 
probably the most known part of the netfilter framework.

IPTables
There are two parts to iptables. The kernel part—the core is in net/ipv4/netfilter/ip_tables.c for IPv4, and 
in net/ipv6/netfilter/ip6_tables.c for IPv6. And there is the userspace part, which provides a front end for 
accessing the kernel iptables layer (for example, adding and deleting rules with the iptables command). Each 
table is represented by the xt_table structure (defined in include/linux/netfilter/x_tables.h). Registration 
and unregistration of a table is done by the ipt_register_table() and the ipt_unregister_table() methods, 
respectively. These methods are implemented in net/ipv4/netfilter/ip_tables.c. In IPv6, you also use the 
xt_table structure for creating tables, but registration and unregistration of a table is done by the ip6t_register_
table() method and the ip6t_unregister_table() method, respectively.

The network namespace object contains IPv4- and IPv6-specific objects (netns_ipv4 and netns_ipv6, respectively). 
The netns_ipv4 and netns_ipv6 objects, in turn, contain pointers to xt_table objects. For IPv4, in struct netns_ipv4 
you have, for example, iptable_filter, iptable_mangle, nat_table, and more (include/net/netns/ipv4.h). In 
struct netns_ipv6 you have, for example, ip6table_filter, ip6table_mangle, ip6table_nat, and more (include/net/
netns/ipv6.h). For a full list of the IPv4 and of the IPv6 network namespace netfilter tables and the corresponding kernel 
modules, see Tables 9-2 and 9-3 in the “Quick Reference” section at the end of this chapter.

To understand how iptables work, let’s take a look at a real example with the filter table. For the sake of simplicity, 
let’s assume that the filter table is the only one that is built, and also that the LOG target is supported; the only rule I 
am using is for logging, as you will shortly see. First, let’s take a look at the definition of the filter table:
 
#define FILTER_VALID_HOOKS ((1 << NF_INET_LOCAL_IN) | \
                            (1 << NF_INET_FORWARD) | \
                            (1 << NF_INET_LOCAL_OUT))
 
static const struct xt_table packet_filter = {
        .name           = "filter",
        .valid_hooks    = FILTER_VALID_HOOKS,
        .me             = THIS_MODULE,
        .af             = NFPROTO_IPV4,
        .priority       = NF_IP_PRI_FILTER,
};

(net/ipv4/netfilter/iptable_filter.c)
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Initialization of the table is done first by calling the xt_hook_link() method, which sets the iptable_filter_hook()  
method as the hook callback of the nf_hook_ops object of the packet_filter table:
 
static struct nf_hook_ops *filter_ops __read_mostly;
static int __init iptable_filter_init(void)
{
     . . .
        filter_ops = xt_hook_link(&packet_filter, iptable_filter_hook);
     . . .
}
 

Then you call the ipt_register_table() method (note that the IPv4 netns object, net->ipv4, keeps a pointer to 
the filter table, iptable_filter):
 
static int __net_init iptable_filter_net_init(struct net *net)
{
    . . .
       net->ipv4.iptable_filter =
                ipt_register_table(net, &packet_filter, repl);
    . . .
 
       return PTR_RET(net->ipv4.iptable_filter);
}

(net/ipv4/netfilter/iptable_filter.c)
 

Note that there are three hooks in the filter table:

NF_INET_LOCAL_IN•	

NF_INET_FORWARD•	

NF_INET_LOCAL_OUT•	

For this example, you set the following rule, using the iptable command line:
 
iptables -A INPUT -p udp --dport=5001 -j LOG --log-level 1
 

The meaning of this rule is that you will dump into the syslog incoming UDP packets with destination port 5001. 
The log-level modifier is the standard syslog level in the range 0 through 7; 0 is emergency and 7 is debug. Note that 
when running an iptables command, you should specify the table you want to use with the –t modifier; for example, 
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE will add a rule to the NAT table. When not specifying 
a table name with the –t modifier, you use the filter table by default. So by running iptables -A INPUT -p udp 
--dport=5001 -j LOG --log-level 1, you add a rule to the filter table.

Note■■   You can set targets to iptables rules; usually these can be targets from the Linux netfilter subsystems (see the 
earlier example for using the LOG target). You can also write your own targets and extend the iptables userspace code to 
support them. See “Writing Netfilter modules,” by Jan Engelhardt and Nicolas Bouliane: http://inai.de/documents/
Netfilter_Modules.pdf.

http://inai.de/documents/Netfilter_Modules.pdf
http://inai.de/documents/Netfilter_Modules.pdf
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Note that CONFIG_NETFILTER_XT_TARGET_LOG must be set in order to use the LOG target in an iptables rule, 
as shown in the earlier example. You can refer to the code of net/netfilter/xt_LOG.c as an example of an iptables 
target module.

When a UDP packet with destination port 5001 reaches the network driver and goes up to the network layer (L3), 
the first hook it encounters is the NF_INET_PRE_ROUTING hook; the filter table callback does not register a hook 
in NF_INET_PRE_ROUTING. It has only three hooks: NF_INET_LOCAL_IN, NF_INET_FORWARD, and NF_INET_
LOCAL_OUT, as mentioned earlier. So you continue to the ip_rcv_finish() method and perform a lookup in the 
routing subsystem. Now there are two cases: the packet is intended to be delivered to the local host or intended to 
be forwarded (let’s ignore cases when the packet is to be discarded). In Figure 9-2, you can see the packet traversal in 
both cases.

Figure 9-2.  Traffic for me and Forwarded Traffic with a Filter table rule
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Delivery to the Local Host 
First you reach the ip_local_deliver() method; take a short look at this method:
 
int ip_local_deliver(struct sk_buff *skb)
{
    . . .
       return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN, skb, skb->dev, NULL,
                       ip_local_deliver_finish);
}
 

As you can see, you have the NF_INET_LOCAL_IN hook in this method, and as mentioned earlier, NF_INET_
LOCAL_IN  is one of the filter table hooks; so the NF_HOOK() macro will invoke the iptable_filter_hook() method. 
Now take a look in the iptable_filter_hook() method:
 
static unsigned int iptable_filter_hook(unsigned int hook, struct sk_buff *skb,
                                    const struct net_device *in,
                        const struct net_device *out,
                                 int (*okfn)(struct sk_buff *))
{
        const struct net *net;
        . . .
        net = dev_net((in != NULL) ? in : out);
        . . .
 
        return ipt_do_table(skb, hook, in, out, net->ipv4.iptable_filter);
}

(net/ipv4/netfilter/iptable_filter.c)
 

The ipt_do_table() method, in fact, invokes the LOG target callback, ipt_log_packet(), which writes the 
packet headers into the syslog. If there were more rules, they would have been called at this point. Because there are 
no more rules, you continue to the ip_local_deliver_finish() method, and the packet continues its traversal to the 
transport layer (L4) to be handled by a corresponding socket.

Forwarding the Packet 
The second case is that after a lookup in the routing subsystem, you found that the packet is to be forwarded, so the 
ip_forward() method is called:
 
int ip_forward(struct sk_buff *skb)
  {
  . . .
   return NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev,
                        rt->dst.dev, ip_forward_finish);
   . . .
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Because the filter table has a registered hook callback in NF_INET_FORWARD, as mentioned, you again invoke 
the iptable_filter_hook() method. And consequently, as before, you again call the ipt_do_table() method, 
which will in turn again call the ipt_log_packet() method. You will continue to the ip_forward_finish() method 
(note that ip_forward_finish is the last argument of the NF_HOOK macro above, which represents the continuation 
method). Then call the ip_output() method, and because the filter table has no NF_INET_POST_ROUTING hook, 
you continue to the ip_finish_output() method.

Note■■   You can filter packets according to their Connection Tracking state. The next rule will dump into syslog packets 
whose Connection Tracking state is ESTABLISHED:

iptables -A INPUT -p tcp -m conntrack --ctstate ESTABLISHED -j LOG --log-level 1

Network Address Translation (NAT)  
The Network Address Translation (NAT) module deals mostly with IP address translation, as the name implies, or port 
manipulation. One of the most common uses of NAT is to enable a group of hosts with a private IP address on a Local 
Area Network to access the Internet via some residential gateway. You can do that, for example, by setting a NAT rule. 
The NAT, which is installed on the gateway, can use such a rule and provide the hosts the ability to access the Web. 
The netfilter subsystem has NAT implementation for IPv4 and for IPv6. The IPv6 NAT implementation is mainly based 
on the IPv4 implementation and provides, from a user perspective, an interface similar to IPv4. IPv6 NAT support 
was merged in kernel 3.7. It provides some features like an easy solution to load balancing (by setting a DNAT on 
incoming traffic) and more. The IPv6 NAT module is in net/ipv6/netfilter/ip6table_nat.c. There are many types 
of NAT setups, and there is a lot of documentation on the Web about NAT administration. I talk about two common 
configurations: SNAT is source NAT, where the source IP address is changed, and DNAT is a destination NAT, where 
the destination IP address is changed. You can use the –j flag to select SNAT or DNAT. The implementation of both 
DNAT and SNAT is in net/netfilter/xt_nat.c. The next section discusses NAT initialization.

NAT initialization
The NAT table, like the filter table in the previous section, is also an xt_table object. It is registered on all hook points, 
except for the NF_INET_FORWARD hook:
 
static const struct xt_table nf_nat_ipv4_table = {
        .name           = "nat",
        .valid_hooks    = (1 << NF_INET_PRE_ROUTING) |
                          (1 << NF_INET_POST_ROUTING) |
                          (1 << NF_INET_LOCAL_OUT) |
                          (1 << NF_INET_LOCAL_IN),
        .me             = THIS_MODULE,
        .af             = NFPROTO_IPV4,
};

(net/ipv4/netfilter/iptable_nat.c)
 

Registration and unregistration of the NAT table is done by calling the ipt_register_table() and the 
ipt_unregister_table(), respectively (net/ipv4/netfilter/iptable_nat.c). The network namespace (struct 
net) includes an IPv4 specific object (netns_ipv4), which includes a pointer to the IPv4 NAT table (nat_table), as 
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mentioned in the earlier “IP tables” section. This xt_table object, which is created by the ipt_register_table() 
method, is assigned to this nat_table pointer. You also define an array of nf_hook_ops objects and register it:
 
 static struct nf_hook_ops nf_nat_ipv4_ops[] __read_mostly = {
        /* Before packet filtering, change destination */
        {
                .hook           = nf_nat_ipv4_in,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_PRE_ROUTING,
                .priority       = NF_IP_PRI_NAT_DST,
        },
        /* After packet filtering, change source */
        {
                .hook           = nf_nat_ipv4_out,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_POST_ROUTING,
                .priority       = NF_IP_PRI_NAT_SRC,
        },
        /* Before packet filtering, change destination */
        {
                .hook           = nf_nat_ipv4_local_fn,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_LOCAL_OUT,
                .priority       = NF_IP_PRI_NAT_DST,
        },
        /* After packet filtering, change source */
        {
                .hook           = nf_nat_ipv4_fn,
                .owner          = THIS_MODULE,
                .pf             = NFPROTO_IPV4,
                .hooknum        = NF_INET_LOCAL_IN,
                .priority       = NF_IP_PRI_NAT_SRC,
        },
};
 

Registration of the nf_nat_ipv4_ops array is done in the iptable_nat_init() method:
 
static int __init iptable_nat_init(void)
{
        int err;
        . . .
        err = nf_register_hooks(nf_nat_ipv4_ops, ARRAY_SIZE(nf_nat_ipv4_ops));
        if (err < 0)
                goto err2;
        return 0;
        . . .
}

(net/ipv4/netfilter/iptable_nat.c)
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NAT Hook Callbacks and Connection Tracking Hook Callbacks
There are some hooks on which both NAT callbacks and Connection Tracking callbacks are registered. For example, 
on the NF_INET_PRE_ROUTING hook (the first hook an incoming packet arrives at), there are two registered 
callbacks: the Connection Tracking callback, ipv4_conntrack_in(), and the NAT callback, nf_nat_ipv4_in(). The 
priority of the Connection Tracking callback, ipv4_conntrack_in(), is NF_IP_PRI_CONNTRACK (-200), and the 
priority of the NAT callback, nf_nat_ipv4_in(), is NF_IP_PRI_NAT_DST (-100). Because callbacks of the same hook 
with lower priorities are invoked first, the Connection Tracking ipv4_conntrack_in() callback, which has a priority 
of –200, will be invoked before the NAT nf_nat_ipv4_in() callback, which has a priority of –100. See Figure 9-1 for 
the location of the ipv4_conntrack_in() method and Figure 9-4 for the location of the nf_nat_ipv4_in(); both are 
in the same place, in the NF_INET_PRE_ROUTING point. The reason behind this is that NAT performs a lookup in the 
Connection Tracking layer, and if it does not find an entry, NAT does not perform any address translation action:
 
static unsigned int nf_nat_ipv4_fn(unsigned int hooknum,
                           struct sk_buff *skb,
                           const struct net_device *in,
                           const struct net_device *out,
                           int (*okfn)(struct sk_buff *))
{
        struct nf_conn *ct;
        . . .
        /* Don't try to NAT if this packet is not conntracked */
        if (nf_ct_is_untracked(ct))
                return NF_ACCEPT;
    . . .
}

(net/ipv4/netfilter/iptable_nat.c) 

Note■■  T he nf_nat_ipv4_fn () method is called from the NAT PRE_ROUTING callback, nf_nat_ipv4_in().

On the NF_INET_POST_ROUTING hook, you have two registered Connection Tracking callbacks: the ipv4_
helper() callback (with priority of NF_IP_PRI_CONNTRACK_HELPER, which is 300) and the ipv4_confirm() 
callback with priority of NF_IP_PRI_CONNTRACK_CONFIRM (INT_MAX, which is the highest integer value for a 
priority). You also have a registered NAT hook callback, nf_nat_ipv4_out(), with a priority of NF_IP_PRI_NAT_SRC, 
which is 100. As a result, when reaching the NF_INET_POST_ROUTING hook, first the NAT callback, nf_nat_ipv4_
out(), will be called, and then the ipv4_helper() method will be called, and the ipv4_confirm() will be the last to be 
called. See Figure 9-4.

Let’s take a look in a simple DNAT rule and see the traversal of a forwarded packet and the order in which the 
Connection Tracking callbacks and the NAT callbacks are called (for the sake of simplicity, assume that the filter table is 
not built in this kernel image). In the setup shown in Figure 9-3, the middle host (the AMD server) runs this DNAT rule:
 
iptables -t nat -A PREROUTING -j DNAT -p udp --dport 9999 --to-destination 192.168.1.8
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The meaning of this DNAT rule is that incoming UDP packets that are sent on UDP destination port 9999 will 
change their destination IP address to 192.168.1.8. The right side machine (the Linux desktop) sends UDP packets 
to 192.168.1.9 with UDP destination port of 9999. In the AMD server, the destination IPv4 address is changed to 
192.168.1.8 by the DNAT rule, and the packets are sent to the laptop on the left.

In Figure 9-4, you can see the traversal of a first UDP packet, which is sent according to the setup mentioned earlier.

Figure 9-3.  A simple setup with a DNAT rule

Figure 9-4.  NAT and netfilter hooks
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The generic NAT module is net/netfilter/nf_nat_core.c. The basic elements of the NAT implementation are 
the nf_nat_l4proto structure (include/net/netfilter/nf_nat_l4proto.h) and the nf_nat_l3proto structure. In 
kernels prior to 3.7, you will encounter the nf_nat_protocol structure instead of these two structures, which replaced 
them as part of adding IPv6 NAT support. These two structures provide a protocol-independent NAT core support.

Both of these structures contain a manip_pkt() function pointer that changes the packet headers. Let’s look at an 
example of the manip_pkt() implementation for the TCP protocol, in net/netfilter/nf_nat_proto_tcp.c:
 
static bool tcp_manip_pkt(struct sk_buff *skb,
              const struct nf_nat_l3proto *l3proto,
              unsigned int iphdroff, unsigned int hdroff,
              const struct nf_conntrack_tuple *tuple,
              enum nf_nat_manip_type maniptype)
{
        struct tcphdr *hdr;
        __be16 *portptr, newport, oldport;
        int hdrsize = 8; /* TCP connection tracking guarantees this much */
 
        /* this could be an inner header returned in icmp packet; in such
           cases we cannot update the checksum field since it is outside of
           the 8 bytes of transport layer headers we are guaranteed */
        if (skb->len >= hdroff + sizeof(struct tcphdr))
                hdrsize = sizeof(struct tcphdr);
 
        if (!skb_make_writable(skb, hdroff + hdrsize))
                return false;
 
        hdr = (struct tcphdr *)(skb->data + hdroff);
 

Set newport according to maniptype:

If you need to change the source port, •	 maniptype is NF_NAT_MANIP_SRC. So you extract the 
port from the tuple->src.

If you need to change the destination port, •	 maniptype is NF_NAT_MANIP_DST. So you extract 
the port from the tuple->dst:

 
        if (maniptype == NF_NAT_MANIP_SRC) {
                /* Get rid of src port */
                newport = tuple->src.u.tcp.port;
                portptr = &hdr->source;
        } else {
                /* Get rid of dst port */
                newport = tuple->dst.u.tcp.port;
                portptr = &hdr->dest;
        }
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You are going to change the source port (when maniptype is NF_NAT_MANIP_SRC) or the destination port 
(when maniptype is NF_NAT_MANIP_DST) of the TCP header, so you need to recalculate the checksum. You must 
keep the old port for the checksum recalculation, which will be immediately done by calling the csum_update() 
method and the inet_proto_csum_replace2() method:
 
        oldport = *portptr;
        *portptr = newport;
 
        if (hdrsize < sizeof(*hdr))
                return true;
 

Recalculate the checksum:
 
        l3proto->csum_update(skb, iphdroff, &hdr->check, tuple, maniptype);
        inet_proto_csum_replace2(&hdr->check, skb, oldport, newport, 0);
        return true;
} 

NAT Hook Callbacks
The protocol-specific NAT module is net/ipv4/netfilter/iptable_nat.c for the IPv4 protocol, and net/ipv6/
netfilter/ip6table_nat.c for the IPv6 protocol. These two NAT modules have four hooks callbacks each, shown in 
Table 9-1.

Table 9-1.  IPv4 and IPv6 NAT Callbacks

Hook Hook Callback (IPv4) Hook Callback (IPv6)

NF_INET_PRE_ROUTING nf_nat_ipv4_in nf_nat_ipv6_in

NF_INET_POST_ROUTING nf_nat_ipv4_out nf_nat_ipv6_out

NF_INET_LOCAL_OUT nf_nat_ipv4_local_fn nf_nat_ipv6_local_fn

NF_INET_LOCAL_IN nf_nat_ipv4_fn nf_nat_ipv6_fn

The nf_nat_ipv4_fn() is the most important of these methods (for IPv4). The other three methods, nf_nat_
ipv4_in(), nf_nat_ipv4_out(), and nf_nat_ipv4_local_fn(), all invoke the nf_nat_ipv4_fn() method. Let’s take a 
look at the nf_nat_ipv4_fn() method:
 
static unsigned int nf_nat_ipv4_fn(unsigned int hooknum,
                              struct sk_buff *skb,
                              const struct net_device *in,
                              const struct net_device *out,
                              int (*okfn)(struct sk_buff *))
{
        struct nf_conn *ct;
        enum ip_conntrack_info ctinfo;
        struct nf_conn_nat *nat;
        /* maniptype == SRC for postrouting. */
        enum nf_nat_manip_type maniptype = HOOK2MANIP(hooknum);
 



Chapter 9 ■ Netfilter

272

        /* We never see fragments: conntrack defrags on pre-routing
         * and local-out, and nf_nat_out protects post-routing.
         */
        NF_CT_ASSERT(!ip_is_fragment(ip_hdr(skb)));
 
        ct = nf_ct_get(skb, &ctinfo);
        /* Can't track?  It's not due to stress, or conntrack would
         * have dropped it.  Hence it's the user's responsibilty to
         * packet filter it out, or implement conntrack/NAT for that
         * protocol. 8) --RR
         */
        if (!ct)
                return NF_ACCEPT;
 
        /* Don't try to NAT if this packet is not conntracked */
        if (nf_ct_is_untracked(ct))
                return NF_ACCEPT;
 
        nat = nfct_nat(ct);
        if (!nat) {
                /* NAT module was loaded late. */
                if (nf_ct_is_confirmed(ct))
                        return NF_ACCEPT;
                nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
                if (nat == NULL) {
                        pr_debug("failed to add NAT extension\n");
                        return NF_ACCEPT;
                }
        }
 
        switch (ctinfo) {
        case IP_CT_RELATED:
        case IP_CT_RELATED_REPLY:
                if (ip_hdr(skb)->protocol == IPPROTO_ICMP) {
                        if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
                                                           hooknum))
                                return NF_DROP;
                        else
                                return NF_ACCEPT;
                }
                /* Fall thru... (Only ICMPs can be IP_CT_IS_REPLY) */
        case IP_CT_NEW:
                /* Seen it before?  This can happen for loopback, retrans,
                 * or local packets.
                 */
                if (!nf_nat_initialized(ct, maniptype)) {
                        unsigned int ret;
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The nf_nat_rule_find() method calls the ipt_do_table() method, which iterates through all the matches of an 
entry in a specified table, and if there is a match, calls the target callback:
 
                        ret = nf_nat_rule_find(skb, hooknum, in, out, ct);
                        if (ret != NF_ACCEPT)
                                return ret;
                } else {
                        pr_debug("Already setup manip %s for ct %p\n",
                                 maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST",
                                 ct);
                        if (nf_nat_oif_changed(hooknum, ctinfo, nat, out))
                                goto oif_changed;
                }
                break;
 
        default:
                /* ESTABLISHED */
                NF_CT_ASSERT(ctinfo == IP_CT_ESTABLISHED ||
                             ctinfo == IP_CT_ESTABLISHED_REPLY);
                if (nf_nat_oif_changed(hooknum, ctinfo, nat, out))
                        goto oif_changed;
        }
 
        return nf_nat_packet(ct, ctinfo, hooknum, skb);
 
oif_changed:
        nf_ct_kill_acct(ct, ctinfo, skb);
        return NF_DROP;
} 

Connection Tracking Extensions
Connection Tracking (CT) Extensions were added in kernel 2.6.23. The main point of Connection Tracking Extensions 
is to allocate only what is required—for example, if the NAT module is not loaded, the extra memory needed for NAT 
in the Connection Tracking layer will not be allocated. Some extensions are enabled by sysctls or even depending 
on certain iptables rules (for example, -m connlabel). Each Connection Tracking Extension module should define an 
nf_ct_ext_type object and perform registration by the nf_ct_extend_register() method (unregistration is done by 
the nf_ct_extend_unregister() method). Each extension should define a method to attach its Connection Tracking 
Extension to a connection (nf_conn) object, which should be called from the init_conntrack() method. Thus, 
for example, you have the nf_ct_tstamp_ext_add() method for the timestamp CT Extension and nf_ct_labels_
ext_add() for the labels CT Extension. The Connection Tracking Extensions infrastructure is implemented in net/
netfilter/nf_conntrack_extend.c. These are the Connection Tracking Extensions modules as of this writing (all 
under net/netfilter):

•	 nf_conntrack_timestamp.c

•	 nf_conntrack_timeout.c

•	 nf_conntrack_acct.c

•	 nf_conntrack_ecache.c

•	 nf_conntrack_labels.c

•	 nf_conntrack_helper.c
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Summary
This chapter described the netfilter subsystem implementation. I covered the netfilter hooks and how they are 
registered. I also discussed important subjects such as the Connection Tracking mechanism, iptables, and NAT. 
Chapter 10 deals with the IPsec subsystem and its implementation.

Quick Reference
This section covers the top methods that are related to the topics discussed in this chapter, ordered by their context, 
followed by three tables and a short section about tools and libraries.

Methods
The following is a short list of important methods of the netfilter subsystem. Some of them were mentioned in this 
chapter.

struct xt_table *ipt_register_table(struct net *net, const struct xt_table *table, 
const struct ipt_replace *repl);
This method registers a table in the netfilter subsystem.

void ipt_unregister_table(struct net *net, struct xt_table *table);
This method unregisters a table in the netfilter subsystem.

int nf_register_hook(struct nf_hook_ops *reg);
This method registers a single nf_hook_ops object.

int nf_register_hooks(struct nf_hook_ops *reg, unsigned int n);
This method registers an array of n nf_hook_ops objects; the second parameter is the number of the elements  
in the array.

void nf_unregister_hook(struct nf_hook_ops *reg);
This method unregisters a single nf_hook_ops object.

void nf_unregister_hooks(struct nf_hook_ops *reg, unsigned int n);
This method unregisters an array of n nf_hook_ops objects; the second parameter is the number of the elements  
in the array.
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static inline void nf_conntrack_get(struct nf_conntrack *nfct);
This method increments the reference count of the associated nf_conntrack object.

static inline void nf_conntrack_put(struct nf_conntrack *nfct);
This method decrements the reference count of the associated nf_conntrack object. If it reaches 0, the  
nf_conntrack_destroy() method is called.

int nf_conntrack_helper_register(struct nf_conntrack_helper *me);
This method registers an nf_conntrack_helper object.

static inline struct nf_conn *resolve_normal_ct(struct net *net, struct nf_conn 
*tmpl, struct sk_buff *skb, unsigned int dataoff, u_int16_t l3num, u_int8_t 
protonum, struct nf_conntrack_l3proto *l3proto, struct nf_conntrack_l4proto 
*l4proto, int *set_reply, enum ip_conntrack_info *ctinfo);
This method tries to find an nf_conntrack_tuple_hash object according to the specified SKB by calling the __nf_
conntrack_find_get() method, and if it does not find such an entry, it creates one by calling the init_conntrack() 
method. The resolve_normal_ct() method is called from the nf_conntrack_in() method (net/netfilter/nf_
conntrack_core.c).

struct nf_conntrack_tuple_hash *init_conntrack(struct net *net, struct nf_conn *tmpl, 
const struct nf_conntrack_tuple *tuple, struct nf_conntrack_l3proto *l3proto, struct 
nf_conntrack_l4proto *l4proto, struct sk_buff *skb, unsigned int dataoff, u32 hash);
This method allocates a Connection Tracking nf_conntrack_tuple_hash object. Invoked from the resolve_normal_
ct() method, it tries to find an expectation for this connection by calling the nf_ct_find_expectation() method.

static struct nf_conn *__nf_conntrack_alloc(struct net *net, u16 zone, const struct 
nf_conntrack_tuple *orig, const struct nf_conntrack_tuple *repl, gfp_t gfp, u32 hash);
This method allocates an nf_conn object. Sets the timeout timer of the nf_conn object to be the death_by_timeout() 
method.

int xt_register_target(struct xt_target *target);
This method registers an Xtable target extension.

void xt_unregister_target(struct xt_target *target);
This method unregisters an Xtable target extension.

int xt_register_targets(struct xt_target *target, unsigned int n);
This method registers an array of Xtable target extensions; n is the number of targets.
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void xt_unregister_targets(struct xt_target *target, unsigned int n);
This method unregisters an array of Xtable target extensions; n is the number of targets.

int xt_register_match(struct xt_match *target);
This method registers an Xtable match extension.

void xt_unregister_match(struct xt_match *target);
This method unregisters an Xtable match extension.

int xt_register_matches(struct xt_match *match, unsigned int n);
This method registers an array of Xtable match extensions; n is the number of matches.

void xt_unregister_matches(struct xt_match *match, unsigned int n);
This method unregisters an array of Xtable match extensions; n is the number of matches.

int nf_ct_extend_register(struct nf_ct_ext_type *type);
This method registers a Connection Tracking Extension object.

void nf_ct_extend_unregister(struct nf_ct_ext_type *type);
This method unregisters a Connection Tracking Extension object.

int __init iptable_nat_init(void);
This method initializes the IPv4 NAT table.

int __init nf_conntrack_ftp_init(void);
This method initializes the Connection Tracking FTP Helper. Calls the nf_conntrack_helper_register() method to 
register the FTP helpers.

MACRO
Let’s look at the macro used in this chapter.

NF_CT_DIRECTION(hash)
This is a macro that gets an nf_conntrack_tuple_hash object as a parameter and returns the direction  
(IP_CT_DIR_ORIGINAL, which is 0,  or IP_CT_DIR_REPLY, which is 1) of the destination (dst object) of the associated 
tuple (include/net/netfilter/nf_conntrack_tuple.h).
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Tables
And here are the tables, showing netfilter tables in IPv4 network namespace and in IPv6 network namespace and 
netfilter hook priorities.

Table 9-2.  IPv4 Network Namespace (netns_ipv4) Tables (xt_table Objects)

Linux Symbol (netns_ipv4) Linux Module

iptable_filter net/ipv4/netfilter/iptable_filter.c

iptable_mangle net/ipv4/netfilter/iptable_mangle.c

iptable_raw net/ipv4/netfilter/iptable_raw.c

arptable_filter net/ipv4/netfilter/arp_tables.c

nat_table net/ipv4/netfilter/iptable_nat.c

iptable_security net/ipv4/netfilter/iptable_security.c (Note: CONFIG_SECURITY should be set).

Table 9-3.  IPv6 Network Namespace (netns_ipv6) Tables (xt_table Objects)

Linux Symbol (netns_ipv6) Linux Module

ip6table_filter net/ipv6/netfilter/ip6table_filter.c

ip6table_mangle net/ipv6/netfilter/ip6table_mangle.c

ip6table_raw net/ipv6/netfilter/ip6table_raw.c

ip6table_nat net/ipv6/netfilter/ip6table_nat.c

ip6table_security net/ipv6/netfilter/ip6table_security.c (Note: CONFIG_SECURITY should be set).

Table 9-4.  Netfilter Hook Priorities

Linux Symbol value

NF_IP_PRI_FIRST INT_MIN

NF_IP_PRI_CONNTRACK_DEFRAG -400

NF_IP_PRI_RAW -300

NF_IP_PRI_SELINUX_FIRST -225

NF_IP_PRI_CONNTRACK -200

NF_IP_PRI_MANGLE -150

NF_IP_PRI_NAT_DST -100

NF_IP_PRI_FILTER 0

NF_IP_PRI_SECURITY 50

NF_IP_PRI_NAT_SRC 100

NF_IP_PRI_SELINUX_LAST 225

NF_IP_PRI_CONNTRACK_HELPER 300

NF_IP_PRI_CONNTRACK_CONFIRM INT_MAX

NF_IP_PRI_LAST INT_MAX
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See the nf_ip_hook_priorities enum definition in include/uapi/linux/netfilter_ipv4.h.

Tools and Libraries
The conntrack-tools consist of a userspace daemon, conntrackd, and a command line tool, conntrack. It provides a 
tool with which system administrators can interact with the netfilter Connection Tracking layer. See:  
http://conntrack-tools.netfilter.org/.

Some libraries are developed by the netfilter project and allow you to perform various userspace tasks; 
these libraries are prefixed with “libnetfilter”; for example, libnetfilter_conntrack, libnetfilter_log, and 
libnetfilter_queue. For more details, see the netfilter official website, www.netfilter.org.

http://conntrack-tools.netfilter.org/
http://www.netfilter.org/


279

Chapter 10

IPsec

Chapter 9 deals with the netfilter subsystem and with its kernel implementation. This chapter discusses the 
Internet Protocol Security (IPsec) subsystem. IPsec is a group of protocols for securing IP traffic by authenticating 
and encrypting each IP packet in a communication session. Most security services are provided by two major 
IPsec protocols: the Authentication Header (AH) protocol and the Encapsulating Security Payload (ESP) protocol. 
Moreover, IPsec provides protection against trying to eavesdrop and send again packets (replay attacks). IPsec is 
mandatory according to IPv6 specification and optional in IPv4. Nevertheless, most modern operating systems, 
including Linux, have support for IPsec both in IPv4 and in IPv6. The first IPsec protocols were defined in 1995 (RFCs 
1825–1829). In 1998, these RFCs were deprecated by RFCs 2401–2412. Then again in 2005, these RFCs were updated 
by RFCs 4301–4309.

The IPsec subsystem is very complex—perhaps the most complex part of the Linux kernel network stack. Its 
importance is paramount when considering the growing security requirements of organizations and of private 
citizens. This chapter gives you a basis for delving into this complex subsystem.

General
IPsec has become a standard for most of the IP Virtual Private Network (VPN) technology in the world. That said, 
there are also VPNs based on different technologies, such as Secure Sockets Layer (SSL) and pptp (tunneling a PPP 
connection over the GRE protocol). Among IPsec’s several modes of operation, the most important are transport 
mode and tunnel mode. In transport mode, only the payload of the IP packet is encrypted, whereas in tunnel mode, 
the entire IP packet is encrypted and inserted into a new IP packet with a new IP header. When using a VPN with 
IPsec, you usually work in tunnel mode, although there are cases in which you work in transport mode (L2TP/IPsec, 
for example).

I start with a short discussion about the Internet Key Exchange (IKE) userspace daemon and cryptography in 
IPsec. These are topics that are mostly not a part of the kernel networking stack but that are related to IPsec operation 
and are needed to get a better understanding of the kernel IPsec subsystem. I follow that with a discussion of the 
XFRM framework, which is the configuration and monitoring interface between the IPsec userspace part and IPsec 
kernel components, and explain the traversal of IPsec packets in the Tx and Rx paths. I conclude the chapter with a 
short section about NAT traversal in IPsec, which is an important and interesting feature, and a “Quick Reference” 
section. The next section begins the discussion with the IKE protocol.

IKE (Internet Key Exchange)
The most popular open source userspace Linux IPsec solutions are Openswan (and libreswan, which forked from 
Openswan), strongSwan, and racoon (of ipsec-tools). Racoon is part of the Kame project, which aimed to provide a 
free IPv6 and IPsec protocol stack implementation for variants of BSD.
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To establish an IPsec connection, you need to set up a Security Association (SA). You do that with the help 
of the already mentioned userspace projects. An SA is defined by two parameters: a source address and a 32-bit 
Security Parameter Index (SPI). Both sides (called initiator and responder in IPsec terminology) should agree on 
parameters such as a key (or more than one key), authentication, encryption, data integrity and key exchange 
algorithms, and other parameters such as key lifetime (IKEv1 only). This can be done in two different ways of key 
distribution: by manual key exchange, which is rarely used since it is less secure, or by the IKE protocol. Openswan 
and strongSwan implementations provide an IKE daemon (pluto in Openswan and charon in strongSwan) that uses 
UDP port 500 (both source and destination) to send and receive IKE messages. Both use the XFRM Netlink interface 
to communicate with the native IPsec stack of the Linux kernel. The strongSwan project is the only complete open 
source implementation of RFC 5996, “Internet Key Exchange Protocol Version 2 (IKEv2),” whereas the Openswan 
project only implements a small mandatory subset. 

You can use IKEv1 Aggressive Mode in Openswan and in strongSwan 5.x (for strongSwan, it should be explicitly 
configured, and the name of the charon daemon changes to be weakSwan in this case); but this option is regarded 
unsafe. IKEv1 is still used by Apple operating systems (iOS and Mac OS X) because of the built-in racoon legacy client. 
Though many implementations use IKEv1, there are many improvements and advantages when using IKEv2. I’ll 
mention some of them very briefly: in IKEv1, more messages are needed to establish an SA than in IKEv2. IKEv1 is 
very complex, whereas IKEv2 is considerably simpler and more robust, mainly because each IKEv2 request message 
must be acknowledged by an IKEv2 response message. In IKEv1, there are no acknowledgements, but there is a 
backoff algorithm which, in case of packet loss, keeps trying forever. However, in IKEv1 there can be a race when the 
two sides perform retransmission, whereas in IKEv2 that can’t happen because the responsibility for retransmission 
is on the initiator only. Among the other important IKEv2 features are that IKEv2 has integrated NAT traversal 
support,  automatic narrowing of Traffic Selectors (left|rightsubnet on both sides don’t have to match exactly, 
but one proposal can be a subset of the other proposal), an IKEv2 configuration payload allowing to assign virtual 
IPv4/IPv6 addresses and internal DNS information (replacement for IKEv1 Mode Config), and finally IKEv2 EAP 
authentication (replacement for the dangerous IKEv1 XAUTH protocol), which solves the problem of potentially weak 
PSKs by requesting a VPN server certificate and digital signature first, before the client uses a potentially weak EAP 
authentication algorithm (for example, EAP-MSCHAPv2).

There are two phases in IKE: the first is called Main Mode. In this stage, each side verifies the identity of the 
other side, and a common session key is established using the Diffie-Hellman key exchange algorithm. This mutual 
authentication is based on RSA or ECDSA certificates or pre-shared secrets (pre-shared key, PSKs), which are 
password based and assumed to be weaker. Other parameters like the Encryption algorithm and the Authentication 
method to be used are also negotiated. If this phase completes successfully, the two peers are said to establish an 
ISAKMP SA (Internet Security Association Key Management Protocol Security Association). The second phase 
is called Quick Mode. In this phase, both sides agree on the cryptographic algorithms to use. The IKEv2 protocol 
does not differentiate between phase 1 and 2 but establishes the first CHILD_SA as part of the IKE_AUTH message 
exchange. THE CHILD_SA_CREATE message exchange is used only to establish additional CHILD_SAs or for the 
periodic rekeying of the IKE and IPsec SAs. This is why IKEv1 needs nine messages to establish a single IPsec SA, 
whereas IKEv2 does the same in just four messages.

The next section briefly discusses cryptography in the context of IPsec (a fuller treatment of the subject would be 
beyond the scope of this book).

IPsec and Cryptography
There are two widely used IPsec stacks for Linux: the native Netkey stack (developed by Alexey Kuznetsov and David 
S. Miller) introduced with the 2.6 kernel, and the KLIPS stack, originally written for 2.0 kernel (it predates netfilter!). 
Netkey uses the Linux kernel Crypto API, whereas KLIPS might support more crypto hardware through Open 
Cryptography Framework (OCF). OCF’s advantage is that it enables using asynchronous calls to encrypt/decrypt data. 
In the Linux kernel, most of the Crypto API performs synchronous calls. I should mention the acrypto kernel code, 
which is the asynchronous crypto layer of the Linux kernel. There are asynchronous implementations for all algorithm 
types. A lot of hardware crypto accelerators use the asynchronous crypto interface for crypto request offloading. That 
is simply because they can’t block until the crypto job is done. They have to use the asynchronous API.
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It is also possible to use software-implemented algorithms with the asynchronous API. For example, the cryptd 
crypto template can run arbitrary algorithms in asynchronous mode. And you can use the pcrypt crypto template 
when working in multicore environment. This template parallelizes the crypto layer by sending incoming crypto 
requests to a configurable set of CPUs. It also takes care of the order of the crypto requests, so it does not introduce 
packet reorder when used with IPsec. The use of pcrypt can speed up IPsec by magnitudes in some situations. The 
crypto layer has a user management API which is used by the crconf (http://sourceforge.net/projects/crconf/) 
tool to configure the crypto layer, so asynchronous crypto algorithms can be configured whenever needed. With 
the Linux  2.6.25 kernel, released in 2008, the XFRM framework started to offer support for the very efficient AEAD 
(Authenticated Encryption with Associated Data) algorithms (for example, AES-GCM), especially when the Intel  
AES-NI instruction set is available and data integrity comes nearly for free. Delving deeply into the details of 
cryptography in IPsec is beyond the scope of this book. For further information, I suggest reading the relevant chapters  
in Network Security Essentials, Fifth Edition by William Stallings (Prentice Hall, 2013).

The next section discusses the XFRM framework, which is the infrastructure of IPsec.

The XFRM Framework
IPsec is implemented by the XFRM (pronounced “transform”) framework, originated in the USAGI  project, which 
aimed at providing a production quality IPv6 and IPsec protocol stack. The term transform refers to an incoming 
packet or an outgoing packet being transformed in the kernel stack according to some IPsec rule. The XFRM 
framework was introduced in kernel 2.5. The XFRM infrastructure is protocol-family independent, which means that 
there is a generic part common to both IPv4 and IPv6, located under net/xfrm. Both IPv4 and IPv6 have their own 
implementation of ESP, AH, and IPCOMP. For example, the IPv4 ESP module is net/ipv4/esp4.c, and the IPv6 ESP 
module is net/ipv6/esp6.c. Apart from it, IPv4 and IPv6 implement some protocol-specific modules for supporting 
the XFRM infrastructure, such as net/ipv4/xfrm4_policy.c or net/ipv6/xfrm6_policy.c.

The XFRM framework supports network namespaces, which is a form of lightweight process virtualization that 
enables a single process or a group of processes to have their own network stack (I discuss network namespaces in 
Chapter 14).  Each network namespace (instance of struct net) includes a member called xfrm, which is an instance 
of the netns_xfrm structure. This object includes many data structures and variables that you will encounter in this 
chapter, such as the hash tables of XFRM policies and the hash tables of XFRM states, sysctl parameters, XFRM state 
garbage collector, counters, and more:
 
struct netns_xfrm {
        struct hlist_head       *state_bydst;
        struct hlist_head       *state_bysrc;
        struct hlist_head       *state_byspi;
        . . .
        unsigned int            state_num;
        . . .
 
        struct work_struct      state_gc_work;
 
     . . .
 
        u32                     sysctl_aevent_etime;
        u32                     sysctl_aevent_rseqth;
        int                     sysctl_larval_drop;
        u32                     sysctl_acq_expires;
};
 
(include/net/netns/xfrm.h)

http://sourceforge.net/projects/crconf/
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XFRM Initialization
In IPv4, XFRM initialization is done by calling the xfrm_init() method and the xfrm4_init() method from the  
ip_rt_init() method in net/ipv4/route.c. In IPv6, the xfrm6_init() method is invoked from the ip6_route_init()  
method for performing XFRM initialization. Communication between the userspace and the kernel is done by 
creating a NETLINK_XFRM netlink socket and sending and receiving netlink messages. The netlink NETLINK_XFRM 
kernel socket is created in the following method:
 
static int __net_init xfrm_user_net_init(struct net *net)
{
        struct sock *nlsk;
        struct netlink_kernel_cfg cfg = {
                .groups = XFRMNLGRP_MAX,
                .input  = xfrm_netlink_rcv,
        };
 
        nlsk = netlink_kernel_create(net, NETLINK_XFRM, &cfg);
        . . .
        return 0;
}
 

Messages sent from userspace (like XFRM_MSG_NEWPOLICY for creating a new Security Policy or  
XFRM_MSG_NEWSA for creating a new Security Association) are handled by the xfrm_netlink_rcv() method  
(net/xfrm/xfrm_user.c), which in turn calls the xfrm_user_rcv_msg() method (I discuss netlink sockets in Chapter 2).

The XFRM policy and the XFRM state are the fundamental data structures of the XFRM framework. I start by 
describing what XFRM policy is, and subsequently I describe what XFRM state is.

XFRM  Policies
A Security Policy is a rule that tells IPsec whether a certain flow should be processed or whether it can bypass IPsec 
processing. The xfrm_policy structure represents an IPsec policy. A policy includes a selector (an xfrm_selector 
object). A policy is applied when its selector matches a flow. The XFRM selector consists of fields like source and 
destination addresses, source and destination ports, protocol, and more, which can identify a flow:
 
struct xfrm_selector {
        xfrm_address_t  daddr;
        xfrm_address_t  saddr;
        __be16  dport;
        __be16  dport_mask;
        __be16  sport;
        __be16  sport_mask;
        __u16   family;
        __u8    prefixlen_d;
        __u8    prefixlen_s;
        __u8    proto;
        int     ifindex;
        __kernel_uid32_t        user;
};
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(include/uapi/linux/xfrm.h)
The xfrm_selector_match() method, which gets an XFRM selector, a flow, and a family (AF_INET for IPv4 or 

AF_INET6 for IPv6) as parameters, returns true when the specified flow matches the specified XFRM selector. Note 
that the xfrm_selector structure is also used in XFRM states, as you will see hereafter in this section. A Security Policy 
is represented by the xfrm_policy structure:
 
struct xfrm_policy {
        . . .
        struct hlist_node             bydst;
        struct hlist_node             byidx;
 
        /* This lock only affects elements except for entry. */
        rwlock_t                      lock;
        atomic_t                      refcnt;
        struct timer_list             timer;
 
        struct flow_cache_object      flo;
        atomic_t                      genid;
        u32                           priority;
        u32                           index;
        struct xfrm_mark              mark;
        struct xfrm_selector          selector;
        struct xfrm_lifetime_cfg      lft;
        struct xfrm_lifetime_cur      curlft;
        struct xfrm_policy_walk_entry walk;
        struct xfrm_policy_queue      polq;
        u8                            type;
        u8                            action;
        u8                            flags;
        u8                            xfrm_nr;
        u16                           family;
        struct xfrm_sec_ctx           *security;
        struct xfrm_tmpl              xfrm_vec[XFRM_MAX_DEPTH];
};
 
(include/net/xfrm.h)

The following description covers the important members of the xfrm_policy structure:

•	 refcnt: The XFRM policy reference counter; initialized to 1 in the xfrm_policy_alloc( ) 
method, incremented by the xfrm_pol_hold() method, and decremented by the  
xfrm_pol_put() method.

•	 timer: Per-policy timer; the timer callback is set to be xfrm_policy_timer()  in the  
xfrm_policy_alloc() method. The xfrm_policy_timer() method handles policy expiration: 
it is responsible for deleting a policy when it is expired by calling the  
xfrm_policy_delete() method, and sending an event (XFRM_MSG_POLEXPIRE) to all 
registered Key Managers by calling the km_policy_expired() method.

•	 lft: The XFRM policy lifetime (xfrm_lifetime_cfg object). Every XFRM policy has a lifetime, 
which is a time interval (expressed as a time or byte count).
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You can set XFRM policy lifetime values with the ip command and the limit parameter—for example:
 
ip xfrm policy add src 172.16.2.0/24 dst 172.16.1.0/24 limit byte-soft 6000 ...
 

sets the •	 soft_byte_limit of the XFRM policy lifetime (lft) to be 6000; see man 8 ip xfrm.

You can display the lifetime (lft) of an XFRM policy by inspecting the lifetime configuration entry when running 
ip -stat xfrm policy show.

•	 curlft: The XFRM policy current lifetime, which reflects the current status of the policy in 
context of lifetime. The curlft is an xfrm_lifetime_cur object. It consists of four members 
(all of them are fields of 64 bits, unsigned):

•	 bytes: The number of bytes which were processed by the IPsec subsystem, incremented 
in the Tx path by the xfrm_output_one() method and in the Rx path by the xfrm_input() 
method.

•	 packets: The number of packets that were processed by the IPsec subsystem, incremented 
in the Tx path by the xfrm_output_one() method, and in the Rx path by the xfrm_input() 
method.

•	 add_time: The timestamp of adding the policy, initialized when adding a policy, in the 
xfrm_policy_insert() method and in the xfrm_sk_policy_insert() method.

•	 use_time: The timestamp of last access to the policy. The use_time timestamp is 
updated, for example, in the xfrm_lookup() method or in the __xfrm_policy_check() 
method. Initialized to 0 when adding the XFRM policy, in the xfrm_policy_insert() 
method and in the xfrm_sk_policy_insert() method.

Note■■   You can display the current lifetime (curlft) object of an XFRM policy by inspecting the lifetime current entry 
when running ip -stat xfrm policy show.

•	 polq: A queue to hold packets that are sent while there are still no XFRM states associated 
with the policy. As a default, such packets are discarded by calling the make_blackhole() 
method. When setting the xfrm_larval_drop sysctl entry to 0 (/proc/sys/net/core/xfrm_
larval_drop), these packets are kept in a queue (polq.hold_queue) of SKBs; up to 100 packets 
(XFRM_MAX_QUEUE_LEN) can be kept in this queue. This is done by creating a dummy 
XFRM bundle, by the xfrm_create_dummy_bundle() method (see more in the “XFRM lookup” 
section later in this chapter). By default, the xfrm_larval_drop sysctl entry is set to 1 (see 
the __xfrm_sysctl_init() method in net/xfrm/xfrm_sysctl.c).

•	 type: Usually the type is XFRM_POLICY_TYPE_MAIN (0). When the kernel has support for 
subpolicy (CONFIG_XFRM_SUB_POLICY is set), two policies can be applied to the same 
packet, and you can use the XFRM_POLICY_TYPE_SUB (1) type. Policy that lives a shorter 
time in kernel should be a subpolicy. This feature is usually needed only for developers/
debugging and for mobile IPv6, because you might apply one policy for IPsec and one for 
mobile IPv6. The IPsec policy is usually the main policy with a longer lifetime than the mobile 
IPv6 (sub) policy.

•	 action: Can have one of these two values:

XFRM_POLICY_ALLOW (0): Permit the traffic.•	

XFRM_POLICY_BLOCK(1): Disallow the traffic (for example, when using •	 type=reject or 
type=drop in /etc/ipsec.conf).
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•	 xfrm_nr: Number of templates associated with the policy—can be up to six templates  
(XFRM_MAX_DEPTH). The xfrm_tmpl structure is an intermediate structure between the 
XFRM state and the XFRM policy. It is initialized in the copy_templates() method,  
net/xfrm/xfrm_user.c.

•	 family: IPv4 or IPv6.

•	 security: A security context (xfrm_sec_ctx object) that allows the XFRM subsystem to 
restrict the sockets that can send or receive packets via Security Associations (XFRM states). 
For more details, see http://lwn.net/Articles/156604/.

•	 xfrm_vec: An array of XFRM templates (xfrm_tmpl objects).

The kernel stores the IPsec Security Policies in the Security Policy Database (SPD). Management of the SPD is 
done by sending messages from a userspace socket. For example:

Adding an XFRM policy (XFRM_MSG_NEWPOLICY) is handled by the •	 xfrm_add_policy() 
method.

Deleting an XFRM policy (XFRM_MSG_DELPOLICY) is handled by the •	 xfrm_get_policy() 
method.

Displaying the SPD (XFRM_MSG_GETPOLICY) is handled by the •	 xfrm_dump_policy() 
method.

Flushing the SPD (XFRM_MSG_FLUSHPOLICY) is handled by the •	 xfrm_flush_policy() 
method.

The next section describes what XFRM state is.

XFRM States (Security Associations)
The xfrm_state structure represents an IPsec Security Association (SA) (include/net/xfrm.h). It represents 
unidirectional traffic and includes information such as cryptographic keys, flags, request id, statistics, replay 
parameters, and more. You add XFRM states by sending a request (XFRM_MSG_NEWSA) from a userspace socket;  
it is handled in the kernel by the xfrm_state_add() method (net/xfrm/xfrm_user.c). Likewise, you delete a state  
by sending an XFRM_MSG_DELSA message, and it is handled in the kernel by the xfrm_del_sa() method:
 
struct xfrm_state {
        . . .
        union {
                struct hlist_node       gclist;
                struct hlist_node       bydst;
        };
        struct hlist_node       bysrc;
        struct hlist_node       byspi;
 
        atomic_t                refcnt;
        spinlock_t              lock;
 
        struct xfrm_id          id;
        struct xfrm_selector    sel;
        struct xfrm_mark        mark;
        u32                     tfcpad;
 

http://lwn.net/Articles/156604/
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        u32                     genid;
 
        /* Key manager bits */
        struct xfrm_state_walk  km;
 
        /* Parameters of this state. */
        struct {
                u32             reqid;
                u8              mode;
                u8              replay_window;
                u8              aalgo, ealgo, calgo;
                u8              flags;
                u16             family;
                xfrm_address_t  saddr;
                int             header_len;
                int             trailer_len;
        } props;
 
        struct xfrm_lifetime_cfg lft;
 
        /* Data for transformer */
        struct xfrm_algo_auth   *aalg;
        struct xfrm_algo        *ealg;
        struct xfrm_algo        *calg;
        struct xfrm_algo_aead   *aead;
 
        /* Data for encapsulator */
        struct xfrm_encap_tmpl  *encap;
 
        /* Data for care-of address */
        xfrm_address_t  *coaddr;
 
        /* IPComp needs an IPIP tunnel for handling uncompressed packets */
        struct xfrm_state       *tunnel;
 
        /* If a tunnel, number of users + 1 */
        atomic_t                tunnel_users;
 
        /* State for replay detection */
        struct xfrm_replay_state replay;
        struct xfrm_replay_state_esn *replay_esn;
 
        /* Replay detection state at the time we sent the last notification */
        struct xfrm_replay_state preplay;
        struct xfrm_replay_state_esn *preplay_esn;
 
        /* The functions for replay detection. */
        struct xfrm_replay      *reply;
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        /* internal flag that only holds state for delayed aevent at the
         * moment
        */
        u32                     xflags;
 
        /* Replay detection notification settings */
        u32                     replay_maxage;
        u32                     replay_maxdiff;
 
        /* Replay detection notification timer */
        struct timer_list       rtimer;
 
        /* Statistics */
        struct xfrm_stats       stats;
 
        struct xfrm_lifetime_cur curlft;
        struct tasklet_hrtimer  mtimer;
 
        /* used to fix curlft->add_time when changing date */
        long            saved_tmo;
 
        /* Last used time */
        unsigned long           lastused;
 
        /* Reference to data common to all the instances of this
         * transformer. */
        const struct xfrm_type  *type;
        struct xfrm_mode        *inner_mode;
        struct xfrm_mode        *inner_mode_iaf;
        struct xfrm_mode        *outer_mode;
 
        /* Security context */
        struct xfrm_sec_ctx     *security;
 
        /* Private data of this transformer, format is opaque,
         * interpreted by xfrm_type methods. */
        void                    *data;
};
 
(include/net/xfrm.h)

The following description details some of the important members of the xfrm_state structure:

•	 refcnt: A reference counter, incremented by the xfrm_state_hold() method and 
decremented by the __xfrm_state_put() method or by the xfrm_state_put() method  
(the latter also releases the XFRM state by calling the __xfrm_state_destroy() method when 
the reference counter reaches 0).

•	 id: The id (xfrm_id object) consists of three fields, which uniquely define it: destination 
address, spi, and security protocol (AH, ESP, or IPCOMP).
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•	 props: The properties of the XFRM state. For example:

•	 mode: Can be one of five modes (for example, XFRM_MODE_TRANSPORT for transport 
mode or XFRM_MODE_TUNNEL for tunnel mode; see include/uapi/linux/xfrm.h).

•	 flag: For example, XFRM_STATE_ICMP. These flags are available in include/uapi/
linux/xfrm.h. These flags can be set from userspace, for example, with the ip command 
and the flag option: ip xfrm add state flag icmp ...

•	 family: IPv4 of IPv6.

•	 saddr: The source address of the XFRM state.

•	 lft: The XFRM state lifetime (xfrm_lifetime_cfg object).

•	 stats: An xfrm_stats object, representing XFRM state statistics. You can display the 
XFRM state statistics by ip –stat xfrm show.

The kernel stores the IPsec Security Associations in the Security Associations Database (SAD). The xfrm_state 
objects are stored in three hash tables in netns_xfrm (the XFRM namespace, discussed earlier): state_bydst, 
state_bysrc, state_byspi. The keys to these tables are computed by the xfrm_dst_hash(),  xfrm_src_hash(), and 
xfrm_spi_hash() methods, respectively. When an xfrm_state object is added, it is inserted into these three hash  
tables. If the value of the spi is 0 (the value 0 is not normally to be used for spi—I will shortly mention when it is 0),  
the xfrm_state object is not added to the state_byspi hash table (see the __xfrm_state_insert() method in  
net/xfrm/xfrm_state.c).

Note■■  A n spi with value of 0 is only used for acquire states. The kernel sends an acquire message to the key  
manager and adds a temporary acquire state with spi 0 if traffic matches a policy, but the state is not yet resolved.  
The kernel does not bother to send a further acquire as long as the acquire state exists; the lifetime can be configured  
at net->xfrm.sysctl_acq_expires. If the state gets resolved, this acquire state is replaced by the actual state.

Lookup in the SAD can be done by the following:

•	 xfrm_state_lookup() method: In the state_byspi hash table.

•	 xfrm_state_lookup_byaddr() method: In the state_bysrc hash table.

•	 xfrm_state_find()  method: In the state_bydst hash table.

The ESP protocol is the most commonly used IPsec protocol; it supports both encryption and authentication. 
The next section discusses the IPv4 ESP implementation.

ESP Implementation (IPv4)
The ESP protocol is specified in RFC 4303; it supports both encryption and authentication. Though it also supports 
encryption-only and authentication-only modes, it is usually used with both encryption and authentication because 
it is safer. I should also mention here the new Authenticated Encryption (AEAD) methods like AES-GCM, which can 
do the encryption and data integrity computations in a single pass and can be highly parallelized on multiple cores, 
so that with the Intel AES-NI instruction set, an IPsec throughput of several Gbit/s can be achieved. The ESP protocol 
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supports both tunnel mode and transport mode; the protocol identifier is 50 (IPPROTO_ESP). The ESP adds  
a new header and a trailer to each packet. According to the ESP format, illustrated in Figure 10-1, there are the 
following fields:

•	 SPI: A 32-bit Security Parameter Index. Together with the source address, it identities an SA.

•	 Sequence Number: 32 bits, incremented by 1 for each transmitted packet in order to protect 
against replay attacks.

•	 Payload Data: A variable size encrypted data block.

•	 Padding:  Padding for the encrypted data block in order to satisfy alignment requirements 
(0–255 bytes).

•	 Pad Length: The size of padding in bytes (1 byte).

•	 Next Header: The type of the next header (1 byte).

•	 Authentication Data: The Integrity Check Value (ICV).

The next section discusses IPv4 ESP initialization.

Figure 10-1.  ESP format
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IPv4 ESP  Initialization
We first define an esp_type (xfrm_type object) and esp4_protocol (net_protocol object) and register them thus: 
 
static const struct xfrm_type esp_type =
{
        .description    = "ESP4",
        .owner          = THIS_MODULE,
        .proto          = IPPROTO_ESP,
        .flags          = XFRM_TYPE_REPLAY_PROT,
        .init_state     = esp_init_state,
        .destructor     = esp_destroy,
        .get_mtu        = esp4_get_mtu,
        .input          = esp_input,
        .output         = esp_output
};
 
static const struct net_protocol esp4_protocol = {
        .handler        =       xfrm4_rcv,
        .err_handler    =       esp4_err,
        .no_policy      =       1,
        .netns_ok       =       1,
};
 
static int __init esp4_init(void)
{
 

Each protocol family has an instance of an xfrm_state_afinfo object, which includes protocol-family specific 
state methods; thus there is xfrm4_state_afinfo for IPv4 (net/ipv4/xfrm4_state.c) and xfrm6_state_afinfo for 
IPv6. This object includes an array of xfrm_type objects called type_map. Registering XFRM type by calling the  
xfrm_register_type() method will set the specified xfrm_type as an element in this array:
 
        if (xfrm_register_type(&esp_type, AF_INET) < 0) {
                pr_info("%s: can't add xfrm type\n", __func__);
                return -EAGAIN;
        }
 

Registering the IPv4 ESP protocol is done like registering any other IPv4 protocol, by calling the inet_add_protocol()  
method. Note that the protocol handler used by IPv4 ESP, namely the xfrm4_rcv() method, is also used by the IPv4 
AH protocol (net/ipv4/ah4.c) and by the IPv4 IPCOMP (IP Payload Compression Protocol ) protocol (net/ipv4/
ipcomp.c).
 
        if (inet_add_protocol(&esp4_protocol, IPPROTO_ESP) < 0) {
                pr_info("%s: can't add protocol\n", __func__);
                xfrm_unregister_type(&esp_type, AF_INET);
                return -EAGAIN;
        }
        return 0;
}
 
(net/ipv4/esp4.c)
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Receiving an IPsec Packet (Transport Mode)
Suppose you work in transport mode in IPv4, and you receive an ESP packet that is destined to the local host. ESP in 
transport mode does not encrypt the IP header, only the IP payload. Figure 10-2 shows the traversal of an incoming 
IPv4 ESP packet, and its stages are described in this section. We will pass all the usual stages of local delivery, starting 
with the ip_rcv() method, and we will reach the ip_local_deliver_finish() method. Because the value of the 
protocol field in the IPv4 header is ESP (50), we invoke its handler, which is the xfrm4_rcv() method, as you saw 
earlier. The xfrm4_rcv() method further calls the generic xfrm_input() method, which performs a lookup in the SAD 
by calling the xfrm_state_lookup() method. If the lookup fails, the packet is dropped. In case of a lookup hit, the 
input callback method of the corresponding IPsec protocol is invoked:
 
int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type)
{
         struct xfrm_state *x;
         do {
                 . . .
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Perform a lookup in the state_byspi hash table:
 
                 x = xfrm_state_lookup(net, skb->mark, daddr, spi, nexthdr, family);
 

Drop the packet silently if the lookup failed:
 
                 if (x == NULL) {
                         XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
                         xfrm_audit_state_notfound(skb, family, spi, seq);
                         goto drop;
                 } 

Figure 10-2.  Receiving IPv4 ESP packet, local delivery, transport mode. Note: The figure describes an IPv4 ESP packet. 
For IPv4 AH packets, the ah_input() method is invoked instead of the esp_input( ) method; likewise, for IPv4 IPCOMP 
packets, the ipcomp_input() method is invoked instead of the esp_input( ) method
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In this case, of IPv4 ESP incoming traffic, the XFRM type associated with the state (x->type) is the ESP XFRM 
Type (esp_type); its input callback was set to esp_input(), as mentioned earlier in the “IPv4 ESP initialization” 
section.

By calling x->type->input(), in the following line the esp_input() method is invoked;  this method returns the 
protocol number of the original packet, before it was encrypted by ESP:
 
                    nexthdr = x->type->input(x, skb);
                    . . .
 

The original protocol number is kept in the control buffer (cb) of the SKB by using the XFRM_MODE_SKB_CB 
macro; it will be used later for modifying the IPv4 header of the packet, as you will see:
 
                    XFRM_MODE_SKB_CB(skb)->protocol = nexthdr;
 

After the esp_input() method terminates, the xfrm4_transport_finish() method is invoked. This method 
modifies various fields of the IPv4 header. Take a look at the xfrm4_transport_finish() method:
 
int xfrm4_transport_finish(struct sk_buff *skb, int async)
{
        struct iphdr *iph = ip_hdr(skb);
 

The protocol of the IPv4 header (iph->protocol) is 50 (ESP) at this point; you should set it to be the protocol 
number of the original packet (before it was encrypted by ESP) so that it will be processed by L4 sockets. The protocol 
number of the original packet was kept in XFRM_MODE_SKB_CB(skb)->protocol, as you saw earlier in this section:
 
        iph->protocol = XFRM_MODE_SKB_CB(skb)->protocol;
 
        . . .
        __skb_push(skb, skb->data - skb_network_header(skb));
        iph->tot_len = htons(skb->len);
 

Recalculate the checksum, since the IPv4 header was modified:
 
        ip_send_check(iph);
 

Invoke any netfilter NF_INET_PRE_ROUTING hook callback and then call the xfrm4_rcv_encap_finish() 
method:
 
        NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
                xfrm4_rcv_encap_finish);
        return 0;
}
 

The xfrm4_rcv_encap_finish() method calls the ip_local_deliver() method. Now the value of the protocol 
member in the IPv4 header is the original transport protocol (UDPv4, TCPv4, and so on), so from now on you proceed 
in the usual packet traversal, and the packet is passed to the transport layer (L4).
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Sending an IPsec Packet (Transport Mode)
Figure 10-3 shows the Tx path of an outgoing packet sent via IPv4 ESP in transport mode. The first step after 
performing a lookup in the routing subsystem (by calling the ip_route_output_flow() method), is to perform a 
lookup for an XFRM policy, which can be applied on this flow. You do that by calling the xfrm_lookup() method  
(I discuss the internals of this method later in this section). If there is a lookup hit, continue to the ip_local_out() 
method, and then, after calling several methods as you can see in Figure 10-3, you eventually reach the esp_output() 
method, which encrypts the packet and then sends it out by calling the ip_output() method.

Figure 10-3.  Transmitting IPv4 ESP packet, transport mode. For the sake of simplicity, the case of creating a dummy 
bundle (when there are no XFRM states) and some other details are omitted

The following section talks about how a lookup is performed in XFRM.
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XFRM Lookup
The xfrm_lookup() method is called for each packet that is sent out of the system. You want this lookup to be as 
efficient as possible. To achieve this goal, bundles are used. Bundles let you cache important information such as the 
route, the policies, the number of policies, and more; these bundles, which are instances of the xfrm_dst structure, 
are stored by using the flow cache. When the first packet of some flow arrives, you create an entry in the generic flow 
cache and subsequently create a bundle (xfrm_dst object). The bundle creation is done after a lookup for this bundle 
fails, because it is the first packet of this flow. When subsequent packets of this flow arrive, you will get a hit when 
performing a flow cache lookup:
 
struct xfrm_dst {
        union {
                struct dst_entry        dst;
                struct rtable           rt;
                struct rt6_info         rt6;
        } u;
        struct dst_entry *route;
        struct flow_cache_object flo;
        struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
        int num_pols, num_xfrms;
#ifdef CONFIG_XFRM_SUB_POLICY
        struct flowi *origin;
        struct xfrm_selector *partner;
#endif
        u32 xfrm_genid;
        u32 policy_genid;
        u32 route_mtu_cached;
        u32 child_mtu_cached;
        u32 route_cookie;
        u32 path_cookie;
};
 
(include/net/xfrm.h)

The xfrm_lookup() method is a very complex method. I discuss its important parts but I don’t delve into all its 
nuances. Figure 10-4 shows a block diagram of the internals of the xfrm_lookup() method.
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Let’s take a look at the xfrm_lookup() method:
 
struct dst_entry *xfrm_lookup(struct net *net, struct dst_entry *dst_orig,
                              const struct flowi *fl, struct sock *sk, int flags)
{
 

The xfrm_lookup() method handles only the Tx path; so you set the flow direction (dir) to be FLOW_DIR_OUT by:
 
         u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
 

Figure 10-4.  xfrm_lookup( ) internals
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If a policy is associated with this socket, you perform a lookup by the xfrm_sk_policy_lookup() method,  
which checks whether the packet flow matches the policy selector. Note that if the packet is to be forwarded, the  
xfrm_lookup() method was invoked from the __xfrm_route_forward() method, and there is no socket associated 
with the packet, because it was not generated on the local host; in this case, the specified sk argument is NULL:
 
        if (sk && sk->sk_policy[XFRM_POLICY_OUT]) {
                num_pols = 1;
                pols[0] = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
 
      
        . . .
}
 

If there is no policy associated with this socket, you perform a lookup in the generic flow cache by calling the 
flow_cache_lookup() method, passing as an argument a function pointer to the xfrm_bundle_lookup method (the 
resolver callback). The key to the lookup is the flow object (the specified fl parameter). If you don’t find an entry in 
the flow cache, allocate a new flow cache entry. If you find an entry with the same genid, call the xfrm_bundle_flo_
get() method by invoking flo->ops->get(flo). Eventually, you call the xfrm_bundle_lookup() method by invoking 
the resolver callback, which gets the flow object as a parameter (oldflo). See the flow_cache_lookup() method 
implementation in net/core/flow.c:
 
               flo = flow_cache_lookup(net, fl, family, dir, xfrm_bundle_lookup, dst_orig);
 

Fetch the bundle (xfrm_dst object) that contains the flow cache object as a member:
 
               xdst = container_of(flo, struct xfrm_dst, flo);
 

Fetch cached data, like the number of policies, number of templates, the policies and the route:
 
       num_pols = xdst->num_pols;
       num_xfrms = xdst->num_xfrms;
       memcpy(pols, xdst->pols, sizeof(struct xfrm_policy*) * num_pols);
       route = xdst->route;
}
 
dst = &xdst->u.dst;
 

Next comes handling a dummy bundle. A dummy bundle is a bundle where the route member is NULL. It is 
created in the XFRM bundle lookup process (by the xfrm_bundle_lookup() method) when no XFRM states were 
found, by calling the xfrm_create_dummy_bundle() method. In such a case, either one of the two options are 
available, according to the value of sysctl_larval_drop (/proc/sys/net/core/xfrm_larval_drop):

If •	 sysctl_larval_drop is set (which means its value is 1—it is so by default, as mentioned 
earlier in this chapter), the packet should be discarded.

If  •	 sysctl_larval_drop is not set (its value is 0), the packets are kept in a per-policy queue 
(polq.hold_queue), which can contain up to 100 (XFRM_MAX_QUEUE_LEN) SKBs; this is 
implemented by the xdst_queue_output() method. These packets are kept until the XFRM 
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states are resolved or until some timeout elapses. Once the states are resolved, the packets are 
sent out of the queue. If the XFRM states are not resolved after some time interval (the timeout 
of the xfrm_policy_queue object), the queue is flushed by the xfrm_queue_purge() method:
 
if (route == NULL && num_xfrms > 0) {
        /* The only case when xfrm_bundle_lookup() returns a
         * bundle with null route, is when the template could
         * not be resolved. It means policies are there, but
         * bundle could not be created, since we don't yet
         * have the xfrm_state's. We need to wait for KM to
         * negotiate new SA's or bail out with error.*/
         if (net->xfrm.sysctl_larval_drop) {
 

For IPv4, the make_blackhole() method calls the ipv4_blackhole_route() method. For IPv6, it calls the ip6_
blackhole_route() method:
 
        return make_blackhole(net, family, dst_orig);
}
 

The next section covers one of the most important features of IPsec—NAT traversal—and explains what it is and 
why it is needed.

NAT Traversal in IPsec
Why don’t NAT devices allow IPsec traffic to pass? NAT changes the IP addresses and sometimes also the port 
numbers of the packet. As a result, it recalculates the checksum of the TCP or the UDP header. The transport 
layer checksum calculation takes into account the source and destination of the IP addresses. So even if only the 
IP addresses were changed, the TCP or UDP checksum should be recalculated. However, with ESP encryption in 
transport mode, the NAT device can’t update the checksum because the TCP or UDP headers are encrypted with 
ESP. There are protocols where the checksum does not cover the IP header (like SCTP), so this problem does not 
occur there. To solve these problems, the NAT traversal standard for IPsec was developed (or, as officially termed in 
RFC 3948, “UDP Encapsulation of IPsec ESP Packets”). UDP Encapsulation can be applied to IPv4 packets as well as  
to IPv6 packets. NAT traversal solutions are not limited to IPsec traffic; these techniques are typically required 
for client-to-client networking applications, especially for peer-to-peer and Voice over Internet Protocol (VoIP) 
applications.

There are some partial solutions for VoIP NAT-traversal, such as STUN, TURN, ICE, and more. I should mention 
here that strongSwan implements the IKEv2 Mediation Extension service (http://tools.ietf.org/html/draft-
brunner-ikev2-mediation-00), which allows two VPN endpoints located behind a NAT router each to establish a 
direct peer-to-peer IPsec tunnel using a mechanism similar to TURN and ICE. STUN, for example, is used in the VoIP 
open source Ekiga client (formerly gnomemeeting). The problem with these solutions is NAT devices they don’t cope 
with. Devices called SBCs (session border controllers) provide a full solution for NAT traversal in VoIP. SBCs can be 
implemented in hardware (Juniper Networks, for example, provides a router-integrated SBC solution) or in software. 
These SBC solutions perform NAT traversal of the media traffic—which is sent by Real Time Protocol (RTP)—and 
sometimes also for the signaling traffic—which is sent by Session Initiation Protocol (SIP). NAT traversal is optional 
in IKEv2. Openswan, strongSwan, and racoon support NAT traversal, but Openswan and racoon support NAT-T only 
with IKEv1, whereas strongSwan supports NAT traversal in both IKEv1 and IKEv2.

http://tools.ietf.org/html/draft-brunner-ikev2-mediation-00
http://tools.ietf.org/html/draft-brunner-ikev2-mediation-00
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NAT-T Mode of Operation
How does NAT traversal work? First, keep in mind that NAT-T is a good solution only for ESP traffic and not for AH. 
Another restriction is that NAT-T can’t be used with manual keying, but only with IKEv1 and IKEv2. This is because 
NAT-T is tied with exchanging IKEv1/IKEv2 messages. First, you must tell the userspace daemon (pluto) that you 
want to use the NAT traversal feature, because it is not activated by default. You do that in Openswan by adding 
nat_traversal=yes to the connection parameters in /etc/ipsec.conf. Clients not behind a NAT are not affected by 
the addition of this entry. In strongSwan, the IKEv2 charon daemon always supports NAT traversal, and this feature 
cannot be deactivated. In the first phase of IKE (Main Mode), you check whether both peers support NAT-T. In IKEv1, 
when a peer supports NAT-T, one of the ISAKAMP header members (vendor ID) tells whether it supports NAT-T. In 
IKEv2, NAT-T is part of the standard and does not have to be announced. If this condition is met, you check whether 
there is one or more NAT devices in the path between the two IPsec peers by sending NAT-D payload messages. If this 
condition is also met, NAT-T protects the original IPsec encoded packet by inserting in it a UDP header between the IP 
header and the ESP header. Both the source and destination ports in the UDP header are 4500. Besides, NAT-T sends 
keep-alive messages every 20 seconds so that the NAT retains its mapping. Keep alive messages are also sent on UDP 
port 4500 and are recognized by their content and value (which is one byte, 0xFF). When this packet reaches the IPsec 
peer, after going through the NAT, the kernel strips the UDP header and decrypts the ESP payload. See the  
xfrm4_udp_encap_rcv() method in net/ipv4/xfrm4_input.c.

Summary
This chapter covered IPsec and the XFRM framework, which is the infrastructure of IPsec, and XFRM policies 
and states, which are the fundamental data structures of the XFRM framework. I also discussed IKE, the ESP4 
implementation, the Rx/Tx path of ESP4 in transport mode, and NAT traversal in IPsec. Chapter 11 deals with the 
following transport Layer (L4) protocols: UDP, TCP, SCTP, and DCCP. The “Quick Reference” section that follows 
covers the top methods related to the topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important methods of IPsec. Some of them were mentioned in this chapter. 
Afterward, I include a table of XFRM SNMP MIB counters.

Methods
Let’s start with the methods.

bool xfrm_selector_match(const struct xfrm_selector *sel, const struct flowi *fl, 
unsigned short family);
This method returns true when the specified flow matches the specified XFRM selector. Invokes the  
__xfrm4_selector_match() method for IPv4 or the __xfrm6_selector_match() method for IPv6.

int xfrm_policy_match(const struct xfrm_policy *pol, const struct flowi *fl, u8 type, 
u16 family, int dir);
This method returns 0 if the specified policy can be applied to the specified flow, otherwise it returns an –errno.



Chapter 10 ■ IPsec

300

struct xfrm_policy *xfrm_policy_alloc(struct net *net, gfp_t gfp);
This method allocates and initializes an XFRM policy. It sets its reference counter to 1, initializes the read-write 
lock, assigns the policy namespace (xp_net) to be the specified network namespace,  sets its timer callback to be 
xfrm_policy_timer(), and sets its state resolution packet queue timer (policy->polq.hold_timer) callback to be 
xfrm_policy_queue_process().

void xfrm_policy_destroy(struct xfrm_policy *policy);
This method removes the timer of specified XFRM policy object and releases the specified XFRM policy memory.

void xfrm_pol_hold(struct xfrm_policy *policy);
This method increments by 1 the reference count of the specified XFRM policy.

static inline void xfrm_pol_put(struct xfrm_policy *policy);
This method decrements by 1 the reference count of the specified XFRM policy. If the reference count reaches 0,  
call the xfrm_policy_destroy() method.

struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family);
This method returns the xfrm_state_afinfo object associated with the specified protocol family.

struct dst_entry *xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state 
**xfrm, int nx, const struct flowi *fl, struct dst_entry *dst);
This method creates an XFRM bundle. Called from the xfrm_resolve_and_create_bundle() method.

int policy_to_flow_dir(int dir);
This method returns the flow direction according to the specified policy direction. For example, return FLOW_DIR_IN 
when the specified direction is XFRM_POLICY_IN, and so on.

static struct xfrm_dst *xfrm_create_dummy_bundle(struct net *net, struct  
dst_entry *dst, const struct flowi *fl, int num_xfrms, u16 family);
This method creates a dummy bundle. Called from the xfrm_bundle_lookup() method when policies were found but 
there are no matching states.

struct xfrm_dst *xfrm_alloc_dst(struct net *net, int family);
This method allocates an XFRM bundle object. Called from the xfrm_bundle_create() method and from the xfrm_
create_dummy_bundle() method.
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int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl);
This method adds an XFRM policy to the SPD. Invoked from the xfrm_add_policy() method  
(net/xfrm/xfrm_user.c), or from the pfkey_spdadd() method (net/key/af_key.c).

int xfrm_policy_delete(struct xfrm_policy *pol, int dir);
This method releases the resources of the specified XFRM policy object. The direction argument (dir) is needed to 
decrement by 1 the corresponding XFRM policy counter in the policy_count in the per namespace  
netns_xfrm object.

int xfrm_state_add(struct xfrm_state *x);
This method adds the specified XFRM state to the SAD.

int xfrm_state_delete(struct xfrm_state *x);
This method deletes the specified XFRM state from the SAD.

void __xfrm_state_destroy(struct xfrm_state *x);
This method releases the resources of an XFRM state by adding it to the XFRM states garbage list and activating the 
XFRM state garbage collector.

int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk, int (*func)(struct 
xfrm_state *, int, void*), void *data);
This method iterates over all XFRM states (net->xfrm.state_all) and invokes the specified func callback.

struct xfrm_state *xfrm_state_alloc(struct net *net);
This method allocates and initializes an XFRM state.

void xfrm_queue_purge(struct sk_buff_head *list);
This method flushes the state resolution per-policy queue (polq.hold_queue).

int xfrm_input(struct sk_buff *skb, int nexthdr, __be32 spi, int encap_type);
This method is the main Rx IPsec handler.
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static struct dst_entry *make_blackhole(struct net *net, u16 family, struct dst_entry 
*dst_orig);
This method is invoked from the xfrm_lookup() method when there are no resolved states and sysctl_larval_drop 
is set. For IPv4, the make_blackhole() method calls the ipv4_blackhole_route() method; for IPv6, it calls the  
ip6_blackhole_route() method.

int xdst_queue_output(struct sk_buff *skb);
This method handles adding packets to the per-policy state resolution packet queue (pq->hold_queue). This queue 
can contain up to 100 (XFRM_MAX_QUEUE_LEN) packets.

struct net *xs_net(struct xfrm_state *x);
This method returns the namespace object (xs_net) associated with the specified xfrm_state object.

struct net *xp_net(const struct xfrm_policy *xp);
This method returns the namespace object (xp_net) associated with the specified xfrm_policy object.

int xfrm_policy_id2dir(u32 index);
This method returns the direction of the policy according to the specified index.

int esp_input(struct xfrm_state *x, struct sk_buff *skb);
This method is the main IPv4 ESP protocol handler.

struct ip_esp_hdr *ip_esp_hdr(const struct sk_buff *skb);
This method returns the ESP header associated with  the specified SKB.

int verify_newpolicy_info(struct xfrm_userpolicy_info *p);
This method verifies that the specified xfrm_userpolicy_info object contains valid values. (xfrm_userpolicy_info is 
the object which is passed from userspace). It returns 0 if it is a valid  object, and -EINVAL or -EAFNOSUPPORT if not.

Table
Table 10-1 lists XFRM SNMP MIB counters.
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Table 10-1.  XFRM SNMP MIB counters

Linux Symbol SNMP (procfs) Symbol Methods in Which the Counter Might Be 
Incremented

LINUX_MIB_XFRMINERROR XfrmInError xfrm_input()

LINUX_MIB_XFRMINBUFFERERROR XfrmInBufferError xfrm_input(),__xfrm_policy_check()

LINUX_MIB_XFRMINHDRERROR XfrmInHdrError xfrm_input(),__xfrm_policy_check()

LINUX_MIB_XFRMINNOSTATES XfrmInNoStates xfrm_input()

LINUX_MIB_XFRMINSTATEPROTOERROR XfrmInStateProtoError xfrm_input()

LINUX_MIB_XFRMINSTATEMODEERROR XfrmInStateModeError xfrm_input()

LINUX_MIB_XFRMINSTATESEQERROR XfrmInStateSeqError xfrm_input()

LINUX_MIB_XFRMINSTATEEXPIRED XfrmInStateExpired xfrm_input()

LINUX_MIB_XFRMINSTATEMISMATCH XfrmInStateMismatch xfrm_input(),
__xfrm_policy_check()

LINUX_MIB_XFRMINSTATEINVALID XfrmInStateInvalid xfrm_input()

LINUX_MIB_XFRMINTMPLMISMATCH XfrmInTmplMismatch __xfrm_policy_check()

LINUX_MIB_XFRMINNOPOLS XfrmInNoPols __xfrm_policy_check()

LINUX_MIB_XFRMINPOLBLOCK XfrmInPolBlock __xfrm_policy_check()

LINUX_MIB_XFRMINPOLERROR XfrmInPolError __xfrm_policy_check()

LINUX_MIB_XFRMOUTERROR XfrmOutError xfrm_output_one(),xfrm_output()

LINUX_MIB_
XFRMOUTBUNDLEGENERROR

XfrmOutBundleGenError xfrm_resolve_and_create_bundle()

LINUX_MIB_
XFRMOUTBUNDLECHECKERROR

XfrmOutBundleCheckError xfrm_resolve_and_create_bundle()

LINUX_MIB_XFRMOUTNOSTATES XfrmOutNoStates xfrm_lookup()

LINUX_MIB_
XFRMOUTSTATEPROTOERROR

XfrmOutStateProtoError xfrm_output_one()

LINUX_MIB_
XFRMOUTSTATEMODEERROR

XfrmOutStateModeError xfrm_output_one()

LINUX_MIB_XFRMOUTSTATESEQERROR XfrmOutStateSeqError xfrm_output_one()

LINUX_MIB_XFRMOUTSTATEEXPIRED XfrmOutStateExpired xfrm_output_one()

LINUX_MIB_XFRMOUTPOLBLOCK XfrmOutPolBlock xfrm_lookup()

LINUX_MIB_XFRMOUTPOLDEAD XfrmOutPolDead n/a

LINUX_MIB_XFRMOUTPOLERROR XfrmOutPolError xfrm_bundle_lookup(),
xfrm_resolve_and_create_bundle()

LINUX_MIB_XFRMFWDHDRERROR XfrmFwdHdrError __xfrm_route_forward()

LINUX_MIB_XFRMOUTSTATEINVALID XfrmOutStateInvalid xfrm_output_one()
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Note■■  T he IPsec git tree: git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec.git.

The ipsec git tree is for fixes for the IPsec networking subsystem; the development in this tree is done against  
David Miller’s net git tree.

The ipsec-next git tree: git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec-next.git.

The ipsec-next tree is for changes for IPsec with linux-next as target; the development in this tree is done against  
David Miller’s net-next git tree.

The IPsec subsystem maintainers are Steffen Klassert, Herbert Xu, and David S. Miller.
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Chapter 11

Layer 4 Protocols

Chapter 10 discussed the Linux IPsec subsystem and its implementation. In this chapter, I will discuss four transport 
layer (L4) protocols. I will start our discussion with the two most commonly used transport layer (L4) protocols, 
the User Datagram Protocol (UDP) and the Transmission Control Protocol (TCP), which are used for many years. 
Subsequently, I will discuss the newer Stream Control Transmission Protocol (SCTP) and Datagram Congestion 
Control Protocol (DCCP) protocols, which combine features of TCP and UDP. I will start the chapter with describing 
the sockets API, which is the interface between the transport layer (L4) and the userspace. I will discuss how sockets 
are implemented in the kernel and how data flows from the userspace to the transport layer and from the transport 
layer to the userspace. I will also deal with passing packets from the network layer (L3) to the transport layer (L4) 
when working with these protocols. I will discuss here mainly the IPv4 implementation of these four protocols, though 
some of the code is common to IPv4 and IPv6.

Sockets
Every operating system has to provide an entry point and an API to its networking subsystems. The Linux kernel 
networking subsystem provides an interface to the userspace by the standard POSIX socket API, which was specified 
by the IEEE (IEEE Std 1003.1g-2000, describing networking APIs, also known as POSIX.1g). This API is based on 
Berkeley sockets API (also known as BSD sockets), which originated from the 4.2BSD Unix operating system and is an 
industry standard in several operating systems. In Linux, everything above the transport layer belongs to the userspace. 
Conforming to the Unix paradigm that “everything is a file,” sockets are associated with files, as you will see later in this 
chapter. Using the uniform sockets API makes porting applications easier. These are the available socket types:

•	 Stream sockets (SOCK_STREAM): Provides a reliable, byte-stream communication channel. 
TCP sockets are an example of stream sockets.

•	 Datagram sockets (SOCK_DGRAM): Provides for exchanging of messages (called 
datagrams). Datagram sockets provide an unreliable communication channel, because 
packets can be discarded, arrive out of order, or be duplicated. UDP sockets are an example  
of datagram sockets.

•	 Raw sockets (SOCK_RAW): Uses direct access to the IP layer, and allows sending or receiving 
traffic without any protocol-specific, transport-layer formatting.

•	 Reliably delivered message (SOCK_RDM): Used by the Transparent Inter-Process 
Communication (TIPC), which was originally developed at Ericsson from 1996–2005 and was 
used in cluster applications. See http://tipc.sourceforge.net.

http://tipc.sourceforge.net/


Chapter 11 ■ Layer 4 Protocols

306

•	 Sequenced packet stream (SOCK_SEQPACKET): This socket type is similar to the  
SOCK_STREAM type and is also connection-oriented. The only difference between these 
types is that record boundaries are maintained using the SOCK_SEQPACKET type. Record 
boundaries are visible to the receiver via the MSG_EOR (End of record) flag. The Sequenced 
packet stream type is not discussed in this chapter.

•	 DCCP sockets (SOCK_DCCP): The Datagram Congestion Control Protocol is a transport 
protocol that provides a congestion-controlled flow of unreliable datagrams. It combines 
features of both TCP and UDP. It is discussed in a later section of this chapter.

•	 Data links sockets (SOCK_PACKET): The SOCK_PACKET is considered obsolete in the  
AF_INET family. See the __sock_create() method in net/socket.c.

The following is a description of some methods that the sockets API provides (all the kernel methods that appear 
in the following list are implemented in net/socket.c):

•	 socket(): Creates a new socket; will be discussed in the subsection “Creating Sockets.”

•	 bind(): Associates a socket with a local port and an IP address; implemented in the kernel by 
the sys_bind() method.

•	 send(): Sends a message; implemented in the kernel by the sys_send() method.

•	 recv(): Receives a message; implemented in the kernel by the sys_recv() method.

•	 listen(): Allows a socket to receive connections from other sockets; implemented in the 
kernel by the sys_listen() method. Not relevant to datagram sockets.

•	 accept(): Accepts a connection on a socket; implemented in the kernel by the sys_accept() 
method. Relevant only with connection-based socket types (SOCK_STREAM,  
SOCK_SEQPACKET).

•	 connect(): Establishes a connection to a peer socket; implemented in the kernel by the  
sys_connect() method. Relevant to connection-based socket types (SOCK_STREAM or 
SOCK_SEQPACKET) as well as to connectionless socket types (SOCK_DGRAM).

This book focuses on the kernel network implementation, so I will not delve into the details of the userspace 
socket API. If you want more information, I recommend the following books:

•	 Unix Network Programming, Volume 1: The Sockets Networking API (3rd Edition) by W. 
Richard Stevens, Bill Fenner, and Andrew M. Rudoff (Addison-Wesley Professional, 2003).

•	 The Linux Programming Interface by Michael Kerrisk (No Starch Press, 2010).

Note■■  A ll the socket API calls are handled by the socketcall() method, in net/socket.c.

Now that you have learned about some socket types, you will learn what happens in the kernel when a socket is 
created. In the next section, I will introduce the two structures that implement sockets: struct socket and struct 
sock. I will also describe the difference between them and I will describe the msghdr struct and its members.

Creating Sockets
There are two structures that represent a socket in the kernel: the first is struct socket, which provides an interface 
to the userspace and is created by the sys_socket() method. I will discuss the sys_socket() method later in this 
section. The second is struct sock, which provides an interface to the network layer (L3). Since the sock structure 
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resides in the network layer, it is a protocol agnostic structure. I will discuss the sock structure also later in this section. 
The socket structure is short:
 
struct socket {
        socket_state            state;
 
        kmemcheck_bitfield_begin(type);
        short                   type;
        kmemcheck_bitfield_end(type);
 
        unsigned long           flags;
 
        . . .
 
        struct file             *file;
        struct sock             *sk;
        const struct proto_ops  *ops;
};
 
(include/linux/net.h)

The following is a description of the members of the socket structure:

•	 state: A socket can be in one of several states, like SS_UNCONNECTED, SS_CONNECTED, and 
more. When an INET socket is created, its state is SS_UNCONNECTED; see the inet_create() 
method. After a stream socket connects successfully to another host, its state is SS_CONNECTED. 
See the socket_state enum in include/uapi/linux/net.h.

•	 type: The type of the socket, like SOCK_STREAM or SOCK_RAW; see the enum sock_type in 
include/linux/net.h.

•	 flags: The socket flags; for example, the SOCK_EXTERNALLY_ALLOCATED flag is set in the 
TUN device when allocating a socket, not by the socket() system call. See the tun_chr_open() 
method in drivers/net/tun.c. The socket flags are defined in include/linux/net.h.

•	 file: The file associated with the socket.

•	 sk: The sock object associated with the socket. The sock object represents the interface to the 
network layer (L3). When creating a socket, the associated sk object is created. For example, 
in IPv4, the inet_create() method, which is invoked when creating a socket, allocates a sock 
object, sk, and associates it with the specified socket object.

•	 ops: This object (an instance of the proto_ops object) consists mostly of callbacks for this 
socket, like connect(), listen(), sendmsg(), recvmsg(), and more. These callbacks are 
the interface to the userspace. The sendmsg() callback implements several library-level 
routines, such as write(), send(), sendto(), and sendmsg(). Quite similarly, the recvmsg() 
callback implements several library-level routines, such as read(), recv(), recvfrom(), and 
recvmsg(). Each protocol defines a proto_ops object of its own according to the protocol 
requirements. Thus, for TCP, its proto_ops object includes a listen callback, inet_listen(), 
and an accept callback, inet_accept(). On the other hand, the UDP protocol, which does not 
work in the client-server model, defines the listen() callback to be the sock_no_listen() 
method, and it defines the accept() callback to be the sock_no_accept() method. The only 
thing that both these methods do is return an error of –EOPNOTSUPP. See Table 11-1 in the 
“Quick Reference” section at the end of this chapter for the definitions of the TCP and UDP 
proto_ops objects. The proto_ops structure is defined in include/linux/net.h.
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The sock structure is the network-layer representation of sockets; it is quite long, and following here are only 
some of its fields that are important for our discussion:
 
struct sock {
 
        struct sk_buff_head     sk_receive_queue;
        int                     sk_rcvbuf;
 
        unsigned long           sk_flags;
 
        int                     sk_sndbuf;
        struct sk_buff_head     sk_write_queue;
        . . .
        unsigned int            sk_shutdown  : 2,
                                sk_no_check  : 2,
                                sk_protocol  : 8,
                                sk_type      : 16;
        . . .
 
        void                    (*sk_data_ready)(struct sock *sk, int bytes);
        void                    (*sk_write_space)(struct sock *sk);
};

(include/net/sock.h)
 

The following is a description of the members of the sock structure:

•	 sk_receive_queue: A queue for incoming packets.

•	 sk_rcvbuf: The size of the receive buffer in bytes.

•	 sk_flags: Various flags, like SOCK_DEAD or SOCK_DBG; see the sock_flags enum definition 
in include/net/sock.h.

•	 sk_sndbuf: The size of the send buffer in bytes.

•	 sk_write_queue: A queue for outgoing packets.

Note■■  Y ou will see later, in the “TCP Socket Initialization” section, how the sk_rcvbuf and the sk_sndbuf are  
initialized, and how this can be changed by writing to procfs entries.

•	 sk_no_check: Disable checksum flag. Can be set with the SO_NO_CHECK socket option.

•	 sk_protocol: This is the protocol identifier, which is set according to the third parameter 
(protocol) of the socket() system call.

•	 sk_type: The type of the socket, like SOCK_STREAM or SOCK_RAW; see the enum sock_type 
in include/linux/net.h.

•	 sk_data_ready: A callback to notify the socket that new data has arrived.

•	 sk_write_space: A callback to indicate that there is free memory available to proceed with 
data transmission.
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Creating sockets is done by calling the socket() system call from userspace:

sockfd = socket(int socket_family, int socket_type, int protocol);

The following is a description of the parameters of the socket() system call:

•	 socket_family: Can be, for example, AF_INET for IPv4, AF_INET6 for IPv6, or AF_UNIX 
for UNIX domain sockets, and so on. (UNIX domain sockets is a form of Inter Process 
Communication (IPC), which allows communication between processes that are running on 
the same host.)

•	 socket_type: Can be, for example, SOCK_STREAM for stream sockets, SOCK_DGRAM for 
datagram sockets, or SOCK_RAW for raw sockets, and so on.

•	 protocol: Can be any of the following:

0 or IPPROTO_TCP for TCP sockets.•	

0 or IPPROTO_UDP for UDP sockets.•	

A valid IP protocol identifier (like IPPROTO_TCP or IPPROTO_ICMP) for raw sockets; see •	
RFC 1700, “Assigned Numbers.”

The return value of the socket() system call (sockfd) is the file descriptor that should be passed as a parameter 
to subsequent calls with this socket. The socket() system call is handled in the kernel by the sys_socket() method. 
Let’s take a look at the implementation of the socket() system call:
 
SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
{
        int retval;
        struct socket *sock;
        int flags;
 
        . . .
        retval = sock_create(family, type, protocol, &sock);
        if (retval < 0)
                goto out;
        . . .
        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
        if (retval < 0)
                goto out_release;
out:
        . . .
        return retval;
 
}

(net/socket.c)
 

The sock_create() method calls the address-family specific socket creation method, create(); in the case of IPv4, 
it is the inet_create() method. (See the inet_family_ops definition in net/ipv4/af_inet.c.) The inet_create() 
method creates the sock object (sk) that is associated with the socket; the sock object represents the network layer 
socket interface. The sock_map_fd() method returns an fd (file descriptor) that is associated with the socket; normally, 
the socket() system call returns this fd.
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Sending data from a userspace socket, or receiving data in a userspace socket from the transport layer, is handled 
in the kernel by the sendmsg() and recvmsg() methods, respectively, which get a msghdr object as a parameter.  
The msghdr object includes the data blocks to send or to fill, as well as some other parameters.
 
struct msghdr {
        void             *msg_name;       /* Socket name                                         */
        int              msg_namelen;     /* Length of name                                      */
        struct iovec     *msg_iov;        /* Data blocks                                         */
        __kernel_size_t  msg_iovlen;      /* Number of blocks                                    */
        void             *msg_control;    /* Per protocol magic (eg BSD file descriptor passing) */
        __kernel_size_t  msg_controllen;  /* Length of cmsg list                                 */
        unsigned int     msg_flags;
};

(include/linux/socket.h)
 

The following is a description of some of the important members of the msghdr structure:

•	 msg_name: The destination socket address. To get the destination socket, you usually cast  
the msg_name opaque pointer to a struct sockaddr_in pointer. See, for example, the  
udp_sendmsg() method.

•	 msg_namelen: The length of the address.

•	 iovec: A vector of data blocks.

•	 msg_iovlen: The number of blocks in the iovec vector.

•	 msg_control: Control information (also known as ancillary data).

•	 msg_controllen: The length of the control information.

•	 msg_flags: Flags of received messages, like MSG_MORE. (See, for example, the section 
“Sending Packets with UDP” later in this chapter.)

Note that the maximum control buffer length that the kernel can process is limited per socket by the value in 
sysctl_optmem_max (/proc/sys/net/core/optmem_max).

In this section, I described the kernel implementation of the socket and the msghdr struct, which is used when 
sending and receiving packets. In the next section, I will start my discussion about transport layer protocols (L4) by 
describing the UDP protocol, which is the simplest among the protocols to be discussed in this chapter.

UDP (User Datagram Protocol)
The UDP protocol is described in RFC 768 from 1980. The UDP protocol is a thin layer around the IP layer, adding 
only port, length, and checksum information. It dates back as early as 1980 and provides unreliable, message-oriented 
transport without congestion control. Many protocols use UDP. I will mention, for example, the RTP protocol (Real-time 
Transport Protocol), which is used for delivery of audio and video over IP networks. Such a type of traffic can tolerate 
some packet loss. The RTP is commonly used in VoIP applications, usually in conjunction with SIP (Session Initiation 
Protocol) based clients.(It should be mentioned here that, in fact, the RTP protocol can also use TCP, as specified in 
RFC 4571, but this is not used much.) I should mention here UDP-Lite, which is an extension of the UDP protocol to 
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support variable-length checksums (RFC 3828). Most of UDP-Lite is implemented in net/ipv4/udplite.c, but you will 
encounter it also in the main UDP module, net/ipv4/udp.c. The UDP header length is 8 bytes:
 
struct udphdr {
        __be16  source;
        __be16  dest;
        __be16  len;
        __sum16 check;
};
(include/uapi/linux/udp.h)
 

The following is a description of the members of the UDP header:

•	 source: The source port (16 bit), in the range 1-65535.

•	 dest: The destination port (16 bit), in the range 1-65535.

•	 len: The length in bytes (the payload length and the UDP header length).

•	 checksum: The checksum of the packet.

Figure 11-1 shows a UDP header.

Figure 11-1.  A UDP header (IPv4)

In this section, you learned about the UDP header and its members. To understand how the userspace 
applications, which use the sockets API, communicate with the kernel (sending and receiving packets), you should 
know about how UDP initialization is done, which is described in the next section.

UDP Initialization
We define the udp_protocol object (net_protocol object) and add it with the inet_add_protocol() method. This 
sets the udp_protocol object to be an element in the global protocols array (inet_protos).
 
static const struct net_protocol udp_protocol = {
        .handler =      udp_rcv,
        .err_handler =  udp_err,
        .no_policy =    1,
        .netns_ok =     1,
};
(net/ipv4/af_inet.c)
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static int __init inet_init(void)
{
        . . .
        if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)
                pr_crit("%s: Cannot add UDP protocol\n", __func__);
        . . .
}
(net/ipv4/af_inet.c)
 

We further define a udp_prot object and register it by calling the proto_register() method. This object contains 
mostly callbacks; these callbacks are invoked when opening a UDP socket in userspace and using the socket API.  
For example, calling the setsockopt() system call on a UDP socket will invoke the udp_setsockopt() callback.
 
struct proto udp_prot = {
         .name              = "UDP",
         .owner             = THIS_MODULE,
         .close             = udp_lib_close,
         .connect           = ip4_datagram_connect,
         .disconnect        = udp_disconnect,
         .ioctl             = udp_ioctl,
         . . .
         .setsockopt        = udp_setsockopt,
         .getsockopt        = udp_getsockopt,
         .sendmsg           = udp_sendmsg,
         .recvmsg           = udp_recvmsg,
         .sendpage          = udp_sendpage,
         . . .
};
 
(net/ipv4/udp.c)
int __init inet_init(void)
{
    int rc = -EINVAL;
    . . .
    rc = proto_register(&udp_prot, 1);
    . . .
 
}
(net/ipv4/af_inet.c)
 

Note■■  T he UDP protocol, along with other core protocols, is initialized via the inet_init() method at boot-time.

Now that you know about UDP initialization and its callback for sending packets, which is the udp_sendmsg() 
callback of the udp_prot object that was shown in this section, it is time to learn how packets are sent by UDP in IPV4.
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Sending Packets with UDP
Sending data from a UDP userspace socket can be done by several system calls: send(), sendto(), sendmsg(), and 
write(); eventually all of them are handled by the udp_sendmsg() method in the kernel. The userspace application builds 
a msghdr object that contains the data blocks and passes this msghdr object to the kernel. Let’s take a look at this method:
 
int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
                size_t len)
{
 

In general, UDP packets are sent immediately. This behavior can be changed with the UDP_CORK socket option 
(introduced in kernel 2.5.44), which causes packet data passed to the udp_sendmsg() method to be accumulated until 
the final packet is released by unsetting the option. The same result can be achieved by setting the MSG_MORE flag:
 
        int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
        struct inet_sock *inet = inet_sk(sk);
              . . .
 

First we make some sanity checks. The specified len, for example, cannot be greater than 65535 (remember that 
the len field in the UDP header is 16 bits):
 
        if (len > 0xFFFF)
                 return -EMSGSIZE;
 

We need to know the destination address and the destination port in order to build a flowi4 object, which is 
needed for sending the SKB with the udp_send_skb() method or with the ip_append_data() method. The destination 
port should not be 0. There are two cases here: the destination is specified in the msg_name of the msghdr, or the 
socket is connected and its state is TCP_ESTABLISHED. Note that UDP (in contrast to TCP) is almost a fully stateless 
protocol. The notion of TCP_ESTABLISHED in UDP mostly means that the socket has passed some sanity checks.
 
        if (msg->msg_name) {
                struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
                if (msg->msg_namelen < sizeof(*usin))
                        return -EINVAL;
                if (usin->sin_family != AF_INET) {
                        if (usin->sin_family != AF_UNSPEC)
                                return -EAFNOSUPPORT;
                }
  
                daddr = usin->sin_addr.s_addr;
                dport = usin->sin_port;
 

Linux code honors the fact that zero UDP/TCP ports are reserved by the IANA. The reservation of port 0 in 
TCP and UDP dates back to RFC 1010, “Assigned Numbers” (1987), and it was still present in RFC 1700, which was 
obsoleted by the online database (see RFC 3232), where they are still present. See  
www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml.
 
                if (dport == 0)
                        return -EINVAL;
        } else {
                if (sk->sk_state != TCP_ESTABLISHED)
                        return -EDESTADDRREQ;

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
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                daddr = inet->inet_daddr;
                dport = inet->inet_dport;
                /* Open fast path for connected socket.
                   Route will not be used, if at least one option is set.
                 */
                connected = 1;
}
 
               . . .
 

A userspace application can send control information (also known as ancillary data) by setting msg_control and 
msg_controllen in the msghdr object. Ancillary data is, in fact, a sequence of cmsghdr objects with appended data. 
(For more details, see man 3 cmsg.) You can send and receive ancillary data by calling the sendmsg() and recvmsg() 
methods, respectively. For example, you can create an IP_PKTINFO ancillary message to set a source route to an 
unconnected UDP socket. (See man 7 ip.) When msg_controllen is not 0, this is a control information message, 
which is handled by the ip_cmsg_send() method. The ip_cmsg_send() method builds an ipcm_cookie (IP Control 
Message Cookie) object by parsing the specified msghdr object. The ipcm_cookie structure includes information that 
is used further when processing the packet. For example, when using an IP_PKTINFO ancillary message, you can set 
the source address by setting an address field in the control messages, which eventually sets the addr in the ipcm_
cookie object. The ipcm_cookie is a short structure:
 
struct ipcm_cookie {
        __be32                  addr;
        int                     oif;
        struct ip_options_rcu   *opt;
        __u8                    tx_flags;
};
(include/net/ip.h)

Let’s continue our discussion of the udp_sendmsg() method:
 
         if (msg->msg_controllen) {
                 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
                 if (err)
                         return err;
                 if (ipc.opt)
                         free = 1;
                 connected = 0;
         }
         . . .
         if (connected)
                 rt = (struct rtable *)sk_dst_check(sk, 0);
         . . .
 

If the routing entry is NULL, a routing lookup should be performed:
 
        if (rt == NULL) {
                struct net *net = sock_net(sk);
          
                fl4 = &fl4_stack;
                flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
                                   RT_SCOPE_UNIVERSE, sk->sk_protocol,
                                   inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
                                   faddr, saddr, dport, inet->inet_sport);
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                security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
                rt = ip_route_output_flow(net, fl4, sk);
                if (IS_ERR(rt)) {
                        err = PTR_ERR(rt);
                        rt = NULL;
                        if (err == -ENETUNREACH)
                                IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
                        goto out;
                }
 
        . . .
 

In kernel 2.6.39, a lockless transmit fast path was added. This means that when the corking feature is not set, we 
do not hold the socket lock and we call the udp_send_skb() method, and when the corking feature is set, we hold the 
socket lock by calling the lock_sock() method and then send the packet:
 
        /* Lockless fast path for the non-corking case. */
        if (!corkreq) {
                skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
                                  sizeof(struct udphdr), &ipc, &rt,
                                  msg->msg_flags);
                err = PTR_ERR(skb);
                if (!IS_ERR_OR_NULL(skb))
                         err = udp_send_skb(skb, fl4);
                 goto out;
        }
 

Now we handle the case when the corking feature is set:
 
       lock_sock(sk);
do_append_data:
        up->len += ulen;
 

The ip_append_data() method buffers the data for transmission but does not transmit it yet. Subsequently 
calling the udp_push_pending_frames() method will actually perform the transmission. Note that the  
udp_push_pending_frames() method also handles fragmentation by the specified getfrag callback:
 
        err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
                             sizeof(struct udphdr), &ipc, &rt,
                             corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
 

If the method failed, we should flush all pending SKBs. This is achieved by calling the udp_flush_pending_frames() 
method, which will free all the SKBs in the write queue of the socket (sk_write_queue) by the ip_flush_pending_frames() 
method:
 
        if (err)
                udp_flush_pending_frames(sk);
        else if (!corkreq)
                err = udp_push_pending_frames(sk);
        else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
                up->pending = 0;
        release_sock(sk);
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You learned in this section about sending packets with UDP. Now, to complete our discussion about UDP in IPv4, 
it’s time to learn about how packets from the network layer (L3) are received with UDP in IPv4.

Receiving Packets from the Network Layer (L3) with UDP
The main handler for receiving UDP packets from the network layer (L3) is the udp_rcv() method. All it does is invoke 
the __udp4_lib_rcv() method (net/ipv4/udp.c):
 
int udp_rcv(struct sk_buff *skb)
{
        return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
}
 

Let’s take a look at the __udp4_lib_rcv() method:
 
int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
                   int proto)
{
        struct sock *sk;
        struct udphdr *uh;
        unsigned short ulen;
        struct rtable *rt = skb_rtable(skb);
        __be32 saddr, daddr;
        struct net *net = dev_net(skb->dev);
        . . .
 

We fetch the UDP header, header length, and source and destination addresses from the SKB:
 
        uh   = udp_hdr(skb);
        ulen = ntohs(uh->len);
        saddr = ip_hdr(skb)->saddr;
        daddr = ip_hdr(skb)->daddr;
 

We will skip some sanity checks that are being performed, like making sure that the UDP header length is not 
greater than the length of the packet and that the specified proto is the UDP protocol identifier (IPPROTO_UDP). If 
the packet is a broadcast or a multicast packet, it will be handled by the __udp4_lib_mcast_deliver() method:
 
        if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
             return __udp4_lib_mcast_deliver(net, skb, uh,
                                                saddr, daddr, udptable);
 

Next we perform a lookup in the UDP sockets hash table:
 
        sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
              if (sk != NULL) {
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We arrive here because the lookup we performed found a matching socket. So process the SKB further by calling 
the udp_queue_rcv_skb() method, which invokes the generic sock_queue_rcv_skb() method, which in turn adds the 
specified SKB to the tail of sk->sk_receive_queue (by calling the __skb_queue_tail() method):
 
        int ret = udp_queue_rcv_skb(sk, skb);
        sock_put(sk);
  
        /* a return value > 0 means to resubmit the input, but
        * it wants the return to be -protocol, or 0
        */
        if (ret > 0)
             return -ret;
 

Everything is fine; return 0 to denote success:
 
            return 0;
        }
        . . .
  

We arrived here because the lookup for a socket failed. This means that we should not handle the packet. This 
can occur, for example, when there is no listening UDP socket on the destination port. If the checksum is incorrect, 
we should drop the packet silently. If it is correct, we should send an ICMP reply back to the sender. This should be an 
ICMP message of “Destination Unreachable” with code of “Port Unreachable.” Further on, we should free the packet 
and update an SNMP MIB counter:
 
        /* No socket. Drop packet silently, if checksum is wrong */
        if (udp_lib_checksum_complete(skb))
            goto csum_error;
 

The next command increments the UDP_MIB_NOPORTS (NoPorts) MIB counter. Note that you can query 
various UDP MIB counters by cat /proc/net/snmp or by netstat –s.
 
        UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
        icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  
        /*
        * Hmm.  We got an UDP packet to a port to which we
        * don't wanna listen.  Ignore it.
        */
        kfree_skb(skb);
        return 0;
 

Figure 11-2 illustrates our discussion in this section about receiving UDP packets.
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Our discussion about UDP is now finished. The next section describes the TCP protocol, which is the most 
complex among the protocols discussed in this chapter.

TCP (Transmission Control Protocol)
The TCP protocol is described in RFC 793 from 1981. During the years since then, there have been many updates, 
variations, and additions to the base TCP protocol. Some additions were for specific types of networks (high-speed, 
satellite), whereas others were for performance improvements.

The TCP protocol is the most commonly used transport protocol on the Internet today. Many well-known 
protocols are based upon TCP. The most well-known protocol is probably HTTP, and we should also mention here 
some other well-known protocols such as ftp, ssh, telnet, smtp, and ssl. The TCP protocol provides a reliable and 
connection-oriented transport, as opposed to UDP. Transmission is made reliable by using sequence numbers and 
acknowledgments.

Figure 11-2.  Receiving UDP packets
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TCP is a very complex protocol; we will not discuss all the details, optimizations, and nuances of the TCP 
implementation in this chapter, as this requires a separate book in itself. TCP functionality consists of two ingredients: 
management of connections, and transmitting and receiving data. We will focus in this section on TCP initialization 
and TCP connection setup, which pertains to the first ingredient, connections management, and on receiving and 
sending packets, which pertains to the second ingredient. These are the important basics that enable further delving 
into the TCP protocol implementation. We should note that the TCP protocol self-regulates the byte-stream flow 
via congestion control. Many different congestion-control algorithms have been specified, and Linux provides 
a pluggable and configurable architecture to support a wide variety of algorithms. Delving into the details of the 
individual congestion-control algorithms is beyond the scope of this book.

Every TCP packet starts with a TCP header. You must learn about the TCP header in order to understand the 
operation of TCP. The next section describes the IPv4 TCP header.

TCP Header
The TCP header length is 20 bytes, but it is scalable up to 60 bytes when using TCP options:
 
struct tcphdr {
        __be16  source;
        __be16  dest;
        __be32  seq;
        __be32  ack_seq;
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u16   res1:4,
                doff:4,
                fin:1,
                syn:1,
                rst:1,
                psh:1,
                ack:1,
                urg:1,
                ece:1,
                cwr:1;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u16   doff:4,
                res1:4,
                cwr:1,
                ece:1,
                urg:1,
                ack:1,
                psh:1,
                rst:1,
                syn:1,
                fin:1;
#else
#error  "Adjust your <asm/byteorder.h> defines"



Chapter 11 ■ Layer 4 Protocols

320

#endif
        __be16  window;
        __sum16 check;
        __be16  urg_ptr;
};

(include/uapi/linux/tcp.h)
 

The following is a description of the members of the tcphdr structure:

•	 source: The source port (16 bit), in the range 1-65535.

•	 dest: The destination port (16 bit), in the range 1-65535.

•	 seq: The Sequence number (32 bits).

•	 ack_seq: Acknowledgment number (32 bits). If the ACK flag is set, the value of this field is the 
next sequence number that the receiver is expecting.

•	 res1: Reserved for future use (4 bits). It should always be set to 0.

•	 doff: Data offset (4 bits). The size of the TCP header in multiplies of 4 bytes; the minimum is 5 
(20 bytes) and the maximum is 15 (60 bytes).

The following are the TCP flags; each is 1 bit:

•	 fin: No more data from sender (when one of the endpoints wants to close the connection).

•	 syn: The SYN flag is initially sent when establishing the 3-way handshake between two 
endpoints.

•	 rst: The Reset flag is used when a segment that is not intended for the current connection 
arrives.

•	 psh: The data should be passed to userspace as soon as possible.

•	 ack: Signifies that the acknowledgment number (ack_seq) value in the TCP header is 
meaningful.

•	 urg: Signifies that the urgent pointer is meaningful.

•	 ece: ECN - Echo flag. ECN stands for “Explicit Congestion Notification.” ECN provides a 
mechanism that sends end-to-end notification about network congestion without dropping 
packets. It was added by RFC 3168, “The Addition of Explicit Congestion Notification (ECN) to 
IP,” from 2001.

•	 cwr: Congestion Window Reduced flag.

•	 window: TCP receive window size in bytes (16 bit).

•	 check: Checksum of the TCP header and TCP data.

•	 urg_ptr: Has significance only when the urg flag is set. It represents an offset from the 
sequence number indicating the last urgent data byte (16 bit).

Figure 11-3 shows a diagram of a TCP header.
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In this section, I described the IPv4 TCP header and its members. You saw that, as opposed to the UDP header, 
which has only 4 members, the TCP header has a lot more members, since TCP is a much more complex protocol. 
In the following section, I will describe how TCP initialization is done so that you will learn how and where the 
initialization of the callbacks for receiving and sending TCP packets takes place.

TCP Initialization
We define the tcp_protocol object (net_protocol object) and add it with the inet_add_protocol() method:
 
static const struct net_protocol tcp_protocol = {
        .early_demux    =       tcp_v4_early_demux,
        .handler        =       tcp_v4_rcv,
        .err_handler    =       tcp_v4_err,
        .no_policy      =       1,
        .netns_ok       =       1,
};

(net/ipv4/af_inet.c)
 
static int __init inet_init(void)
  {
        . . .
        if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0)
            pr_crit("%s: Cannot add TCP protocol\n", __func__);
        . . .
}

(net/ipv4/af_inet.c)
 

Figure 11-3.  TCP header (IPv4)
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We further define a tcp_prot object and register it by calling the proto_register() method, like what we did 
with UDP:
 
struct proto tcp_prot = {
        .name                   = "TCP",
        .owner                  = THIS_MODULE,
        .close                  = tcp_close,
        .connect                = tcp_v4_connect,
        .disconnect             = tcp_disconnect,
        .accept                 = inet_csk_accept,
        .ioctl                  = tcp_ioctl,
        .init                   = tcp_v4_init_sock,
        . . .
};
 
(net/ipv4/tcp_ipv4.c)
 
static int __init inet_init(void)
{
        int rc;
        . . .
        rc = proto_register(&tcp_prot, 1);
        . . .
}

(net/ipv4/af_inet.c)
 

Note that in the tcp_prot definition, the init function pointer is defined to be the tcp_v4_init_sock() callback, 
which performs various initializations, like setting the timers by calling the tcp_init_xmit_timers() method, setting 
the socket state, and more. Conversely, in UDP, which is a much simpler protocol, the init function pointer was not 
defined at all because there are no special initializations to perform in UDP. We will discuss the tcp_v4_init_sock() 
callback later in this section.

In the next section, I will describe briefly the timers used by the TCP protocol.

TCP Timers
TCP timers are handled in net/ipv4/tcp_timer.c. There are four timers used by TCP:

•	 Retransmit timer: Responsible for resending packets that were not acknowledged in a specified 
time interval. This can happen when a packet gets lost or corrupted. This timer is started after 
each segment is sent; if an ACK arrives before the timer expires, the timer is canceled.

•	 Delayed ACK timer: Delays sending ACK packets. It is set when TCP receives data that must 
be acknowledged but does not need to be acknowledged immediately.

•	 Keep Alive timer: Checks whether the connection is down. There are cases when sessions are 
idle for a long time and one side goes down. The Keep Alive timer detects such cases and calls 
the tcp_send_active_reset() method to reset the connection.

•	 Zero window probe timer (also known as the persistent timer): When the receive buffer is full, 
the receiver advertises a zero window and the sender stops sending. Now, when a receiver sends 
a segment with a new window size and this segment is lost, the sender will keep waiting forever. 
The solution is this: when the sender gets a zero window, it uses a persistent timer to probe the 
receiver for its window size; when getting a non-zero window size, the persistent timer is stopped.
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TCP Socket Initialization
To use a TCP socket, a userspace application should create a SOCK_STREAM socket and call the socket() system call. 
This is handled in the kernel by the tcp_v4_init_sock() callback, which invokes the tcp_init_sock() method to  
do the real work. Note that the tcp_init_sock() method performs address-family independent initializations, and it 
is invoked also from the tcp_v6_init_sock() method. The important tasks of the tcp_init_sock() method are  
the following:

Set the state of the socket to be TCP_CLOSE.•	

Initialize TCP timers by calling the •	 tcp_init_xmit_timers() method.

Initialize the socket send buffer (•	 sk_sndbuf) and receive buffer (sk_rcvbuf); sk_sndbuf is 
set to be to sysctl_tcp_wmem[1], which is by default 16384 bytes, and sk_rcvbuf is set to 
be sysctl_tcp_rmem[1], which is by default 87380 bytes. These default values are set in the 
tcp_init() method; the sysctl_tcp_wmem and sysctl_tcp_rmem arrays default values can 
be overridden by writing to /proc/sys/net/ipv4/tcp_wmem and to /proc/sys/net/ipv4/
tcp_rmem, respectively. See the “TCP Variables” section in Documentation/networking/ 
ip-sysctl.txt.

Initialize the out-of-order queue and the •	 prequeue.

Initialize various parameters. For example, the TCP initial congestion window is initialized to •	
10 segments (TCP_INIT_CWND), according to RFC 6928, “Increasing TCP’s Initial Window,” 
from 2013.

Now that you have learned how a TCP socket is initialized, I will discuss how to set up a TCP connection.

TCP Connection Setup
TCP connection setup and teardown and TCP connection properties are described as transitions in a state machine. 
At each given moment, a TCP socket can be in one specified state; for example, the socket enters the TCP_LISTEN 
state when the listen() system call is invoked. The state of the sock object is represented by its sk_state member. 
For a list of all available states, refer to include/net/tcp_states.h.

A three way handshake is used to set up a TCP connection between a TCP client and a TCP server:

First, the client sends a SYN request to the server. Its state changes to TCP_SYN_SENT.•	

The server socket, which is listening (its state is TCP_LISTEN), creates a request socket to •	
represent the new connection in the TCP_SYN_RECV state and sends back a SYN ACK.

The client that receives the SYN ACK changes its state to TCP_ESTABLISHED and sends an •	
ACK to the server.

The server receives the ACK and changes the request socket into a child socket in the  •	
TCP_ESTABLISHED state, as the connection is now established and data can be sent.

Note■■   to further look into the TCP state machine details, refer to the tcp_rcv_state_process() method  
(net/ipv4/tcp_input.c), which is the state machine engine, both for IPv4 and for IPv6. (It is called both from the  
tcp_v4_do_rcv() method and from the tcp_v6_do_rcv() method.)

The next section describes how packets are received from the network layer (L3) with TCP in IPv4.
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Receiving Packets from the Network Layer (L3) with TCP
The main handler for receiving TCP packets from the network layer (L3) is the tcp_v4_rcv() method  
(net/ipv4/tcp_ipv4.c). Let’s take a look at this function:
 
int tcp_v4_rcv(struct sk_buff *skb)
{
       struct sock *sk;
       . . .
 

First we make some sanity checks (for example, checking to see if the packet type is not PACKET_HOST or if the 
packet size is shorter than the TCP header) and discard the packet if there are any problems; then some initializations 
are made and also a lookup for a corresponding socket is performed by calling the __inet_lookup_skb() method, 
which first performs a lookup in the established sockets hash table by calling the __inet_lookup_established() 
method. In the case of a lookup miss, it performs a lookup in the listening sockets hash table by calling the  
__inet_lookup_listener() method. If no socket is found, the packet is discarded at this stage.
 
        sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
        . . .
        if (!sk)
                goto no_tcp_socket;
 

Now we check whether the socket is owned by some application. The sock_owned_by_user() macro returns 1 
when there is currently an application that owns the socket, and it returns a value of 0 when there is no application 
that owns the socket:
 
        if (!sock_owned_by_user(sk)) {
        . . .
                {
 

We arrive here if no application owns the socket, so it can accept packets. First we try to put the packet in the 
prequeue by calling the tcp_prequeue() method, as packets in the prequeue are processed more efficiently. The 
tcp_prequeue() will return false if processing in the prequeue is not possible (for example, when the queue has no 
space); in such a case, we will call the tcp_v4_do_rcv() method, which we will discuss shortly:
 
                if (!tcp_prequeue(sk, skb))
                        ret = tcp_v4_do_rcv(sk, skb);
        }
 

When an application owns the socket, it means that it is in a locked state, so it cannot accept packets. In such a 
case, we add the packet to the backlog by calling the sk_add_backlog() method:
 
                } else if (unlikely(sk_add_backlog(sk, skb,
                                                   sk->sk_rcvbuf + sk->sk_sndbuf))) {
                        bh_unlock_sock(sk);
                        NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
                        goto discard_and_relse;
                }
        }
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Let’s take a look at the tcp_v4_do_rcv() method:
 
int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
 

If the socket is in the TCP_ESTABLISHED state, we call the tcp_rcv_established() method:
 
        if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
        . . .
                if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
                        rsk = sk;
                        goto reset;
                }
                return 0;
 

If the socket is in the TCP_LISTEN state, we call the tcp_v4_hnd_req() method:
 
        if (sk->sk_state == TCP_LISTEN) {
                struct sock *nsk = tcp_v4_hnd_req(sk, skb);
 
        }
 

If we are not in the TCP_LISTEN state, we invoke the tcp_rcv_state_process() method:
 
        if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
                rsk = sk;
                goto reset;
        }
        return 0;
 
reset:
        tcp_v4_send_reset(rsk, skb);
 
}
 

In this section, you learned about the reception of a TCP packet. In the next section, we conclude the TCP part of 
this chapter by describing how packets are sent with TCP in IPv4.

Sending Packets with TCP
As with UDP, sending packets from TCP sockets that were created in userspace can be done by several system calls: 
send(), sendto(), sendmsg(), and write(). Eventually all of them are handled by the tcp_sendmsg() method  
(net/ipv4/tcp.c). This method copies the payload from the userspace to the kernel and sends it as TCP segments.  
It is much more complicated than the udp_sendmsg() method.
 
int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
                size_t size)
{
        struct iovec *iov;
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;
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        int iovlen, flags, err, copied = 0;
        int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
        bool sg;
        long timeo;
        . . .
 

I will not delve into all the details of copying the data from the userspace to the SKB in this method. Once the SKB 
is built, it is sent with the tcp_push_one() method that calls the tcp_write_xmit() method, which in turn invokes the 
tcp_transmit_skb() method:
 
static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
                            gfp_t gfp_mask)
{
 

The icsk_af_ops object (INET Connection Socket ops) is an address-family specific object. In the case of IPv4 
TCP, it is set to be an inet_connection_sock_af_ops object named ipv4_specific in the tcp_v4_init_sock() 
method. The queue_xmit() callback is set to be the generic ip_queue_xmit() method. See net/ipv4/tcp_ipv4.c.
 
    . . .
    err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
    . . .
}
(net/ipv4/tcp_output.c)
 

Now that you learned about TCP and UDP, you are ready to proceed to the next section which deals with the 
SCTP (Stream Control Transmission Protocol) protocol. The SCTP protocol combines features of both UDP and TCP, 
and it is newer than both of them.

SCTP (Stream Control Transmission Protocol)
The SCTP protocol is specified in RFC 4960 from 2007. It was first specified in 2000. It is designed for Public Switched 
Telephone Network (PSTN) signaling over IP networks, but it can be used with other applications. The IETF SIGTRAN 
(Signaling Transport) working group originally developed the SCTP protocol and later handed the protocol over to 
the Transport Area working group (TSVWG) for the continued evolvement of SCTP as a general-purpose transport 
protocol. LTE (Long Term Evolution) uses SCTP; one of the main reasons for this is that the SCTP protocol is able to 
detect when a link goes down or when packets are dropped very quickly, whereas TCP does not have this feature. 
SCTP flow-control and congestion-control algorithms are very similar in TCP and SCTP. The SCTP protocol uses 
a variable for the advertised receiver window size (a_rwnd); this variable represents the current available space in 
the receiver buffer. The sender cannot send any new data if the receiver indicates that a_rwnd is 0 (no receive space 
available). The important features of SCTP are the following ones:

SCTP combines the features of TCP and UDP. It is a reliable transport protocol with congestion •	
control like TCP; it is a message-oriented protocol like UDP, whereas TCP is stream-oriented.

The SCTP protocol provides improved security with its 4-way handshake (compared to •	
the TCP 3-way handshake) to protect against SYN flooding attacks. I will discuss the 4-way 
handshake later in this chapter in the “Setting Up an SCTP Association” section.

SCTP supports multihoming—that is, multiple IP addresses on both endpoints. This provides •	
a network-level, fault-tolerance capability. I will discuss SCTP chunks later in this section.
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SCTP supports multistreaming, which means that it can send in parallel streams of data •	
chunks. This can reduce the latency of streaming multimedia in some environments. I will 
discuss SCTP chunks later in this section.

SCTP uses a heartbeat mechanism to detect idle/unreachable peers in the case of •	
multihoming. I will discuss the SCTP heartbeat mechanism later in this chapter.

After this short description of the SCTP protocol, we will now discuss how SCTP initialization is done. The  
sctp_init() method allocates memory for various structures, initializes some sysctl variables, and registers  
the SCTP protocol in IPv4 and in IPv6:
 
int sctp_init(void)
{
       int status = -EINVAL;
        . . .
        status = sctp_v4_add_protocol();
 
       if (status)
               goto err_add_protocol;
  
       /* Register SCTP with inet6 layer.  */
       status = sctp_v6_add_protocol();
       if (status)
               goto err_v6_add_protocol;
       . . .
}

(net/sctp/protocol.c)
 

The registration of the SCTP protocol is done by defining an instance of net_protocol (named sctp_protocol 
for IPv4 and sctpv6_protocol for IPv6) and calling the inet_add_protocol() method, quite similarly to what you 
saw in other transport protocols, like the UDP protocol. We also call the register_inetaddr_notifier() to receive 
notifications about adding or deleting a network address. These events will be handled by the sctp_inetaddr_event()  
method, which will update the SCTP global address list (sctp_local_addr_list) accordingly.

  static const struct net_protocol sctp_protocol = {
        .handler     = sctp_rcv,
        .err_handler = sctp_v4_err,
        .no_policy   = 1,
};

(net/sctp/protocol.c)
 
static int sctp_v4_add_protocol(void)
{
        /* Register notifier for inet address additions/deletions. */
        register_inetaddr_notifier(&sctp_inetaddr_notifier);
 
        /* Register SCTP with inet layer.  */
        if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0)
                return -EAGAIN;
 
        return 0;
}

(net/sctp/protocol.c)
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Note■■  T he sctp_v6_add_protocol() method (net/sctp/ipv6.c) is very similar, so we will not show it here.

Each SCTP packet starts with an SCTP header. I will now describe the structure of an SCTP header. I will start the 
discussion with SCTP chunks in the next section.

SCTP Packets and Chunks
Each SCTP packet has an SCTP common header, which is followed by one or more chunks. Each chunk can contain 
either data or SCTP control information. Several chunks can be bundled into one SCTP packet (except for three chunks 
that are used when establishing and terminating a connection: INIT, INIT_ACK, and SHUTDOWN_COMPLETE). These 
chunks use the Type-Length-Value (TLV) format that you first encountered in Chapter 2.

SCTP Common Header 

typedef struct sctphdr {
        __be16 source;
        __be16 dest;
        __be32 vtag;
        __le32 checksum;
} __attribute__((packed)) sctp_sctphdr_t;

(include/linux/sctp.h)
 

Following is a description of the members of the sctphdr structure:

•	 source: SCTP source port.

•	 dest: SCTP destination port.

•	 vtag: Verification Tag, which is a 32 bit random value.

•	 checksum: Checksum of SCTP common header and all chunks.

SCTP Chunk Header
The SCTP chunk header is represented by struct sctp_chunkhdr:
 
typedef struct sctp_chunkhdr {
        __u8 type;
        __u8 flags;
        __be16 length;
} __packed sctp_chunkhdr_t;

(include/linux/sctp.h)
 

The following is a description of the members of the sctp_chunkhdr structure:

•	 type: The SCTP type. For example, the type of data chunks is SCTP_CID_DATA. See Table 11-2, 
Chunk types, in the “Quick Reference” section at the end of this chapter, and also see the  
chunk ID enum definition (sctp_cid_t) in include/linux/sctp.h.
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•	 flags: Usually, all 8 bits in it should be set to 0 by the sender and ignored by the receiver. 
There are cases when different values are used. For example, in ABORT chunk, we use the  
T bit (the LSB) thus: it is set to 0 if the sender filled in the Verification Tag, and it is set to 1 if the 
Verification Tag is reflected.

•	 length: The length of the SCTP chunk.

SCTP Chunk
The SCTP chunk is represented by struct sctp_chunk. Each chunk object contains the source and destination 
address for this chunk and a subheader (member of the subh union) according to its type. For example, for data 
packets we have the sctp_datahdr subheader, and for the INIT type we have the sctp_inithdr subtype:
 
struct sctp_chunk {
        . . .
        atomic_t refcnt;
 
        union {
                __u8 *v;
                struct sctp_datahdr        *data_hdr;
                struct sctp_inithdr        *init_hdr;
                struct sctp_sackhdr        *sack_hdr;
                struct sctp_heartbeathdr   *hb_hdr;
                struct sctp_sender_hb_info *hbs_hdr;
                struct sctp_shutdownhdr    *shutdown_hdr;
                struct sctp_signed_cookie  *cookie_hdr;
                struct sctp_ecnehdr        *ecne_hdr;
                struct sctp_cwrhdr         *ecn_cwr_hdr;
                struct sctp_errhdr         *err_hdr;
                struct sctp_addiphdr       *addip_hdr;
                struct sctp_fwdtsn_hdr     *fwdtsn_hdr;
                struct sctp_authhdr        *auth_hdr;
        } subh;
 
        struct sctp_chunkhdr    *chunk_hdr;
        struct sctphdr          *sctp_hdr;
 
        struct sctp_association *asoc;
 
        /* What endpoint received this chunk? */
        struct sctp_ep_common   *rcvr;
 
        . . .
         
        /* What is the origin IP address for this chunk?  */
        union sctp_addr source;
        /* Destination address for this chunk. */
        union sctp_addr dest;
 
        . . .
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        /* For an inbound chunk, this tells us where it came from.
         * For an outbound chunk, it tells us where we'd like it to
         * go.  It is NULL if we have no preference.
         */
        struct sctp_transport *transport;
 
};

(include/net/sctp/structs.h)
 

We will now describe an SCTP association (which is the counterpart of a TCP connection).

SCTP Associations
In SCTP, we use the term association instead of a connection; a connection refers to communication between two 
IP addresses, whereas association refers to communication between two endpoints that might have multiple IP 
addresses. An SCTP association is represented by struct sctp_association:
 
struct sctp_association {
       ...
 
        sctp_assoc_t assoc_id;
 
        /* These are those association elements needed in the cookie.  */
        struct sctp_cookie c;
 
        /* This is all information about our peer.  */
        struct {
                struct list_head transport_addr_list;
 
                . . .
                __u16 transport_count;
                __u16 port;
                . . .
 
                struct sctp_transport *primary_path;
                struct sctp_transport *active_path;
 
        } peer;
 
        sctp_state_t state;
        . . .
        struct sctp_priv_assoc_stats stats;
};

(include/net/sctp/structs.h).
 

The following is a description of some of the important members of the sctp_association structure:

•	 assoc_id: The association unique id. It’s set by the sctp_assoc_set_id() method.

•	 c: The state cookie (sctp_cookie object) that is attached to the association.
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•	 peer: An inner structure representing the peer endpoint of the association. Adding a peer is done 
by the sctp_assoc_add_peer() method; removing a peer is done by the sctp_assoc_rm_peer() 
method. Following is a description of some of the peer structure important members:

•	 transport_addr_list: Represents one or more addresses of the peer. We can add 
addresses to this list or remove addresses from it by using the sctp_connectx() method 
when an association is established.

•	 transport_count: The counter of the peer addresses in the peer address list  
(transport_addr_list).

•	 primary_path: Represents the address to which the initial connection was made  
(INIT <--> INIT_ACK exchange). The association will attempt to always use the primary 
path if it is active.

•	 active_path: The address of the peer that is currently used when sending data.

•	 state: The state that the association is in, like SCTP_STATE_CLOSED or  
SCTP_STATE_ESTABLISHED. Various SCTP states are discussed later in this section.

Adding multiple local addresses to an SCTP association or removing multiple addresses from one can be done, 
for example, with the sctp_bindx() system call, in order to support the multihoming feature mentioned earlier. Every 
SCTP association includes a peer object, which represents the remote endpoint; the peer object includes a list of one 
or more addresses of the remote endpoint (transport_addr_list). We can add one or more addresses to this list 
by calling the sctp_connectx() system call when establishing an association. An SCTP association is created by the 
sctp_association_new() method and initialized by the sctp_association_init() method. At any given moment, 
an SCTP association can be in one of 8 states; thus, for example, when it is created, its state is SCTP_STATE_CLOSED. 
Later on, these states can change; see, for example, the “Setting Up an SCTP Association” section later in this chapter. 
These states are represented by the sctp_state_t enum (include/net/sctp/constants.h).

To send data between two endpoints, an initialization process must be completed. In this process, an 
SCTP association between these two endpoints is set; a cookie mechanism is used to provide protection against 
synchronization attacks. This process is discussed in the following section.

Setting Up an SCTP Association
The initialization process is a 4-way handshake that consists of the following steps:

One endpoint (“A”) sends an INIT chunk to the endpoint it wants to communicate with (“Z”). •	
This chunk will include a locally generated Tag in the Initiate Tag field of the INIT chunk, and 
it will also include a verification tag (vtag in the SCTP header) with a value of 0 (zero).

After sending the INIT chunk, the association enters the SCTP_STATE_COOKIE_WAIT state.•	

The other endpoint (“Z”) sends to “A” an INIT-ACK chunk as a reply. This chunk will include •	
a locally generated Tag in the Initiate Tag field of the INIT-ACK chunk and the remote Initiate 
Tag as the verification tag (vtag in the SCTP header). “Z” should also generate a state cookie 
and send it with the INIT-ACK reply.

When “A” receives the INIT-ACK chunk, it leaves the SCTP_STATE_COOKIE_WAIT state. •	
“A” will use the remote Initiate Tag as the verification tag (vtag in the SCTP header) in all 
transmitted packets from now on. “A” will send the state cookie it received in a COOKIE ECHO 
chunk. “A” will enter the SCTP_STATE_COOKIE_ECHOED state.
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When “Z” receives the COOKIE ECHO chunk, it will build a TCB (Transmission Control •	
Block). The TCB is a data structure containing connection information on either side of an 
SCTP connection. “Z” will further change its state to SCTP_STATE_ESTABLISHED and reply 
with a COOKIE ACK chunk. This is where the association is finally established on “Z” and, at 
this point, this association will use the saved tags.

When “A” receives the COOKIE ACK, it will move from the SCTP_STATE_COOKIE_ECHOED •	
state to the SCTP_STATE_ESTABLISHED state.

Note■■  A n endpoint might respond to an INIT, INIT ACK, or COOKIE ECHO chunk with an ABORT chunk when some 
mandatory parameters are missing, or when receiving invalid parameter values. The cause of the ABORT chunk should be 
specified in the reply.

Now that you have learned about SCTP associations and how they are created, you will see how SCTP packets are 
received with SCTP and how SCTP packets are sent.

Receiving Packets with SCTP
The main handler for receiving SCTP packets is the sctp_rcv() method, which gets an SKB as a single parameter 
(net/sctp/input.c). First some sanity checks are made (size, checksum, and so on). If everything is fine, we proceed 
to check whether this packet is an “Out of the Blue” (OOTB) packet. A packet is an OOTB packet if it is correctly 
formed (that is, no checksum error), but the receiver is not able to identify the SCTP association to which this packet 
belongs. (See section 8.4 in RFC 4960.) The OOTB packets are handled by the sctp_rcv_ootb() method, which 
iterates over all the chunks of the packet and takes an action according to the chunk type, as specified in the RFC. 
Thus, for example, an ABORT chunk is discarded. If this packet is not an OOTB packet, it is put into an SCTP inqueue 
by calling the sctp_inq_push() method and proceeds on its journey with the sctp_assoc_bh_rcv() method or with 
the sctp_endpoint_bh_rcv() method.

Sending Packets with SCTP
Writing to a userspace SCTP socket reaches the sctp_sendmsg() method (net/sctp/socket.c). The packet is passed 
to the lower layers by calling the sctp_primitive_SEND() method, which in turn calls the state machine callback, 
sctp_do_sm() (net/sctp/sm_sideeffect.c), with SCTP_ST_PRIMITIVE_SEND. The next stage is to call  
sctp_side_effects(), and eventually call the sctp_packet_transmit() method.

SCTP HEARTBEAT
The HEARTBEAT mechanism tests the connectivity of a transport or path by exchanging HEARTBEAT and 
HEARTBEAT-ACK SCTP packets. It declares the transport IP address to be down once it reaches the threshold of a 
nonreturned heartbeat acknowledgment. A HEARTBEAT chunk is sent every 30 seconds by default to monitor the 
reachability of an idle destination transport address. This time interval is configurable by setting /proc/sys/net/
sctp/hb_interval. The default is 30000 milliseconds (30 seconds). Sending heartbeat chunks is performed by the 
sctp_sf_sendbeat_8_3() method. The reason for the 8_3 in the method name is that it refers to section 8.3 (Path 
Heartbeat) in RFC 4960. When an endpoint receives a HEARTBEAT chunk, it replies with a HEARTBEAT-ECHO chunk 
if it is in the SCTP_STATE_COOKIE_ECHOED state or the SCTP_STATE_ESTABLISHED state.
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SCTP Multistreaming
Streams are unidirectional data flows within a single association. The number of Outbound Streams and the number 
of Inbound Streams are declared during the association setup (by the INIT chunk), and the streams are valid during 
the entire association lifetime. A userspace application can set the number of streams by creating an sctp_initmsg 
object and initializing its sinit_num_ostreams and sinit_max_instreams, and then calling the setsockopt() method 
with SCTP_INITMSG. Initialization of the number of streams can also be done with the sendmsg() system call. 
This, in turn, sets the corresponding fields in the initmsg object of the sctp_sock object. One of the biggest reasons 
streams were added was to remove the Head-of-Line blocking (HoL Blocking) condition. Head-of-line blocking is a 
performance-limiting phenomenon that occurs when a line of packets is held up by the first packet—for example, in 
multiple requests in HTTP pipelining. When working with SCTP Multistreaming, this problem does not exist because 
each stream is sequenced separately and guaranteed to be delivered in order. Thus, once one of the streams is blocked 
due to loss/congestion, the other streams might not be blocked and data will continue to be delivered. This is due to 
that one stream can be blocked while the other streams are not blocked,

Note■■  R egarding using sockets for SCTP, I should mention the lksctp-tools project (http://lksctp.sourceforge.net/).  
This project provides a Linux userspace library for SCTP (libsctp), including C language header files (netinet/sctp.h), 
for accessing SCTP-specific application programming interfaces not provided by the standard sockets, and also some 
helper utilities around SCTP. I should also mention RFC 6458, “Sockets API Extensions for Stream Control Transmission 
Protocol (SCTP),” which describes a mapping of the Stream Control Transmission Protocol (SCTP) into the sockets API.

SCTP Multihoming
SCTP multihoming refers to having multiple IP addresses on both endpoints. One of the really nice features of SCTP 
is that endpoints are multihomed by default if the local ip address was specified as a wildcard. Also, there has been a 
lot of confusion about the multihoming feature because people expect that simply by binding to multiple addresses, 
the associations will end up being multihomed. This is not true because we implement only destination multihoming. 
In other words, both connected endpoints have to be multihomed for it to have true failover capability. If the local 
association knows about only a single destination address, there will be only one path and thus no multihoming.

With describing SCTP multihoming in this section, the SCTP part of this chapter has ended. In the next section,  
I will describe the DCCP protocol, which is the last transport protocol to be discussed in this chapter.

DCCP: The Datagram Congestion Control Protocol
DCCP is an unreliable, congestion-controlled transport layer protocol and, as such, it borrows from both UDP and 
TCP while adding new features. Like UDP, it is message-oriented and unreliable. Like TCP, it is a connection-oriented 
protocol and it also uses a 3-way handshake to set up the connection. Development of DCCP was helped by ideas 
from academia, through participation of several research institutes, but it has not been tested so far in larger-scale 
Internet setups. The use of DCCP would make sense, for instance, in applications that require minor delays and where 
a small degree of data loss is permitted, like in telephony and in streaming media applications.

Congestion control in DCCP differs from that in TCP in that the congestion-control algorithm (called CCID) can 
be negotiated between endpoints and congestion control can be applied on both the forward and reverse paths of a 
connection (called half-connections in DCCP). Two classes of pluggable congestion control have been specified so 
far. The first type is a rate-based, smooth “TCP-friendly” algorithm (CCID-3, RFC 4342 and 5348), for which there is 
an experimental small-packet variation called CCID-4 (RFC 5622, RFC 4828). The second type of congestion control, 

http://lksctp.sourceforge.net/
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“TCP-like” (RFC 4341) applies a basic TCP congestion-control algorithm with selective acknowledgments (SACK, 
RFC 2018) to DCCP flows. At least one CCID needs to be implemented by endpoints in order to function. The first 
DCCP Linux implementation was released in Linux kernel 2.6.14 (2005). This chapter describes the implementation 
principles of the DCCPv4 (IPv4). Delving into the implementation details of individual DCCP congestion-control 
algorithms is beyond the scope of this book.

Now that I’ve introduced the DCCP protocol in general, I will describe the DCCP header.

DCCP Header
Every DCCP packet starts with a DCCP header. The minimum DCCP header length is 12 bytes. DCCP uses a variable-
length header, which can range from 12 to 1020 bytes, depending on whether short sequence numbers are used and 
which TLV packet options are used. DCCP sequence numbers are incremented for each packet (not per each byte as 
in TCP) and can be shortened from 6 to 3 bytes.
 
struct dccp_hdr {
        __be16  dccph_sport,
                dccph_dport;
        __u8    dccph_doff;
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u8    dccph_cscov:4,
                dccph_ccval:4;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u8    dccph_ccval:4,
                dccph_cscov:4;
#else
#error  "Adjust your <asm/byteorder.h> defines"
#endif
        __sum16 dccph_checksum;
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u8    dccph_x:1,
                dccph_type:4,
                dccph_reserved:3;
#elif defined(__BIG_ENDIAN_BITFIELD)
        __u8    dccph_reserved:3,
                dccph_type:4,
                dccph_x:1;
#else
#error  "Adjust your <asm/byteorder.h> defines"
#endif
        __u8    dccph_seq2;
        __be16  dccph_seq;
};

(include/uapi/linux/dccp.h)
 

The following is a description of the important members of the dccp_hdr structure:

•	 dccph_sport: Source port (16 bit).

•	 dccph_dport: Destination port (16 bit).

•	 dccph_doff: Data offset (8 bits). The size of the DCCP header is in multiples of 4 bytes.
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•	 dccph_cscov: Determines which part of the packet is covered in the checksum. Using partial 
checksumming might improve performance when it is used with applications that can tolerate 
corruption of some low percentage.

•	 dccph_ccval: CCID-specific information from sender to receiver (not always used).

•	 dccph_x: Extended Sequence Numbers bit (1 bit). This flag is set when using 48-bit Extended 
Sequence and Acknowledgment Numbers.

•	 dccph_type: The DCCP header type (4 bits). This can be, for example, DCCP_PKT_DATA for 
a data packet or DCCP_PKT_ACK for an ACK. See Table 11-3, “DCCP packet types,” in the 
“Quick Reference” section at the end of this chapter.

•	 dccph_reserved: Reserved for future use (1 bit).

•	 dccph_checksum: The checksum (16 bit). The Internet checksum of the DCCP header and 
data, computed similarly to UDP and TCP. If partial checksums are used, only the length 
specified by dccph_cscov of the application data is checksummed.

•	 dccph_seq2: Sequence number. This is used when working with Extended Sequence Numbers 
(8 bit).

•	 dccph_seq: Sequence number. It is incremented by 1 for each packet (16 bit).

Note■■   DCCP sequence numbers depend on dccph_x. (For details, refer to the dccp_hdr_seq() method,  
include/linux/dccp.h).

Figure 11-4 shows a DCCP header. The dccph_x flag is set, so we use 48-bit Extended Sequence numbers.

Figure 11-4.  DCCP header (the Extended Sequence Numbers bit is set, dccph_x=1)
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DCCP Initialization
DCCP initialization happens much like in TCP and UDP. Considering the DCCPv4 case (net/dccp/ipv4.c), first a 
proto object is defined (dccp_v4_prot) and its DCCP specific callbacks are set; we also define a net_protocol object 
(dccp_v4_protocol) and initialize it:
 
static struct proto dccp_v4_prot = {
         .name                   = "DCCP",
         .owner                  = THIS_MODULE,
         .close                  = dccp_close,
         .connect                = dccp_v4_connect,
         .disconnect             = dccp_disconnect,
         .ioctl                  = dccp_ioctl,
         .init                   = dccp_v4_init_sock,
         . . .
         .sendmsg                = dccp_sendmsg,
         .recvmsg                = dccp_recvmsg,
         . . .
 
}
 
(net/dccp/ipv4.c)
 
   
static const struct net_protocol dccp_v4_protocol = {
        .handler        = dccp_v4_rcv,
        .err_handler    = dccp_v4_err,
        .no_policy      = 1,
        .netns_ok       = 1,
};

(net/dccp/ipv4.c)
 

Figure 11-5.  DCCP header (the Extended Sequence Numbers bit is not set, dccph_x=0)

Figure 11-5 shows a DCCP header. The dccph_x flag is not set, so we use 24-bit Sequence numbers.
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We register the dccp_v4_prot object and the dccp_v4_protocol object in the dccp_v4_init() method:
 
static int __init dccp_v4_init(void)
{
         int err = proto_register(&dccp_v4_prot, 1);
  
         if (err != 0)
                 goto out;
  
         err = inet_add_protocol(&dccp_v4_protocol, IPPROTO_DCCP);
         if (err != 0)
                 goto out_proto_unregister;
(net/dccp/ipv4.c)
 

DCCP Socket Initialization
Socket creation in DCCP from userspace uses the socket() system call, where the domain argument (SOCK_DCCP) 
indicates that a DCCP socket is to be created. Within the kernel, this causes DCCP socket initialization via the  
dccp_v4_init_sock() callback, which relies on the dccp_init_sock() method to perform the actual work:
 
static int dccp_v4_init_sock(struct sock *sk)
{
        static __u8 dccp_v4_ctl_sock_initialized;
        int err = dccp_init_sock(sk, dccp_v4_ctl_sock_initialized);
 
        if (err == 0) {
                if (unlikely(!dccp_v4_ctl_sock_initialized))
                        dccp_v4_ctl_sock_initialized = 1;
                inet_csk(sk)->icsk_af_ops = &dccp_ipv4_af_ops;
        }
 
        return err;
}

(net/dccp/ipv4.c)
 

The most important tasks of the dccp_init_sock() method are these:

Initialization of the DCCP socket fields with sane default values (for example, the socket state •	
is set to be DCCP_CLOSED)

Initialization of the DCCP timers (via the •	 dccp_init_xmit_timers() method)

Initialization of the feature-negotiation part via calling the •	 dccp_feat_init() method. 
Feature negotiation is a distinguishing feature of DCCP by which endpoints can mutually 
agree on properties of each side of the connection. It extends TCP feature negotiation and is 
described further in RFC 4340, sec. 6.
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Receiving Packets from the Network Layer (L3) with DCCP
The main handler for receiving DCCP packets from the network layer (L3) is the dccp_v4_rcv () method:
 
static int dccp_v4_rcv(struct sk_buff *skb)
{
        const struct dccp_hdr *dh;
        const struct iphdr *iph;
        struct sock *sk;
        int min_cov;
 

First we discard invalid packets. For example, if the packet is not for this host (the packet type is not  
PACKET_HOST), or if the packet size is shorter than the DCCP header (which is 12 bytes):
 
        if (dccp_invalid_packet(skb))
                  goto discard_it;
 

Then we perform a lookup according to the flow:
 
        sk = __inet_lookup_skb(&dccp_hashinfo, skb,
                               dh->dccph_sport, dh->dccph_dport);
 

If no socket was found, the packet is dropped:
 
        if (sk == NULL) {
               . . .
               goto no_dccp_socket;
        }
 

We make some more checks relating to Minimum Checksum Coverage, and if everything is fine, we proceed to 
the generic sk_receive_skb() method to pass the packet to the transport layer (L4). Note that the dccp_v4_rcv() 
method is very similar in structure and function to the tcp_v4_rcv() method. This is because the original author of 
DCCP in Linux, Arnaldo Carvalho de Melo, has worked quite hard to make the similarities between TCP and DCCP 
obvious and clear in the code.
 
         . . .
         return sk_receive_skb(sk, skb, 1);
         }

(net/dccp/ipv4.c)
 

Sending Packets with DCCP
Sending data from a DCCP userspace socket is eventually handled by the dccp_sendmsg() method in the kernel  
(net/dccp/proto.c). This parallels the TCP case, where the tcp_sendmsg() kernel method handles sending data from 
a TCP userspace socket. Let’s take a look at the dccp_sendmsg() method:
 
int dccp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
                  size_t len)
{
         const struct dccp_sock *dp = dccp_sk(sk);
         const int flags = msg->msg_flags;
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        const int noblock = flags & MSG_DONTWAIT;
        struct sk_buff *skb;
        int rc, size;
        long timeo;
 

Allocate an SKB:
 
        skb = sock_alloc_send_skb(sk, size, noblock, &rc);
        lock_sock(sk);
        if (skb == NULL)
                goto out_release;
  
        skb_reserve(skb, sk->sk_prot->max_header);
 

Copy the data blocks from the msghdr object to the SKB:
 
        rc = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len);
        if (rc != 0)
                goto out_discard;
 
        if (!timer_pending(&dp->dccps_xmit_timer))
                dccp_write_xmit(sk);
 

Depending upon the type of congestion control (window-based or rate-based) chosen for the connection, the  
dccp_write_xmit() method will cause a packet to be sent later (via dccps_xmit_timer() expiry) or passed on for 
immediate sending by the dccp_xmit_packet() method. This, in turn, relies on the dccp_transmit_skb() method to 
initialize the outgoing DCCP header and pass it to the L3-specific queue_xmit sending callback (using the ip_queue_xmit() 
method for IPv4, and the inet6_csk_xmit() method for IPv6). I will conclude our discussion about DCCP with a short 
section about DCCP and NAT.

DCCP and NAT
Some NAT devices do not let DCCP through (usually because their firmware is typically small, and hence does not 
support “exotic” IP protocols such as DCCP). RFC 5597 (September 2009) has suggested behavioral requirements for 
NATs to support NAT-ed DCCP communications. However, it is not clear to what extent the recommendations are put 
into consumer devices. One of the motivations for DCCP-UDP was the absence of NAT devices that would let DCCP 
through (RFC 6773, sec. 1). There is a detail that might be interesting in the comparison with TCP. The latter, by default, 
supports simultaneous open (RFC 793, section 3.4), whereas the initial specification of DCCP in RFC 4340, section 4.6 
disallowed the use of simultaneous-open. To support NAPT traversal, RFC 5596 updated RFC 4340 in September 2009 
with a “near simultaneous open” technique, which added one packet type (DCCP-LISTEN, RFC 5596, section 2.2.1) 
to the list and changed the state machine to support two more states (2.2.2) to support near-simultaneous open. The 
motivation was a NAT “hole punching” technique, which would require, however, that NATs with DCCP existed 
(same problem as above). As a result of this chicken-and-egg problem, DCCP has not seen much exposure over 
the Internet. Perhaps the UDP encapsulation will change that. But then it would no longer really be considered as a 
transport layer protocol.
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Summary
This chapter discussed four transport protocols: UDP and TCP, which are the most commonly used, and SCTP 
and DCCP, which are newer protocols. You learned the basic differences between these protocols. You learned 
that TCP is a much more complex protocol than UDP, as its uses a state machine and several timers and requires 
acknowledgments. You learned about the header of each of these protocols and about sending and receiving packets 
with these protocols. I discussed some unique features of the SCTP protocol, like multihoming and multistreaming.

The next chapter will deal with the Wireless subsystem and its implementation in Linux. In the “Quick Reference” 
section that follows, I will cover the top methods related to the topics discussed in this chapter, ordered by their 
context, and also I will present the two tables that were mentioned in this chapter.

Quick Reference
I will conclude this chapter with a short list of important methods of sockets and transport-layer protocols that we 
discussed in this chapter. Some of them were mentioned in this chapter. Afterward, there is one macro and three tables.

Methods
Here are the methods.

int ip_cmsg_send(struct net *net, struct msghdr *msg, struct ipcm_cookie *ipc);
This method builds an ipcm_cookie object by parsing the specified msghdr object.

void sock_put(struct sock *sk);
This method decrements the reference count of the specified sock object.

void sock_hold(struct sock *sk);
This method increments the reference count of the specified sock object.

int sock_create(int family, int type, int protocol, struct socket **res);
This method performs some sanity checks, and if everything is fine, it allocates a socket by calling the sock_alloc() 
method, and then calling net_families[family]->create. (In the case of IPv4, it is the inet_create() method.)

int sock_map_fd(struct socket *sock, int flags);
This method allocates a file descriptor and fills in the file entry.

bool sock_flag(const struct sock *sk, enum sock_flags flag);
This method returns true if the specified flag is set in the specified sock object.
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int tcp_v4_rcv(struct sk_buff *skb);
This method is the main handler to process incoming TCP packets arriving from the network layer (L3).

void tcp_init_sock(struct sock *sk);
This method performs address-family independent socket initializations.

struct tcphdr *tcp_hdr(const struct sk_buff *skb);
This method returns the TCP header associated with the specified skb.

int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t size);
This method handles sending TCP packets that are sent from userspace.

struct tcp_sock *tcp_sk(const struct sock *sk);
This method returns the tcp_sock object associated with the specified sock object (sk).

int udp_rcv(struct sk_buff *skb);
This method is the main handler to process incoming UDP packets arriving from the network layer (L3).

struct udphdr *udp_hdr(const struct sk_buff *skb);
This method returns the UDP header associated with the specified skb.

int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len);
This method handles UDP packets that are sent from the userspace.

struct sctphdr *sctp_hdr(const struct sk_buff *skb);
This method returns the SCTP header associated with the specified skb.

struct sctp_sock *sctp_sk(const struct sock *sk);
This method returns the SCTP socket (sctp_sock object) associated with the specified sock object.

int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,  
size_t msg_len);
This method handles SCTP packets that are sent from userspace.
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struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 
const struct sock *sk, sctp_scope_t scope, gfp_t gfp);
This method allocates and initializes a new SCTP association.

void sctp_association_free(struct sctp_association *asoc);
This method frees the resources of an SCTP association.

void sctp_chunk_hold(struct sctp_chunk *ch);
This method increments the reference count of the specified SCTP chunk.

void sctp_chunk_put(struct sctp_chunk *ch);
This method decrements the reference count of the specified SCTP chunk. If the reference count reaches 0, it frees it 
by calling the sctp_chunk_destroy() method.

int sctp_rcv(struct sk_buff *skb);
This method is the main input handler for input SCTP packets.

static int dccp_v4_rcv(struct sk_buff *skb);
This method is the main Rx handler for processing incoming DCCP packets that arrive from the network layer (L3).

int dccp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,  
size_t len);
This method handles DCCP packets that are sent from the userspace.

Macros
And here is the macro.

sctp_chunk_is_data( )
This macro returns 1 if the specified chunk is a data chunk; otherwise, it returns 0.

Tables
Take a look at the tables used in this chapter.



Chapter 11 ■ Layer 4 Protocols

343

Table 11-1.  TCP and UDP prot_ops objects

prot_ops callback TCP UDP

release inet_release inet_release

bind inet_bind inet_bind

connect inet_stream_connect inet_dgram_connect

socketpair sock_no_socketpair sock_no_socketpair

accept inet_accept sock_no_accept

getname inet_getname inet_getname

poll tcp_poll udp_poll

ioctl inet_ioctl inet_ioctl

listen inet_listen sock_no_listen

shutdown inet_shutdown inet_shutdown

setsockopt sock_common_setsockopt sock_common_setsockopt

getsockopt sock_common_getsockopt sock_common_getsockopt

sendmsg inet_sendmsg inet_sendmsg

recvmsg inet_recvmsg inet_recvmsg

mmap sock_no_mmap sock_no_mmap

sendpage inet_sendpage inet_sendpage

splice_read tcp_splice_read -

compat_setsockopt compat_sock_common_setsockopt compat_sock_common_setsockopt

compat_getsockopt compat_sock_common_getsockopt compat_sock_common_getsockopt

compat_ioctl inet_compat_ioctl inet_compat_ioctl

Table 11-2.  Chunk types

Chunk Type Linux Symbol Value

Payload Data SCTP_CID_DATA 0

Initiation SCTP_CID_INIT 1

Initiation Acknowledgment SCTP_CID_INIT_ACK 2

Selective Acknowledgment SCTP_CID_SACK 3

Heartbeat Request SCTP_CID_HEARTBEAT 4

(continued)

Note■■  S ee the inet_stream_ops and the inet_dgram_ops definitions in net/ipv4/af_inet.c.
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Table 11-3.  DCCP packet types

Linux Symbol Description

DCCP_PKT_REQUEST Sent by the client to initiate a connection (the first part of the three-way initiation 
handshake).

DCCP_PKT_RESPONSE Sent by the server in response to a DCCP-Request (the second part of the three-way 
initiation handshake).

DCCP_PKT_DATA Used to transmit application data.

DCCP_PKT_ACK Used to transmit pure acknowledgments.

DCCP_PKT_DATAACK Used to transmit application data with piggybacked acknowledgment information.

DCCP_PKT_CLOSEREQ Sent by the server to request that the client close the connection.

DCCP_PKT_CLOSE Used by the client or the server to close the connection; elicits a DCCP-Reset packet 
in response.

DCCP_PKT_RESET Used to terminate the connection, either normally or abnormally.

DCCP_PKT_SYNC Used to resynchronize sequence numbers after large bursts of packet loss.

DCCP_PKT_SYNCACK Acknowledge a DCCP_PKT_SYNC.

Chunk Type Linux Symbol Value

Heartbeat Acknowledgment SCTP_CID_HEARTBEAT_ACK 5

Abort SCTP_CID_ABORT 6

Shutdown SCTP_CID_SHUTDOWN 7

Shutdown Acknowledgment SCTP_CID_SHUTDOWN_ACK 8

Operation Error SCTP_CID_ERROR 9

State Cookie SCTP_CID_COOKIE_ECHO 10

Cookie Acknowledgment SCTP_CID_COOKIE_ACK 11

Explicit Congestion Notification Echo (ECNE) SCTP_CID_ECN_ECNE 12

Congestion Window Reduced (CWR) SCTP_CID_ECN_CWR 13

Shutdown Complete SCTP_CID_SHUTDOWN_COMPLETE 14

SCTP Authentication Chunk (RFC 4895) SCTP_CID_AUTH 0x0F

Transmission Sequence Numbers SCTP_CID_FWD_TSN 0xC0

Address Configuration Change Chunk SCTP_CID_ASCONF 0xC1

Address Configuration Acknowledgment Chunk SCTP_CID_ASCONF_ACK 0x80

Table 11-2.  (continued)
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Chapter 12

Wireless in Linux 

Chapter 11 deals with Layer 4 protocols, which enable us to communicate with userspace. This chapter deals with 
the wireless stack in the Linux kernel. I describe the Linux wireless stack (mac80211 subsystem) and discuss some 
implementation details of important mechanisms in it, such as packet aggregation and block acknowledgement, 
used in IEEE 802.11n, and power save mode. Becoming familiar with the 802.11 MAC header is essential in order 
to understand the wireless subsystem implementation. The 802.11 MAC header, its members, and their usage 
are described in depth in this chapter. I also discuss some common wireless topologies, like infrastructure BSS, 
independent BSS, and Mesh networking.

Mac80211 Subsystem
At the end of the 1990s, there were discussions in IEEE regarding a protocol for wireless local area networks (WLANS). 
The original version of the IEEE 802.11 spec for WLANS was released in 1997 and revised in 1999. In the following 
years, some extensions were added, formally termed 802.11 amendments. These extensions can be divided into 
PHY (Physical) layer extensions, MAC (Medium Access Control) layer extensions, Regulatory extensions, and others. 
PHY layer extensions are, for example, 802.11b from 1999, 802.11a (also from 1999), and 802.11g from 2003. MAC 
layer extensions are, for example, 802.11e for QoS and 802.11s for Mesh networking. The “Mesh Networking” section 
of this chapter deals with the Linux kernel implementation of the IEEE802.11s amendment. The IEEE802.11 spec 
was revised, and in 2007 a second version of 1,232 pages was released. In 2012, a spec of 2,793 pages was released, 
available from http://standards.ieee.org/findstds/standard/802.11-2012.html. I refer to this spec as IEEE 
802.11-2012 in this chapter. Following is a partial list of important 802.11 amendments: 

•	 IEEE 802.11d: International (country-to-country) roaming extensions (2001).

•	 IEEE 802.11e: Enhancements: QoS, including packet bursting (2005).

•	 IEEE 802.11h: Spectrum Managed 802.11a for European compatibility (2004).

•	 IEEE 802.11i: Enhanced security (2004).

•	 IEEE 802.11j: Extensions for Japan (2004).

•	 IEEE 802.11k: Radio resource measurement enhancements (2008).

•	 IEEE 802.11n: Higher throughput improvements using MIMO (multiple input, multiple output 
antennas) (2009).

•	 IEEE 802.11p: WAVE: Wireless Access for the Vehicular Environment (such as ambulances 
and passenger cars). It has some peculiarities such as not using the BSS concept and narrower 
(5/10 MHz) channels. Note that IEEE 802.11p isn’t supported in Linux as of this writing.

•	 IEEE 802.11v: Wireless network management.

http://standards.ieee.org/findstds/standard/802.11-2012.html
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•	 IEEE 802.11w: Protected Management Frames.

•	 IEEE 802.11y: 3650–3700 MHz operation in the U.S. (2008)

•	 IEEE 802.11z: Extensions to Direct Link Setup (DLS) (Aug 2007–Dec 2011).

It was only in about 2001, about four years after the IEEE 802.11 first spec was approved, that laptops became 
very popular; many of these laptops were sold with wireless network interfaces. Today every laptop includes WiFi as 
standard equipment. It was important to the Linux community at that time to provide Linux drivers to these wireless 
network interfaces and to provide a Linux network wireless stack, in order to stay competitive with other OSes (such 
as Windows, Mac OS, and others). Less effort has been done regarding architecture and design. “They just want their 
hardware to work,” as Jeff Garzik, the Linux Kernel Wireless maintainer at that time, put it. When the first wireless 
drivers for Linux were developed, there was no general wireless API. As a result, there were many cases of duplication 
of code between drivers, when developers implemented their drivers from scratch. Some drivers were based on 
FullMAC, which means that most of the management layer (MLME) is managed in hardware. In the years since, a 
new 802.11 wireless stack called mac80211 was developed. It was integrated into the Linux kernel in July 2007, for the 
2.6.22 Linux kernel. The mac80211 stack is based on the d80211 stack, which is an open source, GPL-licensed stack by 
a company named Devicescape.

I cannot delve into the details of the PHY layer, because that subject is very wide and deserves a book of its own. 
However, I must note that there are many differences between 802.11 and 802.3 wired Ethernet. Here are two major 
differences:

Ethernet works with CSMA/CD, whereas 802.11 works with CSMA/CA. CSMA/CA stands for •	
carrier sense multiple access/collision avoidance, and CSMA/CD stands for carrier sense 
multiple access/collision detection. The difference, as you might guess, is the collision detection. 
With Ethernet, a station starts to transmit when the medium is idle; if a collision is detected 
during transmission, it stops, and a random backoff period starts. Wireless stations cannot detect 
collisions while transmitting, whereas wired stations can. With CSMA/CA, the wireless station 
waits for a free medium and only then transmits the frame. In case of a collision, the station 
will not notice it, but because no acknowledgment frame should be sent for this packet, it is 
retransmitted after a timeout has elapsed if an acknowledgment is not received.

Wireless traffic is sensitive to interferences. As a result, the 802.11 spec requires that every •	
frame, except for broadcast and multicast, be acknowledged when it is received. Packets that 
are not acknowledged in time should be retransmitted. Note that since IEEE 802.11e, there is 
a mode which does not require acknowledgement—the QoSNoAck mode—but it’s rarely used 
in practice.

The 802.11 MAC Header 
Each MAC frame consists of a MAC header, a frame body of variable length, and an FCS (Frame Check Sequence) of 
32 bit CRC. Figure 12-1 shows the 802.11 header.

Figure 12-1.  IEEE 802.11 header. Note that all members are not always used, as this section will shortly explain
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The 802.11 header is represented in mac80211 by the ieee80211_hdr structure: 
 
struct ieee80211_hdr {
        __le16 frame_control;
        __le16 duration_id;
        u8 addr1[6];
        u8 addr2[6];
        u8 addr3[6];
        __le16 seq_ctrl;
        u8 addr4[6];
} __packed;
 
(include/linux/ieee80211.h)

In contrast to an Ethernet header (struct ethhdr), which contains only three fields (source MAC address, 
destination MAC address, and Ethertype), the 802.11 header contains up to six addresses and some other fields. For 
a typical data frame, though, only three addresses are used (for example, Access Point or AP/client communication). 
With an ACK frame, only the receiver address is used. Note that Figure 12-1 shows only four addresses, but when 
working with Mesh networking, a Mesh extension header with two additional addresses is used.

I now turn to a description of the 802.11 header fields, starting with the first field in the 802.11 header, called the 
frame control. This is an important field, and in many cases its contents determine the meaning of other fields of  
the 802.11 MAC header (especially addresses).

The Frame Control
The frame control length is 16 bits. Figure 12-2 shows its fields and the size of each field.

Figure 12-2.  Frame control fields

The following is a description of the frame control members:

•	 Protocol version: The version of the MAC 802.11 we use. Currently there is only one version 
of MAC, so this field is always 0.

•	 Type: There are three types of packets in 802.11—management, control, and data:

Management packets (IEEE80211_FTYPE_MGMT) are for management actions like •	
association, authentication, scanning, and more.

Control packets (IEEE80211_FTYPE_CTL) usually have some relevance to data packets; •	
for example, a PS-Poll packet is for retrieving packets from an AP buffer. Another example: 
a station that wants to transmit first sends a control packet named RTS (request to send); 
if the medium is free, the destination station will send back a control packet named CTS 
(clear to send).

Data packets (IEEE80211_FTYPE_DATA) are the raw data packets. Null packets are a special •	
case of raw packets, carrying no data and used mostly for power management control 
purposes. I discuss null packets in the “Power Save Mode” section later in this chapter.
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•	 Subtype: For all the aforementioned three types of packets (management, control, and data), 
there is a sub-type field which identifies the character of the packet used. For example:

A value of 0100 for the sub-type field in a management frame denotes that the packet is a •	
Probe Request (IEEE80211_STYPE_PROBE_REQ) management packet, which is used in a 
scan operation.

A value of 1011 for the sub-type field in a control packet denotes that this is a request to •	
send (IEEE80211_STYPE_RTS) control packet. A value of 0100 for the sub-type field of 
a data packet denotes that this is a null data (IEEE80211_STYPE_NULLFUNC) packet, 
which is used for power management control.

A value of 1000 (IEEE80211_STYPE_QOS_DATA) for the sub-type of a data packet means •	
that this is a QoS data packet; this sub-type was added by the IEEE802.11e amendment, 
which dealt with QoS enhancements.

•	 ToDS: When this bit is set, it means the packet is for the distribution system.

•	 FromDS: When this bit is set, it means the packet is from the distribution system.

•	 More Frag: When you use fragmentation, this bit is set to 1.

•	 Retry: When a packet is retransmitted, this bit is set to 1. A typical case of retransmission 
is when a packet that was sent did not receive an acknowledgment in time. The 
acknowledgments are usually sent by the firmware of the wireless driver.

•	 Pwr Mgmt: When the power management bit is set, it means that the station will enter power 
save mode. I discuss power save mode in the “Power Save Mode” section later in this chapter.

•	 More Data: When an AP sends packets that it buffered for a sleeping station, it sets the More 
Data bit to 1 when the buffer is not empty. Thus the station knows that there are more packets 
it should retrieve. When the buffer has been emptied, this bit is set to 0.

•	 Protected Frame: This bit is set to 1 when the frame body is encrypted; only data frames and 
authentication frames can be encrypted.

•	 Order: With the MAC service called strict ordering, the order of frames is important. When this 
service is in use, the order bit is set to 1. It is rarely used.

Note■■  T he action frame (IEEE80211_STYPE_ACTION) was introduced with the 802.11h amendment, which dealt with 
spectrum and transmit power management. However, because of a lack of space for management packets sub-types,  
action frames are used also in various newer amendments to the standard—for example, HT action frames in 802.11n.

The Other 802.11 MAC Header Members
The following describes the other members of the mac802.11 header, after the frame control:

•	 Duration/ID: The duration holds values for the Network Allocation Vector (NAV) in 
microseconds, and it consists of 15 bits of the Duration/ID field. The sixteenth field is 0.  
When working in power save mode, it is the AID (association id) of a station for PS-Poll frames 
(see 8.2.4.2 (a) in IEEE 802.11-2012). The Network Allocation Vector (NAV) is a virtual carrier 
sensing mechanism. I do not delve into NAV internals because that is beyond the scope of  
this chapter.
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•	 Sequence Control: This is a 2-byte field specifying the sequence control. In 802.11, it is possible 
that a packet will be received more than once, most commonly when an acknowledgment is not 
received for some reason. The sequence control field consists of a fragment number (4 bits) and 
a sequence number (12 bits). The sequence number is generated by the transmitting station, in 
the ieee80211_tx_h_sequence() method. In the case of a duplicate frame in a retransmission, 
it is dropped, and a counter of the dropped duplicate frames (dot11FrameDuplicateCount) is 
incremented by 1; this is done in the ieee80211_rx_h_check() method. The Sequence Control 
field is not present in control packets.

•	 Address1 – Address4: There are four addresses, but you don’t always use all of them. Address 
1 is the Receive Address (RA), and is used in all packets. Address 2 is the Transmit Address 
(TA), and it exists in all packets except ACK and CTS packets. Address 3 is used only for 
management and data packets. Address 4 is used when ToDS and FromDS bits of the frame 
control are set; this happens when operating in a Wireless Distribution System.

•	 QoS Control: The QoS control field was added by the 802.11e amendment and is only 
present in QoS data packets. Because it is not part of the original 802.11 spec, it is not part 
of the original mac80211 implementation, so it is not a member of the IEEE802.11 header 
(ieee80211_hdr struct). In fact, it was added at the end of the IEEE802.11 header and 
can be accessed by the ieee80211_get_qos_ctl() method. The QoS control field includes 
the tid (Traffic Identification), the ACK Policy, and a field called A-MSDU present, which 
tells whether an A-MSDU is present. I discuss A-MSDU later in this chapter, in the “High 
Throughput (ieee802.11n)” section.

HT Control Field: HT (high throughput) control field was added by the 802.11n amendment •	
(see 7.1.3.5(a) of the 802.11n-2009 spec).

This section covered the 802.11 MAC header, with a description of its members and their use. Becoming familiar 
with the 802.11 MAC header is essential for understanding the mac802.11 stack.

Network Topologies 
There are two popular network topologies in 802.11 wireless networks. The first topology I discuss is Infrastructure 
BSS mode, which is the most popular. You encounter Infrastructure BSS wireless networks in home wireless networks 
and offices. Later I discuss the IBSS (Ad Hoc) mode. Note that IBSS is not Infrastructure BSS; IBSS is Independent BSS, 
which is an ad hoc network, discussed later in this section.

Infrastructure BSS
When working in Infrastructure BSS mode, there is a central device, called an Access Point (AP), and some client 
stations. Together they form a BSS (Basic Service Set). These client stations must first perform association and 
authentication against the AP to be able to transmit packets via the AP. On many occasions, client stations perform 
scanning prior to authentication and association, in order to get details about the AP. Association is exclusive: a client 
can be associated with only one AP in a given moment. When a client associates with an AP successfully, it gets an 
AID (association id), which is a unique number (to this BSS) in the range 1–2007. An AP is in fact a wireless network 
device with some hardware additions (like Ethernet ports, LEDs, a button to reset to manufacturer defaults, and 
more). A management daemon runs on the AP device. An example of such software is the hostapd daemon. This 
software handles some of the management tasks of the MLME layer, such as authentication and association requests. 
It achieves this by registering itself to receive the relevant management frames via nl80211. The hostapd project is an 
open source project which enables several wireless network devices to operate as an AP.
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Clients can communicate with other clients (or to stations in a different network which is bridged to the AP) 
by sending packets to the AP, which are relayed by the AP to their final destination. To cover a large area, you can 
deploy multiple APs and connect them by wire. This type of deployment is called Extended Service Set (ESS). Within 
ESS deployment, there are two or more BSSs. Multicasts and broadcasts sent in one BSS, which may arrive on a 
nearby BSS, are rejected in the nearby BSS stations (the bssid in the 802.11 header does not match). Within such a 
deployment, each AP usually uses a different channel to minimize interference.

IBSS, or Ad Hoc Mode 
IBSS network is often formed without preplanning, for only as long as the WLAN is needed. An IBSS network is also 
called ad hoc network. Creating an IBSS is a simple procedure. You can set an IBSS by running from a command line 
this iw command (note that the 2412 parameter is for using channel 1):
 
iw wlan0 ibss join AdHocNetworkName 2412
 

Or when using the iwconfig tool, with these two commands:
 
iwconfig wlan0 mode ad-hoc
iwconfig wlan0 essid AdHocNetworkrName
 

This triggers IBSS creation by calling the ieee80211_sta_create_ibss() method (net/mac80211/ibss.c). Then 
the ssid (AdHocNetworkName in this case) has to be distributed manually (or otherwise) to everyone who wants to 
connect to the ad hoc network. When working with IBSS, you do not have an AP. The bssid of the IBSS is a random 
48-bit address (based on calling the get_random_bytes() method). Power management in Ad Hoc mode is a bit 
more complex than power management in Infrastructure BSS; it uses Announcement Traffic Indication Map (ATIM) 
messages. ATIM is not supported by mac802.11 and is not discussed in this chapter.

The next section describes power save mode, which is one of the most important mechanisms of the mac80211 
network stack.

Power Save Mode
Apart from relaying packets, there is another important function for the AP: buffering packets for client stations 
that enter power save mode. Clients are usually battery-powered devices. From time to time, the wireless network 
interface enters power save mode.

Entering Power Save Mode
When a client station enters power save mode, it informs the AP about it by sending usually a null data packet. In fact, 
technically speaking, it does not have to be a null data packet; it is enough that it is a packet with PM=1 (PM is the 
Power Management flag in the frame control). An AP that gets such a null packet starts keeping unicast packets which 
are destined to that station in a special buffer called ps_tx_buf; there is such a buffer for every station. This buffer is in 
fact a linked list of packets, and it can hold up to 128 packets (STA_MAX_TX_BUFFER) for each station. If the buffer is 
filled, it will start discarding the packets that were received first (FIFO). Apart from this, there is a single buffer called 
bc_buf, for multicast and broadcast packets (in the 802.11 stack, multicast packets should be received and processed 
by all the stations in the same BSS). The bc_buf buffer can also hold up to 128 packets (AP_MAX_BC_BUFFER). When 
a wireless network interface is in power save mode, it cannot receive or send packets.
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Exiting Power Save Mode
From time to time, an associated station is awakened by itself (by some timer); it then checks for special management 
packets, called beacons, which the AP sends periodically. Typically, an AP sends 10 beacons in a second; on most APs, 
this is a configurable parameter. These beacons contain data in information elements, which constitute the data in 
the management packet. The station that awoke checks a specific information element called TIM (Traffic Indication 
Map), by calling the ieee80211_check_tim() method (include/linux/ieee80211.h). The TIM is an array of 2008 
entries. Because the TIM size is 251 bytes (2008 bits), you are allowed to send a partial virtual bitmap, which is smaller 
in size. If the entry in the TIM for that station is set, it means that the AP saved unicast packets for this station, so that 
station should empty the buffer of packets that the AP kept for it. The station starts sending null packets (or, more 
rarely, special control packets, called PS-Poll packets) to retrieve these buffered packets from the AP. Usually after the 
buffer has been emptied, the station goes to sleep (however, this is not mandatory according to the spec).

Handling the Multicast/Broadcast Buffer
The AP buffers multicast and broadcast packets whenever at least one station is in sleeping mode. The AID for 
multicast/broadcast stations is 0; so, in such a case, you set TIM[0] to true. The Delivery Team (DTIM), which is a 
special type of TIM, is sent not in every beacon, but once for a predefined number of beacon intervals (the DTIM 
period). After a DTIM is sent, the AP sends its buffered broadcast and multicast packets. You retrieve packets from the 
multicast/broadcast buffer (bc_buf) by calling the ieee80211_get_buffered_bc() method. In Figure 12-3 you can see 
an AP that contains a linked list of stations (sta_info objects), each of them with a unicast buffer (ps_tx_buf) of its 
own, and a single bc_buf buffer, for storing multicast and broadcast packets.

The AP is implemented as an ieee80211_if_ap object in mac80211. Each such ieee80211_if_ap object has 
a member called ps (an instance of ps_data), where power save data is stored. One of the members of the ps_data 
structure is the broadcast/multicast buffer, bc_buf.

Figure 12-3.  Buffering packets in an AP
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In Figure 12-4 you can see a flow of PS-Poll packets that a client sends in order to retrieve packets from the AP 
unicast buffer, ps_tx_buf. Note that the AP sends all the packets with the IEEE80211_FCTL_MOREDATA flag, except 
for the last one. Thus, the client knows that it should keep on sending PS-Poll packets until the buffer is emptied. For 
the sake of simplicity, the ACK traffic in this diagram is not included, but it should be mentioned here that the packets 
should be acknowledged.

Note■■   Power management and power save mode are two different topics. Power management deals with handling 
machines that perform suspend (whether it is suspend to RAM or suspend to disk, aka hibernate, or in some cases, both 
suspend to RAM and suspend to disk, aka hybrid suspend), and is handled in net/mac80211/pm.c. In the drivers, power 
management is handled by the resume/suspend methods. Power save mode, on the other hand, deals with handling  
stations that enter sleep mode and wake up; it has nothing to do with suspend and hibernation.

This section described power save mode and the buffering mechanism. The next section discusses the 
management layer and the different tasks it handles.

Figure 12-4.  Sending PSPOLL packets from a client to retrieve packets from the ps_tx_buf buffer within an AP
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The Management Layer (MLME) 
There are three components in the 802.11 management architecture:

The Physical Layer Management Entity (PLME).•	

The System Management Entity (SME).•	

The MAC Layer Management Entity (MLME).•	

Scanning
There are two types of scanning: passive scanning and active scanning. Passive scanning means to listen passively 
for beacons, without transmitting any packets for scanning. When performing passive scanning (the flags of the scan 
channel contain IEEE80211_CHAN_PASSIVE_SCAN), the station moves from channel to channel, trying to receive 
beacons. Passive scanning is needed in some higher 802.11a frequency bands, because you’re not allowed to transmit 
anything at all until you’ve heard an AP beacon. With active scanning, each station sends a Probe Request packet; this 
is a management packet, with sub-type Probe Request (IEEE80211_STYPE_PROBE_REQ). Also with active scanning, 
the station moves from channel to channel, sending a Probe Request management packet on each channel (by calling 
the ieee80211_send_probe_req() method). This is done by calling the ieee80211_request_scan() method. Changing 
channels is done via a call to the ieee80211_hw_config() method, passing IEEE80211_CONF_CHANGE_CHANNEL 
as a parameter. Note that there is a one-to-one correspondence between a channel in which a station operates and the 
frequency in which it operates; the ieee80211_channel_to_frequency() method (net/wireless/util.c) returns the 
frequency in which a station operates, given its channel.

Authentication
Authentication is done by calling the ieee80211_send_auth() method (net/mac80211/util.c). It sends a 
management frame with authentication sub-type (IEEE80211_STYPE_AUTH). There are many authentications types; 
the original IEEE802.11 spec talked about only two forms: open-system authentication and shared key authentication. 
The only mandatory authentication method required by the IEEE802.11 spec is the open-system authentication 
(WLAN_AUTH_OPEN). This is a very simple authentication algorithm—in fact, it is a null authentication algorithm. 
Any client that requests authentication with this algorithm will become authenticated. An example of another option 
for an authentication algorithm is the shared key authentication (WLAN_AUTH_SHARED_KEY). In shared key 
authentication, the station should authenticate using a Wired Equivalent Privacy (WEP) key.

Association
In order to associate, a station sends a management frame with association sub-type (IEEE80211_STYPE_ASSOC_REQ).  
Association is done by calling the ieee80211_send_assoc() method (net/mac80211/mlme.c).

Reassociation
When a station moves between APs within an ESS, it is said to be roaming. The roaming station sends a reassociation 
request to a new AP by sending a management frame with reassociation sub-type (IEEE80211_STYPE_REASSOC_REQ).  
Reassociation is done by calling the ieee80211_send_assoc() method; there are many similarities between 
association and reassociation, so this method handles both. In addition, with reassociation, the AP returns an AID 
(association id) to the client in case of success.
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This section talked about the management layer (MLME) and some of the operations it supports, like scanning, 
authentication, association, and more. In the next section I describe some mac80211 implementation details that are 
important in order to understand the wireless stack.

Mac80211 Implementation
Mac80211 has an API for interfacing with the low level device drivers. The implementation of mac80211 is complex 
and full of many small details. I cannot give an exhaustive description of the mac80211 API and implementation; 
I do discuss some important points that can give a good starting point to those who want to delve into the code. 
A fundamental structure of mac80211 API is the ieee80211_hw struct (include/net/mac80211.h); it represents 
hardware information. The priv (pointer to a private area) pointer of ieee80211_hw is of an opaque type (void *). 
Most wireless device drivers define a private structure for this private area, like lbtf_private (Marvell wireless driver) 
or iwl_priv (iwlwifi from Intel). Memory allocation and initialziation for the ieee80211_hw struct is done by the 
ieee80211_alloc_hw() method. Here are some methods related to the ieee80211_hw struct:

•	 int ieee80211_register_hw(struct ieee80211_hw *hw): Called by wireless drivers for 
registering the specified ieee80211_hw object.

•	 void ieee80211_unregister_hw(struct ieee80211_hw *hw): Unregisters the specified 
802.11 hardware device.

•	 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct 
ieee80211_ops *ops): Allocates an ieee80211_hw object and initializes it.

•	 ieee80211_rx_irqsafe(): This method is for receiving a packet. It is implemented in  
net/mac80211/rx.c and called from low level wireless drivers.

The ieee80211_ops object, which is passed to the ieee80211_alloc_hw() method as you saw earlier, consists of 
pointers to callbacks to the driver. Not all of these callbacks must be implemented by the drivers. The following is a 
short description of these methods:

•	 tx(): The transmit handler called for each transmitted packet. It usually returns  
NETDEV_TX_OK (except for under certain limited conditions).

•	 start(): Activates the hardware device and is called before the first hardware device is 
enabled. It turns on frame reception.

•	 stop(): Turns off frame reception and usually turns off the hardware.

•	 add_interface(): Called when a network device attached to the hardware is enabled.

•	 remove_interface(): Informs a driver that the interface is going down.

•	 config(): Handles configuration requests, such as hardware channel configuration.

•	 configure_filter(): Configures the device’s Rx filter.

Figure 12-5 shows a block diagram of the architecture of the Linux wireless subsystem. You can see that the 
interface between wireless device drivers layer and the mac80211 layer is the ieee80211_ops object and its callbacks.
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Another important structure is the sta_info struct (net/mac80211/sta_info.h), which represents a station. 
Among the members of this structure are various statistics counters, various flags, debugfs entries, the ps_tx_buf 
array for buffering unicast packets, and more. Stations are organized in a hash table (sta_hash) and a list (sta_list). 
The important methods related to sta_info are as follows:

•	 int sta_info_insert(struct sta_info *sta): Adds a station.

•	 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr): 
Removes a station (by calling the __sta_info_destroy() method).

•	 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 
*addr): Fetches a station; the address of the station (it’s bssid) is passed as a parameter.

Figure 12-5.  Linux wireless architecture
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Rx Path
The ieee80211_rx() function (net/mac80211/rx.c) is the main receive handler. The status of the received packet 
(ieee80211_rx_status) is passed by the wireless driver to mac80211, embedded in the SKB control buffer (cb). The 
IEEE80211_SKB_RXCB() macro is used to fetch this status. The flag field of the Rx status specifies, for example, 
whether the FCS check failed on the packet (RX_FLAG_FAILED_FCS_CRC). The various values possible for the flag 
field are presented in Table 12-1 in the “Quick Reference” section of this chapter. In the ieee80211_rx() method, 
the ieee80211_rx_monitor() is invoked to remove the FCS (checksum) and remove a radiotap header (struct 
ieee80211_radiotap_header) which might have been added if the wireless interface is in monitor mode. (You use 
a network interface in monitor mode in case of sniffing, for example. Not all the wireless network interfaces support 
monitor mode, see the section “Wireless Modes” later in this chapter.)

If you work with HT (802.11n), you perform AMPDU reordering if needed by invoking the  
ieee80211_rx_reorder_ampdu() method. Then you call the __ieee80211_rx_handle_packet() method, which 
eventually calls the ieee80211_invoke_rx_handlers() method. Then you call, one by one, various receive handlers 
(using a macro named CALL_RXH). The order of calling these handlers is important. Each handler checks whether 
it should handle the packet or not. If it decides it should not handle the packet, then you return RX_CONTINUE and 
proceed to the next handler. If it decides it should handle the packet, then you return RX_QUEUED.

There are certain cases when a handler decides to drop a packet; in these cases, it returns RX_DROP_MONITOR 
or RX_DROP_UNUSABLE. For example, if you get a PS-Poll packet, and the type of the receiver shows that it is not 
an AP, you return RX_DROP_UNUSABLE. Another example: for a management frame, if the length of the SKB is 
less than the minimum (24), the packet is discarded and RX_DROP_MONITOR is returned. Or if the packet is not a 
management packet, then also the packet is discarded and RX_DROP_MONITOR is returned. Here is the code snippet 
from the ieee80211_rx_h_mgmt_check() method that implements this:
 
ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
{
        struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
        struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
 
        . . .
        if (rx->skb->len < 24)
                return RX_DROP_MONITOR;
 
        if (!ieee80211_is_mgmt(mgmt->frame_control))
                return RX_DROP_MONITOR;
               .  .  .
}
 
(net/mac80211/rx.c)

Tx Path
The ieee80211_tx() method is the main handler for transmission (net/mac80211/tx.c). First it invokes the  
__ieee80211_tx_prepare() method, which performs some checks and sets certain flags. Then it calls the  
invoke_tx_handlers() method, which calls, one by one, various transmit handlers (using a macro named CALL_TXH).  
If a transmit handler finds that it should do nothing with the packet, it returns TX_CONTINUE and you proceed to the 
next handler. If it decides it should handle a certain packet, it returns TX_QUEUED, and if it decides it should drop the 
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packet, it returns TX_DROP. The invoke_tx_handlers() method returns 0 upon success. Let’s take a short look in the 
implementation of the ieee80211_tx() method:
 
static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata,
                         struct sk_buff *skb, bool txpending,
                         enum ieee80211_band band)
{
        struct ieee80211_local *local = sdata->local;
        struct ieee80211_tx_data tx;
        ieee80211_tx_result res_prepare;
        struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
        bool result = true;
        int led_len;
 

Perform a sanity check, drop the SKB if its length is less than 10:
 
if (unlikely(skb->len < 10)) {
        dev_kfree_skb(skb);
        return true;
}
 
/* initialises tx */
led_len = skb->len;
 
res_prepare = ieee80211_tx_prepare(sdata, &tx, skb);
 
if (unlikely(res_prepare == TX_DROP)) {
        ieee80211_free_txskb(&local->hw, skb);
        return true;
} else if (unlikely(res_prepare == TX_QUEUED)) {
        return true;
}
 

Invoke the Tx handlers; if everything is fine, continue with invoking the __ieee80211_tx() method:
 
        . . .
        if (!invoke_tx_handlers(&tx))
                result = __ieee80211_tx(local, &tx.skbs, led_len,
                                        tx.sta, txpending);
 
        return result;
}
 
(net/mac80211/tx.c)

Fragmentation
Fragmentation in 802.11 is done only for unicast packets. Each station is assigned a fragmentation threshold size (in 
bytes). Packets that are bigger than this threshold should be fragmented. You can lower the number of collisions by 
reducing the fragmentation threshold size, making the packets smaller. You can inspect the fragmentation threshold 
of a station by running iwconfig or by inspecting the corresponding debugfs entry (see the “Mac80211 debugfs” 
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section later in this chapter). You can set the fragmentation threshold with the iwconfig command; thus, for example, 
you can set the fragmentation threshold to 512 bytes by:
 
iwconfig wlan0 frag 512
 

Each fragment is acknowledged. The more fragment field in the fragment header is set to 1 if there are more 
fragments. Each fragment has a fragment number (a subfield in the sequence control field of the frame control). 
Reassembling of the fragments on the receiver is done according to the fragments numbers. Fragmentation in 
the transmitter side is done by the ieee80211_tx_h_fragment() method (net/mac80211/tx.c). Reassembly on 
the receiver side is done by the ieee80211_rx_h_defragment() method (net/mac80211/rx.c). Fragmentation is 
incompatible with aggregation (used for higher throughput), and given the high rates and thus short (in time) packets 
it is very rarely used nowadays.

Mac80211 debugfs
debugfs is a technique that enables exporting debugging information to userspace. It creates entries under the sysfs 
filesystem. debugfs is a virtual filesystem devoted to debugging information. For mac80211, handling mac80211 
debugfs is mostly in net/mac80211/debugfs.c. After mounting debugfs, various mac802.11 statistics and information 
entries can be inspected. Mounting debugfs is performed like this:
 
mount -t debugfs none_debugs /sys/kernel/debug 

Note■■   CONFIG_DEBUG_FS must be set when building the kernel to be able to mount and work with debugfs.

For example, let’s say your phy is phy0; the following is a discussion about some of the entries under  
/sys/kernel/debug/ieee80211/phy0:

•	 total_ps_buffered: This is the total number of packets (unicast and multicasts/broadcasts) 
which the AP buffered for the station. The total_ps_buffered counter is incremented by 
ieee80211_tx_h_unicast_ps_buf() for unicasts, and by ieee80211_tx_h_multicast_ps_buf()  
for multicasts or broadcasts.

Under •	 /sys/kernel/debug/ieee80211/phy0/statistics, you have various statistical 
information—for example:

•	 frame_duplicate_count denotes the number of duplicate frames. This debugfs 
entry represents the duplicate frames counter, dot11FrameDuplicateCount, which is 
incremented by the ieee80211_rx_h_check() method.

•	 transmitted_frame_count denotes the number of transmitted packets. This debugfs 
entry represents dot11TransmittedFrameCount; it is incremented by the ieee80211_tx_
status() method.

•	 retry_count denotes number of retransmissions. This debugfs entry represents 
dot11RetryCount; it is incremented also by the ieee80211_tx_status() method.

•	 fragmentation_threshold: The size of the fragmentation threshold, in bytes. See the 
“Fragmentation” section earlier.
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Under •	 /sys/kernel/debug/ieee80211/phy0/netdev:wlan0, you have some entries that give 
information about the interface; for example, if the interface is in station mode, you will have 
aid for the association id of the station, assoc_tries for the number of times the stations tried 
to perform association, bssid is for the bssid of the station, and so on.

Every station uses a rate control algorithm. Its name is exported by the following •	 debugfs 
entry: /sys/kernel/debug/ieee80211/phy1/rc/name.

Wireless Modes
You can set a wireless network interface to operate in several modes, depending on its intended use and the  
topology of the network in which it is deployed. In some cases, you can set the mode with the iwconfig command, 
and in some cases you must use a tool like hostapd for this. Note that not all devices support all modes. See  
www.linuxwireless.org/en/users/Drivers for a list of Linux drivers that support different modes. Alternatively, 
you can also check to which values the interface_modes field of the wiphy member (in the ieee80211_hw object) is 
initialized in the driver code. The interface_modes are initialized to one or more modes of the nl80211_iftype enum, 
like NL80211_IFTYPE_STATION or NL80211_IFTYPE_ADHOC (see: include/uapi/linux/nl80211.h). The following 
is a detailed description of these wireless modes:

•	 AP mode: In this mode, the device acts as an AP (NL80211_IFTYPE_AP). The AP maintains 
and manages a list of associated stations. The network (BSS) name is the MAC address of the 
AP (bssid). There is also a human-readable name for the BSS, called the SSID.

•	 Station infrastructure mode: A managed station in an infrastructure mode  
(NL80211_IFTYPE_STATION).

•	 Monitor mode: All incoming packets are handed unfiltered in monitor mode  
(NL80211_IFTYPE_MONITOR). This is useful for sniffing. It is usually possible to transmit 
packets in monitor mode. This is termed packet injection; these packets are marked with a 
special flag (IEEE80211_TX_CTL_INJECTED).

•	 Ad Hoc (IBSS) mode: A station in an ad hoc (IBSS) network (NL80211_IFTYPE_ADHOC). With 
Ad Hoc mode, there is no AP device in the network.

•	 Wireless Distribution System (WDS) mode: A station in a WDS network (NL80211_IFTYPE_WDS).

•	 Mesh mode: A station in a Mesh network (NL80211_IFTYPE_MESH_POINT), discussed in the 
“Mesh Networking (802.11s)” section later in this chapter.

The next section discusses the ieee802.11n technology, which provides higher performance, and how it is 
implemented in the Linux wireless stack. You will learn also about block acknowledgment and packet aggregation in 
802.11n and how these techniques are used to improve performance.

High Throughput (ieee802.11n)
A little after 802.11g was approved, a new task group was created in IEEE, called High Throughput Task Group (TGn). 
IEEE 802.11n became a final spec at the end of 2009. The IEEE 802.11n protocol allows coexistence with legacy 
devices. There were some vendors who already sold 802.11n pre-standard devices based on the 802.11n draft before 
the official approval. Broadcom set a precedent for releasing wireless interfaces based on a draft. In 2003, it released 
a chipset of a wireless device based on a draft of 802.11g. Following this precedent, as early as 2005 some vendors 
released products based on the 802.11n draft. For example, Intel Santa Rose processor has Intel Next-Gen Wireless-N 
(Intel WiFI Link 5000 series), supports 802.11n. Other Intel wireless network interfaces, like 4965AGN, also supported 
802.11n. Other vendors, including Atheros and Ralink, also released 802.11n draft-based wireless devices. The WiFi 

http://www.linuxwireless.org/en/users/Drivers
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alliance started certification of 802.11n draft devices in June 2007. A long list of vendors released products which 
comply with Wi-Fi CERTIFIED 802.11n draft 2.0.

802.11n can operate on the 2.4 GHz and/or 5 GHz bands, whereas 802.11g and 802.11b operate only in the 
2.4 GHz radio frequency band, and 802.11a operates only in the 5 GHz radio frequency band. The 802.11n MIMO 
(Multiple Input, Multiple Output) technology increases the range and reliability of traffic over the wireless coverage 
area. MIMO technology uses multiple transmitter and receiver antennas on both APs and clients, to allow for 
simultaneous data streams. The result is increased range and increased throughput. With 802.11n you can achieve  
a theoretical PHY rate of up to 600 Mbps (actual throughput will be much lower due to medium access rules,  
and so on).

802.11n added many improvements for the 802.11 MAC layer. The most well known is packet aggregation, 
which concatenates multiple packets of application data into a single transmission frame. A block acknowledgment 
(BA) mechanism was added (discussed in the next section). BA permits multiple packets to be acknowledged by a 
single packet instead of sending an ACK for each received packet. The wait time between two consecutive packets 
is cut. This enables sending multiple data packets with a fixed overhead cost of a single packet. The BA protocol was 
introduced in the 802.11e amendment from 2005.

Packet Aggregation
There are two types of packet aggregation:

•	 AMSDU: Aggregated Mac Service Data Unit

•	 AMPDU: Aggregated Mac Protocol Data Unit

Note that the AMSDU is only supported on Rx, and not on Tx, and is wholly independent from the Block Ack 
mechanism described in this section; so the discussion in this section only pertains to AMPDU.

There are two sides to a Block Ack session: originator and recipient. Each block session has a different Traffic 
Identifier (TID). The originator starts the block acknowledgement session by calling the ieee80211_start_tx_ba_session()  
method. This is done typically from a rate control algorithm method in the driver. For example, with the ath9k  
wireless driver, the ath_tx_status() function (drivers/net/wireless/ath/ath9k/rc.c), which is a rate control 
callback, invokes the ieee80211_start_tx_ba_session() method. The ieee80211_start_tx_ba_session()  
method sets the state to HT_ADDBA_REQUESTED_MSK and sends an ADDBA request packet, by invoking the 
ieee80211_send_addba_request() method. The call to ieee80211_send_addba_request() passes parameters for  
the session, such as the wanted reorder buffer size and the TID of the session.

The reorder buffer size is limited to 64K (see the definition of ieee80211_max_ampdu_length_exp in  
include/linux/ieee80211.h). These parameters are part of the capability member (capab) in the struct addba_req. 
The response to the ADDBA request should be received within 1 Hz, which is one second in x86_64 machines 
(ADDBA_RESP_INTERVAL). If you do not get a response in time, the sta_addba_resp_timer_expired() method will 
stop the BA session by calling the ___ieee80211_stop_tx_ba_session() method. When the other side (the recipient) 
receives the ADDBA request, it first sends an ACK (every packet in ieee802.11 should be acknowledged, as mentioned 
before). Then it processes the ADDBA request by calling the ieee80211_process_addba_request() method; if 
everything is okay, it sets the aggregation state of this machine to operational (HT_AGG_STATE_OPERATIONAL) and 
sends an ADDBA response by calling the ieee80211_send_addba_resp() method. It also stops the response timer 
(the timer which has as its callback the sta_addba_resp_timer_expired() method) by calling del_timer_sync() 
on this timer. After a session is started, a data block containing multiple MPDU packets is sent. Consequently, the 
originator sends a Block Ack Request (BAR) packet by calling the ieee80211_send_bar() method.
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Block Ack Request (BAR)
The BAR is a control packet with Block Ack Request sub-type (IEEE80211_STYPE_BACK_REQ). The BAR packet 
includes the SSN (start sequence number), which is the sequence number of the oldest MSDU in the block that 
should be acknowledged. The recipient receives the BAR and reorders the ampdu buffer accordingly, if needed.  
Figure 12-6 shows a BAR request.

When sending a BAR, the type subfield in the frame control is control (IEEE80211_FTYPE_CTL), and the subtype 
subfield is Block Ack request (IEEE80211_STYPE_BACK_REQ). The BAR is represented by the ieee80211_bar struct:
 
struct ieee80211_bar {
        __le16 frame_control;
        __le16 duration;
        __u8 ra[6];
        __u8 ta[6];
        __le16 control;
        __le16 start_seq_num;
} __packed;
 
(include/linux/ieee80211.h)

The RA is the recipient address, and the TA is the transmitter (originator) address. The control field of the BAR 
request includes the TID.

Block Ack
There are two types of Block Ack: Immediate Block Ack and Delayed Block Ack. Figure 12-7 shows Immediate Block Ack.

Figure 12-6.  BAR request
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The difference between Immediate Block Ack and Delayed Block Ack is that with Delayed Block Ack, the BAR 
request itself is answered first with an ACK, and then after some delay, with a BA (Block Ack). When using Delayed 
Block Ack, there is more time to process the BAR, and this is sometime needed when working with software based 
processing. Using Immediate Block Ack is better in terms of performance. The BA itself is also acknowledged. When 
the originator has no more data to send, it can terminate the Block Ack session by calling the ieee80211_send_delba()  
method; this function sends a DELBA request packet to the other side. The DELBA request is handled by the 
ieee80211_process_delba() method. The DELBA message, which causes a Block Ack session tear down, can be 
sent either from the originator or recipient of the Block Ack session. The AMPDU maximum length is 65535 octets. 
Note that packet aggregation is only implemented for APs and managed stations; packet aggregation for IBSS is not 
supported by the spec.

Mesh Networking (802.11s) 
The IEEE 802.11s protocol started as a Study Group of IEEE in September 2003, and became a Task Group named 
TGs in 2004. In 2006, 2 proposals, out of 15 (the “SEEMesh” and “Wi-Mesh” proposals) were merged into one, which 
resulted in draft D0.01. 802.11s was ratified in July 2011 and is now part of IEEE 802.11-2012. Mesh networks allow 
the creation of an 802.11 Basic Service Set over fully and partially connected Mesh topology. This can be seen as an 
improvement over 802.11 ad hoc network, which requires a fully-connected Mesh topology. Figures 12-8 and 12-9 
illustrate the difference between the two types of Mesh topologies.

Figure 12-7.  Immediate Block Ack
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In a partially-connected Mesh, nodes are connected to only some of the other nodes, but not to all of them. This 
topology is much more common in wireless Mesh networks. Figure 12-9 shows an example of a partial mesh.

Figure 12-8.  Full Mesh 

Figure 12-9.  Partial Mesh
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Wireless mesh networks forward data packets over multiple wireless hops. Each mesh node acts as a relay  
point/router for the other mesh nodes. In kernel 2.6.26 (2008), support for the draft of wireless mesh networking 
(802.11s) was added to the network wireless stack, thanks to the open80211s project. The open80211s project goal was 
to create the first open implementation of 802.11s. The project got some sponsorship from the OLPC project and from 
some commercial companies. Luis Carlos Cobo and Javier Cardona and other developers from Cozybit developed the 
Linux mac80211 Mesh code.

Now that you have learned a bit about Mesh networking and Mesh network topologies, you are ready for the next 
section, which covers the HWMP routing protocol for Mesh networks.

HWMP Protocol
The 802.11s protocol defines a default routing protocol called HWMP (Hybrid Wireless Mesh Protocol). The HWMP 
protocol works with Layer 2 and deals with MAC addresses, as opposed to the IPV4 routing protocol, for example, 
which works with Layer 3 and deals with IP addresses. HWMP routing is based on two types of routing (hence it is 
called hybrid). The first is on-demand routing, and the second is proactive routing. The main difference between the 
two mechanisms has to do with the time in which path establishment is initiated (path is the name used for route in 
Layer 2). In on-demand routing, a path to a destination is established by the protocol only after the protocol stack has 
received frames for such a destination. This minimizes the amount of management traffic required to maintain the 
Mesh network at the expense of introducing additional latency in data traffic. Proactive routing can be used if a Mesh 
node is known to be the recipient of a lot of mesh traffic. In that case, the node will periodically announce itself over 
the Mesh network and trigger path establishments to itself from all the Mesh nodes in the network. Both on-demand 
and proactive routing are implemented in the Linux kernel. There are four types of routing messages:

•	 PREQ (Path Request): This type of message is sent as a broadcast when you look for some 
destination that you still do not have a route to. This PREQ message is propagated in the 
Mesh network until it gets to its destination. A lookup is performed on each station until the 
final destination is reached (by calling the mesh_path_lookup() method). If the lookup fails, 
the PREQ is forwarded (as a broadcast) to the other stations. The PREQ message is sent in a 
management packet; its sub-type is action (IEEE80211_STYPE_ACTION). It is handled by the 
hwmp_preq_frame_process() method.

•	 PREP (Path Reply): This type is a unicast packet that is sent as a reply to a PREQ message. This 
packet is sent in the reverse path. The PREP message is also sent in a management packet 
and its subtype is also the action sub-type (IEEE80211_STYPE_ACTION). It is handled by the 
hwmp_prep_frame_process() method. Both the PREQ and the PREP messages are sent by the 
mesh_path_sel_frame_tx() method.

•	 PERR (Path Error): If there is some failure on the way, a PERR is sent. A PERR message is 
handled by the mesh_path_error_tx() method.

•	 RANN (Root Announcement): The Root Mesh point periodically broadcasts this frame. Mesh 
points that receive it send a unicast RREQ to the root via the MP from which it received the 
RANN. In response, the Root Mesh will send a PREP response to each PREQ.

Note■■  T he route takes into consideration a radio-aware metric (airtime metric). The airtime metric is calculated by the 
airtime_link_metric_get() method (based on rate and other hardware parameters). Mesh points continuously monitor 
their links and update metric values with neighbours.
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The station that sent the PREQ may try to send packets to the final destination while still not knowing the route to 
that destination; these packets are kept in a buffer of SKBs named frame_queue, which is a member of the mesh_path 
object (net/mac80211/mesh.h). In such a case, when a PREP finally arrives, the pending packets of this buffer are sent 
to the final destination (by calling the mesh_path_tx_pending() method). The maximum number of frames buffered 
per destination for unresolved destinations is 10 (MESH_FRAME_QUEUE_LEN). The advantages of Mesh networking 
are as follows:

Rapid deployment•	

Minimal configuration, inexpensive•	

Easy to deploy in hard-to-wire environments•	

Connectivity while nodes are in motion•	

Higher reliability: no single point of failure and the ability to heal itself•	

The disadvantages are as follows:

Many broadcasts limit network performance.•	

Not all wireless drivers support Mesh mode at the moment.•	

Setting Up a Mesh Network
There are two sets of userspace tools for managing wireless devices and networks in Linux: one is the older Wireless 
Tools for Linux, an open source project based on IOCTLs. Examples of command line utilities of the wireless tools are 
iwconfig, iwlist, ifrename, and more. The newer tool is iw, based on generic netlink sockets (described in Chapter 2).  
However, there are some tasks that only the newer tool, iw, can perform. You can set a wireless device to work in Mesh 
mode only with the iw command.

Example: setting a wireless network interface (wlan0) to work in Mesh mode can be done like this:
 
iw wlan0 set type mesh 

Note■■  S etting a wireless network interface (wlan0) to work in mesh mode can be done also like this: 
iw wlan0 set type mp

mp stands for Mesh Point. See “Adding interfaces with iw” in http://wireless.kernel.org/en/users/Documentation/iw

Joining the mesh is done by: iw wlan0 mesh join "my-mesh-ID"
You can display statistics about a station by the following:

•	 iw wlan0 station dump

•	 iw wlan0 mpath dump

I should mention here also the authsae and the wpa_supplicant tools, which can be used to create secure Mesh 
networks and do not depend upon iw.

http://wireless.kernel.org/en/users/Documentation/iw
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Linux Wireless Development Process
Most development is done using the git distributed version control system, as with many other Linux subsystems. 
There are three main git trees; the bleeding edge is the wireless-testing tree. There are also the regular wireless tree 
and the wireless-next tree. The following are the links to the git repositories for the development trees: 

wireless-testing development tree:•	

git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-testing.git

wireless development tree:•	

git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-2.6.git

wireless-next development tree:•	

git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-next-2.6.git

Patches are sent and discussed in the wireless mailing list: linux-wireless@vger.kernel.org. From time to time 
a pull request is sent to the kernel networking mailing list, netdev, mentioned in Chapter 1.

As mentioned in the “Mac80211 subsystem” section, which dealt with the mac80211 subsystem, some wireless 
network interface vendors maintain their own development trees for their Linux drivers on their own sites. In some 
cases, the code they are using does not use the mac80211 API; for example, some Ralink and Realtek wireless device 
drivers. Since January 2006, the maintainer of the Linux wireless subsystem is John W. Linville, who replaced Jeff 
Garzik. The maintainer of mac80211 is Johannes Berg, from October 2007. There were some annual Linux wireless 
summits; the first took place in 2006 in Beaverton (OR). A very detailed wiki page is here: http://wireless.kernel.org/.  
This web site includes a lot of important documentation. For example, a table specifies the modes each wireless 
network interface supports. There is a lot of information in this wiki page regarding many wireless device drivers, 
hardware, and various tools (such as CRDA, the central regulatory domain agent, hostapd, iw, and more).

Summary
A lot of development has been done in Linux wireless stack in recent years. The most significant change is the integration 
of the mac80211 stack and porting wireless drivers to use the mac80211 API, making the code much more organized. The 
situation is much better than before; many more wireless devices are supported in Linux. Mesh networking got a boost 
recently thanks to the open802.11s project. It was integrated in the Linux 2.6.26 kernel. The future will probably see more 
drivers that support the new standard, IEEE802.11ac, a 5 GHz-only technology that can reach maximum throughputs 
well above a gigabit per second, and more drivers that support P2P.

Chapter 13 discusses InfiniBand and RDMA in the Linux kernel. The “Quick Reference” section covers the top 
methods that are related to the topics discussed in this chapter, ordered by their context.

Quick Reference
I conclude this chapter with a short list of important methods of the Linux wireless subsystem, some of which  
are mentioned in this chapter. Table 12-1 shows the various possible values for the flag member of the  
ieee80211_rx_status object.

Methods
This section discusses the methods.

http://mailto:linux-wireless@vger.kernel.org/
http://wireless.kernel.org/
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void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn);
This method sends a block acknowledgment request.

int ieee80211_start_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid,  
u16 timeout);
This method starts a  Block Ack session by calling the wireless driver ampdu_action() callback, passing  
IEEE80211_AMPDU_TX_START. As a result, the driver will later call the ieee80211_start_tx_ba_cb() callback or  
the ieee80211_start_tx_ba_cb_irqsafe() callback, which will start the aggregation session.

int ieee80211_stop_tx_ba_session(struct ieee80211_sta *pubsta, u16 tid);
This method stops a  Block Ack session by calling the wireless driver ampdu_action() function, passing  
IEEE80211_AMPDU_TX_STOP. The driver must later call the ieee80211_stop_tx_ba_cb() callback or the  
ieee80211_stop_tx_ba_cb_irqsafe() callback.

static void ieee80211_send_addba_request(struct ieee80211_sub_if_data *sdata, 
const u8 *da, u16 tid, u8 dialog_token, u16 start_seq_num, u16 agg_size, u16 
timeout);
This method sends an ADDBA message. An ADDBA message is a management action message.

void ieee80211_process_addba_request(struct ieee80211_local *local,  
struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len);
This method handles an ADDBA message.

static void ieee80211_send_addba_resp(struct ieee80211_sub_if_data *sdata,  
u8 *da, u16 tid, u8 dialog_token, u16 status, u16 policy, u16 buf_size, u16 timeout);
This method sends an ADDBA response. An ADDBA response is a management packet, with subtype of action 
(IEEE80211_STYPE_ACTION).

static ieee80211_rx_result debug_noinline  
ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx);
This method handles AMSDU aggregation (Rx path).

void ieee80211_process_delba(struct ieee80211_sub_if_data *sdata,  
struct sta_info *sta, struct ieee80211_mgmt *mgmt, size_t len);
This method handles a DELBA message.
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void ieee80211_send_delba(struct ieee80211_sub_if_data *sdata, const u8 *da, 
u16 tid, u16 initiator, u16 reason_code);
This method sends a DELBA message.

void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
This method receives a packet. The ieee80211_rx_irqsafe() method can be called in hardware interrupt context.

static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,  
struct sk_buff_head *frames);
This method handles the A-MPDU reorder buffer.

static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data 
*sdata, struct tid_ampdu_rx *tid_agg_rx, struct sk_buff_head *frames);
This method handles the A-MPDU reorder buffer.

static ieee80211_rx_result debug_noinline  
ieee80211_rx_h_check(struct ieee80211_rx_data *rx);
This method drops duplicate frames of a retransmission and increment dot11FrameDuplicateCount and the station 
num_duplicates counter.

void ieee80211_send_nullfunc(struct ieee80211_local *local,  
struct ieee80211_sub_if_data *sdata, int powersave);
This method sends a special NULL data frame.

void ieee80211_send_pspoll(struct ieee80211_local *local, struct  
ieee80211_sub_if_data *sdata);
This method sends a PS-Poll control packet to an AP.

static void ieee80211_send_assoc(struct ieee80211_sub_if_data *sdata);
This method performs association or reassociation by sending a management packet with association sub-type of 
IEEE80211_STYPE_ASSOC_REQ or IEEE80211_STYPE_REASSOC_REQ, respectively. The ieee80211_send_assoc() 
method is invoked from the ieee80211_do_assoc() method.
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void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, u16 transaction, 
u16 auth_alg, u16 status, const u8 *extra, size_t extra_len, const u8 *da, const u8 
*bssid, const u8 *key, u8 key_len, u8 key_idx, u32 tx_flags);
This method performs authentication by sending a management packet with authentication sub-type  
(IEEE80211_STYPE_AUTH).

static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,  
u8 tim_len, u16 aid);
This method checks whether the tim[aid] is set; the aid is passed as a parameter, and it represents the association id 
of the station.

int ieee80211_request_scan(struct ieee80211_sub_if_data *sdata,  
struct cfg80211_scan_request *req);
This method starts active scanning.

void mesh_path_tx_pending(struct mesh_path *mpath);
This method send packets from the frame_queue.

struct mesh_path *mesh_path_lookup(struct ieee80211_sub_if_data *sdata,  
const u8 *dst);
This method performs a lookup in a Mesh path table (routing table) of a Mesh point. The second parameter to the 
mesh_path_lookup() method is the hardware address of the destination. It returns NULL if there is no entry in the 
table, otherwise it returns a pointer to the mesh path structure which was found.

static void ieee80211_sta_create_ibss(struct ieee80211_sub_if_data *sdata);
This method creates an IBSS.

int ieee80211_hw_config(struct ieee80211_local *local, u32 changed);
This method is called for various configurations by the driver; in most cases, it delegates the call to the driver 
config() method, if implemented. The second parameter specifies which action to take (for instance,  
IEEE80211_CONF_CHANGE_CHANNEL to change channel, or IEEE80211_CONF_CHANGE_PS to change the  
power save mode of the driver).
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struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len, const struct 
ieee80211_ops *ops);
This method allocates a new 802.11 hardware device.

int ieee80211_register_hw(struct ieee80211_hw *hw);
This method registers a 802.11 hardware device.

void ieee80211_unregister_hw(struct ieee80211_hw *hw);
This method unregisters a 802.11 hardware device and frees its allocated resources.

int sta_info_insert(struct sta_info *sta);
This method adds a station to the hash table of stations and to the list of stations.

int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr);
This method removes a station and frees its resources.

struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, const u8 *addr);
This method returns a pointer to a station by performing a lookup in the hash table of stations.

void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst, 
const u8 *ssid, size_t ssid_len, const u8 *ie, size_t ie_len, u32 ratemask, bool 
directed, u32 tx_flags, struct ieee80211_channel *channel, bool scan);
This method sends a probe request management packet.

static inline void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct 
sk_buff *skb);
This method transmits an SKB.

int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band);
This method returns the frequency in which a station operates, given its channel. There is a one-to-one 
correspondence between a channel and a frequency.
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static int mesh_path_sel_frame_tx(enum mpath_frame_type action, u8 flags, const 
u8 *orig_addr, __le32 orig_sn, u8 target_flags, const u8 *target, __le32 target_sn, 
const u8 *da, u8 hop_count, u8 ttl, __le32 lifetime, __le32 metric, __le32 preq_id, 
struct ieee80211_sub_if_data *sdata);
This method sends a PREQ or PREP management packet.

static void hwmp_preq_frame_process(struct ieee80211_sub_if_data *sdata, 
struct ieee80211_mgmt *mgmt, const u8 *preq_elem, u32 metric);
This method handles a PREQ message.

struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb);
This method returns the ieee80211_rx_status object associated with the control buffer (cb), which is associated with 
the specified SKB.

static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, 
bool txpending, enum ieee80211_band band);
This method is the main handler for transmission.

Table
Table 12-1 shows the bits of the flag member (a 32-bit field) of the ieee80211_rx_status structure and the 
corresponding Linux symbol.

Table 12-1.  Rx Flags: Various Possible Values for the Flag Field of the ieee80211_rx_status Object

Linux Symbol Bit Description

RX_FLAG_MMIC_ERROR 0 Michael MIC error was reported on this frame.

RX_FLAG_DECRYPTED 1 This frame was decrypted in hardware.

RX_FLAG_MMIC_STRIPPED 3 The Michael MIC is stripped off this frame, verification 
has been done by the hardware.

RX_FLAG_IV_STRIPPED 4 The IV/ICV are stripped from this frame.

RX_FLAG_FAILED_FCS_CRC 5 The FCS check failed on the frame.

RX_FLAG_FAILED_PLCP_CRC 6 The PCLP check failed on the frame.

RX_FLAG_MACTIME_START 7 The timestamp passed in the RX status is valid and 
contains the time the first symbol of the MPDU was 
received.

(continued)
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Linux Symbol Bit Description

RX_FLAG_SHORTPRE 8 Short preamble was used for this frame.

RX_FLAG_HT 9 HT MCS was used and rate_idx is MCS index

RX_FLAG_40MHZ 10 HT40 (40 MHz) was used.

RX_FLAG_SHORT_GI 11 Short guard interval was used.

RX_FLAG_NO_SIGNAL_VAL 12 The signal strength value is not present.

RX_FLAG_HT_GF 13 This frame was received in a HT-greenfield transmission

RX_FLAG_AMPDU_DETAILS 14 A-MPDU details are known, in particular the reference 
number must be populated and be a distinct number for 
each A-MPDU.

RX_FLAG_AMPDU_REPORT_ZEROLEN 15 Driver reports 0-length subframes.

RX_FLAG_AMPDU_IS_ZEROLEN 16 This is a zero-length subframe, for monitoring  
purposes only.

RX_FLAG_AMPDU_LAST_KNOWN 17 Last subframe is known, should be set on all subframes of 
a single A-MPDU.

RX_FLAG_AMPDU_IS_LAST 18 This subframe is the last subframe of the A-MPDU.

RX_FLAG_AMPDU_DELIM_CRC_ERROR 19 A delimiter CRC error has been detected on this 
subframe.

RX_FLAG_AMPDU_DELIM_CRC_KNOWN 20 The delimiter CRC field is known (the CRC
is stored in the ampdu_delimiter_crc field of the 
ieee80211_rx_status)

RX_FLAG_MACTIME_END 21 The timestamp passed in the RX status is valid and 
contains the time the last symbol of the MPDU (including
FCS) was received.

RX_FLAG_VHT 22 VHT MCS was used and rate_index is MCS index

RX_FLAG_80MHZ 23 80 MHz was used

RX_FLAG_80P80MHZ 24 80+80 MHz was used

RX_FLAG_160MHZ 25 160 MHz was used

Table 12-1.   (continued)
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Chapter 13

InfiniBand

This chapter was written by Dotan Barak, an InfiniBand Expert. Dotan is a Senior Software 
Manager at Mellanox Technologies working on RDMA Technologies. Dotan has been working at 
Mellanox for more than 10 years in various roles, both as a developer and a manager. Additionally, 
Dotan maintains a blog about the RDMA technology: http://www.rdmamojo.com.

Chapter 12 dealt with the wireless subsystem and its implementation in Linux. In this chapter, I will discuss the 
InfiniBand subsystem and its implementation in Linux. Though the InfiniBand technology might be perceived as a 
very complex technology for those who are unfamiliar with it, the concepts behind it are surprisingly straightforward, 
as you will see in this chapter. I will start our discussion with Remote Direct Memory Access (RDMA), and discuss its 
main data structures and its API. I will give some examples illustrating how to work with RDMA, and conclude this 
chapter with a short discussion about using RDMA API from the kernel level and userspace.

RDMA and InfiniBand—General
Remote Direct Memory Access (RDMA) is the ability for one machine to access—that is, to read or write to—memory on 
a remote machine. There are several main network protocols that support RDMA: InfiniBand, RDMA over Converged 
Ethernet (RoCE) and internet Wide Area RDMA Protocol (iWARP), and all of them share the same API. InfiniBand is 
a completely new networking protocol, and its specifications can be found in the document “InfiniBand Architecture 
specifications,” which is maintained by the InfiniBand Trade Association (IBTA). RoCE allows you to have RDMA over an 
Ethernet network, and its specification can be found as an Annex to the InfiniBand specifications. iWARP is a protocol that 
allows using RDMA over TCP/IP, and its specifications can be found in the document, “An RDMA Protocol Specification,” 
which is being maintained by the RDMA Consortium. Verbs is the description of the API to use RDMA from a client code. 
The RDMA API implementation was introduced to the Linux kernel in version 2.6.11. At the beginning, it supported only 
InfiniBand, and after several kernel versions, iWARP and RoCE support were added to it as well. When describing the API, 
I mention only one of them, but the following text refers to all. All of the definitions to this API can be found  
in include/rdma/ib_verbs.h. Here are some notes about the API and the implementation of the RDMA stack:

Some of the functions are inline functions, and some of them aren’t. Future implementation •	
might change this behavior.

Most of the APIs have the prefix “ib”; however, this API supports InfiniBand, iWARP and RoCE.•	

The header •	 ib_verbs.h contains functions and structures to be used by:

The RDMA stack itself•	

Low-level drivers for RDMA devices•	

Kernel modules that use the stack as consumers•	

I will concentrate on functions and structures that are relevant only for kernel modules that use the stack as 
consumers (the third case). The following section discusses the RDMA stack organization in the kernel tree.

http://http://www.rdmamojo.com
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The RDMA Stack Organization
Almost all of the kernel RDMA stack code is under drivers/infiniband in the kernel tree. The following are some of 
its important modules (this is not an exhaustive list, as I do not cover the entire RDMA stack in this chapter):

•	 CM: Communication manager (drivers/infiniband/core/cm.c)

•	 IPoIB: IP over InfiniBand (drivers/infiniband/ulp/ipoib/)

•	 iSER: iSCSI extension for RDMA (drivers/infiniband/ulp/iser/)

•	 RDS: Reliable Datagram Socket (net/rds/)

•	 SRP: SCSI RDMA protocol (drivers/infiniband/ulp/srp/)

Hardware low-level drivers of different vendors (•	 drivers/infiniband/hw) 

•	 verbs: Kernel verbs (drivers/infiniband/core/verbs.c)

•	 uverbs: User verbs (drivers/infiniband/core/uverbs_*.c)

•	 MAD: Management datagram (drivers/infiniband/core/mad.c) 

Figure 13-1 shows the Linux InfiniBand stack architecture.

Figure 13-1.  Linux Infiniband stack architecture

In this section, I covered the RDMA stack organization and the kernel modules that are part of it in the  
Linux kernel.
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RDMA Technology Advantages
Here I will cover the advantages of the RDMA technology and explain the features that make it popular in many markets:

•	 Zero copy: The ability to directly write data to and read data from remote memory allows you 
to access remote buffers directly without the need to copy it between different software layers.

•	 Kernel bypass: Sending and receiving data from the same context of the code (that is, 
userspace or kernel level) saves the context switches time.

•	 CPU offload: The ability to send or receive data using dedicated hardware without any CPU 
intervention allows for decreasing the usage of the CPU on the remote side, because it doesn’t 
perform any active operations.

•	 Low latency: RDMA technologies allow you to reach a very low latency for short messages.  
(In current hardware and on current servers, the latency for sending up to tens of bytes can be 
a couple of hundred nanoseconds.)

•	 High Bandwidth: In an Ethernet device, the maximum bandwidth is limited by the technology 
(that is, 10 or 40 Gbits/sec). In InfiniBand, the same protocol and equipment can be used from 
2.5 Gbits/sec up to 120 Gbits/sec. (In current hardware and on current servers, the BW can be 
upto 56 Gbits/sec.)

InfiniBand Hardware Components
Like in any other interconnect technologies, in InfiniBand several hardware components are described in the spec, 
some of them are endpoints to the packets (generating packets and the target of the packet), and some of them 
forward packets in the same subnet or between different subnets. Here I will cover the most common ones:

•	 Host Channel Adapter (HCA): The network adapter that can be placed at a host or at any 
other system (for example, storage device). This component initiates or is the target of packets.

•	 Switch: A component that knows how to receive a packet from one port and send it to another 
port. If needed, it can duplicate multicast messages. (Broadcast isn’t supported in InfiniBand.) 
Unlike other technologies, every switch is a very simple device with forwarding tables that are 
configured by the Subnet Manager (SM), which is an entity that configures and manages the 
subnet (later on in this section, I will discuss its role in more detail). The switch doesn’t learn 
anything by itself or parse and anlyze packets; it forwards packets only within the same subnet.

•	 Router: A component that connects several different InfiniBand subnets.

A subnet is a set of HCAs, switches, and router ports that are connected together. In this section, I described the various 
hardware components in InfiniBand, and now I will discuss the addressing of the devices, system, and ports in InfiniBand.

Addressing in InfiniBand
Here are some rules about InfiniBand addressing and an example:

In InfiniBand, the unique identifier of components is the Globally Unique Identifier (GUID), •	
which is a 64-bit value that is unique in the world.

Every node in the subnet has a Node GUID. This is the identifier of the node and a constant •	
attribute of it.

Every port in the subnet, including in HCAs and in switches, has a port GUID. This is the •	
identifier of the port and a constant attribute of it.

In systems that are made from several components, there can be a system GUID. All of the •	
components in that system have the same system GUID.
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Here is an example that demonstrates all the aforementioned GUIDs: a big switch system that is combined from 
several switch chips. Every switch chip has a unique Node GUID. Every port in every switch has a unique port GUID. 
All of the chips in that system have the same system GUID.

Global IDentifier (GID) is used to identify an end port or a multicast group. Every port has at •	
least one valid GID at the GID table in index 0. It is based on the port GUID plus the subnet 
identifier that this port is part of.

Local IDentifier (LID) is a 16-bit value that is assigned to every subnet port by the Subnet •	
Manager. A switch is an exception, and the switch management port has the LID assignment, 
and not all of its ports. Every port can be assigned only one LID, or a contiguous range of 
LIDs, in order to have several paths to this port. Each LID is unique at a specific point of 
time in the same subnet, and it is used by the switches when forwarding the packets to know 
which egress port to use. The unicast LID’s range is 0x001 to 0xbfff. The multicast LIDs range 
is 0xc000 to 0xfffe.

InfiniBand Features
Here we will cover some of the InfiniBand protocol features:

InfiniBand allows you to configure partitions of ports of HCAs, switches, and routers and •	
allows you to provide virtual isolation over the same physical subnet. Every Partition Key 
(P_Key) is a 16-bit value that is combined from the following: 15 lsbs are the key value, and the 
msb is the membership level; 0 is limited membership; and 1 is full membership. Every port 
has a P_Key table that is being configured by the SM, and every Queue Pair (QP), the actual 
object in InfiniBand that sends and receives data, is associated with one P_Key index in this 
table. One QP can send or receive packets from a remote QP only if, in the P_Keys that each of 
them is associated with, the following is true:

The key value is equal.•	

At least one of them has full membership.•	

•	 Queue Key (Q_Key): An Unreliable Datagram (UD) QP will get unicast or multicast messages 
from a remote UD QP only if the Q_Key of the message is equal to the Q_Key value of this UD QP.

•	 Virtual Lanes (VL): This is a mechanism for creating multiple virtual links over a single 
physical link. Every virtual lane represents an autonomic set of buffers for send and receive 
packets in each port. The number of supported VLs is an attribute of a port.

•	 Service Level (SL): InfiniBand supports up to 16 service levels. The protocol doesn’t specify 
the policy of each level. In InfiniBand, the QoS is implemented using the SL-to-VL mapping 
and the resources for each VL.

•	 Failover: Connected QPs are QPs that can send packets to or receive packets from only one 
remote QP. InfiniBand allows defining a primary path and an alternate path for connected 
QPs. If there is a problem with the primary path, instead of reporting an error, the alternate 
path will be used automatically.

In the next section, we will look at what packets in InfiniBand look like. This is very useful when you debug 
problems in InfiniBand.

InfiniBand Packets
Every packet in InfiniBand is a combination of several headers and, in many cases, a payload, which is the data of the 
messages that the clients want to send. Messages that contain only an ACK or messages with zero bytes (for example, 



Chapter 13 ■ InfiniBand

377

if only immediate data is being sent) won’t contain a payload. Those headers describe from where the packet 
was sent, what the target of the packet is, the used operation, the information needed to separate the packets into 
messages, and enough information to detect packet loss errors.

Figure 13-2 presents the InfiniBand packet headers.

Here are the headers in InfiniBand:

•	 Local Routing Header (LRH): 8 bytes. Always present. It identifies the local source and 
destination ports of the packet. It also specifies the requested QoS attributes (SL and VL)  
of the message.

•	 Global Routing Header (GRH): 40 bytes. Optional. Present for multicast packets or packets 
that travel in multiple subnets. It describes the source and destination ports using GIDs. Its 
format is identical to the IPv6 header.

•	 Base Transport Header (BTH): 12 bytes. Always present. It specifies the source and 
destination QPs, the operation, packet sequence number, and partition.

•	 Extended Transport Header (ETH): from 4 to 28 bytes. Optional. Extra family of headers that 
might be present, depending on the class of the service and the operation used.

•	 Payload: Optional. The data that the client wants to send.

•	 Immediate data: 4 bytes. Optional. Out-of-band, 32-bit value that can be added to Send and 
RDMA Write operations.

•	 Invariant CRC (ICRC): 4 bytes. Always present. It covers all fields that should not be changed 
as the packet travels in the subnet.

•	 Variant CRC (VCRC): 2 bytes. Always present. It covers all of the fields of the packet.

Management Entities
The SM is the entity in the subnet that is responsible for analyzing the subnet and configuring it. These are some of its 
missions:

Discover the physical topology of the subnet.•	

Assign the LIDs and other attributes—such as active MTU, active speeds, and more—to each •	
port in the subnet.

Configure the forwarding table in the subnet switches.•	

Detect any changes in the topology (for example, if new nodes were added or removed from •	
the subnet).

Handle various errors in the subnet.•	

Subnet Manager is usually a software entity that can be running in a switch (which is called a managed switch) or 
in any node in the subnet.

Figure 13-2.  InfiniBand packet headers
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Several SMs can be running in a subnet, but only one of them will be active and the rest of them will be in standby 
mode. There is an internal protocol that performs master election and decides which SM will be active. If the active SM 
is going down, one of the standby SMs will become the active SM. Every port in the subnet has a Subnet Management 
Agent (SMA), which is an agent that knows how to receive management messages sent by the SM, handle them, and 
return a response. Subnet Administrator (SA) is a service that is part of the SM. These are some of its missions:

Provide information about the subnet—for example, information about how to get from one •	
port to another (that is, a path query).

Allow you to register to get notifications about events.•	

Provide services for management of the subnet, such as joining or leaving a multicast. Those •	
services might cause the SM to (re)configure the subnet.

Communication Manager (CM) is an entity that is capable of running on each port, if the port supports it,  
to establish, maintain, and tear down QP connections.

RDMA Resources
In the RDMA API, a lot of resources need to be created and handled before any data can be sent or received. All of the 
resources are in the scope of a specific RDMA device, those resources cannot be shared or used across more than  
one local device, even if there are multiple devices in the same machine. Figure 13-3 presents the RDMA resource 
creation hierarchy.

Figure 13-3.  RDMA resource creation hierarchy

RDMA Device
The client needs to register with the RDMA stack in order to be notified about any RDMA device that is being added to 
the system or removed from it. After the initial registration, the client is notified for all existing RDMA devices. A callback 
will be invoked for every RDMA device, and the client can start working with these devices in the following ways:

Query the device for various attributes•	

Modify the device attributes•	

Create, work with and destroy resources•	
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The ib_register_client() method registers a kernel client that wants to use the RDMA stack. The specified 
callbacks will be invoked for every new InfiniBand device that currently exists in the system and that will be added 
to or removed from (using hot-plug functionality) the system. The ib_unregister_client() method unregisters a 
kernel client that wants to stop using the RDMA stack. Usually, it is called when the driver is being unloaded. Here is 
an sample code that shows how to register the RDMA stack in a kernel client:
 
static void my_add_one(struct ib_device *device)
{
...
}
 
static void my_remove_one(struct ib_device *device)
{
...
}
 
static struct ib_client my_client = {
    .name   = "my RDMA module",
    .add    = my_add_one,
    .remove = my_remove_one
};
 
static int __init my_init_module(void)
{
    int ret;
 
    ret = ib_register_client(&my_client);
    if (ret) {
        printk(KERN_ERR "Failed to register IB client\n");
        return ret;
    }
 
    return 0;
}
 
static void __exit my_cleanup_module(void)
{
    ib_unregister_client(&my_client);
}
 
module_init(my_init_module);
module_exit(my_cleanup_module);
 

Following here is a description of several more methods for handling an InfiniBand device.

The •	 ib_set_client_data() method sets a client context to be associated with an InfiniBand 
device.

The •	 ib_get_client_data() method returns the client context that was associated with an 
InfiniBand device using the ib_set_client_data() method.
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The •	 ib_register_event_handler() method registers a callback to be called for every 
asynchronous event that will occur to the InfiniBand device. The callback structure must be 
initialized with the INIT_IB_EVENT_HANDLER macro.

The •	 ib_unregister_event_handler() method unregisters the event handler.

The •	 ib_query_device() method queries the InfiniBand device for its attributes. Those 
attributes are constant and won’t be changed in subsequent calls of this method.

The •	 ib_query_port() method queries the InfiniBand device port for its attributes. Some of 
those attributes are constant, and some of them might be changed in subsequent calls of this 
method—for example, the port LID, state, and some other attributes.

The •	 rdma_port_get_link_layer() method returns the link layer of the device port.

The •	 ib_query_gid() method queries the InfiniBand device port’s GID table in a specific 
index. The ib_find_gid() method returns the index of a specific GID value in a port’s  
GID table.

The •	 ib_query_pkey() method queries the InfiniBand device port’s P_Key table in a specific 
index. The ib_find_pkey() method returns the index of a specific P_Key value in a port’s 
P_Key table.

Protection Domain (PD)
A PD allows associating itself with several other RDMA resources—such as SRQ, QP, AH, or MR—in order to provide a 
means of protection among them. RDMA resources that are associated with PDx cannot work with RDMA resources 
that were associated with PDy. Trying to mix those resources will end with an error. Typically, every module will have 
one PD. However, if a specific module wants to increase its security, it will use one PD for each remote QP or service 
that it uses. Allocation and deallocation of a PD is done like this:

The •	 ib_alloc_pd() method allocates a PD. It takes as an argument the pointer of the device 
object that was returned when the driver callback was called after its registration.

The •	 ib_dealloc_pd() method deallocates a PD. It is usually called when the driver is being 
unloaded or when the resources that are associated with the PD are being destroyed.

Address Handle (AH)
An AH is used in the Send Request of a UD QP to describe the path of the message from the local port to the remote 
port. The same AH can be used for several QPs if all of them send messages to the same remote port using the same 
attributes. Following is a description of four methods related to the AH:

The •	 ib_create_ah() method creates an AH. It takes as an argument a PD and attributes for the 
AH. The AH attributes of the AH can be filled directly or by calling the ib_init_ah_from_wc() 
method, which gets as a parameter a received Work Completion (ib_wc object) that includes 
the attributes of a successfully completed incoming message, and the port it was received from. 
Instead of calling the ib_init_ah_from_wc() method and then the ib_create_ah() method, 
one can call the ib_create_ah_from_wc() method.

The •	 ib_modify_ah() method modifies the attributes of an existing AH.

The •	 ib_query_ah() method queries for the attributes of an existing AH.

The •	 ib_destroy_ah() method destroys an AH. It is called when there isn’t a need to send any 
further messages to the node that the AH describes the path to.
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Memory Region (MR)
Every memory buffer that is accessed by the RDMA device needs to be registered. During the registration process,  
the following tasks are performed on the memory buffer:

Separate the contiguous memory buffer to memory pages.•	

The mapping of the virtual-to-physical translation will be done.•	

The memory pages permission is checked to ensure that the requested permissions for the MR •	
is supported by them.

The memory pages are pinned, to prevent them from being swapped out. This keeps the •	
virtual-to-physical mapping unchanged.

After a successful memory registration is completed, it has two keys:

•	 Local key (lkey): A key for accessing this memory by local Work Requests.

•	 Remote key (rkey): A key for accessing this memory by a remote machine using  
RDMA operations.

Those keys will be used in Work Requests when referring to those memory buffers. The same memory buffers 
can be registered several times, even with different permissions. The following is a description of some methods 
related to the MR:

The •	 ib_get_dma_mr() method returns a Memory Region for system memory that is usable for 
DMA. It takes a PD and the requested access permission for the MR as arguments.

The •	 ib_dma_map_single() method maps a kernel virtual address, that was allocated by the 
kmalloc() method family, to a DMA address. This DMA address will be used to access local 
and remote memory. The ib_dma_mapping_error() method should be used to check whether 
the mapping was successful.

The •	 ib_dma_unmap_single() method unmaps a DMA mapping that was done using  
ib_dma_map_single(). It should be called when this memory isn’t needed anymore.

Note■■  T here are some more flavors of ib_dma_map_single() that allow the mapping of pages, mapping according 
to DMA attributes, mapping using a scatter/gather list, or mapping using a scatter/gather list with DMA attributes: 
ib_dma_map_page(), ib_dma_map_single_attrs(), ib_dma_map_sg(), and ib_dma_map_sg_attrs(). All of them have 
corresponding unmap functions.

Before accessing a DMA mapped memory, the following methods should be called:

•	 ib_dma_sync_single_for_cpu() if the DMA region is going to be accessed by the CPU, or  
ib_dma_sync_single_for_device() if the DMA region is going to be accessed by the 
InfiniBand device.

The •	 ib_dma_alloc_coherent() method allocates a memory block that can be accessed by the 
CPU and maps it for DMA.

The •	 ib_dma_free_coherent() method frees a memory block that was allocated using  
ib_dma_alloc_coherent().
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The •	 ib_reg_phys_mr() method takes a set of physical pages, registers them, and prepares a 
virtual address that can be accessed by an RDMA device. If you want to change it after it was 
created, you should call the ib_rereg_phys_mr() method.

The •	 ib_query_mr() method retrieves the attributes of a specific MR. Note that most low-level 
drivers do not implement this method.

The •	 ib_dereg_mr() method deregisters an MR.

Fast Memory Region (FMR) Pool
Registration of a Memory Region is a “heavy” procedure that might take some time to complete, and the context 
that performs it even might sleep if required resources aren’t available when it is called. This behavior might be 
problematic when performed in certain contexts—for example, in the interrupt handler. Working with an FMR pool 
allows you to work with FMRs with registrations that are “lightweight” and can be registered in any context. The API of 
the FMR pool can be found in include/rdma/ib_fmr_pool.h.

Memory Window (MW)
Enabling a remote access to a memory can be done in two ways:

Register a memory buffer with remote permissions enabled.•	

Register a Memory Region and then bind a Memory Window to it.•	

Both of those ways will create a remote key (rkey) that can be used to access this memory with the specified 
permissions. However, if you wish to invalidate the rkey to prevent remote access to this memory, performing 
Memory Region deregistration might be a heavy procedure. Working with Memory Window on this Memory Region 
and binding or unbinding it when needed might provide a “lightweight” procedure for enabling and disabling remote 
access to memory. Following is a description of three methods related to the MW:

The •	 ib_alloc_mw() method allocates a Memory Window. It takes a PD and the MW type as 
arguments.

The •	 ib_bind_mw() method binds a Memory Window to a specified Memory Region with a 
specific address, size, and remote permissions by posting a special Work Request to a QP. It is 
called when you want to allow temporary remote access to its memory. A Work Completion 
in the Send Queue of the QP will be generated to describe the status of this operation. If 
ib_bind_mw() was called to a Memory Windows that is already bounded, to the same Memory 
Region or a different one, the previous binding will be invalidated.

The •	 ib_dealloc_mw() method deallocates the specified MW object.

Completion Queue (CQ)
Every posted Work Request, to either Send or Receive Queue, is considered outstanding until there is a corresponding 
Work Completion for it or for any Work Request that was posted after it. While the Work Request is outstanding, the 
content of the memory buffers that it points to is undetermined:

If the RDMA device reads this memory and sends its content over the wire, the client cannot •	
know if this buffer can be (re)used or released. If this is a reliable QP, a successful Work 
Completion means that the message was received by the remote side. If this is an unreliable 
QP, a successful Work Completion means that the message was sent.

If the RDMA device writes a message to this memory, the client cannot know if this buffer •	
contains the incoming message.
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A Work Completion specifies that the corresponding Work Request was completed and provides some information 
about it: its status, the used opcode, its size, and so on. A CQ is an object that contains the Work Completions. The 
client needs to poll the CQ in order to read the Work Completions that it has. The CQ works on a first-in, first-out (FIFO) 
basis: the order of Work Completions that will be de-queued from it by the client will be according to the order that they 
were enqueued to the CQ by the RDMA device. The client can read the Work Completions in polling mode or request to 
get a notification when a new Work Completion is added to the CQ. A CQ cannot hold more Work Completions than its 
size. If more Work Completions than its capacity are added to it, a Work Completion with an error will be added, a CQ 
error asynchronous event will be generated, and all the Work Queues associated with it will get an error. Here are some 
methods related to the CQ:

The •	 ib_create_cq() method creates a CQ. It takes the following as its arguments: the pointer 
of the device object that was returned when the driver callback was called after its registration 
and the attributes for the CQ, including its size and the callbacks that will be called when there 
is an asynchronous event on this CQ or a Work Completion is added to it.

The •	 ib_resize_cq() method changes the size of a CQ. The new number of entries cannot be 
less than the number of the Work Completions that currently populate the CQ.

The •	 ib_modify_cq() method changes the moderation parameter for a CQ. A Completion 
event will be generated if at least a specific number of Work Completions enter the CQ or a 
timeout will expire. Using it might help reduce the number of interrupts that happen in an 
RDMA device.

The •	 ib_peek_cq() method returns the number of available Work Completions in a CQ.

The •	 ib_req_notify_cq() method requests that a Completion event notification be generated 
when the next Work Completion, or Work Completion that includes a solicited event 
indication, is added to the CQ. If no Work Completion is added to the CQ after the  
ib_req_notify_cq() method was called, no Completion event notification will occur.

The •	 ib_req_ncomp_notif() method requests that a Completion event notification be created  
when a specific number of Work Completions exists in the CQ. Unlike the ib_req_notify_cq() 
method, when calling the ib_req_ncomp_notif() method, a Completion event notification 
will be generated even if the CQ currently holds this number of Work Completions.

The •	 ib_poll_cq() method polls for Work Completions from a CQ. It reads the Work 
Completions from the CQ in the order they were added to it and removes them from it.

Here is an example of a code that empties a CQ—that is, reads all the Work Completions from a CQ, and checks 
their status:
 
struct ib_wc wc;
int num_comp = 0;
 
while (ib_poll_cq(cq, 1, &wc) > 0) {
    if (wc.status != IB_WC_SUCCESS) {
        printk(KERN_ERR "The Work Completion[%d] has a bad status %d\n",
                         num_comp, wc.status);
        return -EINVAL;
    }
    num_comp ++;
}
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eXtended Reliable Connected (XRC) Domain
An XRC Domain is an object that is used to limit the XRC SRQs an incoming message can target. That XRC domain 
can be associated with several other RDMA resources that work with XRC, such as SRQ and QP.

Shared Receive Queue (SRQ)
An SRQ is a way for the RDMA architecture to be more scalable on the receive side. Instead of having a separate Receive 
Queue for every Queue Pair, there is a shared Receive Queue that all of the QPs are connected to. When they need to 
consume a Receive Request, they fetch it from the SRQ. Figure 13-4 presents QPs that are associated with an SRQ.

Figure 13-4.  QPs that are associated with an SRQ
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Here’s what you do if you have N QPs, and each of them might receive a burst of M messages at a random time:

Without using an SRQ, you post N*M Receive Requests.•	

With SRQs, you post K*M (where K << N) Receive Requests.•	

Unlike a QP, which doesn’t have any mechanism to determine the number of outstanding Work Requests in it, 
with an SRQ you can set a watermark limit. When the number of Receive Requests drops below this limit, an SRQ 
limit asynchronous event will be created for this SRQ. The downside of using an SRQ is that you cannot predict which 
QP will consume every posted Receive Request from the SRQ, so the message size that each posted Receive Request 
will be able to hold must be the maximum incoming message size that any of the QPs might get. This limitation can 
be handled by creating several SRQs, one for each different maximum message size, and associating them with the 
relevant QPs according to their expected message sizes.

Here is a description of some methods related to the SRQ and an example:

The •	 ib_create_srq() method creates an SRQ. It takes a PD and attributes for the SRQ.

The •	 ib_modify_srq() method modifies the attributes of the SRQ. It is used to set a new 
watermark value for the SRQ’s limit event or to resize the SRQ for devices that support it.

Here is an example for setting the value of the watermark to get an asynchronous event when the number of RRs 
in the SRQ drops below 5:
 
struct ib_srq_attr srq_attr;
int ret;
 
memset(&srq_attr, 0, sizeof(srq_attr));
srq_attr.srq_limit = 5;
 
ret = ib_modify_srq(srq, &srq_attr, IB_SRQ_LIMIT);
if (ret) {
    printk(KERN_ERR "Failed to set the SRQ's limit value\n");
    return ret;
}
 

Following here is a description of several more methods for handling an SRQ.

The •	 ib_query_srq() method queries for the current SRQ attributes. This method is usually 
used to check the content of the SRQ’s limit value. The value 0 in the srq_limit member in the 
ib_srq_attr object means that there isn’t any SRQ limit watermark set.

The •	 ib_destroy_srq() method destroys an SRQ.

The •	 ib_post_srq_recv() method takes a linked list of Receive Requests as an argument and 
adds them to a specified Shared Receive Queue for future processing.

Here is an example for posting a single Receive Request to an SRQ. It saves an incoming message in a memory 
buffer, using its registered DMA address in a single gather entry:
 
struct ib_recv_wr wr, *bad_wr;
struct ib_sge sg;
int ret;
 
memset(&sg, 0, sizeof(sg));
sg.addr   = dma_addr;
sg.length = len;
sg.lkey   = mr->lkey;
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memset(&wr, 0, sizeof(wr));
wr.next     = NULL;
wr.wr_id    = (uintptr_t)dma_addr;
wr.sg_list  = &sg;
wr.num_sge  = 1;
 
ret = ib_post_srq_recv(srq, &wr, &bad_wr);
if (ret) {
    printk(KERN_ERR "Failed to post Receive Request to an SRQ\n");
    return ret;
}

Queue Pair (QP)
Queue Pair is the actual object used to send and receive data in InfiniBand. It has two separate Work Queues: Send 
and Receive Queues. Every Work Queue has a specific number of Work Requests (WR) that can be posted to it, a 
number of scatter/gather elements that are supported for each WR, and a CQ to which the Work Requests whose 
processing has ended will add Work Completion. Those Work Queues can be created with similar or different 
attributes—for example, the number of WRs that can be posted to each Work Queue. The order in each Work Queue is 
guaranteed—that is, the processing of a Work Request in the Send Queue will start according to the order of the Send 
Requests submission. And the same behavior applies to the Receive Queue. However, there isn’t any relation between 
them—that is, an outstanding Send Request can be processed even if it was posted after posting a Receive Request to 
the Receive Queue. Figure 13-5 presents a QP.

Figure 13-5.  QP (Queue Pair)

Upon creation, every QP has a unique number across the RDMA device at a specific point in time.
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QP Transport Types
There are several QP transport types supported in InfiniBand:

•	 Reliable Connected (RC): One RC QP is connected to a single remote RC QP, and reliability 
is guaranteed—that is, the arrival of all packets according to their order with the same content 
that they were sent with is guaranteed. Every message is fragmented to packets with the size 
of the path MTU at the sender side and defragmented at the receiver side. This QP supports 
Send, RDMA Write, RDMA Read, and Atomic operations.

•	 Unreliable Connected (UC): One UC QP is connected to a single remote UC QP, and 
reliability isn’t guaranteed. Also, if a packet in a message is lost, the whole message is lost. 
Every message is fragmented to packets with the size of the path MTU at the sender side and 
defragmented at the receiver side. This QP supports Send and RDMA Write operations.

•	 Unreliable Datagram (UD): One UD QP can send a unicast message to any UD QP in the 
subnet. Multicast messages are supported. Reliability isn’t guaranteed. Every message is 
limited to one packet message, with its size limited to the path MTU size. This QP supports 
only Send operations.

•	 eXtended Reliable Connected (XRC): Several QPs from the same node can send messages 
to a remote SRQ in a specific node. This is useful for decreasing the number of QPs between 
two nodes from the order of the number of CPU cores—that is, QP in a process per core, to one 
QP. This QP supports all operations that are supported by RC QP. This type is relevant only for 
userspace applications.

•	 Raw packet: Allows the client to build a complete packet, including the L2 headers, and send 
it as is. At the receiver side, no header will be stripped by the RDMA device.

•	 Raw IPv6/Raw Ethertype: QPs that allow sending raw packets that aren’t interpreted by the IB 
device. Currently, both of these types aren’t supported by any RDMA device.

There are special QP transport types that are used for subnet management and special services:

•	 SMI/QP0: QP used for subnet managements packets.

•	 GSI/QP1: QP used for general services packets.

The ib_create_qp() method creates a QP. It takes a PD and the requested attributes that this QP will be created 
with as arguments. Here is an example for creating an RC QP using a PD that was created, with two different CQs: one 
for the Send Queue and one for the Receive Queue.
 
struct ib_qp_init_attr init_attr;
struct ib_qp *qp;
 
memset(&init_attr, 0, sizeof(init_attr));
init_attr.event_handler       = my_qp_event;
init_attr.cap.max_send_wr     = 2;
init_attr.cap.max_recv_wr     = 2;
init_attr.cap.max_recv_sge    = 1;
init_attr.cap.max_send_sge    = 1;
init_attr.sq_sig_type         = IB_SIGNAL_ALL_WR;
init_attr.qp_type             = IB_QPT_RC;
init_attr.send_cq             = send_cq;
init_attr.recv_cq             = recv_cq;
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    qp = ib_create_qp(pd, &init_attr);
    if (IS_ERR(qp)) {
        printk(KERN_ERR "Failed to create a QP\n");
        return PTR_ERR(qp);
    }

QP State Machine
A QP has a state machine that defines what the QP is capable of doing at each state:

•	 Reset state: Each QP is generated at this state. At this state, no Send Requests or Receive 
Requests can be posted to it. All incoming messages are silently dropped.

•	 Initialized state: At this state, no Send Requests can be posted to it. However, Receive 
Requests can be posted, but they won’t be processed. All incoming messages are silently 
dropped. It is a good practice to post a Receive Request to a QP at this state before moving it to 
RTR (Ready To Receive). Doing this prevents a case where remote QP sends messages need to 
consume a Receive Request but such were not posted yet.

•	 Ready To Receive (RTR) state: At this state, no Send Requests can be posted to it, but Receive 
Requests can be posted and processed. All incoming messages will be handled. The first 
incoming message that is received at this state will generate the communication-established 
asynchronous event. A QP that only receives messages can stay at this state.

•	 Ready To Send (RTS) state: At this state, both Send Requests and Receive Requests can  
be posted and processed. All incoming messages will be handled. This is the common  
state for QPs.

•	 Send Queue Drained (SQD) state: At this state, the QP completes the processing of all the 
Send Requests that their processing has started. Only when there aren’t any messages that  
can be sent, you can change some of the QP attributes. This state is separated into two  
internal states:

•	 Draining: Messages are still being sent.

•	 Drained: The sending of the messages was completed.

•	 Send Queue Error (SQE) state: The RDMA device automatically moves a QP to this state 
when there is an error in the Send Queue for unreliable transport types. The Send Request 
that caused the error will be completed with the error reason, and all of the consecutive Send 
Requests will be flushed. The Receive Queue will still work—that is, Receive Requests can be 
posted, and incoming messages will be handled. The client can recover from this state and 
modify the QP state back to RTS.

•	 Error state: At this state, all of the outstanding Work Requests will be flushed. The RDMA 
device can move the QP to this state if this is a reliable transport type and there was an 
error with a Send Request, or if there was an error in the Receive Queue regardless of which 
transport type was used. All incoming messages are silently dropped.

A QP can be transitioned by ib_modify_qp() from any state to the Reset state and to the Error state. Moving the QP 
to the Error state will flush all of the outstanding Work Requests. Moving the QP to the Reset state will clear all previously 
configured attributes and remove all of the outstanding Work Request and Work Completions that were ended on this 
QP in the Completion Queues that this QP is working with. Figure 13-6 presents a QP state machine diagram.
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The ib_modify_qp() method modifies the attributes of a QP. It takes as an argument the QP to modify and the 
attributes of the QP that will be modified. The state machine of the QP can be changed according to the diagram 
shown in Figure 13-6. Every QP transport type requires different attributes to be set in each QP state transition.

Here is an example for modifying a newly created RC QP to the RTS state, in which it can send and receive 
packets. The local attributes are the outgoing port, the used SL, and the starting Packet Serial Number for the Send 
Queue. The remote attributes needed are the Receive PSN, the QP number, and the LID of the port that it uses.
 
    struct ib_qp_attr attr = {
        .qp_state        = IB_QPS_INIT,
        .pkey_index      = 0,
        .port_num        = port,
        .qp_access_flags = 0
    };
 
    ret = ib_modify_qp(qp, &attr,
              IB_QP_STATE         |
              IB_QP_PKEY_INDEX    |
              IB_QP_PORT          |
              IB_QP_ACCESS_FLAGS);

Figure 13-6.  QP state machine
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if (ret) {
          printk(KERN_ERR "Failed to modify QP to INIT state\n");
          return ret;
}
 
attr.qp_state              = IB_QPS_RTR;
attr.path_mtu              = mtu;
attr.dest_qp_num           = remote->qpn;
attr.rq_psn                = remote->psn;
attr.max_dest_rd_atomic    = 1;
attr.min_rnr_timer         = 12;
attr.ah_attr.is_global     = 0;
attr.ah_attr.dlid          = remote->lid;
attr.ah_attr.sl            = sl;
attr.ah_attr.src_path_bits = 0,
attr.ah_attr.port_num      = port
 
ret = ib_modify_qp(ctx->qp, &attr,
          IB_QP_STATE                 |
          IB_QP_AV                    |
          IB_QP_PATH_MTU              |
          IB_QP_DEST_QPN              |
          IB_QP_RQ_PSN                |
          IB_QP_MAX_DEST_RD_ATOMIC    |
          IB_QP_MIN_RNR_TIMER);
if (ret) {
  printk(KERN_ERR "Failed to modify QP to RTR state\n");
  return ret;
}
 
attr.qp_state       = IB_QPS_RTS;
attr.timeout        = 14;
attr.retry_cnt      = 7;
attr.rnr_retry      = 6;
attr.sq_psn         = my_psn;
attr.max_rd_atomic  = 1;
ret = ib_modify_qp(ctx->qp, &attr,
          IB_QP_STATE             |
          IB_QP_TIMEOUT           |
          IB_QP_RETRY_CNT         |
          IB_QP_RNR_RETRY         |
          IB_QP_SQ_PSN            |
          IB_QP_MAX_QP_RD_ATOMIC);
if (ret) {
  printk(KERN_ERR "Failed to modify QP to RTS state\n");
  return ret;
}
 

Following here is a description of several more methods for handling a QP:

The •	 ib_query_qp() method queries for the current QP attributes. Some of the attributes are constant  
(the values that the client specifies), and some of them can be changed (for example, the state).

The •	 ib_destroy_qp() method destroys a QP. It is called when the QP isn’t needed anymore.
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Work Request Processing
Every posted Work Request, to either the Send or Receive Queue, is considered outstanding until there is a Work 
Completion, which was polled from the CQ which is associated with this Work Queue for this Work Request or for 
Work Requests in the same Work Queue that were posted after it. Every outstanding Work Request in the Receive 
Queue will end with a Work Completion. A Work Request processing flow in a Work Queue is according to the 
diagram shown in Figure 13-7.

Figure 13-7.  Work Request processing flow

In the Send Queue, you can choose (when creating a QP) whether you want every Send Request to end with a 
Work Completion or whether you want to select the Send Requests that will end with Work Completions—that is, 
selective signaling. You might encounter an error for an unsignaled Send Request; nevertheless, a Work Completion 
with bad status will be generated for it.

When a Work Request is outstanding one cannot (re)use or free the resources that were specified in it when 
posting this Work Request. For example:

When posting a Send Request for a UD QP, the AH cannot be freed.•	

When posting a Receive Request, the memory buffers that were referred to in a scatter/gather •	
(s/g) list cannot be read, because it is unknown if the RDMA device already wrote the data  
in them.

“Fencing” is the ability to prevent the processing of a specific Send Request until the processing of the previous 
RDMA Read and Atomic operations ends. Adding the Fence indication to a Send Request can be useful, for example, 
when using RDMA Read from a remote address and sending the data, or part of it, in the same Send Queue. Without 
fencing, the send operation might start before the data is retrieved and available in local memory. When posting a 
Send Request to a UC or RC QP, the path to the target is known, because it was provided when moving the QP to the 
RTR state. However, when posting a Send Request to a UD QP, you need to add an AH to describe the path to the 
target(s) of this message. If there is an error related to the Send Queue, and if this is an Unreliable transport type, the 
Send Queue will move to the Error state (that is, the SQE state) but the Receive Queue will still be fully functional. The 
client can recover from this state and change the QP state back to RTS. If there is an error related to the Receive Queue, 
the QP will be moved to the Error state because this is an unrecoverable error. When a Work Queue is moved to the 
Error state, the Work Request that caused the error is ended with a status that indicates the nature of the error and the 
rest of the Work Requests in this Queue are flushed with error.
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Supported Operations in the RDMA Architecture
There are several operation types supported in InfiniBand:

•	 Send: Send a message over the wire. The remote side needs to have a Receive Request 
available, and the message will be written in its buffers.

•	 Send with Immediate: Send a message over the wire with an extra 32 bits of out-of-band data. 
The remote side needs to have a Receive Request available, and the message will be written in 
its buffers. This immediate data will be available in the Work Completion of the receiver.

•	 RDMA Write: Send a message over the wire to a remote address.

•	 RDMA Write with Immediate: Send a message over the wire, and write it to a remote address. 
The remote side needs to have a Receive Request available. This immediate data will be 
available in the Work Completion of the receiver. This operation can be seen as RDMA Write + 
Send with immediate with a zero-byte message.

•	 RDMA Read: Read a remote address, and fill the local buffer with its content.

•	 Compare and Swap: Compare the content of a remote address with valueX; if they are equal, 
replace its content with the valueY. All of this is performed in an atomic way. The original 
remote memory content is sent and saved locally.

•	 Fetch and Add: Add a value to the content of a remote address in an atomic way. The original 
remote memory content is sent and saved locally.

•	 Masked Compare and Swap: Compare the part of the content using maskX of a remote 
address with valueX; if they are equal, replace part of its content using the bits in maskY with 
valueY. All of this is performed in an atomic way. The original remote memory content is sent 
and saved locally.

•	 Masked Fetch and Add: Add a value to the content of a remote address in an atomic way,  
and change only the bits that are specified in the mask. The original remote memory content 
is sent and saved locally.

•	 Bind Memory Window: Binds a Memory Windows to a specific Memory Region.

•	 Fast registration: Registers a Fast Memory Region using a Work Request.

•	 Local invalidate: Invalidates a Fast Memory Region using a Work Request. If someone uses 
its old lkey/rkey, it will be considered an error. It can be combined with send/RDMA read; in 
such a case, first the send/read will be performed, and only then this Fast Memory Region will 
be invalidated.

The Receive Request specifies where the incoming message will be saved for operations that consume a Receive 
Request. The total size of the memory buffers specified in the scatter list must be equal to or greater than the size of 
the incoming message.

For UD QP, because the origin of the message is unknown in advance (same subnet or another subnet, unicast 
or multicast message), an extra 40 bytes, which is the GRH header size, must be added to the Receive Request buffers. 
The first 40 bytes will be filled with the GRH of the message, if such is available. This GRH information describes 
how to send a message back to the sender. The message itself will start at offset 40 in the memory buffers that were 
described in the scatter list.

The ib_post_recv() method takes a linked list of Receive Requests and adds them to the Receive Queue of a 
specific QP for future processing. Here is an example for posting a single Receive Request for a QP. It saves an incoming 
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message in a memory buffer using its registered DMA address in a single gather entry. qp is a pointer to a QP that was 
created using ib_create_qp(). The memory buffer is a block that was allocated using kmalloc() and mapped for DMA 
using ib_dma_map_single(). The used lkey is from the MR that was registered using ib_get_dma_mr().
 
struct ib_recv_wr wr, *bad_wr;
struct ib_sge sg;
int ret;
 
memset(&sg, 0, sizeof(sg));
sg.addr   = dma_addr;
sg.length = len;
sg.lkey   = mr->lkey;
 
memset(&wr, 0, sizeof(wr));
wr.next     = NULL;
wr.wr_id    = (uintptr_t)dma_addr;
wr.sg_list  = &sg;
wr.num_sge  = 1;
 
ret = ib_post_recv(qp, &wr, &bad_wr);
 
if (ret) {
    printk(KERN_ERR "Failed to post Receive Request to a QP\n");
    return ret;
}
 

The ib_post_send() method takes as an argument a linked list of Send Requests and adds them to the Send 
Queue of a specific QP for future processing. Here is an example for posting a single Send Request of a Send operation 
for a QP. It sends the content of a memory buffer using its registered DMA address in a single gather entry.
 
struct ib_sge sg;
struct ib_send_wr wr, *bad_wr;
int ret;
 
memset(&sg, 0, sizeof(sg));
sg.addr   = dma_addr;
sg.length = len;
sg.lkey   = mr->lkey;
 
memset(&wr, 0, sizeof(wr));
wr.next       = NULL;
wr.wr_id      = (uintptr_t)dma_addr;
wr.sg_list    = &sg;
wr.num_sge    = 1;
wr.opcode     = IB_WR_SEND;
wr.send_flags = IB_SEND_SIGNALED;
 
ret = ib_post_send(qp, &wr, &bad_wr);
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if (ret) {
    printk(KERN_ERR "Failed to post Send Request to a QP\n");
    return ret;
}

Work Completion Status
Every Work Completion can be ended successfully or with an error. If it ends successfully, the operation was finished 
and the data was sent according to the transport type reliability level. If this Work Completion contains an error, the 
content of the memory buffers is unknown. There can be many reasons that the Work Request status indicates that 
there is an error: protection violation, bad address, and so on. The violation errors won’t perform any retransmission. 
However, there are two special retry flows that are worth mentioning. Both of them are done automatically by the 
RDMA device, which retransmit packets, until the problem is solved or it exceeds the number of retransmissions. 
If the issue was solved, the client code won’t be aware that this even happened, besides a temporary performance 
hiccup. This is relevant only for Reliable transport types.

Retry Flow

If the receiver side didn’t return any ACK or NACK to the sender side within the expected timeout, the sender might 
send the message again, according to the timeout and the retry count attributes that were configured in the QP 
attributes. There might be several reasons for having such a problem:

The attributes of the remote QP or the path to it aren’t correct.•	

The remote QP state didn’t get to (at least) the RTR state.•	

The remote QP state moved to the Error state.•	

The message itself was dropped on the way from the sender to the receiver (for example,  •	
a CRC error).

The ACK or NACK of messages was dropped on the way from the receiver to the sender  •	
(for example, a CRC error).

Figure 13-8 presents the retry flow becasue of a packet loss that overcame a packet drop.
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If eventually the ACK/NACK is received by the sender QP successfully, it will continue to send the rest of the 
messages. If any message in the future has this problem too, the retry flow will be done again for this message as 
well, without any history that this was done before. If even after retrying several times the receiver side still doesn’t 
respond, there will be a Work Completion with Retry Error on the sender side.

Receiver Not Ready (RNR) Flow

If the receiver side got a message that needs to consume a Receive Request from the Receiver Queue, but there isn’t 
any outstanding Receive Request, the receiver will send back to the sender an RNR NACK. After a while, according to 
the time that was specified in the RNR NACK, the sender will try to send the message again.

If eventually the receiver side posts a Receiver Request in time, and the incoming message consumes it, an ACK 
will be sent to the sender side to indicate that the message was saved successfully. If any message in the future has 
this problem too, the RNR retry flow will be done again for this message as well, without any history that this was done 
before. If even after retrying several times the receiver side still didn’t post a Receiver Request and an RNR NACK was 
sent to the sender for each sent message, a Work Completion with RNR Retry Error will be generated on the sender 
side. Figure 13-9 presents the RNR retry flow of retry that overcome a missing Receive Request in he receiver side.

Figure 13-8.  A retry flow (on reliable transport types)
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In this section, I covered the Work Request status and some of the bad flows that can happen to a message. In the 
next section, I will discuss the multicast groups.

Multicast Groups
Multicast groups are a means to send a message from one UD QP to many UD QPs. Every UD QP that wants to get 
this message needs to be attached to the multicast group. When a device gets a multicast packet, it duplicates it to all 
of the QPs that are attached to that group. Following is a description of two methods related to multicast groups:

The •	 ib_attach_mcast() method attaches a UD QP to a multicast group within an InfiniBand 
device. It accepts the QP to be attached and the multicast group attributes.

The •	 ib_detach_mcast() method detaches a UD QP from a multicast group.

Difference Between the Userspace and the Kernel-Level RDMA API
The userspace and the kernel level of the RDMA stack API are quite similar, because they cover the same technology 
and need to be able to provide the same functionality. When the userspace is calling a method of the control path 
from the RDMA API, it performs a context switch to the kernel level to protect privileged resources and to synchronize 
objects that need to be synchronized (for example, the same QP number cannot be assigned to more than one QP at 
the same time).

Figure 13-9.  RNR retry flow (on reliable transport types)
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However, there are some differences between the userspace and the kernel-level RDMA API and functionality:

The prefix of all the APIs in the kernel level is “ib_”, while in the userspace the prefix is “ibv_”.•	

There are enumerations and macros that exist only in the RDMA API in the kernel level.•	

There are QP types that are available only in the kernel (for example, the SMI and GSI QPs).•	

There are privileged operations that can be performed only in the kernel level—for example, •	
registration of a physical memory, registration of an MR using a WR, and FMRs.

Some functionality isn’t available in the RDMA API in the userspace—for example, Request  •	
for N notification.

The kernel API is asynchronous. There are callbacks that are called when there is an •	
asynchronous event or Completion event. In the userspace, everything is synchronous and 
the user needs to explicitly check if there is an asynchronous event or Completion event in its 
running context (that is, thread).

XRC isn’t relevant for kernel-level clients.•	

There are new features that were introduced to the kernel level, but they are not available (yet) •	
in the userspace.

The userspace API is supplied by the userspace library “libibverbs.” And although some of the RDMA 
functionality in the user level is less than the kernel-level one, it is enough to enjoy the benefits of the InfiniBand 
technology.

Summary
You have learned in this chapter about the advantages of the InfiniBand technology. I reviewed the RDMA stack 
organization. I discussed the resource-creation hierarchy and all of the important objects and their API, which is 
needed in order to write client code that uses InfiniBand. You also saw some examples that use this API. The next 
chapter will deal with advanced topics like network namespaces and the Bluetooth subsystem.

Quick Reference
I will conclude this chapter with a short list of important methods of the RDMA API. Some of them were mentioned in 
this chapter.

Methods
Here are the methods.

int ib_register_client(struct ib_client *client);
Register a kernel client that wants to use the RDMA stack.

void ib_unregister_client(struct ib_client *client);
Unregister a kernel client that wants to stop using the RDMA stack.
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void  ib_set_client_data(struct ib_device *device, struct ib_client *client,  
void *data);
Set a client context to be associated with an InfiniBand device.

void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
Read the client context that was associated with an InfiniBand device.

int ib_register_event_handler(struct ib_event_handler *event_handler);
Register a callback to be called for every asynchronous event that occurs to the InfiniBand device.

int ib_unregister_event_handler(struct ib_event_handler *event_handler);
Unregister a callback to be called for every asynchronous event that occurs to the InfiniBand device.

int ib_query_device(struct ib_device *device, struct ib_device_attr *device_attr);
Query an InfiniBand device for its attributes.

int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr  
*port_attr);
Query an InfiniBand device port for its attributes.

enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,  
u8 port_num);
Query for the link layer of the InfiniBand device’s port.

int ib_query_gid(struct ib_device *device, u8 port_num, int index, union  
ib_gid *gid);
Query for the GID in a specific index in the InfiniBand device’s port GID table.

int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey);
Query for the P_Key-specific index in the InfiniBand device’s port P_Key table.

int ib_find_gid(struct ib_device *device, union ib_gid *gid, u8 *port_num,  
u16 *index);
Find the index of a specific GID value in the InfiniBand device’s port GID table.
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int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index);
Find the index of a specific P_Key value in the InfiniBand device’s port P_Key table.

struct ib_pd *ib_alloc_pd(struct ib_device *device);
Allocate a PD to be used later to create other InfiniBand resources.

int ib_dealloc_pd(struct ib_pd *pd);
Deallocate a PD.

struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
Create an AH that will be used when posting a Send Request in a UD QP.

int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 
struct ib_grh *grh, struct ib_ah_attr *ah_attr);
Initializes an AH attribute from a Work Completion of a received message and a GRH buffer. Those AH attributes can 
be used when calling the ib_create_ah() method.

struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, struct 
ib_grh *grh, u8 port_num);
Create an AH from a Work Completion of a received message and a GRH buffer.

int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
Modify the attributes of an existing AH.

int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
Query the attributes of an existing AH.

int ib_destroy_ah(struct ib_ah *ah);
Destroy an AH.

struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
Return an MR system memory that is usable for DMA.
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static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr);
Check if the DMA memory points to an invalid address—that is, check whether the DMA mapping operation failed.

static inline u64 ib_dma_map_single(struct ib_device *dev, void *cpu_addr, size_t 
size, enum dma_data_direction direction);
Map a kernel virtual address to a DMA address.

static inline void ib_dma_unmap_single(struct ib_device *dev, u64 addr, size_t size, 
enum dma_data_direction direction);
Unmap a DMA mapping of a virtual address.

static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, void *cpu_addr, 
size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
Map a kernel virtual memory to a DMA address according to DMA attributes.

static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, u64 addr, 
size_t size, enum dma_data_direction direction, struct dma_attrs *attrs);
Unmap a DMA mapping of a virtual address that was mapped according to DMA attributes.

static inline u64 ib_dma_map_page(struct ib_device *dev, struct page *page, 
unsigned long offset, size_t size, enum dma_data_direction direction);
Maps a physical page to a DMA address.

static inline void ib_dma_unmap_page(struct ib_device *dev, u64 addr, size_t size, 
enum dma_data_direction direction);
Unmap a DMA mapping of a physical page.

static inline int ib_dma_map_sg(struct ib_device *dev, struct scatterlist *sg,  
int nents, enum dma_data_direction direction);
Map a scatter/gather list to a DMA address.

static inline void ib_dma_unmap_sg(struct ib_device *dev, struct scatterlist *sg,  
int nents, enum dma_data_direction direction);
Unmap a DMA mapping of a scatter/gather list.
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static inline int ib_dma_map_sg_attrs(struct ib_device *dev, struct scatterlist *sg, 
int nents, enum dma_data_direction direction, struct dma_attrs *attrs); 
Map a scatter/gather list to a DMA address according to DMA attributes.

static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, struct scatterlist 
*sg, int nents, enum dma_data_direction direction, struct dma_attrs *attrs);
Unmap a DMA mapping of a scatter/gather list according to DMA attributes.

static inline u64 ib_sg_dma_address(struct ib_device *dev, struct scatterlist *sg);
Return the address attribute of a scatter/gather entry.

static inline unsigned int ib_sg_dma_len(struct ib_device *dev, struct  
scatterlist *sg);
Return the length attribute of a scatter/gather entry.

static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, u64 addr, 
size_t size, enum dma_data_direction dir);
Transfer a DMA region ownership to the CPU. It should be called before the CPU accesses a DMA mapped region 
whose ownership was previously transferred to the device.

static inline void ib_dma_sync_single_for_device(struct ib_device *dev, u64 addr, 
size_t size, enum dma_data_direction dir);
Transfer a DMA region ownership to the device. It should be called before the device accesses a DMA mapped region 
whose ownership was previously transferred to the CPU.

static inline void *ib_dma_alloc_coherent(struct ib_device *dev, size_t size,  
u64 *dma_handle, gfp_t flag);
Allocate a memory block that can be accessed by the CPU, and map it for DMA.

static inline void ib_dma_free_coherent(struct ib_device *dev, size_t size,  
void *cpu_addr, u64 dma_handle);
Free a memory block that was allocated using ib_dma_alloc_coherent().



Chapter 13 ■ InfiniBand

402

struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, 
int num_phys_buf, int mr_access_flags, u64 *iova_start);
Take a physical page list, and prepare it for being accessed by the InfiniBand device.

int ib_rereg_phys_mr(struct ib_mr *mr, int mr_rereg_mask, struct ib_pd *pd, struct 
ib_phys_buf *phys_buf_array, int num_phys_buf, int mr_access_flags, u64  
*iova_start);
Change the attributes of an MR.

int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
Query for the attributes of an MR.

int ib_dereg_mr(struct ib_mr *mr);
Deregister an MR.

struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
Allocate an MW. This MW will be used to allow remote access to an MR.

static inline int ib_bind_mw(struct ib_qp *qp, struct ib_mw *mw, struct ib_mw_bind 
*mw_bind);
Bind an MW to an MR to allow a remote access to local memory with specific permissions.

int ib_dealloc_mw(struct ib_mw *mw);
Deallocates an MW.

struct ib_cq *ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler, 
void (*event_handler)(struct ib_event *, void *), void *cq_context, int cqe,  
int comp_vector);
Create a CQ. This CQ will be used to indicate the status of ended Work Requests for Send or Receive Queues.

int ib_resize_cq(struct ib_cq *cq, int cqe);
Change the number of entries in a CQ.
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int ib_modify_cq(structib_cq *cq, u16 cq_count, u16 cq_period);
Modify the moderation attributes of a CQ. This method is used to decrease the number of interrupts of an InfiniBand 
device.

int ib_peek_cq(structib_cq *cq, intwc_cnt);
Return the number of available Work Completions in a CQ.

static inline int ib_req_notify_cq(struct ib_cq *cq, enum ib_cq_notify_flags flags);
Request a Completion notification event to be generated when the next Work Completion is added to the CQ.

static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt);
Request a Completion notification event to be generated when there is a specific number of Work Completions in a 
CQ.

static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
Read and remove one or more Work Completions from a CQ. They are read in the order that they were added to the 
CQ.

struct ib_srq *ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr);
Create an SRQ that will be used as a shared Receive Queue for several QPs.

int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum  
ib_srq_attr_mask srq_attr_mask);
Modify the attributes of an SRQ.

int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
Query for the attributes of an SRQ. The SRQ limit value might be changed in subsequent calls to this method.

int ib_destroy_srq(struct ib_srq *srq);
Destroy an SRQ.

struct ib_qp *ib_create_qp(struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr);
Create a QP. Every new QP is assigned with a QP number that isn’t in use by other QPs at the same time.
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int ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask);
Modify the attributes of a QP, which includes Send and Receive Queue attributes and the QP state.

int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, 
struct ib_qp_init_attr *qp_init_attr);
Query for the attributes of a QP. Some of the attributes might be changed in subsequent calls to this method.

int ib_destroy_qp(struct ib_qp *qp);
Destroy a QP.

static inline int ib_post_srq_recv(struct ib_srq *srq, struct ib_recv_wr *recv_wr, 
struct ib_recv_wr **bad_recv_wr);
Adds a linked list of Receive Requests to an SRQ.

static inline int ib_post_recv(struct ib_qp *qp, struct ib_recv_wr *recv_wr, struct 
ib_recv_wr **bad_recv_wr);
Adds a linked list of Receive Requests to the Receive Queue of a QP.

static inline int ib_post_send(struct ib_qp *qp, struct ib_send_wr *send_wr, struct 
ib_send_wr **bad_send_wr);
Adds a linked list of Send Requests to the Send Queue of a QP.

int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
Attaches a UD QP to a multicast group.

int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
Detaches a UD QP from a multicast group.
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Chapter 14

Advanced Topics

Chapter 13 dealt with the InfiniBand subsystem and its implementation in Linux. This chapter deals with several 
advanced topics and some topics that didn’t fit logically into other chapters. The chapter starts with a discussion 
about network namespaces, a type of lightweight process virtualization mechanism that was added to Linux in recent 
years. I will discuss the namespaces implementation in general and network namespaces in particular. You will learn 
that only two new system calls are needed in order to implement namespaces. You will also see several examples of 
how simple it is to create and manage network namespaces with the ip command of iproute2, and how simple it is 
to move one network device from one network namespace to another and to attach a specified process to a specified 
network namespace. The cgroups subsystem also provides resource management solution, which is different from 
namespaces. I will describe the cgroups subsystem and its two network modules, net_prio and cls_cgroup, and give 
two examples of using these cgroup network modules.

Later on in this chapter, you will learn about Busy Poll Sockets and how to tune them. The Busy Poll Sockets 
feature provides an interesting performance optimization technique for sockets that need low latency and are willing 
to pay a cost of higher CPU utilization. The Busy Poll Sockets feature is available from kernel 3.11. I will also cover 
the Bluetooth subsystem, the IEEE 802.15.4 subsystem and the Near Field Communication (NFC) subsystem; these 
three subsystems typically work in short range networks, and the development of new features for these subsystem 
is progressing at a rapid pace. I will also discuss Notification Chains, which is an important mechanism that you may 
encounter while developing or debugging kernel networking code and the PCI subsystem, as many network devices 
are PCI devices. I will not delve deep into the PCI subsystem details, as this book is not about device drivers. I will 
conclude the chapter with three short sections, one about the teaming network driver (which is the new kernel link 
aggregation solution), one about the Point-to-Point over Ethernet (PPPoE) Protocol, and finally one about Android.

Network Namespaces
This section covers Linux namespaces, what they are for and how they are implemented. It includes an in-depth 
discussion of network namespaces, giving some examples that will demonstrate their usage. Linux namespaces 
are essentially a virtualization solution. Operating system virtualization was implemented in mainframes many 
years before solutions like Xen or KVM hit the market. Also with Linux namespaces, which are a form of process 
virtualization, the idea is not new at all. It was tried in the Plan 9 operating system (see this article from 1992: “The Use 
of Name Spaces in Plan 9”, www.cs.bell-labs.com/sys/doc/names.html).

Namespaces is a form of lightweight process virtualization, and it provides resource isolation. As opposed to 
virtualization solutions like KVM or Xen, with namespaces you do not create additional instances of the operating 
system on the same host, but use only a single operating system instance. I should mention in this context that the 
Solaris operating system has a virtualization solution named Solaris Zones, which also uses a single operating system 
instance, but the scheme of resource partitioning is somewhat different than that of Linux namespaces (for example, 
in Solaris Zones there is a global zone which is the primary zone, and which has more capabilities). In the FreeBSD 
operating system there is a mechanism called jails, which also provides resource partitioning without running more 
than one instance of the kernel.

http://www.cs.bell-labs.com/sys/doc/names.html
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The main idea of Linux namespaces is to partition resources among groups of processes to enable a process  
(or several processes) to have a different view of the system than processes in other groups of processes. This feature 
is used, for example, to provide resource isolation in the Linux containers project (http://lxc.sourceforge.net/). 
The Linux containers project also uses another resource management mechanism that is provided by the cgroups 
subsystem, which will be described later in this chapter. With containers, you can run different Linux distributions on the 
same host using one instance of the operating systems. Namespaces are also needed for the checkpoint/restore feature, 
which is used in high performance computing (HPC). For example, it is used in CRIU (http://criu.org/Main_Page), 
a software tool of OpenVZ (http://openvz.org/Main_Page), which implements checkpoint/restore functionality for 
Linux processes mostly in userspace, though there are very few places when CRIU kernel patches were merged.  
I should mention that there were some projects to implement checkpoint/restore in the kernel, but these  
projects were not accepted in mainline because they were too complex. For example, take the CKPT project: 
https://ckpt.wiki.kernel.org/index.php/Main_Page. The checkpoint/restore feature (sometimes referred to as 
checkpoint/restart) enables stopping and saving several processes on a filesystem, and at a later time restores those 
processes (possibly on a different host) from the filesystem and resumes its execution from where it was stopped. 
Without namespaces, checkpoint/restore has very limited use cases, in particular live migration is only possible with 
them. Another use case for network namespaces is when you need to set up an environment that needs to simulate 
different network stacks for testing, debugging, etc. For readers who want to learn more about checkpoint/restart,  
I suggest reading the article “Virtual Servers and Checkpoint/Restart in Mainstream Linux,” by Sukadev Bhattiprolu, 
Eric W. Biederman, Serge Hallyn, and Daniel Lezcano.

Mount namespaces were the first type of Linux namespaces to be merged in 2002, for kernel 2.4.19. User 
namespaces were the last to be implemented, in kernel 3.8, for almost all filesystems types. It could be that additional 
namespaces will be developed, as is discussed later in this section. For creating a namespace you should have the 
CAP_SYS_ADMIN capability for all namespaces, except for the user namespace. Trying to create a namespace without 
the CAP_SYS_ADMIN capability for all namespaces, except for the user namespace, will result with an –EPRM error 
(“Operation not permitted”). Many developers took part in the development of namespaces, among them are  
Eric W. Biederman, Pavel Emelyanov, Al Viro, Cyrill Gorcunov, Andrew Vagin, and more.

After getting some background about process virtualization and Linux namespaces, and how they are used, you 
are now ready to dive in into the gory implementation details.

Namespaces Implementation
As of this writing, six namespaces are implemented in the Linux kernel. Here is a description of the main additions 
and changes that were needed in order to implement namespaces in the Linux kernel and to support namespaces in 
userspace packages:

A structure called •	 nsproxy (namespace proxy) was added. This structure contains pointers 
to five namespaces out of the six namespaces that are implemented. There is no pointer to 
the user namespace in the nsproxy structure; however, all the other five namespace objects 
contain a pointer to the user namespace object that owns them, and in each of these five 
namespaces, the user namespace pointer is called user_ns. The user namespace is a special 
case; it is a member of the credentials structure (cred), called user_ns. The cred structure 
represents the security context of a process. Each process descriptor (task_struct) contains 
two cred objects, for effective and objective process descriptor credentials. I will not delve into 
all the details and nuances of user namespaces implementation, since this is not in the scope 
of this book. An nsproxy object is created by the create_nsproxy() method and it is released 
by the free_nsproxy() method. A pointer to nsproxy object, which is also called nsproxy, 

http://lxc.sourceforge.net/
http://criu.org/Main_Page
http://openvz.org/Main_Page
https://ckpt.wiki.kernel.org/index.php/Main_Page
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was added to the process descriptor (a process descriptor is represented by the task_struct 
structure, include/linux/sched.h.) Let’s take a look at the nsproxy structure, as it’s quite 
short and should be quite self-explanatory:
 
struct nsproxy {
      atomic_t count;
       struct uts_namespace *uts_ns;
       struct ipc_namespace *ipc_ns;
       struct mnt_namespace *mnt_ns;
       struct pid_namespace *pid_ns;
       struct net           *net_ns;
};
(include/linux/nsproxy.h)
 
You can see in the •	 nsproxy structure five pointers of namespaces (there is no user namespace 
pointer). Using the nsproxy object in the process descriptor (task_struct object) instead 
of five namespace objects is an optimization. When performing fork(), a new child is likely 
to live in the same set of namespaces as its parent. So instead of five reference counter 
increments (one per each namespace), only one reference counter increment would happen 
(of the nsproxy object). The nsproxy count member is a reference counter, which is initialized 
to 1 when the nsproxy object is created by the create_nsproxy() method, and which is 
decremented by the put_nsproxy() method and incremented by the get_nsproxy() method. 
Note that the pid_ns member of the nsproxy object was renamed to pid_ns_for_children in 
kernel 3.11.

A new system call, •	 unshare(), was added. This system call gets a single parameter that is 
a bitmask of CLONE* flags. When the flags argument consists of one or more namespace 
CLONE_NEW* flags, the unshare() system call performs the following steps:

First, it creates a new namespace (or several namespaces) according to the specified flag. •	
This is done by calling the unshare_nsproxy_namespaces() method, which in turn creates a 
new nsproxy object and one or more namespaces by calling the create_new_namespaces() 
method. The type of the new namespace (or namespaces) is determined according to 
the specified CLONE_NEW* flag. The create_new_namespaces() method returns a new 
nsproxy object that contains the new created namespace (or namespaces).

Then it attaches the calling process to that newly created •	 nsproxy object by calling the 
switch_task_namespaces() method.

When CLONE_NEWPID is the flag of the unshare() system call, it works differently than with 
the other flags; it's an implicit argument to fork(); only the child task will happen in a new 
PID namespace, not the one calling the unshare() system call. Other CLONE_NEW* flags 
immediately put the calling process into a new namespace.

The six CLONE_NEW* flags, which were added to support the creation of namespaces, are 
described later in this section. The implementation of the unshare() system call is  
in kernel/fork.c.
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A new system call, •	 setns(), was added. It attaches the calling thread to an existing 
namespace. Its prototype is int setns(int fd, int nstype); the parameters are:

•	 fd: A file descriptor which refers to a namespace. These are obtained by opening links 
from the /proc/<pid>/ns/ directory.

•	 nstype: An optional parameter. When it is one of the new CLONE_NEW* namespaces 
flags, the specified file descriptor must refer to a namespace which matches the type of the 
specified CLONE_NEW* flag. When the nstype is not set (its value is 0) the fd argument 
can refer to a namespace of any type. If the nstype does not correspond to the namespace 
type associated with the specified fd, a value of –EINVAL is returned.

You can find the implementation of the setns() system call in kernel/nsproxy.c.

The following six new clone flags were added in order to support namespaces:•	

CLONE_NEWNS (for mount namespaces)•	

CLONE_NEWUTS (for UTS namespaces)•	

CLONE_NEWIPC (for IPC namespaces)•	

CLONE_NEWPID (for PID namespaces)•	

CLONE_NEWNET (for network namespaces)•	

CLONE_NEWUSER (for user namespaces)•	

The clone() system call is used traditionally to create a new process. It was adjusted to 
support these new flags so that it will create a new process attached to a new namespace  
(or namespaces). Note that you will encounter usage of the CLONE_NEWNET flag, for creating 
a new network namespace, in some of the examples later in this chapter.

Each subsystem, from the six for which there is a namespace support, had implemented •	
a unique namespace of its own. For example, the mount namespace is represented by a 
structure called mnt_namespace, and the network namespace is represented by a structure 
called net, which is discussed later in this section. I will mention the other namespaces later 
in this chapter.

For namespaces creation, a method named •	 create_new_namespaces() was added  
(kernel/nsproxy.c). This method gets as a first parameter a CLONE_NEW* flag or a bitmap 
of CLONE_NEW* flags. It first creates an nsproxy object by calling the create_nsproxy() 
method, and then it associates a namespace according to the specified flag; since the flag can 
be a bitmask of flags, the create_new_namespaces() method can associate more than one 
namespace. Let’s take a look at the create_new_namespaces() method:
 
static struct nsproxy *create_new_namespaces(unsigned long flags,
        struct task_struct *tsk, struct user_namespace *user_ns,
        struct fs_struct *new_fs)
{
        struct nsproxy *new_nsp;
        int err;
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Allocate an nsproxy object and initialize its reference counter to 1:
 
        new_nsp = create_nsproxy();
        if (!new_nsp)
                return ERR_PTR(-ENOMEM);
        . . .
 

After creating successfully an nsproxy object, we should create namespaces according to the specified flags, or 
associate an existing namespace to the new nsproxy object we created. We start by calling copy_mnt_ns(), for the mount 
namespaces, and then we call copy_utsname(), for the UTS namespace. I will describe here shortly the copy_utsname() 
method, because the UTS namespace is discussed in the “UTS Namespaces Implementation” section later in this chapter. 
If the CLONE_NEWUTS is not set in the specified flags of the copy_utsname() method, the copy_utsname() method does 
not create a new UTS namespace; it returns the UTS namespace that was passed by tsk->nsproxy->uts_ns as the last 
parameter to the copy_utsname() method. In case the CLONE_NEWUTS is set, the copy_utsname() method clones the 
specified UTS namespace by calling the clone_uts_ns() method. The clone_uts_ns() method, in turn, allocates a new 
UTS namespace object, copies the new_utsname object of the specified UTS namespace (tsk->nsproxy->uts_ns) into the 
new_utsname object of the newly created UTS namespace object, and returns the newly created UTS namespace. You will 
learn more about the new_utsname structure in the “UTS Namespaces Implementation” section later in this chapter:
 
         new_nsp->uts_ns = copy_utsname(flags, user_ns, tsk->nsproxy->uts_ns);
         if (IS_ERR(new_nsp->uts_ns)) {
                 err = PTR_ERR(new_nsp->uts_ns);
                 goto out_uts;
         }
        . . .
 

After handling the UTS namespace, we continue with calling the copy_ipcs() method to handle the IPC 
namespace, copy_pid_ns() to handle the PID namespace, and copy_net_ns() to handle the network namespace. 
Note that there is no call to the copy_user_ns() method, as the nsproxy does not contain a pointer to user 
namespace, as was mentioned earlier. I will describe here shortly the copy_net_ns() method. If the CLONE_NEWNET 
is not set in the specified flags of the create_new_namespaces() method, the copy_net_ns() method returns the 
network namespace that was passed as the third parameter to the copy_net_ns() method, tsk->nsproxy->net_ns, 
much like the copy_utsname() did, as you saw earlier in this section. If the CLONE_NEWNET is set, the  
copy_net_ns() method allocates a new network namespace by calling the net_alloc() method, initializes it by 
calling the setup_net() method, and adds it to the global list of all network namespaces, net_namespace_list:
 
        new_nsp->net_ns = copy_net_ns(flags, user_ns, tsk->nsproxy->net_ns);
        if (IS_ERR(new_nsp->net_ns)) {
                err = PTR_ERR(new_nsp->net_ns);
                goto out_net;
        }
        return new_nsp;
    }
 

Note that the setns() system call, which does not create a new namespace but only attaches 
the calling thread to a specified namespace, also calls create_new_namespaces(), but it  
passes 0 as a first parameter; this implies that only an nsproxy is created by calling the  
create_nsproxy() method, but no new namespace is created, but the calling thread is 
associated with an existing network namespace which is identified by the specified fd 
argument of the setns() system call. Later in the setns() system call implementation, the 
switch_task_namespaces() method is invoked, and it assigns the new nsproxy which was just 
created to the calling thread (see kernel/nsproxy.c).
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A method named •	 exit_task_namespaces() was added in kernel/nsproxy.c. It is called when a 
process is terminated, by the do_exit() method (kernel/exit.c). The exit_task_namespaces() 
method gets the process descriptor (task_struct object) as a single parameter. In fact the only 
thing it does is call the switch_task_namespaces() method, passing the specified process 
descriptor and a NULL nsproxy object as arguments. The switch_task_namespaces() method, 
in turn, nullifies the nsproxy object of the process descriptor of the process which is being 
terminated. If there are no other processes that use that nsproxy, it is freed.

A method named •	 get_net_ns_by_fd() was added. This method gets a file descriptor as 
its single parameter, and returns the network namespace associated with the inode that 
corresponds to the specified file descriptor. For readers who are not familiar with filesystems 
and with inode semantics, I suggest reading the “Inode Objects” section of Chapter 12,  
“The Virtual Filesystem,” in Understanding the Linux Kernel by Daniel P. Bovet and Marco 
Cesati (O’Reilly, 2005).

A method named •	 get_net_ns_by_pid() was added. This method gets a PID number  
as a single argument, and it returns the network namespace object to which this process  
is attached.

Six entries were added under •	 /proc/<pid>/ns, one for each namespace. These files, when 
opened, should be fed into the setns() system call. You can use ls –al or readlink to display 
the unique proc inode number which is associated with a namespace. This unique proc inode 
is created by the proc_alloc_inum() method when the namespace is created, and is freed 
by the proc_free_inum() method when the namespace is released. See, for example, in the 
create_pid_namespace() method in kernel/pid_namespace.c. In the following example, the 
number in square brackets on the right is the unique proc inode number of each namespace:
 
ls -al /proc/1/ns/
total 0
dr-x--x--x 2 root root 0 Nov  3 13:32 .
dr-xr-xr-x 8 root root 0 Nov  3 12:17 ..
lrwxrwxrwx 1 root root 0 Nov  3 13:32 ipc -> ipc:[4026531839]
lrwxrwxrwx 1 root root 0 Nov  3 13:32 mnt -> mnt:[4026531840]
lrwxrwxrwx 1 root root 0 Nov  3 13:32 net -> net:[4026531956]
lrwxrwxrwx 1 root root 0 Nov  3 13:32 pid -> pid:[4026531836]
lrwxrwxrwx 1 root root 0 Nov  3 13:32 user -> user:[4026531837]
lrwxrwxrwx 1 root root 0 Nov  3 13:32 uts -> uts:[4026531838]
 
A namespace can stay alive if either one of the following conditions is met:•	

The namespace file under •	 /proc/<pid>/ns/ descriptor is held.

bind mounting the namespace proc file somewhere else, for example, for PID namespace, •	
by: mount --bind /proc/self/ns/pid /some/filesystem/path

For each of the six namespaces, a proc namespace operations object (an instance of  •	
proc_ns_operations structure) is defined. This object consists of callbacks, such as inum, 
to return the unique proc inode number associated with the namespace or install, for 
namespace installation (in the install callback, namespace specific actions are performed, 
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such as attaching the specific namespace object to the nsproxy object, and more; the install 
callback is invoked by the setns system call).  The proc_ns_operations structure in defined in 
include/linux/proc_fs.h. Following is the list of the six proc_ns_operations objects:

•	 utsns_operations for UTS namespace (kernel/utsname.c)

•	 ipcns_operations for IPC namespace (ipc/namespace.c)

•	 mntns_operations for mount namespaces (fs/namespace.c)

•	 pidns_operations for PID namespaces (kernel/pid_namespace.c)

•	 userns_operations for user namespace (kernel/user_namespace.c)

•	 netns_operations for network namespace (net/core/net_namespace.c)

For each namespace, except the mount namespace, there is an •	 initial namespace:

•	 init_uts_ns: For UTS namespace (init/version.c).

•	 init_ipc_ns: For IPC namespace (ipc/msgutil.c).

•	 init_pid_ns: For PID namespace (kernel/pid.c).

•	 init_net: For network namespace (net/core/net_namespace.c).

•	 init_user_ns: For user namespace (kernel/user.c).

An initial, default •	 nsproxy object is defined: it is called init_nsproxy and it contains pointers 
to five initial namespaces; they are all initialized to be the corresponding specific initial 
namespace except for the mount namespace, which is initialized to be NULL:
 
struct nsproxy init_nsproxy = {
        .count  = ATOMIC_INIT(1),
        .uts_ns = &init_uts_ns,
#if defined(CONFIG_POSIX_MQUEUE) || defined(CONFIG_SYSVIPC)
        .ipc_ns = &init_ipc_ns,
#endif
        .mnt_ns = NULL,
        .pid_ns = &init_pid_ns,
#ifdef CONFIG_NET
        .net_ns = &init_net,
#endif
};
(kernel/nsproxy.c)
 
A method named •	 task_nsproxy() was added; it gets as a single parameter a process descriptor 
(task_struct object), and it returns the nsproxy associated with the specified task_struct 
object. See include/linux/nsproxy.h.

These are the six namespaces available in the Linux kernel as of this writing:

•	 Mount namespaces: The mount namespaces allows a process to see its own view of the 
filesystem and of its mount points. Mounting a filesystem in one mount namespace does 
not propagate to the other mount namespaces. Mount namespaces are created by setting 
the CLONE_NEWNS flag when calling the clone() or unshare() system calls. In order to 
implement mount namespaces, a structure called mnt_namespace was added (fs/mount.h), 
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and nsproxy holds a pointer to an mnt_namespace object called mnt_ns. Mount namespaces 
are available from kernel 2.4.19. Mount namespaces are implemented primarily in  
fs/namespace.c. When creating a new mount namespace, the following rules apply:

All previous mounts will be visible in the new mount namespace.•	

Mounts/unmounts in the new mount namespace are invisible to the rest of the system.•	

Mounts/unmounts in the global mount namespace are visible in the new mount namespace.•	

Mount namespaces use a VFS enhancement called shared subtrees, which was introduced 
in the Linux 2.6.15 kernel; the shared subtrees feature introduced new flags: MS_PRIVATE, 
MS_SHARED, MS_SLAVE and MS_UNBINDABLE . (See http://lwn.net/Articles/159077/  
and Documentation/filesystems/sharedsubtree.txt.) I will not discuss the internals of  
mount namespaces implementation. For readers who want to learn more about mount 
namespaces usage, I suggest reading the following article: “Applying Mount Namespaces,”  
by Serge E. Hallyn and Ram Pai (http://www.ibm.com/developerworks/linux/library/ 
l-mount-namespaces/index.html).

•	 PID namespaces: The PID namespaces provides the ability for different processes in different 
PID namespaces to have the same PID. This feature is a building block for Linux containers. 
It is important for checkpoint/restore of a process, because a process checkpointed on one 
host can be restored on a different host even if there is a process with the same PID on that 
host. When creating the first process in a new PID namespace, its PID is 1. The behavior of this 
process is somewhat like the behavior of the init process. This means that when a process 
dies, all its orphaned children will now have the process with PID 1 as their parent (child 
reaping). Sending SIGKILL signal to a process with PID 1 does not kill the process, regardless 
of in which namespace the SIGKILL signal was sent, in the initial PID namespace or in any 
other PID namespace. But killing init of one PID namespace from another (parent one) will 
work. In this case, all of the tasks living in the former namespace will be killed and the PID 
namespace will be stopped. PID namespaces are created by setting the CLONE_NEWPID flag 
when calling the clone() or unshare() system calls. In order to implement PID namespaces, a 
structure called pid_namespace was added (include/linux/pid_namespace.h), and nsproxy 
holds a pointer to a pid_namespace object called pid_ns. In order to have PID namespaces 
support, CONFIG_PID_NS should be set. PID namespaces are available from kernel 2.6.24. 
PID namespaces are implemented primarily in kernel/pid_namespace.c.

•	 Network  namespaces: The network namespace allows creating what appears to be multiple 
instances of the kernel network stack. Network namespaces are created by setting the  
CLONE_NEWNET flag when calling the clone() or unshare() system calls. In order to implement 
network namespaces, a structure called net was added (include/net/net_namespace.h), and 
nsproxy holds a pointer to a net object called net_ns. In order to have network namespaces 
support, CONFIG_NET_NS should be set. I will discuss network namespaces later in this section. 
Network namespaces are available from kernel 2.6.29. Network namespaces are implemented 
primarily in net/core/net_namespace.c.

•	 IPC namespaces: The IPC namespace allows a process to have its own System V IPC 
resources and POSIX message queues resources. IPC namespaces are created by setting 
the CLONE_NEWIPC flag when calling the clone() or unshare() system calls. In order to 
implement IPC namespaces, a structure called ipc_namespace was added (include/linux/
ipc_namespace.h), and nsproxy holds a pointer to an ipc_namespace object called ipc_ns.  

http://lwn.net/Articles/159077/
http://www.ibm.com/developerworks/linux/library/l-mount-namespaces/index.html
http://www.ibm.com/developerworks/linux/library/l-mount-namespaces/index.html
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In order to have IPC namespaces support, CONFIG_IPC_NS should be set. Support for System 
V IPC resources is available in IPC namespaces from kernel 2.6.19. Support for POSIX message 
queues resources in IPC namespaces was added later, in kernel 2.6.30. IPC namespaces are 
implemented primarily in ipc/namespace.c.

•	 UTS namespaces: The UTS namespace provides the ability for different UTS namespaces 
to have different host name or domain name (or other information returned by the uname() 
system call). UTS namespaces are created by setting the CLONE_NEWUTS flag when 
calling the clone() or unshare() system calls. UTS namespace implementation is the 
simplest among the six namespaces that were implemented. In order to implement the 
UTS namespace, a structure called uts_namespace was added (include/linux/utsname.h), 
and nsproxy holds a pointer to a uts_namespace object called uts_ns. In order to have UTS 
namespaces support, CONFIG_UTS_NS should be set. UTS namespaces are available from 
kernel 2.6.19. UTS namespaces are implemented primarily in kernel/utsname.c.

•	 User namespaces: The user namespace allows mapping of user and group IDs. This mapping 
is done by writing to two procfs entries that were added for supporting user namespaces:  
/proc/sys/kernel/overflowuid and /proc/sys/kernel/overflowgid. A process attached to 
a user namespace can have a different set of capabilities then the host. User namespaces are 
created by setting the CLONE_NEWUSER flag when calling the clone() or unshare() system 
calls. In order to implement user namespaces, a structure called user_namespace was added 
(include/linux/user_namespace.h). The user_namespace object contains a pointer to the 
user namespace object that created it (parent). As opposed to the other five namespaces, 
nsproxy does not hold a pointer to a user_namespace object. I will not delve into more 
implementation details of user namespaces, as it is probably the most complex namespace 
and as it is beyond the scope of the book. In order to have user namespaces support, 
CONFIG_USER_NS should be set. User namespaces are available from kernel 3.8 for almost all 
filesystem types. User namespaces are implemented primarily in kernel/user_namespace.c.

Support to namespaces was added in four userspace packages:

In •	 util-linux:

The •	 unshare utility can create any of the six namespaces, available since version 2.17.

The •	 nsenter utility (which is in fact a light wrapper around the setns system call), 
available since version 2.23.

In •	 iproute2, management of network namespaces is done with the ip netns command, and 
you will see several examples for this later in this chapter. Moreover, you can move a network 
interface to a different network namespace with the ip link command as you will see in the 
“Moving a Network Interface to a different Network Namespace” section later in this chapter.

In •	 ethtool, support was added to enable to find out whether the NETIF_F_NETNS_LOCAL 
feature is set for a specified network interface. When the NETIF_F_NETNS_LOCAL feature 
is set, this indicates that the network interface is local to that network namespace, and you 
cannot move it to a different network namespace. The NETIF_F_NETNS_LOCAL feature will 
be discussed later in this section.

In the wireless •	 iw package, an option was added to enable moving a wireless interface to a 
different namespace.
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Note■■  I n a presentation in Ottawa Linux Symposium (OLS) in 2006, “Multiple Instances of the Global Linux 
Namespaces,” Eric W. Biederman (one of the main developers of Linux namespaces) mentioned ten namespaces; the 
other four namespaces that he mentioned in this presentation and that are not implemented yet are: device namespace, 
security namespace, security keys namespace, and time namespace. (See https://www.kernel.org/doc/ols/2006/
ols2006v1-pages-101-112.pdf.) For more information about namespaces, I suggest reading a series of six articles 
about it by Michael Kerrisk (https://lwn.net/Articles/531114/). Mobile OS virtualization projects triggered a  
development effort to support device namespaces; for more information about device namespaces, which are not  
yet part of the kernel, see “Device Namespaces” By Jake Edge  (http://lwn.net/Articles/564854/) and also  
(http://lwn.net/Articles/564977/). There was also some work for implementing a new syslog namespace (see the 
article “Stepping Closer to Practical Containers: “syslog” namespaces”, http://lwn.net/Articles/527342/).

The following three system calls can be used with namespaces:

•	 clone(): Creates a new process attached to a new namespace (or namespaces). The type of 
the namespace is specified by a CLONE_NEW* flag which is passed as a parameter. Note that 
you can also use a bitmask of these CLONE_NEW* flags. The implementation of the clone() 
system call is in kernel/fork.c.

•	 unshare(): Discussed earlier in this section.

•	 setns(): Discussed earlier in this section.

Note■■  N amespaces do not have names inside the kernel that userspace processes can use to talk with them.  
If namespaces would have names, this would require keeping them globally, in yet another special namespace. This would 
complicate the implementation and can raise problems in checkpoint/restore for example. Instead, userspace processes 
should open namespace files under /proc/<pid>/ns/ and their file descriptors can be used to talk to a specific namespace, 
in order to keep that namespace alive. Namespaces are identified by a unique proc inode number generated when they 
are created and freed when they are released. Each of the six namespace structures contains an integer member called 
proc_inum, which is the namespace unique proc inode number and is assigned by calling the proc_alloc_inum() 
method. Each of the six namespaces has also a proc_ns_operations object, which includes namespace-specific 
callbacks; one of these callbacks, called inum, returns the proc_inum of the associated namespace (for the definition of 
proc_ns_operations structure, refer to include/linux/proc_fs.h).

Before discussing network namespaces, let’s describe how the simplest namespace, the UTS namespace, is 
implemented. This is a good starting point to understand the other, more complex namespaces.

UTS Namespaces Implementation
In order to implement UTS namespaces, a struct called uts_namespace was added:
 
struct uts_namespace {
        struct kref kref;
        struct new_utsname name;

https://www.kernel.org/doc/ols/2006/ols2006v1-pages-101-112.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-101-112.pdf
https://lwn.net/Articles/531114/
http://lwn.net/Articles/564854/
http://lwn.net/Articles/564977/
http://lwn.net/Articles/527342/
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        struct user_namespace *user_ns;
        unsigned int proc_inum;
};
(include/linux/utsname.h)
 

Here is a short description of the members of the uts_namespace structure:

•	 kref: A reference counter. It is a generic kernel reference counter, incremented by the kref_get() 
method and decremented by the kref_put() method. Besides the UTS namespace, also the PID 
namespace has a kref object as a reference counter; all the other four namespaces use an atomic 
counter for reference counting. For more info about the kref API look in Documentation/kref.txt.

•	 name: A new_utsname object, contains fields like domainname and nodename (will be discussed 
shortly).

•	 user_ns: The user namespace associated with the UTS namespace.

•	 proc_inum: The unique proc inode number of the UTS namespace.

The nsproxy structure contains a pointer to the uts_namespace:
 
struct nsproxy {
        . . .
        struct uts_namespace *uts_ns;
        . . .
};
(include/linux/nsproxy.h)
 

As you saw earlier, the uts_namespace object contains an instance of the new_utsname structure. Let’s take a look 
at the new_utsname structure, which is the essence of the UTS namespace:
 
struct new_utsname {
        char sysname[__NEW_UTS_LEN + 1];
        char nodename[__NEW_UTS_LEN + 1];
        char release[__NEW_UTS_LEN + 1];
        char version[__NEW_UTS_LEN + 1];
        char machine[__NEW_UTS_LEN + 1];
        char domainname[__NEW_UTS_LEN + 1];
};
(include/uapi/linux/utsname.h)
 

The nodename member of the new_utsname is the host name, and domainname is the domain name. A method 
named utsname() was added; this method simply returns the new_utsname object which is associated with the 
process that currently runs (current):
 
static inline struct new_utsname *utsname(void)
{
         return &current->nsproxy->uts_ns->name;
}
(include/linux/utsname.h)
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Now, the new gethostname() system call implementation is the following:
 
SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
{
        int i, errno;
        struct new_utsname *u;
 
        if (len < 0)
                return -EINVAL;
        down_read(&uts_sem);
 

Invoke the utsname() method, which accesses the new_utsname object of the UTS namespace associated with the 
current process:
 
        u = utsname();
        i = 1 + strlen(u->nodename);
        if (i > len)
                i = len;
        errno = 0;
 

Copy to userspace the nodename of the new_utsname object that the utsname() method returned:
 
        if (copy_to_user(name, u->nodename, i))
                errno = -EFAULT;
        up_read(&uts_sem);
        return errno;
}
(kernel/sys.c)
 

You can find a similar approach in the sethostbyname() and in the uname() system calls, which are also defined 
in kernel/sys.c. I should note that UTS namespaces implementation also handles UTS procfs entries. There are 
only two UTS procfs entries, /proc/sys/kernel/domainname and /proc/sys/kernel/hostname, which are writable 
(this means that you can change them from userspace). There are other UTS procfs entries which are not writable, 
like /proc/sys/kernel/ostype and /proc/sys/kernel/osrelease. If you will look at the table of the UTS procfs 
entries, uts_kern_table (kernel/utsname_sysctl.c), you will see that some entries, like ostype and osrelease, 
have mode of “0444”, which means they are not writable, and only two of them, hostname and domainname, have  
mode of “0644”, which means they are writable. Reading and writing the UTS procfs entries is handled by the  
proc_do_uts_string() method. Readers who want to learn more about how UTS procfs entries are handled should 
look into the proc_do_uts_string() method and into the get_uts() method; both are in kernel/utsname_sysctl.c.

Now that you learned about how the simplest namespace, the UTS namespace, is implemented, it is time to learn 
about network namespaces and their implementation.

Network Namespaces Implementation
A network namespace is logically another copy of the network stack, with its own network devices, routing tables, 
neighbouring tables, netfilter tables, network sockets, network procfs entries, network sysfs entries, and other 
network resources. A practical feature of network namespaces is that network applications running in a given 
namespace (let’s say ns1) will first look for configuration files under /etc/netns/ns1, and only afterward under /etc. 
So, for example, if you created a namespace called ns1 and you have created /etc/netns/ns1/hosts, every userspace 
application that tries to access the hosts file will first access /etc/netns/ns1/hosts and only then (if the entry being 
looked for does not exist) will it read /etc/hosts. This feature is implemented using bind mounts and is available only 
for network namespaces created with the ip netns add command.
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The Network Namespace Object (struct net)
Let’s turn now to the definition of the net structure, which is the fundamental data structure that represents a network 
namespace:
 
struct net {
        . . .
        struct user_namespace   *user_ns;       /* Owning user namespace */
        unsigned int            proc_inum;
        struct proc_dir_entry   *proc_net;
        struct proc_dir_entry   *proc_net_stat;
        . . .
        struct list_head        dev_base_head;
        struct hlist_head       *dev_name_head;
        struct hlist_head       *dev_index_head;
        . . .
        int                     ifindex;
        . . .
        struct net_device       *loopback_dev;  /* The loopback */
        . . .
        atomic_t                count;          /* To decided when the network
                                                *  namespace should be shut down.
                                                */
 
        struct netns_ipv4       ipv4;
#if IS_ENABLED(CONFIG_IPV6)
        struct netns_ipv6       ipv6;
#endif
#if defined(CONFIG_IP_SCTP) || defined(CONFIG_IP_SCTP_MODULE)
        struct netns_sctp       sctp;
#endif
       . . .
 
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
        struct netns_ct         ct;
#endif
#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
        struct netns_nf_frag    nf_frag;
#endif
        . . .
        struct net_generic __rcu  *gen;
#ifdef CONFIG_XFRM
        struct netns_xfrm       xfrm;
#endif
        . . .
};
(include/net/net_namespace.h)
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Here is a short description of several members of the net structure:

•	 user_ns represents the user namespace that created the network namespace; it owns the 
network namespace and all its resources. It is assigned in the setup_net() method. For the 
initial network namespace object (init_net), the user namespace that created it is the initial 
user namespace, init_user_ns.

•	 proc_inum is the unique proc inode number associated to the network namespace.  
This unique proc inode is created by the proc_alloc_inum() method, which also assigns 
proc_inum to be the proc inode number. The proc_alloc_inum() method is invoked by the 
network namespace initialization method, net_ns_net_init(), and it is freed by calling the 
proc_free_inum() method in the network namespace cleanup method, net_ns_net_exit().

•	 proc_net represents the network namespace procfs entry (/proc/net) as each network 
namespace maintains its own procfs entry.

•	 proc_net_stat represents the network namespace procfs statistics entry (/proc/net/stat) 
as each network namespace maintains its own procfs statistics entry.

•	 dev_base_head points to a linked list of all network devices.

•	 dev_name_head points to a hashtable of network devices, where the key is the network  
device name.

•	 dev_index_head points to a hashtable of network devices, where the key is the network  
device index.

•	 ifindex is the last device index assigned inside a network namespace. Indices are virtualized 
in network namespaces; this means that loopback devices would always have index of 1 in all 
network namespaces, and other network devices may have coinciding indices when living in 
different network namespaces.

•	 loopback_dev is the loopback device. Every new network namespace is created with only one 
network device, the loopback device. The loopback_dev object of a network namespace is 
assigned in the loopback_net_init() method, drivers/net/loopback.c. You cannot move 
the loopback device from one network namespace to another.

•	 count is the network namespace reference counter. It is initialized to 1 when the network 
namespace is created by the by the setup_net() method. It is incremented by the get_net() 
method and decremented by the put_net() method. If the count reference counter reaches 
0 in the put_net() method, the __put_net() method is called. The __put_net() method, 
in turn, adds the network namespace to a global list of network namespaces to be removed, 
cleanup_list, and later removes it.

•	 ipv4 (an instance of the netns_ipv4 structure) for the IPv4 subsystem. The netns_ipv4 
structure contains IPv4 specific fields which are different for different namespaces. For 
example, in chapter 6 you saw that the multicast routing table of a specified network 
namespace called net is stored in net->ipv4.mrt. I will discuss the netns_ipv4 later in  
this section.

•	 ipv6 (an instance of the netns_ipv6 structure) for the IPv6 subsystem.

•	 sctp (an instance of the netns_sctp structure) for SCTP sockets.

•	 ct (an instance of the netns_ct structure, which is discussed in chapter 9) for the netfilter 
connection tracking subsystem.
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•	 gen (an instance of the net_generic structure, defined in include/net/netns/generic.h) is 
a set of generic pointers on structures describing a network namespace context of optional 
subsystems. For example, the sit module (Simple Internet Transition, an IPv6 tunnel, 
implemented in net/ipv6/sit.c) puts its private data on struct net using this engine.  
This was introduced in order not to flood the struct net with pointers for every single 
network subsystem that is willing to have per network namespace context.

•	 xfrm (an instance of the netns_xfrm structure, which is mentioned several times in  
chapter 10) for the IPsec subsystem.

Let’s take a look at the IPv4 specific namespace, the netns_ipv4 structure:
 
struct netns_ipv4 {
    . . .
#ifdef CONFIG_IP_MULTIPLE_TABLES
        struct fib_rules_ops    *rules_ops;
        bool                    fib_has_custom_rules;
        struct fib_table        *fib_local;
        struct fib_table        *fib_main;
        struct fib_table        *fib_default;
#endif
   . . .
        struct hlist_head       *fib_table_hash;
        struct sock             *fibnl;
 
        struct sock             **icmp_sk;
   . . .
#ifdef CONFIG_NETFILTER
        struct xt_table         *iptable_filter;
        struct xt_table         *iptable_mangle;
        struct xt_table         *iptable_raw;
        struct xt_table         *arptable_filter;
#ifdef CONFIG_SECURITY
        struct xt_table         *iptable_security;
#endif
        struct xt_table         *nat_table;
#endif
 
        int sysctl_icmp_echo_ignore_all;
        int sysctl_icmp_echo_ignore_broadcasts;
        int sysctl_icmp_ignore_bogus_error_responses;
        int sysctl_icmp_ratelimit;
        int sysctl_icmp_ratemask;
        int sysctl_icmp_errors_use_inbound_ifaddr;
 
        int sysctl_tcp_ecn;
 
        kgid_t sysctl_ping_group_range[2];
        long sysctl_tcp_mem[3];
 
        atomic_t dev_addr_genid;
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#ifdef CONFIG_IP_MROUTE
#ifndef CONFIG_IP_MROUTE_MULTIPLE_TABLES
        struct mr_table         *mrt;
#else
        struct list_head        mr_tables;
        struct fib_rules_ops    *mr_rules_ops;
#endif
#endif
};
(net/netns/ipv4.h)
 

You can see in the netns_ipv4 structure many IPv4-specific tables and variables, like the routing tables, the 
netfilter tables, the multicast routing tables, and more.

Network Namespaces Implementation: Other Data Structures
In order to support network namespaces, a member called nd_net, which is a pointer to a network namespace,  
was added to the network device object (struct net_device). Setting the network namespace for a network device 
is done by calling the dev_net_set() method, and getting the network namespace associated to a network device is 
done by calling the dev_net() method. Note that a network device can belong to only a single network namespace 
at a given moment. The nd_net is set typically when a network device is registered or when a network device is moved 
to a different network namespace. For example, when registering a VLAN device, both these methods just mentioned 
are used:
 
static int register_vlan_device(struct net_device *real_dev, u16 vlan_id)
{
    struct net_device *new_dev;
 

The network namespace to be assigned to the new VLAN device is the network namespace associated with the 
real device, which is passed as a parameter to the register_vlan_device() method; we get this namespace by  
calling dev_net(real_dev):
 
    struct net *net = dev_net(real_dev);
    . . .
    new_dev = alloc_netdev(sizeof(struct vlan_dev_priv), name, vlan_setup);
  
    if (new_dev == NULL)
        return -ENOBUFS;
 

Switch the network namespace by calling the dev_net_set() method:
 
    dev_net_set(new_dev, net);
 
    . . .
}
 

A member called sk_net, a pointer to a network namespace, was added to struct sock, which represents a 
socket. Setting the network namespace for a sock object is done by calling the sock_net_set() method, and getting 
the network namespace associated to a sock object is done by calling the sock_net() method. Like in the case of the 
nd_net object, also a sock object can belong to only a single network namespace at a given moment.
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When the system boots, a default network namespace, init_net, is created. After the boot, all physical network 
devices and all sockets belong to that initial namespace, as well as the network loopback device.

Some network devices and some network subsystems should have network namespaces specific data. In order to 
enable this, a structure named pernet_operations was added; this structure includes an init and exit callbacks:
 
struct pernet_operations {
        . . .
        int (*init)(struct net *net);
        void (*exit)(struct net *net);
        . . .
        int *id;
        size_t size;
};
(include/net/net_namespace.h)
 

Network devices that need network namespaces specific data should define a pernet_operations object, 
and define its init() and exit() callbacks for device specific initialization and cleanup, respectively, and call the 
register_pernet_device() method in their module initialization and the unregister_pernet_device() method 
when the module is removed, passing the pernet_operations object as a single parameter in both cases. For 
example, the PPPoE module exports information about PPPoE session by a procfs entry, /proc/net/pppoe. The 
information exported by this procfs entry depends on the network namespace to which this PPPoE device belongs 
(since different PPPoE devices can belong to different network namespaces). So the PPPoE module defines a  
pernet_operations object called pppoe_net_ops:
 
static struct pernet_operations pppoe_net_ops = {
        .init = pppoe_init_net,
        .exit = pppoe_exit_net,
        .id   = &pppoe_net_id,
        .size = sizeof(struct pppoe_net),
}
(net/ppp/pppoe.c)
 

In the init callback, pppoe_init_net(), it only creates the PPPoE procfs entry, /proc/net/pppoe, by calling the 
proc_create() method:
 
static __net_init int pppoe_init_net(struct net *net)
{
        struct pppoe_net *pn = pppoe_pernet(net);
        struct proc_dir_entry *pde;
 
        rwlock_init(&pn->hash_lock);
 
        pde = proc_create("pppoe", S_IRUGO, net->proc_net, &pppoe_seq_fops);
#ifdef CONFIG_PROC_FS
        if (!pde)
                return -ENOMEM;
#endif
 
        return 0;
}
(net/ppp/pppoe.c)
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And in the exit callback, pppoe_exit_net(), it only removes the PPPoE procfs entry, /proc/net/pppoe, by 
calling the remove_proc_entry() method:
 
static __net_exit void pppoe_exit_net(struct net *net)
{
        remove_proc_entry("pppoe", net->proc_net);
}
(net/ppp/pppoe.c)
 

Network subsystems that need network-namespace-specific data should call register_pernet_subsys() 
when the subsystem is initialized and unregister_pernet_subsys() when the subsystem is removed. You can look 
for examples in net/ipv4/route.c, and there are many other examples of reviewing these methods. The network 
namespace module itself also defines a net_ns_ops object and registers it in the boot phase:
 
static struct pernet_operations __net_initdata net_ns_ops = {
        .init = net_ns_net_init,
        .exit = net_ns_net_exit,
};
 
static int __init net_ns_init(void)
{
    . . .
    register_pernet_subsys(&net_ns_ops);
    . . .
}
(net/core/net_namespace.c)
 

Each time a new network namespace is created, the init callback (net_ns_net_init) is called, and each time  
a network namespace is removed, the exit callback (net_ns_net_exit) is called. The only thing that the  
net_ns_net_init() does is to allocate a unique proc inode for the newly created namespace by calling the  
proc_alloc_inum() method; the newly created unique proc inode number is assigned to net->proc_inum:
 
static __net_init int net_ns_net_init(struct net *net)
{
        return proc_alloc_inum(&net->proc_inum);
}
 

And the only thing that the net_ns_net_exit() method does is to remove that unique proc inode by calling the 
proc_free_inum() method:
 
static __net_exit void net_ns_net_exit(struct net *net)
{
        proc_free_inum(net->proc_inum);
}
 

When you create a new network namespace, it has only the network loopback device. The most common ways to 
create a network namespace are:

By a userspace application which will create a network namespace with the •	 clone() system 
call or with the unshare() system call, setting the CLONE_NEWNET flag in both cases.

Using •	 ip netns command of iproute2 (you will shortly see an example).

Using the •	 unshare utility of util-linux, with the --net flag.
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Network Namespaces Management 
Next you will see some examples of using the ip netns command of the iproute2 package to perform actions such as 
creating a network namespace, deleting a network namespace, showing all the network namespaces, and more.

Creating a network namespace named •	 ns1 is done by:

ip netns add ns1

Running this command triggers first the creation of a file called /var/run/netns/ns1,  
and then the creation of the network namespace by the unshare() system call, passing it a 
CLONE_NEWNET flag. Then /var/run/netns/ns1 is attached to the network namespace  
(/proc/self/ns/net) by a bind mount (calling the mount() system call with MS_BIND). 
Note that network namespaces can be nested, which means that from within ns1 you can also 
create a new network namespace, and so on.

Deleting a network namespace named •	 ns1  is done by:

ip netns del ns1

Note that this will not delete a network namespace if there is one or more processes attached 
to it. In case there are no such processes, the /var/run/netns/ns1 file is deleted. Note also 
that when deleting a namespace, all its network devices are moved to the initial, default 
network namespace, init_net, except for network namespace local devices, which are 
network devices whose NETIF_F_NETNS_LOCAL feature is set; such network devices are 
deleted. See more in the “Moving a Network Interface to a Network Namespace” section later 
in this chapter and in Appendix A.

Showing all the network namespaces in the system that were added by •	 ip netns add is  
done by:

ip netns list

In fact, running ip netns list simply shows the names of files under /var/run/netns. Note 
that network namespaces not added by ip netns add will not be displayed by ip netns list, 
because creating such network namespaces did not trigger creation of any file under  
/var/run/netns. So, for example, a network namespace created by unshare --net bash will 
not appear when running ip netns list.

Monitoring creation and removal of a network namespace is done by:•	

ip netns monitor

After running ip netns monitor, when you add a new namespace by ip netns add ns2 you 
will see on screen the following message: “add ns2”, and after you delete that namespace by ip 
netns delete ns2 you will see on screen the following message: “delete ns2”. Note that adding 
and removing network namespaces not by running ip netns add and ip netns delete, 
respectively, does not trigger displaying any messages on screen by ip netns monitor. The ip 
netns monitor command is implemented by setting an inotify watch on /var/run/netns. Note 
that in case you will run ip netns monitor before adding at least one network namespace 
with ip netns add you will get the following error: inotify_add_watch failed: No such 
file or directory. The reason is that trying to set a watch on /var/run/netns, which does 
not exist yet, fails. See man inotify_init() and man inotify_add_watch().
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Start a shell in a specified namespace (•	 ns1 in this example) is done by:

ip netns exec ns1 bash

Note that with ip netns exec you can run any command in a specified network namespace. 
For example, the following command will display all network interfaces in the network 
namespace called ns1:

ip netns exec ns1 ifconfig -a

In recent versions of iproute2 (since version 3.8), you have these two additional helpful commands:

Show the network namespace associated with the specified •	 pid:

ip netns identify #pid

This is implemented by reading /proc/<pid>/ns/net and iterating over the files under  
/var/run/netns to find a match (using the stat() system call).

Show the PID of a process (or list of processes) attached to a network namespace called  •	
ns1 by:

ip netns pids ns1

This is implemented by reading /var/run/netns/ns1, and then iterating over /proc/<pid> 
entries to find a matching /proc/pid/ns/net entry (using the stat() system call).

Note■■   For more information about the various ip netns command options see man ip netns.

Moving a Network Interface to a Different Network Namespace
Moving a network interface to a network namespace named ns1 can be done with the ip command. For example,  
by: ip link set eth0 netns ns1. As part of implementing network namespaces, a new feature named  
NETIF_F_NETNS_LOCAL was added to the features of the net_device object (The net_device structure represents 
a network interface. For more information about the net_device structure and its features see Appendix A). You can 
find out whether the NETIF_F_NETNS_LOCAL feature is set for a specified network device by looking at the  
netns-local flag in the output of ethtool -k eth0 or in the output of ethtool --show-features eth0 (both commands 
are equivalent.) Note that you cannot set the NETIF_F_NETNS_LOCAL feature with ethtool. This feature, when set, 
denotes that the network device is a network namespace local device. For example, the loopback, the bridge, the 
VXLAN and the PPP devices are network namespace local devices. Trying to move a network device whose  
NETIF_F_NETNS_LOCAL feature is set to a different namespace will fail with an error of –EINVAL, as you will shortly 
see in the following code snippet. The dev_change_net_namespace() method is invoked when trying to move a 
network interface to a different network namespace, for example by: ip link set eth0 netns ns1. Let’s take a look 
at the dev_change_net_namespace() method:
 
int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
{
        int err;
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        ASSERT_RTNL();
 
        /* Don't allow namespace local devices to be moved. */
        err = -EINVAL;
 

Return –EINVAL in case that the device is a local device (The NETIF_F_NETNS_LOCAL flag in the features of 
net_device object is set)
 
        if (dev->features & NETIF_F_NETNS_LOCAL)
                goto out;
        . . .
 

Actually switch the network namespace by setting nd_net of the net_device object to the new specified 
namespace:
 
        dev_net_set(dev, net)
        . . .
 
out:
        return err;
}
(net/core/dev.c) 

Note■■   You can move a network interface to a network namespace named ns1 also by specifying a PID of a process 
that is attached to that namespace, without specifying the namespace name explicitly. For example, if you know that a 
process whose PID is <pidNumber> is attached to ns1, running ip link set eth1 netns <pidNumber> will move eth1 
to the ns1 namespace. Implementation details: getting the network namespace object when specifying one of the PIDs of 
its attached processes is implemented by the get_net_ns_by_pid() method, whereas getting the network namespace 
object when specifying the network namespace name is implemented by the get_net_ns_by_fd() method; both  
methods are in net/core/net_namespace.c. In order to move a wireless network interface to a different network 
namespace you should use the iw command. For example, if you want to move wlan0 to a network namespace and you 
know that a process whose PID is <pidNumber> is attached to that namespace, you can run iw phy phy0 set netns 
<pidNumber> to move it to that network namespace. For the implementation details, refer to the nl80211_wiphy_netns() 
method in net/wireless/nl80211.c.

Communicating Between Two Network Namespaces
I will end the network namespaces section with a short example of how two network namespaces can communicate 
with each other. It can be done either by using Unix sockets or by using the Virtual Ethernet (VETH) network driver to 
create a pair of virtual network devices and moving one of them to another network namespace. For example, here are 
the first two namespaces, ns1 and ns2:
 
ip netns add ns1
ip netns add ns2
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Start a shell in ns1:
 
ip netns exec ns1 bash
 

Create a virtual Ethernet device (its type is veth):
 
ip link add name if_one type veth peer name if_one_peer
 

Move if_one_peer to ns2:
 
ip link set dev if_one_peer netns ns2
 

You can now set addresses on if_one and on if_one_peer as usual, with the ifconfig command or with the  
ip command, and send packets from one network namespace to the other.

Note■■  N etwork namespaces are not mandatory for a kernel image. By default, network namespaces are enabled 
(CONFIG_NET_NS is set) in most distributions. However, you can build and boot a kernel where network namespaces  
are disabled.

I have discussed in this section what namespaces are, and in particular what are network namespaces. I 
mentioned some of the major changes that were required in order to implement namespaces in general, like adding 
6 new CLONE_NEW* flags, adding two new systems calls, adding an nsproxy object to the process descriptor, and 
more. I also described the implementation of UTS namespaces, which are the most simple among all namespaces, 
and the implementation of network namespaces. Several examples were given showing how simple it is to manipulate 
network namespaces with the ip netns command of the iproute2 package. Next I will describe the cgroups 
subsystem, which provides another solution of resource management, and two network modules that belong to it.

Cgroups
The cgroups subsystem is a project started by Paul Menage, Rohit Seth, and other Google developers in 2006. It was 
initially called “process containers,” but later it was renamed to “Control Groups.” It provides resource management 
and resource accounting for groups of processes. It has been part of the mainline kernel since kernel 2.6.24, and 
it’s used in several projects: for example by systemd (a service manager which replaced SysV init scripts; used, for 
example, by Fedora and by openSUSE), by the Linux Containers project, which was mentioned earlier in this chapter, 
by Google containers (https://github.com/google/lmctfy/), by libvirt (http://libvirt.org/cgroups.html) and 
more. Cgroups kernel implementation is mostly in non-critical paths in terms of performance. The cgroups subsystem 
implements a new Virtual File System (VFS) type named “cgroups”. All cgroups actions are done by filesystem actions, 
like creating cgroups directories in a cgroup filesystem, writing or reading to entries in these directories, mounting 
cgroup filesystems, etc. There is a library called libcgroup (a.k.a. libcg), which provides a set of userspace utilities 
for cgroups management: for example, cgcreate to create a new cgroup, cgdelete to delete a cgroup, cgexec to run 
a task in a specified control group, and more. In fact this is done by calling the cgroup filesystem operations from the 
libcg library. The libcg library is likely to see reduced usage in the future because it doesn’t provide any coordination 
among multiple parties trying to use the cgroup controllers. It could be that in the future all the cgroup file operations 
will be performed by a library or by a daemon and not directly. The cgroups subsystem, as currently implemented, 
needs some form of coordination, because there is only a single controller for each resource type. When multiple 
actors modify it, this necessarily leads to conflicts. The cgroups controllers can be used by many projects like libvirt, 
systemd, lxc and more, simultaneously. When working only via cgroups filesystem operations, and when all the 
projects try to impose their own policy through cgroups at too low a level, without knowing about each other, they 

https://github.com/google/lmctfy/
http://libvirt.org/cgroups.html
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may accidently walk over each other. When each will talk to a daemon, for example, such a clash will be avoided. For 
more information about libcg see http://libcg.sourceforge.net/.

As opposed to namespaces, no new system calls were added for implementing the cgroup subsystem. As in 
namespaces, several cgroups can be nested. There were code additions in the boot phase, mainly for the initialization 
of the cgroups subsystem, and in various subsystems, like the memory subsystem or security subsystem. Following 
here is a short, partial list of tasks that you can perform with cgroups:

Assign a set of CPUs to a set of processes, with the cpusets cgroup controller. You can also •	
control the NUMA node memory is allocated from with the cpusets cgroup controller.

Manipulate the out of memory (•	 oom) killer operation or create a process with a limited  
amount of memory with the memory cgroup controller (memcg). You will see an example  
later in this chapter.

Assign permissions to devices under •	 /dev, with the devices cgroup. You will see later an 
example of using the devices cgroup in the “Cgroup Devices – A Simple Example” section.

Assign priority to traffic (see the section “The net_prio Module” later in this chapter).•	

Freeze processes with the freezer cgroup.•	

Report CPU resource usage of tasks of a cgroup with the cpuacct cgroup. Note that there is also •	
the cpu controller, which can provision CPU cycles either by priority or by absolute bandwidth 
and provides the same or a superset of statistics.

Tag network traffic with a class identifier (•	 classid); see the section “The cls_cgroup Classifier” 
later in this chapter.

Next I will describe very briefly some changes that were done for supporting cgroups.

Cgroups Implementation
The cgroup subsystem is very complex. Here are several implementation details about the cgroup subsystem that 
should give you a good starting point to delve into its internals:

A new structure called •	 cgroup_subsys was added (include/linux/cgroup.h). It represents a 
cgroup subsystem (also known as a cgroup controller). The following cgroup subsystems are 
implemented:

•	 mem_cgroup_subsys: mm/memcontrol.c

•	 blkio_subsys: block/blk-cgroup.c

•	 cpuset_subsys: kernel/cpuset.c

•	 devices_subsys: security/device_cgroup.c

•	 freezer_subsys: kernel/cgroup_freezer.c

•	 net_cls_subsys: net/sched/cls_cgroup.c

•	 net_prio_subsys: net/core/netprio_cgroup.c

•	 perf_subsys: kernel/events/core.c

•	 cpu_cgroup_subsys: kernel/sched/core.c

•	 cpuacct_subsys: kernel/sched/core.c

•	 hugetlb_subsys: mm/hugetlb_cgroup.c

http://libcg.sourceforge.net/
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A new structure called •	 cgroup was added; it represents a control group (linux/cgroup.h)

A new virtual file system was added; this was done by defining the •	 cgroup_fs_type object and 
a cgroup_ops object (instance of super_operations):
 
static struct file_system_type cgroup_fs_type = {
        .name = "cgroup",
        .mount = cgroup_mount,
        .kill_sb = cgroup_kill_sb,
};
static const struct super_operations cgroup_ops = {
        .statfs = simple_statfs,
        .drop_inode = generic_delete_inode,
        .show_options = cgroup_show_options,
        .remount_fs = cgroup_remount,
};
(kernel/cgroup.c)
 
And registering it is done like any other filesystem with the register_filesystem() method 
in the cgroup_init() method; see kernel/cgroup.c.

The following •	 sysfs entry, /sys/fs/cgroup, is created by default when the cgroup subsystem 
is initialized; this is done by calling kobject_create_and_add("cgroup", fs_kobj) in 
the cgroup_init() method. Note that cgroup controllers can be mounted also on other 
directories.

There is a global array of •	 cgroup_subsys objects named subsys, defined in kernel/cgroup.c 
(note that from kernel 3.11, the array name was changed from subsys to cgroup_subsys). 
There are CGROUP_SUBSYS_COUNT elements in this array. A procfs entry called  
/proc/cgroups is exported by the cgroup subsystem. You can display the elements of the 
global subsys array in two ways:

By running •	 cat /proc/cgroups.

By the •	 lssubsys utility of libcgroup-tools.

Creating a new cgroup entails generating these four control files always under that  •	
cgroup VFS:

•	 notify_on_release: Its initial value is inherited from its parent. It’s represents a boolean 
variable, and its usage is related to the release_agent topmost-only control file, which 
will be explained shortly.

•	 cgroup.event_control: This file enables getting notification from a cgroup, using the 
eventfd() system call. See man 2 eventfd, and fs/eventfd.c.

•	 tasks: A list of the PIDs which are attached to this group. Attaching a process to a cgroup 
is done by writing the value of its PID to the tasks control file and is handled by the 
cgroup_attach_task() method, kernel/cgroup.c. Displaying the cgroups to which a 
process is attached is done by cat /proc/<processPid>/cgroup. This is handled in the 
kernel by the proc_cgroup_show() method, in kernel/cgroup.c.

•	 cgroup.procs: A list of the thread group ids which are attached to this cgroup. The tasks  
entry allows attaching threads of the same process to different cgroup controllers, whereas 
cgroup.procs has a process-level granularity (all threads of a single process are moved 
together and belong to the same cgroup).
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In addition to these four control files, a control file named •	 release_agent is created for the 
topmost cgroup root object only. The value of this file is a path of an executable that will be 
executed when the last process of a cgroup is terminated; the notify_on_release mentioned 
earlier should be set so that the release_agent feature will be enabled. The release_agent 
can be assigned as a cgroup mount option; this is the case, for example, in systemd in Fedora. 
The release_agent mechanism is based on a user-mode helper: the call_usermodehelper() 
method is invoked and a new userspace process is created each time that the release_agent 
is activated, which is costly in terms of performance. See: “The past, present, and future of 
control groups”, lwn.net/Articles/574317/. For the release_agent implementation details 
see the cgroup_release_agent() method in kernel/cgroup.c.

Apart from these four default control files and the •	 release_agent topmost-only control file, 
each subsystem can create its own specific control files. This is done by defining an array of 
cftype (Control File type) objects and assigning this array to the base_cftypes member of the 
cgroup_subsys object. For example, for the memory cgroup controller, we have this definition 
for the usage_in_bytes control file:
 
static struct cftype mem_cgroup_files[] = {
        {
                .name = "usage_in_bytes",
                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
                .read = mem_cgroup_read,
                .register_event = mem_cgroup_usage_register_event,
                .unregister_event = mem_cgroup_usage_unregister_event,
        },
        . . .
 
struct cgroup_subsys mem_cgroup_subsys = {
        .name = "memory",
        . . .
        .base_cftypes = mem_cgroup_files,
};
(mm/memcontrol.c)
 
A member called •	 cgroups, which is a pointer to a css_set object, was added to the  
process descriptor, task_struct. The css_set object contains an array of pointers  
to cgroup_subsys_state objects (one such pointer for each cgroup subsystem). The process 
descriptor itself (task_struct ) does not contain a direct pointer to a cgroup subsystem it is 
associated to, but this could be determined from this array of cgroup_subsys_state pointers.

Two cgroups networking modules were added. They will be discussed later in this section:

•	 net_prio (net/core/netprio_cgroup.c).

•	 cls_cgroup (net/sched/cls_cgroup.c).

Note■■  T he cgroup subsystem is still in its early days and likely to see a fair amount of development in its features  
and interface.

Next you will see a short example that illustrates how the devices cgroup controller can be used to change the 
write permission of a device file.
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Cgroup Devices Controller: A Simple Example
Let’s look at a simple example of using the devices cgroup. Running the following command will create a devices cgroup:
 
mkdir   /sys/fs/cgroup/devices/0
 

Three control files will be created under /sys/fs/cgroup/devices/0:

•	 devices.deny: Devices for which access is denied.

•	 devices.allow: Devices for which access is allowed.

•	 devices.list: Available devices.

Each such control file consists of four fields:

•	 type: possible values are: ‘a’ is all, ‘c’ is char device and ‘b’ is block device.

The device major number.•	

The device minor number.•	

Access permission: ‘r’ is permission to read, ’w’ is permission to write, and ’m’ is permission to •	
perform mknod.

By default, when creating a new devices cgroup, it has all the permissions:
 
cat /sys/fs/cgroup/devices/0/devices.list
a *:* rwm
 

The following command adds the current shell to the devices cgroup that you created earlier:
 
echo $$ > /sys/fs/cgroup/devices/0/tasks
 

The following command will deny access from all devices:
 
echo a > /sys/fs/cgroup/devices/0/devices.deny
echo "test" > /dev/null
-bash: /dev/null: Operation not permitted
 

The following command will return the access permission for all devices:
 
echo a >  /sys/fs/cgroup/devices/0/devices.allow
 

Running the following command, which previously failed, will succeed now:
 
echo "test" > /dev/null

Cgroup Memory Controller: A Simple Example
You can disable the out of memory (OOM) killer thus, for example:
 
mkdir /sys/fs/cgroup/memory/0
echo $$ > /sys/fs/cgroup/memory/0/tasks
echo 1 > /sys/fs/cgroup/memory/0/memory.oom_control
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Now if you will run some memory-hogging userspace program, the OOM killer will not be invoked. Enabling the 
OOM killer can be done by:
 
echo 0 > /sys/fs/cgroup/memory/0/memory.oom_control
 

You can use the eventfd() system call the get notifications in a userspace application about a change in the 
status of a cgroup. See man 2 eventfd.

Note■■   You can limit the memory a process in a cgroup can have up to 20M, for example, by:

echo 20M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes

The net_prio Module
The network priority control group (net_prio) provides an interface for setting the priority of network traffic that is 
generated by various userspace applications. Usually this can be done by setting the SO_PRIORITY socket option, 
which sets the priority of the SKB, but it is not always wanted to use this socket option. To support the net_prio 
module, an object called priomap, an instance of netprio_map structure, was added to the net_device object. Let’s 
take a look at the netprio_map structure:
 
struct netprio_map {
        struct rcu_head rcu;
        u32 priomap_len;
        u32 priomap[];
};
(include/net/netprio_cgroup.h)
 

The priomap array is using the net_prio sysfs entries, as you will see shortly. The net_prio module exports 
two entries to cgroup sysfs: net_prio.ifpriomap and net_prio.prioidx. The net_prio.ifpriomap is used to set the 
priomap object of a specified network device, as you will see in the example immediately following. In the Tx path, the 
dev_queue_xmit() method invokes the skb_update_prio() method to set skb->priority according to the priomap 
which is associated with the outgoing network device (skb->dev). The net_prio.prioidx is a read-only entry, which 
shows the id of the cgroup. The net_prio module is a good example of how simple it is to develop a cgroup kernel 
module in less than 400 lines of code. The net_prio module was developed by Neil Horman and is available from 
kernel 3.3. For more information see Documentation/cgroups/net_prio.txt. The following is an example of how 
to use the network priority cgroup module (note that you must load the netprio_cgroup.ko kernel module in case 
CONFIG_NETPRIO_CGROUP is set as a module and not as a built-in):
 
mkdir /sys/fs/cgroup/net_prio
mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
mkdir /sys/fs/cgroup/net_prio/0
echo "eth1 4" > /sys/fs/cgroup/net_prio/0/net_prio.ifpriomap
 

This sequence of commands would set any traffic originating from processes belonging to the netprio “0” group 
and outgoing on interface eth1 to have the priority of four. The last command triggers writing an entry to a field in the 
net_device object called priomap.
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Note■■  I n order to work with net_prio, CONFIG_NETPRIO_CGROUP should be set.

The cls_cgroup Classifier
The cls_cgroup classifier provides an interface to tag network packets with a class identifier (classid). You can 
use it in conjunction with the tc tool to assign different priorities to packets from different cgroups, as the example 
that you will soon see demonstrates. The cls_cgroup module exports one entry to cgroup sysfs, net_cls.classid. 
The control group classifier (cls_cgroup) was merged in kernel 2.6.29 and was developed by Thomas Graf. Like the 
net_prio module which was discussed in the previous section, also this cgroup kernel module is less than 400 lines of 
code, which proves again that adding a cgroup controller by a kernel module is not a heavy task. Here is an example 
of using the control group classifier (note that you must load the cls_cgroup.ko kernel module in case that  
CONFIG_NETPRIO_CGROUP is set as a module and not as a built-in):
 
mkdir /sys/fs/cgroup/net_cls
mount -t cgroup -onet_cls none /sys/fs/cgroup/net_cls
mkdir /sys/fs/cgroup/net_cls/0
echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
 

The last command assigns classid 10:1 to group 0. The iproute2 package contains a utility named tc for 
managing traffic control settings. You can use the tc tool with this class id, for example:
 
tc qdisc add dev eth0 root handle 10: htb
tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
 

For more information see Documentation/cgroups/net_cls.txt (only from kernel 3.10.)

Note■■  I n order to work with cls_cgroup, CONFIG_NET_CLS_CGROUP should be set.

I will conclude the discussion about the cgroup subsystem with a short section about mounting cgroups.

Mounting cgroup Subsystems
Mounting a cgroup subsystem can be done also in other mount points than /sys/fs/cgroup, which is created by 
default. For example, you can mount the memory controller on /mycgroup/mymemtest by the following sequence:
 
mkdir –p /mycgroup/mymemtest
mount -t cgroup -o memory mymemtest /mycgroup/mymemtest
 

Here are some of the mount options when mounting cgroup subsystems:

•	 all: Mount all cgroup controllers.

•	 none: Do not mount any controller.

•	 release_agent: A path to an executable which will be executed when the last process of a 
cgroup is terminated. Systemd uses the release_agent cgroup mount option.
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•	 noprefix: Avoid prefix in control files. Each cgroup controller has its own prefix for its  
own control files; for example, the cpuset controller entry mem_exclusive appears as  
cpuset.mem_exclusive. The noprefix mount option avoids adding the controller prefix.  
For example,
 
mkdir /cgroup
mount -t tmpfs xxx /cgroup/
mount -t cgroup -o noprefix,cpuset xxx /cgroup/
ls /cgroup/
cgroup.clone_children  mem_hardwall             mems
cgroup.event_control   memory_migrate           notify_on_release
cgroup.procs           memory_pressure          release_agent
cpu_exclusive          memory_pressure_enabled  sched_load_balance
cpus                   memory_spread_page       sched_relax_domain_level
mem_exclusive          memory_spread_slab       tasks 

Note■■  R eaders who want to delve into how parsing of the cgroups mount options is implemented should look into the 
parse_cgroupfs_options() method, kernel/cgroup.c.

For more information about cgroups, see the following resources:

•	 Documentation/cgroups

cgroups mailing list: •	 cgroups@vger.kernel.org

cgroups mailing list archives: •	 http://news.gmane.org/gmane.linux.kernel.cgroups

•	 git repository: git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git

Note■■   Linux namespaces and cgroups are orthogonal and are not related technically. You can build a kernel with 
namespaces support and without cgroups support, and vice versa. In the past there were experiments with a cgroups 
namespace subsystem, called “ns”, but the code was eventually removed.

You have seen what cgroups are and you learned about its two network modules, net_prio and cls_cgroup. You 
also saw short examples demonstrating how the devices, memory, and the networking cgroups controllers can be 
used. The Busy Poll Sockets feature, which was added in kernel 3.11 and above, provides lower latency for sockets. 
Let’s take a look at how it is implemented and how it is configured and used.

Busy Poll Sockets
The traditional way the networking stack operates when the socket queue runs dry, is that it will sleep waiting for the 
driver to put more data on the socket queue, or returns if it is a non-blocking operation. This causes additional latency 
due to interrupts and context switches. For sockets applications that need the lowest possible latency and are willing 
to pay a cost of higher CPU utilization, Linux has added a capability for Busy Polling on Sockets from kernel 3.11 and 
above (in the beginning this technique was called Low Latency Sockets Poll, but it was changed to Busy Poll Sockets 
according to Linus suggestion). Busy Polling takes a more aggressive approach toward moving data to the application. 
When the application asks for more data and there is none in the socket queue, the networking stack actively calls into 

http://mailto:cgroups@vger.kernel.org/
http://news.gmane.org/gmane.linux.kernel.cgroups
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the device driver. The driver checks for newly arrived data and pushes it through the network layer (L3) to the socket. 
The driver may find data for other sockets and will push that data as well. When the poll call returns to the networking 
stack, the socket code checks whether new data is pending on the socket receive queue.

In order that a network driver will support busy polling, it should supply its busy polling method and add it as 
the ndo_busy_poll callback of the net_device_ops object. This driver ndo_busy_poll callback should move the 
packets into the network stack; see for example, the ixgbe_low_latency_recv() method, drivers/net/ethernet/
intel/ixgbe/ixgbe_main.c. This ndo_busy_poll callback should return the number of packets that were moved to 
the stack or 0 if there were no such packets, and LL_FLUSH_FAILED or LL_FLUSH_BUSY in case of some problem. An 
unmodified driver that does not fill in the ndo_busy_poll callback will continue to work as usual and will not be busy 
polled.

An important component to providing low latency is busy polling. Sometimes when the driver polling routine 
returns with no data, more data is arriving and just misses being returned to the networking stack. This is where busy 
polling comes in to play. The networking stack polls the driver for a configurable period of time so new packets can be 
picked up as soon as they arrive.

The active and busy polling of the device driver can provide reduced latency very close to that of the hardware. 
Busy polling can be used for large numbers of sockets at the same time but will not yield the best results, since busy 
polling on some sockets will slow down other sockets when using the same CPU core. Figure 14-1 contrasts the 
traditional receive flow with that of a socket that has been enabled for Busy Polling.
 

Figure 14-1.  Traditional receive flow versus Busy Poll Sockets receive flow



Chapter 14 ■ Advanced Topics

435

1. Application checks for receive.              1. Application checks for receive
2. No immediate receive – thus block.           2. Check device driver for pending packet (poll starts).
3. Packet Received.                             3. Meanwhile, packet received to NIC.
4. Driver passes packet to the protocol layer.  4. Driver processes pending packet
5. Protocol/socket wakes application.           5. Driver passes to the protocol layer
   - Bypass context switch and interrupt.
6. Application receives data through sockets.   6. Application receives data through sockets.
   Repeat.                                      Repeat.

Enabling Globally
Busy Polling on Sockets can be turned on globally for all sockets via procfs parameters or it can be turned on for 
individual sockets by setting the SO_BUSY_POLL socket option. For global enabling, there are two parameters:  
net.core.busy_poll and net.core.busy_read, which are exported to procfs by /proc/sys/net/core/busy_poll 
and /proc/sys/net/core/busy_read, respectively. Both are zero by default, which means that Busy Polling is 
off. Setting these values will enable Busy Polling globally. A value of 50 will usually yield good results, but some 
experimentation might help find a better value for some applications.

•	 busy_read controls the time limit when busy polling on blocking read operations. For a  
non-blocking read, if busy polling is enabled for the socket, the stack code polls just once 
before returning control to the user.

•	 busy_poll controls how long select and poll will busy poll waiting for new events on any of 
the sockets that are enabled for Busy Polling. Only sockets with the busy read socket operation 
enabled are busy polled.

For more information, see: Documentation/sysctl/net.txt.

Enabling Per Socket
A better way to enable Busy Polling is to modify the application to use the SO_BUSY_POLL socket option, which sets 
the sk_ll_usec of the socket object (an instance of the sock structure). By using this socket option, an application 
can specify which sockets are Busy Polled so CPU utilization is increased only for those sockets. Sockets from other 
applications and services will continue to use the traditional receive path. The recommended starting value for  
SO_BUSY_POLL is 50. The sysctl.net.busy_read value must be set to 0 and the sysctl.net.busy_poll value  
should be set as described in Documentation/sysctl/net.txt.

Tuning and Configuration
Here are several ways in which you can tune and configure Busy Poll sockets:

The interrupt coalescing (•	 ethtool -C setting for rx-usecs) on the network device should 
be on the order of 100 to lower the interrupt rate. This limits the number of context switches 
caused by interrupts.

Disabling GRO and LRO by using •	 ethtool -K on the network device may avoid out of order 
packets on the receive queue. This should only be an issue when mixed bulk and low latency 
traffic arrive on the same queue. Generally, keeping GRO and LRO enabled usually gives  
best results.
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Application threads and the network device IRQs should be bound to separate CPU cores. •	
Both sets of cores should be on the same CPU NUMA node as the network device. When the 
application and the IRQ run on the same core, there is a small penalty. If interrupt coalescing 
is set to a low value this penalty can be very large.

For lowest latency, it may help to turn off the I/O Memory Management Unit (IOMMU) •	
support. This may already be disabled by default on some systems.

Performance
Many applications that use Busy Polling Sockets should show reduced latency and jitter as well as improved 
transactions per second. However, overloading the system with too many sockets that are busy polling can hurt 
performance as CPU contention increases. The parameters net.core.busy_poll, net.core.busy_read and the 
SO_BUSY_POLL socket option are all tunable. Experimenting with these values may give better results for various 
applications.

I will now start a discussion of three wireless subsystems, which typically serve short range and low power 
devices: the Bluetooth subsystem, IEEE 802.15.4 and NFC. There is a growing interest in these three subsystems as 
new exciting features are added quite steadily. I will start the discussion with the Bluetooth subsystem.

The Linux Bluetooth Subsystem
The Bluetooth protocol is one of the major transport protocols mainly for small and embedded devices. Bluetooth 
network interfaces are included nowadays in almost every new laptop or tablet and in every mobile phone, and in 
many electronic gadgets. The Bluetooth protocol was created by the mobile vendor Ericsson in 1994. In the beginning, 
it was intended to be a cable-replacement for point-to-point connections. Later, it evolved to enable wireless Personal 
Area Networks (PANs). Bluetooth operates in the 2.4 GHz Industrial, Scientific and Medical (ISM) radio-frequency 
band, which is license-free for low-power transmissions. The Bluetooth specifications are formalized by the Bluetooth 
Special Interest Group (SIG), which was founded in 1998; see https://www.bluetooth.org. The SIG is responsible for 
development of Bluetooth specification and for the qualification process that helps to ensure interoperability between 
Bluetooth devices from different vendors. The Bluetooth core specification is freely available. There were several 
specifications for Bluetooth over the years, I will mention the most recent:

Bluetooth v2.0 + Enhanced Data Rate (EDR) from 2004.•	

Bluetooth v2.1 + EDR 2007; included improvement of the pairing process by secure simple •	
pairing (SSP).

Bluetooth v3.0 + HS (High Speed) from 2009; the main new feature is AMP (Alternate  •	
MAC/PHY), the addition of 802.11 as a high-speed transport.

Bluetooth v4.0 + BLE (Bluetooth Low Energy, which was formerly known as WiBree)  •	
from 2010.

There is a variety of uses for the Bluetooth protocol, like file transfer, audio streaming, health-care devices, 
networking, and more. Bluetooth is designed for short distance data exchange, in a range that typically extends up to 
10 meters. There are three classes of Bluetooth devices, with the following ranges:

Class 1 – about 100 m.•	

Class 2 – about 10 m.•	

Class 3 – about 1 m.•	

https://www.bluetooth.org/
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The Linux Bluetooth protocol stack is called BlueZ. Originally it was a project started by Qualcomm. It was 
officially integrated in kernel 2.4.6 (2001). Figure 14-2 shows the Bluetooth stack.

Figure 14-2.  Bluetooth stack. Note: In the layer above L2CAP there can be other Bluetooth protocols that are not 
discussed in this chapter, like AVDTP (Audio/Video Distribution Transport Protocol), HFP (Hands-Free Profile),  
Audio/video control transport protocol (AVCTP), and more

The lower three layers (The RADIO layer, Link controller and Link Management Protocol) are •	
implemented in hardware or firmware.

The Host Controller Interface (HCI) specifies how the host interacts and communicates  •	
with a local Bluetooth device (the controller). I will discuss it in the “HCI Layer” section,  
later in this chapter.

The L2CAP (Logical link control and adaptation protocol) provides the ability to transmit and •	
to receive packets from other Bluetooth devices. An application can use the L2CAP protocol 
as a message-based, unreliable data-delivery transport protocol similarly to the UDP protocol. 
Access to the L2CAP protocol from userspace is done by BSD sockets API, which was discussed 
in Chapter 11. Note that in L2CAP, packets are always delivered in the order they were sent, as 
opposed to UDP. In Figure 14-2, I showed three protocols that are located on top of L2CAP (there 
are other protocols on top of L2CAP that are not discussed in this chapter, as mentioned earlier).

BNEP: Bluetooth Network Encapsulation Protocol. I will present an example of using the •	
BNEP protocol later in this chapter.

RFCOMM: The Radio Frequency Communications (RFCOMM) protocol is a reliable •	
streams-based protocol. RFCOMM allows operation over only 30 ports. RFCOMM is used 
for emulating communication over a serial port and for sending unframed data.
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SDP: Service Discovery Protocol. Enables an application to register a description and •	
a port number in an SDP server it runs. Clients can perform a lookup in the SDP server 
providing the description.

The SCO (Synchronous Connection-Oriented) Layer: for sending audio; I do not delve into its •	
details in this chapter as it falls outside the scope of this book.

Bluetooth profiles are definitions of possible applications and specify general behaviors that •	
Bluetooth- enabled devices use to communicate with other Bluetooth devices. There are many 
Bluetooth profiles, and I will mention some of the most commonly used ones:

File Transfer Profile (FTP): Manipulates and transfers objects (files and folders) in an •	
object store (file system) of another system.

Health Device Profile (HDP): Handles medical data.•	

Human Interface Device Profile (HID): A wrapper of USB HID (Human Interface Device) •	
that provides support for devices like mice and keyboards.

Object Push Profile (OPP) – Push objects profile.•	

Personal Area Networking Profile (PAN): Provides networking over a Bluetooth link; you •	
will see an example of it in the BNEP section later in this chapter.

Headset Profile (HSP): Provides support for Bluetooth headsets, which are used with •	
mobile phones.

The seven layers in this diagram are roughly parallel to the seven layers of the OS model. The Radio (RF) layer is 
parallel to the Physical layer, the Link Controller is parallel to the Data Link Layer, the Link Management Protocol is 
parallel to the Network Protocol, and so on. The Linux Bluetooth subsystem consists of several ingredients:

Bluetooth Core•	

HCI device and connection manager, scheduler; files: •	 net/bluetooth/hci*.c,  
net/bluetooth/mgmt.c.

Bluetooth Address Family sockets; file: •	 net/bluetooth/af_bluetooth.c.

SCO audio links; file: •	 net/bluetooth/sco.c.

L2CAP (Logical Link Control and Adaptation Protocol); files: •	 net/bluetooth/l2cap*.c.

SMP (Security Manager Protocol) on LE (Low Energy) links; file: •	 net/bluetooth/smp.c

AMP manager - Alternate MAC/PHY management; file: •	 net/bluetooth/a2mp.c.

HCI Device drivers (Interface to the hardware); files: •	 drivers/bluetooth/*. Includes vendor 
specific drivers as well as generic drivers, like the Bluetooth USB generic driver, btusb.

RFCOMM Module (RFCOMM Protocol); files: •	 net/bluetooth/rfcomm/*.

BNEP Module (Bluetooth Network Encapsulation Protocol); files: •	 net/bluetooth/bnep/*.

CMTP Module (CAPI Message Transport Protocol), used by the ISDN protocol. CMTP is in •	
fact obsolete; files: net/bluetooth/cmtp/*.

HIDP Module (Human Interface Device Protocol); files: •	 net/bluetooth/hidp/*.

I discussed briefly the Bluetooth protocol, the architecture of the Bluetooth stack and the Linux Bluetooth 
subsystem tree, and Bluetooth profiles. In the next section I will describe the HCI layer, which is the first layer above 
the LMP (see Figure 14-2 earlier in this section).
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HCI Layer
I will start the discussion of the HCI layer with describing the HCI device, which represents a Bluetooth controller. 
Later in this section I will describe the interface between the HCI layer and the layer below it, the Link Controller layer, 
and the interface between the HCI and the layers above it, L2CAP and SCO.

HCI Device
A Bluetooth device is represented by struct hci_dev. This structure is quite big (over 100 members), and will 
partially be shown here:
 
struct hci_dev {
         char            name[8];
         unsigned long   flags;
         __u8            bus;
         bdaddr_t        bdaddr;
         __u8            dev_type;
         . . .
         struct work_struct      rx_work;
         struct work_struct      cmd_work;
         . . .
         struct sk_buff_head     rx_q;
         struct sk_buff_head     raw_q;
         struct sk_buff_head     cmd_q;
         . . .
         int (*open)(struct hci_dev *hdev);
         int (*close)(struct hci_dev *hdev);
         int (*flush)(struct hci_dev *hdev);
         int (*send)(struct sk_buff *skb);
         void (*notify)(struct hci_dev *hdev, unsigned int evt);
         int (*ioctl)(struct hci_dev *hdev, unsigned int cmd, unsigned long arg);
}
(include/net/bluetooth/hci_core.h)
 

Here is a description of some of the important members of the hci_dev structure:

•	 flags: Represents the state of a device, like HCI_UP or HCI_INIT.

•	 bus: The bus associated with the device, like USB (HCI_USB), UART (HCI_UART),  
PCI (HCI_PCI), etc. (see include/net/bluetooth/hci.h).

•	 bdaddr: Each HCI device has a unique address of 48 bits. It is exported to sysfs by:  
/sys/class/bluetooth/<hciDeviceName>/address

•	 dev_type: There are two types of Bluetooth devices:

Basic Rate devices (HCI_BREDR).•	

Alternate MAC and PHY devices (HCI_AMP).•	

•	 rx_work: Handles receiving packets that are kept in the rx_q queue of the HCI device, by the 
hci_rx_work() callback.

•	 cmd_work: Handles sending command packets which are kept in the cmd_q queue of the HCI 
device, by the hci_cmd_work() callback.
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•	 rx_q: Receive queue of SKBs. SKBs are added to the rx_q by calling the skb_queue_tail() 
method when receiving an SKB, in the hci_recv_frame() method.

•	 raw_q: SKBs are added to the raw_q by calling the skb_queue_tail() method in the  
hci_sock_sendmsg() method.

•	 cmd_q: Command queue. SKBs are added to the cmd_q by calling the skb_queue_tail() 
method in the hci_sock_sendmsg() method.

The hci_dev callbacks (like open(), close(), send(), etc) are typically assigned in the probe() method of a 
Bluetooth device driver (for example, refer to the generic USB Bluetooth driver, drivers/bluetooth/btusb.c).

The HCI layer exports methods for registering/unregistering an HCI device (by the hci_register_dev() and the 
hci_unregister_dev() methods, respectively). Both methods get an hci_dev object as a single parameter.  
The registration will fail if the open() or close() callbacks of the specified hci_dev object are not defined.

There are five types of HCI packets:

HCI_COMMAND_PKT: Commands sent from the host to the Bluetooth device.•	

HCI_ACLDATA_PKT: Asynchronous data which is sent or received from a Bluetooth device. •	
ACL stands for Asynchronous Connection-oriented Link (ACL) protocol.

HCI_SCODATA_PKT: Synchronous data which is sent or received from a Bluetooth device •	
(usually audio). SCO stands for Synchronous Connection-Oriented (SCO).

HCI_EVENT_PKT: Sent when an event (such as connection establishment) occurs.•	

HCI_VENDOR_PKT: Used in some Bluetooth device drivers for vendor specific needs.•	

HCI and the Layer Below It (Link Controller)
The HCI communicates with the layer below it, the Link Controller, by:

Sending data packets (HCI_ACLDATA_PKT or HCI_SCODATA_PKT) by calling the  •	
hci_send_frame() method, which delegates the call to the send() callback of the hci_dev 
object. The hci_send_frame() method gets an SKB as a single parameter.

Sending command packets (HCI_COMMAND_PKT), by calling the •	 hci_send_cmd() method. 
For example, sending a scan command.

Receiving data packets, by calling the •	 hci_acldata_packet() method or by calling the  
hci_scodata_packet() method.

Receiving event packets, by calling the •	 hci_event_packet() method. Handling  
HCI commands is asynchronous; so some time after sending a command packet  
(HCI_COMMAND_PKT), a single event or several events are received as a response by the 
HCI rx_work work_queue (the hci_rx_work() method). There are more than 45 different 
events (see HCI_EV_* in include/net/bluetooth/hci.h). For example, when performing 
a scan for nearby Bluetooth devices using the command-line hcitool, by hcitool scan, a 
command packet (HCI_OP_INQUIRY) is sent. As a result, three event packets are returned 
asynchronously to be handled by the hci_event_packet() method: HCI_EV_CMD_STATUS, 
HCI_EV_EXTENDED_INQUIRY_RESULT, and HCI_EV_INQUIRY_COMPLETE.



Chapter 14 ■ Advanced Topics

441

HCI and the Layers Above It (L2CAP/SCO)
Let’s take a look at the methods by which the HCI layer communicates with the layers above it, the L2CAP layer  
and the SCO layer:

HCI communicates with the L2CAP layer above it when receiving data packets by calling the •	
hci_acldata_packet() method, which invokes the l2cap_recv_acldata() method of the 
L2CAP protocol.

HCI communicates with the SCO layer above it when receiving SCO packets by calling the •	
hci_scodata_packet() method, which invokes the sco_recv_scodata() method of the  
SCO protocol.

HCI Connection
The HCI connection is represented by the hci_conn structure:
 
struct hci_conn {
        struct list_head list;
        atomic_t         refcnt;
        bdaddr_t         dst;
        . . .
        __u8              type;
 
}
(include/net/bluetooth/hci_core.h)
 

The following is a description of some of the members of the hci_conn structure:

•	 refcnt: A reference counter.

•	 dst: The Bluetooth destination address.

•	 type: Represents the type of the connection:

SCO_LINK for SCO connection.•	

ACL_LINK for ACL connection.•	

ESCO_LINK for Extended Synchronous connection.•	

LE_LINK – represents LE (Low Energy) connection; was added in kernel v2.6.39 to •	
support Bluetooth V4.0, which added the LE feature.

AMP_LINK – Added in v3.6 to support Bluetooth AMP controllers.•	

An HCI connection is created by calling the hci_connect() method. There are three types of connections: SCO, 
ACL, and LE connection.

L2CAP
In order to provide several data streams, L2CAP uses channels, which are represented by the l2cap_chan structure 
(include/net/bluetooth/l2cap.h). There is a global linked list of channels, named chan_list. Access to this list is 
serialized by a global read-write lock, chan_list_lock.
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The l2cap_recv_acldata() method, which I described in the section “HCI and the layers above it (L2CAP/SCO)” 
earlier in this chapter, is called when HCI passes data packets to the L2CAP layer. The l2cap_recv_acldata() method 
first performs some sanity checks and drops the packet if something is wrong, then it invokes the l2cap_recv_frame() 
method in case a complete packet was received. Each received packet starts with an L2CAP header:
 
struct l2cap_hdr {
        __le16     len;
        __le16     cid;
} __attribute__ ((packed));
(include/net/bluetooth/l2cap.h)
 

The l2cap_recv_frame() method checks the channel id of the received packet by inspecting the cid of the 
l2cap_hdr object. In case it is an L2CAP command (the cid is 0x0001) the l2cap_sig_channel() method is invoked 
to handle it. For example, when another Bluetooth device wants to connect to our device, an L2CAP_CONN_REQ 
request is received on the L2CAP signal channel, which will be handled by the l2cap_connect_req() method,  
net/bluetooth/l2cap_core.c. In the l2cap_connect_req() method, an L2CAP channel is created by calling the 
l2cap_chan_create() method, via pchan->ops->new_connection(). The L2CAP channel state is set to be BT_OPEN, 
and the configuration state is set to be CONF_NOT_COMPLETE. This means that the channel should be configured in 
order to work with it.

BNEP
The BNEP protocol enables IP over Bluetooth, which means in practical terms running TCP/IP applications on top of 
L2CAP Bluetooth channels. You can also run TCP/IP applications with PPP over Bluetooth RFCOMM, but networking 
over serial PPP link is less efficient. The BNEP protocol uses a PAN profile. I will show a short example of using the 
BNEP protocol to setup Bluetooth over IP, and subsequently I will describe the kernel methods which implement such 
communication. Delving into the details of BNEP is beyond the scope of this book. If you want to learn more, see the 
BNEP spec, which can be found in: http://grouper.ieee.org/groups/802/15/Bluetooth/BNEP.pdf. A very simple 
way to create a PAN is by running:

On the server side:•	

•	 pand --listen --role=NAP

Note: NAP stands for: Network Access Point (NAP)•	

On the client side•	

•	 pand --connect btAddressOfTheServer

On both endpoints, a virtual interface (bnep0) is created. Afterward, you can assign an IP addresses on bnep0 for 
both endpoints with the ifconfig command (or with the ip command), just like with Ethernet devices, and you will 
have a network connection over Bluetooth between these endpoints. See more in http://bluez.sourceforge.net/
contrib/HOWTO-PAN.

The pand --listen command creates an L2CAP server socket, and calls the accept() system call, whereas the 
pand --connect btAddressOfTheServer creates an L2CAP client socket and calls the connect() system call. When 
the connect request is received in the server side, it sends an IOCTL of BNEPCONNADD, which is handled in the 
kernel by the bnep_add_connection() method (net/bluetooth/bnep/core.c), which performs the following tasks:

Creates a BNEP session (•	 bnep_session object).

Adds the BNEP session object to the BNEP session list (•	 bnep_session_list) by calling the 
__bnep_link_session() method.

http://grouper.ieee.org/groups/802/15/Bluetooth/BNEP.pdf
http://bluez.sourceforge.net/contrib/HOWTO-PAN
http://bluez.sourceforge.net/contrib/HOWTO-PAN
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Creates a network device named •	 bnepX (for the first BNEP device X is 0, for the second X is 1, 
and so on).

Registers the network device by calling the •	 register_netdev() method.

Creates a kernel thread named “•	 kbnepd btDeviceName”. This kernel thread runs the 
bnep_session() method which contains an endless loop, to receive or transmit packets. 
This endless loop terminates only when a userspace application sends an IOCTL of 
BNEPCONNDEL, which calls the method bnep_del_connection() to set the terminate flag of 
the BNEP session, or when the state of the socket is changed and it is not connected anymore.

The •	 bnep_session() method invokes the bnep_rx_frame() method to receive incoming 
packets and to pass them to the network stack, and it invokes the bnep_tx_frame() method to 
send outgoing packets.

Receiving Bluetooth Packets: Diagram
Figure 14-3 shows the path of a received Bluetooth ACL packet (as opposed to SCO, which is for handling audio and 
is handled differently). The first layer where the packet is handled is the HCI layer, by the hci_acldata_packet() 
method. It then proceeds to the higher L2CAP layer by calling the l2cap_recv_acldata() method.

Figure 14-3.  Receiving an ACL packet

The l2cap_recv_acldata() method calls the l2cap_recv_frame() method, which fetches the L2CAP header 
(the l2cap_hdr object was described earlier) from the SKB.

An action is being taken according to the channel ID of the L2CAP header.
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L2CAP Extended Features
Support for L2CAP Extended Features (also called eL2CAP) was added in kernel 2.6.36. These extended  
features include:

Enhanced Retransmission Mode (ERTM), a reliable protocol with error and flow control.•	

Streaming Mode (SM), an unreliable protocol for streaming purposes.•	

Frame Check Sequence (FCS), a checksum for each received packet.•	

Segmentation and Reassembly (SAR) of L2CAP packets that make retransmission easier.•	

Some of these extensions were required for new profiles, like the Bluetooth Health Device Profile (HDP). Note 
that these features were available also before, but they were considered experimental and were disabled by default, 
and you should have set CONFIG_BT_L2CAP_EXT_FEATURES to enable them.

Bluetooth Tools
Accessing the kernel from userspace is done with sockets with minor changes: instead of using AF_INET sockets,  
we use AF_BLUTOOTH sockets. Here is a short description of some important and useful Bluetooth tools:

•	 hciconfig: A tool for configuring Bluetooth devices. Displays information such as the interface 
type (BR/EDR or AMP), its Bluetooth address, its flags, and more. The hciconfig tool works by 
opening a raw HCI socket (BTPROTO_HCI) and sending IOCTLs; for example, in order to bring 
up or bring down the HCI device, an HCIDEVUP or HCIDEVDOWN is sent, respectively. These 
IOCTLs are handled in the kernel by the hci_sock_ioctl() method, net/bluetooth/hci_sock.c.

•	 hcitool: A tool for configuring Bluetooth connections and sending some special command to 
Bluetooth devices. For example hcitool scan will scan for nearby Bluetooth devices.

•	 hcidump: Dump raw HCI data coming from and going to a Bluetooth device.

•	 l2ping: Send an L2CAP echo request and receive answer.

•	 btmon: A friendlier version of hcidump.

•	 bluetoothctl: A friendlier version of hciconfig/hcitool.

You can find more information about the Linux Bluetooth subsystem in:

Linux BlueZ, the official Linux Bluetooth website•	 : http://www.bluez.org.

Linux Bluetooth mailing list: •	 linux-bluetooth@vger.kernel.org.

Linux Bluetooth mailing list archives: •	 http://www.spinics.net/lists/linux-bluetooth/.

Note that this mailing list is for Bluetooth kernel patches as well as Bluetooth userspace •	
patches.

IRC channels on •	 freenode.net:

#•	 bluez (development related topics)

#•	 bluez-users (non-development related topics)

In this section I described the Linux Bluetooth subsystem, focusing on the networking aspects of this subsystem. 
You learned about the layers of the Bluetooth stack and how they are implemented in the Linux kernel. You also 
learned about the important Bluetooth kernel structures like HCI device and HCI connection. Next, I will describe the 
second wireless subsystem, the IEEEE 802.15.4 subsystem, and its implementation.

http://www.bluez.org/
http://www.spinics.net/lists/linux-bluetooth/
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IEEE 802.15.4 and 6LoWPAN
The IEEE 802.15.4 standard (IEEE Std 802.15.4-2011) specifies the Medium Access Control (MAC) layer and Physical 
(PHY) layer for Low-Rate Wireless Personal Area Networks (LR-WPANs). It is intended for low-cost and low-power 
consumption devices in a short-range network. Several bands are supported, among which the most common are 
the 2.4 GHz ISM band, 915 MHz, and 868 MHz. IEEE 802.15.4 devices can be used for example in wireless sensor 
networks (WSNs), security systems, industry automation systems, and more. It was designed to organize networks of 
sensors, switches, automation devices, etc. The maximum allowed bit rate is 250 kb/s. The standard also supports a 
1000 kb/s bit rate for the 2.4 GHz band, but it is less common. Typical personal operating space is around 10m. The 
IEEE 802.15.4 standard is maintained by the IEEE 802.15 working group (http://www.ieee802.org/15/). There are 
several protocols which sit on top of IEEE 802.15.4; the most known are ZigBee and 6LoWPAN.

The ZigBee Alliance (ZA) has published non GPL specifications for IEEE802.15.4, but also the ZigBee IP (Z-IP) 
open standard (http://www.zigbee.org/Specifications/ZigBeeIP/Overview.aspx). It is based on Internet protocols 
such as IPv6, TCP, UDP, 6LoWPAN, and more. Using the IPv6 protocol for IEEE 802.15.4 is a good option because there 
is a huge address space of IPv6 addresses, which makes it possible to assign a unique routable address to each IPv6 
node. The IPv6 header is simpler than the IPv4 header, and processing its extension headers is simpler than processing 
IPv4 header options. Using IPv6 with LR-WPANs is termed IPv6 over Low-power Wireless Personal Area Networks 
(6LoWPAN). IPv6 is not adapted for its use on an LR-WPAN and therefore requires an adaptation layer, as will be 
explained later in this section. There are five RFCs related to 6LoWPAN:

RFC 4944: “Transmission of IPv6 Packets over IEEE 802.15.4 Networks.”•	

RFC 4919: “IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, •	
Assumptions, Problem Statement, and Goals.”

RFC 6282: “Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks.” •	
This RFC introduced a new encoding format, the LOWPAN_IPHC Encoding Format, instead of 
LOWPAN_HC1 and LOWPAN_HC2.

RFC 6775: “Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area •	
Networks (6LoWPANs).”

RFC 6550: “RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.”•	

The main challenges for implementing 6LoWPAN are:

Different packet sizes: IPv6 has MTU of 1280 whereas IEEE802.15.4 has an MTU of 127 •	
(IEEE802154_MTU). In order to support packets larger than 127 bytes, an adaptation layer 
between IPv6 and IEEE 802.15.4 should be defined. This adaptation layer is responsible for the 
transparent fragmentation/defragmentation of IPv6 packets.

Different addresses: IPv6 address is 128 bit whereas IEEE802.15.4 are IEEE 64-bit extended •	
(IEEE802154_ADDR_LONG) or, after association and after a PAN id is assigned, a 16 bit short 
addresses (IEEE802154_ADDR_SHORT) which are unique in that PAN. The main challenge 
is that we need compression mechanisms to reduce the size of a 6LoWPAN packet, largely 
made up of the IPv6 addresses. 6LoWPAN can for example leverage the fact that IEEE802.15.4 
supports 16 bits short addresses to avoid the need of a 64-bit IID.

Multicast is not supported natively in IEEE 802.15.4 whereas IPv6 uses multicast for ICMPv6 •	
and for protocols that rely on ICMPv6 like the Neighbour Discovery protocol.

IEEE 802.15.4 defines four types of frames:

Beacon frames (IEEE802154_FC_TYPE_BEACON)•	

MAC command frames (IEEE802154_FC_TYPE_MAC_CMD)•	

http://www.ieee802.org/15/
http://www.zigbee.org/Specifications/ZigBeeIP/Overview.aspx
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Acknowledgement frames (IEEE802154_FC_TYPE_ACK)•	

Data frames (IEEE802154_FC_TYPE_DATA)•	

IPv6 packets must be carried on the fourth type, data frames. Acknowledgment for data packets is not mandatory, 
although it is recommended. As with 802.11, there are device drivers that implement most parts of the protocol by 
themselves (HardMAC device drivers), and device drivers that handle most of the protocol in software (SoftMAC 
device drivers). There are three types of nodes in 6LoWPAN:

6LoWPAN Node (6LN): Either a host or a router.•	

6LoWPAN Router (6LR): can send and receive Router Advertisements (RA) and Router •	
Solicitations (RS) messages as well as forward and route IPv6 packets. These nodes are more 
complex than simple 6LoWPAN nodes and may need more memory and processing capacity.

6LoWPAN Border Router (6LBR): A border router located at the junction of separate 6LoWPAN •	
networks or between a 6LoWPAN network and another IP network. The 6LBR is responsible 
for Forwarding between the IP network and the 6LoWPAN network and for the IPv6 
configuration of the 6LoWPAN nodes. A 6LBR requires much more memory and processing 
capacity than a 6LN. They share context for the nodes in the LoWPAN, keep track of registered 
nodes with 6LoWPAN-ND and RPL. Generally 6LBR is always-on in contrast to 6LN who sleep 
most of their times. Figure 14-4 shows a simple setup with 6LBR, which connects between an 
IP network and a Wireless Sensor Network based on 6LoWPAN.

Neighbor Discovery Optimization
There are two reasons we should have optimizations and extensions for the IPv6 Neighboring protocol:

IEEE 802.15.4 link layer does not have multicast support, although it supports broadcast  •	
(it uses 0xFFFF short address for message broadcasting).

The Neighbor Discovery protocol is designed for sufficiently powered devices, and IEEE •	
802.15.4 devices can sleep in order to preserve energy; moreover, they operate in a lossy 
network environment, as the RFC puts it.

RFC 6775, which deals with Neighbor Discovery Optimization, added new optimizations such as:

Host-initiated refresh of Router Advertisement information. In IPv6, routers usually send •	
periodically Router Advertisements. This feature removes the need for periodic or unsolicited 
Router Advertisements sent from routers to hosts.

EUI-64-based IPv6 addresses are considered to be globally unique. When such addresses are •	
used, DAD (Duplicate Address Detection) is not needed.

Figure 14-4.  6LBR connecting an IP network to WSN which runs over 6LoWPAN
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Three options were added:•	

Address Registration Option (ARO): The ARO option (33) can be a part of unicast •	
NS message that a host sends as part of NUD (Neighbor Unreachability Detection) 
to determine that it can still reach a default router. When a host has a non-link-local 
address, it sends periodically NS messages to its default routers with the ARO options 
in order to register its address. Unregistration is done by sending an NS with an ARO 
containing a lifetime of 0.

6LoWPAN Context Option (6CO): The 6CO option (34) carries prefix information for •	
LoWPAN header compression, and is similar to Prefix Information option (PIO) which is 
specified in RFC 4861.

Authoritative Border Router Option (ABRO): The ABRO option (35) enables •	
disseminating prefixes and context information across a route-over topology.

Two new DAD messages were added:•	

Duplicate Address Request (DAR). New ICMPv6 type of 157.•	

Duplicate Address Confirmation (DAC). New ICMPv6 type of 158.•	

Linux Kernel 6LoWPAN 
The 6LoWPAN basic implementation was integrated into v3.2 Linux. It was contributed by the Embedded Systems 
Open Platform Group, from Siemens Corporate Technology. It has three layers:

Network layer - •	 net/ieee802154 (includes the 6lowpan module, Raw IEEE 802.15.4 sockets, 
the netlink interface, and more).

MAC layer - •	 net/mac802154. Implements a partial MAC layer for SoftMAC device drivers.

PHY layer - •	 drivers/net/ieee802154 – the IEEE802154 device drivers.

There are currently two 802.15.4 devices which are supported:•	

AT86RF230/231 transceiver driver•	

Microchip MRF24J40•	

There is the Fakelb driver (IEEE 802.15.4 loopback interface).•	

These two devices, as well as many other 802.15.4 transceivers, are connected via SPI. There is also •	
a serial driver, although it is not included in the mainline kernel and still experimental. There are 
devices like atusb, which are based on an AT86RF231 BN but are not in mainline as of this writing.

6LoWPAN Initialization
In the lowpan_init_module() method, initialization of 6LoWPAN netlink sockets is done by calling the  
lowpan_netlink_init() method, and a protocol handler is registered for 6LoWPAN packets by calling the  
dev_add_pack() method:
 
. . .
static struct packet_type lowpan_packet_type = {
        .type = __constant_htons(ETH_P_IEEE802154),
        .func = lowpan_rcv,
};
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. . .
static int __init lowpan_init_module(void)
{
        . . .
        dev_add_pack(&lowpan_packet_type);
        . . .
}
(net/ieee802154/6lowpan.c)
 

The lowpan_rcv() method is the main Rx handler for 6LoWPAN packets, which has an ethertype of 0x00F6 
(ETH_P_IEEE802154). It handles two cases:

Reception of uncompressed packets (dispatch type is IPv6.)•	

Reception of compressed packets.•	

You use a virtual link to ensure the translation between 6LoWPAN and IPv6 packets. One endpoint of this virtual link 
speaks IPv6 and has an MTU of 1280, this is the 6LoWPAN interface. The other one speaks 6LoWPAN and has an MTU of 
127, this is the WPAN interface. Compressed 6LoWPAN packets are processed by the lowpan_process_data() method, 
which calls the lowpan_uncompress_addr() to uncompress addresses and the lowpan_uncompress_udp_header() to 
uncompress the UDP header accordingly to the IPHC header. The uncompressed IPv6 packet is then delivered to the 
6LoWPAN interface with the lowpan_skb_deliver() method (net/ieee802154/6lowpan.c).

Figure 14-5 shows the 6LoWPAN Adaptation layer.

Figure 14-5.  6LoWPAN Adaptation layer

Figure 14-6 shows the path of a packet from the PHY layer (the driver) via the MAC layer to the 6LoWPAN 
adaptation layer.
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Figure 14-6.  Receiving a packet

I will not delve into the details of the device drivers implementation, as this is out of our scope. I will mention 
that each device driver should create an ieee802154_dev object by calling the ieee802154_alloc_device() method, 
passing as a parameter an ieee802154_ops object. Every driver should define some ieee802154_ops object callbacks, 
like xmit, start, stop, and more. This applies for SoftMAC drivers only.

I will mention here that an Internet-Draft was submitted for applying 6LoWPAN technology over Bluetooth  
Low-Energy devices (these devices are part of the Bluetooth 4.0 specification, as was mentioned in the previous 
chapter). See “Transmission of IPv6 Packets over Bluetooth Low Energy,” 
 http://tools.ietf.org/html/draft-ietf-6lowpan-btle-12.

Note■■   Contiki is an open source Operating System implementing the Internet of Things (IoT) concept; some  
patches of the Linux IEEE802.15.4 6LoWPAN are derived from it, like the UDP header compression and decompression.  
It implements 6LoWPAN, and RPL. It was developed by Adam Dunkels. See http://www.contiki-os.org/

http://tools.ietf.org/html/draft-ietf-6lowpan-btle-12
http://www.contiki-os.org/
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For additional resources about 6LoWPAN and 802.15.4:

Books:•	

“6LoWPAN: The Wireless Embedded Internet”, by Zach Shelby and Carsten Bormann, •	
Wiley, 2009.

“Interconnecting Smart Objects with IP: The Next Internet,” by Jean-Philippe Vasseur and •	
Adam Dunkels (the Contiki developer), Morgan Kaufmann, 2010.

An article about IPv6 Neighbor Discovery Optimization:  •	
http://www.internetsociety.org/articles/ipv6-neighbor-discovery-optimization.

The lowpan-tools is a set of utilities to manage the Linux LoWPAN stack. See:  
http://sourceforge.net/projects/linux-zigbee/files/linux-zigbee-sources/0.3/

Note■■  T he IEEE802.15.4 does not maintain a git repository of its own (though in the past there was one). Patches are 
sent to the netdev mailing list; some of the developers send the patches first to the linux zigbee developer mailing list to 
get some feedback: https://lists.sourceforge.net/lists/listinfo/linux-zigbee-devel

I described the IEEE 802.15.4 and the 6LoWPAN protocol in this section and the challenges it poses for 
integration in the Linux kernel, like adding Neighboring Discovery messages. In the next section I will describe 
the third wireless subsystem, which is intended for the most shortest ranges among the three wireless subsystems 
described in this chapter: the Near Field Communication (NFC) subsystem.

Near Field Communication (NFC)
Near Field Communication is a very short range wireless technology (less than two inches) designed to transfer small 
amount of data over a very low latency link at up to 424 kb/s. NFC payloads range from very simple URLs or raw texts 
to more complex out of band data to trigger connection handover. Through its very short range and latency, NFC 
implements a tap and share concept by linking proximity to an immediate action triggered by the NFC data payload. 
Touch an NFC tag with your NFC enabled mobile phone and this will, for example, immediately fire up a web browser.

NFC runs on the 13.65MHz band and is based on the Radio Frequency ID (RFID) ISO14443 and FeliCa standards. 
The NFC Forum (http://www.nfc-forum.org/) is a consortium responsible for standardizing the technology through 
a set of specifications, ranging from the NFC Digital layer up to high-level services definitions like the NFC Connection 
Handover or the Personal Health Device Communication (PHDC) ones. All adopted NFC Forum specifications are 
available free of charge. See http://www.nfc-forum.org/specs/.

At the heart of the NFC Forum specification is the NFC Data Exchange Format (NDEF) definition. It defines the 
NFC data structure used to exchange NFC payloads from NFC tags or between NFC peers. All NDEFs contain one or 
more NDEF Records that embed the actual payload. NDEF record header contains metadata that allow applications 
to build the semantic link between the NFC payload and an action to trigger on the reader side.

NFC Tags
NFC tags are cheap, mostly static and battery less data containers. They’re typically made of an inductive antenna 
connected to a very small amount of flash memory, packaged in many different form factors (labels, key rings, 
stickers, etc.). As per the NFC Forum definitions, NFC tags are passive devices, i.e., they’re unable to generate any 

http://www.internetsociety.org/articles/ipv6-neighbor-discovery-optimization
http://sourceforge.net/projects/linux-zigbee/files/linux-zigbee-sources/0.3/
https://lists.sourceforge.net/lists/listinfo/linux-zigbee-devel
http://www.nfc-forum.org/
http://www.nfc-forum.org/specs/
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radio field. Instead they’re powered by NFC active devices initiated RF fields. The NFC Forum defines four different 
tag types, each of them carrying a strong RFID and smart card legacy:

Type 1 specifications derive from Innovision/Broadcom Topaz and Jewel card specifications. •	
They can expose from 96 up to 2 KBytes of data at 106 kb/s.

Type 2 tags are based on NXP Mifare Ultralight specifications. They’re very similar to Type 1 tags.•	

Type 3 tags are built on top of the non-secure parts of Sony FeliCa tags. They’re more •	
expensive than Type 1 and 2 tags, but can carry up to 1 MBytes at 212 or 424 kb/s.

Type 4 specifications are based on NXP DESFire cards, support up to 32 KBytes and three •	
transmission speeds: 106, 212, or 424 kb/s.

NFC Devices
As opposed to NFC tags, NFC devices can generate their own magnetic field to initiate NFC communications.  
NFC-enabled mobile phones and NFC readers are the most common kinds of NFC devices. They support a larger 
feature set than NFC tags. They can read from or write to NFC tags, but they can also pretend to be a card and be seen 
as simple NFC tags from any reader. But one of the key advantages of the NFC technology over RFID is the possibility 
to have two NFC devices talking to each other in an NFC specific peer-to-peer mode. The link between two NFC 
devices is kept alive as long as the two devices are in magnetic range. In practice this means two NFC devices can 
maintain a peer-to-peer link while they physically touch each other. This introduces a whole new range of mobile use 
cases where one can exchange data, context, or credentials by touching someone else NFC device.

Communication and Operation Modes
The NFC Forum defines two communication and three operation modes. An active NFC communication is 
established when two NFC devices can talk to one another by alternatively generating the magnetic field. This 
implies that both devices have their own power supply as they don’t rely on any inductively generated power. Active 
communications can only be established in NFC peer-to-peer mode. On the other hand, only one NFC device 
generates the radio field on a passive NFC communication, and the other device replies by using that field.

There are three NFC operation modes:

Reader/Writer: An NFC device (e.g., an NFC-enabled mobile phone) read from or write to an •	
NFC tag.

Peer-to-peer: Two NFC devices establish a Logical Link Control Protocol (LLCP) over which •	
several NFC services can be multiplexed: Simple NDEF Exchange Protocol (SNEP) for 
exchanging NDEF formatted data, Connection Handover for initiating a carrier (Bluetooth or 
WiFi) handover, or any proprietary protocol.

Card Emulation: An NFC device replies to a reader poll by pretending to be an NFC tag. •	
Payment and transaction issuers rely on this mode to implement contactless payments on top 
of NFC. In card emulation mode, payment applets running on a trusted execution environment 
(also known as “secure elements”) take control of the NFC radio and expose themselves as a 
legacy payment card that can be read from an NFC-enabled point-of-sale terminal.

Host-Controller Interfaces
Communication between hardware controllers and host stacks must follow a precisely defined interface: the 
host-controller one (HCI). The NFC hardware ecosystem is quite fragmented in that regard, as most of the initial 
NFC controllers implement an ETSI specified HCI originally designed for communication between SIM cards and 
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contactless front-ends. (See http://www.etsi.org/deliver/etsi_ts/102600_102699/102622/07.00.00_60/
ts_102622v070000p.pdf). This HCI was not tailored for NFC specific use cases, and so each and every manufacturer 
defined a large number of proprietary extensions to support their features. The NFC Forum tries to address that 
situation by defining its own interface, much more NFC oriented, the NFC Controller Interface (NCI). The industry 
trend is clearly showing that manufacturers abandon ETSI HCI in favor of NCI, building a more standardized 
hardware ecosystem.

Linux NFC support
Unlike the Android operating system NFC stack, which is described later in this section, the standard Linux one is partly 
implemented by the kernel itself. Since the 3.1 Linux kernel release, Linux based application will find an NFC specific 
socket domain, along with a generic netlink family for NFC. (See http://git.kernel.org/?p=linux/kernel/git/
sameo/nfc-next.git;a=shortlog;h=refs/heads/master.) The NFC generic netlink family is intended to be an NFC out 
of band channel for controlling and monitoring NFC adapters. The NFC socket domain supports two families:

Raw sockets for sending NFC frames that will arrive unmodified to the drivers•	

LLCP sockets for implementing NFC peer-to-peer services•	

The hardware abstraction is implemented in NFC kernel drivers that register against various parts of the stack, 
mostly depending on the host-controller interface used by the controllers they support. As a consequence, Linux 
applications can work on top of a hardware agnostic and fully POSIX compatible NFC kernel APIs. The Linux NFC 
stack is split between kernel and userspace. The kernel NFC sockets allow userspace applications to implement NFC 
tags support by sending tag types specific commands through the raw protocol. NFC peer-to-peer protocols (SNEP, 
Connection Handover, PHDC, etc.) can be implemented by transmitting their specific payloads through NFC sockets 
as well. Finally, card emulation mode is built on top of the secure element parts of the kernel NFC netlink API. The 
Linux NFC daemon, neard, sits on top of the kernel and implements all three NFC modes, regardless of the NFC 
controller physically wired to the host platform. (See https://01.org/linux-nfc/.)

Figure 14-7 shows an overview of the NFC system.

Figure 14-7.  NFC overview

http://www.etsi.org/deliver/etsi_ts/102600_102699/102622/07.00.00_60/ts_102622v070000p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102622/07.00.00_60/ts_102622v070000p.pdf
http://git.kernel.org/?p=linux/kernel/git/sameo/nfc-next.git;a=shortlog;h=refs/heads/master
http://git.kernel.org/?p=linux/kernel/git/sameo/nfc-next.git;a=shortlog;h=refs/heads/master
https://01.org/linux-nfc/
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NFC Sockets
NFC sockets are of two kinds: raw and LLCP. Raw NFC sockets were designed with reader mode support in mind,  
as they provide a way to transmit tag specific commands and receive the tag replies back. The neard daemon uses 
NFC Raw sockets to implement all four tag types support, in both reader and writer modes. LLCP sockets implement 
the NFC peer-to-peer logical link control protocol on top of which neard implements all NFC Forum specified  
peer-to-peer services (SNEP, Connection Handover, and PHDC).

Depending on the selected protocol, NFC socket semantics differ.

Raw Sockets

•	 connect: Select and enable a detected NFC tag

•	 bind: Not supported

•	 send/recv: Send and receive raw NFC payloads. The NFC core implementation does not 
modify those payloads.

LLCP Sockets

•	 connect: Connect to a specific LLCP service on a detected peer device, like the SNEP or 
Connection Handover services.

•	 bind: Link a device to a specific LLCP service. The service will be exported through the LLCP 
service name lookup (SNL) protocol for any NFC peer device to attempt a connection to it.

•	 send/recv: Transmit LLCP service payloads to and from an NFC peer device. The kernel will 
handle the LLCP specific link layer encapsulation and fragmentation.

LLCP transport can be connected or connectionless, and this is handled through the UNIX •	
standard SOCK_STREAM and SOCK_DGRAM socket types. NFC LLCP sockets also support 
the SOCK_RAW type for monitoring and sniffing purposes.

NFC Netlink API
The NFC generic netlink API is designed to implement out of band NFC specific operations. It also handles any 
discoverable secure element from an NFC controller. Through NFC netlink commands, you can:

List all available NFC controllers.•	

Power NFC controllers up and down.•	

Start (and stop) NFC polls for discovering NFC tags and devices.•	

Enable NFC peer-to-peer (a.k.a. LLCP) links between the local controller and remote  •	
NFC peers.

Send LLCP service name lookup requests, in order to discover the available LLCP services on •	
a remote peer.

Enable and disable NFC discoverable secure elements (typically SIM card based or embedded •	
secure elements).

Send ISO7816 frames to enabled secure elements.•	

Trigger NFC controller firmware downloads.•	
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The netlink API is not only about sending synchronous commands from NFC applications, but also about 
receiving asynchronous NFC-related events. Applications listening for broadcast NFC events on an NFC netlink 
socket will get notified about:

Detected NFC tags and devices•	

Discovered secure elements•	

Secure element transaction status•	

LLCP service name lookup replies•	

The entire netlink API (both commands and events) along with the socket one are exported through the kernel 
headers, and installed at /usr/include/linux/nfc.h on standard Linux distributions.

NFC Initialization 
NFC initialization is done by the nfc_init() method:
 
static int __init nfc_init(void)
{
        int rc;
        . . .
 

Register the generic netlink NFC family and the NFC notifier callback, the nfc_genl_rcv_nl_event() method:
 
        rc = nfc_genl_init();
        if (rc)
                goto err_genl;
 
        /* the first generation must not be 0 */
        nfc_devlist_generation = 1;
 

Initialize NFC Raw sockets:
 
        rc = rawsock_init();
        if (rc)
                goto err_rawsock;
 

Initialize NFC LLCP sockets:
 
        rc = nfc_llcp_init();
        if (rc)
                goto err_llcp_sock;
 

Initialize the AF_NFC protocol:
 
        rc = af_nfc_init();
        if (rc)
                goto err_af_nfc;
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        return 0;
        . . .
}
(net/nfc/core.c)

Drivers API
As explained earlier, most NFC controllers nowadays either use HCI or NCI as their host-controller interface. Others 
define their proprietary interface over USB, like most PC-compatible NFC readers, for example. There are also some 
“Soft” NFC controllers that expect the host platform to implement the NFC Forum Digital layer and talk to an  
analog-only capable firmware. In order to support this variety of hardware controllers, the NFC kernel implements 
NFC NCI, HCI, and Digital layers. Depending on the NFC hardware they intend to support, device driver 
developers will need to register at module probing time against one of these stacks, or directly against the NFC 
core implementation for purely proprietary protocols. When registering, they typically provide a stack operands 
implementation, which is the actual hardware abstraction layer between NFC kernel drivers and the core parts of 
the NFC stack. The NFC driver registration APIs and operand prototypes are defined in the kernel include/net/nfc/ 
directory.

Figure 14-8 shows a block diagram of the NFC Linux Architecture.

Figure 14-8.  NFC Linux Kernel Architecture. (Note that the NFC Digital layer is not in kernel 3.9. It is to be integrated 
into kernel 3.13.)

The hierarchy shown in this figure can be understood better by looking into the implementation details of the 
registration of NFC device drivers directly to the NFC core and against the HCI and the NCI layer:

Registration directly against the NFC core is done typically in the driver •	 probe() callback. The 
registration is done using these steps:

Create an •	 nfc_dev object by calling the nfc_allocate_device() method.

Call the •	 nfc_register_device() method, passing the nfc_dev object which was created 
in the previous step as a single parameter.

See: •	 drivers/nfc/pn533.c.
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Registration against the HCI layer is done typically also in the •	 probe() callback of the driver; 
in the case of the pn544 and microread NFC device drivers, which are the only HCI drivers 
in kernel 3.9, this probe() method is invoked by the I2C subsystem. The registration is done 
using these steps:

Create an •	 nfc_hci_dev object by calling the nfc_hci_allocate_device() method.

The •	 nfc_hci_dev structure is defined in include/net/nfc/hci.h.

Call the •	 nfc_hci_register_device() method, passing the nfc_hci_dev object which 
was created in the previous step as a single parameter. The nfc_hci_register_device() 
method in turn performs a registration against the NFC core by calling the  
nfc_register_device() method.

See •	 drivers/nfc/pn544/pn544.c and drivers/nfc/microread/microread.c.

Registration against the NCI layer is done typically also in the •	 probe() callback of the driver, 
for example in the nfcwilink driver. The registration is done using these steps:

Create an •	 nci_dev object by calling the nci_allocate_device() method.

The •	 nci_dev structure is defined in include/net/nfc/nci_core.h.

Call the •	 nci_register_device() method, passing the nci_dev object that was created in the 
previous step as a single parameter. The nci_register_device() method in turn performs 
a registration against the NFC core by calling the nfc_register_device() method, similarly 
to what you saw earlier in this section with registration against the HCI layer.

See •	 drivers/nfc/nfcwilink.c.

When working directly against the NFC core, the driver must define five callbacks in the nfs_ops object  
(this object is passed as a first parameter of the nfc_allocate_device() method):

•	 start_poll: Set the driver to work in polling mode.

•	 stop_poll: Stop polling.

•	 activate_target: Activate a chosen target.

•	 deactivate_target: Deactivate a chosen target.

•	 im_transceive: Transceive operation.

When working with HCI , the hci_nfc_ops object, which is an instance of nfs_ops, defines these five callbacks, 
and when allocating an HCI object with the nfc_hci_allocate_device() method, the nfc_allocate_device() 
method is invoked with this hci_nfc_ops object as a first parameter.

With NCI, there is something quite similar, with the nci_nfc_ops object; see: net/nfc/nci/core.c.

Userspace Architecture
neard (http://git.kernel.org/?p=network/nfc/neard.git;a=summary) is the Linux NFC daemon that runs on top 
of the kernel NFC APIs. It is a single threaded, GLib based process that implements the higher layers of the NFC  
peer-to-peer stack along with the four tag types specific commands for reading from and writing to NFC tags. The 
NDEF Push Protocol (NPP), SNEP, PHDC, and Connection Handover specifications are implemented through 
neard plugins. One of neard’s main design goals is to provide a small, simple, and uniform NFC API for Linux based 
applications willing to provide high-level NFC services. This is achieved through a small D-Bus API that abstracts 

http://git.kernel.org/?p=network/nfc/neard.git;a=summary
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tags and devices interfaces and methods, hiding the NFC complexity away from application developers. This API is 
compatible with the freedesktop D-Bus ObjectManager one and provides the following interfaces:

•	 org.neard.Adapter: For detecting new NFC controllers, turning them on and off, and starting 
NFC polls.

•	 org.neard.Device, org.neard.Tag: For representing detected NFC tags and devices. Calling 
the Device.Push method will send NDEFs to the peer device while Tag.Write will write them to 
the selected tag.

•	 org.neard.Record: Represents human readable and understandable NDEF record payload 
and properties. Registering agents against the org.neard.NDEFAgent interface will give 
application access to the NDEF raw payloads.

You can find more information about the neard userspace daemon here:  
http://git.kernel.org/cgit/network/nfc/neard.git/tree/doc.

NFC on Android
The initial NFC support was added to the Android operating system on December 2010, with the official 2.3 (Gingerbread) 
release. Android 2.3 only supported the reader/writer mode, but things have improved significantly since then, and the 
latest Android releases (Jelly Bean 4.3) come with a fully featured NFC support. For more information, see the Android 
NFC page: http://developer.android.com/guide/topics/connectivity/nfc/index.html. Following the classic 
Android architecture, a Java specific NFC API is available for applications to provide NFC services and operations. It is left 
to integrators to implement these APIs through native hardware abstraction layers (HAL). Google ships a Broadcom NFC 
HAL that currently only supports Broadcom NFC hardware. Here again, it is left to Android OEMs and integrators to either 
adapt the Broadcom NFC HAL to their selected NFC chipset or to implement their own HAL. It is important to note that 
since the Broadcom stack implements the NFC Controller Interface (NCI) specification, it is relatively easy to adapt it to 
support any NCI compatible NFC controller. The Android NFC architecture is what one could call a userspace NFC stack. 
In fact the entire NFC implementation is done in userspace through the HAL. NFC frames are then pushed down to the 
NFC controller through a kernel driver stub. The driver simply encapsulates those frames into buffers that are ready to be 
sent to the physical link (e.g., I2C, SPI, UART) between the host platform and the NFC controller.

Note■■  P ull requests of the nfc-next git tree are sent to the wireless-next tree (Apart from the NFC subsystem, 
also the Bluetooth subsystem and the mac802.11 subsystem pull requests are handled by the wireless maintainer). From 
the wireless-next tree, pull requests are sent to net-next tree, and from there to Linus linux-next tree. The nfc-next 
tree is available in: git://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-next.git

There is also an nfc-fixes git repository, which contains urgent and critical fixes for the current release(-rc*). The git 
tree of nfc-fixes is available in: git://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-fixes.git/

NFC mailing list: linux-nfc@lists.01.org.

NFC mailing list archives: https://lists.01.org/pipermail/linux-nfc/.

In this section you learned about what NFC is in general, and about the Linux NFC subsystem implementation 
and about the Android NFC subsystem implementation. In the next section I will discuss the notification chains 
mechanism, which is an important mechanism to inform network devices about various events.

http://git.kernel.org/cgit/network/nfc/neard.git/tree/doc
http://developer.android.com/guide/topics/connectivity/nfc/index.html
http://git.kernel.org/pub/scm/linux/kernel/git/sameo/nfc-fixes.git/
https://linux-nfc@lists.01.org
https://lists.01.org/pipermail/linux-nfc/
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Notifications Chains
Network devices state can change dynamically; from time to time, the user/administrator can register/unregister 
network devices, change their MAC address, change their MTU, etc. The network stack and other subsystems and 
modules should be able to be notified about these events and handle them properly. The network notifications chains 
provide a mechanism for handling such events, and I will describe its API and the possible network events it handles in 
this section. For a full list of the events, see Table 14-1 later in this section. Every subsystem and every module can register 
itself to notification chains. This is done by defining a notifier_block and registering it. The core methods of notification 
chain registration and unregistration is the notifier_chain_register() and the notifier_chain_unregister() 
method, respectively. Generation of notification events is done by calling the notifier_call_chain() method. These 
three methods are not used directly (they are not exported; see kernel/notifier.c), and they do not use any locking 
mechanism. The following methods are wrappers around notifier_chain_register(), all of them implemented in 
kernel/notifier.c:

•	 atomic_notifier_chain_register()

•	 blocking_notifier_chain_register()

•	 raw_notifier_chain_register()

•	 srcu_notifier_chain_register()

•	 register_die_notifier()

Table 14-1.  Network Device Events:

Event Meaning

NETDEV_UP device up event

NETDEV_DOWN device down event

NETDEV_REBOOT detected a hardware crash and restarted the device

NETDEV_CHANGE device state change

NETDEV_REGISTER device registration event

NETDEV_UNREGISTER device unregistration event

NETDEV_CHANGEMTU device MTU changed

NETDEV_CHANGEADDR device MAC address changed

NETDEV_GOING_DOWN device is going down

NETDEV_CHANGENAME device has changed its name

NETDEV_FEAT_CHANGE device features changed

NETDEV_BONDING_FAILOVER bonding failover event

NETDEV_PRE_UP this event enables to veto changing the device state to UP; for example, in 
cfg80211, denying interfaces to be set UP if the device is known to be rfkill’ed.
see cfg80211_netdev_notifier_call()

NETDEV_PRE_TYPE_CHANGE The device is about to change its type.
This is a generalization of the
NETDEV_BONDING_OLDTYPE flag, which was replaced by NETDEV_PRE_
TYPE_CHANGE

(continued)
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There are also corresponding wrapper methods for unregistering notification chains and for generating 
notification events for each of these wrappers. For example, for the notification chain registered with the  
atomic_notifier_chain_register() method, the atomic_notifier_chain_unregister() is for unregistering the 
notification chain, and the __atomic_notifier_call_chain() method is for generating notification events. Each of these 
wrappers has also a corresponding macro to define a notification chain; for the atomic_notifier_chain_register() 
wrapper it is the ATOMIC_NOTIFIER_HEAD macro (include/linux/notifier.h).

After registering a notifier_block object, when every one of the events shown in Table 14-1 occurs, the callback 
specified in a notifier_block is invoked. The fundamental data structure of notification chains is the notifier_block 
structure; let’s take a look:
 
struct notifier_block {
        int (*notifier_call)(struct notifier_block *, unsigned long, void *);
        struct notifier_block __rcu *next;
        int priority;
};
(include/linux/notifier.h)
 

•	 notifier_call: The callback to be invoked.

•	 priority: callbacks of notifier_block objects with higher priority are performed first.

There are many chains in the networking subsystem and in other subsystems. Let’s mention some of the 
important ones:

•	 netdev_chain: Registered by the register_netdevice_notifier() method and unregistered 
by the unregister_netdevice_notifier() method (net/core/dev.c).

•	 inet6addr_chain: Registered by the register_inet6addr_notifier() method and 
unregistered by the unregister_inet6addr_notifier () method. Notifications are generated 
by the inet6addr_notifier_call_chain () method (net/ipv6/addrconf_core.c).

Event Meaning

NETDEV_POST_TYPE_CHANGE device changed its type. This is a generalization of the NETDEV_BONDING_
NEWTYPE flag, which was replaced by NETDEV_POST_TYPE_CHANGE

NETDEV_POST_INIT This event is generated in device registration (register_netdevice()), 
before creating the network device kobjects by netdev_register_kobject(); 
used in cfg80211 (net/wireless/core.c)

NETDEV_UNREGISTER_FINAL An event which is generated to finalize the device unregistration.

NETDEV_RELEASE the last slave of a bond is released (when working with netconsole over 
bonding) (This flag was also once used for bridges, in br_if.c).

NETDEV_NOTIFY_PEERS notify network peers event (i.e., a device wants to inform the rest of the 
network about some sort of reconfiguration such as a failover event or a 
virtual machine migration)

NETDEV_JOIN The device added a slave.
Used for example in the bonding driver, in the bond_enslave() method, 
where we add a slave; see drivers/net/bonding/bond_main.c

Table 14-1.  (continued)
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•	 netevent_notif_chain: Registered by the register_netevent_notifier() method and 
unregistered by the unregister_netevent_notifier() method. Notifications are generated 
by the call_netevent_notifiers() method (net/core/netevent.c).

•	 inetaddr_chain: Registered by the register_inetaddr_notifier() method and unregistered 
by the unregister_inetaddr_notifier() method. Notifications are generated by calling the 
blocking_notifier_call_chain() method.

Let’s take a look at an example of using the netdev_chain; you saw earlier that with netdev_chain, registration is done 
with the register_netdevice_notifier() method, which is a wrapper around the raw_notifier_chain_register() 
method. Following is an example of registering a callback named br_device_event; First, a notifier_block object is 
defined, and then it is registered by calling the register_netdevice_notifier() method:
 
struct notifier_block br_device_notifier = {
        .notifier_call = br_device_event
};
(net/bridge/br_notify.c)
static int __init br_init(void)
{
        ...
        register_netdevice_notifier(&br_device_notifier);
        ...
}
(net/bridge/br.c)
 

Notifications of the netdev_chain are generated by invoking the call_netdevice_notifiers() method. The 
first parameter of this method is the event. The call_netdevice_notifiers() method :is in fact a wrapper around 
raw_notifier_call_chain().

So, when a network notification is generated, all callbacks which were registered are invoked; in this example, the 
br_device_event() callback will be called, regardless of which network event occurred; the callback will decide how 
to handle the notification, or maybe it will ignore it. Let’s take a look at the callback method, br_device_event():
 
static int br_device_event(struct notifier_block *unused, unsigned long event, void *ptr)
{
        struct net_device *dev = ptr;
        struct net_bridge_port *p;
        struct net_bridge *br;
        bool changed_addr;
        int err;
        . . .
 

The second parameter for the br_device_event() method is the event (all the events are defined in  
include/linux/netdevice.h):
 
        switch (event) {
        case NETDEV_CHANGEMTU:
                dev_set_mtu(br->dev, br_min_mtu(br));
                break;
        . . .
} 
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Note■■  R egistration of notification chains is not limited only to the networking subsystem. Thus, for example, the 
clockevents subsystem defines a chain called clockevents_chain and registers it by calling the raw_notifier_
chain_register() method, and  the hung_task module defines a chain named panic_notifier_list and registers it 
by calling the atomic_notifier_chain_register() method.

Beside the notifications that are discussed in this section, there is another type or notifications, named RTNetlink 
notifications; these notifications are sent with the rtmsg_ifinfo() method. :This type of notifications was discussed 
in Chapter 2, which dealt with Netlink Sockets.

These are the event types supported for networking (Note: the event types mentioned in the following table are 
defined in include/linux/netdevice.h):

We have now covered notification events, a mechanism that enables network devices to get notifications about 
events such as change of MTU, change of MAC address and more. The next section will discuss shortly the PCI 
subsystem, describing some of its main data structures.

The PCI Subsystem
Many network interfaces cards are Peripheral Component Interconnect (PCI) devices and should work in conjunction 
with the Linux PCI subsystem. Not all network interfaces are PCI devices; there are many embedded devices where 
the network interface is not on a PCI bus; the initialization and handling of these devices is done in a different way, 
and the following discussion is not relevant for these non-PCI devices. The new PCI devices are PCI Express (PCIe or 
PCIE) devices; the standard was created in 2004. They have a serial interface instead of a parallel interface, and as a 
result they have higher maximum system bus throughput. Each PCI device has a read-only configuration space; it is at 
least 256 bytes. The extended configuration space, available in PCI-X 2.0 and PCI Express buses, is 4096 bytes. You can 
read the PCI configuration space and the extended PCI configuration space by lspci (the lspci utility belongs to the 
pciutils package):

•	 lspci  -xxx: Shows a hexadecimal dump of the PCI configuration space.

•	 lspci –xxxx: Shows a hexadecimal dump of the extended PCI configuration space.

The Linux PCI API provides three methods for reading the configuration space, for handling 8-, 16-, and 32-bit 
granularity:

•	 static inline int pci_read_config_byte(const struct pci_dev *dev, int where,  
u8 *val)

•	 static inline int pci_read_config_word(const struct pci_dev *dev, int where,  
u16 *val)

•	 static inline int pci_read_config_dword(const struct pci_dev *dev, int where, 
u32 *val)

There are also three methods for writing the configuration space; likewise, 8-, 16-, and 32-bit granularities  
are handled:

•	 static inline int pci_write_config_byte(const struct pci_dev *dev, int where, u8 val)

•	 static inline int pci_write_config_word(const struct pci_dev *dev, int where, 
u16 val)

•	 static inline int pci_write_config_dword(const struct pci_dev *dev, int where, 
u32 val)
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Every PCI manufacturer assigns values to at least the vendor, device, and class fields in the configuration space of 
the PCI device. A PCI device is identified by the Linux PCI subsystem by a pci_device_id object. The pci_device_id 
struct is defined in include/linux/mod_devicetable.h:
 
struct pci_device_id {
        __u32 vendor, device;           /* Vendor and device ID or PCI_ANY_ID*/
        __u32 subvendor, subdevice;     /* Subsystem ID's or PCI_ANY_ID */
        __u32 class, class_mask;        /* (class,subclass,prog-if) triplet */
        kernel_ulong_t driver_data;     /* Data private to the driver */
};
(include/linux/mod_devicetable.h)
 

The vendor, device, and class fields in pci_device_id identify a PCI device; most drivers do not need to specify 
the class as vendor/device is normally sufficient.

Each PCI device driver declares a pci_driver object. Let’s take a look at the pci_driver structure:
 
struct pci_driver {
    . . .
    const char *name;
    const struct pci_device_id *id_table;   /* must be non-NULL for probe to be called */
    int  (*probe)  (struct pci_dev *dev, const struct pci_device_id *id);   /* New device inserted */
    void (*remove) (struct pci_dev *dev);   /* Device removed (NULL if not a hot-plug capable driver) */
    int  (*suspend) (struct pci_dev *dev, pm_message_t state);      /* Device suspended */
    . . .
    int  (*resume) (struct pci_dev *dev);                   /* Device woken up */
    . . .
};
(include/linux/pci.h)
 

Here are short descriptions of the members of the pci_driver structure:

•	 name: Name of the PCI device.

•	 id_table: An array of pci_device_id objects which it supports. Initializing id_table is done 
usually with the DEFINE_PCI_DEVICE_TABLE macro.

•	 probe: A method for device initialization.

•	 remove: A method for freeing the device. The remove() method usually frees all the resources 
that were assigned in the probe() method.

•	 suspend: A power management callback which puts the device to be in low power state, for 
devices that support power management.

•	 resume: A power management callback that wakes the device from low power state, for 
devices that support power management.

A PCI device is represented by struct pci_dev. It is a large structure; let’s take a look at some of its members 
(they are self-explanatory):
 
struct pci_dev {
        . . .
        unsigned short  vendor;
        unsigned short  device;
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        unsigned short  subsystem_vendor;
        unsigned short  subsystem_device;
        . . .
        struct pci_driver *driver;      /* which driver has allocated this device */
        . . .
        pci_power_t     current_state;  /* Current operating state. In ACPI-speak,
                                           this is D0-D3, D0 being fully functional,
                                           and D3 being off. */
        struct  device  dev;            /* Generic device interface */
 
        int             cfg_size;       /* Size of configuration space */
 
        unsigned int    irq;
};
(include/linux/pci.h)
 

Registering of a PCI network device against the PCI subsystem is done by defining a pci_driver object and 
calling the pci_register_driver() macro, which gets as its single argument a pci_driver object. In order to initialize 
the PCI device before it’s being used, a driver should call the pci_enable_device() method. This method wakes up 
the device if it was suspended, and allocates the required I/O resources and memory resources. Unregistering the 
PCI driver is done by the pci_unregister_driver() method. Usually the pci_register_driver() macro is called in 
the driver module_init() method and the pci_unregister_driver() method is called in the driver module_exit() 
method. Each driver should call the request_irq() method specifying the IRQ handler when the device is brought 
up, and call free_irq() when the device is brought down.

Allocation and freeing of DMA (Direct Memory Access) memory is usually done with dma_alloc_coherent()/
dma_free_coherent() when working with uncached memory buffer. With dma_alloc_coherent() we don’t need to 
worry about cache coherency, as the mappings of this method are cache-coherent. See for example in e1000_alloc_
ring_dma(), drivers/net/ethernet/intel/e1000e/netdev.c. The Linux DMA API is described in Documentation/
DMA-API.txt.

Note■■  S ingle Root I/O Virtualization (SR-IOV) is a PCI feature that makes one physical device appear as several virtual 
devices. The SR-IOV specification was created by the PCI SIG. See http://www.pcisig.com/specifications/iov/
single_root/. For more information see Documentation/PCI/pci-iov-howto.txt.

More information about PCI can be found in the third edition of “Linux Device Drivers” by Jonathan Corbet, 
Alessandro Rubini, and Greg Kroah-Hartman, which is available (under Creative Commons License) in this URL: 
http://lwn.net/Kernel/LDD3/.

Wake-On-LAN (WOL)
Wake-On-LAN is a standard that allows a device that had been soft-powered-down to be powered up or awakened by 
a network packet. Wake-On-LAN is disabled by default. There are some network device drivers which let the sysadmin 
enable the Wake-On-LAN feature, usually by running from userspace the ethtool command. In order to support this, the 
network device driver should define a set_wol() callback in the ethtool_ops object. See for example, the 8139cp driver of 
RealTek (net/ethernet/realtek/8139cp.c). Running ethtool <networkDeviceName> shows whether the network device 
supports Wake-On-LAN. The ethtool also lets the sysadmin define which packets should wake the device; for example, 
ethtool -s eth1 wol g will enable Wake-On-LAN for MagicPacket frames (MagicPacket is a standard of AMD). You can 
use the ether-wake utility of the net-tools package to send Wake-On-LAN MagicPacket frames.

http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/
http://lwn.net/Kernel/LDD3/
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Teaming Network Device
The virtual teaming network device driver is intended to be a replacement for the bonding network device  
(drivers/net/bonding). The bonding network device provides a link aggregation solution (also known as: “link 
bundling” or “trunking”). See Documentation/networking/bonding.txt. The bonding driver is implemented fully 
in the kernel, and is known to be very large and prone to problems. The teaming network driver is controlled by 
userspace, as opposed to the bonding network driver. The userspace daemon is called teamd and it communicates 
with the kernel teaming driver by a library name libteam. The libteam library is based on generic netlink sockets  
(see Chapter 2).

There are four modes for the teaming driver:

•	 loadbalance: Used in Link Aggregation Control Protocol (LACP), which is part of the 802.3ad 
standard.

net/team/team_mode_loadbalance.c

•	 activebackup: Only one port is active at a given time. This port can transmit and receive SKBs. 
The other ports are backup ports. A userspace application can specify which port to use as the 
active port.

net/team/team_mode_activebackup.c

•	 broadcast: All packets are sent by all ports.

net/team/team_mode_broadcast.c

•	 roundrobin: Selection of ports is done by a round robin algorithm. No need for interaction 
with userspace for this mode.

net/team/team_mode_roundrobin.c

Note■■  T he teaming network driver resides under drivers/net/team and is developed by Jiri Pirko.

For more information see http://libteam.org/.

libteam site: https://github.com/jpirko/libteam.

Our brief overview about the teaming driver is over. Many of the readers use PPPoE services when they are 
surfing the Internet. The following short section covers the PPPoE protocol.

http://libteam.org/
https://github.com/jpirko/libteam
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The PPPoE Protocol
PPPoE is a specification for connecting multiple clients to a remote site. PPPoE is typically used by DSL providers to 
handle IP addresses and authenticate users. The PPPoE protocol provides the ability to use PPP encapsulation for 
Ethernet packets. The PPPoE protocol is specified in RFC 2516 from 1999, and the PPP protocol is specified in RFC 
1661 from 1994. There are two stages in PPPoE:

PPPoE discovery stage. The discovery is done in a client-server session. The server is called an •	
Access Concentrator, and there can be more than one. These Access Concentrators are often 
deployed by an Internet Server Provider (ISP). These are the four steps in the Discovery stage:

The PPPoE Active Discovery Initiation (PADI). A broadcast packet is sent from a host. The •	
code in the PPPoE header is 0x09 (PADI_CODE), and the session id (sid) in the PPPoE 
header must be 0.

The PPPoE Active Discovery Offer (PADO). An Access Concentrator replies to a PADI •	
request with a PADO reply. The destination address is the address of the host that sent the 
PADI. The code in the PPPoE header is 0x07 (PADO_CODE). The session id (sid) in the 
PPPoE header must again be 0.

PPPoE Active Discovery Request (PADR). A host sends a PADR packet to an Access •	
Concentrator after it receives a PADO reply. The code in the PPPoE header is 0x19 
(PADR_CODE). The session id (sid) in the PPPoE header must again be 0.

PPPoE Active Discovery Session-confirmation (PADS). When the Access Concentrator •	
gets a PADR request, it generates a unique session id, and sends a PADS packet as a reply. 
The code in the PPPoE header is 0x65 (PADS_CODE). The session id (sid) in the PPPoE 
header is the session id that it generated. The destination of the packet is the IP address of 
the host that sent the PADR request.

A session is terminated by sending PPPoE Active Discovery Terminate (PADT) packet. The •	
code in the PPPoE header is 0xa7 (PADT_CODE). A PADT can be sent either by an Access 
Concentrator or a host, and it can be sent any time after the session was established. The 
destination address is a unicast address. The ethertype of the Ethernet header of all the five 
discovery packets (PADI, PADO, PADR, PADS and PADT) is 0x8863 (ETH_P_PPP_DISC).

PPPoE Session stage. Once the PPPoE discovery stage completed successfully, packets are sent •	
using PPP encapsulation, which means adding a PPP header of two bytes. Using PPP enables 
registration and authentication using PPP subprotocols like Password Authentication Protocol 
(PAP) or Challenge Handshake Authentication Protocol (CHAP), and also PPP subprotocol 
called the Link Control Protocol (LCP), which is responsible for establishing and testing the 
data-link connection. The ethertype of the Ethernet header is 0x8864 (ETH_P_PPP_SES).

Every PPPoE packet starts with a 6-byte of PPPoE header, and you must learn about the PPPoE header in order to 
understand better the PPPoE protocol.

PPPoE Header
I will start by showing the PPPoE header definition in the Linux kernel:
 
struct pppoe_hdr {
#if defined(__LITTLE_ENDIAN_BITFIELD)
        __u8 ver : 4;
        __u8 type : 4;
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#elif defined(__BIG_ENDIAN_BITFIELD)
        __u8 type : 4;
        __u8 ver : 4;
#else
#error  "Please fix <asm/byteorder.h>"
#endif
        __u8 code;
        __be16 sid;
        __be16 length;
        struct pppoe_tag tag[0];
} __packed;
(include/uapi/linux/if_pppox.h)
 

The following is a description of the members of the pppoe_hdr structure:

•	 ver: The ver field is a 4-bit field and it must be set to 0x1 according to section 4 in RFC 2516.

•	 type: The type field is a 4-bit field and it must also be set to 0x1 according to section 4 in  
RFC 2516.

•	 code: The code field is a 8-bit field and it can be one of the constants mentioned earlier:  
PADI_CODE, PADO_CODE, PADR_CODE, PADS_CODE and PADT_CODE.

•	 sid: Session ID (16-bit).

•	 length: The length is a 16-bit field, and it represents the length of the PPPoE payload, without 
the length of the PPPoE header or the length of the Ethernet header.

•	 tag[0]: The PPPoE payload can contains zero or more tags, in a type-length-value (TLV) 
format. A tag consists of 3 fields:

TAG_TYPE: 16-bit (for example, AC-Name, Service-Name, Generic-Error and more).•	

TAG_LENGTH: 16-bit.•	

TAG_VALUE: variable in length.•	

Appendix A of RFC 2516 lists the various TAG_TYPEs and TAG_VALUEs.•	

Figure 14-9 shows a PPPoE header:

Figure 14-9.  PPPoE header
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PPPoE Initialization
PPPoE Initialization is done by the pppoe_init() method, drivers/net/ppp/pppoe.c. Two PPPoE protocol handlers 
are registered, one for PPPoE discovery packets, and one for PPPoE session packets. Let’s take a look at the PPPoE 
protocol handler registration:
 
static struct packet_type pppoes_ptype __read_mostly = {
        .type   = cpu_to_be16(ETH_P_PPP_SES),
        .func   = pppoe_rcv,
};
 
static struct packet_type pppoed_ptype __read_mostly = {
        .type   = cpu_to_be16(ETH_P_PPP_DISC),
        .func   = pppoe_disc_rcv,
};
 
static int __init pppoe_init(void)
{
        int err;
 
        dev_add_pack(&pppoes_ptype);
        dev_add_pack(&pppoed_ptype);
        . . .
      
        return 0;
 
}
 

The dev_add_pack() method is the generic method for registering protocol handlers, and you encountered in 
previous chapters. The protocol handlers which are registered by the pppoe_init() method are:

The •	 pppoe_disc_rcv() method is the handler for PPPoE discovery packets.

The •	 pppoe_rcv() method is the handler for PPPoE session packets.

The PPPoE module exports an entry to procfs, /proc/net/pppoe. This entry consists of the session id, the MAC 
address, and the device of the current PPPoE sessions. Running cat /proc/net/pppoe is handled by the pppoe_
seq_show() method. A notifier chain is registered by the pppoe_init() method by calling the register_netdevice_
notifier(&pppoe_notifier).

PPPoX Sockets
PPPoX sockets are represented by the pppox_sock structure (include/linux/if_pppox.h) and are implemented in 
net/ppp/pppox.c. These sockets implement a Generic PPP encapsulation socket family. Apart from PPPoE, they are 
used also by Layer 2 Tunneling Protocol (L2TP) over PPP. PPPoX sockets are registered by calling register_pppox_
proto(PX_PROTO_OE, &pppoe_proto) in the pppoe_init() method. Let’s take a look at the definition of the  
pppox_sock structure:
 
struct pppox_sock {
        /* struct sock must be the first member of pppox_sock */
        struct sock sk;
        struct ppp_channel chan;
        struct pppox_sock       *next;    /* for hash table */
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        union {
                struct pppoe_opt pppoe;
                struct pptp_opt  pptp;
        } proto;
        __be16                  num;
};
(include/linux/if_pppox.h)
 

When the PPPoX socket is used by PPPoE, the pppoe_opt of the proto union of the pppox_sock object is used. The 
pppoe_opt structure includes a member called pa, which is an instance of the pppoe_addr structure. The pppoe_addr 
structure represents the parameters of the PPPoE session: session id, remote MAC address of the peer, and the name of 
the network device that is used:
 
struct pppoe_addr {
        sid_t         sid;                    /* Session identifier */
        unsigned char remote[ETH_ALEN];       /* Remote address */
        char          dev[IFNAMSIZ];          /* Local device to use */
};
(include/uapi/linux/if_pppox.h) 

Note■■  A ccess to the pa member of the pppoe_opt structure which is embedded in the proto union is done in most 
cases in the PPPoE module using the pppoe_pa macro:

#define pppoe_pa        proto.pppoe.pa

(include/linux/if_pppox.h)

Sending and Receiving Packets with PPPoE
Once the discovery stage is completed, the PPP protocol must be used in order to enable traffic between the two peers, 
as was mentioned earlier. When starting a PPP connection by running, for example, pppd eth0 (see the example later 
in this section), the userspace pppd daemon creates a PPPoE socket by calling socket(AF_PPPOX, SOCK_STREAM,  
PX_PROTO_OE); this is done in the rp-pppoe plugin of the pppd daemon, in the PPPOEConnectDevice() method of  
pppd/plugins/rp-pppoe/plugin.c. This socket() system call creates a PPPoE socket by the pppoe_create() method 
of the PPPoE kernel module. Releasing the socket after the PPPoE session completed is done by the pppoe_release() 
method of the PPPoE kernel module. Let’s take a look at the pppoe_create() method:
 
static const struct proto_ops pppoe_ops = {
        .family         = AF_PPPOX,
        .owner          = THIS_MODULE,
        .release        = pppoe_release,
        .bind           = sock_no_bind,
        .connect        = pppoe_connect,
        . . .
        .sendmsg        = pppoe_sendmsg,
        .recvmsg        = pppoe_recvmsg,
        . . .
        .ioctl          = pppox_ioctl,
};
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static int pppoe_create(struct net *net, struct socket *sock)
{
        struct sock *sk;
 
        sk = sk_alloc(net, PF_PPPOX, GFP_KERNEL, &pppoe_sk_proto);
        if (!sk)
                return -ENOMEM;
 
        sock_init_data(sock, sk);
 
        sock->state     = SS_UNCONNECTED;
        sock->ops       = &pppoe_ops;
 
        sk->sk_backlog_rcv      = pppoe_rcv_core;
        sk->sk_state            = PPPOX_NONE;
        sk->sk_type             = SOCK_STREAM;
        sk->sk_family           = PF_PPPOX;
        sk->sk_protocol         = PX_PROTO_OE;
 
        return 0;
}
(drivers/net/ppp/pppoe.c)
 

By defining pppoe_ops we set callbacks for this socket. So calling from userspace the connect() system call on an 
AF_PPPOX socket will be handled by the pppoe_connect() method of the PPPoE module in the kernel. After creating 
a PPPoE socket, the PPPOEConnectDevice() method calls connect(). Let’s take a look at the pppoe_connect() 
method:
 
static int pppoe_connect(struct socket *sock, struct sockaddr *uservaddr,
                  int sockaddr_len, int flags)
{
        struct sock *sk = sock->sk;
        struct sockaddr_pppox *sp = (struct sockaddr_pppox *)uservaddr;
        struct pppox_sock *po = pppox_sk(sk);
        struct net_device *dev = NULL;
        struct pppoe_net *pn;
        struct net *net = NULL;
        int error;
 
        lock_sock(sk);
 
        error = -EINVAL;
        if (sp->sa_protocol != PX_PROTO_OE)
                goto end;
 
        /* Check for already bound sockets */
        error = -EBUSY;
 



Chapter 14 ■ Advanced Topics

470

The stage_session() method returns true when the session id is not 0 (as mentioned earlier, the session id is 0 
in the discovery stage only). In case the socket is connected and it is in the session stage, the socket is already bound, 
so we exit:
 
        if ((sk->sk_state & PPPOX_CONNECTED) &&
             stage_session(sp->sa_addr.pppoe.sid))
                goto end;
 

Reaching here means that the socket is not connected (it’s sk_state is not PPPOX_CONNECTED) and we need 
to register a PPP channel:
 
        . . .
        /* Re-bind in session stage only */
        if (stage_session(sp->sa_addr.pppoe.sid)) {
                error = -ENODEV;
                net = sock_net(sk);
                dev = dev_get_by_name(net, sp->sa_addr.pppoe.dev);
                if (!dev)
                        goto err_put;
 
                po->pppoe_dev = dev;
                po->pppoe_ifindex = dev->ifindex;
                pn = pppoe_pernet(net);
 

The network device must be up:
 
                if (!(dev->flags & IFF_UP)) {
                        goto err_put;
                }
 
                memcpy(&po->pppoe_pa,
                       &sp->sa_addr.pppoe,
                       sizeof(struct pppoe_addr));
 
                write_lock_bh(&pn->hash_lock);
 

The __set_item() method inserts the pppox_sock object, po, into the PPPoE socket hashtable; the hash key is 
generated according to the session id and the remote peer MAC address by the hash_item() method. The remote 
peer MAC address is po->pppoe_pa.remote. If there is an entry in the hash table with the same session id and the 
same remote MAC address and the same ifindex of the network device, the __set_item() method will return an 
error of –EALREADY:
 
                error = __set_item(pn, po);
                write_unlock_bh(&pn->hash_lock);
 
                if (error < 0)
                        goto err_put;
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po->chan is a ppp_channel object, see earlier in the pppox_sock structure definition. Before registering it by the 
ppp_register_net_channel() method, some of its members should be initialized:
 
                po->chan.hdrlen = (sizeof(struct pppoe_hdr) +
                                   dev->hard_header_len);
 
                po->chan.mtu = dev->mtu - sizeof(struct pppoe_hdr);
                po->chan.private = sk;
                po->chan.ops = &pppoe_chan_ops;
 
                error = ppp_register_net_channel(dev_net(dev), &po->chan);
                if (error) {
 

The delete_item() method deletes a pppox_sock object from the PPPoE socket hashtable.
 
                        delete_item(pn, po->pppoe_pa.sid,
                                    po->pppoe_pa.remote, po->pppoe_ifindex);
                        goto err_put;
                }
 

Set the socket state to be connected:
 
                sk->sk_state = PPPOX_CONNECTED;
        }
 
        po->num = sp->sa_addr.pppoe.sid;
 
end:
        release_sock(sk);
        return error;
err_put:
        if (po->pppoe_dev) {
                dev_put(po->pppoe_dev);
                po->pppoe_dev = NULL;
        }
        goto end;
}
 

By registration of a PPP channel we are allowed to use PPP services. We are able to process PPPoE session packets 
by calling the generic PPP method, ppp_input(), from the pppoe_rcv_core() method. Transmission of PPPoE session 
packets is done with the generic ppp_start_xmit() method.

RP-PPPoE is an open source project which provides a PPPoE client and a PPPoE server for Linux:  
http://www.roaringpenguin.com/products/pppoe. A simple example of running a PPPoE server is:
 
pppoe-server -I  p3p1 -R 192.168.3.101  -L 192.168.3.210 -N 200
 

The options that are used in this example are:

-I: The interface name (•	 p3p1)

-L: Set local IP address (192.168.3.210)•	

http://www.roaringpenguin.com/products/pppoe
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-R: Set the starting remote IP address (192.168.3.101)•	

-N: Max number of concurrent PPPoE sessions (200 in this case)•	

For other options, see man 8 pppoe-server.
Clients on the same LAN can create a PPPoE connection to this server by a pppd daemon, using the rp-pppoe plugin.
Android popularity as a mobile Operating System for smartphones and tablets is growing steadily. I will conclude 

the book with a short section about Android, discussing briefly the Android development model and showing four 
examples about Android networking.

Android
In the recent years, the Android operating system proved to be a very reliable and successful mobile OS. The Android 
operating system is based on a Linux kernel, with changes by Google developers. Android runs on hundreds of types 
of mobile devices, which are mostly based on the ARM processor. (I should mention that there is a project of porting 
Android to Intel x86 processors, http://www.android-x86.org/). The first generation of Google TV devices is based 
on x86 processors by Intel, but the second generation of Google TV devices are based on ARM. Originally Android was 
developed by “Android Inc.”, a company that was founded in California in 2003 by Andy Rubin and others. Google bought 
this company in 2005. The Open Handset Alliance (OHA), a consortium of over 80 companies, announced Android in 
2007. Android is an open source operating system, and its source code is released under the Apache License.  
Unlike Linux, most of the development is done by Google employees behind closed doors. As opposed to Linux, there is 
no public mailing list where developers are sending and discussing patches. One can, however, send patches to public 
Gerrit (see http://source.android.com/source/submit-patches.html). But it is up to Google only to decide whether 
or not they will be included in the Android tree.

Google developers had contributed a lot to the Linux kernel. You had learned earlier in this chapter that the 
cgroup subsystem was started by Google developers. I will mention also two Linux kernel networking patches, the 
Receive Packet Steering (RPS) patch, and the Receive flow steering (RFS) patch by Tom Herbert from Google  
(see http://lwn.net/Articles/362339/ and http://lwn.net/Articles/382428/), which were integrated into 
kernel 2.6.35. When working with multicore platforms, RPS and RFS let you steer packets according to the hash of the 
payload to a specific CPU. And there are a lot of other examples of contributions from Google to the Linux kernel, and 
it seems that also in the future you will encounter many important contributions to the Linux kernel from Google. 
One can find a lot of code from Android kernel in the staging tree of the Linux kernel. However, it is difficult to say 
whether the Android kernel will be merged fully into the Linux kernel; probably a very large part of it will find its way 
into the Linux kernel. For more information about Mainlining Android see this wiki: http://elinux.org/Android_
Mainlining_Project. In the past there were many obstacles in the way, as Google implemented unique mechanisms, 
like wakelocks, alternative power management, its own IPC (called Binder), which is based on a Lightweight Remote 
Procedure Call (RPC), Android shared memory driver (Ashmem), Low Memory Killer and more. In fact, the Kernel 
community rejected the Google power management wakelocks patches in 2010. But since then, some of these features 
were merged and the situation changed. (See “Autosleep and Wake Locks,” https://lwn.net/Articles/479841/,  
and “The LPC Android microconference”, https://lwn.net/Articles/570406/). Linaro (www.linaro.org/) is a  
non-profit organization that was established in 2010 by leading big companies such as ARM, Freescale, IBM, Samsung, 
ST-Ericsson, and Texas Instruments (TI). Its engineering teams develop Linux ARM kernel and also optimizations for 
GCC toolchain. Linaro teams are doing an amazing job of coordinating and pushing/tweaking changes upstream. 
Delving into the details of Android kernel implementation and mainlining is beyond the scope of this book.

Android Networking
The main networking issue with Android is, however, not due to Linux kernel but to Android userspace. Android 
heavily relies on HAL even for networking, as well as for system framework. Originally (i.e., up to 4.2), there’s no 
Ethernet support at all at framework level. If drivers are compiled in the kernel, the TCP/IP stack still allows basic 
Ethernet connectivity for Android Debug Bridge (ADB) debugging, but that’s all. Starting with 4.0, Android-x86 project 

http://www.android-x86.org/
http://source.android.com/source/submit-patches.html
http://lwn.net/Articles/362339/
http://lwn.net/Articles/382428/
http://elinux.org/Android_Mainlining_Project
http://elinux.org/Android_Mainlining_Project
https://lwn.net/Articles/479841/
https://lwn.net/Articles/570406/
http://www.linaro.org/
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fork added an early implementation (badly designed but somehow working) of Ethernet at framework level. Starting 
with 4.2, official upstream sources support Ethernet, but there is no way to actually configure it (it detects Ethernet 
plug in/out, and if a DHCP server is there, it provides an IP address to the interface). Applications can actually make 
use of this interface through framework, but mostly no one does this. If you require real Ethernet support (i.e., being 
able to configure your interface, static/DHCP configure it, set proxy, ensure that all apps are using the interface, then 
a lot of hacks are still required (see www.slideshare.net/gxben/abs-2013-dive-into-android-networking-adding-
ethernet-connectivity). In all cases, only one interface is being supported at a time (eth0 only, even if you have 
eth0 and eth1, so don’t expect to act as a router of any kind). I will show here four short examples of how Android 
networking differs from Linux kernel networking:

Security privileges and networking: Android added a security feature (named “paranoid •	
network”) to the Linux kernel, which restricts access to some networking features, depending 
on the group of the calling process. As opposed to the standard Linux kernel, where any 
application can open a socket and transmit/receive with it, in Android access to network 
resources is filtered by GID (group ID). The part of network security will be probably very 
difficult to merge into the mainline kernel, as it includes many features that are unique to 
Android. For more information about Android network security, see  
http://elinux.org/Android_Security#Paranoid_network-ing.

Bluetooth: Bluedroid is a Bluetooth stack based on code that was developed by Broadcom. •	
It replaced the BlueZ based stack in Android 4.2. Support for Bluetooth Low Energy (BLE, 
or Bluetooth LE) devices, also known as Bluetooth Smart and Smart Ready devices, was 
introduced in Android 4.3 (API Level 18), July 2013. Prior to this, Android Open Source Project 
(AOSP) did not have support for BLE devices, but there were some vendors who provided an 
API to BLE.

Netfilter: There is an interesting project from Google that provides better network statistics •	
on Android. This is implemented by xt_qtaguid, a netfilter module, which enables userspace 
applications to tag their sockets. This project required some changes in the Linux kernel 
netfilter subsystem. Patches of these changes were also sent to the Linux Kernel Mailing List 
(LKML); see http://lwn.net/Articles/517358/. For details, see “Android netfilter changes” 
http://www.linuxplumbersconf.org/2013/ocw/sessions/1491.

NFC: As was described in the Near Field Communication (NFC) section earlier in this chapter, •	
the Android NFC architecture is a userspace NFC stack: the implementation is done in 
userspace through the HAL which is supplied by Broadcom or by Android OEMs.

Android internals: Resources
Although there are many resources about developing applications for Android (whether in books, mailing list, forums, 
courses, etc.), there are very few resources about the internals of Android. For those readers who are interested to 
learn more, I suggest these resources:

The book •	 Embedded Android: Porting, Extending, and Customizing, by Karim Yaghmour 
(O’Reilly Media, 2013)

Slides: Android System Development by Maxime Ripard, Alexandre Belloni (over 400 slides); •	
http://free-electrons.com/doc/training/android/.

Slides: Android Platform Anatomy by Benjamin Zores (59 slides);  •	
http://www.slideshare.net/gxben/droidcon-2013-france-android-platform-anatomy.

Slides: Jelly Bean Device Porting by Benjamin Zores (127 slides);  •	
http://www.slideshare.net/gxben/as-2013-jelly-bean-device-porting-walkthrough.

http://www.slideshare.net/gxben/abs-2013-dive-into-android-networking-adding-ethernet-connectivity
http://www.slideshare.net/gxben/abs-2013-dive-into-android-networking-adding-ethernet-connectivity
http://elinux.org/Android_Security#Paranoid_network-ing
http://lwn.net/Articles/517358/
http://www.linuxplumbersconf.org/2013/ocw/sessions/1491
http://free-electrons.com/doc/training/android/
http://www.slideshare.net/gxben/droidcon-2013-france-android-platform-anatomy
http://www.slideshare.net/gxben/as-2013-jelly-bean-device-porting-walkthrough
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Website: •	 http://developer.android.com/index.html.

Android platform internals forum - archives:  •	
http://news.gmane.org/gmane.comp.handhelds.android.platform

Once a year, an Android Builders Summit (ABS) is held. The first ABS was held in 2011 in San •	
Francisco. It is recommended to read slides, watch videos, or attend.

XDA Developers Conference: •	 http://xda-devcon.com/; Slides and videos in  
http://xda-devcon.com/presentations/

Slides: Android Internals, Marko Gargenta:  •	
http://www.scandevconf.se/db/Marakana-Android-Internals.pdf

Note■■  A ndroid git repositories are available in https://android.googlesource.com/

Note that Android uses a special tool based on python called repo for management of hundreds of git repositories, 
which makes working with git easier.

Summary
I have dealt in this chapter with namespaces in Linux, focusing on network namespaces. I also described the cgroups 
subsystem and its implementation; furthermore, I described its two network modules, net_prio and cls_cgroup. 
The Linux Bluetooth subsystem and its implementation, the IEEE 802.15.4 Linux subsystem and 6LoWPAN, and the 
NFC subsystem were all covered. The optimization achieved by Low Latency Sockets Poll was also discussed in this 
chapter, along with the Notification Chains mechanism, which is widely used in the kernel networking stack (and you 
will encounter it when browsing the source code). Another topic that was briefly discussed was the PCI subsystem, 
in order to give some background about PCI devices, as many network devices are PCI devices. The chapter was 
concluded with three short sections about the network teaming driver (which is intended to replace the bonding 
driver), the PPPoE implementation, and Android.

Although we’ve come to the end of the book, there is much more to learn about Linux Kernel networking, as it 
is a vast ocean of details, and it is progressing dynamically and at such a fast pace. New features and new patches are 
added constantly. I hope you enjoyed the book and that you learned a thing or two!

Quick Reference
I will conclude with a list of methods and macros that were mentioned in this chapter.

Methods
The following list contains the prototypes and descriptions of several methods covered in this chapter.

void switch_task_namespaces(struct task_struct *p, struct nsproxy *new);
This method assigns the specified nsproxy object to the specified process descriptor (task_struct object).

http://developer.android.com/index.html
http://news.gmane.org/gmane.comp.handhelds.android.platform
http://xda-devcon.com/
http://xda-devcon.com/presentations/
http://www.scandevconf.se/db/Marakana-Android-Internals.pdf
https://android.googlesource.com/
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struct nsproxy *create_nsproxy(void);
This method allocates an nsproxy object and initializes its reference counter to 1.

void free_nsproxy(struct nsproxy *ns);
This method released the resources of the specified nsproxy object.

struct net *dev_net(const struct net_device *dev);
This method returns the network namespace object (nd_net) associated with the specified network device.

void dev_net_set(struct net_device *dev, struct net *net);
This method associates the specified network namespace to the specified network device by setting the nd_net 
member of the net_device object.

void sock_net_set(struct sock *sk, struct net *net);
This method associates the specified network namespace to the specified sock object.

struct net *sock_net(const struct sock *sk);
This method returns the network namespace object (sk_net) associated with the specified sock object.

int net_eq(const struct net *net1, const struct net *net2);
This method returns 1 if the first specified network namespace pointer equals the second specified network 
namespace pointer and 0 otherwise.

struct net *net_alloc(void);
This method allocates a network namespace. It is invoked from the copy_net_ns() method.

struct net *copy_net_ns(unsigned long flags, struct user_namespace *user_ns, 
struct net *old_net);
This method creates a new network namespace if the CLONE_NEWNET flag is set in its first parameter, flags.  
It creates the new network namespace by first calling the net_alloc() method to allocate it, then it initializes it by 
calling the setup_net() method, and finally adds it to the global list of all namespaces, net_namespace_list. In 
case the CLONE_NEWNET flag is set in its first parameter, flags, there is no need to create a new namespace and 
the specified old network namespace, old_net, is returned. Note that this description of the copy_net_ns() method 
refers to the case when CONFIG_NET_NS is set. When CONFIG_NET_NS is not set, there is a second implementation 
of copy_net_ns(), which the only thing it does is first verify that CLONE_NEWNET is set in the specified flags, and in 
case it is, returns the specified old network namespace (old_net); see include/net/net_namespace.h.
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int setup_net(struct net *net, struct user_namespace *user_ns);
This method initializes the specified network namespace object. It assigns the network namespace user_ns member 
to be the specified user_ns, it initializes the reference counter (count) of the specified network namespace to be 1, and 
performs more initializations. It is invoked from the copy_net_ns() method and from the net_ns_init() method.

int proc_alloc_inum(unsigned int *inum);
This method allocates a proc inode and sets *inum to be the generated proc inode number (an integer between 
0xf0000000 and 0xffffffff ). It returns 0 on success.

struct nsproxy *task_nsproxy(struct task_struct *tsk);
This method returns the nsproxy object which is attached to the specified process descriptor (tsk).

struct new_utsname *utsname(void);
This method returns the new_utsname object which is associated with the process which currently runs (current).

struct uts_namespace *clone_uts_ns(struct user_namespace *user_ns, struct 
uts_namespace *old_ns);
This method creates a new UTS namespace object by calling the create_uts_ns() method, and copies the new_utsname 
object of the specified old_ns UTS namespace into the new_utsname of the newly created UTS namespace.

struct uts_namespace *copy_utsname(unsigned long flags, struct user_namespace 
*user_ns, struct uts_namespace *old_ns);
This method creates a new UTS namespace if the CLONE_NEWUTS flag is set in its first parameter, flags. It creates 
the new UTS namespace by calling the clone_uts_ns() method, and returns the newly created UTS namespace. 
In case the CLONE_NEWUTS flag is set in its first parameter, there is no need to create a new namespace and the 
specified old UTS namespace (old_ns) is returned.

struct net *sock_net(const struct sock *sk);
This method returns the network namespace object (sk_net) associated with the specified sock object.

void sock_net_set(struct sock *sk, struct net *net);
This method assigns the specified network namespace to the specified sock object.
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int dev_change_net_namespace(struct net_device *dev, struct net *net,  
const char *pat);
This method changes the network namespace of the specified network device to be the specified network namespace. 
It returns 0 on success or –errno on failure. Callers must hold the rtnl semaphore. If the NETIF_F_NETNS_LOCAL 
flag is set in the features of the network device, an error of –EINVAL is returned.

void put_net(struct net *net);
This method decrements the reference counter of the specified network namespace. In case it reaches zero, it calls the 
__put_net() method to free its resources.

struct net *get_net(struct net *net);
This method returns the specified network namespace object after incrementing its reference counter.

void get_nsproxy(struct nsproxy *ns);
This method increments the reference counter of the specified nsproxy object.

struct net *get_net_ns_by_pid(pid_t pid);
This method gets a process id (PID) as an argument, and returns the network namespace object to which this process 
is attached.

struct net *get_net_ns_by_fd(int fd);
This method gets a file descriptor as an argument, and returns the network namespace associated with the inode that 
corresponds to the specified file descriptor.

struct pid_namespace *ns_of_pid(struct pid *pid);
This method returns the PID namespace in which the specified pid was created.

void put_nsproxy(struct nsproxy *ns);
This method decrements the reference counter of the specified nsproxy object; in case it reaches 0, the specified 
nsproxy is freed by calling the free_nsproxy() method.

int register_pernet_device(struct pernet_operations *ops);
This method registers a network namespace device.
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void unregister_pernet_device(struct pernet_operations *ops);
This method unregisters a network namespace device.

int register_pernet_subsys(struct pernet_operations *ops);
This method registers a network namespace subsystem.

void unregister_pernet_subsys(struct pernet_operations *ops);
This method unregisters a network namespace subsystem.

static int register_vlan_device(struct net_device *real_dev, u16 vlan_id);
This method registers a VLAN device associated with the specified physical device (real_dev).

void cgroup_release_agent(struct work_struct *work);
This method is called when a cgroup is released. It creates a userspace process by invoking the call_usermodehelper() 
method.

int call_usermodehelper(char * path, char ** argv, char ** envp, int wait);
This method prepares and starts a userspace application.

int bacmp(bdaddr_t *ba1, bdaddr_t *ba2);
This method compares two Bluetooth addresses. It returns 0 if they are equal.

void bacpy(bdaddr_t *dst, bdaddr_t *src);
This method copies the specified source Bluetooth address (src) to the specified destination Bluetooth address (dst).

int hci_send_frame(struct sk_buff *skb);
This method is the main Bluetooth method for transmitting SKBs (commands and data).

int hci_register_dev(struct hci_dev *hdev);
This method registers the specified HCI device. It is invoked from Bluetooth device drivers. If the open() or close() 
callbacks of the specified hci_dev object are not defined, the method will fail and return –EINVAL. This method sets 
the HCI_SETUP flag in the dev_flags member of the specified HCI device; it also creates a sysfs entry for the device.
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void hci_unregister_dev(struct hci_dev *hdev);
This method unregisters the specified HCI device. It is invoked from Bluetooth device drivers. It sets the HCI_UNREGISTER 
flag in the dev_flags member of the specified HCI device; it also removes the sysfs entry of the device.

void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
This method handles events that are received from the HCI layer by the hci_rx_work() method.

int lowpan_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, 
struct net_device *orig_dev);
This method is the main Rx handler for 6LoWPAN packets. 6LoWPAN packets have an ethertype of 0x00F6.

void pci_unregister_driver(struct pci_driver *dev);
This method unregisters a PCI driver. It is usually called in the network driver module_exit() method.

int pci_enable_device(struct pci_dev *dev);
This method initializes the PCI device before it is used by driver.

int request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, const 
char *name, void *dev);
This method registers the specified handler as the interrupt service routine for the specified irq.

void free_irq(unsigned int irq, void *dev_id);
This method frees an interrupt which was allocated with the request_irq() method.

int nfc_init(void);
This method performs initialization of the NFC subsystem by registering the generic netlink NFC family, initializing 
NFC Raw sockets and NFC LLCP sockets, and initializing the AF_NFC protocol.

int nfc_register_device(struct nfc_dev *dev);
This method registers an NFC device (an nfc_dev object) against the NFC core.

int nfc_hci_register_device(struct nfc_hci_dev *hdev);
This method registers an NFC HCI device (an nfc_hci_dev object) against the NFC HCI layer.
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int nci_register_device(struct nci_dev *ndev);
This method registers an NFC NCI device (an nci_dev object) against the NFC NCI layer.

static int __init pppoe_init(void);
This method initializes the PPPoE layer (PPPoE protocol handlers, the sockets used by PPPoE, the network 
notification handler, the PPPoE procfs entry, and more).

struct pppoe_hdr *pppoe_hdr(const struct sk_buff *skb);
This method returns the PPPoE header associated with the specified skb.

static int pppoe_create(struct net *net, struct socket *sock);
This method creates a PPPoE socket. Return 0 on success or –ENOMEM if allocation of a socket by the sk_alloc() 
method failed.

int __set_item(struct pppoe_net *pn, struct pppox_sock *po);
This method inserts the specified pppox_sock object into the PPPoE socket hashtable. The hash key is calculated 
according to the session id and the remote peer MAC address by the hash_item() method.

void delete_item(struct pppoe_net *pn, __be16 sid, char *addr, int ifindex);
This method removes the PPPoE socket hashtable entry which has the specified session id, the specified MAC 
address, and the specified network interface index (ifindex).

bool stage_session(__be16 sid);
This method returns true when the specified session id is not 0.

int notifier_chain_register(struct notifier_block **nl, struct notifier_block *n);
This method registers the specified notifier_block object (n) to the specified notifier chain (nl). Note that this 
method is not used directly, there are several wrappers around it.

int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n);
This method unregistered the specified notifier_block object (n) from the specified notifier chain (nl). Note that 
also this method is not used directly, there are several wrappers around it.

int register_netdevice_notifier(struct notifier_block *nb);
This method registers the specified notifier_block object to netdev_chain by calling the  
raw_notifier_chain_register() method.
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int unregister_netdevice_notifier(struct notifier_block *nb);
This method unregisters the specified notifier_block object from netdev_chain by calling the  
raw_notifier_chain_unregister() method.

int register_inet6addr_notifier(struct notifier_block *nb);
This method registers the specified notifier_block object to inet6addr_chain by calling the  
atomic_notifier_chain_register() method.

int unregister_inet6addr_notifier(struct notifier_block *nb);
This method unregisters the specified notifier_block object from inet6addr_chain by calling the  
atomic_notifier_chain_unregister() method.

int register_netevent_notifier(struct notifier_block *nb);
This method registers the specified notifier_block object to netevent_notif_chain by calling the  
atomic_notifier_chain_register() method.

int unregister_netevent_notifier(struct notifier_block *nb);
This method unregisters the specified notifier_block object from netevent_notif_chain by calling the  
atomic_notifier_chain_unregister() method.

int __kprobes notifier_call_chain(struct notifier_block **nl, unsigned long val, void 
*v, int nr_to_call, int *nr_calls);
This method is for generating notification events. Note that also this method is not used directly, there are several 
wrappers around it.

int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
This method is for generating notification events on the netdev_chain, by calling the raw_notifier_call_chain() 
method.

int blocking_notifier_call_chain(struct blocking_notifier_head *nh, unsigned long 
val, void *v);
This method is for generating notification events; eventually, after using locking mechanism, it invokes the  
notifier_call_chain() method.
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int __atomic_notifier_call_chain(struct atomic_notifier_head *nh,unsigned long 
val, void *v, int nr_to_call, int *nr_calls);
This method is for generating notification events. Eventually, after using locking mechanism, it invokes the  
notifier_call_chain() method.

Macros
Here you’ll find a description of the macro that was covered in this chapter.

pci_register_driver()
This macro registers a PCI driver in the PCI subsystem. It gets a pci_driver object as a parameter. It is usually called 
in the network driver module_init() method.
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Appendix A

Linux API

In this appendix I cover the two most fundamental data structures in the Linux Kernel Networking stack: the sk_buff 
and the net_device. This is reference material that can help when reading the rest of this book, as you will probably 
encounter these two structures in almost every chapter. Becoming familiar with and learning about these two data 
structures is essential for understanding the Linux Kernel Networking stack. Subsequently, there is a section about 
remote DMA (RDMA), which is further reference material for Chapter 13. It describes in detail the main methods and 
the main data structures that are used by RDMA. This appendix is a good place to always return to, especially when 
looking for definitions of the basic terms.

The sk_buff Structure
The sk_buff structure represents a packet. SKB stands for socket buffer. A packet can be generated by a local socket in 
the local machine, which was created by a userspace application; the packet can be sent outside or to another socket 
in the same machine. A packet can also be created by a kernel socket; and you can receive a physical frame from a 
network device (Layer 2) and attach it to an sk_buff and pass it on to Layer 3. When the packet destination is your 
local machine, it will continue to Layer 4. If the packet is not for your machine, it will be forwarded according to your 
routing tables rules, if your machine supports forwarding. If the packet is damaged for any reason, it will be dropped. 
The sk_buff is a very large structure; I mention most of its members in this section. The sk_buff structure is defined 
in include/linux/skbuff.h. Here is a description of most of its members:

•	 ktime_t tstamp

Timestamp of the arrival of the packet. Timestamps are stored in the SKB as offsets to a 
base timestamp. Note: do not confuse tstamp of the SKB with hardware timestamping, 
which is implemented with the hwtstamps of skb_shared_info. I describe the skb_
shared_info object later in this appenidx.

Helper methods:

•	 skb_get_ktime(const struct sk_buff *skb): Returns the tstamp of the specified skb.

•	 skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp): Converts 
the offset back to a struct timeval.

•	 net_timestamp_set(struct sk_buff *skb): Sets the timestamp for the specified skb. 
The timestamp calculation is done with the ktime_get_real() method, which returns the 
time in ktime_t format.

•	 net_enable_timestamp(): This method should be called to enable SKB timestamping.

•	 net_disable_timestamp(): This method should be called to disable SKB timestamping.

•	 struct sock *sk
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The socket that owns the SKB, for local generated traffic and for traffic that is destined 
for the local host. For packets that are being forwarded, sk is NULL. Usually when talking 
about sockets you deal with sockets which are created by calling the socket() system 
call from userspace. It should be mentioned that there are also kernel sockets, which are 
created by calling the sock_create_kern() method. See for example in vxlan_init_net() 
in the VXLAN driver, drivers/net/vxlan.c.

Helper method:

•	 skb_orphan(struct sk_buff *skb): If the specified skb has a destructor, call this 
destructor; set the sock object (sk) of the specified skb to NULL, and set the destructor of 
the specified skb to NULL.

•	 struct net_device *dev

The dev member is a net_device object which represents the network interface device 
associated to the SKB; you will sometimes encounter the term NIC (Network Interface 
Card) for such a network device. It can be the network device on which the packet arrives, 
or the network device on which the packet will be sent. The net_device structure will be 
discussed in depth in the next section.

•	 char cb[48]

This is the control buffer. It is free to use by any layer. This is an opaque area used to store 
private information. For example, the TCP protocol uses it for the TCP control buffer:
 
#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
(include/net/tcp.h)
 
The Bluetooth protocol also uses the control block:
 
#define bt_cb(skb) ((struct bt_skb_cb *)((skb)->cb))

(include/net/bluetooth/bluetooth.h)
 

•	 unsigned long _skb_refdst

The destination entry (dst_entry) address. The dst_entry struct represents the routing 
entry for a given destination. For each packet, incoming or outgoing, you perform a 
lookup in the routing tables. Sometimes this lookup is called FIB lookup. The result of this 
lookup determines how you should handle this packet; for example, whether it should be 
forwarded, and if so, on which interface it should be transmitted; or should it be thrown, 
should an ICMP error message be sent, and so on. The dst_entry object has a reference 
counter (the __refcnt field). There are cases when you use this reference count, and 
there are cases when you do not use it. The dst_entry object and the lookup in the FIB is 
discussed in more detail in Chapter 4.

Helper methods:

•	 skb_dst_set(struct sk_buff *skb, struct dst_entry *dst): Sets the skb dst, 
assuming a reference was taken on dst and should be released by the dst_release() 
method (which is invoked by the skb_dst_drop() method).
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•	 skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst): Sets the skb 
dst, assuming a reference was not taken on dst. In this case, the skb_dst_drop() method 
will not call the dst_release() method for the dst.

Note ■■   The SKB might have a dst_entry pointer attached to it; it can be reference counted or not. The low order bit of  
_skb_refdst is set if the reference counter was not taken.

•	 struct sec_path *sp

The security path pointer. It includes an array of IPsec XFRM transformations states 
(xfrm_state objects). IPsec (IP Security) is a Layer 3 protocol which is used mostly in 
VPNs. It is mandatory in IPv6 and optional in IPv4. Linux, like many other operating 
systems, implements IPsec both for IPv4 and IPv6. The sec_path structure is defined in 
include/net/xfrm.h. See more in Chapter 10, which deals with the IPsec subsystem.

Helper method:

•	 struct sec_path *skb_sec_path(struct sk_buff *skb): Returns the sec_path object 
(sp) associated with the specified skb.

•	 unsigned int len

The total number of packet bytes.

•	 unsigned int data_len

The data length. This field is used only when the packet has nonlinear data (paged data).

Helper method:

•	 skb_is_nonlinear(const struct sk_buff *skb): Returns true when the data_len of 
the specified skb is larger than 0.

•	 __u16 mac_len

The length of the MAC (Layer 2) header.

•	 __wsum csum

The checksum.

•	 __u32 priority

The queuing priority of the packet. In the Tx path, the priority of the SKB is set according 
to the socket priority (the sk_priority field of the socket). The socket priority in turn can 
be set by calling the setsockopt() system call with the SO_PRIORITY socket option. Using 
the net_prio cgroup kernel module, you can define a rule which will set the priority for 
the SKB; see in the description of the sk_buff netprio_map field, later in this section, 
and also in Documentation/cgroup/netprio.txt. For forwarded packets, the priority 
is set according to TOS (Type Of Service) field in the IP header. There is a table named 
ip_tos2prio which consists of 16 elements. The mapping from TOS to priority is done 
by the rt_tos2priority() method, according to the TOS field of the IP header; see the 
ip_forward() method in net/ipv4/ip_forward.c and the ip_tos2prio definition in 
include/net/route.h.
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•	 __u8 local_df:1

Allow local fragmentation flag. If the value of the pmtudisc field of the socket which sends 
the packet is IP_PMTUDISC_DONT or IP_PMTUDISC_WANT, local_df is set to 1; if the 
value of the pmtudisc field of the socket is IP_PMTUDISC_DO or IP_PMTUDISC_PROBE, 
local_df is set to 0. See the implementation of the __ip_make_skb() method in net/
ipv4/ip_output.c. Only when the packet local_df is 0 do you set the IP header don’t 
fragment flag, IP_DF; see the ip_queue_xmit() method in net/ipv4/ip_output.c:

 
       . . .
        if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
               iph->frag_off = htons(IP_DF);
           else
             iph->frag_off = 0;
       . . .

 
The frag_off field in the IP header is a 16-bit field, which represents the offset and the 
flags of the fragment. The 13 leftmost (MSB) bits are the offset (the offset unit is 8-bytes) 
and the 3 rightmost (LSB) bits are the flags. The flags can be IP_MF (there are more 
fragments), IP_DF (do not fragment), IP_CE (for congestion), or IP_OFFSET (offset part).

The reason behind this is that there are cases when you do not want to allow IP fragmentation. 
For example, in Path MTU Discovery (PMTUD), you set the DF (don’t fragment) flag of the 
IP header. Thus, you don’t fragment the outgoing packets. Any network device along the 
path whose MTU is smaller than the packet will drop it and send back an ICMP packet 
(“Fragmentation Needed”). Getting these ICMP “Fragmentation Needed” packets is 
required in order to determine the Path MTU. See more in Chapter 3. From userspace, 
setting IP_PMTUDISC_DO is done, for example, thus (the following code snippet is taken 
from the source code of the tracepath utility from the iputils package; the tracepath 
utility finds the path MTU):

 
      . . .
      int on = IP_PMTUDISC_DO;
      setsockopt(fd, SOL_IP, IP_MTU_DISCOVER, &on, sizeof(on));
      . . .

 

•	 __u8 cloned:1

When the packet is cloned with the __skb_clone() method, this field is set to 1 in both the 
cloned packet and the primary packet. Cloning SKB means creating a private copy of the 
sk_buff struct; the data block is shared between the clone and the primary SKB.

•	 __u8 ip_summed:2

Indicator of IP (Layer 3) checksum; can be one of these values:

CHECKSUM_NONE: When the device driver does not support hardware checksumming, •	
it sets the ip_summed field to be CHECKSUM_NONE. This is an indication that 
checksumming should be done in software.

CHECKSUM_UNNECESSARY: No need for any checksumming.•	
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CHECKSUM_COMPLETE: Calculation of the checksum was completed by the hardware, •	
for incoming packets.

CHECKSUM_PARTIAL: A partial checksum was computed for outgoing packets; the •	
hardware should complete the checksum calculation. CHECKSUM_COMPLETE and 
CHECKSUM_PARTIAL replace the CHECKSUM_HW flag, which is now deprecated.

•	 __u8 nohdr:1

Payload reference only, must not modify header. There are cases when the owner of  
the SKB no longer needs to access the header at all. In such cases, you can call the  
skb_header_release() method, which sets the nohdr field of the SKB; this indicates that 
the header of this SKB should not be modified.

•	 __u8 nfctinfo:3

Connection Tracking info. Connection Tracking allows the kernel to keep track of all 
logical network connections or sessions. NAT relies on Connection Tracking information 
for its translations. The value of the nfctinfo field corresponds to the ip_conntrack_info 
enum values. So, for example, when a new connection is starting to be tracked, the value 
of nfctinfo is IP_CT_NEW. When the connection is established, the value of nfctinfo is 
IP_CT_ESTABLISHED. The value of nfctinfo can change to IP_CT_RELATED when the 
packet is related to an existing connection—for example, when the traffic is part of some 
FTP session or SIP session, and so on. For a full list of ip_conntrack_info enum values 
see include/uapi/linux/netfilter/nf_conntrack_common.h. The nfctinfo field of the 
SKB is set in the resolve_normal_ct() method, net/netfilter/nf_conntrack_core.c. 
This method performs a Connection Tracking lookup, and if there is a miss, it creates a 
new Connection Tracking entry. Connection Tracking is discussed in depth in Chapter 9, 
which deals with the netfilter subsystem.

•	 __u8 pkt_type:3

For Ethernet, the packet type depends on the destination MAC address in the ethernet 
header, and is determined by the eth_type_trans() method:

PACKET_BROADCAST for broadcast•	

PACKET_MULTICAST for multicast•	

PACKET_HOST if the destination MAC address is the MAC address of the device which •	
was passed as a parameter

PACKET_OTHERHOST if these conditions are not met•	

See the definition of the packet types in include/uapi/linux/if_packet.h.

•	 __u8 ipvs_property:1

This flag indicates whether the SKB is owned by ipvs (IP Virtual Server), which is a  
kernel-based transport layer load-balancing solution. This field is set to 1 in the transmit 
methods of ipvs (net/netfilter/ipvs/ip_vs_xmit.c).

•	 __u8 peeked:1

This packet has been already seen, so stats have been done for it—so don’t do them again.
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•	 __u8 nf_trace:1

The netfilter packet trace flag. This flag is set by the packet flow tracing the netfilter 
module, xt_TRACE module, which is used to mark packets for tracing (net/netfilter/
xt_TRACE.c).

Helper method:

•	 nf_reset_trace(struct sk_buff *skb): Sets the nf_trace of the specified skb to 0.

•	 __be16 protocol

The protocol field is initialized in the Rx path by the eth_type_trans() method to be 
ETH_P_IP when working with Ethernet and IP.

•	 void (*destructor)(struct sk_buff *skb)

A callback that is invoked when freeing the SKB by calling the kfree_skb() method.

•	 struct nf_conntrack *nfct

The associated Connection Tracking object, if it exists. The nfct field, like the nfctinfo 
field, is set in the resolve_normal_ct() method. The Connection Tracking layer is 
discussed in depth in Chapter 9, which deals with the netfilter subsystem.

•	 int skb_iif

The ifindex of the network device on which the packet arrived.

•	 __u32 rxhash

The rxhash of the SKB is calculated in the receive path, according to the source and 
destination address of the IP header and the ports from the transport header. A value 
of zero indicates that the hash is not valid. The rxhash is used to ensure that packets 
with the same flow will be handled by the same CPU when working with Symmetrical 
Multiprocessing (SMP). This decreases the number of cache misses and improves  
network performance. The rxhash is part of the Receive Packet Steering (RPS) feature, 
which was contributed by Google developers (Tom Herbert and others). The RPS  
feature gives performance improvement in SMP environments. See more in 
Documentation/networking/scaling.txt.

•	 __be16 vlan_proto

The VLAN protocol used—usually it is the 802.1q protocol. Recently support for the 
802.1ad protocol (also known as Stacked VLAN) was added.

The following is an example of creating 802.1q and 802.1ad VLAN devices in userspace 
using the ip command of the iproute2 package:
 
ip link add link eth0 eth0.1000 type vlan proto 802.1ad id 1000
ip link add link eth0.1000 eth0.1000.1000 type vlan proto 802.1q id 100
 
Note: this feature is supported in kernel 3.10 and higher.

•	 __u16 vlan_tci

The VLAN tag control information (2 bytes), composed of ID and priority.
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Helper method:

•	 vlan_tx_tag_present(__skb): This macro checks whether the VLAN_TAG_PRESENT flag 
is set in the vlan_tci field of the specified __skb.

•	 __u16 queue_mapping

Queue mapping for multiqueue devices.

Helper methods:

•	 skb_set_queue_mapping (struct sk_buff *skb, u16 queue_mapping): Sets the 
specified queue_mapping for the specified skb.

•	 skb_get_queue_mapping(const struct sk_buff *skb): Returns the queue_mapping of 
the specified skb.

•	 __u8 pfmemalloc

Allocate the SKB from PFMEMALLOC reserves.

Helper method:

•	 skb_pfmemalloc(): Returns true if the SKB was allocated from PFMEMALLOC reserves.

•	 __u8 ooo_okay:1

The ooo_okay flag is set to avoid ooo (out of order) packets.

•	 __u8 l4_rxhash:1

A flag that is set when a canonical 4-tuple hash over transport ports is used.

See the __skb_get_rxhash() method in net/core/flow_dissector.c.

•	 __u8 no_fcs:1

A flag that is set when you request the NIC to treat the last 4 bytes as Ethernet Frame 
Check Sequence (FCS).

•	 __u8 encapsulation:1

The encapsulation field denotes that the SKB is used for encapsulation. It is used, for 
example, in the VXLAN driver. VXLAN is a standard protocol to transfer Layer 2 Ethernet 
packets over a UDP kernel socket. It can be used as a solution when there are firewalls that 
block tunnels and allow, for example, only TCP or UDP traffic. The VXLAN driver uses 
UDP encapsulation and sets the SKB encapsulation to 1 in the vxlan_init_net() method. 
Also the ip_gre module and the ipip tunnel module use encapsulation and set the SKB 
encapsulation to 1.

•	 __u32 secmark

Security mark field. The secmark field is set by an iptables SECMARK target, which labels 
packets with any valid security context. For example:
 
iptables -t mangle -A INPUT -p tcp --dport 80 -j SECMARK --selctx 
system_u:object_r:httpd_packet_t:s0
iptables -t mangle -A OUTPUT -p tcp --sport 80 -j SECMARK --selctx 
system_u:object_r:httpd_packet_t:s0
 
In the preceding rule, you are statically labeling packets arriving at and leaving from port 
80 as httpd_packet_t. See: netfilter/xt_SECMARK.c.
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Helper methods:

•	 void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from): Sets 
the value of the secmark field of the first specified SKB (to) to be equal to the value of the 
secmark field of the second specified SKB (from).

•	 void skb_init_secmark(struct sk_buff *skb): Initializes the secmark of the specified 
skb to be 0.

The next three fields: mark, dropcount, and reserved_tailroom appear in a union.

•	 __u32 mark

This field enables identifying the SKB by marking it.

You can set the mark field of the SKB, for example, with the iptables MARK target in an 
iptables PREROUTING rule with the mangle table.

•	 iptables -A PREROUTING -t mangle -i eth1 -j  MARK  --set-mark   0x1234

This rule will assign the value of 0x1234 to every SKB mark field for incoming traffic on 
eth1 before performing a routing lookup. You can also run an iptables rule which will 
check the mark field of every SKB to match a specified value and act upon it. Netfilter 
targets and iptables are discussed in Chapter 9, which deals with the netfilter subsystem.

•	 __u32 dropcount

The dropcount counter represents the number of dropped packets (sk_drops) of the sk_
receive_queue of the assigned sock object (sk). See the sock_queue_rcv_skb() method 
in net/core/sock.c.

•	 _u32 reserved_tailroom: Used in the sk_stream_alloc_skb() method.

•	 sk_buff_data_t transport_header

The transport layer (L4) header.

Helper methods:

•	 skb_transport_header(const struct sk_buff *skb): Returns the transport header of 
the specified skb.

•	 skb_transport_header_was_set(const struct sk_buff *skb): Returns 1 if the 
transport_header of the specified skb is set.

•	 sk_buff_data_t network_header

The network layer (L3) header.

Helper method:

•	 skb_network_header(const struct sk_buff *skb): Returns the network header of the 
specified skb.

•	 sk_buff_data_t mac_header

The link layer (L2) header.
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Helper methods:

•	 skb_mac_header(const struct sk_buff *skb): Returns the MAC header of the specified skb.

•	 skb_mac_header_was_set(const struct sk_buff *skb): Returns 1 if the mac_header of 
the specified skb was set.

•	 sk_buff_data_t tail

The tail of the data.

•	 sk_buff_data_t end

The end of the buffer. The tail cannot exceed end.

•	 unsigned char head

The head of the buffer.

•	 unsigned char data

The data head. The data block is allocated separately from the sk_buff allocation.

See, in _alloc_skb(), net/core/skbuff.c:
 

data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 

Helper methods:

•	 skb_headroom(const struct sk_buff *skb): This method returns the headroom, which 
is the number of bytes of free space at the head of the specified skb (skb->data – skb-
>head). See Figure A-1.

•	 skb_tailroom(const struct sk_buff *skb): This method returns the tailroom, which is 
the number of bytes of free space at the tail of the specified skb (skb->end – skb->tail). 
See Figure A-1.

Figure A-1 shows the headroom and the tailroom of an SKB.

Figure A-1.  Headroom and tailroom of an SKB



Appendix A ■ Linux API

492

The following are some methods for handling buffers:

•	 skb_put(struct sk_buff *skb, unsigned int len): Adds data to a buffer: this method 
adds len bytes to the buffer of the specified skb and increments the length of the specified skb 
by the specified len.

•	 skb_push(struct sk_buff *skb, unsigned int len): Adds data to the start of a buffer; this 
method decrements the data pointer of the specified skb by the specified len and increments 
the length of the specified skb by the specified len.

•	 skb_pull(struct sk_buff *skb, unsigned int len): Removes data from the start of a 
buffer; this method increments the data pointer of the specified skb by the specified len and 
decrements the length of the specified skb by the specified len.

•	 skb_reserve(struct sk_buff *skb, int len): Increases the headroom of an empty skb by 
reducing the tail.

After describing some methods for handling buffers, I continue with listing the members of the sk_buff structure:

•	 unsigned int truesize

The total memory allocated for the SKB (including the SKB structure itself and the size of 
the allocated data block).

•	 atomic_t users

A reference counter, initialized to 1; incremented by the skb_get() method and 
decremented by the kfree_skb() method or by the consume_skb() method; the  
kfree_skb() method decrements the usage counter; if it reached 0, the method will free 
the SKB—otherwise, the method will return without freeing it.

Helper methods:

•	 skb_get(struct sk_buff *skb): Increments the users reference counter by 1.

•	 skb_shared(const struct sk_buff *skb): Returns true if the number of users is not 1.

•	 skb_share_check(struct sk_buff *skb, gfp_t pri): If the buffer is not shared, the 
original buffer is returned. If the buffer is shared, the buffer is cloned, and the old copy 
drops a reference. A new clone with a single reference is returned. When being called  
from interrupt context or with spinlocks held, the pri parameter (priority) must be  
GFP_ATOMIC. If memory allocation fails, NULL is returned.

•	 consume_skb(struct sk_buff *skb): Decrements the users reference counter and frees 
the SKB if the users reference counter is zero.

struct skb_shared_info
The skb_shared_info struct is located at the end of the data block (skb_end_pointer(SKB)). It consists of only a few 
fields. Let’s take a look at it:
 
struct skb_shared_info {
    unsigned char         nr_frags;
    __u8                  tx_flags;
    unsigned short        gso_size;
    unsigned short        gso_segs;
    unsigned short        gso_type;
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    struct sk_buff        *frag_list;
    struct skb_shared_hwtstamps hwtstamps;
    __be32                ip6_frag_id;
    atomic_t              dataref;
    void *                destructor_arg;
    skb_frag_t            frags[MAX_SKB_FRAGS];
};
 

The following is a description of some of the important members of the skb_shared_info structure:

•	 nr_frags: Represents the number of elements in the frags array.

•	 tx_flags can be:

SKBTX_HW_TSTAMP: Generate a hardware time stamp.•	

SKBTX_SW_TSTAMP: Generate a software time stamp.•	

SKBTX_IN_PROGRESS: Device driver is going to provide a hardware timestamp.•	

SKBTX_DEV_ZEROCOPY: Device driver supports Tx zero-copy buffers.•	

SKBTX_WIFI_STATUS: Generate WiFi status information.•	

SKBTX_SHARED_FRAG: Indication that at least one fragment might be overwritten.•	

When working with fragmentation, there are cases when you work with a list of •	 sk_buffs 
(frag_list), and there are cases when you work with the frags array. It depends mostly on 
whether the Scatter/Gather mode is set.

Helper methods:

•	 skb_is_gso(const struct sk_buff *skb): Returns true if the gso_size of the skb_
shared_info associated with the specified skb is not 0.

•	 skb_is_gso_v6(const struct sk_buff *skb): Returns true if the gso_type of the skb_
shared_info associated with the skb is SKB_GSO_TCPV6.

•	 skb_shinfo(skb): A macro that returns the skb_shinfo associated with the specified  skb.

•	 skb_has_frag_list(const struct sk_buff *skb): Returns true if the frag_list of the 
skb_shared_info of the specified skb is not NULL.

•	 dataref: A reference counter of the skb_shared_info struct. It is set to 1 in the method, 
which allocates the skb and initializes skb_shared_info (The __alloc_skb() method).

The net_device structure
The net_device struct represents the network device. It can be a physical device, like an Ethernet device, or it can 
be a software device, like a bridge device or a VLAN device. As with the sk_buff structure, I will list its important 
members. The net_device struct is defined in include/linux/netdevice.h:

•	 char name[IFNAMSIZ]

The name of the network device. This is the name that you see with ifconfig or ip 
commands (for example eth0, eth1, and so on). The maximum length of the interface 
name is 16 characters. In newer distributions with biosdevname support, the naming 
scheme corresponds to the physical location of the network device. So PCI network 
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devices are named p<slot>p<port>, according to the chassis labels, and embedded ports 
(on motherboard interfaces) are named em<port>—for example, em1, em2, and so on. 
There is a special suffix for SR-IOV devices and Network Partitioning (NPAR)–enabled 
devices. Biosdevname is developed by Dell: http://linux.dell.com/biosdevname. 
See also this white paper: http://linux.dell.com/files/whitepapers/consistent_
network_device_naming_in_linux.pdf.

Helper method:

•	 dev_valid_name(const char *name): Checks the validity of the specified network 
device name. A network device name must obey certain restrictions in order to enable 
creating corresponding sysfs entries. For example, it cannot be “ . ” or “ .. ”; its length 
should not exceed 16 characters. Changing the interface name can be done like this, for 
example: ip link set <oldDeviceName> p2p1 <newDeviceName>. So, for example, ip 
link set p2p1 name a12345678901234567 will fail with this message: Error: argument 
"a12345678901234567" is wrong: "name" too long. The reason is that you tried to set a 
device name that is longer than 16 characters. And running ip link set p2p1 name. will 
fail with RTNETLINK answers: Invalid argument, since you tried to set the device name 
to be “.”, which is an invalid value. See dev_valid_name() in net/core/dev.c.

•	 struct hlist_node name_hlist

This is a hash table of network devices, indexed by the network device name. A lookup 
in this hash table is performed by dev_get_by_name(). Insertion into this hash table is 
performed by the list_netdevice() method, and removal from this hash table is done 
with the unlist_netdevice() method.

•	 char *ifalias

SNMP alias interface name. Its length can be up to 256 (IFALIASZ).

You can create an alias to a network device using this command line:
 

ip link set <devName> alias myalias
 

The ifalias name is exported via sysfs by /sys/class/net/<devName>/ifalias.

Helper method:

•	 dev_set_alias(struct net_device *dev, const char *alias, size_t len): Sets the 
specified alias to the specified network device. The specified len parameter is the number 
of bytes of specified alias to be copied; if the specified len is greater than 256 (IFALIASZ), 
the method will fail with -EINVAL.

•	 unsigned int irq

The Interrupt Request (IRQ) number of the device. The network driver should call 
request_irq() to register itself with this IRQ number. Typically this is done in the probe() 
callback of the network device driver. The prototype of the request_irq() method is: int 
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags, 
const char *name, void *dev). The first argument is the IRQ number. The sepcified 
handler is the Interrupt Service Routine (ISR). The network driver should call the 
free_irq() method when it no longer uses this irq. In many cases, this irq is shared (the 
request_irq() method is called with the IRQF_SHARED flag). You can view the number 
of interrupts that occurred on each core by running cat /proc/interrupts. You can set 
the SMP affinity of the irq by echo irqMask > /proc/irq/<irqNumber>/smp_affinity.

http://linux.dell.com/biosdevname
http://linux.dell.com/files/whitepapers/consistent_network_device_naming_in_linux.pdf
http://linux.dell.com/files/whitepapers/consistent_network_device_naming_in_linux.pdf
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In an SMP machine, setting the SMP affinity of interrupts means setting which cores 
are allowed to handle the interrupt. Some PCI network interfaces use Message Signaled 
Interrupts (MSIs). PCI MSI interrupts are never shared, so the IRQF_SHARED flag is not 
set when calling the request_irq() method in these network drivers. See more info in 
Documentation/PCI/MSI-HOWTO.txt.

•	 unsigned long state

A flag that can be one of these values:

__LINK_STATE_START: This flag is set when the device is brought up, by the •	 dev_open() 
method, and is cleared when the device is brought down.

__LINK_STATE_PRESENT: This flag is set in device registration, by the •	 register_
netdevice() method, and is cleared in the netif_device_detach() method.

__LINK_STATE_NOCARRIER: This flag shows whether the device detected loss of carrier. •	
It is set by the netif_carrier_off() method and cleared by the netif_carrier_on() 
method. It is exported by sysfs via /sys/class/net/<devName>/carrier.

__LINK_STATE_LINKWATCH_PENDING: This flag is set by the •	 linkwatch_fire_event() 
method and cleared by the linkwatch_do_dev() method.

__LINK_STATE_DORMANT: The dormant state indicates that the interface is not able to •	
pass packets (that is, it is not “up”); however, this is a “pending” state, waiting for some 
external event. See section 3.1.12, “New states for IfOperStatus” in RFC 2863,  
“The Interfaces Group MIB.”

The state flag can be set with the generic set_bit() method.

Helper methods:

•	 netif_running(const struct net_device *dev): Returns true if the __LINK_STATE_
START flag of the state field of the specified device is set.

•	 netif_device_present(struct net_device *dev): Returns true if the __LINK_STATE_
PRESENT flag of the state field of the specified device is set.

•	 netif_carrier_ok (const struct net_device *dev): Returns true if the __LINK_
STATE_NOCARRIER flag of the state field of the specified device is not set.

These three methods are defined in include/linux/netdevice.h.

•	 netdev_features_t features

The set of currently active device features. These features should be changed only by 
the network core or in error paths of the ndo_set_features() callback. Network driver 
developers are responsible for setting the initial set of the device features. Sometimes 
they can use a wrong combination of features. The network core fixes this by removing 
an offending feature in the netdev_fix_features() method, which is invoked when the 
network interface is registered (in the register_netdevice() method); a proper message 
is also written to the kernel log.
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I will mention some net_device features here and discuss them. For the full list of  
net_device features, look in include/linux/netdev_features.h.

NETIF_F_IP_CSUM means that the network device can checksum L4 IPv4 TCP/UDP •	
packets.

NETIF_F_IPV6_CSUM means that the network device can checksum L4 IPv6 TCP/UDP •	
packets.

NETIF_F_HW_CSUM means that the device can checksum in hardware all L4 packets. •	
You cannot activate NETIF_F_HW_CSUM together with NETIF_F_IP_CSUM, or together 
with NETIF_F_IPV6_CSUM, because that will cause duplicate checksumming.

If the driver features set includes both NETIF_F_HW_CSUM and NETIF_F_IP_CSUM 
features, then you will get a kernel message saying “mixed HW and IP checksum settings.” 
In such a case, the netdev_fix_features() method removes the NETIF_F_IP_CSUM 
feature. If the driver features set includes both NETIF_F_HW_CSUM and NETIF_F_IPV6_
CSUM features, you get again the same message as in the previous case. This time, the 
NETIF_F_IPV6_CSUM feature is the one which is being removed by the netdev_fix_
features() method. In order for a device to support TSO (TCP Segmentation Offload), it 
needs also to support Scatter/Gather and TCP checksum; this means that both NETIF_F_
SG and NETIF_F_IP_CSUM features must be set. If the driver features set does not include 
the NETIF_F_SG feature, then you will get a kernel message saying “Dropping TSO 
features since no SG feature,” and the NETIF_F_ALL_TSO feature will be removed. If the 
driver features set does not include the NETIF_F_IP_CSUM feature and does not include 
NETIF_F_HW_CSUM, then you will get a kernel message saying “Dropping TSO features 
since no CSUM feature,” and the NETIF_F_TSO will be removed.

Note■■  I n recent kernels, if CONFIG_DYNAMIC_DEBUG kernel config item is set, you might need to explicitly enable 
printing of some messages, via <debugfs>/dynamic_debug/control interface. See Documentation/dynamic-debug-
howto.txt.

NETIF_F_LLTX is the LockLess TX flag and is considered deprecated. When it is set, you don’t •	
use the generic Tx lock (This is why it is called LockLess TX). See the following macro (HARD_
TX_LOCK) from net/core/dev.c:

 
           #define HARD_TX_LOCK(dev, txq, cpu) { \ if ((dev->features & NETIF_F_LLTX) == 0) { \
              __netif_tx_lock(txq, cpu); \
             } \
              }
 

NETIF_F_LLTX is used in tunnel drivers like VXLAN, VETH, and in IP over IP (IPIP) 
tunneling driver. For example, in the IPIP tunnel module, you set the NETIF_F_LLTX flag 
in the ipip_tunnel_setup() method (net/ipv4/ipip.c).

The NETIF_F_LLTX flag is also used in a few drivers that have implemented their own Tx 
lock, like the cxgb network driver.
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In drivers/net/ethernet/chelsio/cxgb/cxgb2.c, you have:
 
              static int __devinit init_one(struct pci_dev *pdev,
              const struct pci_device_id *ent)
              {
                  . . .
                  netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM |
                                      NETIF_F_RXCSUM | NETIF_F_LLTX;
                 . . .
              }
 

NETIF_F_GRO is used to indicate that the device supports GRO (Generic Receive •	
Offload). With GRO, incoming packets are merged at reception time. The GRO feature 
improves network performance. GRO replaced LRO (Large Receive Offload), which was 
limited to TCP/IPv4. This flag is checked in the beginning of the dev_gro_receive() 
method; devices that do not have this flag set will not perform the GRO handling part in 
this method. A driver that wants to use GRO should call the napi_gro_receive() method 
in the Rx path of the driver. You can enable/disable GRO with ethtool, by ethtool -K 
<deviceName> gro on/ ethtool -K <deviceName> gro off, respectively. You can check 
whether GRO is set by running ethtool –k <deviceName> and looking at the gro field.

NETIF_F_GSO is set to indicate that the device supports Generic Segmentation Offload •	
(GSO). GSO is a generalization of a previous solution called TSO (TCP segmentation 
offload), which dealt only with TCP in IPv4. GSO can handle also IPv6, UDP, and other 
protocols. GSO is a performance optimization, based on traversing the networking stack 
once instead of many times, for big packets. So the idea is to avoid segmentation in Layer 4 
and defer segmentation as much as possible. The sysadmin can enable/disable GSO with 
ethtool, by ethtool -K <driverName> gso on/ethtool -K <driverName> gso off, 
respectively. You can check whether GSO is set by running ethtool –k <deviceName> 
and looking at the gso field. To work with GSO, you should work in Scatter/Gather mode. 
The NETIF_F_SG flag must be set.

NETIF_F_NETNS_LOCAL is set for network namespace local devices. These are network •	
devices that are not allowed to move between network namespaces. The loopback, 
VXLAN, and PPP network devices are examples of namespace local devices. All these 
devices have the NETIF_F_NETNS_LOCAL flag set. A sysadmin can check whether an 
interface has the NETIF_F_NETNS_LOCAL flag set or not by ethtool -k <deviceName>. 
This feature is fixed and cannot be changed by ethtool. Trying to move a network device 
of this type to a different namespace results in an error (-EINVAL). For details, look in 
the dev_change_net_namespace() method (net/core/dev.c). When deleting a network 
namespace, devices that do not have the NETIF_F_NETNS_LOCAL flag set are moved to 
the default initial network namespace (init_net). Network namespace local devices that 
have the NETIF_F_NETNS_LOCAL flag set are not moved to the default initial network 
namespace (init_net), but are deleted.

NETIF_F_HW_VLAN_CTAG_RX is for use by devices which support VLAN Rx hardware •	
acceleration. It was formerly called NETIF_F_HW_VLAN_RX and was renamed in kernel 
3.10, when support for 802.1ad was added. “CTAG” was added to indicate that this 
device differ from “STAG” device (Service provider tagging). A device driver that sets the 
NETIF_F_HW_VLAN_RX feature must also define the ndo_vlan_rx_add_vid() and ndo_
vlan_rx_kill_vid() callbacks. Failure to do so will avoid device registration and result in 
a “Buggy VLAN acceleration in driver” kernel error message.
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NETIF_F_HW_VLAN_CTAG_TX is for use by devices that support VLAN Tx hardware •	
acceleration. It was formerly called NETIF_F_HW_VLAN_TX and was renamed in kernel 
3.10 when support for 802.1ad was added.

NETIF_F_VLAN_CHALLENGED is set for devices that can’t handle VLAN packets. Setting •	
this feature avoids registration of a VLAN device. Let’s take a look at the VLAN registration 
method:

 
static int register_vlan_device(struct net_device *real_dev, u16 vlan_id) {
    int err;
    . . .
    err = vlan_check_real_dev(real_dev, vlan_id);
 
The first thing the vlan_check_real_dev() method does is to check the network device 
features and return an error if the NETIF_F_VLAN_CHALLENGED feature is set:
 
int vlan_check_real_dev(struct net_device *real_dev, u16 vlan_id)
{
        const char *name = real_dev->name;
 
        if (real_dev->features & NETIF_F_VLAN_CHALLENGED) {
                pr_info("VLANs not supported on %s\n", name);
                return -EOPNOTSUPP;
        }
                . . .
}
 

For example, some types of Intel e100 network device drivers set the NETIF_F_VLAN_
CHALLENGED feature (see e100_probe() in drivers/net/ethernet/intel/e100.c).

You can check whether the NETIF_F_VLAN_CHALLENGED is set by running ethtool 
–k <deviceName> and looking at the vlan-challenged field. This is a fixed value that you 
cannot change with the ethtool command.

NETIF_F_SG is set when the network interface supports Scatter/Gather IO. You can enable •	
and disable Scatter/Gather with ethtool, by ethtool -K <deviceName> sg on/ ethtool -K 
<deviceName> sg off, respectively. You can check whether Scatter/Gather is set by running 
ethtool –k <deviceName> and looking at the sg field.

NETIF_F_HIGHDMA is set if the device can perform access by DMA to high memory. The •	
practical implication of setting this feature is that the ndo_start_xmit() callback of the 
net_device_ops object can manage SKBs, which have frags elements in high memory. You 
can check whether the NETIF_F_HIGHDMA is set by running ethtool –k <deviceName> and 
looking at the highdma field. This is a fixed value that you cannot change with the ethtool 
command.

•	 netdev_features_t hw_features

The set of features that are changeable features. This means that their state may possibly 
be changed (enabled or disabled) for a particular device by a user’s request. This set 
should be initialized in the ndo_init() callback and not changed later.
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•	 netdev_features_t wanted_features

The set of features that were requested by the user. A user may request to change various 
offloading features—for example, by running ethtool -K eth1 rx on. This generates a 
feature change event notification (NETDEV_FEAT_CHANGE) to be sent by the netdev_
features_change() method.

•	 netdev_features_t vlan_features

The set of features whose state is inherited by child VLAN devices. For example, let’s look 
at the rtl_init_one() method, which is the probe callback of the r8169 network device 
driver (see Chapter 14):

int rtl_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 
{
   . . .
   dev->vlan_features=NETIF_F_SG|NETIF_F_IP_CSUM|NETIF_F_TSO|   NETIF_F_HIGHDMA;
   . . .
}
 
(drivers/net/ethernet/realtek/r8169.c)

This initialization means that all child VLAN devices will have these features. For example, 
let’s say that your eth0 device is an r8169 device, and you add a VLAN device thus: 
vconfig add eth0 100. Then, in the initialization in the VLAN module, there is this code 
related to vlan_features:
 
static int vlan_dev_init(struct net_device *dev)
{
    . . .
    dev->features |= real_dev->vlan_features | NETIF_F_LLTX;
    . . .
}
 
(net/8021q/vlan_dev.c)
 
This means that it sets the features of the VLAN child device to be the vlan_features 
of the real device (which is eth0 in this case), which were set according to what you saw 
earlier in the rtl_init_one() method.

•	 netdev_features_t hw_enc_features

The mask of features inherited by encapsulating devices. This field indicates what 
encapsulation offloads the hardware is capable of doing, and drivers will need to set them 
appropriately. For more info about the network device features, see Documentation/
networking/netdev-features.txt.

•	 ifindex

The ifindex (Interface index) is a unique device identifier. This index is incremented by 
1 each time you create a new network device, by the dev_new_index() method. The first 
network device you create, which is almost always the loopback device, has ifindex of 1. 
Cyclic integer overflow is handled by the method that handles assignment of the ifindex 
number. The ifindex is exported by sysfs via /sys/class/net/<devName>/ifindex.
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•	 struct net_device_stats stats

The statistics struct, which was left as a legacy, includes fields like the number of rx_
packets or the number of tx_packets. New device drivers use the rtnl_link_stats64 
struct (defined in include/uapi/linux/if_link.h) instead of the net_device_stats 
struct. Most of the network drivers implement the ndo_get_stats64() callback of net_
device_ops (or the ndo_get_stats() callback of net_device_ops, when working with the 
older API).

The statistics are exported via /sys/class/net/<deviceName>/statistics.

Some drivers implement the get_ethtool_stats() callback. These drivers show statistics 
by ethtool -S <deviceName>

See, for example, the rtl8169_get_ethtool_stats() method in drivers/net/ethernet/
realtek/r8169.c.

•	 atomic_long_t rx_dropped

A counter of the number of packets that were dropped in the RX path by the core network 
stack. This counter should not be used by drivers. Do not confuse the rx_dropped field 
of the sk_buff with the dropped field of the softnet_data struct. The softnet_data 
struct represents a per-CPU object. They are not equivalent because the rx_dropped of 
the sk_buff might be incremented in several methods, whereas the dropped counter of 
softnet_data is incremented only by the enqueue_to_backlog() method (net/core/
dev.c). The dropped counter of softnet_data is exported by /proc/net/softnet_stat. 
In /proc/net/softnet_stat you have one line per CPU. The first column is the total 
packets counter, and the second one is the dropped packets counter.

For example:
 
cat /proc/net/softnet_stat
00000076 00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000005 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 

You see here one line per CPU (you have two CPUs); for the first CPU, you see 118 total packets (hex 0x76), where 
one packet is dropped. For the second CPU, you see 5 total packets and 0 dropped.

•	 struct net_device_ops *netdev_ops

The netdev_ops structure includes pointers for several callback methods that you want to 
define if you want to override the default behavior. Here are some callbacks of netdev_ops:

The •	 ndo_init() callback is called when network device is registered.

The •	 ndo_uninit() callback is called when the network device is unregistered or when the 
registration fails.

The •	 ndo_open() callback handles change of device state, when a network device state is 
being changed from down state to up state.

The •	 ndo_stop() callback  is called when a network device state is being changed to  
be down.

The •	 ndo_validate_addr() callback is called to check whether the MAC is valid. Many 
network drivers set the generic eth_validate_addr() method to be the ndo_validate_
addr() callback. The generic eth_validate_addr() method returns true if the MAC 
address is not a multicast address and is not all zeroes.
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The •	 ndo_set_mac_address() callback sets the MAC address. Many network drivers set 
the generic eth_mac_addr() method to be the ndo_set_mac_address() callback of struct 
net_device_ops for setting their MAC address. For example, the VETH driver (drivers/
net/veth.c) or the VXLAN driver (drivers/nets/vxlan.c).

The •	 ndo_start_xmit() callback handles packet transmission. It cannot be NULL.

The •	 ndo_select_queue() callback is used to select a Tx queue, when working with multiqueues. 
If the ndo_select_queue() callback is not set, then the __netdev_pick_tx() is called. See 
the implementaion of the netdev_pick_tx() method in net/core/flow_dissector.c.

The •	 ndo_change_mtu() callback handles modifying the MTU. It should check that the 
specified MTU is not less than 68, which is the minimum MTU. In many cases, network 
drivers set the ndo_change_mtu() callback to be the generic eth_change_mtu() method. 
The eth_change_mtu() method should be overridden if jumbo frames are supported.

The •	 ndo_do_ioctl() callback is called when getting an IOCTL request which is not 
handled by the generic interface code.

The •	 ndo_tx_timeout() callback is called when the transmitter was idle for a quite a while 
(for watchdog usage).

The •	 ndo_add_slave() callback is called to set a specified network device as a slave to a 
specified netowrk device. It is used, for example, in the team network driver and in the 
bonding network driver.

The •	 ndo_del_slave() callback is called to remove a previously enslaved network device.

The •	 ndo_set_features() callback is called to update the configuration of a network 
device with new features.

The •	 ndo_vlan_rx_add_vid() callback is called when registering a VLAN id if the network 
device supports VLAN filtering (the NETIF_F_HW_VLAN_FILTER flag is set in the device 
features).

The •	 ndo_vlan_rx_kill_vid() callback is called when unregistering a VLAN id if the 
network device supports VLAN filtering (the NETIF_F_HW_VLAN_FILTER flag is set in the 
device features).

Note■■   From kernel 3.10, the NETIF_F_HW_VLAN_FILTER flag was renamed to NETIF_F_HW_VLAN_CTAG_FILTER.

There are also several callbacks for handling SR-IOV devices, for example,  •	
ndo_set_vf_mac() and ndo_set_vf_vlan().

Before kernel 2.6.29, there was a callback named set_multicast_list() for addition of 
multicast addresses, which was replaced by the dev_set_rx_mode() method. The dev_
set_rx_mode() callback is called primarily whenever the unicast or multicast address lists 
or the network interface flags are updated.

•	 struct ethtool_ops *ethtool_ops

The ethtool_ops structure includes pointers for several callbacks for handling offloads, 
getting and setting various device settings, reading registers, getting statistics, reading 
RX flow hash indirection table, WakeOnLAN parameters, and many more. If the network 
driver does not initialize the ethtool_ops object, the networking core provides a default 
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empty ethtool_ops object named default_ethtool_ops. The management of ethtool_
ops is done in net/core/ethtool.c.

Helper method:

SET_ETHTOOL_OPS (netdev,ops): A macro which sets the specified •	 ethtool_ops for the 
specified net_device.

You can view the offload parameters of a network interface device by running ethtool 
–k <deviceName>. You can set some offload parameters of a network interface device by 
running ethtool –K <deviceName> offloadParameter off/on. See man 8 ethtool.

•	 const struct header_ops *header_ops

The header_ops struct include callbacks for creating the Layer 2 header, parsing it, 
rebuilding it, and more. For Ethernet it is eth_header_ops, defined in net/ethernet/eth.c.

•	 unsigned int flags

The interface flags of the network device that you can see from userspace. Here are some 
flags (for a full list see include/uapi/linux/if.h):

IFF_UP flag is set when the interface state is changed from down to up.•	

IFF_PROMISC is set when the interface is in promiscuous mode (receives all packets). •	
When running sniffers like wireshark or tcpdump, the network interface is in promiscuous 
mode.

IFF_LOOPBACK is set for the loopback device.•	

IFF_NOARP is set for devices which do not use the ARP protocol. IFF_NOARP is set, for •	
example, in tunnel devices (see for example, in the ipip_tunnel_setup() method,  
net/ipv4/ipip.c).

IFF_POINTOPOINT is set for PPP devices. See for example, the •	 ppp_setup() method,  
drivers/net/ppp/ppp_generic.c.

IFF_MASTER is set for master devices. See, for example, for bonding devices, the •	 bond_
setup() method in drivers/net/bonding/bond_main.c.

IFF_LIVE_ADDR_CHANGE flag indicates that the device supports hardware address •	
modification when it’s running. See the eth_mac_addr() method in net/ethernet/eth.c.

IFF_UNICAST_FLT flag is set when the network driver handles unicast address filtering.•	

IFF_BONDING is set for a bonding master device or bonding slave device. The bonding •	
driver provides a method for aggregating multiple network interfaces into a single logical 
interface.

IFF_TEAM_PORT is set for a device used as a team port. The teaming driver is a  •	
load-balancing network software driver intended to replace the bonding driver.

IFF_MACVLAN_PORT is set for a device used as a macvlan port.•	

IFF_EBRIDGE is set for an Ethernet bridging device.•	

The flags field is exported by sysfs via /sys/class/net/<devName>/flags.
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Some of these flags can be set by userspace tools. For example, ifconfig <deviceName> 
-arp will set the IFF_NOARP network interface flag, and ifconfig <deviceName> 
arp will clear the IFF_NOARP flag. Note that you can do the same with the iproute2 
ip command: ip link set dev <deviceName> arp on and ip link set dev 
<deviceName> arp off.

•	 unsigned int priv_flags

The interface flags, which are invisible from userspace. For example, IFF_EBRIDGE for a 
bridge interface or IFF_BONDING for a bonding interface, or IFF_SUPP_NOFCS for an 
interface support sending custom FCS.

Helper methods:

•	 netif_supports_nofcs(): Returns true if the IFF_SUPP_NOFCS is set in the priv_flags 
of the specified device.

•	 is_vlan_dev(struct net_device *dev): Returns 1 if the IFF_802_1Q_VLAN flag is set in 
the priv_flags of the specified network device.

•	 unsigned short gflags

Global flags (kept as legacy).

•	 unsigned short padded

How much padding is added by the alloc_netdev() method.

•	 unsigned char operstate

RFC 2863 operstate.

•	 unsigned char link_mode

Mapping policy to operstate.

•	 unsigned int mtu

The network interface MTU (Maximum Transmission Unit) value. The maximum size 
of frame the device can handle. RFC 791 sets 68 as a minimum MTU. Each protocol has 
MTU of its own. The default MTU for Ethernet is 1,500 bytes. It is set in the ether_setup() 
method, net/ethernet/eth.c. Ethernet packets with sizes higher than 1,500 bytes, up to 
9,000 bytes, are called Jumbo frames. The network interface MTU is exported by sysfs via 
/sys/class/net/<devName>/mtu.

Helper method:

•	 dev_set_mtu(struct net_device *dev, int new_mtu): Changes the MTU of the 
specified device to a new value, specified by the mtu parameter.

The sysadmin can change the MTU of a network interface to 1,400, for example, in one of 
the following ways:
 
ifconfig <netDevice> mtu 1400
ip link set <netDevice> mtu 1400
echo 1400 > /sys/class/net/<netDevice>/mtu

 
Many drivers implement the ndo_change_mtu() callback to change the MTU to perform 
driver-specific needed actions (like resetting the network card).
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•	 unsigned short type

The network interface hardware type. For example, for Ethernet it is ARPHRD_ETHER and 
is set in ether_setup() in net/ethernet/eth.c. For PPP interface, it is ARPHRD_PPP, 
and is set in the ppp_setup() method in drivers/net/ppp/ppp_generic.c. The type is 
exported by sysfs via /sys/class/net/<devName>/type.

•	 unsigned short hard_header_len

The hardware header length. Ethernet headers, for example, consist of MAC source 
address, MAC destination address, and a type. The MAC source and destination addresses 
are 6 bytes each, and the type is 2 bytes. So the Ethernet header length is 14 bytes. The 
Ethernet header length is set to 14 (ETH_HLEN) in the ether_setup() method, net/
ethernet/eth.c. The ether_setup() method is responsible for initializing some Ethernet 
device defaults, like the hard header len, Tx queue len, MTU, type, and more.

•	 unsigned char perm_addr[MAX_ADDR_LEN]

The permanent hardware address (MAC address) of the device.

•	 unsigned char addr_assign_type

Hardware address assignment type, can be one of the following:

NET_ADDR_PERM•	

NET_ADDR_RANDOM•	

NET_ADDR_STOLEN•	

NET_ADDR_SET•	

By default, the MAC address is permanent (NET_ADDR_PERM). If the MAC address 
was generated with a helper method named eth_hw_addr_random(), the type of the 
MAC address is NET_ADD_RANDOM. The type of the MAC address is stored in the 
addr_assign_type member of the net_device. Also when changing the MAC address 
of the device, with eth_mac_addr(), you reset the addr_assign_type with ~NET_
ADDR_RANDOM (if it was marked as NET_ADDR_RANDOM before). When a network 
device is registered (by the register_netdevice() method), if the addr_assign_type 
equals NET_ADDR_PERM, dev->perm_addr is set to be dev->dev_addr. When you set 
a MAC address, you set the addr_assign_type to be NET_ADDR_SET. This indicates 
that the MAC address of a device has been set by the dev_set_mac_address() method. 
The addr_assign_type is exported by sysfs via /sys/class/net/<devName>/addr_
assign_type.

•	 unsigned char addr_len

The hardware address length in octets. For Ethernet addresses, it is 6 (ETH_ALEN) bytes 
and is set in the ether_setup() method. The addr_len is exported by sysfs via /sys/
class/net/<deviceName>/addr_len.

•	 unsigned char neigh_priv_len

Used in the neigh_alloc() method, net/core/neighbour.c; neigh_priv_len is 
initialized only in the ATM code (atm/clip.c).
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•	 struct netdev_hw_addr_list uc

Unicast MAC addresses list, initialized by the dev_uc_init() method. There are three 
types of packets in Ethernet: unicast, multicast, and broadcast. Unicast is destined for one 
machine, multicast is destined for a group of machines, and broadcast is destined for all 
the machines in the LAN.

Helper methods:

•	 netdev_uc_empty(dev): Returns 1 if the unicast list of the specified device is empty (its 
count field is 0).

•	 dev_uc_flush(struct net_device *dev): Flushes the unicast addresses of the specified 
network device and zeroes count.

•	 struct netdev_hw_addr_list mc

Multicast MAC addresses list, initialized by the dev_mc_init() method.

Helper methods:

•	 netdev_mc_empty(dev): Returns 1 if the multicast list of the specified device is empty (its 
count field is 0).

•	 dev_mc_flush(struct net_device *dev): Flushes the multicast addresses of the 
specified network device and zeroes the count field.

•	 unsigned int promiscuity

A counter of the times a network interface card is told to work in promiscuous mode. 
With promiscuous mode, packets with MAC destination address which is different 
than the interface MAC address are not rejected. The promiscuity counter is used, for 
example, to enable more than one sniffing client; so when opening some sniffing clients 
(like wireshark), this counter is incremented by 1 for each client you open, and closing 
that client will decrement the promiscuity counter. When the last instance of the sniffing 
client is closed, promiscuity will be set to 0, and the device will exit from working in 
promiscuous mode. It is used also in the bridging subsystem, as the bridge interface needs 
to work in promiscuous mode. So when adding a bridge interface, the network interface 
card is set to work in promiscuous mode. See the call to the dev_set_promiscuity() 
method in br_add_if(), net/bridge/br_if.c.

Helper method:

•	 dev_set_promiscuity(struct net_device *dev, int inc): Increments/decrements 
the promiscuity counter of the specified network device according to the specified 
increment. The dev_set_promiscuity() method can get a positive increment or a 
negative increment parameter. As long as the promiscuity counter remains above zero, the 
interface remains in promiscuous mode. Once it reaches zero, the device reverts back to 
normal filtering operation. Because promiscuity is an integer, the dev_set_promiscuity() 
method takes into account cyclic overflow of integer, which means it handles the case 
when the promiscuity counter is incremented when it reaches the maximum positive 
value an unsigned integer can reach.

•	 unsigned int allmulti

The allmulti counter of the network device enables or disables the allmulticast mode. When selected, all 
multicast packets on the network will be received by the interface. You can set a network device to work in 
allmulticast mode by ifconfig eth0 allmulti. You disable the allmulti flag by ifconfig eth0 –allmulti.
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Enabling/disabling the allmulticast mode can also be performed with the ip command:
 
ip link set p2p1 allmulticast on
ip link set p2p1 allmulticast off
 
You can also see the allmulticast state by inspecting the flags that are shown by the ip command:
 
ip addr show
flags=4610<BROADCAST,ALLMULTI,MULTICAST>  mtu 1500
 
Helper method:

•	 dev_set_allmulti(struct net_device *dev, int inc): Increments/decrements the 
allmulti counter of the specified network device according to the specified increment (which 
can be a positive or a negative integer). The dev_set_allmulti() method also sets the IFF_
ALLMULTI flag of the network device when setting the allmulticast mode and removes this 
flag when disabling the allmulticast mode.

The next three fields are protocol-specific pointers:  

•	 struct in_device __rcu *ip_ptr

This pointer is assigned to a pointer to struct in_device, which represents IPv4 specific 
data, in inetdev_init(), net/ipv4/devinet.c.

•	 struct inet6_dev __rcu *ip6_ptr

This pointer is assigned to a pointer to struct inet6_dev, which represents IPv6 specific 
data, in ipv6_add_dev(), net/ipv6/addrconf.c.

•	 struct wireless_dev *ieee80211_ptr

This is a pointer for the wireless device, assigned in the ieee80211_if_add() method, 
net/mac80211/iface.c.

•	 unsigned long last_rx

Time of last Rx. It should not be set by network device drivers, unless really needed. Used, 
for example, in the bonding driver code.

•	 struct list_head dev_list

The global list of network devices. Insertion to the list is done with the list_netdevice() 
method, when the network device is registered. Removal from the list is done with the 
unlist_netdevice() method, when the network device is unregistered.

•	 struct list_head napi_list

NAPI stands for New API, a technique by which the network driver works in polling 
mode, and not in interrupt-driven mode, when it is under high traffic. Using NAPI 
under high traffic has been proven to improve performance. When working with NAPI, 
instead of getting an interrupt for each received packet, the network stack buffers the 
packets and from time to time triggers the poll method the driver registered with the 
netif_napi_add() method. When working with polling mode, the driver starts to work 
in interrupt-driven mode. When there is an interrupt for the first received packet, you 
reach the interrupt service routine (ISR), which is the method that was registered with 
request_irq(). Then the driver disables interrupts and notifies NAPI to take control, 
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usually by calling the __napi_schedule() method from the ISR. See, for example, the 
cpsw_interrupt() method in drivers/net/ethernet/ti/cpsw.

When the traffic is low, the network driver switches to work in interrupt-driven mode. 
Nowadays, most network drivers work with NAPI. The napi_list object is the list of napi_
struct objects; The netif_napi_add() method adds napi_struct objects to this list, and 
the netif_napi_del() method deletes napi_struct objects from this list. When calling 
the netif_napi_add() method, the driver should specify its polling method and a weight 
parameter. The weight is a limit on the number of packets the driver will pass to the stack 
in each polling cycle. It is recommended to use a weight of 64. If a driver attempts to call 
netif_napi_add() with weight higher than 64 (NAPI_POLL_WEIGHT), there is a kernel 
error message. NAPI_POLL_WEIGHT is defined in include/linux/netdevice.h.

The network driver should call napi_enable() to enable NAPI scheduling. Usually this  
is done in the ndo_open() callback of the net_device_ops object. The network driver 
should call napi_disable() to disable NAPI scheduling. Usually this is done in the ndo_
stop() callback of net_device_ops. NAPI is implemented using softirqs. This softirq 
handler is the net_rx_action() method and is registered by calling open_softirq(NET_
RX_SOFTIRQ, net_rx_action) by the net_dev_init() method in net/core/dev.c.  
The net_rx_action() method invokes the poll method of the network driver which  
was registered with NAPI. The maximum number of packets (taken from all interfaces 
which are registered to polling) in one polling cycle (NAPI poll) is by default 300. It is the 
netdev_budget variable, defined in net/core/dev.c, and can be modified via a procfs 
entry, /proc/sys/net/core/netdev_budget. In the past, you could change the weight per 
device by writing values to a procfs entry, but currently, the /sys/class/net/<device>/
weight sysfs entry is removed. See Documentation/sysctl/net.txt. I should also 
mention that the napi_complete() method removes a device from the polling list. When  
a network driver wants to return to work in interrupt-driven mode, it should call the  
napi_complete() method to remove itself from the polling list.

•	 struct list_head unreg_list

The list of unregistered network devices. Devices are added to this list when they are 
unregistered.

•	 unsigned char *dev_addr

The MAC address of the network interface. Sometimes you want to assign a random MAC 
address. You do that by calling the eth_hw_addr_random() method, which also sets the 
addr_assign_type to be NET_ADDR_RANDOM.

The dev_addr field is exported by sysfs via /sys/class/net/<devName>/address.

You can change dev_addr with userspace tools like ifconfig or ip of iproute2.

Helper methods: Many times you invoke the following helper methods on Ethernet 
addresses in general and on dev_addr field of a network device in particular:

•	 is_zero_ether_addr(const u8 *addr): Returns true if the address is all zeroes.

•	 is_multicast_ether_addr(const u8 *addr): Returns true if the address is a multicast 
address. By definition the broadcast address is also a multicast address.

•	 is_valid_ether_addr (const u8 *addr): Returns true if the specified MAC address 
is not 00:00:00:00:00:00, is not a multicast address, and is not a broadcast address 
(FF:FF:FF:FF:FF:FF).
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•	 struct netdev_hw_addr_list dev_addrs

The list of device hardware addresses.

•	 unsigned char broadcast[MAX_ADDR_LEN]

The hardware broadcast address. For Ethernet devices, the broadcast address is initialized 
to 0XFFFFFF in the ether_setup() method, net/ethernet/eth.c. The broadcast address 
is exported by sysfs via /sys/class/net/<devName>/broadcast.

•	 struct kset *queues_kset

A kset is a group of kobjects of a specific type, belonging to a specific subsystem.

The kobject structure is the basic type of the device model. A Tx queue is represented 
by struct netdev_queue, and the Rx queue is represented by struct netdev_rx_queue. 
Each of them holds a kobject pointer. The queues_kset object is a group of all kobjects 
of the Tx queues and Rx queues. Each Rx queue has the sysfs entry /sys/class/
net/<deviceName>/queues/<rx-queueNumber>, and each Tx queue has the sysfs entry /
sys/class/net/<deviceName>/queues/<tx-queueNumber>. These entries are added with 
the rx_queue_add_kobject() method and the netdev_queue_add_kobject() method 
respectively, in net/core/net-sysfs.c. For more information about the kobject and the 
device model, see Documentation/kobject.txt.

•	 struct netdev_rx_queue *_rx

An array of Rx queues (netdev_rx_queue objects), initialized by the netif_alloc_rx_
queues() method. The Rx queue to be used is determined in the get_rps_cpu() method. 
See more info about RPS in the description of the rxhash field in the previous sk_buff 
section.

•	 unsigned int num_rx_queues

The number of Rx queues allocated in the register_netdev() method.

•	 unsigned int real_num_rx_queues

Number of Rx queues currently active in the device.

Helper method:

•	 netif_set_real_num_rx_queues (struct net_device *dev, unsigned int rxq): Sets 
the actual number of Rx queues used for the specified device according to the specified 
number of Rx queues. The relevant sysfs entries (/sys/class/net/<devName>/queues/*) 
are updated (only in the case that the state of the device is NETREG_REGISTERED or 
NETREG_UNREGISTERING). Note that alloc_netdev_mq() initializes num_rx_queues, 
real_num_rx_queues,  num_tx_queues and real_num_tx_queues to the same value. One 
can set the number of Tx queues and Rx queues by using ip link when adding a device. 
For example, if you want to create a VLAN device with 6 Tx queues and 7 Rx queues, you 
can run this command:
 
ip link add link p2p1 name p2p1.1 numtxqueues 6 numrxqueues 7 type vlan id 8
 

•	 rx_handler_func_t __rcu *rx_handler
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Helper methods:

•	 netdev_rx_handler_register(struct net_device *dev, rx_handler_func_t *rx_
handler  void *rx_handler_data)

The rx_handler callback is set by calling the netdev_rx_handler_register() method. It 
is used, for example, in bonding, team, openvswitch, macvlan, and bridge devices.

•	 netdev_rx_handler_unregister(struct net_device *dev): Unregisters a receive 
handler for the specified network device.

•	 void __rcu *rx_handler_data

The rx_handler_data field is also set by the netdev_rx_handler_register() method 
when a non-NULL value is passed to the netdev_rx_handler_register() method.

•	 struct netdev_queue __rcu *ingress_queue

Helper method:

•	 struct netdev_queue *dev_ingress_queue(struct net_device *dev): Returns the 
ingress_queue of the specified net_device (include/linux/rtnetlink.h).

•	 struct netdev_queue *_tx

An array of Tx queues (netdev_queue objects), initialized by the netif_alloc_netdev_
queues() method.

Helper method:

•	 netdev_get_tx_queue(const struct net_device *dev,unsigned int index): Returns 
the Tx queue (netdev_queue object), an element of the _tx array of the specified network 
device at the specified index.

•	 unsigned int num_tx_queues

Number of Tx queues, allocated by the alloc_netdev_mq() method.

•	 unsigned int real_num_tx_queues

Number of Tx queues currently active in the device.

Helper method:

•	 netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq): Sets 
the actual number of Tx queues used.

•	 struct Qdisc *qdisc

Each device maintains a queue of packets to be transmitted named qdisc. The Qdisc 
(Queuing Disciplines) layer implements the Linux kernel traffic management. The default 
qdisc is pfifo_fast. You can set a different qdisc using tc, the traffic control tool of the 
iproute2 package. You can view the qdisc of your network device by the using the ip 
command:

 
ip addr show <deviceName>
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For example, running
 
ip addr show eth1

 
can give:

 
2: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
link/ether 00:e0:4c:53:44:58 brd ff:ff:ff:ff:ff:ff
inet 192.168.2.200/24 brd 192.168.2.255 scope global eth1
inet6 fe80::2e0:4cff:fe53:4458/64 scope link
valid_lft forever preferred_lft forever
 
In this example, you can see that a qdisc of pfifo_fast is used, which is the default.

•	 unsigned long tx_queue_len

The maximum number of allowed packets per queue. Each hardware layer has its own 
tx_queue_len default. For Ethernet devices, tx_queue_len is set to 1,000 by default (see 
the ether_setup() method). For FDDI, tx_queue_len is set to 100 by default (see the 
fddi_setup() method in net/802/fddi.c).

The tx_queue_len field is set to 0 for virtual devices, such as the VLAN device, because the 
actual transmission of packets is done by the real device on which these virtual devices are 
based. You can set the Tx queue length of a device by using the command ifconfig (this 
option is called txqueuelen) or by using the command ip link show (it is called qlen), in 
this way, for example:

 
ifconfig  p2p1 txqueuelen 900
ip link set txqueuelen 950 dev p2p1

 
The Tx queue length is exported via the following sysfs entry: /sys/class/
net/<deviceName>/tx_queue_len.

•	 unsigned long trans_start

The time (in jiffies) of the last transmission.

•	 int watchdog_timeo

The watchdog is a timer that will invoke a callback when the network interface was idle 
and did not perform transmission in some specified timeout interval. Usually the driver 
defines a watchdog callback which will reset the network interface in such a case. The 
ndo_tx_timeout() callback of net_device_ops serves as the watchdog callback. The 
watchdog_timeo field represents the timeout that is used by the watchdog. See the  
dev_watchdog() method, net/sched/sch_generic.c.

•	 int __percpu *pcpu_refcnt

Per CPU network device reference counter.

Helper methods:

•	 dev_put(struct net_device *dev): Decrements the reference count.

•	 dev_hold(struct net_device *dev): Increments the reference count.
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•	 struct hlist_node index_hlist

This is a hash table of network devices, indexed by the network device index (the ifindex 
field). A lookup in this table is performed by the dev_get_by_index() method. Insertion 
into this table is performed by the list_netdevice() method, and removal from this list is 
done with the unlist_netdevice() method.

•	 enum {...} reg_state

An enum that represents the various registration states of the network device.

Possible values:

NETREG_UNINITIALIZED: When the device memory is allocated, in the •	 alloc_netdev_
mqs() method.

NETREG_REGISTERED: When the •	 net_device is registered, in the register_
netdevice() method.

NETREG_UNREGISTERING: When unregistering a device, in the •	 rollback_registered_
many() method.

NETREG_UNREGISTERED: The network device is unregistered but it is not freed yet.•	

NETREG_RELEASED: The network device is in the last stage of freeing the allocated •	
memory of the network device, in the free_netdev() method.

NETREG_DUMMY: Used in the •	 dummy device, in the init_dummy_netdev() method. See 
drivers/net/dummy.c.

•	 bool dismantle

A Boolean flag that shows that the device is in dismantle phase, which means that it is 
going to be freed.

•	 enum {...} rtnl_link_state

This is an enum that can have two values that represent the two phases of creating a  
new link:

RTNL_LINK_INITIALIZE: The ongoing state, when creating the link is still not finished.•	

RTNL_LINK_INITIALIZING: The final state, when work is finished.•	

See the rtnl_newlink() method in net/core/rtnetlink.c.

•	 void (*destructor)(struct net_device *dev)

This destructor callback is called when unregistering a network device, in the netdev_
run_todo() method. It enables network devices to perform additional tasks that need 
to be done for unregistering. For example, the loopback device destructor callback, 
loopback_dev_free(), calls free_percpu() for freeing its statistics object and free_
netdev(). Likewise the team device destructor callback, team_destructor(), also calls 
free_percpu() for freeing its statistics object and free_netdev(). And there are many 
other network device drivers that define a destructor callback.
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•	 struct net *nd_net

The network namespace this network device is inside. Network namespaces support 
was added in the 2.6.29 kernel. These features provide process virtualization, which is 
considered lightweight in comparison to other virtualization solutions like KVM and 
Xen. There is currently support for six namespaces in the Linux kernel. In order to 
support network namespaces, a structure called net was added. This structure represents 
a network namespace. The process descriptor (task_struct) handles the network 
namespace and other namespaces via a new member which was added for namespaces 
support, named nsproxy. This nsproxy includes a network namespace object called  
net_ns, and also four other namespace objects of the following namespaces: pid 
namespace, mount namespace, uts namespace, and ipc namespace; the sixth namespace, 
the user namespace, is kept in struct cred (the credentials object) which is a member of 
the process descriptor, task_struct).

Network namespaces provide a partitioning and isolation mechanism which enables one 
process or a group of processes to have a private view of a full network stack of their own. 
By default, after boot all network interfaces belong to the default network namespace, 
init_net. You can create a network namespace with userspace tools using the ip 
command from iproute2 package or with the unshare command of util-linux—or 
by writing your own userspace application and invoking the unshare() or the clone() 
system calls with the CLONE_NEWNET flag. Moreover, you can also change the network 
namespace of a process by invoking the setns() system call. This setns() system call 
and the unshare() system call were added specially to support namespaces. The setns() 
system call can attach to the calling process an existing namespace of any type (network 
namespace, pid namespace, mount namespace, and so on). You need CAP_SYS_ADMIN 
privilege to call set_ns() for all namespaces, except the user namespace. See man 2 setns.

A network device belongs to exactly one network namespace at a given moment. 
And a network socket belongs to exactly one network namespace at a given moment. 
Namespaces do not have names, but they do have a unique inode which identifies them. 
This unique inode is generated when the namespace is created and can be read by 
reading a procfs entry (the command ls –al /proc/<pid>/ns/ shows all the unique 
inode numbers symbolic links of a process—you can also read these symbolic links with 
the readlink command).

For example, using the ip command, creating a new namespace called ns1 is done thus:
 

ip netns add myns1
 

Each newly created network namespace includes only the loopback device and includes 
no sockets. Each device (like a bridge device or a VLAN device) that is created from a 
process that runs in that namespace (like a shell) belongs to that namespace.
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Removing a namespace is done using the following command:
 

ip netns del myns1 

Note■■   After deleting a namespace, all its physical network devices are moved to the default network namespace. 
Local devices (namespace local devices that have the NETIF_F_NETNS_LOCAL flag set, like PPP device or VXLAN device) 
are not moved to the default network namespace but are deleted.

Showing the list of all network namespaces on the system is done with this command:
 

ip netns list
 

Assigning the p2p1 interface to the myns1 network namespace is done by the command:
 

ip link set p2p1 netns myns1
 

Opening a shell in myns1 is done thus:
 

ip netns exec myns1 bash
 

With the unshare utility, creating a new namespace and starting a bash shell inside is 
done thus:

 
unshare --net bash

 
Two network namespaces can communicate by using a special virtual Ethernet driver, 
veth. (drivers/net/veth.c).

Helper methods:

•	 dev_change_net_namespace(struct net_device *dev, struct net *net, const char 
*pat): Moves the network device to a different network namespace, specified by the net 
parameter. Local devices (devices in which the NETIF_F_NETNS_LOCAL feature is set) 
are not allowed to change their namespace. This method returns -EINVAL for this type of 
device. The pat parameter, when it is not NULL, is the name pattern to try if the current 
device name is already taken in the destination network namespace. The method also 
sends a KOBJ_REMOVE uevent for removing the old namespace entries from sysfs, and 
a  KOBJ_ADD uevent to add the sysfs entries to the new namespace. This is done by 
invoking the kobject_uevent() method specifying the corresponding uevent.

•	 dev_net(const struct net_device *dev): Returns the network namespace of the 
specified network device.

•	 dev_net_set(struct net_device *dev, struct net *net): Decrements the reference 
count of the nd_net (namespace object) of the specified device and assigns the specified 
network namespace to it.
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The following four fields are members in a union:

•	 struct pcpu_lstats __percpu *lstats

The loopback network device statistics.

•	 struct pcpu_tstats __percpu *tstats

The tunnel statistics.

•	 struct pcpu_dstats __percpu *dstats

The dummy network device statistics.

•	 struct pcpu_vstats __percpu *vstats

The VETH (Virtual Ethernet) statistics.

•	 struct device dev

The device object associated with the network device. Every device in the Linux kernel 
is associated with a device object, which is an instance of the device structure. For 
more information about the device structure, I suggest you read the “Devices” section 
in Chapter 14 of Linux Device Drivers, 3rd Edition (O’Reilly, 2005) and Documentation/
driver-model/overview.txt.

Helper methods:

•	 to_net_dev(d): Returns the net_device object that contains the specified device as its 
device object.

SET_NETDEV_DEV (net, pdev): Sets the parent of the •	 dev member of the specified 
network device to be that specified device (the second argument, pdev).

With virtual devices, you do not call the SET_NETDEV_DEV() macro. As a result, 
entries for these virtual devices are created under /sys/devices/virtual/net.

The SET_NETDEV_DEV() macro should be called before calling the register_
netdev() method.

SET_NETDEV_DEVTYPE(net, devtype): Sets the type of the •	 dev member of the specified 
network device to be the specified type. The type is a device_type object.

SET_NETDEV_DEVTYPE() is used, for example, in the br_dev_setup() method, 
innet/bridge/br_device.c:

 
       static struct device_type br_type = {
       .name = "bridge",
       };
 
       void br_dev_setup(struct net_device *dev)
       {
           . . .
           SET_NETDEV_DEVTYPE(dev, &br_type);
           . . .
         
       }
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With the udevadm tool (udev management tool), you can find the device type, for example, 
for a bridge device named mybr: 

 
           udevadm info -q all -p /sys/devices/virtual/net/mybr
 
           P: /devices/virtual/net/mybr
 
           E: DEVPATH=/devices/virtual/net/mybr
 
           E: DEVTYPE=bridge
 
           E: ID_MM_CANDIDATE=1
 
           E: IFINDEX=7
   
           E: INTERFACE=mybr
 
           E: SUBSYSTEM=net
 

•	 const struct attribute_group *sysfs_groups[4]

Used by networking sysfs.

•	 struct rtnl_link_ops *rtnl_link_ops

The rtnetlink link operations object. It consists of various callbacks for handling network 
devices, for example:

•	 newlink() for configuring and registering a new device.

•	 changelink() for changing parameters of an existing device.

•	 dellink() for removing a device.

•	 get_num_tx_queues() for getting the number of Tx queues.

•	 get_num_rx_queues() for getting the number of Rx queues.

Registration and unregistration of rtnl_link_ops object is done with the rtnl_link_
register() method and the rtnl_link_unregister() method, respectively.

•	 unsigned int gso_max_size

Helper method:

•	 netif_set_gso_max_size(struct net_device *dev, unsigned int size): Sets the 
specified gso_max_size for the specified network device.

•	 u8 num_tc

The number of traffic classes in the net device.
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Helper method:

•	 netdev_set_num_tc(struct net_device *dev, u8 num_tc): Sets the num_tc of the specified 
network device (the maximum value of num_tc can be TC_MAX_QUEUE, which is 16).

•	 int netdev_get_num_tc(struct net_device *dev): Returns the num_tc value of the 
specified network device.

•	 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]

•	 u8 prio_tc_map[TC_BITMASK + 1];

•	 struct netprio_map __rcu *priomap

The network priority cgroup module provides an interface to set the priority of 
network traffic. The cgroups layer is a Linux kernel layer that enables process resource 
management and process isolation. It enables assigning one task or several tasks to 
a system resource, like a networking resource, memory resource, CPU resource, and 
so on. The cgroups layer implements a Virtual File System (VFS) and is managed 
by filesystem operations like mounting/unmounting, creating files and  directories, 
writing to cgroup VFS control files, and so forth. The cgroup project was started in 2005 
by developers from Google (Paul Manage, Rohit Seth, and others). Some projects are 
based on cgroups usage, like systemd and lxc (Linux containers). Google has its own 
implementation of containers, based on cgroups. There is no relation between the cgroup 
implementation and the namespaces implementation. In the past, there was a namespace 
controller in cgroups but it was removed. No new system calls were added for cgroups 
implementations, and the cgroup code additions are not critical in terms of performance. 
There are two networking cgroups modules: net_prio and net_cls. These two cgroup 
modules are relatively short and simple.

Setting the priority of network traffic with the netprio cgroup module is done by 
writing an entry to a cgroup control file, /sys/fs/cgroup/net_prio/<group>/net_prio.
ifpriomap. The entry is in the form “deviceName priority.” It is true that an application 
can set the priority of its traffic via the setsockopt() system call with SO_PRIORITY, but 
this is not always possible. Sometimes you cannot change the code of certain applications. 
Moreover, you want to let the system administrator decide on priority according to  
site-specific setup. The netprio kernel module is a solution when using the setsockopt() 
system call with SO_PRIORITY is not feasible. The netprio module also exports another 
/sys/fs/cgroup/netprio entry, net_prio.prioidx. The net_prio.prioidx entry is 
a read-only file and contains a unique integer value that the kernel uses as an internal 
representation of this cgroup.

netprio is implemented in net/core/netprio_cgroup.c.

net_cls is implemented in net/sched/cls_cgroup.c.

The network classifier cgroup provides an interface to tag network packets with a class 
identifier (classid). Creating a net_cls cgroups instance creates a net_cls.classid 
control file. This net_cls.classid value is initialized to 0. You can set up rules for this 
classid with tc, the traffic control command of iproute2.

For more information, see Documentation/cgroups/net_cls.txt.
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•	 struct phy_device *phydev

The associated PHY device. The phy_device is the Layer 1 (the physical layer) device. It 
is defined in include/linux/phy.h. For many devices, PHY flow control parameters like 
autonegotiation, speed, or duplex can be configured via the PHY device with ethtool 
commands. See man 8 ethtool for more info.

•	 int group

The group that the network device belongs to. It is initialized with INIT_NETDEV_
GROUP (0) by default. The group is exported by sysfs via /sys/class/net/<devName>/
netdev_group. The network device group filters are used for example in netfilter, in net/
netfilter/xt_devgroup.c.

Helper method:

•	 void dev_set_group(struct net_device *dev, int new_group): Changes the group of 
the specified device to be the specified group.

•	 struct pm_qos_request pm_qos_req

Power Management Quality Of Service request object, defined in include/linux/pm_qos.h.

For more details about PM QoS, see Documentation/power/pm_qos_interface.txt.

Next I will describe the netdev_priv() method and the alloc_netdev() macro, which are used a lot in  
network drivers.

The netdev_priv(struct net_device *netdev) method returns a pointer to the end 
of the net_device. This area is used by drivers, which define a private network interface 
structure in order to store private data. For example, in drivers/net/ethernet/intel/
e1000e/netdev.c:

 
          static int e1000_open(struct net_device *netdev)
          {
              struct e1000_adapter *adapter = netdev_priv(netdev);
              . . .
          }
 

The netdev_priv() method is used also for software devices, like the VLAN device.  
So you have:

 
          static inline struct vlan_dev_priv *vlan_dev_priv(const struct net_device *dev)
          {
              return netdev_priv(dev);
          }

 
(net/8021q/vlan.h)
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The •	 alloc_netdev(sizeof_priv, name, setup) macro is for allocation and initialization of 
a network device. It is in fact a wrapper around alloc_netdev_mqs(), with one Tx queue and 
one Rx queue. sizeof_priv is the size of private data to allocate space for. The setup method 
is a callback to initialize the network device. For Ethernet devices, it is usually ether_setup().

For Ethernet devices, you can use the alloc_etherdev() or alloc_etherdev_mq() macros, 
which eventually invoke alloc_etherdev_mqs(); alloc_etherdev_mqs() is also a wrapper 
around alloc_netdev_mqs(), with the ether_setup() as the setup callback method.

Software devices usually define a setup method of their own. So, in PPP you have the •	
ppp_setup() method in drivers/net/ppp/ppp_generic.c, and for VLAN you have vlan_
setup(struct net_device *dev) in net/8021q/vlan.h.

RDMA (Remote DMA)
The following sections describe the RDMA API for the following data structures:

RDMA device•	

Protection Domain (PD)•	

eXtended Reliable Connected (XRC)•	

Shared Receive Queue (SRQ)•	

Address Handle (AH)•	

Multicast Groups•	

Completion Queue (CQ)•	

Queue Pair (QP)•	

Memory Window (MW)•	

Memory Region (MR)•	

RDMA Device
The following methods are related to the RDMA device.

The ib_register_client() Method
The ib_register_client() method registers a kernel client that wants to use the RDMA stack. The specified 
callbacks will be called for every RDMA device that currently exists in the system and for every new device that will be 
detected or removed by the system (using hot-plug). It will return 0 on success or the errno value with the reason for 
the failure.
 
int ib_register_client(struct ib_client *client);
 

•	 client: A structure that describes the attributes of the registration.
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The ib_client Struct:
The device registration attributes are represented by struct ib_client:
 
struct ib_client {
        char  *name;
        void (*add)   (struct ib_device *);
        void (*remove)(struct ib_device *);
 
        struct list_head list;
};

 
•	 name: The name of the kernel module to be registered.

•	 add: A callback to be called for each RDMA device that exists in the system and for every new 
RDMA device that will be detected by the kernel.

•	 remove: A callback to be called for each RDMA device being removed by the kernel.

The ib_unregister_client() Method
The ib_unregister_client() method unregisters a kernel module that wants to stop using the RDMA stack.
 
void ib_unregister_client(struct ib_client *client);
 

•	 device: A structure that describes the attributes of the unregistration.

•	 client: Should be the same object that was used when ib_register_client() was called.

The ib_get_client_data() Method
The ib_get_client_data() method returns the client context which was associated with the RDMA device using the 
ib_set_client_data() method.
 
void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
 

•	 device: The RDMA device to get the client context from.

•	 client:  The object that describes the attributes of the registration/unregistration.

The ib_set_client_data() Method
The ib_set_client_data() method sets a client context to be associated with the RDMA device.
 
void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
             void *data);
 

•	 device: The RDMA device to set the client context with.

•	 client: The object that describes the attributes of the registration/unregistration.

•	 data: The client context to associate.
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The INIT_IB_EVENT_HANDLER macro
The INIT_IB_EVENT_HANDLER macro initializes an event handler for the asynchronous events that may occur to the 
RDMA device. This macro should be used before calling the ib_register_event_handler() method:
 
#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)        \
    do {                            \
        (_ptr)->device  = _device;            \
        (_ptr)->handler = _handler;            \
        INIT_LIST_HEAD(&(_ptr)->list);            \
    } while (0)
 

•	 _ptr: A pointer to the event handler that will be provided to the ib_register_event_
handler() method.

•	 _device: The RDMA device context; upon its events the callback will be called.

•	 _handler: The callback that will be called with every asynchronous event.

The ib_register_event_handler() Method
The ib_register_event_handler() method registers an RDMA event to be called with every handler asynchronous 
event. It will return 0 on success or the errno value with the reason for the failure.
 
int ib_register_event_handler  (struct ib_event_handler *event_handler);
 

•	 event_handler: The event handler that was initialized with the macro INIT_IB_EVENT_
HANDLER. This callback may occur in interrupt context.

The ib_event_handler struct:
The RDMA event handler is represented by struct ib_event_handler:
 
struct ib_event_handler {
    struct ib_device *device;
    void            (*handler)(struct ib_event_handler *, struct ib_event *);
    struct list_head  list;
}; 

The ib_event Struct
The event callback is being called with the new event that happens to the RDMA device. This event is represented by 
struct ib_event.
 
struct ib_event {
    struct ib_device    *device;
    union {
        struct ib_cq    *cq;
        struct ib_qp    *qp;
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        struct ib_srq    *srq;
        u8        port_num;
    } element;
    enum ib_event_type    event;
};
 

•	 device: The RDMA device to which the asynchronous event occurred.

•	 element.cq: If this is a CQ event, the CQ on which the asynchronous event occurred.

•	 element.qp: If this is a QP event, the QP on which the asynchronous event occurred.

•	 element.srq: If this is an SRQ event, the SRQ on which the asynchronous event occurred.

•	 element.port_num: If this is a port event, the port number on which the asynchronous event 
occurred.

•	 event: The type of the asynchronous event that was occurred. It can be:

IB_EVENT_CQ_ERR: CQ event. An error occurred to the CQ and no more Work •	
Completions will be generated to it.

IB_EVENT_QP_FATAL: QP event. An error occurred to the QP that prevents it from •	
reporting an error through a Work Completion.

IB_EVENT_QP_REQ_ERR: QP event. An incoming RDMA request caused a transport error •	
violation in the targeted QP.

IB_EVENT_QP_ACCESS_ERR: QP event. An incoming RDMA request caused a requested •	
error violation in the targeted QP.

IB_EVENT_COMM_EST: QP event. A communication established event occurred. An •	
incoming message was received by a QP when it was in the RTR state.

IB_EVENT_SQ_DRAINED: QP event. Send Queue drain event. The QP’s Send Queue  •	
was drained.

IB_EVENT_PATH_MIG: QP event. Path migration was completed successfully and the •	
primary was changed.

IB_EVENT_PATH_MIG_ERR: QP event. There was an error when trying to perform  •	
path migration.

IB_EVENT_DEVICE_FATAL: Device event. There was an error with the RDMA device.•	

IB_EVENT_PORT_ACTIVE: Port event. The port state has become active.•	

IB_EVENT_PORT_ERR: Port event. The port state was active and it is no longer active.•	

IB_EVENT_LID_CHANGE: Port event. The LID of the port was changed.•	

IB_EVENT_PKEY_CHANGE: Port event. A P_Key entry was changed in the port’s P_Key table.•	

IB_EVENT_SM_CHANGE: Port event. The Subnet Manager that manages this port  •	
was change.

IB_EVENT_SRQ_ERR: SRQ event. An error occurred to the SRQ.•	

IB_EVENT_SRQ_LIMIT_REACHED: SRQ event/SRQ limit event. The number of Receive •	
Requests in the SRQ dropped below the requested watermark.
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IB_EVENT_QP_LAST_WQE_REACHED: QP event. Last Receive Request reached from the •	
SRQ, and it won’t consume any more Receive Requests from it.

IB_EVENT_CLIENT_REREGISTER:  Port event. The client should reregister to all services •	
from the Subnet Administrator.

IB_EVENT_GID_CHANGE: Port event. A GID entry was changed in the port’s GID table.•	

The ib_unregister_event_handler() Method
The ib_unregister_event_handler() method unregisters an RDMA event handler. It will return 0 on success or the 
errno value with the reason for the failure.
 
int ib_unregister_event_handler(struct ib_event_handler *event_handler);
 

•	 event_handler: The event handler to be unregistered. It should be the same object that was 
registered with ib_register_event_handler().

The ib_query_device() Method
The ib_query_device() method queries the RDMA device for its attributes. It will return 0 on success or the errno 
value with the reason for the failure.
 
int ib_query_device(struct ib_device *device,
        struct ib_device_attr *device_attr);
 

•	 device: The RDMA device to be queried.

•	 device_attr: Pointer to a structure of an RDMA device attributes that will be filled.

The ib_device_attr struct:
The RDMA device attributes are represented by struct ib_device_attr:
 
struct ib_device_attr {
    u64            fw_ver;
    __be64         sys_image_guid;
    u64            max_mr_size;
    u64            page_size_cap;
    u32            vendor_id;
    u32            vendor_part_id;
    u32            hw_ver;
    int            max_qp;
    int            max_qp_wr;
    int            device_cap_flags;
    int            max_sge;
    int            max_sge_rd;
    int            max_cq;
    int            max_cqe;
    int            max_mr;
    int            max_pd;
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    int            max_qp_rd_atom;
    int            max_ee_rd_atom;
    int            max_res_rd_atom;
    int            max_qp_init_rd_atom;
    int            max_ee_init_rd_atom;
    enum ib_atomic_cap    atomic_cap;
    enum ib_atomic_cap    masked_atomic_cap;
    int            max_ee;
    int            max_rdd;
    int            max_mw;
    int            max_raw_ipv6_qp;
    int            max_raw_ethy_qp;
    int            max_mcast_grp;
    int            max_mcast_qp_attach;
    int            max_total_mcast_qp_attach;
    int            max_ah;
    int            max_fmr;
    int            max_map_per_fmr;
    int            max_srq;
    int            max_srq_wr;
    int            max_srq_sge;
    unsigned int   max_fast_reg_page_list_len;
    u16            max_pkeys;
    u8             local_ca_ack_delay;
};
 

•	 fw_ver: A number which represents the FW version of the RDMA device. It can be evaluated 
as ZZZZYYXX: Zs are the major number, Ys are the minor number, and Xs are the build 
number.

•	 sys_image_guid: The system image GUID: Has a unique value for each system.

•	 max_mr_size: The maximum supported MR size.

•	 page_size_cap: Bitwise OR for all of supported memory page shifts.

•	 vendor_id: The IEEE vendor ID.

•	 vendor_part_id: Device’s part ID, as supplied by the vendor.

•	 hw_ver: Device’s HW version, as supplied by the vendor.

•	 max_qp: Maximum supported number of QPs.

•	 max_qp_wr: Maximum supported number of Work Requests in each non-RD QP.

•	 device_cap_flags: Supported capabilities of the RDMA device. It is a bitwise OR of the masks:

IB_DEVICE_RESIZE_MAX_WR: The RDMA device supports resize of the number of Work •	
Requests in a QP.

IB_DEVICE_BAD_PKEY_CNTR: The RDMA device supports the ability to count the •	
number of bad P_Keys.

IB_DEVICE_BAD_QKEY_CNTR: The RDMA device supports the ability to count the •	
number of bad Q_Keys.
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IB_DEVICE_RAW_MULTI: The RDMA device supports raw packet multicast.•	

IB_DEVICE_AUTO_PATH_MIG: The RDMA device supports Automatic Path Migration.•	

IB_DEVICE_CHANGE_PHY_PORT: The RDMA device supports changing the QP’s •	
primary Port number.

IB_DEVICE_UD_AV_PORT_ENFORCE: The RDMA device supports enforcements of the •	
port number of UD QP and Address Handle.

IB_DEVICE_CURR_QP_STATE_MOD: The RDMA device supports the current QP •	
modifier when calling ib_modify_qp().

IB_DEVICE_SHUTDOWN_PORT: The RDMA device supports port shutdown.•	

IB_DEVICE_INIT_TYPE: The RDMA device supports setting InitType and InitTypeReply.•	

IB_DEVICE_PORT_ACTIVE_EVENT: The RDMA device supports the generation of the •	
port active asynchronous event.

IB_DEVICE_SYS_IMAGE_GUID: The RDMA device supports system image GUID.•	

IB_DEVICE_RC_RNR_NAK_GEN: The RDMA device supports RNR-NAK generation for •	
RC QPs.

IB_DEVICE_SRQ_RESIZE: The RDMA device supports resize of a SRQ.•	

IB_DEVICE_N_NOTIFY_CQ: The RDMA device supports notification when N Work •	
Completions exists in the CQ.

IB_DEVICE_LOCAL_DMA_LKEY: The RDMA device supports Zero Stag (in iWARP) and •	
reserved LKey (in InfiniBand).

IB_DEVICE_RESERVED: Reserved bit.•	

IB_DEVICE_MEM_WINDOW: The RDMA device supports Memory Windows.•	

IB_DEVICE_UD_IP_CSUM: The RDMA device supports insertion of UDP and TCP •	
checksum on outgoing UD IPoIB messages and can verify the validity of those checksum 
for incoming messages.

IB_DEVICE_UD_TSO: The RDMA device supports TCP Segmentation Offload.•	

IB_DEVICE_XRC: The RDMA device supports the eXtended Reliable Connected •	
transport.

IB_DEVICE_MEM_MGT_EXTENSIONS: The RDMA device supports memory •	
management extensions support.

IB_DEVICE_BLOCK_MULTICAST_LOOPBACK: The RDMA device supports blocking •	
multicast loopback.

IB_DEVICE_MEM_WINDOW_TYPE_2A: The RDMA device supports Memory Windows •	
type 2A: association with a QP number.

IB_DEVICE_MEM_WINDOW_TYPE_2B: The RDMA device supports Memory Windows •	
type 2B: association with a QP number and a PD.
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•	 max_sge: Maximum supported number of scatter/gather elements per Work Request in a  
non-RD QP.

•	 max_sge_rd: Maximum supported number of scatter/gather elements per Work Request in  
an RD QP.

•	 max_cq: Maximum supported number of CQs.

•	 max_cqe: Maximum supported number of entries in each CQ.

•	 max_mr: Maximum supported number of MRs.

•	 max_pd: Maximum supported number of PDs.

•	 max_qp_rd_atom: Maximum number of RDMA Read and Atomic operations that can be sent to 
a QP as the target of the operation.

•	 max_ee_rd_atom: Maximum number of RDMA Read and Atomic operations that can be sent to 
an EE context as the target of the operation.

•	 max_res_rd_atom: Maximum number of for incoming RDMA Read and Atomic operations that 
can be sent to this RDMA device as the target of the operation.

•	 max_qp_init_rd_atom: Maximum number of RDMA Read and Atomic operations that can be 
sent from a QP as the initiator of the operation.

•	 max_ee_init_rd_atom: Maximum number of RDMA Read and Atomic operations that can be 
sent from an EE context as the initiator of the operation.

•	 atomic_cap: Ability of the device to support atomic operations. Can be:

IB_ATOMIC_NONE: The RDMA device doesn’t guarantee any atomicity at all.•	

IB_ATOMIC_HCA: The RDMA device guarantees atomicity between QPs in the same device.•	

IB_ATOMIC_GLOB: The RDMA device guarantees atomicity between this device and any •	
other component.

•	 masked_atomic_cap: The ability of the device to support masked atomic operations. Possible 
values as described in atomic_cap earlier.

•	 max_ee: Maximum supported number of EE contexts.

•	 max_rdd: Maximum supported number of RDDs.

•	 max_mw: Maximum supported number of MWs.

•	 max_raw_ipv6_qp: Maximum supported number of Raw IPv6 Datagram QPs.

•	 max_raw_ethy_qp: Maximum supported number of Raw Ethertype Datagram QPs.

•	 max_mcast_grp: Maximum supported number of multicast groups.

•	 max_mcast_qp_attach: Maximum supported number of QPs that can be attached to each 
multicast group.

•	 max_total_mcast_qp_attach: Maximum number of total QPs that can be attached to any 
multicast group.

•	 max_ah: Maximum supported number of AHs.

•	 max_fmr: Maximum supported number of FMRs.
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•	 max_map_per_fmr: Maximum supported number of map operations which are allowed  
per FMR.

•	 max_srq: Maximum supported number of SRQs.

•	 max_srq_wr: Maximum supported number of Work Requests in each SRQ.

•	 max_srq_sge: Maximum supported number of scatter/gather elements per Work Request  
in an SRQ.

•	 max_fast_reg_page_list_len: Maximum number of page list that can be used when 
registering an FMR using a Work Request.

•	 max_pkeys: Maximum supported number of P_Keys.

•	 local_ca_ack_delay: Local CA ack delay. This value specifies the maximum expected time 
interval between the local device receiving a message and transmitting the associated ACK or NAK.

The ib_query_port() Method
The ib_query_port() method queries the RDMA device port’s attributes. It will return 0 on success or the errno value 
with the reason for the failure.
 
int ib_query_port(struct ib_device *device,
         u8 port_num, struct ib_port_attr *port_attr);
 

•	 device: The RDMA device to be queried.

•	 port_num: The port number to be queried.

•	 port_attr: A pointer to a structure of an RDMA port attributes which will be filled.

The ib_port_attr Struct
The RDMA port attributes are represented by struct ib_port_attr:
 
struct ib_port_attr {
    enum ib_port_state    state;
    enum ib_mtu   max_mtu;
    enum ib_mtu   active_mtu;
    int           gid_tbl_len;
    u32           port_cap_flags;
    u32           max_msg_sz;
    u32           bad_pkey_cntr;
    u32           qkey_viol_cntr;
    u16           pkey_tbl_len;
    u16           lid;
    u16           sm_lid;
    u8            lmc;
    u8            max_vl_num;
    u8            sm_sl;
    u8            subnet_timeout;
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    u8            init_type_reply;
    u8            active_width;
    u8            active_speed;
    u8            phys_state;
};
 

•	 state: The logical port state. Can be:

IB_PORT_NOP: Reserved value.•	

IB_PORT_DOWN: Logical link is down.•	

IB_PORT_INIT: Logical link is initialized. The physical link is up but the Subnet Manager •	
hasn’t started to configure the port.

IB_PORT_ARMED: Logical link is armed. The physical link is up but the Subnet Manager •	
started, and did not yet complete, configuring the port.

IB_PORT_ACTIVE: Logical link is active.•	

IB_PORT_ACTIVE_DEFER: Logical link is active but the physical link is down. The link •	
tries to recover from this state.

•	 max_mtu: The maximum MTU supported by this port. Can be:

IB_MTU_256: 256 bytes.•	

IB_MTU_512: 512 bytes.•	

IB_MTU_1024: 1,024 bytes.•	

IB_MTU_2048: 2,048 bytes.•	

IB_MTU_4096: 4,096 bytes.•	

•	 active_mtu: The actual MTU that this port is configured with. Can be as max_mtu, mentioned 
earlier.

•	 gid_tbl_len: The number of entries in the port’s GID table.

•	 port_cap_flags: The port supported capabilities. It is a bitwise OR of the masks:

IB_PORT_SM: An indication that the SM that manages the subnet is sending packets from  •	
this port.

IB_PORT_NOTICE_SUP: An indication that this port supports notices.•	

IB_PORT_TRAP_SUP: An indication that this port supports traps.•	

IB_PORT_OPT_IPD_SUP: An indication that this port supports Inter Packet Delay  •	
optional values.

IB_PORT_AUTO_MIGR_SUP: An indication that this port supports Automatic Path Migration.•	

IB_PORT_SL_MAP_SUP: An indication that this port supports SL 2 VL mapping table.•	

IB_PORT_MKEY_NVRAM: An indication that this port supports saving the M_Key •	
attributes in Non Volatile RAM.
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IB_PORT_PKEY_NVRAM: An indication that this port supports saving the P_Key table in •	
Non Volatile RAM.

IB_PORT_LED_INFO_SUP: An indication that this port supports turning on and off the •	
LED using management packets.

IB_PORT_SM_DISABLED: An indication that there is an SM which isn’t active in this port.•	

IB_PORT_SYS_IMAGE_GUID_SUP: An indication that the port supports system  •	
image GUID.

IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP: An indication that the SMA on the switch •	
management port will monitor P_Key mismatches on each switch external port.

IB_PORT_EXTENDED_SPEEDS_SUP: An indication that the port supports extended •	
speeds (FDR and EDR).

IB_PORT_CM_SUP: An indication that this port supports CM.•	

IB_PORT_SNMP_TUNNEL_SUP: An indication that an SNMP tunneling agent is listening •	
on this port.

IB_PORT_REINIT_SUP: An indication that this port supports reinitialization of the node.•	

IB_PORT_DEVICE_MGMT_SUP: An indication that this port supports device •	
management.

IB_PORT_VENDOR_CLASS_SUP: An indication that a vendor-specific agent is listening •	
on this port.

IB_PORT_DR_NOTICE_SUP: An indication that this port supports Direct Route notices.•	

IB_PORT_CAP_MASK_NOTICE_SUP: An indication that this port supports sending a •	
notice if the port’s port_cap_flags is changed.

IB_PORT_BOOT_MGMT_SUP: An indication that a boot manager agent is listening on •	
this port.

IB_PORT_LINK_LATENCY_SUP: An indication that this port supports link round trip •	
latency measurement.

IB_PORT_CLIENT_REG_SUP: An indication that this port is capable of generating the •	
IB_EVENT_CLIENT_REREGISTER asynchronous event.

•	 max_msg_sz: The maximum supported message size by this port.

•	 bad_pkey_cntr: A counter for the number of bad P_Key from messages that this port received.

•	 qkey_viol_cntr: A counter for the number of Q_Key violations from messages that this port 
received.

•	 pkey_tbl_len: The number of entries in the port’s P_Key table.

•	 lid: The port’s Local Identifier (LID), as assigned by the SM.

•	 sm_lid: The LID of the SM.

•	 lmc: LID mask of this port.
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•	 max_vl_num: Maximum number of Virtual Lanes supported by this port. Can be:

1: 1 VL is supported: VL0•	

2: 2 VLs are supported: VL0–VL1•	

3: 4 VLs are supported: VL0–VL3•	

4: 8 VLs are supported: VL0–VL7•	

5: 15 VLs are supported: VL0–VL14•	

•	 sm_sl: The SL to be used when sending messages to the SM.

•	 subnet_timeout: The maximum expected subnet propagation delay. This duration of time 
calculation is 4.094*2^subnet_timeout.

•	 init_type_reply: The value that the SM configures before moving the port state to  
IB_PORT_ARMED  or IB_PORT_ACTIVE to specify the type of the initialization performed.

•	 active_width: The port’s active width. Can be:

IB_WIDTH_1X: Multiple of 1.•	

IB_WIDTH_4X: Multiple of 4.•	

IB_WIDTH_8X: Multiple of 8.•	

IB_WIDTH_12X: Multiple of 12.•	

•	 active_speed: The port’s active speed. Can be:

IB_SPEED_SDR: Single Data Rate (SDR): 2.5 Gb/sec, 8/10 bit encoding.•	

IB_SPEED_DDR: Double Data Rate (DDR): 5 Gb/sec, 8/10 bit encoding.•	

IB_SPEED_QDR: Quad Data Rate (DDR): 10 Gb/sec, 8/10 bit encoding.•	

IB_SPEED_FDR10: Fourteen10 Data Rate (FDR10): 10.3125 Gb/sec, 64/66 bit encoding.•	

IB_SPEED_FDR: Fourteen Data Rate (FDR): 14.0625 Gb/sec, 64/66 bit encoding.•	

IB_SPEED_EDR: Enhanced Data Rate (EDR): 25.78125 Gb/sec.•	

•	 phys_state: The physical port state. There isn’t any enumeration for this value.

The rdma_port_get_link_layer() Method
The rdma_port_get_link_layer() method returns the link layer of the RDMA device port. It will return the  
following values:

IB_LINK_LAYER_UNSPECIFIED: Unspecified value, usually legacy value that indicates that •	
this is an InfiniBand link layer.

IB_LINK_LAYER_INFINIBAND: Link layer is InfiniBand.•	

IB_LINK_LAYER_ETHERNET: Link layer is Ethernet. This indicates that the port supports •	
RDMA Over Converged Ethernet (RoCE).
 
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num);
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•	 device: The RDMA device to be queried.

•	 port_num: The port number to be queried.

The ib_query_gid() Method
The ib_query_gid() method queries the RDMA device port’s GID table. It will return 0 on success or the errno value 
with the reason for the failure.
 
int ib_query_gid(struct ib_device *device, u8 port_num, int index, union ib_gid *gid);
 

•	 device: The RDMA device to be queried.

•	 port_num:  The port number to be queried.

•	 index: The index in the GID table to be queried.

•	 gid: A pointer to the GID union to be filled.

The ib_query_pkey() Method
The ib_query_pkey() method queries the RDMA device port’s P_Key table. It will return 0 on success or the errno 
value with the reason for the failure.
 
int ib_query_pkey(struct ib_device *device,
        u8 port_num, u16 index, u16 *pkey);
 

•	 device: The RDMA device to be queried.

•	 port_num: The port number to be queried.

•	 index: The index in the P_Key table to be queried.

•	 pkey: A pointer to the P_Key to be filled.

The ib_modify_device() Method
The ib_modify_device() method modifies the RDMA device attributes. It will return 0 on success or the errno value 
with the reason for the failure.
 
int ib_modify_device(struct ib_device *device,
            int device_modify_mask,
            struct ib_device_modify *device_modify);
 

•	 device: The RDMA device to be modified.

•	 device_modify_mask: The device attributes to be changed. It is a bitwise OR of the masks:

IB_DEVICE_MODIFY_SYS_IMAGE_GUID: Modifies the system image GUID.•	

IB_DEVICE_MODIFY_NODE_DESC: Modifies the node description.•	

•	 device_modify: The RDMA attributes to be modified, as described immediately.
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The ib_device_modify Struct
The RDMA device attributes are represented by struct ib_device_modify:
 
struct ib_device_modify {
    u64    sys_image_guid;
    char    node_desc[64];
};
 

•	 sys_image_guid: A 64-bit value of the system image GUID.

•	 node_desc: A NULL terminated string that describes the node description.

The ib_modify_port() Method
The ib_modify_port() method modifies the RDMA device port’s attributes. It will return 0 on success or the errno 
value with the reason for the failure.
 
int ib_modify_port(struct ib_device *device,
           u8 port_num, int port_modify_mask,
           struct ib_port_modify *port_modify);
 

•	 device: The RDMA device to be modified.

•	 port_num: The port number to be modified.

•	 port_modify_mask: The port’s attributes to be changed. It is a bitwise OR of the masks:

IB_PORT_SHUTDOWN: Moves the port state to IB_PORT_DOWN.•	

IB_PORT_INIT_TYPE: Sets the port InitType value.•	

IB_PORT_RESET_QKEY_CNTR: Resets the port’s Q_Key violation counter.•	

•	 port_modify: The port attributes to be modified, as described in the next section.

The ib_port_modify struct:
The RDMA device attributes are represented by struct ib_port_modify:
 
struct ib_port_modify {
    u32    set_port_cap_mask;
    u32    clr_port_cap_mask;
    u8    init_type;
};
 

•	 set_port_cap_mask: The port capabilities bits to be set.

•	 clr_port_cap_mask: The port capabilities bits to be cleared.

•	 init_type: The InitType value to be set.
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The ib_find_gid() Method
The ib_find_gid() method finds the port number and the index where a specific GID value exists in the GID table. It 
will return 0 on success or the errno value with the reason for the failure.
 
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
        u8 *port_num, u16 *index);
 

•	 device: The RDMA device to be queried.

•	 gid: A pointer of the GID to search for.

•	 port_num: Will be filled with the port number that this GID exists in.

•	 index: Will be filled with the index in the GID table that this GID exists in.

The ib_find_pkey() Method
The ib_find_pkey() method finds the index where a specific P_Key value exists in the P_Key table in a specific port 
number. It will return 0 on success or the errno value with the reason for the failure.
 
int ib_find_pkey(struct ib_device *device,
         u8 port_num, u16 pkey, u16 *index);
 

•	 device: The RDMA device to be queried.

•	 port_num: The port number to search the P_Key in.

•	 pkey: The P_Key value to search for.

•	 index: The index in the P_Key table that this P_Key exists in.

The rdma_node_get_transport() Method
The rdma_node_get_transport() method returns the RDMA transport type of a specific node type. The available 
transport types can be:

RDMA_TRANSPORT_IB: Transport is InfiniBand.•	

RDMA_TRANSPORT_IWARP: Transport is iWARP.•	

The rdma_node_get_transport() Method
 
enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
 

•	 node_type: The node type. Can be:RDMA_NODE_IB_CA: Node type is an InfiniBand Channel 
Adapter.

RDMA_NODE_IB_SWITCH: Node type is an InfiniBand Switch.•	

RDMA_NODE_IB_ROUTER: Node type is an InfiniBand Router.•	

RDMA_NODE_RNIC: Node type is an RDMA NIC.•	
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The ib_mtu_to_int() Method
The ib_mtu_to_int() method returns the number of bytes, as an integer, for MTU enumerations. It will return a 
positive value on success or –1 on a failure.
 
static inline int ib_mtu_enum_to_int(enum ib_mtu mtu);
 

•	 mtu: Can be an MTU enumeration, as described earlier.

The ib_width_enum_to_int() Method
The ib_width_enum_to_int() method returns the number of width multiple, as an integer, for an IB port 
enumerations. It will return a positive value on success or –1 on a failure.
 
static inline int ib_width_enum_to_int(enum ib_port_width width);
 

•	 width: Can be a port width enumeration, as described earlier.

The ib_rate_to_mult() Method
The ib_rate_to_mult() method returns the number of multiple of the base rate of 2.5 Gbit/sec, as an integer, for an 
IB rate enumerations. It will return a positive value on success or –1 on a failure.
 
int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
 

rate: The rate enumeration to be converted. Can be:•	

IB_RATE_PORT_CURRENT: Current port’s rate.•	

IB_RATE_2_5_GBPS: Rate of 2.5 Gbit/sec.•	

IB_RATE_5_GBPS: Rate of 5 Gbit/sec.•	

IB_RATE_10_GBPS: Rate of 10 Gbit/sec.•	

IB_RATE_20_GBPS: Rate of 20 Gbit/sec.•	

IB_RATE_30_GBPS: Rate of 30 Gbit/sec.•	

IB_RATE_40_GBPS: Rate of 40 Gbit/sec.•	

IB_RATE_60_GBPS: Rate of 60 Gbit/sec.•	

IB_RATE_80_GBPS: Rate of 80 Gbit/sec.•	

IB_RATE_120_GBPS: Rate of 120 Gbit/sec.•	

IB_RATE_14_GBPS: Rate of 14 Gbit/sec.•	

IB_RATE_56_GBPS: Rate of 56 Gbit/sec.•	

IB_RATE_112_GBPS: Rate of 112 Gbit/sec.•	

IB_RATE_168_GBPS: Rate of 168 Gbit/sec.•	

IB_RATE_25_GBPS: Rate of 25 Gbit/sec.•	
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IB_RATE_100_GBPS: Rate of 100 Gbit/sec.•	

IB_RATE_200_GBPS: Rate of 200 Gbit/sec.•	

IB_RATE_300_GBPS: Rate of 300 Gbit/sec.•	

The ib_rate_to_mbps() Method
The ib_rate_to_mbps() method returns the number of Mbit/sec, as an integer, for an IB rate enumerations. It will 
return a positive value on success or –1 on a failure.
 
int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
 

•	 rate: The rate enumeration to be converted, as described earlier.

The ib_rate_to_mbps() Method
The ib_rate_to_mbps() method returns the IB rate enumerations for a multiple of the base rate of 2.5 Gbit/sec. It will 
return a positive value on success or –1 on a failure.
 
enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
 

•	 mult: The rate multiple to be converted, as described earlier.

Protection Domain (PD)
PD is an RDMA resource that associates QPs and SRQs with MRs and AHs with QPs. One can look at PD as a color, for 
example: red MR can work with a red QP, and red AH can work with a red QP. Working with green AH with a red QP 
will result in an error.

The ib_alloc_pd() Method
The ib_alloc_pd() method allocates a PD. It will return a pointer to the newly allocated PD on success or an ERR_
PTR() which specifies the reason for the failure.
 
struct ib_pd *ib_alloc_pd(struct ib_device *device);
 

•	 device: The RDMA device that the PD will be associated with.

The ib_dealloc_pd() Method
The ib_dealloc_pd() method deallocates a PD. It will return 0 on success or the errno value with the reason for  
the failure.
 
int ib_dealloc_pd(struct ib_pd *pd);
 

•	 pd: The PD to be deallocated.
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eXtended Reliable Connected (XRC)
XRC is an IB transport extension that provides better scalability, in the sender side, for Reliable Connected QPs than 
the original Reliable Transport can provide. Using XRC will decrease the number of QPs between two specific cores: 
when using RC QPs, for each core, in each machine, there is a QP. When using XRC, there will be one XRC QP in each 
host. When sending a message, the sender needs to specify the remote SRQ number that will receive the message.

The ib_alloc_xrcd() Method
The ib_alloc_xrcd() method allocates an XRC domain. It will return a pointer to the newly created XRC domain on 
success or an ERR_PTR() which specifies the reason for the failure.
 
struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
 

•	 device: The RDMA device that this XRC domain will be allocated on.

The ib_dealloc_xrcd_cq() Method
The ib_dealloc_xrcd_cq() method deallocates an XRC domain. It will return 0 on success or the errno value with the 
reason for the failure:
 
int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
 

•	 xrcd: The XRC domain to be deallocated.

Shared Receive Queue (SRQ)
SRQ is a resource that helps RDMA to be more scalable. Instead of managing the Receive Requests in the Receive 
Queues of many QPs, it is possible to manage them in a single Receive Queue, which all of them share. This will 
eliminate starvation in RC QPs or packet drops in unreliable transport types and will help to reduce the total posted 
Receive Requests, thus reducing the consumed memory. Furthermore, unlike a QP, an SRQ can have a watermark to 
allow a notification if the number of RRs in the SRQ dropped below a specify value. 

The ib_srq_attr Struct
The SRQ attributes are represented by struct ib_srq_attr:
 
struct ib_srq_attr {
    u32    max_wr;
    u32    max_sge;
    u32    srq_limit;
};
 

•	 max_wr: The maximum number of outstanding RRs that this SRQ can hold.

•	 max_sge: The maximum number of scatter/gather elements that each RR in the SRQ can hold.

•	 srq_limit: The watermark limit that creates an asynchronous event if the number of RRs in 
the SRQ dropped below this value.
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The ib_create_srq() Method
The ib_create_srq() method creates an SRQ. It will return a pointer to the newly created SRQ on success or an ERR_
PTR() which specifies the reason for the failure:
 
struct ib_srq *ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr);
 

•	 pd: The PD that this SRQ is being associated with.

•	 srq_init_attr: The attributes that this SRQ will be created with.

The ib_srq_init_attr Struct
The created SRQ attributes are represented by struct ib_srq_init_attr:
 
struct ib_srq_init_attr {
    void              (*event_handler)(struct ib_event *, void *);
    void               *srq_context;
    struct ib_srq_attr    attr;
    enum ib_srq_type    srq_type;
 
    union {
        struct {
            struct ib_xrcd *xrcd;
            struct ib_cq   *cq;
        } xrc;
    } ext;
};
 

•	 event_handler: A pointer to a callback that will be called in case of an affiliated asynchronous 
event to the SRQ.

•	 srq_context: User-defined context that can be associated with the SRQ.

•	 attr: The SRQ attributes, as described earlier.

•	 srq_type: The type of the SRQ. Can be:

IB_SRQT_BASIC: For regular SRQ.•	

IB_SRQT_XRC: For XRC SRQ.•	

•	 ext: If srq_type is IB_SRQT_XRC, specifies the XRC domain or the CQ that this SRQ is 
associated with.

The ib_modify_srq() Method
The ib_modify_srq() method modifies the attributes of the SRQ. It will return 0 on success or the errno value with 
the reason for the failure.
 
int ib_modify_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask);
 



Appendix A ■ Linux API

537

•	 srq: The SRQ to be modified.

•	 srq_attr: The SRQ attributes, as described earlier.

•	 srq_attr_mask: The SRQ attributes to be changed. It is a bitwise OR of the masks:

IB_SRQ_MAX_WR: Modify the number of RRs in the SRQ (that is, resize the SRQ). This •	
can be done only if the device supports SRQ resize—that is, the IB_DEVICE_SRQ_RESIZE 
is set in the device flags.

IB_SRQ_LIMIT: Set the value of the SRQ watermark limit.•	

The ib_query_srq() Method
The ib_query_srq() method queries for the current SRQ attributes. It will return 0 on success or the errno value with 
the reason for the failure.
 
int ib_query_srq(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
 

•	 srq: The SRQ to be queried.

•	 srq_attr: The SRQ attributes, as described earlier.

The ib_destory_srq() Method
The ib_destory_srq() method destroys an SRQ. It will return 0 on success or the errno value with the reason  
for the failure.
 
int ib_destroy_srq(struct ib_srq *srq);
 

•	 srq: The SRQ to be destroyed.

The ib_post_srq_recv() Method
The ib_post_srq_recv() method takes a linked list of Receive Requests and adds them to the SRQ for future 
processing. Every Receive Request is considered outstanding until a Work Completion is generated after its 
processing. It will return 0 on success or the errno value with the reason for the failure.
 
static inline int ib_post_srq_recv(struct ib_srq *srq, struct ib_recv_wr *recv_wr,
struct ib_recv_wr **bad_recv_wr);
 

•	 srq: The SRQ that the Receive Requests will be posted to.

•	 recv_wr: A linked list of Receive Request to be posted.

•	 bad_recv_wr: If there was an error with the handling of the Receive Requests, this pointer will 
be filled with the address of the Receive Request that caused this error.
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The ib_recv_wr Struct
The Receive Request is represented by struct ib_recv_wr:
 
struct ib_recv_wr {
    struct ib_recv_wr          *next;
    u64            wr_id;
    struct ib_sge        *sg_list;
    int            num_sge;
};
 

•	 next:  A pointer to the next Receive Request in the list or NULL, if this is the last Receive Request.

•	 wr_id:  A 64-bit value that is associated with this Receive Request and will be available in the 
corresponding Work Completion.

•	 sg_list: The array of the scatter/gather elements, as described in the next section.

•	 num_sge: The number of entries in sg_list. The value zero means that the message size that 
can be saved has zero bytes.

The ib_sge Struct
The scatter/gather element is represented by struct ib_sge:
 
struct ib_sge {
    u64    addr;
    u32    length;
    u32    lkey;
};
 

•	 addr: The address of the buffer to access.

•	 length: The length of the address to access.

•	 lkey: The Local Key of the Memory Region that this buffer was registered with.

Address Handle (AH)
AH is an RDMA resource that describes the path from the local port to the remote port of the destination. It is being 
used for a UD QP.
 
The ib_ah_attr Struct
The AH attributes are represented by struct ib_ah_attr:
 
struct ib_ah_attr {
    struct ib_global_route    grh;
    u16                dlid;
    u8                sl;
    u8                src_path_bits;
    u8                static_rate;
    u8                ah_flags;
    u8                port_num;
};
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•	 grh: The Global Routing Header attributes that are used for sending messages to another 
subnet or to a multicast group in the local or remote subnet.

•	 dlid: The destination LID.

•	 sl: The Service Level that this message will use.

•	 src_path_bits: The used source path bits. Relevant if LMC is used in this port.

•	 static_rate: The level of delay that should be done between sending the messages. It is used 
when sending a message to a remote node that supports a slower message rate than the local node.

•	 ah_flags: The AH flags. It is a bitwise OR of the masks:

IB_AH_GRH: GRH is used in this AH.•	

•	 port_num: The local port number that messages will be sent from.

The ib_create_ah() Method
The ib_create_ah() method creates an AH. It will return a pointer to the newly created AH on success or an ERR_
PTR() which specifies the reason for the failure.
 
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
 

•	 pd: The PD that this AH is being associated with.

•	 ah_attr: The attributes that this AH will be created with.

The ib_init_ah_from_wc() Method
The ib_init_ah_from_wc() method initializes an AH attribute structure from a Work Completion and a GRH 
structure. This is being done in order to return a message back for an incoming message of an UD QP. It will return 0 
on success or the errno value with the reason for the failure.
 
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
        struct ib_grh *grh, struct ib_ah_attr *ah_attr);
 

•	 device: The RDMA device that the Work Completion came from and the AH to be created on.

•	 port_num: The port number that the Work Completion came from and the AH will be 
associated with.

•	 wc: The Work Completion of the incoming message.

•	 grh: The GRH buffer of the incoming message.

•	 ah_attr: The attributes of this AH to be filled.
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The ib_create_ah_from_wc() Method
The ib_create_ah_from_wc() method creates an AH from a Work Completion and a GRH structure. This is done in 
order to return a message back for an incoming message of a UD QP. It will return a pointer to the newly created  
AH on success or an ERR_PTR() which specifies the reason for the failure.
 
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, struct ib_grh *grh, u8 port_num);
 

•	 pd: The PD that this AH is being associated with.

•	 wc: The Work Completion of the incoming message.

•	 grh: The GRH buffer of the incoming message.

•	 port_num: The port number that the Work Completion came from and the AH will be 
associated with.

The ib_modify_ah() Method
The ib_modify_ah() method modifies the attributes of the AH. It will return 0 on success or the errno value with the 
reason for the failure.
 
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
 

•	 ah: The AH to be modified.

•	 ah_attr: The AH attributes, as described earlier.

The ib_query_ah() Method
The ib_query_ah() method queries for the current AH attributes. It will return 0 on success or the errno value with 
the reason for the failure.
 
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
 

•	 ah: The AH to be queried

•	 ah_attr: The AH attributes, as described earlier.

The ib_destory_ah() Method
The ib_destory_ah() method destroys an AH. It will return 0 on success or the errno value with the reason for the failure.
 
int ib_destroy_ah(struct ib_ah *ah);
 

•	 ah: The AH to be destroyed.



Appendix A ■ Linux API

541

Multicast Groups
Multicast groups are means to send a message from one UD QP to many UD QPs. Every UD QP that wants to get this 
message needs to be attached to a multicast group.

The ib_attach_mcast() Method
The ib_attach_mcast() method attaches a UD QP to a multicast group within an RDMA device. It will return 0 on 
success or the errno value with the reason for the failure.
 
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 

•	 qp: A handler of a UD QP to be attached to the multicast group.

•	 gid: The GID of the multicast group that the QP will be added to.

•	 lid: The LID of the multicast group that the QP will be added to.

The ib_detach_mcast() method
The ib_detach_mcast() method detaches a UD QP from a multicast group within an RDMA device. It will return 0 on 
success or the errno value with the reason for the failure.
 
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
 

•	 qp: A handler of a UD QP to be detached from the multicast group.

•	 gid: The GID of the multicast group that the QP will be removed from.

•	 lid: The LID of the multicast group that the QP will be removed from.

Completion Queue (CQ)
A Work Completion specifies that a corresponding Work Request was completed and provides some information.

about it: its status, the used opcode, its size, and so on. A CQ is an object that consists of Work Completions.

The ib_create_cq() Method
The ib_create_cq() method creates a CQ. It will return a pointer to the newly created CQ on success or an  
ERR_PTR() which specifies the reason for the failure.
 
struct ib_cq *ib_create_cq(struct ib_device *device, ib_comp_handler comp_handler,  
void (*event_handler)(struct ib_event *, void *), void *cq_context, int cqe, int comp_vector);
 

•	 device: The RDMA device that this CQ is being associated with.

•	 comp_handler: A pointer to a callback that will be called when a completion event occur to the CQ.

•	 event_handler: A pointer to a callback that will be called in case of an affiliated asynchronous 
event to the CQ.
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•	 cq_context: A user-defined context that can be associated with the CQ.

•	 cqe: The requested number of Work Completions that this CQ can hold.

•	 comp_vector: The index of the RDMA device’s completion vector to work on. If the IRQ affinity 
masks of these interrupts are spread across the cores, this value can be used to spread the 
completion workload over all of the cores.

The ib_resize_cq() Method
The ib_resize_cq() method changes the size of the CQ to hold at least the new size, either by increasing the CQ size 
or decreasing it. Even if the user asks to resize a CQ, its size may not be resized.
 
int ib_resize_cq(struct ib_cq *cq, int cqe);
 

•	 cq: The CQ to be resized. This value cannot be lower than the number of Work Completions 
that exists in the CQ.

•	 cqe: The requested number of Work Completions that this CQ can hold.

The ib_modify_cq() Method
The ib_modify_cq() method changes the moderation parameter for a CQ. A Completion event will be generated if at 
least a specific number of Work Completion will enter the CQ or a timeout will expire. Using it may help to reduce the 
number of interrupts that happen to the RDMA device. It will return 0 on success or the -errno value with the reason 
for the failure.
 
int ib_modify_cq(structib_cq *cq, u16 cq_count, u16 cq_period);
 

•	 cq: The CQ to be modified.

•	 cq_count: The number of Work Completions that will be added to the CQ, since the last 
Completion event, that will trigger a CQ event.

•	 cq_period: The number of microseconds that will pass, since the last Completion event, that 
will trigger a CQ event.

The ib_peek_cq() Method
The ib_peek_cq() method returns the number of available Work Completions in the CQ. If the number of Work 
Completions in the CQ is equal to or greater than wc_cnt, it will return wc_cnt. Otherwise it will return the actual 
number of the Work Completions in the CQ. If an error occurred, it will return the errno value with the reason  
for the failure.
 
int ib_peek_cq(structib_cq *cq, intwc_cnt);
 

•	 cq: The CQ to peek.

•	 cq_count: The number of Work Completions that will added to the CQ, since the last 
Completion event, that will trigger a CQ event.
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The ib_req_notify_cq() Method
The ib_req_notify_cq() method requests that a Completion event notification be created. Its return value can be:

0: This means that the notification was requested successfully. If IB_CQ_REPORT_MISSED_•	
EVENTS was used, then a return value of 0 means that there aren’t any missed events.

Positive value is returned only when IB_CQ_REPORT_MISSED_EVENTS is used and there •	
are missed events. The user should call the ib_poll_cq() method in order to read the Work 
Completions that exist in the CQ.

Negative value is returned when an error occurred. The –errno value is returned, specifying •	
the reason for the failure.

 
static inline int ib_req_notify_cq(struct ib_cq *cq,
                      enum ib_cq_notify_flags flags);
 

•	 cq: The CQ that this Completion event will be generated for.

•	 flags: Information about the Work Completion that will cause the Completion event 
notification to be created. Can be one of:

IB_CQ_NEXT_COMP: The next Work Completion that will be added to the CQ, after •	
calling this method, will trigger the CQ event.

IB_CQ_SOLICITED: The next Solicited Work Completion that will be added to the CQ, •	
after calling this method, will trigger the CQ event.

Both of those values can be bitwise ORed with IB_CQ_REPORT_MISSED_EVENTS in order to request a hint 
about missed events (that is, when calling this method and there are already Work Completions in this CQ).

The ib_req_ncomp_notif() Method
The ib_req_ncomp_notif() method requests that a Completion event notification be created when the number   
of Work Completions in the CQ equals wc_cnt. It will return 0 on success, or the errno value with the reason for the 
failure.
 
static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt);
 

•	 cq: The CQ that this Completion event will be generated for.

•	 wc_cnt: The number of Work Completions that the CQ will hold before a Completion event 
notification is generated.

The ib_poll_cq() Method
The ib_poll_cq() method polls Work Completions from a CQ. It reads the Work Completion from the CQ and 
removes them. The Work Completions are read in the order they were added to the CQ. It will return 0 or a positive 
number to indicate the number of Work Completions that were read or the -errno value with the reason for the failure.
 
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
               struct ib_wc *wc);
 

•	 cq: The CQ to be polled.
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•	 num_entries: The maximum number of Work Completions to be polled.

•	 wc: An array that the number of polled Work Completions will be stored in.

The ib_wc Struct
Every Work Completion is represented by struct ib_wc:
 
struct ib_wc {
    u64            wr_id;
    enum ib_wc_status    status;
    enum ib_wc_opcode    opcode;
    u32            vendor_err;
    u32            byte_len;
    struct ib_qp           *qp;
    union {
        __be32        imm_data;
        u32        invalidate_rkey;
    } ex;
    u32            src_qp;
    int            wc_flags;
    u16            pkey_index;
    u16            slid;
    u8            sl;
    u8            dlid_path_bits;
    u8            port_num;
};
 

•	 wr_id: A 64-bit value that was associated with the corresponding Work Request.

•	 status: Status of the ended Work Request. Can be:

IB_WC_SUCCESS: Operation completed successfully.•	

IB_WC_LOC_LEN_ERR: Local length error. Either sent message is too big to be handled or •	
incoming message is bigger than the available Receive Request.

IB_WC_LOC_QP_OP_ERR: Local QP operation error. An internal QP consistency error •	
was detected while processing a Work Request.

IB_WC_LOC_EEC_OP_ERR: Local EE context operation error. Deprecated, since RD QPs •	
aren’t supported.

IB_WC_LOC_PROT_ERR: Local protection error. The protection of the Work Request •	
buffers is invalid to the requested operation.

IB_WC_WR_FLUSH_ERR: Work Request flushed error. The Work Request was completed •	
when the QP was in the Error state.

IB_WC_MW_BIND_ERR: Memory Windows bind error. The operation of the Memory •	
Windows binding failed.

IB_WC_BAD_RESP_ERR: Bad response error. Unexpected transport layer opcode •	
returned by the responder.
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IB_WC_LOC_ACCESS_ERR: Local access error. A protection error occurred on local •	
buffers during the processing of an RDMA Write With Immediate message.

IB_WC_REM_INV_REQ_ERR: Remove invalid request error. The incoming message  •	
is invalid.

IB_WC_REM_ACCESS_ERR: Remote access error. A protection error occurred to •	
incoming RDMA operation.

IB_WC_REM_OP_ERR: Remote operation error. The incoming operation couldn’t be •	
completed successfully.

IB_WC_RETRY_EXC_ERR: Transport retry counter exceeded. The remote QP didn’t send •	
any Ack or Nack, and the timeout was expired after the message retransmission.

IB_WC_RNR_RETRY_EXC_ERR: RNR retry exceeded. The RNR NACK return count  •	
was exceeded.

IB_WC_LOC_RDD_VIOL_ERR: Local RDD violation error. Deprecated, since RD QPs •	
aren’t supported.

IB_WC_REM_INV_RD_REQ_ERR: Remove invalid RD request. Deprecated, since RD QPs •	
aren’t supported.

IB_WC_REM_ABORT_ERR: Remote aborted error. The responder aborted the operation.•	

IB_WC_INV_EECN_ERR: Invalid EE Context number. Deprecated, since RD QPs aren’t •	
supported.

IB_WC_INV_EEC_STATE_ERR: Invalid EE context state error. Deprecated, since RD QPs •	
aren’t supported.

IB_WC_FATAL_ERR: Fatal error.•	

IB_WC_RESP_TIMEOUT_ERR: Response timeout error.•	

IB_WC_GENERAL_ERR: General error. Other error which isn’t covered by one of the •	
earlier errors.

•	 opcode: The operation of the corresponding Work Request that was ended with this Work 
Completion. Can be:

IB_WC_SEND: Send operation was completed in the sender side.•	

IB_WC_RDMA_WRITE: RDMA Write operation was completed in the sender side.•	

IB_WC_RDMA_READ: RDMA Read operation was completed in the sender side.•	

IB_WC_COMP_SWAP: Compare and Swap operation was completed in the sender side.•	

IB_WC_FETCH_ADD: Fetch and Add operation was completed in the sender side.•	

IB_WC_BIND_MW: Memory bind operation was completed in the sender side.•	

IB_WC_LSO: Send operation with Large Send Offload (LSO) was completed in the sender side.•	

IB_WC_LOCAL_INV: Local invalidate operation was completed in the sender side.•	

IB_WC_FAST_REG_MR: Fast registration operation was completed in the sender side.•	

IB_WC_MASKED_COMP_SWAP: Masked Compare and Swap operation was completed in •	
the sender side.
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IB_WC_MASKED_FETCH_ADD: Masked Fetch and Add operation was completed in the •	
sender side.

IB_WC_RECV: Receive Request of an incoming send operation was completed in the •	
receiver side.

IB_WC_RECV_RDMA_WITH_IMM: Receive Request of an incoming RDMA Write with •	
immediate operation was completed in the receiver side.

•	 vendor_err: A vendor-specific value that provides extra information about the reason for  
the error.

•	 byte_len: If this is a Work Completion that was created from the end of a Receive Request, the 
byte_len value indicates the number of bytes that were received.

•	 qp: Handle of the QP that got the Work Completion. It is useful when QPs are associated with 
an SRQ—this way you can know the handle associated with the QP, that its incoming message 
consumed the Receive Request from the SRQ.

•	 ex.imm_data: Out Of Band data (32 bits), in network order, that was sent with the message. It is 
available if IB_WC_WITH_IMM is set in wc_flags.

•	 ex.invalidate_rkey: The rkey that was invalidated. It is available if IB_WC_WITH_
INVALIDATE is set in wc_flags.

•	 src_qp: Source QP number. The QP number that sent this message. Only relevant for UD QPs.

•	 wc_flags: Flags that provide information about the Work Completion. It is a bitwise OR of  
the masks:

IB_WC_GRH: Indicator that the message was received has a GRH and the first 40 bytes of •	
the Receive Request buffers contains it. Only relevant for UD QPs.

IB_WC_WITH_IMM: Indicator that the received message has immediate data.•	

IB_WC_WITH_INVALIDATE: Indicator that a Send with Invalidate message was received.•	

IB_WC_IP_CSUM_OK: Indicator that the received message passed the IP checksum •	
test done by the RDMA device. This is available only if the RDMA device supports IP 
checksum offload. It is available if IB_DEVICE_UD_IP_CSUM is set in the device flags.

•	 pkey_index: The P_Key index, relevant only for GSI QPs.

•	 slid: The source LID of the message. Only relevant for UD QPs.

•	 sl: The Service Level of the message. Only relevant for UD QPs.

•	 dlid_path_bits: The destination LID path bits. Only relevant for UD QPs.

•	 port_num: The port number from which the message came in. Only relevant for Direct Route 
SMPs on switches.
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The ib_destory_cq() Method
The ib_destory_cq() method destroys a CQ. It will return 0 on success or the errno value with the reason for the failure.
 
int ib_destroy_cq(struct ib_cq *cq);
 

•	 cq: The CQ to be destroyed.

Queue Pair (QP)
QP is a resource that combines two Work Queues together: the Send Queue and the Receive Queue. Each queue acts 
as a FIFO. WRs that are being posted to each Work Queue will be processed by the order of their arrival. However, there 
isn’t any guarantee about the order between the Queues. This resource is the resource that sends and receives packets.

The ib_qp_cap Struct
The QP’s Work Queues sizes are represented by struct ib_qp_cap:
 
struct ib_qp_cap {
    u32    max_send_wr;
    u32    max_recv_wr;
    u32    max_send_sge;
    u32    max_recv_sge;
    u32    max_inline_data;
};
 

•	 max_send_wr: The maximum number of outstanding Work Requests that this QP can hold in 
the Send Queue.

•	 max_recv_wr: The maximum number of outstanding Work Requests that this QP can hold in 
the Receive Queue. This value is ignored if the QP is associated with an SRQ.

•	 max_send_sge: The maximum number of scatter/gather elements that each Work Request in 
the Send Queue will be able to hold.

•	 max_recv_sge: The maximum number of scatter/gather elements that each Work Request in 
the Receive Queue will be able to hold.

•	 max_inline_data: The maximum message size that can be sent inline.

The ib_create_qp() Method
The ib_create_qp() method creates a QP. It will return a pointer to the newly created QP on success or an  
ERR_PTR() which specifies the reason for the failure.
 
struct ib_qp *ib_create_qp(struct ib_pd *pd,
        struct ib_qp_init_attr *qp_init_attr);
 

•	 pd: The PD that this QP is being associated with.

•	 qp_init_attr: The attributes that this QP will be created with.
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The ib_qp_init_attr Struct
The created QP attributes are represented by struct ib_qp_init_attr:
 
struct ib_qp_init_attr {
    void                      (*event_handler)(struct ib_event *, void *);
    void                *qp_context;
    struct ib_cq            *send_cq;
    struct ib_cq            *recv_cq;
    struct ib_srq            *srq;
    struct ib_xrcd           *xrcd;     /* XRC TGT QPs only */
    struct ib_qp_cap        cap;
    enum ib_sig_type        sq_sig_type;
    enum ib_qp_type        qp_type;
    enum ib_qp_create_flags    create_flags;
    u8                port_num; /* special QP types only */
};
 

•	 event_handler: A pointer to a callback that will be called in case of an affiliated asynchronous 
event to the QP.

•	 qp_context: User-defined context that can be associated with the QP.

•	 send_cq: A CQ that is being associated with the Send Queue of this QP.

•	 recv_cq: A CQ that is being associated with the Receive Queue of this QP.

•	 srq: A SRQ that is being associated with the Receive Queue of this QP or NULL if the QP isn’t 
associated with an SRQ.

•	 xrcd: An XRC domain that this QP will be associated with. Relevant only if qp_type is  
IB_QPT_XRC_TGT.

•	 cap: A structure that describes the size of the Send and Receive Queues. This structure is 
described earlier.

•	 sq_sig_type: The signaling type of the Send Queue. It can be:

IB_SIGNAL_ALL_WR: Every posted Send Request to the Send Queue will end with a  •	
Work Completion.

IB_SIGNAL_REQ_WR: Only posted Send Requests to the Send Queue with an explicit •	
request,  i.e. set the IB_SEND_SIGNALED flag—will end with a Work Completion. This is 
called selective signaling.

•	 qp_type: The QP transport type. Can be:

IB_QPT_SMI: A Subnet Management Interface QP.•	

IB_QPT_GSI: A General Service Interface QP.•	

IB_QPT_RC: A Reliable Connected QP.•	

IB_QPT_UC: An Unreliable Connected QP.•	

IB_QPT_UD: An Unreliable Datagram QP.•	

IB_QPT_RAW_IPV6: An IPv6 raw datagram QP.•	
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IB_QPT_RAW_ETHERTYPE: An EtherType raw datagram QP.•	

IB_QPT_RAW_PACKET: A raw packet QP.•	

IB_QPT_XRC_INI: An XRC-initiator QP.•	

IB_QPT_XRC_TGT: An XRC-target QP.•	

•	 create_flags: QP attributes flags.  It is a bitwise OR of the masks:

IB_QP_CREATE_IPOIB_UD_LSO: The QP will be used to send IPoIB LSO messages.•	

IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK: Block loopback multicast packets.•	

•	 port_num: The RDMA device port number that this QP is associated with. Only relevant when 
qp_type is IB_QPT_SMI or IB_QPT_GS.

The ib_modify_qp() Method
The ib_modify_qp() method modifies the attributes of the QP. It will return 0 on success or the errno value with the 
reason for the failure.
 
int ib_modify_qp(struct ib_qp *qp,
    struct ib_qp_attr *qp_attr,
    int qp_attr_mask);
 

•	 qp: The QP to be modified.

•	 qp_attr: The QP attributes, as described earlier.

•	 qp_attr_mask: The QP attributes to be changed. Each mask specifies the attributes that will be 
modified in this QP transition, such as specifying which attributes in qp_attr will be used. It is 
a bitwise OR of the masks:

IB_QP_STATE: Modifies the QP state, specified in the •	 qp_state field.

IB_QP_CUR_STATE: Modifies the assumed current QP state, specified in the •	 cur_qp_
state field.

IB_QP_EN_SQD_ASYNC_NOTIFY: Modifies the status of the request for notification when •	
the QP state is SQD.drained, specified in the en_sqd_async_notify field.

IB_QP_ACCESS_FLAGS: Modifies the allowed incoming Remote operations, specified in •	
the qp_access_flags field.

IB_QP_PKEY_INDEX: Modifies the index in the P_Key table that this QP is associated with •	
in the primary path, specified in the pkey_index field.

IB_QP_PORT: Modifies the RDMA device’s port number that QP’s primary path is •	
associated with, specified in the port_num field.

IB_QP_QKEY: Modifies the Q-Key of the QP, specified in the •	 qkey field.

IB_QP_AV: Modifies the Address Vector attributes of the QP, specified in the •	 ah_attr field.

IB_QP_PATH_MTU: Modifies the MTU of the path, specified in the •	 path_mtu field.

IB_QP_TIMEOUT: Modifies the timeout to wait before retransmission, specified in the •	
field timeout.
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IB_QP_RETRY_CNT: Modifies the number of retries of the QP for lack of Ack/Nack, •	
specified in the retry_cnt field.

IB_QP_RNR_RETRY: Modifies the number of RNR retry of the QP, specified in the •	 rq_psn field.

IB_QP_RQ_PSN: Modifies the start PSN of the received packets, specified in the  •	
rnr_retry field.

IB_QP_MAX_QP_RD_ATOMIC: Modifies the number of RDMA Read and Atomic •	
operations that this QP can process in parallel as an initiator, specified in the  
max_rd_atomic field.

IB_QP_ALT_PATH: Modifies the alternate path of the QP, specified in the •	 alt_ah_attr, 
alt_pkey_index, alt_port_num, and alt_timeout fields.

IB_QP_MIN_RNR_TIMER: Modifies the minimum RNR timer that the QP will report to •	
the remote side in the RNR Nak, specified in the min_rnr_timer field.

IB_QP_SQ_PSN: Modifies the start PSN of the sent packets, specified in the •	 sq_psn field.

IB_QP_MAX_DEST_RD_ATOMIC: Modifies the number of RDMA Read and Atomic •	
operations that this QP can process in parallel as an initiator, specified in the  
max_dest_rd_atomic field.

IB_QP_PATH_MIG_STATE: Modifies the state of the path migration state machine, •	
specified in the path_mig_state field.

IB_QP_CAP: Modifies the size of the Work Queues in the QP (both Send and Receive •	
Queues), specified in the cap field.

IB_QP_DEST_QPN: Modifies the destination QP number, specified in the  •	
dest_qp_num field.

The ib_qp_attr Struct
The QP attributes are represented by struct ib_qp_attr:
 
struct ib_qp_attr {
    enum ib_qp_state    qp_state;
    enum ib_qp_state    cur_qp_state;
    enum ib_mtu        path_mtu;
    enum ib_mig_state    path_mig_state;
    u32            qkey;
    u32            rq_psn;
    u32            sq_psn;
    u32            dest_qp_num;
    int            qp_access_flags;
    struct ib_qp_cap    cap;
    struct ib_ah_attr    ah_attr;
    struct ib_ah_attr    alt_ah_attr;
    u16            pkey_index;
    u16            alt_pkey_index;
    u8            en_sqd_async_notify;
    u8            sq_draining;
    u8            max_rd_atomic;
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    u8            max_dest_rd_atomic;
    u8            min_rnr_timer;
    u8            port_num;
    u8            timeout;
    u8            retry_cnt;
    u8            rnr_retry;
    u8            alt_port_num;
    u8            alt_timeout;
};
 

•	 qp_state: The state to move the QP to. Can be:

IB_QPS_RESET: Reset state.•	

IB_QPS_INIT: Initialized state.•	

IB_QPS_RTR: Ready To Receive state.•	

IB_QPS_RTS: Ready To Send state.•	

IB_QPS_SQD: Send Queue Drained state.•	

IB_QPS_SQE: Send Queue Error state.•	

IB_QPS_ERR: Error state.•	

•	 cur_qp_state: The assumed current state of the QP. Can be like qp_state.

•	 path_mtu: The size of the MTU in the path. Can be:

IB_MTU_256: 256 bytes.•	

IB_MTU_512: 512 bytes.•	

IB_MTU_1024: 1,024 bytes.•	

IB_MTU_2048: 2,048 bytes.•	

IB_MTU_4096: 4,096 bytes.•	

•	 path_mig_state: The path migration state machine, used in APM (Automatic Path Migration). 
Can be:

IB_MIG_MIGRATED: Migrated. The state machine of path migration is Migrated (initial •	
state of migration was done).

IB_MIG_REARM: Rearm. The state machine of path migration is Rearm (attempt to try to •	
coordinate the remote RC QP to move both local and remote QPs to Armed state).

IB_MIG_ARMED: Armed. The state machine of path migration is Armed (both local and •	
remote QPs are ready to perform a path migration).

•	 qkey: The Q_Key of the QP.

•	 rq_psn: The expected PSN of the first packet in the Receive Queue. The value is 24 bits.

•	 sq_psn: The used PSN of the first packet in the Send Queue. The value is 24 bits.

•	 dest_qp_num: The QP number in the remote (destination) side. The value is 24 bits.
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•	 qp_access_flags: The allowed incoming RDMA and Atomic operations. It is a bitwise OR of 
the masks:

IB_ACCESS_REMOTE_WRITE: Incoming RDMA Write operations are allowed.•	

IB_ACCESS_REMOTE_READ: Incoming RDMA Read operations are allowed.•	

IB_ACCESS_REMOTE_ATOMIC: Incoming Atomic operations are allowed.•	

•	 cap: The QP size. The number of Work Requests in the Receive and Send Queues. This can be 
done only if the device supports QP resize—that is, the IB_DEVICE_RESIZE_MAX_WR is set in 
the device flags. This structure is described earlier.

•	 ah_attr: Address vector of the primary path of the QP. This structure is described earlier.

•	 alt_ah_attr: Address vector of the alternate path of the QP. This structure is described earlier.

•	 pkey_index: The P_Key index of the primary path that this QP is associated with.

•	 alt_pkey_index: The P_Key index of the alternate path that this QP is associated with.

•	 en_sqd_async_notify: If value isn’t zero, request that the asynchronous event callback will be 
called when the QP will moved to SQE.drained state.

•	 sq_draining: Relevant only for ib_query_qp(). If value isn’t zero, the QP is in state SQD.
drainning (and not SQD.drained).

•	 max_rd_atomic: The number of RDMA Read and Atomic operations that this QP can process 
in parallel as an initiator.

•	 max_dest_rd_atomic: The number of RDMA Read and Atomic operations that this QP can 
process in parallel as a destination.

•	 min_rnr_timer: The timeout to wait before resend the message again if the remote side 
responds with an RNR Nack.

•	 port_num: The RDMA device’s Port number that this QP is associated with in the Primary path.

•	 timeout: The timeout to wait before resending the message again if the remote side didn’t 
respond with any Ack or Nack in the primary path. The timeout is a 5-bit value, 0 is infinite 
time, and any other value means that the timeout will be 4.096 * 2 ^ timeout usec.

•	 retry_cnt: The number of times to (re)send the message if the remote side didn’t respond 
with any Ack or Nack.

•	 rnr_retry: The number of times to (re)send the message if the remote side answered with an 
RNR Nack. 3 bits value, 7 means infinite retry. The value can be:

IB_RNR_TIMER_655_36: Delay of 655.36 milliseconds.•	

IB_RNR_TIMER_000_01: Delay of 0.01 milliseconds.•	

IB_RNR_TIMER_000_02: Delay of 0.02 milliseconds.•	

IB_RNR_TIMER_000_03: Delay of 0.03 milliseconds.•	

IB_RNR_TIMER_000_04: Delay of 0.04 milliseconds.•	

IB_RNR_TIMER_000_06: Delay of 0.06 milliseconds.•	

IB_RNR_TIMER_000_08: Delay of 0.08 milliseconds.•	

IB_RNR_TIMER_000_12: Delay of 0.12 milliseconds.•	
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IB_RNR_TIMER_000_16: Delay of 0.16 milliseconds.•	

IB_RNR_TIMER_000_24: Delay of 0.24 milliseconds.•	

IB_RNR_TIMER_000_32: Delay of 0.32 milliseconds.•	

IB_RNR_TIMER_000_48: Delay of 0.48 milliseconds.•	

IB_RNR_TIMER_000_64: Delay of 0.64 milliseconds.•	

IB_RNR_TIMER_000_96: Delay of 0.96 milliseconds.•	

IB_RNR_TIMER_001_28: Delay of 1.28 milliseconds.•	

IB_RNR_TIMER_001_92: Delay of 1.92 milliseconds.•	

IB_RNR_TIMER_002_56: Delay of 2.56 milliseconds.•	

IB_RNR_TIMER_003_84: Delay of 3.84 milliseconds.•	

IB_RNR_TIMER_005_12: Delay of 5.12 milliseconds.•	

IB_RNR_TIMER_007_68: Delay of 7.68 milliseconds.•	

IB_RNR_TIMER_010_24: Delay of 10.24 milliseconds.•	

IB_RNR_TIMER_015_36: Delay of 15.36 milliseconds.•	

IB_RNR_TIMER_020_48: Delay of 20.48 milliseconds.•	

IB_RNR_TIMER_030_72: Delay of 30.72 milliseconds.•	

IB_RNR_TIMER_040_96: Delay of 40.96 milliseconds.•	

IB_RNR_TIMER_061_44: Delay of 61.44 milliseconds.•	

IB_RNR_TIMER_081_92: Delay of 81.92 milliseconds.•	

IB_RNR_TIMER_122_88: Delay of 122.88 milliseconds.•	

IB_RNR_TIMER_163_84: Delay of 163.84 milliseconds.•	

IB_RNR_TIMER_245_76: Delay of 245.76 milliseconds.•	

IB_RNR_TIMER_327_68: Delay of 327.86 milliseconds.•	

IB_RNR_TIMER_491_52: Delay of 391.52 milliseconds.•	

•	 alt_port_num: The RDMA device’s Port number that this QP is associated with in the  
alternate path.

•	 alt_timeout: The timeout to wait before resend the message again if the remote side didn’t 
respond with any Ack or Nack in the alternate path. 5-bit value, 0 is infinite time, and any other 
value means that the timeout will be 4.096 * 2 ^ timeout usec.

The ib_query_qp() Method
The ib_query_qp() method queries for the current QP attributes. Some of the attributes in qp_attr may change in 
subsequent calls to ib_query_qp() the state fields. It will return 0 on success or the errno value with the reason for  
the failure.
 
int ib_query_qp(struct ib_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask,  
struct ib_qp_init_attr *qp_init_attr);
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•	 qp: The QP to be queried.

•	 qp_attr: The QP attributes, as described earlier.

•	 qp_attr_mask: The mask of the mandatory attributes to query. Low-level drivers can use it as a 
hint for the fields to be queried, but they may also ignore it as well and fill the whole structure.

•	 qp_init_attr: The QP init attributes, as described earlier.

The ib_destory_qp() method destroys a QP. It will return 0 on success or the errno value with the reason for  
the failure.
 
int ib_destroy_qp(struct ib_qp *qp);
 

•	 qp: The QP to be destroyed.

The ib_open_qp() Method
The ib_open_qp() method obtains a reference to an existing sharable QP among multiple processes. The process that 
created the QP may exit, allowing transfer of the ownership of the QP to another process. It will return a pointer to the 
sharable QP on success or an ERR_PTR() which specifies the reason for the failure.
 
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, struct ib_qp_open_attr *qp_open_attr);
 

•	 xrcd: The XRC domain that the QP will be associated with.

•	 qp_open_attr: The attributes of the existing QP to be opened.

The ib_qp_open_attr Struct
The shared QP attributes are represented by struct ib_qp_open_attr:
 
struct ib_qp_open_attr {
    void                (*event_handler)(struct ib_event *, void *);
    void               *qp_context;
    u32            qp_num;
    enum ib_qp_type    qp_type;
};
 

•	 event_handler: A pointer to a callback that will be called in case of an affiliated asynchronous 
event to the QP.

•	 qp_context: User-defined context that can be associated with the QP.

•	 qp_num: The QP number that this QP will open.

•	 qp_type: QP transport type. Only IB_QPT_XRC_TGT is supported.

The ib_close_qp() Method
The ib_close_qp() method releases an external reference to a QP. The underlying shared QP won’t be destroyed until 
all internal references that were acquired by the ib_open_qp() method are released. It will return 0 on success or the 
errno value with the reason for the failure.
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int ib_close_qp(struct ib_qp *qp);
 

•	 qp: The QP to be closed.

The ib_post_recv() Method
The ib_post_recv() method takes a linked list of Receive Requests and adds them to the Receive Queue for 
future processing. Every Receive Request is considered outstanding until a Work Completion is generated after its 
processing. It will return 0 on success or the errno value with the reason for the failure.
 
static inline int ib_post_recv(struct ib_qp *qp, struct ib_recv_wr *recv_wr, struct ib_recv_wr 
**bad_recv_wr);
 

•	 qp: The QP that the Receive Requests will be posted to.

•	 recv_wr: A linked list of Receive Request to be posted.

•	 bad_recv_wr: If there was an error with the handling of the Receive Requests, this pointer will 
be filled with the address of the Receive Request that caused this error.

The ib_post_send() Method
The ib_post_send() method takes a linked list of Send Requests as an argument and adds them to the Send Queue 
for future processing. Every Send Request is considered outstanding until a Work Completion is generated after its 
processing. It will return 0 on success or the errno value with the reason for the failure.
 
static inline int ib_post_send(struct ib_qp *qp, struct ib_send_wr *send_wr, struct ib_send_wr 
**bad_send_wr);
 

•	 qp: The QP that the Send Requests will be posted to.

•	 send_wr: A linked list of Send Requests to be posted.

•	 bad_send_wr: If there was an error with the handling of the Send Requests, this pointer will be 
filled with the address of the Send Request that caused this error.

The ib_send_wr Struct
The Send Request is represented by struct ib_send_wr:
 
struct ib_send_wr {
    struct ib_send_wr          *next;
    u64            wr_id;
    struct ib_sge        *sg_list;
    int            num_sge;
    enum ib_wr_opcode    opcode;
    int            send_flags;
    union {
        __be32        imm_data;
        u32        invalidate_rkey;
    } ex;
    union {
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        struct {
            u64    remote_addr;
            u32    rkey;
        } rdma;
        struct {
            u64    remote_addr;
            u64    compare_add;
            u64    swap;
            u64    compare_add_mask;
            u64    swap_mask;
            u32    rkey;
        } atomic;
        struct {
            struct ib_ah     *ah;
            void           *header;
            int             hlen;
            int             mss;
            u32        remote_qpn;
            u32        remote_qkey;
            u16        pkey_index; /* valid for GSI only */
            u8        port_num;   /* valid for DR SMPs on switch only */
        } ud;
        struct {
            u64                iova_start;
            struct ib_fast_reg_page_list       *page_list;
            unsigned int            page_shift;
            unsigned int            page_list_len;
            u32                length;
            int                access_flags;
            u32                rkey;
        } fast_reg;
        struct {
            struct ib_mw                    *mw;
            /* The new rkey for the memory window. */
            u32                              rkey;
            struct ib_mw_bind_info           bind_info;
        } bind_mw;
    } wr;
    u32            xrc_remote_srq_num;    /* XRC TGT QPs only */
};
 

•	 next: A pointer to the next Send Request in the list or NULL, if this is the last Send Request.

•	 wr_id: 64-bit value that is associated with this Send Request and will be available in the 
corresponding Work Completion.

•	 sg_list: The array of the scatter/gather elements. As described earlier.

•	 num_sge: The number of entries in sg_list. The value zero means that the message size is  
zero bytes.
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opcode: The operation to perform. This affects the way that data is being transferred, the •	
direction of it, and whether a Receive Request will be consumed in the remote side and which 
fields in the Send Request (send_wr) will be used. Can be:

IB_WR_RDMA_WRITE: RDMA Write operation.•	

IB_WR_RDMA_WRITE_WITH_IMM: RDMA Write with immediate operation.•	

IB_WR_SEND: Send operation.•	

IB_WR_SEND_WITH_IMM: Send with immediate operation.•	

IB_WR_RDMA_READ: RDMA Read operation.•	

IB_WR_ATOMIC_CMP_AND_SWP: Compare and Swap operation.•	

IB_WR_ATOMIC_FETCH_AND_ADD:  Fetch and Add operation.•	

IB_WR_LSO: Send an IPoIB message with LSO (let the RDMA device fragment the big SKBs to •	
multiple MSS-sized packets).LSO is an optimization feature which allows to use large packets 
by reducing CPU overhead.

IB_WR_SEND_WITH_INV: Send with invalidate operation.•	

IB_WR_RDMA_READ_WITH_INV: RDMA Read with invalidate operation.•	

IB_WR_LOCAL_INV: Local invalidate operation.•	

IB_WR_FAST_REG_MR: Fast MR registration operation.•	

IB_WR_MASKED_ATOMIC_CMP_AND_SWP: Masked Compare and Swap operation.•	

IB_WR_MASKED_ATOMIC_FETCH_AND_ADD: Masked Fetch and Add operation.•	

IB_WR_BIND_MW: Memory bind operation.•	

•	 send_flags: Extra attributes for the Send Request. It is a bitwise OR of the masks:

IB_SEND_FENCE: Before performing this operation, wait until the processing of prior •	
Send Requests has ended.

IB_SEND_SIGNALED: If the QP was created with selective signaling, when the processing •	
of this Send Request is ended, a Work Completion will be generated.

IB_SEND_SOLICITED: Mark that a Solicited event will be created in the remote side.•	

IB_SEND_INLINE: Post this Send Request as inline—that is, let the low-level driver read •	
the memory buffers in if sg_list instead of the RDMA device; this may increase the 
latency.

IB_SEND_IP_CSUM: Send an IPoIB message and calculate the IP checksum in HW •	
(checksum offload).

•	 ex.imm_data: The immediate data to send. This value is relevant if opcode is  
IB_WR_SEND_WITH_IMM or IB_WR_RDMA_WRITE_WITH_IMM.

•	 ex.invalidate_rkey: The rkey to be invalidated. This value is relevant if opcode is  
IB_WR_SEND_WITH_INV.



Appendix A ■ Linux API

558

The following union is relevant if opcode is IB_WR_RDMA_WRITE, IB_WR_RDMA_WRITE_WITH_IMM, or 
IB_WR_RDMA_READ:

•	 wr.rdma.remote_addr: The remote address that this Send Request is going to access.

•	 wr.rdma.rkey: The Remote Key (rkey) of the MR that this Send Request is going to access.

The following union is relevant if opcode is IB_WR_ATOMIC_CMP_AND_SWP, IB_WR_ATOMIC_FETCH_AND_
ADD,IB_WR_MASKED_ATOMIC_CMP_AND_SWP,  or IB_WR_MASKED_ATOMIC_FETCH_AND_ADD:

•	 wr.atomic.remote_addr: The remote address that this Send Request is going to access.

•	 wr.atomic.compare_add: If opcode is IB_WR_ATOMIC_FETCH_AND_ADD*, this is the value 
to add to the content of remote_addr. Otherwise, this is the value to compare the content of 
remote_addr with.

•	 wr.atomic.swap: The value to place in remote_addr if the value in it is equal to compare_add. 
This value is relevant if opcode is IB_WR_ATOMIC_CMP_AND_SWP or IB_WR_MASKED_
ATOMIC_CMP_AND_SWP.

•	 wr.atomic.compare_add_mask: If opcode is IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 
this is the mask of the values to change when adding the value of compare_add to the content 
of remote_addr. Otherwise, this is the mask to use on the content of remote_addr when 
comparing it with swap.

•	 wr.atomic.swap_mask: This is the mask of the value in the content of remote_addr to change. 
Relevant only if opcode is IB_WR_MASKED_ATOMIC_CMP_AND_SWP.

•	 wr.atomic.rkey: The rkey of the MR that this Send Request is going to access.

The following union is relevant if the QP type that this Send Request is being posted to is UD:

•	 wr.ud.ah: The address handle that describes the path to the target node(s).

•	 wr.ud.header: A pointer that contains the header. Relevant if opcode is IB_WR_LSO.

•	 wr.ud.hlen: The length of wr.ud.header. Relevant if opcode is IB_WR_LSO.

•	 wr.ud.mss: The Maximum Segment Size that the message will be fragmented to. Relevant if 
opcode is IB_WR_LSO.

•	 wr.ud.remote_qpn: The remote QP number to send the message to. The enumeration  
IB_MULTICAST_QPN should be used if sending this message to a multicast group.

•	 wr.ud.remote_qkey: The remote Q_Key value to use. If the MSB of this value is set, then the 
value of the Q_Key will be taken from the QP attributes.

•	 wr.ud.pkey_index: The P_Key index that the message will be sent with. Relevant if QP type is 
IB_QPT_GSI.

•	 wr.ud.port_num: The port number that the message will be sent from. Relevant for Direct 
Route SMP on a switch.

The following union is relevant if opcode is IB_WR_FAST_REG_MR:

•	 wr.fast_reg.iova_start: I/O Virtual Address of the newly created FMR.

•	 wr.fast_reg.page_list: List of pages to allocate to map in the FMR.

•	 wr.fast_reg.page_shift: Log 2 of size of “pages” to be mapped.

•	 wr.fast_reg.page_list_len: The number of pages in page_list.
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•	 wr.fast_reg.length: The size, in bytes, of the FMR.

•	 wr.fast_reg.access_flags: The allowed operations on this FMR.

•	 wr.fast_reg.rkey: The value of the remote key to be assigned to the FMR.

The following union is relevant if opcode is IB_WR_BIND_MW:

•	 wr.bind_mw.mw: The MW to be bounded.

•	 wr.bind_mw.rkey: The value of the remote key to be assigned to the MW.

•	 wr.bind_mw.bind_info: The bind attributes, as explained in the next section.

The following member is relevant if the QP type that this Send Request is being posted to is XRCTGT:

•	 xrc_remote_srq_num: The remote SRQ that will receive the messages.

The ib_mw_bind_info Struct
The MW binding attributes for both MW type 1 and type 2 are represented by struct ib_mw_bind_info. 
 
struct ib_mw_bind_info {
    struct ib_mr       *mr;
    u64        addr;
    u64        length;
    int        mw_access_flags;
};
 

•	 mr: A Memory Region that this Memory Window will be bounded to.

•	 addr: The address where the Memory Window will start from.

•	 length: The length, in bytes, of the Memory Window.

•	 mw_access_flags: The allowed incoming RDMA and Atomic operations. It is a bitwise OR of 
the masks:

IB_ACCESS_REMOTE_WRITE: Incoming RDMA Write operations are allowed.•	

IB_ACCESS_REMOTE_READ: Incoming RDMA Read operations are allowed.•	

IB_ACCESS_REMOTE_ATOMIC: Incoming Atomic operations are allowed.•	

Memory Windows (MW)
Memory Windows are used as a lightweight operation to change the allowed permission of incoming remote 
operations and invalidate them.

The ib_alloc_mw() Method
The ib_alloc_mw() method allocates a Memory Window. It will return a pointer to the newly allocated MW on 
success or an ERR_PTR() which specifies the reason for the failure.
 
struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
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•	 pd: The PD that this MW is being associated with.

•	 type: The type of the Memory Window. Can be:

IB_MW_TYPE_1: MW that can be bounded using a verb and supports only association  •	
of a PD.

IB_MW_TYPE_2: MW that can be bounded using Work Request and supports association •	
of a QP number only or a QP number and a PD.

The ib_bind_mw() Method
The ib_bind_mw() method binds a Memory Window to a specified Memory Region with a specific address, size,  
and remote permissions. If there isn’t any immediate error, the rkey of the MW will be updated to the new value, but 
the bind operation may still fail asynchronously (and end with completion with error). It will return 0 on success or 
the errno value with the reason for the failure.
 
static inline int ib_bind_mw(struct ib_qp *qp, struct ib_mw *mw, struct ib_mw_bind *mw_bind);
 

•	 qp: The QP that the bind WR will be posted to.

•	 mw: The MW to bind.

•	 mw_bind: The bind attributes, as explained next.

The ib_mw_bind Struct
The MW binding attributes for type 1 MW are represented by struct ib_mw_bind.
 
struct ib_mw_bind {
    u64                    wr_id;
    int                    send_flags;
    struct ib_mw_bind_info bind_info;
};
 

•	 wr_id: A 64-bit value that is associated with this bind Send Request The value of Work Request 
id (wr_id) will be available in the corresponding Work Completion.

•	 send_flags:   Extra attribute for the bind Send Request, as explained earlier. Only  
IB_SEND_FENCE and IB_SEND_SIGNALED are supported here.

•	 bind_info: More attributes for the bind operation. As explained earlier.

The ib_dealloc_mw() Method
The ib_dealloc_mw() method deallocates an MW. It will return 0 on success or the errno value with the reason for  
the failure.
 
int ib_dealloc_mw(struct ib_mw *mw);
 

•	 mw: The MW to be deallocated.
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Memory Region (MR)
Every memory buffer that is being accessed by the RDMA device needs to be registered. During the registration 
process, the memory will be pinned (prevented from being swapped out), and the memory translation information 
(from virtual addresses ➤ physical addresses) will be saved in the RDMA device. After the registration, every Memory 
Region has two keys: one for local access and one for remote access. Those keys will be used when specifying those 
memory buffers in Work Requests.

The ib_get_dma_mr() Method
The ib_get_dma_mr() method returns a Memory Region for system memory that is usable for DMA. Creating this MR 
isn’t enough, and the ib_dma_*() methods below are needed in order to create or destroy addresses that the lkey  
and rkey of this MR will be used with. It will return a pointer to the newly allocated MR on success or an ERR_PTR() 
which specifies the reason for the failure.
 
struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
 

•	 pd: The PD that this MR is being associated with.

•	 mr_access_flags: The allowed operations on this MR. Local Write is always supported in this 
MR. It is a bitwise OR of the masks:

IB_ACCESS_LOCAL_WRITE: Local write to this Memory Region is allowed.•	

IB_ACCESS_REMOTE_WRITE: Incoming RDMA Write operations to this Memory Region •	
are allowed.

IB_ACCESS_REMOTE_READ: Incoming RDMA Read operations to this Memory Region •	
are allowed.

IB_ACCESS_REMOTE_ATOMIC: Incoming Atomic operations to this Memory Region are •	
allowed.

IB_ACCESS_MW_BIND:  MW bind to this Memory Region is allowed.•	

IB_ZERO_BASED: Indication that the Virtual address is zero based.•	

The ib_dma_mapping_error() Method
The ib_dma_mapping_error() method checks if the DMA address that was returned from ib_dma_*() failed. It will 
return a non-zero value if there was any failure and zero if the operation finished successfully.
 
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr);
 

•	 dev: The RDMA device for which the DMA address was created by using an ib_dma_*() 
method.

•	 dma_addr: The DMA address to verify.

The ib_dma_map_single() Method
The ib_dma_map_single() method maps a kernel virtual address to a DMA address. It will return a DMA address that 
needed to be checked with the ib_dma_mapping_error() method for errors:
 
static inline u64 ib_dma_map_single(struct ib_device *dev, void *cpu_addr, size_t size, enum dma_
data_direction direction);
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•	 dev: The RDMA device on which the DMA address will be created.

•	 cpu_addr: The kernel virtual address to map for DMA.

•	 size: The size, in bytes, of the region to map.

•	 direction: The direction of the DMA. Can be:

DMA_TO_DEVICE: DMA from the main memory to the device.•	

DMA_FROM_DEVICE: DMA from the device to main memory.•	

DMA_BIDIRECTIONAL: DMA from the main memory to the device or from the device to •	
main memory.

The ib_dma_unmap_single() Method
The ib_dma_unmap_single() method unmaps a DMA mapping that was assigned using ib_dma_map_single():
 
static inline void ib_dma_unmap_single(struct ib_device *dev, u64 addr, size_t size, enum dma_data_
direction direction);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 addr: The DMA address to unmap.

•	 size: The size, in bytes, of the region to unmap. This value must be the same value that was 
used in the ib_dma_map_single() method.

•	 direction: The direction of the DMA. This value must be the same value that was used in the 
ib_dma_map_single() method.

The ib_dma_map_single_attrs() Method
The ib_dma_map_single_attrs() method maps a kernel virtual address to a DMA address according to a DMA attributes. 
It will return a DMA address that is needed to be checked with the ib_dma_mapping_error() method for errors.
 
static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, void *cpu_addr, size_t size, enum 
dma_data_direction direction, struct dma_attrs *attrs);
 

•	 dev: The RDMA device on which the DMA address will be created.

•	 cpu_addr: The kernel virtual address to map for DMA.

•	 size: The size, in bytes, of the region to map.

•	 direction: The direction of the DMA. As described earlier.

•	 attrs: The DMA attributes for the mapping. If this value is NULL, this method behaves like 
the ib_dma_map_single() method.

The ib_dma_unmap_single_attrs() Method
The ib_dma_unmap_single_attrs() method unmaps a DMA mapping that was assigned using the ib_dma_map_
single_attrs() method:
 
static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, u64 addr, size_t size,
enum dma_data_direction direction, struct dma_attrs *attrs);
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•	 dev: The RDMA device on which the DMA address was created.

•	 addr: The DMA address to unmap.

•	 size: The  size, in bytes, of the region to unmap. This value must be the same value that was 
used in the ib_dma_map_single_attrs() method.

•	 direction: The direction of the DMA. This value must be the same value that was used in the 
ib_dma_map_single_attrs() method.

•	 attrs: The DMA attributes of the mapping. This value must be the same value that was used 
in the ib_dma_map_single_attrs() method. If this value is NULL, this method behaves like 
the ib_dma_unmap_single() method.

The ib_dma_map_page() Method
The ib_dma_map_page() method maps a physical page to a DMA address. It will return a DMA address that needs to 
be checked with the ib_dma_mapping_error() method for errors:
 
static inline u64 ib_dma_map_page(struct ib_device *dev, struct page *page, unsigned long offset, 
size_t size, enum dma_data_direction direction);
 

•	 dev: The RDMA device on which the DMA address will be created.

•	 page: The physical page address to map for DMA.

•	 offset: The offset within the page that the registration will start from.

•	 size: The size, in bytes, of the region.

•	 direction: The direction of the DMA. As described earlier.

The ib_dma_unmap_page() Method
The ib_dma_unmap_page() method unmaps a DMA mapping that was assigned using the ib_dma_map_page() method:
 
static inline void ib_dma_unmap_page(struct ib_device *dev, u64 addr, size_t size, enum dma_data_
direction direction);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 addr: The DMA address to unmap.

•	 size: The size, in bytes, of the region to unmap. This value must be the same value that was 
used in the ib_dma_map_page() method.

•	 direction: The direction of the DMA. This value must be the same value that was used in the 
ib_dma_map_page() method.
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The ib_dma_map_sg() Method
The ib_dma_map_sg() method maps a scatter/gather list to a DMA address. It will return a non-zero value on success 
and 0 on a failure.
 
static inline int ib_dma_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents, enum dma_
data_direction direction);
 

•	 dev: The RDMA device on which the DMA address will be created.

•	 sg: An array of the scatter/gather entries to map.

•	 nents: The number of scatter/gather entries in sg.

•	 direction: The direction of the DMA. As described earlier.

The ib_dma_unmap_sg() Method
The ib_dma_unmap_sg() method unmaps a DMA mapping that was assigned using the ib_dma_map_sg() method:
 
static inline void ib_dma_unmap_sg(struct ib_device *dev, struct scatterlist *sg, int nents, enum 
dma_data_direction direction);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 sg: An array of the scatter/gather entries to unmap. This value must be the same value that 
was used in the ib_dma_map_sg() method.

•	 nents: The number of scatter/gather entries in sg. This value must be the same value that was 
used in the ib_dma_map_sg() method.

•	 direction: The direction of the DMA. This value must be the same value that was used in the 
ib_dma_map_sg() method.

The ib_dma_map_sg_attr() Method
The ib_dma_map_sg_attr() method maps a scatter/gather list to a DMA address according to a DMA attributes. It will 
return a non-zero value on success and 0 on a failure.
 
static inline int ib_dma_map_sg_attrs(struct ib_device *dev, struct scatterlist *sg, int nents, enum 
dma_data_direction direction, struct dma_attrs *attrs);
 

•	 dev: The RDMA device on which the DMA address will be created.

•	 sg: An array of the scatter/gather entries to map.

•	 nents: The number of scatter/gather entries in sg.

•	 direction: The direction of the DMA. As described earlier.

•	 attrs: The DMA attributes for the mapping. If this value is NULL, this method behaves like 
the ib_dma_map_sg() method.
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The ib_dma_unmap_sg() Method
The ib_dma_unmap_sg() method unmaps a DMA mapping that was done using the ib_dma_map_sg() method:
 
static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, struct scatterlist *sg, int nents, 
enum dma_data_direction direction, struct dma_attrs *attrs);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 sg: An array of the scatter/gather entries to unmap. This value must be the same value that 
was used in the ib_dma_map_sg_attrs() method.

•	 nents: The number of scatter/gather entries in sg. This value must be the same value that was 
used in the ib_dma_map_sg_attrs() method.

•	 direction: The direction of the DMA. This value must be the same value that was used in the 
ib_dma_map_sg_attrs() method.

•	 attrs: The DMA attributes of the mapping. This value must be the same value that was used 
in the ib_dma_map_sg_attrs() method. If this value is NULL, this method behaves like the 
ib_dma_unmap_sg() method.

The ib_sg_dma_address() Method
The ib_sg_dma_address() method returns the DMA address from a scatter/gather entry.
 
static inline u64 ib_sg_dma_address(struct ib_device *dev, struct scatterlist *sg);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 sg: A scatter/gather entry.

The ib_sg_dma_len() Method
The ib_sg_dma_len() method returns the DMA length from a scatter/gather entry.
 
static inline unsigned int ib_sg_dma_len(struct ib_device *dev, struct scatterlist *sg);
 

dev: The RDMA device on which the DMA address was created.•	

•	 sg: A scatter/gather entry.

The ib_dma_sync_single_for_cpu() Method
The ib_dma_sync_single_for_cpu() method transfers a DMA region ownership to the CPU. This method must be 
called before the CPU accesses a DMA-mapped buffer in order to read or modify its content, and prevents the device 
from accessing it:
 
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, u64 addr, size_t size,  
enum dma_data_direction dir);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 addr: The DMA address to sync.
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•	 size: The size, in bytes, of the region.

•	 direction: The direction of the DMA. As described earlier.

The ib_dma_sync_single_for_device() Method
The ib_dma_sync_single_for_device() method transfers a DMA region ownership to the device. This method must 
be called before the device can access a DMA-mapped buffer again after the ib_dma_sync_single_for_cpu() method 
was called.
 
static inline void ib_dma_sync_single_for_device(struct ib_device *dev, u64 addr, size_t size, enum 
dma_data_direction dir);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 addr: The DMA address to sync.

•	 size: The size, in bytes, of the region.

•	 direction: The direction of the DMA. As described earlier.

The ib_dma_alloc_coherent() Method
The ib_dma_alloc_coherent() method allocates a memory block that can be accessible by the CPU and maps it for 
DMA. It will return the virtual address that the CPU can access on success or NULL in case of a failure:
 
static inline void *ib_dma_alloc_coherent(struct ib_device *dev, size_t size, u64 *dma_handle, gfp_t flag);
 

•	 dev: The RDMA device on which the DMA address will be created.

•	 size: The size, in bytes, of the memory to allocate and map.

•	 direction: The direction of the DMA. As described earlier.

•	 dma_handle: A pointer that will be filled with the DMA address of the region, if the allocation 
succeeds.

•	 flag: Memory allocation flags. Can be:

GFP_KERNEL: To allow blocking (not in interrupt, not holding SMP locks).•	

GFP_ATOMIC: Prevent blocking.•	

The ib_dma_free_coherent() method
The ib_dma_free_coherent() method frees a memory block that was allocated using the ib_dma_alloc_coherent() 
method:
 
static inline void ib_dma_free_coherent(struct ib_device *dev, size_t size, void *cpu_addr,  
u64 dma_handle);
 

•	 dev: The RDMA device on which the DMA address was created.

•	 size: The size, in bytes, of the memory region. This value must be the same value that was 
used in the ib_dma_alloc_coherent() method.
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•	 cpu_addr: The CPU memory address to free. This value must be the value that was returned by 
the ib_dma_alloc_coherent() method.

•	 dma_handle: The DMA address to free. This value must be the value that was returned by the 
ib_dma_alloc_coherent() method.

The ib_reg_phys_mr() Method
The ib_reg_phys_mr() method takes a set of physical pages, register them and prepare a virtual address that can be 
accessed by an RDMA device. It will return a pointer to the newly allocated MR on success or an ERR_PTR(), which 
specifies the reason for the failure.
 
struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, struct ib_phys_buf *phys_buf_array, int num_phys_buf, 
int mr_access_flags, u64 *iova_start);
 

•	 pd: The PD that this MR is being associated with.

•	 phys_buf_array: An array of physical buffers to use in the Memory Region.

•	 num_phys_buf: The number of physical buffers in phys_buf_array.

•	 mr_access_flags: The allowed operations on this MR. As specified earlier.

•	 iova_start: A pointer to the requested I/O Virtual Address to be associated with the Region, 
which is allowed to begin anywhere within the first physical buffer. The RDMA device will set 
this value with the actual I/O virtual address of the Region. This value may be different from 
the requested one.

The ib_phys_buf Struct
The physical buffer is represented by struct ib_phys_buf.
 
struct ib_phys_buf {
    u64      addr;
    u64      size;
};
 

•	 addr: The physical address of the buffer.

•	 size: The size of the buffer.

The ib_rereg_phys_mr() Method
The ib_rereg_phys_mr() method modifies the attributes of an existing Memory Region. This method can be thought 
of as a call to the ib_dereg_mr() method, which was followed by a call to the ib_reg_phys_mr() method. Where 
possible, resources are reused instead of being deallocated and reallocated. It will return 0 on success or the errno 
value with the reason for the failure:
 
int ib_rereg_phys_mr(struct ib_mr *mr, int mr_rereg_mask, struct ib_pd *pd, struct ib_phys_buf 
*phys_buf_array, int num_phys_buf, int mr_access_flags, u64 *iova_start);
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mr: The Memory Region to be reregistered.•	

mr_rereg_mask: The Memory Region attributes to be changed. It is a bitwise OR of the masks:•	

IB_MR_REREG_TRANS: Modify the memory pages of this Memory Region.•	

IB_MR_REREG_PD: Modify the PD of this Memory Region.•	

IB_MR_REREG_ACCESS: Modify the allowed operations of this Memory Region.•	

•	 pd: The new Protection Domain that this Memory Region will be associated with.

•	 phys_buf_array: The new physical pages to be used.

•	 num_phys_buf: The number of physical pages to be used.

•	 mr_access_flags: The new allowed operations of this Memory Region.

•	 iova_start: The new I/O Virtual Address of this Memory Region.

The ib_query_mr() Method
The ib_query_mr() method retrieves the attributes of a specific MR. It will return 0 on success or the errno value with 
the reason for the failure.
 
int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
 

•	 mr: The MR to be queried.

•	 mr_attr: The MR attributes as describe in the next section.

The MR attributes are represented by struct ib_mr_attr.

The ib_mr_attr Struct
 
struct ib_mr_attr {
    struct ib_pd    *pd;
    u64        device_virt_addr;
    u64        size;
    int        mr_access_flags;
    u32        lkey;
    u32        rkey;
};
 

•	 pd: The PD that the MR is associated with.

•	 device_virt_addr: The address of the virtual block that this MR covers.

•	 size: The size, in bytes, of the Memory Region.

•	 mr_access_flags: The access permissions of this Memory Region.

•	 lkey: The local key of this Memory Region.

•	 rkey: The remote key of this Memory Region.
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The ib_dereg_mr() Method
The ib_dereg_mr() method deregisters an MR. This method may fail if a Memory Window is bounded to it. It will 
return 0 on success or the errno value with the reason for the failure:
 
int ib_dereg_mr(struct ib_mr *mr);
 

•	 mr: The MR to be deregistered.



571

Appendix B

Network Administration

This appendix reviews some of the most popular tools for network administration and debugging. These tools can help a 
lot in finding solutions to common problems and in developing, debugging, benchmarking, analyzing, troubleshooting, 
and researching network projects. Most of these tools have very good documentation resources, either with man pages or 
with wiki pages, and a lot of other information resources about them are on the Internet. Many of them have active mailing 
lists (for users and developers) and a bug reporting system. Some of the most commonly used tools are described here 
by specifying their purpose and relevant links, accompanied by several examples. The tools mentioned in this appendix 
appear in alphabetical order.

arp
This command is for ARP table management. Example of usage:

You can display the ARP table by running arp from the command-line. arp –n will display the ARP table without 
name resolution.

You can add static entries to the ARP table by:
 
arp –s 192.168.2.10 00:e0:4c:11:22:33
 

The arp utility belongs to the net-tools package. Website: http://net-tools.sourceforge.net.

arping
A utility to send ARP requests. The –D flag is for Duplicate Address Detection (DAD). The arping utility belongs to the 
iputils package. Website: http://www.skbuff.net/iputils/.

arptables
A userspace tool for configuring rules for a Linux-based ARP rules firewall. Website: http://ebtables.sourceforge.net/.

arpwatch
A userspace tool for monitoring ARP traffic. Website: http://ee.lbl.gov/.

http://net-tools.sourceforge.net/
http://www.skbuff.net/iputils/
http://ebtables.sourceforge.net/
http://ee.lbl.gov/
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ApacheBench (ab)
A command-line utility for measuring the performance of HTTP web servers. The ApacheBench tool is part of the 
Apache open source project. In many distributions (for example, Ubuntu) it is part of the apache2-utils package. 
Example of usage:
 
ab -n 100  http://www.google.com/
 

The -n option is the number of requests to perform for the benchmarking session.

brctl 
A command-line utility for administration of Ethernet bridges, enabling the setup of a bridge configuration. The brctl 
utility belongs to the bridge-utils package. Examples for usage:

•	 brctl addbr mybr: Add a bridge named mybr.

•	 brctl delbr mybr: Delete the bridge named mybr.

•	 brctl addif mybr eth1: Add the eth1 interface to the bridge.

•	 brctl delif mybr eth1: Delete the eth1 interface from the bridge.

•	 brctl show: Show information about the bridge and its attached ports.

The maintainer of the bridge-utils package is Stephen Hemminger. Fetching the git repository can be done by:
 
git clone git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/bridge-utils.git
 

Website: http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge.

conntrack-tools
A set of userspace tools for management of netfilter connection tracking. It consists of a userspace daemon, 
conntrackd, and a command-line tool, conntrack. Website: http://conntrack-tools.netfilter.org/.

crtools
A utility for checkpoint/restore of a process. Website: http://criu.org/Installation.

ebtables
A userspace tool for configuring rules for a Linux-based bridging firewall. Website: http://ebtables.sourceforge.net/.

ether-wake
A utility to send Wake-On-LAN Magic Packets. The ether-wake utility belongs to the net-tools package.

http://www.google.com/
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://conntrack-tools.netfilter.org/
http://criu.org/Installation
http://ebtables.sourceforge.net/
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ethtool
The ethtool utility provides a way to query or control network driver and hardware settings, get statistics, get 
diagnostic information, and more. With ethtool you can control parameters of Ethernet devices, such as speed, 
duplex, auto-negotiation and flow control. Many features of ethtool require support in the network driver code.

Examples:

Output of •	 ethtool eth0:
 
Settings for eth0:
        Supported ports: [ TP MII ]
        Supported link modes:   10baseT/Half 10baseT/Full
                                100baseT/Half 100baseT/Full
                                1000baseT/Half 1000baseT/Full
        Supported pause frame use: No
        Supports auto-negotiation: Yes
        Advertised link modes:  10baseT/Half 10baseT/Full
                                100baseT/Half 100baseT/Full
                                1000baseT/Half 1000baseT/Full
        Advertised pause frame use: Symmetric Receive-only
        Advertised auto-negotiation: Yes
        Speed: 10Mb/s
        Duplex: Half
        Port: MII
        PHYAD: 0
        Transceiver: internal
        Auto-negotiation: on
        Supports Wake-on: pumbg
        Wake-on: g
        Current message level: 0x00000033 (51)
                               drv probe ifdown ifup
        Link detected: no
 
Getting offload parameters is done by: •	 ethtool –k eth1.

Setting offload parameters is done by: •	 ethtool –K eth1 offLoadParamater.

Querying the network device for associated driver information is done by: •	 ethtool -i eth1.

Showing statistics is done by: •	 ethtool -S eth1 (note that not all the network device drivers 
implement this feature).

Show permanent hardware (MAC) address: •	 ethtool -P eth0.

The development of ethtool is done by sending patches to the netdev mailing list. The maintainer of ethtool as 
of this writing is Ben Hutchings. The ethtool project is developed over a git repository. It can be downloaded by: git 
clone git://git.kernel.org/pub/scm/network/ethtool/ethtool.git.

Website: www.kernel.org/pub/software/network/ethtool/.

git
A distributed version control system started by Linus Torvalds. Linux kernel development, as well as many Linux 
related projects, are managed by git. One can also use the git send-email command in order to send patches by 
mail. Website: http://git-scm.com/.

http://www.kernel.org/pub/software/network/ethtool/
http://git-scm.com/
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hciconfig
A command-line tool for configuring Bluetooth devices. With hciconfig, you can display information such as the 
Bluetooth interface type (BR/EDR or AMP), its Bluetooth address, its flags, and more. The hciconfig tool belongs to 
the bluez package. Example:
 
hciconfig
hci0:   Type: BR/EDR  Bus: USB
        BD Address: 00:02:72:AA:FB:94  ACL MTU: 1021:7  SCO MTU: 64:1
        UP RUNNING PSCAN
        RX bytes:964 acl:0 sco:0 events:41 errors:0
        TX bytes:903 acl:0 sco:0 commands:41 errors:0
 

Website: http://www.bluez.org/.

hcidump
A command-line utility for dumping raw HCI data coming from and going to a Bluetooth device. The hcidump utility 
belongs to the bluez-hcidump package. Website: http://www.bluez.org/.

hcitool
A command-line utility for configuring Bluetooth connections and for sending some special commands to Bluetooth 
devices. For example, you can scan for nearby Bluetooth devices by:  hcitool scan.  The hcitool utility belongs to  
the bluez-hcidump package.

ifconifg
The ifconfig command allows you to configure various network interface parameters, including the IP address of the 
device, the MTU, the MAC address, the Tx queue length (txqueuelen), flags, and more.  The ifconfig tool belongs to 
the net-tools package, which is older than the iproute2 package (discussed later in this appendix). Here are three 
examples of usage:

•	 ifconfig eth0 mtu 1300: Change the MTU to 1300.

•	 ifconfig eth0 txqueuelen 1100: Change the Tx Queue length to 1100.

•	 ifconfig eth0 –arp: Disable the ARP protocol on eth0.

Website: http://net-tools.sourceforge.net.

ifenslave
A utility for attaching and detaching slave network devices to a bonding device. Bonding is putting multiple physical 
Ethernet devices into a single logical one, what is often termed as Link aggregation/Trunking/Link bundling. The source 
file is in Documentation/networking/ifenslave.c. You can attach eth0, for example, to a bonding device bond0 by:
 
ifenslave bond0 eth0

The ifenslave utility belongs to the iputils package, maintained by Yoshifuji Hideaki. Website:  
www.skbuff.net/iputils/.

http://www.bluez.org/
http://www.bluez.org/
http://net-tools.sourceforge.net/
http://www.skbuff.net/iputils/
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iperf
The iperf project is an open source project that provides a benchmarking tool to measure TCP and UDP bandwidth 
performance. It allows you to tune various parameters. The iperf tool reports bandwidth, delay jitter, and datagram loss. 
It was originally developed by the Distributed Applications Support Team (DAST) at the National Laboratory for Applied 
Network Research (NLANR) in C++. It works in a client-server model. A new implementation from scratch, iperf3, which 
is not backwards compatible with the original iperf, is available from https://code.google.com/p/iperf/. The iperf3 
is said to have a simpler code base. The iperf3 tool can report also the average CPU utilization of the client and the server.

Using iperf
Following is a simple example of using iperf for measuring TCP performance. On one device (which has an IP address 
of 192.168.2.104), run the next command, which starts the server side (by default, it is a TCP socket on port 5001):
 
iperf -s
 

On a second device, run the iperf TCP client to connect to the iperf server:
 
iperf -c 192.168.2.104
 

On the client side you will see the following:
 
------------------------------------------------------------
Client connecting to 192.168.2.104, TCP port 5001
TCP window size: 22.9 KByte (default)
------------------------------------------------------------
[  3] local 192.168.2.200 port 35146 connected with 192.168.2.104 port 5001
 

The default time interval is 10 seconds. After 10 seconds, the client will be disconnected, and you will see a 
message like this on the terminal:
 
[ ID] Interval       Transfer     Bandwidth
[  3]  0.0-10.3 sec  7.62 MBytes  6.20 Mbits/sec
 

You can tune many parameters of iperf, like these:

•	 –u: For using a UDP socket.

•	 -t: For using a different time interval in seconds instead of the default of 10 seconds.

•	 -T: Sets a TTL for multicast (the default is 1).

•	 -B: Bind to a host, an interface, or a multicast address.

See man iperf. Website: http://iperf.sourceforge.net/.

iproute2
The iproute2 package provides many tools for interaction between the userspace and the kernel networking 
subsystem. The most well-known is the ip command. It is based on netlink sockets (discussed in Chapter 2). With the 

https://code.google.com/p/iperf/
http://iperf.sourceforge.net/
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ip command, you can perform various operations in a wide range of networking areas, and it has numerous options; 
see man 8 ip. Here are several examples of using the ip command for various tasks:

Configuration of a network device with •	 ip addr:

•	 ip addr add 192.168.0.10/24 dev eth0: Sets an IP address on eth0.

•	 ip addr show: Displays the addresses of all network interfaces (both IPv4 and IPv6).

See man ip address.

Configuration of a network device with •	 ip link:

•	 ip link add mybr type bridge: Creates a bridge named mybr.

•	 ip link add name myteam type team: Creates a teaming device named myteam. (The 
teaming device driver aggregates multiple physical Ethernet devices into one logical one 
and is in fact the new bonding device. The teaming driver is discussed in Chapter 14.)

•	 ip link set eth1 mtu 1450: Sets the MTU of eth1 to be 1450.

See man ip link.

Management of ARP tables (IPv4) and NDISC (IPv6) tables:•	

•	 ip neigh show: Shows both the IPv4 neighbouring table (ARP table) and the IPv6 
neighbouring table.

•	 ip -6 neigh show: Shows only the IPv6 neighbouring table.

•	 ip neigh flush dev eth0: Removes all entries from the neighboring tables associated  
with eth0.

•	 ip neigh add 192.168.2.20 dev eth2 lladdr 00:11:22:33:44:55 nud permanent: 
Adds a permanent neighbour entry (parallel to adding static entries in an ARP table).

•	 ip neigh change 192.168.2.20 dev eth2 lladdr 55:44:33:22:11:00 nud permanent: 
Updates a neighbour entry.

See man ip neighbour.

Management of the parameters for the neighbour tables:•	

•	 ip ntable show: Displays the neighbour tables parameters.

•	 ip ntable change name arp_cache locktime 1200 dev eth0: Changes the locktime 
parameter for the IPv4 neighbouring table associated with eth0.

See man ip ntable.

Network namespaces management:•	

•	 ip netns add myNamespace: Adds a network namespace named myNamespace.

•	 ip netns del myNamespace: Deletes the network namespace named myNamespace.

•	 ip netns list: Shows all network namespaces on the host.

•	 ip netns monitor: Displays a line of screen for each network namespace that is added or 
removed by the ip netns command.
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See man ip netns.

Configuration of multicast addresses:•	

•	 ip maddr show: Shows all multicast addresses on the host (both IPv4 and IPv6).

•	 ip maddr add 00:10:02:03:04:05 dev eth1: Adds a multicast address on eth1.

See man ip maddress.

Monitor netlink messages. For example:•	

•	 ip monitor route displays on the screen messages about various network events like 
adding or deleting a route.

See man ip monitor.

Management of routing tables:•	

•	 ip route show: Shows the routing table.

•	 ip route flush dev eth1: Removes routing entries associated with eth1 from the 
routing table.

•	 ip route add default via 192.168.2.1: Adds 192.168.2.1 as a default gateway.

•	 ip route get 192.168.2.10: Gets the route to 192.168.2.10 and displays it.

See man ip route.

Management of rules in the RPDB (Routing Policy DataBase). For example:•	

•	 ip rule add tos 0x02 table 200: Adds a rule that sets the routing subsystem to  
perform a lookup in routing table 252 for packets whose TOS value is 0x02 (TOS is a  
field in the IPv4 header).

•	 ip rule del tos 0x02 table 200: Deletes a specified rule from the RPDB.

•	 ip rule show: Displays the rules in the RPDB.

See man ip rule.

Management of TUN/TAP devices:•	

•	 ip tuntap add tun1 mode tun: Creates a TUN device named tun1.

•	 ip tuntap del tun1 mode tun: Deletes a TUN device named tun1.

•	 ip tuntap add tap1 mode tap: Creates a TAP device named tap1.

•	 ip tuntap del tap1 mode tap: Deletes a TAP device named tap1.

Management of IPsec policies:•	

•	 ip xfrm policy show: Shows IPsec policies.

•	 ip xfrm state show: Shows IPsec states.

See man ip xfrm.

The ss tool is used to dump socket statistics. For example, running
 
ss -t –a
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will show all TCP sockets:
 
State       Recv-Q Send-Q          Local Address:Port              Peer Address:Port
LISTEN      0      32                          *:ftp                          *:*
LISTEN      0      128                         *:ssh                          *:*
LISTEN      0      128                 127.0.0.1:ipp                          *:*
ESTAB       0      0               192.168.2.200:ssh              192.168.2.104:52089
ESTAB       0      52              192.168.2.200:ssh              192.168.2.104:51352
ESTAB       0      0               192.168.2.200:ssh              192.168.2.104:51523
ESTAB       0      0               192.168.2.200:59532           107.21.231.190:http
LISTEN      0      128                        :::ssh                         :::*
LISTEN      0      128                       ::1:ipp                         :::*
CLOSE-WAIT  1      0                         ::1:48723                      ::1:ipp
 

There are other tools of iproute2:

•	 bridge: Shows/manipulates bridge addresses and devices. For example:

•	 bridge fdb show: Displays forwarding entries.

See man bridge.

•	 genl: Gets information (like id, header size, max attributes, and more) about registered 
generic netlink families. For example, running genl ctrl list can have this as a result:
 
Name: nlctrl
        ID: 0x10  Version: 0x2  header size: 0  max attribs: 7
        commands supported:
                #1:  ID-0x3
                Capabilities (0xe):
                  can doit; can dumpit; has policy
 
        multicast groups:
                #1:  ID-0x10  name: notify
 

•	 lnstat: Displays Linux network statistics.

•	 rtmon: Monitors Rtnetlink sockets.

•	 tc: Shows/manipulates traffic control settings. For example:

•	 tc qdisc show: Running this command shows which queueing discipline (qdisc) entries 
are installed, for example:

 
qdisc pfifo_fast 0: dev eth1 root refcnt 2 bands 3 priomap  1 2 . . .
 
This shows that the •	 pfifo_fast qdisc is associated with the eth1 network device.  
The pfifo_fast qdisc, which is a classless queueing discipline, is the default qdisc in Linux.

•	 tc -s qdisc show dev eth1: Shows statistics of the qdisc associated to eth1.

See man tc.

See: Linux Advanced Routing & Traffic Control HOWTO:  www.lartc.org/howto/.

The development of iproute2 is done by sending patches to the netdev mailing list. The maintainer of ethtool 
as of this writing is Stephen Hemminger. The iproute2 is developed over a git repository, which can be downloaded 
by: git clone git://git.kernel.org/pub/scm/linux/kernel/git/shemminger/iproute2.git.

http://www.lartc.org/howto/
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iptables and iptables6
The iptables and iptables6 are administration tools for packet filtering and NAT management for IPv4 and IPv6, 
respectively. With iptables/iptables6, you can define lists of rules. Each such rule tells what should be done with 
the packet (for example, discard it or accept it). Each rule specifies some matching condition for a packet, for example, 
that it will be a UDP packet. Following are some examples for using the iptables command:

•	 iptables -A INPUT -p tcp --dport=80 -j LOG --log-level 1: The meaning of this rule is 
that incoming TCP packets with destination port 80 will be dumped to the syslog.

•	 iptables –L: Lists all rules in the filter table. (There is no table mentioned in the command, 
so it accesses the Filter table, which is the default table.)

•	 iptables –t nat –L: Lists all rules in the NAT table.

•	 iptables –F: Flushes the selected table.

•	 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE: Sets a MASQUERADE rule.

Website: www.netfilter.org/.

ipvsadm
A tool for Linux Virtual Server administration. Website: www.linuxvirtualserver.org/software/ipvs.html.

iw
Shows/manipulates wireless devices and their configuration. The iw package is based on generic netlink sockets  
(see Chapter 2). For example, you can perform these operations:

•	 iw dev wlan0 scan: Scans for nearby wireless devices.

•	 iw wlan0 station dump: Displays statistics about a station.

•	 iw list: Gets information about a wireless device (such as band information and 802.11n 
information).

•	 iw dev wlan0 get power_save – get power save mode.

•	 iw dev wlan0 set type ibss: Changes the wireless interface mode to be ibss (Ad-Hoc).

•	 iw dev wlan0 set type mesh: Changes the wireless interface mode to be mesh mode.

•	 iw dev wlan0 set type monitor: Changes the wireless interface mode to be monitor mode.

•	 iw dev wlan0 set type managed: Changes the wireless interface mode to be managed mode.

See man iw.
Gitweb: http://git.kernel.org/cgit/linux/kernel/git/jberg/iw.git.
Website: http://wireless.kernel.org/en/users/Documentation/iw.

iwconfig
The old tool for administering wireless devices. The iwconfig belongs to the wireless-tools package and is based on 
IOCTLs. Website: www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html.

http://www.netfilter.org/
http://www.linuxvirtualserver.org/software/ipvs.html
http://git.kernel.org/cgit/linux/kernel/git/jberg/iw.git
http://wireless.kernel.org/en/users/Documentation/iw
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
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libreswan Project
An IPsec software solution which forked from openswan version 2.6.38. Website: http://libreswan.org/.

l2ping 
A command-line utility for sending L2CAP echo requests and receiving answers over a Bluetooth device. The l2ping 
utility belongs to the bluez package. Website: www.bluez.org/.

lowpan-tools 
A set of utilities to manage the Linux LoWPAN stack. Website: http://sourceforge.net/projects/linux-zigbee/
files/linux-zigbee-sources/0.3/.

lshw
A utility that displays information about the hardware configuration of the machine. Website: http://ezix.org/
project/wiki/HardwareLiSter.

lscpu
A utility for displaying information about the CPUs on the system. It is based on information from /proc/cpuinfo and 
sysfs. The lscpu belongs to the util-linux package.

lspci
A utility for displaying information about PCI buses in the system and devices connected to them. Sometimes you 
need to get some information about a PCI network device with the lspci command. The lspci utility belongs to the 
pciutils package. Website: http://mj.ucw.cz/sw/pciutils/.

mrouted
A multicast routing daemon, implementing the IPv4 Distance Vector Multicast Routing Protocol (DVMRP), which is 
specified in RFC 1075 from 1988. Website: http://troglobit.com/mrouted.html.

nc
A command-line utility that reads and writes data across networks. The nc belongs to the nmap-ncat package.  
Website: http://nmap.org/.

http://libreswan.org/
http://www.bluez.org/
http://sourceforge.net/projects/linux-zigbee/files/linux-zigbee-sources/0.3/
http://sourceforge.net/projects/linux-zigbee/files/linux-zigbee-sources/0.3/
http://ezix.org/project/wiki/HardwareLiSter
http://ezix.org/project/wiki/HardwareLiSter
http://mj.ucw.cz/sw/pciutils/
http://troglobit.com/mrouted.html
http://nmap.org/
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ngrep
A command-line tool, based on the well-known grep command, that allows you to specify extended expressions to 
match against data payloads of packets. It recognizes TCP, UDP, and ICMP across Ethernet, PPP, SLIP, FDDI, and null 
interfaces. Website: http://ngrep.sourceforge.net/.

netperf
Netperf is a networking benchmarking tool. Website: www.netperf.org/netperf/.

netsniff-ng
netsniff-ng is an open source project networking toolkit that, among other things, can help in analyzing network 
traffic, performing stress tests, generating packets at a very high speed, and more. It uses the PF_PACKET zero-copy 
RINGs (TX and RX). Among the tools it provides are the following:

•	 netsniff-ng is a fast zero-copy analyzer, pcap capturing and replaying tool. The netsniff-ng  
tool is Linux-specific and does not support other operating systems, unlike many of the tools 
mentioned in this appendix. Example: Running netsniff-ng --in eth1 --out dump.pcap 
-s -b 0 creates a pcap file that can be read by wireshark or by tcpdump. The –s flag is for 
silence, and the –b 0 is for binding to CPU 0. See man netsniff-ng.

•	 trafgen is a zero-copy high performance network packet traffic generator utility.

•	 ifpps is a small utility that periodically provides top-like networking and system statistics 
from the kernel. ifpps gathers its data directly from procfs files.

•	 bpfc is a small Berkeley Packet Filter assembler and compiler.

Fetching the git repository: git clone git://github.com/borkmann/netsniff-ng.git.  
Website: http://netsniff-ng.org/.

netstat
The netstat tool enables you to print multicast memberships, routing tables, network connections, interface 
statistics, state of sockets, and more. The netstat tool belongs to the net-tools package. Useful flags:

•	 netstat –s: Displays summary statistics for each protocol.

•	 netstat –g: Displays multicast group membership information for IPv4 and IPv6.

•	 netstat -r: Shows the kernel IP routing table.

•	 netstat –nl: Shows the listening sockets (the -n flag is for showing numerical addresses 
instead of trying to determine symbolic host, port, or user names).

•	 netstat –aw: Shows all raw sockets.

•	 netstat –ax: Shows all Unix sockets.

•	 netstat –at: Shows all TCP sockets.

•	 netstat –au: Shows all UDP sockets.

Website: http://net-tools.sourceforge.net.

http://ngrep.sourceforge.net/
http://www.netperf.org/netperf/
http://netsniff-ng.org/
http://net-tools.sourceforge.net/
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nmap (Network Mapper)
Nmap is an open source security project that provides a network exploration and probing tool and a security/port 
scanner. It has features like port scanning (detecting the open ports on target hosts), OS detection, detecting MAC 
addresses, and more. For example,
 
nmap www.google.com
 
can give output such as:
 
Starting Nmap 6.00 (http://nmap.org ) at 2013-09-26 16:37 IDT
Nmap scan report for www.google.com (212.179.154.227)
Host is up (0.013s latency).
Other addresses for www.google.com (not scanned): 212.179.154.221 212.179.154.251 212.179.154.232 
212.179.154.237 212.179.154.216 212.179.154.231 212.179.154.241 212.179.154.247 212.179.154.222 
212.179.154.226 212.179.154.236 212.179.154.246 212.179.154.212 212.179.154.217 212.179.154.242
Not shown: 998 filtered ports
PORT    STATE SERVICE
80/tcp  open  http
443/tcp open  https
Nmap done: 1 IP address (1 host up) scanned in 5.24 seconds
 

The nping utility of nmap can be used to generate raw packets for ARP poisoning, networking stress tests, and Denial 
of Service attacks, as well as to test connectivity like the ordinary ping utility. You can use the nping utility for setting IP 
options in generated traffic. See http://nmap.org/book/nping-man-ip-options.html. Website: http://nmap.org/.

openswan
An open source project implementing an IPsec-based VPN solution. It is based on the FreeS/WAN project. Website: 
www.openswan.org/projects/openswan.

OpenVPN
An open source project implementing VPN based on SSL/TLS. Website: www.openvpn.net/.

packeth
An Ethernet-based packet generator tool for Ethernet. The tool has both GUI and CLI. Website:  
http://packeth.sourceforge.net/packeth/Home.html.

ping
The well-known utility for testing connectivity by sending ICMP ECHO request messages. Here are four useful options 
that are also mentioned in this book:

•	 -Q tos: Enables setting Quality Of Service bits in an ICMP packet. Mentioned in this appendix 
in the explanation about tshark filters.

•	 -R: Sets the Record Route IP option (discussed in Chapter 4).

http://www.google.com/
http://nmap.org/
http://www.google.com/
http://www.google.com/
http://nmap.org/book/nping-man-ip-options.html
http://nmap.org/
http://www.openswan.org/projects/openswan
http://www.openvpn.net/
http://packeth.sourceforge.net/packeth/Home.html
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•	 -T: Sets the timestamp IP option (discussed in Chapter 4).

•	 -f: Flood ping.

See •	 man ping for more command-line options.

The ping utility belongs to the iputils package. Website: .www.skbuff.net/iputils/.

pimd
An open source lightweight stand-alone Protocol Independent Multicast - Sparse Mode (PIM-SM) v2 multicast 
daemon. Maintained by Joachim Nilsson. See http://troglobit.com/pimd.html. git repository:  
https://github.com/troglobit/pimd/.

poptop
PPTP Server for Linux. Website: http://poptop.sourceforge.net/dox/.

ppp
An open source PPP daemon. git repository: git://ozlabs.org/~paulus/ppp.git. Website:  
http://ppp.samba.org/download.html.

pktgen
The pktgen kernel module (net/core/pktgen.c) can generate packets at very high speed. Monitoring and  
controlling is done via writing to /proc/net/pktgen entries. For “HOWTO for the linux packet generator” see 
Documentation/networking/pktgen.txt.

radvd
This is a Router Advertisement Daemon for IPv6. It is an open source project maintained by Reuben Hawkins. It can 
be used for IPv6 stateless autoconfiguration and for renumbering. Website: www.litech.org/radvd/. git repository: 
https://github.com/reubenhwk/radvd.

route
A command-line tool for routing tables management. It belongs to the net-tools package, which is based on IOCTLs 
and which is older than the iproute2 package. Examples:

•	 route –n: Shows the routing table without name resolving.

•	 route add default gateway 192.168.1.1: Adds 192.168.1.1 as a default gateway.

•	 route –C: Displays the routing cache (keep in mind that the IPv4 routing cache was removed 
in kernel 3.6; see the “IPv4 Routing Cache” section in chapter 5).

See man route.

http://www.skbuff.net/iputils/
http://troglobit.com/pimd.html
https://github.com/troglobit/pimd/
http://poptop.sourceforge.net/dox/
http://ppp.samba.org/download.html
http://www.litech.org/radvd/
https://github.com/reubenhwk/radvd
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RP-PPPoE
An open source PPP over Ethernet (PPPoE) client for Linux and Solaris systems. Website: www.roaringpenguin.com/
products/pppoe.

sar
A command-line tool to collect and report statistics about system activity. It is part of the sysstat package. As an 
example, running the following command will display four times the CPU statistics with interval of 1 second and the 
average at the end:
 
sar 1 4
Linux 3.6.10-4.fc18.x86_64 (a)  10/22/2013      _x86_64_        (2 CPU)
 
07:47:10 PM     CPU     %user     %nice   %system   %iowait    %steal     %idle
07:47:11 PM     all      0.00      0.00      0.00      0.00      0.00    100.00
07:47:12 PM     all      0.00      0.00      0.00      0.00      0.00    100.00
07:47:13 PM     all      0.00      0.00      0.00      0.00      0.00    100.00
07:47:14 PM     all      0.00      0.00      0.50      0.00      0.00     99.50
Average:        all      0.00      0.00      0.13      0.00      0.00     99.87
 

Website: http://sebastien.godard.pagesperso-orange.fr/.

smcroute
A command-line tool for multicast routing manipulation. Website: www.cschill.de/smcroute/.

snort
An open source project that provides a network intrusion detection system (IDS) and a network intrusion prevention 
system (IPS). Website: www.snort.org/.

suricata
An open source project that provides an IDS/IPS and a network security monitoring engine. Website:  
http://suricata-ids.org/.

strongSwan
An open source project that implements IPsec solutions for Linux, Android, and other operating systems. Both IKEv1 
and IKEv2 are implemented. The maintainer is Professor Andreas Steffen. Website: www.strongswan.org/.

sysctl
The sysctl utility displays kernel parameters (including network parameters) at runtime. It can also set kernel 
parameters. For example, sysctl –a shows all kernel parameters. The sysctl utility belongs to the procps-ng package.

http://www.roaringpenguin.com/products/pppoe
http://www.roaringpenguin.com/products/pppoe
http://sebastien.godard.pagesperso-orange.fr/
http://www.cschill.de/smcroute/
http://www.snort.org/
http://suricata-ids.org/
http://www.strongswan.org/
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taskset
A command-line utility for setting or retrieving a process’s CPU affinity. The taskset utility is from the util-linux 
package.  

tcpdump
Tcpdump is an open source command-line protocol analyzer, available from www.tcpdump.org. It is based on a C/C++ 
network traffic capture library called libpcap. Like wireshark, it can write its results to a file and read them from a file 
and it supports filtering. Unlike wireshark, it does not have a front end GUI. However, its output files can be read by 
wireshark. Example of sniffing with tcpdump:
 
tcpdump -i eth1
 

Website: www.tcpdump.org.

top
The top utility provides a real-time view of the system (parameters like memory usage, CPU usage, and more) and a 
system summary. This utility is part of the procps-ng package. Website: https://gitorious.org/procps.

tracepath
The tracepath command traces a path to a destination address, discovering the MTU along this path. For IPv6 
destination addresses, you can use tracepath6. The tracepath utility belongs to the iputils package. Website:  
www.skbuff.net/iputils/.

traceroute
Print the path that packets traverse to some destination. The traceroute utility uses the IP protocol’s Time To Live 
(TTL) field to cause hosts on the packet path to return an ICMP TIME EXCEEDED response. The traceroute utility is 
discussed in Chapter 3, which deals with the ICMP protocol. Website: http://traceroute.sourceforge.net.

tshark
The tshark utility provides a command-line packet analyzer. It is part of the wireshark package. It has many 
command-line options. For example, you can write the output to a file with the –w option. You can set various filters to 
the packet filtering with tshark, some of which can be complex filters (as you will soon see). Example of setting a filter 
for capturing only ICMPv4 packets:
 
tshark -R icmp
Capturing on eth1
17.609101 192.168.2.200 -> 81.218.16.241 ICMP 98 Echo (ping) request  id=0x0dc6, seq=1/256, ttl=64
17.617101 81.218.16.241 -> 192.168.2.200 ICMP 98 Echo (ping) reply    id=0x0dc6, seq=1/256, ttl=58
 

http://www.tcpdump.org/
http://www.tcpdump.org/
https://gitorious.org/procps
http://www.skbuff.net/iputils/
http://traceroute.sourceforge.net/
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You can also set a filter on a value of a field in the IPv4 header. For example, the following command sets a filter 
on the DS field in the IPv4 header:
 
tshark -R "ip.dsfield==0x2"
 

If from a second terminal you send traffic with DS field as 0x2 in the IPv4 header (such traffic can be sent, for 
example, with ping –Q 0x2 destinationAdderss), it will be displayed onscreen by tshark.

Example for filtering by source MAC address:
 
tshark ether src host 00:e0:4c:11:22:33
 

Example for filtering for UDP packets whose ports are in the port range 6000–8000:
 
tshark -R udp portrange 6000-8000
 

Example for setting a filter for capturing traffic where the source IP address is 192.168.2.200 and the port is  
80 (it does not have to be TCP traffic only because here there is no filter set on some specified protocol):
 
tshark -i eth1 -f "src host 192.168.2.200 and port 80" 

tunctl
tunctl is an older tool for creating TUN/TAP devices. It is available from http://tunctl.sourceforge.net. Note 
that you can also create or remove a TUN/TAP device with the ip command (see the iproute2 section earlier in this 
appendix) and with the openvpn command-line tool of the openvpn package:
 
openvpn --mktun --dev tun1
openvpn --rmtun --dev tun1 

udevadm 
You can get the network device type by running udevadm on its sysfs entry. For example, if the device has this entry 
under sysfs:
 
/sys/devices/virtual/net/eth1.100
 
then you can find that its DEVTYPE is VLAN:
 
udevadm info -q all -p  /sys/devices/virtual/net/eth1.100/
 
P: /devices/virtual/net/eth1.100
E: COMMENT=net device ()
E: DEVPATH=/devices/virtual/net/eth1.100
E: DEVTYPE=vlan
E: IFINDEX=4
E: INTERFACE=eth1.100
E: MATCHADDR=00:e0:4c:53:44:58
E: MATCHDEVID=0x0

http://tunctl.sourceforge.net/
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E: MATCHIFTYPE=1
E: SUBSYSTEM=net
E: UDEV_LOG=3
E: USEC_INITIALIZED=28392625695
 
udevadm belongs to the udev package. Website: www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

unshare
The unshare utility enables you to create a namespace and run a program within that namespace that is unshared 
from its parent. The unsare utility belongs to the util-linux package. For various command-line options of the 
unshare utility, see man unshare, Example of usage:
 
unshare -u /bin/bash
 

This will create a UTS namespace.
 
unshare --net /bin/bash
 

This will create a new network namespace, in which a bash process will be started. Gitweb: http://git.kernel.
org/cgit/utils/util-linux/util-linux.git. Website: http://userweb.kernel.org/~kzak/util-linux/.

vconfig 
The vconfig utility enables you to configure VLAN (802.1q) interface. Examples of usage:

•	 vconfig add eth2 100: Adds a VLAN interface. This will create a VLAN interface, eth2.100.

•	 vconfig rem eth2.100:  Remove the eth2.100 VLAN interface.

Note that you can also add and delete VLAN interfaces with the •	 ip command, for example, 
like this:

•	 ip link add link eth0 name eth0.100 type vlan id 100

•	 vconfig set_egress_map eth2.100 0 4: Map SKB priority of 0 to VLAN priority 4, so that 
outgoing packets which their SKB priority is 0 will be tagged with 4 as VLAN priority. The 
default VLAN priority is 0.

•	 vconfig set_ingress_map eth2.100 1 5: Map VLAN priority 5 to SKB priority of 1, so that 
incoming packets with VLAN priority of 5 will be queued with SKB priority of 1. The default 
SKB priority is 0.

See man vconfig.
Note that if VLAN support is compiled as a kernel module, then you must load the VLAN kernel module before 

trying to add the VLAN interface, by modprobe 8021q. Website: www.candelatech.com/~greear/vlan.html.

wpa_supplicant
Open source software that provides a wireless supplicant for Linux and other OSs. It supports WPA and WPA2. 
Website: http://hostap.epitest.fi/wpa_supplicant/.

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://git.kernel.org/cgit/utils/util-linux/util-linux.git
http://git.kernel.org/cgit/utils/util-linux/util-linux.git
http://userweb.kernel.org/~kzak/util-linux/
http://www.candelatech.com/~greear/vlan.html
http://hostap.epitest.fi/wpa_supplicant/
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wireshark
The wireshark project provides a free and open source analyzer (“sniffer”). It has two flavors: a front-end GTK+ based 
GUI and a command-line, the tshark utility (mentioned earlier in this appendix). It is available on many operating 
systems and evolves dynamically: when new features are added to existing protocols and new protocols are added, 
new parsers (“dissectors”) are modified or added. Wireshark has many features:

Enables defining a wide range of filters (ports, destination or source address, protocol •	
identifier, fields in headers, and more).

Enables sorting the result according to various parameters (protocol type, time, and so on).•	

Saves the sniffer output to a file/read a sniffer output from a file.•	

Reads/writes many different capture file formats: •	 tcpdump (libpcap), Pcap NG, and more.

Capture Filters and Display Filters.•	

Activating the wireshark or thsark sniffer puts the network interface to be in promiscuous mode to enable it to 
handle packets that are not destined to the local host. A lot of information is available in the man pages: man wireshark 
and man tshark. You can find more than 75 sniff samples of different protocols in http://wiki.wireshark.org/
SampleCaptures. Wireshark users mailing list: www.wireshark.org/mailman/listinfo/wireshark-users.  
Website: www.wireshark.org. Wiki:  http://wiki.wireshark.org/.

XORP
An Open Source project, implementing various routing protocols, like BGP, IGMP, OLSR, OSPF, PIM, and RIP.  
The name XORP is derived from eXtensible Open Router Platform. Website: www.xorp.org/.

http://wiki.wireshark.org/SampleCaptures
http://wiki.wireshark.org/SampleCaptures
http://www.wireshark.org/mailman/listinfo/wireshark-users
http://www.wireshark.org/
http://wiki.wireshark.org/
http://www.xorp.org/
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Glossary

The following list of glossary terms are covered in this book.

ACL—Asynchronous Connection-oriented Link. A Bluetooth protocol.

ADB — Android Debug Bridge.

AVDTP—Audio/Video Distribution Transport Protocol. A Bluetooth protocol.

AEAD—Authenticated Encryption with Associated Data.

AES-NI—AES instruction set.

AH—Authentication Header protocol. Used in IPsec, has a protocol number 51.

AID—Association ID. A unique number that a wireless client gets when it associates to an 
Access Point. It is assigned by the Access Point, and it is in the range 1–2007.

AMP—Alternate MAC/PHY.

AMPDU—Aggregated Mac Protocol Data Unit. A type of packet aggregation in IEEE 802.11n.

AMSDU—Aggregated Mac Service Data Unit. A type of packet aggregation in IEEE 802.11n.

AOSP—Android Open Source Project.

AP—Access Point. In wireless networks, a wireless device to which wireless clients associate 
and which enables them to connect to a wired network.

API—Application Programming Interface. A set of methods and data structures that define 
the interface to a software layer, such as an interface for a library.

ABRO—Authoritative Border Router Option. Added for Neighbour Discovery Optimization 
for IPv6. See RFC 6775.

ABS—Android Builders Summit.

ARO—Address Registration Option. Added for Neighbour Discovery Optimization for IPv6. 
See RFC 6775.

ARP—Address Resolution Protocol. A protocol used to find the mapping between a network 
address (such as IPv4 address) into a link layer address (like a 48-bit Ethernet address).

ARPD—ARP daemon. A userspace daemon that implements the ARP functionality.

Ashmem—Android shared memory.

ASM—Any-Source Multicast. In the any-source model, you do not specify interest in 
receiving multicast traffic from a single particular source address or from a set of addresses.
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BA—Block Acknowledgement mechanism used in IEEE 802.11n.

BGP—Border Gateway Protocol. A core routing protocol.

BLE—Bluetooth Low Energy.

BNEP—Bluetooth Network Encapsulation Protocol.

BTH—Base Transport Header. An InfiniBand header of 12 bytes. It specifies the source and 
destination QPs, the operation, packet sequence number, and partition.

CM—Communication Manager in the InfiniBand stack.

CIDR—Classless Inter-Domain Routing. A way to allocate Internet addresses used in  
inter-domain routing.

CQ—Completion Queue (InfiniBand).

CRIU — Checkpoint/Restore In Userspace. CRIU is a software tool, mainly implemented in 
userspace, with which you can freeze a running process and checkpoint it to a filesystem as 
a collection of files. You can then use these files to restore and run the application from the 
point where it was frozen. See http://criu.org/Main_Page.

CSMA/CD—Carrier Sense Multiple Access/Collision Detection. A Media Access Control 
method used in Ethernet networks.

CSMA/CA—Carrier Sense Multiple Access/Collision Avoidance. A Media Access Control 
method used in wireless networks.

CT—Connection Tracking. A netfilter layer that is the basis for NAT.

DAD—Duplicate Address Detection. The DAD is a mechanism that helps to detect the 
existence of double L3 addresses on different hosts on a LAN.

DAC—Duplicate Address Confirmation. An ICMPv6 type which was added in RFC 6775, 
with numeric value of 158.

DAR—Duplicate Address Request. An ICMPv6 type which was added in RFC 6775, with 
numeric value of 157.

DCCP—Datagram Congestion Control Protocol. An unreliable, congestion-controlled 
transport layer protocol. The use of DCCP would make sense, for instance, in applications 
that require low delays and where a small degree of data loss is permitted, like in telephony 
and streaming media applications.

DHCP—Dynamic Host Configuration Protocol. A protocol for configuring network device 
parameters like an IP address, a default route, and one or more DNS server addresses.

DMA—Direct Memory Access.

DNAT—Destination NAT. A NAT that changes the destination address.

DNS—Domain Name System. A system for translating domain names to IP addresses.

DSCP—Differentiated Services Code Point. A classifying mechanism.

DVMRP—Distance Vector Multicast Routing Protocol. A protocol for routing multicast 
datagrams. Suitable for use within an autonomous system. Defined in RFC 1075 from 1988.

ECN—Explicit Congestion Notification. See RFC 3168, “The Addition of Explicit Congestion 
Notification (ECN) to IP.”

http://criu.org/Main_Page
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EDR—Enhanced Data Rate.

EGP—Exterior Gateway Protocol. A routing protocol which is now considered obsolete.  
It was first formalized in RFC 827 in 1982.

ERTM—Enhanced Retransmission Mode. A reliable protocol with error and flow control, 
used in Bluetooth.

ESP—Encapsulating Security Payload. Used in IPsec, has protocol number 50.

ETH—Extended Transport Header: An InfiniBand header with size from 4 to 28 bytes.  
This header represents an extra family of headers that may be present depending on the 
class of the service and the used operation.

ETSI—European Telecommunications Standards Institute.

FCS—Frame Check Sequence

FIB—Forwarding Information Base. The database that contains the routing tables 
information.

FMR—Fast Memory Region (InfiniBand).

FSF—Free Software Foundation.

FTP—File Transfer Protocol. A protocol for transferring files between two hosts, based on TCP.

GCC—GNU Compiler Collection.

GID—Global Identifier.

GMP—Group Management Protocol. A term that refers to both IGMP and MLD. See RFC 
4604, section 1.

GRE—Generic Routing Encapsulation. A tunneling protocol.

GRH—Global Routing Header. An InfiniBand header of 40 bytes. It describes the source 
and destination port using GIDs, and its format is identical to the IPv6 header.

GRO—Generic Receive Offload. A technique with which incoming packets are merged at 
reception time into a bigger packet to improve performance.

GSO—Generic Segmentation Offload. A technique with which outgoing packets are 
segmented not in the transport layer but as close as possible to the network driver or in the 
network driver itself.

GUID—Global Unique Identifier.

HAL—Hardware Abstraction Layer.

HCA—Host Channel Adapter.

HCI—Host Controller Interface. Used, for example, in Bluetooth, PCI and more.

HDP—Health Device Profile. Used by Bluetooth.

HFP—Hands-Free Profile. Used by Bluetooth.

HoL Blocking—Head-of-line blocking is a performance-limiting phenomenon that occurs 
when a line of packets is held up by the first packet, for example, in multiple requests in 
HTTP pipelining.
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HPC—High Performance Computing. Management of computer resources in a way that 
gives high performance for heavy tasks such as solving large-scale problems in science, 
engineering, or economics.

HS—High Speed.

HTTP—Hypertext Transfer Protocol. The basic protocol for accessing the World Wide Web.

HWMP— Hybrid Wireless Mesh Protocol. A routing protocol used in wireless Mesh 
networks that consists of two types of routing: on-demand routing and proactive routing.

iWARP—Internet Wide Area RDMA Protocol.

iSER—iSCSI extension for RDMA.

IANA—Internet Assigned Numbers Authority. Responsible for IP addressing, global 
coordination of the DNS Root, and other IP-related symbols and numbers. Operated by the 
Internet Corporation for Assigned Names and Numbers (ICANN).

IBTA—InfiniBand Trade Association.

ICMP—Internet Control Message Protocol. An IP protocol for control and informational 
messages. The well-known ping utility is based on ICMP. The ICMP protocol is known to be 
used in various types of security DoS attacks, like the Smurf attack.

ICE—Interactive Connectivity Establishment. Specified in RFC 5245. A protocol for NAT 
traversal.

ICRC—Invariant CRC. An InfiniBand header of 4 bytes. Covers all fields, which should not 
be changed as the packet travels in the subnet.

IDS—Intrusion Detection System.

IoT—Internet of Things. Networking of everyday objects.

IEEE—Institute of Electrical and Electronics Engineers.

IGMP—Internet Group Management Protocol. Multicast group memberships protocol.

IKE—Internet Key Exchange. A protocol for setting an IPsec Security Association.

IOMMU—I/O Memory Management Unit.

IP—Internet Protocol. The primary addressing and routing protocol for the Internet. IPv4 
was first specified in RFC 791 from 1981, and IPv6 was first specified in RFC 1883 from 1995.

IPoIB—IP over InfiniBand.

IPS—Intrusion Prevention System.

ISAKMP—Internet Security Association & Key Management Protocol.

IOCTL—Input/Output Control. A system call that provides access from userspace to kernel.

IPC—Inter Process Communication. There are many different mechanisms for IPC, such as 
shared memory semaphores, message queues, and more.

IPCOMP—IP Payload Compression Protocol. A compressing protocol intended to reduce 
the size of data sent over a slow network connection. Using IPComp increases the overall 
communication performance between two network nodes.
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IPsec—IP security. A set of protocols developed by the IETF for secure exchange of packets 
over the IP protocol. IPsec is mandatory in IPv6 according to the IPv6 spec and optional 
in IPv4, though many operating systems implemented it also in IPv4. IPsec uses two 
encryption modes: Transport and Tunnel.

IPVS—IP Virtual Server. A Linux kernel load balancing infrastructure, supports IPv4 and 
IPv6. See http://www.linuxvirtualserver.org/software/ipvs.html.

ISR—Interrupt Service Routine. An interrupt handler that is invoked when an interrupt is 
received.

ISM—Industrial, scientific, and medical radio band.

jumbo frames—Packets with size up to 9K. Some network interfaces allow using an MTU 
of up to 9K. Using jumbo frames can improve the network performance in some cases, such 
as in bulk data transfers.

KVM—Kernel-based Virtual Machine. A Linux virtualization project.

LACP—Link Aggregation Control Protocol.

LAN—Local Area Network. A network that connects a limited area, such as an office building.

LID—Local Identifier. A 16-bit value assigned to every subnet port by the Subnet Manager 
(InfiniBand).

L2CAP—Logical Link Control and Adaptation Protocol. Used in Bluetooth.

L2TP—Layer 2 Tunneling Protocol used by VPNs. L2TPv3 is specified in RFC 3931  
(RFC 5641 has some updates).

LKML—Linux Kernel Mailing List.

LLCP —Logical Link Control Protocol. Used by NFC.

LLN—Low-power and Lossy Network.

LoWPAN—Low-power Wireless Personal Area Network.

LMP—Link Management Protocol. Controls the radio link between two Bluetooth devices.

LPM—Longest Prefix Match. An algorithm used by the routing subsystem.

LRH—Local Routing Header. An InfiniBand header of 8 bytes. It identifies the local source 
and destination ports of the packet. It also specifies the requested QoS attributes (SL and VL)  
of the message.

LRO—Large Receive Offload.

LR-WPAN—Low-Rate Wireless Personal Area Network. Used in IEEE 802.15.4.

LSB—Least significant bit.

LSRR—Loose Source Record Route.

LTE—Long Term Evolution.

MAC—Media Access Control. A sublayer of the Data Link Layer (L2) of the OSI model.

MAD—Management Datagram (InfiniBand).

http://www.linuxvirtualserver.org/software/ipvs.html
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MFC—Multicast Forwarding Cache. A data structure in the kernel that consists of multicast 
forwarding entries.

MIB—Management Information Base.

MLD—Multicast Listener Discovery protocol. Enables each IPv6 router to discover the 
presence of multicast listeners. The MLD protocol is specified in RFC 3810, from 2004.

MLME—MAC Layer Management Entity. A component in the IEEE 802.11 management 
layer responsible for operations such as scanning, authentication, association, and 
reassociation.

MR—Memory Region (InfiniBand).

MSF—Multicast Source Filtering. This is the feature to set filters so that multicast traffic 
from sources other than the expected ones will be dropped.

MSI—Message Signaled Interrupts.

MSS—Maximum Segment Size. A parameter of the TCP protocol.

MTU—Maximum transmission unit. The size of the largest packet that a network protocol 
can transmit.

MW—Memory Window (InfiniBand).

NAP—Network Access Point.

NAPI—New API. A technique by which network drivers are not interrupt-driven, but use 
polling. NAPI is discussed in Chapter 1.

NAT—Network Address Translation. A layer responsible for modifying IP headers. In Linux, 
support for IPv6 NAT was merged in kernel 3.7.

NAT-T—NAT traversal.

NCI—NFC Controller Interface.

ND / NDISC—Neighbour Discovery Protocol. Used in IPv6. Among its tasks: discovering 
network nodes on the same link, autoconfiguration of addresses, finding the Link Layer 
addresses of other nodes, and maintaining reachability information about other nodes.

NFC—Near Field Communication.

NDEF—NFC Data Exchange Format.

NIC—Network Interface Card, also known as Network Interface Controller or Network 
Adapter. The hardware network device.

NUMA—Non-Uniform Memory Access.

NPP—NDEF Push Protocol.

NPAR—NIC Partitioning. A technology that enables you to split up network card (NIC) 
traffic in partitions.

NUD—Network Unreachability Detection. A mechanism responsible for determining 
whether a neighbour can be reached.

OBEX—Object Exchange. A protocol for exchange of binary objects between devices, used 
in Bluetooth.
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OEM—Original Equipment Manufacturer.

OFA—OpenFabrics Alliance.

OCF—Open Cryptography Framework.

OHA—Open Handset Alliance.

OOTB—Out of the Blue packet (a term of the SCTP protocol). A packet is an OOTB packet if 
it is correctly formed (that is, no checksum error), but the receiver is not able to identify the 
SCTP association to which the packet belongs (see section 8.4 in RFC 4960).

OPP—Object Push Profile. Used by Bluetooth.

OSI Model—Open Systems Interconnection.

OSPF—Open Shortest Path First. Interior gateway routing protocol developed for IP 
networks.

PADI—PPPoE Active Discovery Initiation.

PADO—PPPoE Active Discovery Offer.

PADR—PPPoE Active Discovery Request.

PADS—PPPoE Active Discovery Session.

PADT—PPPoE Active Discovery Terminate.

PAN—Personal Area Networking. A profile used in Bluetooth.

PCI—Peripheral Component Interconnect. A bus for attaching devices. Many network 
interface cards are PCI devices.

PD—Protection Domain.

PHDC—Personal Health Device Communication. Used by NFC.

PID—Process Identifier.

PIM—Protocol Independent Multicast Protocol. A multicast routing protocol.

PIM-SM—Protocol Independent Multicast—Sparse Mode.

PLME—Physical Layer Management Entity in IEEE 802.11.

PM—Power Management.

PPP—Point To Point data link protocol. A protocol for direct communication between  
two hosts.

PPPoE—PPP over Ethernet. The PPPoE protocol is specified in RFC 2516 from 1999.

PERR—Path Error. A message that informs about some failure in a wireless Mesh network 
routing.

PREP—Path Reply. A unicast packet sent as a reply to a PREQ message in a wireless  
Mesh network.

PREQ—Path Request. A broadcast packet sent when looking for some address in a wireless 
Mesh network.

PSK—Preshared Key.
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Qdisc—Queuing Disciplines.

QP—Queue Pair (InfinBand).

RA—Router Alert. One of the IPv4 options. It notifies transit routers to more closely examine 
the contents of an IP packet. It is used by many protocols, such as IGMP, MLD, and more.

RANN—Root Announcement. A broadcast packet sent periodically by a Root Mesh point in 
a wireless Mesh network.

RARP—Reverse Address Resolution Protocol. A protocol used to find the mapping between 
a link layer address (like a 48-bit Ethernet address) to a network address (like an IPv4 address).

RC—A QP transport type in InfiniBand.

RDMA—Remote Direct Memory Access. A direct memory access from one host to another.

RDS—Reliable Datagram Socket. A reliable connectionless protocol developed by Oracle.

RFC—Request For Comments. A document that specifies Internet specifications, 
communications protocols, procedures, and events. The standardization process of RFCs is 
documented at http://tools.ietf.org/html/rfc2026, “The Internet Standards Process.”

RFID—Radio Frequency ID.

RFCOMM—Radio Frequency Communications protocol. Used in Bluetooth.

RFS—Receive Flow Steering.

RIP—Routing Information Protocol: A distance-vector routing protocol.

RoCE—RDMA over Converged Ethernet.

RP—Rendezvous Point.

RPL—IPv6 Routing Protocol for Low-Power and Lossy Networks. The RPL protocol is 
specified in RFC 6550.

RPDB—Routing Policy DataBase.

RPF—Reverse Path Filter. A technique intended to prevent source address spoofing.

RPC—Remote Procedure Call.

RPS—Receive Packet Steering.

RS—Router Solicitations.

RSA—A cryptography algorithm. RSA stands for Ron Rivest, Adi Shamir, and Leonard 
Adleman, the people who developed it.

RTP—Real-time Transport Protocol. A protocol for transmitting audio and video over IP 
networks.

RTR—Ready To Receive. A state in InfiniBand QP State Machine.

RTS—Ready To Send. A state in InfiniBand QP State Machine.

SA—Security Association. A logical relationship between two hosts that consists of various 
parameters, such as cryptographic key, cryptographic algorithm, SPI, and more.

SACK—Selective Acknowledgments. See RFC 2018, “TCP Selective Acknowledgment 
Options,” from 1996.

http://tools.ietf.org/html/rfc2026
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SAD—Security Association Database.

SAR—Segmentation and Reassembly.

SBC—Session Border Controllers.

SCO—Synchronous Connection Oriented link. A Bluetooth protocol.

SDP—Service Discovery Protocol. Used in Bluetooth.

SCTP—Stream Control Transmission Protocol. A transport protocol that has features of 
both UDP and TCP.

SE—Security Element (NFC).

SIG—Special Interest Group.

SIP—Session Initiation Protocol. A signaling protocol for VoIP, intended for creating and 
modifying VoIP sessions.

SLAAC—Stateless Address autoconfiguration. Specified in RFC 4862.

SKB —Socket Buffer. A kernel data structure representing a network packet (implemented 
by the sk_buff structure, include/linux/skbuff.h).

SL—Service Level. The QoS in InfiniBand is implemented using the SL to VL mapping and 
the resources for each VL.

SLAAC—Stateless Address Autoconfiguration.

SM—Subnet Manager.

SMA—Subnet Management Agent.

SME—System Management Entity in IEEE 802.11.

SMP—Symmetrical Multiprocessing. An architecture where two or more identical 
processors are connected to a single shared main memory.

SNAT—Source NAT. A NAT that changes the source address.

SNEP—Simple NDEF Exchange Protocol (SNEP) for exchanging NDEF-formatted data.

SNMP—Simple Network Management Protocol.

SPI—Security Parameter Index. Used by IPsec.

SPD—Security Policy Database.

SQD—Send Queue Drained. A state in InfiniBand QP State Machine.

SQE—Send Queue Error. A state in InfiniBand QP State Machine.

SRP—SCSI RDMA protocol.

SR-IOV—Single Root I/O Virtualization. A specification that allows a PCIe device to appear 
to be multiple separate physical PCIe devices.

SRQ—Shared Receive Queue (InfiniBand).

SSM—Source Specific Multicast.

STUN —Session Traversal Utilities for NAT.

SSP—Secure Simple Pairing. A security feature required by Bluetooth v2.1.
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TCP—Transmission Control Protocol. The TCP protocol is the most commonly used 
transport protocol on the Internet today. Many protocols run on top of TCP, including FTP, 
HTTP, and more. TCP is specified in RFC 793 from 1981, and during the years since then 
there have been many protocol updates, variations, and additions to the base TCP protocol.

TIPC—Transparent Inter-process Communication protocol.  
See http://tipc.sourceforge.net/.

TOS —Type Of Service.

TSO—TCP Segmentation Offload.

TTL—Time To Live. A counter in the IPv4 header (its counterpart in IPv6 is called Hop Limit)  
that is decremented in each forwarding device. When this counter reaches 0, an ICMP of 
Time Exceeded is sent back, and the packet is discarded. Both the ttl member of the IPv4 
header and the hop_limit member of the IPv6 header are 8-bit fields.

TURN—Traversal Using Relays around NAT.

UC—Unreliable Connected. A QP transport type in InfiniBand.

UD—Unreliable Datagram. A QP transport type in InfiniBand.

UDP—User Datagram Protocol. UDP is an unreliable protocol, as there is no guarantee 
that packets will be delivered for upper layer protocols. There is no handshaking phase in 
UDP, in contrast to TCP. The UDP header is simple and consists of only 4 fields: source port, 
destination port, checksum, and length.

USAGI—UniverSAl playGround for Ipv6. A project that developed IPv6 and IPsec  
(for both IPv4 and IPv6) stacks for the Linux kernel.

UTS—Unix Time-sharing System.

VCRC—Variant CRC. An InfiniBand header of 2 bytes. Covers all the fields of the packet.

VETH—Virtual Ethernet. A network driver which enables communication between two 
network devices in different network namespaces.

VoIP—Voice Over IP.

VFS—Virtual File System.

VL—Virtual Lanes. A mechanism for creating multiple virtual links over a single physical link.

VLAN—Virtual Local Area Network.

VPN—Virtual Private Network.

VXLAN—Virtual Extensible Local Area Network. VXLAN is a standard protocol to transfer 
Layer 2 Ethernet packets over UDP. VXLAN is needed because there are cases where 
firewalls block tunnels and allow, for example, only TCP/UDP traffic.

WDS—Wireless Distribution System.

WLAN—Wireless LAN.

WOL—Wake On LAN.

WSN—Wireless Sensor Networks.

XRC—eXtended Reliable Connected. A QP transport type in InfiniBand.

XFRM—IPsec Transformer. A Linux kernel framework for handling IPsec transformations. 
The two most fundamental data structures of the XFRM framework are the XFRM policy 
and the XFRM state.

http://tipc.sourceforge.net/


A�       �
Access point (AP), 589
Address registration option (ARO), 589
Address resolution protocol (ARP), 210, 589

arp_constructor() method, 176
arp_create() method, 180
arp_filter() method, 185
arphdr structure, 175–176
arp_ignore(), 184
arp_process() method, 176, 182
arp_rcv() method, 181
arp_send() method, 180
daemon, 589
dst_neigh_output() method, 177
ethernet packet, 176
inet_addr_onlink() method, 179
inet_select_addr() method, 179
MAC addresses, 175
neigh_lookup(), 186
neigh_resolve_output() method, 177
NF_HOOK() macro, 181
pneigh_enqueue() method, 186
solicit() method, 178

AES instruction set (AES-NI), 589
Aggregated mac protocol data unit (AMPDU), 589
Aggregated mac service data unit (AMSDU), 589
Alternate MAC/PHY (AMP), 589
Android

internal resources, 473
networking

android debug bridge (ADB), 472
Bluetooth, 473
near field communication (NFC), 473
netfilter, 473
security privileges and networking, 473

Android debug bridge (ADB), 472, 589
Android open source project (AOSP), 589
Any-source multicast (ASM), 589

Application programming interface (API), 589
ARP protocol. See Address resolution protocol (ARP)
Association ID (AID), 589
Audio/video distribution transport  

protocol (AVDTP), 589
Authentication header protocol (AH), 589
Authoritative border router option (ABRO), 589

B�       �
Base Transport Header (BTH), 590
Beacons, 351
Block Acknowledgement (BA), 590
Block Ack Request (BAR), 361
Bluetooth Low Energy (BLE), 590
Bluetooth Network Encapsulation  

Protocol (BNEP), 437, 442, 590
Bluetooth protocol

ACL packets, 443
Bluetooth profiles, 438
Bluetooth stack, 437–438
HCI connection

Bluetooth Network Encapsulation  
Protocol (BNEP), 442

logical link control and adaptation  
protocol (L2CAP), 441

HCI layer, struct hci_dev, 439
host controller interface (HCI), 437
L2CAP/SCO layers, 441
link controller, 440
logical link control and adaptation protocol  

(L2CAP) features, 437, 444
personal area networks (PANs), 436
radio frequency communications  

(RFCOMM), 437
service discovery protocol(SDP), 438
special interest group (SIG), 436
synchronous connection-oriented (SCO), 438
tools, 444

Index

599



Board Support Packages (BSPs), 1
Border Gateway Protocol (BGP), 590
Busy poll sockets, 433

busy_poll controls, 435
busy_read controls, 435
ndo_busy_poll callback, 434
performance, 436
SO_BUSY_POLL socket option, 435
tuning and configuration, 435

C�       �
Carrier Sense Multiple Access/Collision  

Avoidance (CSMA/CA), 590
Carrier Sense Multiple Access/Collision  

Detection (CSMA/CD), 590
Cgroups

cls_cgroup classifier, 432
device controller, 430
implementation

cgroup_subsys structure, 427
css_set object, 429
register_filesystem() method, 428
release_agent, 428–429

libcg library, 426
memory controller, 430
mounting cgroup subsystems, 432
net_prio Module, 431

Checkpoint/Restore In Userspace (CRIU), 590
Chunk types, 343
Classless Inter-Domain  

Routing (CIDR), 141, 590
Common Development and Distribution  

License (CDDL), 1
Communication Manager (CM), 590
Completion Queue (CQ), 382–383, 541
Connection tracking

callbacks, 252
dst structure, 254
entries

ipv4_confirm() method, 259
network namespace object, 257
nf_conn structure description, 255
nf_ct_timeout_lookup() method, 258
reference counter, 257
resolve_normal_ct() method, 257
specific packet() method, 258

extensions, 273
hook callbacks

DNAT rule, 269
ipv4_conntrack_in(), 268
NAT and netfilter hooks, 269
nf_nat_ipv4_in(), 268

hooks, 253
initialization, 259

IPTables
Filter table rule, 264
log-level modifier, 263
LOG target, 264
network namespace object, 262
parts, 262

IPv4 NAT module, 250
local host delivery, 265
NAT, 266
NAT hook callbacks, 271
nf_conntrack method, 252
nf_conntrack_tuple structure, 254
NF_INET_PRE_ROUTING hook, 252
packet forwarding, 265

Constructor, 168
Control packets, 347
CSMA/CA, 346

D�       �
Datagram Congestion Control  

Protocol (DCCP), 306, 590
and NAT, 339
development of, 333
header, 334
initialization, 336
packet types, 344
receiving packets, 338
sending packets, 338
socket initialization, 337

Datagram sockets, 305
Data links sockets, 306
Data packets, 347
Dccp_init_sock() method, 337
DCCP. See Datagram Congestion Control  

Protocol (DCCP)
Dccp_v4_rcv () method, 338
Delayed ACK timer, 322
Destination NAT (DNAT), 590
Distance Vector Multicast Routing  

Protocol (DVMRP), 590
Domain Name System (DNS), 590
Duplicate Address Confirmation (DAC), 590
Duplicate Address Detection (DAD), 187, 590
Duplicate Address Request (DAR), 590
Dynamic Host Configuration Protocol (DHCP), 590
Dynamic Host Configuration Protocol  

version 6 (DHCPv6), 218

E�       �
Encapsulating Security Payload (ESP), 591
Enhanced data rate (EDR), 436
Enhanced Retransmission  

Mode (ERTM), 591
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ESP protocol
Authentication Data, 289
ESP format, 289
initialization, 290
Padding, 289
Payload Data, 289
Security Parameter Index, 289
Sequence Number, 289

Extended Service Set (ESS), 350
Extended Transport Header (ETH), 591
Exterior Gateway Protocol (EGP), 591

F�       �
Failover, 376
Fast Memory Region (FMR), 591
Fib_select_multipath() method, 159
File Transfer Protocol (FTP), 591
Forwarding Information Base (FIB), 113, 591
Free Software Foundation (FSF), 591

G�       �
General Public License (GPL), 1
Generic netlink protocol

acpi subsystem, 25
command identifier, 28
ctrl_getfamily() method, 29
flags, 28
generic netlink messages, 29
genl_ops structure, 27
genl_pernet_init() method, 25
genl_sock pointer, 25
hostapd package, 27
internal_flags, 28
multicast group, 26
netlink_kernel_create() method, 25
NFC subsystem, 26
nl_send_auto(), 29
policy, 28
socket monitoring interface

CRIU projects, 31
sock_diag_handler, 31
sock_diag_register(), 32
ss tool, 31
UNIX diag module, 32

wireless subsystem, 26
wireless-tools, 27

Generic Receive Offload (GRO) packets, 104
Generic Segmentation  

Offload (GSO), 1, 591
Genl_connect()method, 30
Git trees, 11
Global IDentifier (GID), 376
Global Routing Header (GRH), 591
Group Management Protocol (GMP), 230, 591

H�       �
Head-of-Line (HoL) blocking, 333, 591
HEARTBEAT mechanism, 332
High Performance Computing (HPC), 592
High Throughput Task Group (TGn)

AMPDU aggregation, 360
AMSDU aggregation, 360
Block Ack Request (BAR), 361
del_timer_sync(), 360
vendors, 359

Host Channel Adapter (HCA), 375
Hybrid Wireless Mesh Protocol (HWMP), 9, 364, 592

I, J�       �
ICMP protocol. See Internet control  

message protocol (ICMP)
ICMPv4 messages

categories, 37
destination unreachable

ICMP_FRAG_NEEDED code, 45
ICMP_PORT_UNREACH code, 45
ICMP_PROT_UNREACH code, 44
icmp_reply() method, 44
icmp_send() method, 44
ICMP_SR_FAILED code, 46

header
conditions, 42
DHCP, 41
icmp_bxm structure, 42
icmp_control objects, 40
icmp_control structure, 40
icmp_discard(), 41
icmp_echo()method, 42
ICMP_QUENCH message, 41
icmp_redirect(), 41
ICMP sockets/ping sockets, 40
ip_local_deliver_finish()method, 40
NTP, 41
ping_rcv() method, 40
raw_local_deliver(), 40
struct icmphdr, 39
timestamps, 41
TTL, 41

icmp_echo() method, 43
inet_init() method, 38
IP broadcast or IP multicast address, 43
ip_local_deliver_finish() method, 42
ping and traceroute utility, 37
ping_rcv() method, 43

ICMPv4 redirect message, 130
ip_do_redirect() method, 132
ip_forward() method, 131
ip_rt_send_redirect() method, 132
mkroute_input() method, 131
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ICMPv6 messages
cmpv6_rcv() method, 51
destination unreachable

ICMP_FRAG_NEEDED code, 55
ICMPV6_EXC_FRAGTIME code, 54
ICMPV6_EXC_HOPLIMIT code, 53
parameter problem, 55
port unreachable, 54

header, 49
icmpv6_init() method, 48
icmpv6_notify() method, 52
igmp6_event_report(), 52
ND messages, 52
pskb_may_pull() method, 51

IEEE 802.15.4
ieee802154_dev object, 449
ieee802154_ops object, 449
low-rate wireless personal area  

networks (LR-WPANs), 445
medium access control (MAC), 445
wireless sensor networks (WSNs), 445

IKE. See Internet Key Exchange (IKE)
Inet_create() method, 309
InfiniBand subsystem, 373

addressing, 375
Communication Manager, 378
features, 376
hardware components, 375
methods, 397
packet headers (see Packet headers)
RDMA (see RDMA device; Remote  

Direct Memory Access (RDMA))
Subnet Administrator, 377–378
Subnet Management Agent, 378

InfiniBand Trade Association (IBTA), 373
Internet Assigned Numbers Authority (IANA), 592
Internet control message protocol (ICMP)

definition, 592
ICMPv4 messages (see ICMPv4 messages)
ICMPv6 messages (see ICMPv6 message)
ping sockets, 56

Internet Key Exchange (IKE), 279, 280
Internet Key Exchange Protocol Version 2 (IKEv2), 280
Internet of Things (IoT), 9
Internet Protocol (IP), 592
Internet Protocol security (IPsec) subsystem

cryptography, 280
definition, 593
ESP protocol, 288

Authentication Data, 289
ESP format, 289
initialization, 290
Padding, 289
Payload Data, 289
Security Parameter Index, 289
Sequence Number, 289

IKE, 279, 280
methods, 299
NAT traversal

Main Mode, IKE, 299
SBCs, 298
TCP/UDP header, 298
VoIP NAT-traversal, 298

transport mode
receiving IPv4 ESP packet, 291
transmitting IPv4 ESP packet, 294

VPN technology, 279
XFRM framework

dummy bundle, 297
flow_cache_lookup() method, 297
netns_xfrm structure, 281
Security Association (SA), 285
security policy (see Security policy)
xfrm_init() method, 282
xfrm_lookup() method, 295–296
xfrm_route_forward() method, 297

XFRM SNMP MIB counters, 303–304
Internet server provider (ISP), 465
Internet Wide Area RDMA  

Protocol (iWARP), 373
Inter Process Communication (IPC), 13, 592
Ip_cmsg_send() method, 314
Ip_mc_leave_group() method, 148
Ipmr_rules_init() method, 144
IP Payload Compression Protocol (IPCOMP), 592
IPsec subsystem. See Internet protocol  

security (IPsec) subsystem
IPv4 protocol

defragmentation
hash function, 101
ip_defrag() method, 100
ip_expire() method, 101
ip_forward() method, 104
ip_frag_queue(), 101–102
ip_frag_reasm() method, 103
ipq_kill() method, 101

dst_input() method, 69
dst_output() method, 106
fragmentation, 94

fast path fragmentation, 95
ip_fragment() method, 94
slow path fragmentation, 97

fragmentation needed code, 105
header, 63–64

fragment offset, 65
id field, 65
internet header length, 65
L4 protocol, 65
struct iphdr, 64
Time To Live, 65
total length, 65
Type of Service, 65
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initialization, 66
internet header length, 68
ip_append_data() method, 89, 92
ip_fast_csum() method, 68
ip_forward_options() method, 88
IP_HDRINCL socket option, 89
ip_local_deliver_finish() method, 67
IP options

copied flag, 73
IPOPT_CIPSO option, 74
IPOPT_END option, 74
ip_options_fragment() method, 86
IPOPT_LSRR option, 74
IPOPT_NOOP option, 74
IPOPT_SEC option, 74
linux symbol, 73
memset() function, 87
Multibyte option, 72
option class, 73
option number, 73
optptr pointer, 86
record route option (see Record route option)
Single byte option, 72
timestamp option, 74
while loop, 86

ip_options_build() method, 87, 92
ip_queue_xmit() method, 88, 91
ip_rcv_finish() method, 68
ip_rcv() method, 66
ip_route_input_noref() method, 69
ip_route_output_ports(), 91
MSG_PROBE flag, 93
multicast packets, 70
netfilter hooks, 68
receiving path (Rx), 66
routing subsystem, 91
RPF, 69
RTCF_DOREDIRECT flag, 106
skb_dst(), 68
skb_push() method, 92
strict route flag, 105
transport layer, 90
TTL count exceeded code, 104

IPv4 routing cache, 133
Rx Path, 134
Tx Path, 134

IPv6 header, 213
destination address, 214
extension headers, 245

Authentication Header, 216
Destination Options header, 216
ESP, 216
Fragment Options header, 216
Hop-by-Hop Options header, 216

protocol handler, 215
Routing Options header, 216
upper-layer protocol, 215

flow_lbl, 214
hop_limit, 214
ip_decrease_ttl() method, 214
nexthdr, 214
payload_len, 214
source address, 214
traffic class/priority, 214
version, 214

IPv6 protocol, 209
addresses, 210

Anycast, 210
ARP protocol, 210
Global Unicast, 210
in6_addr structure, 211
IPv4-compatible format, 211
link-local unicast address, 210
multicast address, 210
multicast address (see Multicast address)
Site local addresses, 211
Unicast, 210

autoconfiguration
definition, 217
DHCPv6, 218
interface flag, 217
preferred lifetime, 218
RA, 217
router solicitation, 217
valid lifetime, 218

features, 209
in6_addr structure, 246
inet6_add_protocol() method, 222
inet6_dev structure, 222
inet6_init() method, 217
INET6_PROTO_NOPOLICY flag, 223
ip6_append_data() method, 239
ip6_forward () method, 224
ip6_input() method, 222
ip6_rcv_finish() method, 220
ip6_xmit() method, 239
IPv6 header (see IPv6 header)
ipv6_is_mld() method, 223
ipv6_rcv() method, 218
Linux symbol and value, 245–246
macros, 244
methods, 240
MLD (see Multicast Listener Discovery (MLD))
multicast packets

ip6_input_finish() method, 229
ip6_mc_input() method, 228
ip6_mr_input() method, 228–229
ipv6_chk_mcast_addr() method, 228
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routing, 240
routing tables, 246
Rx path, 220–221
SKB, 218

IP Virtual Server (IPVS), 593

K�       �
Keep Alive timer, 322
Kernel netlink sockets

callbacks, 18
EPRM error, 17
input callback, 18
netlink_bind(), 17
netlink_kernel_create() prototype, 17
netlink_lookup() method, 18
rtmsg_ifinfo() method, 19
rtnetlink_net_init() method, 16
rtnetlink_rcv() method, 17
rtnl_register(), 18

KLIPS stack, 280

L�       �
Large Receive Offload (LRO) packets, 104
Linux API

net_device structure (see Net_device structure)
RDMA (see Remote Direct Memory Access (RDMA))
sk_buff Structure

Bluetooth protocol, 484
checksum values, 486
connection tracking, 487–488
dev member, 484
dropcounter, 490
dst_entry struct, 484
eth_type_trans() method, 487
handling buffers, 492
headroom and tailroom, 491
ip_queue_xmit() method, 486
IP virtual server, 487
link layer, 490
netfilter packet trace flag, 488
network layer, 490
PMTUD, 486
preceding rule, 489
secmark field, 489
security path pointer, 485
setsockopt(), 485
skb_clone() method, 486
skb_pfmemalloc() function, 489
skb_shared_info struct, 492–493
sock_create_kern() method, 484
timestamp, 483
transport layer, 490
VLAN protocol, 488

Linux Kernel Mailing List (LKML), 1, 473
Linux neighbouring subsystem

arp_netdev_event() method, 175
ARP protocol (see Address resolution  

protocol (ARP))
Ethernet, 165
macros, 204
methods, 200
NDISC Protocol (see Neighbour Discovery  

(NDISC) protocol)
neighbour solicitations, 165
neighbour structure, 165

dead flag, 167
neigh_parms object, 166
neigh_resolve_output() method, 167
neigh_timer_handler() method, 166
NUD state, 167
primary_key, 167
reference counter, 166

neigh_create() method, 172
neigh_statistics structure, 206
neigh_table structure, 167

arp_hash() method, 168
arp_rcv() method, 171
asynchronous garbage  

collector handler, 169
constructor, 168
function pointers, 171
IPv4 procfs, 169
ndisc_init() method, 170
neigh_alloc() method, 168
neigh_table_init_no_netlink()  

method, 170–171
pdestructor method, 169
phash_buckets, 170
proxy_timer, 170
sizeof, 168
thresholds, 169

network unreachability  
detection states, 207

vs. userspace, 174
Linux network stack

development model, 10
git trees, 10–11
IPv4/IPv6, 3
network device drivers (see Network device drivers)
Open Systems Interconnection (OSI) model

application layer, 2
data link layer, 2
network layer, 2
physical layer, 2
presentation layer, 2
protocol layer/transport layer, 2
session layer, 2

protocol rules, 3
TCP/UDP listening sockets, 3
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Linux routing subsystem, 113
Linux wireless stack, 345

development trees, 366
Mac802 11 subsystem (see Mac802 11 subsystem)
methods, 366
MLME (see Management Layer (MLME))
network topologies

IBSS/Ad Hoc Mode, 350
infrastructure BSS mode, 349

power save mode
entering, 350
exiting, 351
multicast/broadcast buffer, 351
PS-Poll packets, 352

Rx Flags and Linux symbol, 371–372
Local IDentifier (LID), 376
Local key (lkey), 381
Local Routing Header (LRH), 593
Logical link control and adaptation  

protocol (L2CAP), 437, 441, 444
6LoWPAN

implementation, 447
initialization, 447

adaption layer, 448
PHY layer, 448–449

neighbor discovery optimization, 446
6LoWPAN context option (6CO), 447
Address Registration Option (ARO), 447
authoritative border router option (ABRO), 447
duplicate address detection (DAD) mesages, 447

Low-rate wireless personal area  
networks (LR-WPANs), 445

M�       �
Mac802.11 subsystem

802.11 amendments types, 345
802.11 vs. 802.3 wired Ethernet, 346
add_interface()method, 354
Ad Hoc (IBSS) mode, 359
AP mode, 359
architecture, 355
configure_filter(), 354
debugfs, 358
fragmentation, 357
header, 345–346

addresses, 349
frame control, 347
HT control field, 349
ieee80211_hdr structure, 347
Network allocation vector, 348
QoS Control, 349
sequence control, 349

ieee80211_alloc_hw() method, 354
management layer, 346

Mesh mode, 359
mesh networking, 362

advantages, 365
Full Mesh, 363
HWMP Protocol, 364
Partial Mesh, 363
Sett Up, 365

Monitor mode, 359
remove_interface(), 354
Rx Path function, 356
start()method, 354
Station infrastructure mode, 359
stop(), 354
TGn (see High Throughput Task Group (TGn))
tx()function, 354
Tx Path, 356
Wireless Distribution System (WDS) mode, 359
WLANS, 345

Management Layer (MLME)
association, 353
authentication, 353
components, 353
reassociation, 353
scanning, 353

Management packets, 347
Memory windows

ib_alloc_mw() method, 559
ib_bind_mw() method, 560
ib_dealloc_mw() method, 560

Mesh networking
advantages, 365
Full Mesh, 363
HWMP Protocol, 364
Partial Mesh, 363
Sett Up, 365

Message Signaled Interrupts (MSIs), 495
Mroute_sk pointer, 144
MSF

filters, 236
group_filter structure, 235
igmp6_event_query() method, 239
mld2_grec structure, 237–238
MLDv1 message types, 239
multicast traffic, 236
parameters, 234
setsockopt() method, 235

Msghdr structure, 310
Multicast address

Linux symbol and value, 212
MLD, 212
ndisc_send_na() method, 213

Multicast Forwarding Cache (MFC), 144
Multicast Listener Discovery (MLD), 212

ASM model, 230
dev_forward_change() method, 231
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GMP, 230
Hop-by-Hop header, 232
ipv6_add_dev() method, 230
IPV6_ADD_MEMBERSHIP socket, 232
IPV6_JOIN_GROUP socket, 231
mld2_grec structure, 234
MLDv2 protocol, 230
MSF

filters, 236
group_filter structure, 235
igmp6_event_query() method, 239
mld2_grec structure, 237–238
MLDv1 message types, 239
multicast traffic, 236
parameters, 234
setsockopt() method, 235

router join, 231
setsockopt(), 233

Multicast routing
CIDR, 141
fib_rules_lookup() method, 141
IGMP protocol

IGMPv1 (RFC 1112), 142
IGMPv2 (RFC 2236), 143
IGMPv3 (RFC updated by RFC 4604), 143, 3376

ipmr_forward_finish() method, 156
ip_mr_forward() method, 151
ip_mroute_setsockopt() method, 146
ipmr_queue_xmit() method, 154
MFC, 144
mr_table structure, routing table, 143
PIM protocol, 141
Pv4 Multicast Rx Path

ip_call_ra_chain() method, 148
ipmr_cache_alloc_unres(), 150
ipmr_cache_find() method, 149
ipmr_cache_unresolved() method, 150
ip_mr_forward(), 151
ip_mr_input() method, 148
ipmr_rt_fib_lookup() method, 148
raw_rcv() method, 149

setsockopt() method, 147
thresholds, 157
topology, 142
unicast IPV4 traffic, 157
vifc_flags, 147
vif_device structure, 147

Multicast Source Filtering (MSF), 234
Multipath routing, 159–160

N�       �
Native Netkey stack, 280
NDISC protocol. See Neighbour  

Discovery (NDISC) protocol

Near field communication (NFC)
Android, 457
communication and operation modes, 451
devices, 451
drivers API

Kernel architecture, 455
nfc_allocate_device() method, 456
probe() callback, 455–456
probe() method, 456

host-controller Interfaces, 451
intialization, 454
netlink API, 453
NFC tags, 450
overview, 452
sockets

LLCPsockets, 453
raw sockets, 453

subsystem, 26
userspace architecture, 456

Neigh_add() method, 174
Neighbour Discovery (NDISC) protocol, 594

duplicate address detection, 187
addrconf_dad_start() method, 188
ICMPv6 message types, 188–189

ipv6_addr_any() method, 194–196
ndisc_rcv() method, 193
ndisc_recv_na(), 198
ndisc_recv_ns() method, 194
ndisc_send_na() method, 192
ndisc_send_ns() method, 191
ndisc_solicit(), 189
nud_state, 197
override flag, 190
router flag, 190
solicited flag, 190–191

Neighbour discovery (ND)  
messages, 52, 594

Neighbour structure
dead flag, 167
neigh_parms object, 166
neigh_resolve_output() method, 167
neigh_timer_handler() method, 166
NUD state, 167
primary_key, 167
reference counter, 166

Neigh_delete() method, 174
Net_device structure

allmulti counter, 505
boolean flag, 511
definition, 493
dev_uc_init() method, 505
enum, 511
Ethernet addresses, 507
eth_hw_addr_random() method, 507
features, 495–496
flag, 495
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hardware address assignment type, 504
header_ops struct, 502
Interrupt Request (IRQ), 494
int flags, 502
int priv_flags, 503
kobject structure, 508
message signaled interrupts, 495
MTU, 503
NAPI stands, 506–507
neigh_alloc() method, 504
netdev_ops structure, 500–501
netdev_run_todo() method, 511
NETIF_F_GRO, 497
NETIF_F_HIGHDMA, 498
NETIF_F_HW_VLAN_CTAG_RX, 497
NETIF_F_NETNS_LOCAL, 497
NETIF_F_VLAN_CHALLENGED, 498
network namespaces, 512–513
network partitioning, 494
promiscuity counter, 505
protocol-specific pointers, 506
Qdisc, 509
qdisc of pfifo_fast, 510
rx_handler, 508
Rx queues, 508
SET_ETHTOOL_OPS, 502
short gflags, 503
state flag, 495
Tx queue, 509
union, 514
VLAN devices, 499
watchdog timer, 510

Netfilter subsystem
connection tracking (see Connection tracking)
frameworks

IP sets, 247
iptables, 247
iptables types, 248
IPVS, 247

IPv4 and ipv6 network namespace, 277
methods, 274
netfilter hooks

NF_INET_FORWARD, 248
NF_INET_LOCAL_IN, 248
NF_INET_LOCAL_OUT, 249
NF_INET_POST_ROUTING, 248
NF_INET_PRE_ROUTING, 248
parameters, 249
registration, 249
return value, 249

Netlink sockets
advantages, 13
BSD-style sockets, 14
generic netlink protocol (see Generic  

netlink protocol)

IPC mechanism, 13
kernel netlink sockets (see Kernel netlink sockets)
libnl library, 14
netlink_kernel_create() method, 14
netlink message header

attribute validation policy, 22
generic netlink message, 22
nlmsg_flags field, 20
nlmsg_len, 20
sequence number, 21
struct nlmsghdr, 19
TLV format, 21
types, 20

NETLINK_ROUTE messages, 22
routing table, 24
sockaddr_nl structure, 15
TCP/IP networking, 15

Network Address Translation (NAT), 266
Network administration

ApacheBench, 572
arping, 571
ARP table management, 571
arptables, 571
arpwatch, 571
brctl, 572
conntrack-tools, 572
crtools, 572
ebtables, 572
ether-wake, 572
ethtool, 573
git, 573
hciconfig, 574
hcidump, 574
hcitool, 574
ifconifg command, 574
ifenslave, 574
iperf, 575
iproute2 package, 575
iptables and iptables6, 579
ipvsadm, 579
iwconfig tool, 579
iw package, 579
l2ping, 580
libreswan Project, 580
lowpan-tools, 580
lscpu, 580
lshw, 580
lspci, 580
mrouted, 580
netperf tool, 581
netsniff-ng, 581
netstat tool, 581
ngrep tool, 581
nmap, 582
nmap-ncat package, 580
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openswan, 582
OpenVPN, 582
packeth, 582
pimd, 583
ping, 582
pktgen, 583
poptop, 583
ppp daemon, 583
radvd, 583
route tool, 583
RP-PPPoE, 584
sar tool, 584
smcroute, 584
snort, 584
suricata, 584
sysctl utility, 584
taskset, 585
tcpdump, 585
top utility, 585
tracepath command, 585
traceroute utility, 585
tshark utility, 585
tunctl tool, 586
udevadm, 586
unshared utility, 587
vconfig utility, 587
wireshark, 588
wpa_supplicant, 587
XORP, 588

Network Allocation Vector (NAV), 348
Network device drivers

IPsec policy, 6
NAPI, 5
netfilter subsystem, 6
nf_register_hooks() method, 6
promiscuity counter, 5
socket buffer

datagram and stream sockets, 9
Ethernet packet, 9
eth_type_trans() method, 7
ICMP protocol, 8
ip_rcv_finish() method, 8
IPv4 packet, 8
ipv6_rcv() method, 8
netdev_alloc_skb() method, 7
RDMA, 9
structure, 7
topologies, 9
transport protocols, 8
virtualization, 9
wireless subsystem, 9

structure, 4–5
traversal, 6
TTL Count Exceeded, 6
VPN solutions, 6

Network driver, 464
Network namespaces, 405

implementation, 416
data structures, 420
net structure, 417

management
communication, 425
ip netns command, 423
network interface, 424

namespaces implementation
clone() system, 414
clone_uts_ns() method, 409
copy_net_ns() method, 409
copy_utsname() method, 409
create_nsproxy() method, 406–408
exit_task_namespaces() method, 410
get_net_ns_by_fd() method, 410
get_net_ns_by_pid() method, 410
IPC namespaces, 412
ip netns command, 413
mnt_namespace, 411
network namespaces, 412
nsproxy structure, 406–407
PID namespaces, 412
setns() system, 409
unshare() system, 407
user_namespace, 413
UTS namespaces, 413

uts_namespace, 414
proc_do_uts_string() method, 416
sethostbyname(), 416

Network topologies
IBSS/Ad Hoc Mode, 350
infrastructure BSS mode, 349

Next Hop Resolution Protocol (NHRP), 180
Non-Broadcast, Multiple Access (NBMA), 180
Notifications chains

call_netdevice_notifier() method, 460
network device events, 458
notifier_chain_register() method, 458
register_netdevice_notifier() method, 460
rtmsg_ifinfo() method, 461
subsystems, 459

O�       �
Open Cryptography Framework (OCF), 280
Open Systems Interconnection (OSI) model, 3

application layer, 2
data link layer, 2
network layer, 2
physical layer, 2
presentation layer, 2
protocol layer/transport layer, 2
session layer, 2

Out of the Blue packet (OOTB), 595
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P�       �
Packet headers

Base Transport Header, 377
Extended Transport Header, 377
Global Routing Header, 377
Immediate data, 377
Invariant CRC, 377
Local Routing Header, 377
Payload, 377
Variant CRC, 377

Peripheral Component Interconnect (PCI) subsystem
configuration space, 461
pci_driver structure, 462
struct pci_dev structure, 462
Wake-On-LAN (WOL), 463

Persistent timer. See Zero window probe timer
Personal area networks (PANs), 436, 438
Ping sockets, 56
Policy routing, 126–127

definition, 157
fib_default_rules_init() method, 159
fib_lookup() method, 159
fib_rules module, implementation, 158
rules, 158

PPPoE protocol
internet server provider (ISP), 465
intialization, PPoXsockets, 467
link control protocol (LCP), 465
password authentication protocol (PAP), 465
PPPoE active discovery initiation (PADI), 465
PPPoE active discovery offer (PADO), 465
PPPoE active discovery request (PADR), 465
PPPoE active discovery session (PADS), 465
PPPoE active discovery terminate (PADT), 465
PPPoE header, 465
sending and receiving packets, 468

Primary_key, 167
Protection domain (PD)

address handle, 380
Fast Memory Region (FMR) Pool, 382
ib_alloc_pd() method, 380
ib_dealloc_pd() method, 380
memory region(MR), 381
memory window, 382
QP (see Queue Pair (QP))
SRQ (see Shared Receive Queue (SRQ))

Q�       �
Queue Key (Q_Key), 376
Queue pair (QP)

attributes, 548, 550–551
ib_close_qp() method, 554
ib_create_qp() method, 547
ib_modify_qp(), 549

ib_post_recv(), 555
ib_post_send() method

MW binding attributes, 559
struct ib_send_wr, 555

ib_query_qp() method, 553
selective signaling, 548
state machine

Error state, 388
ib_modify_qp() method, 389
ib_query_qp() method, 390
Initialized state, 388
Ready To Receive (RTR) state, 388
Ready To Send (RTS) state, 388
Reset state, 388
Send Queue Drained (SQD) state, 388
SQE state, 388

struct ib_qp_cap, 547
struct ib_qp_open_attr, 554
transport types, 387

Quick Mode, 280

R�       �
Radio Frequency Communications  

protocol (RFCOMM), 596
Raw sockets, 305
RDMA device. See also Remote Direct Memory  

Access (RDMA)
Real-time Transport Protocol (RTP), 310, 596
Receive path (Rx), 220–221
Record route option

for loop, 81
ip_options_compile(), 80
ip_options structure, 79
ip_rcv_options() method, 80
optptr pointer, 81
parameter problem, 82
router alert, 78
SSRR, 78
stream ID, 78

Reliably delivered message, 305
Remote Direct Memory Access (RDMA), 378, 596

address handle, 538
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Preface

This book takes you on a guided, in-depth tour of the current Linux kernel networking implementation and the theory 
behind it. For almost a decade, no new book about Linux networking has been written. A decade of dynamic and 
fast-paced Linux kernel development is quite a long time. There are important kernel networking subsystems that are 
not described in any other book; for example, IPv6, IPsec, Wireless (IEEE 802.11), IEEE 802.15.4, NFC, InfiniBand, and 
more. There is also very little information on the Web about the implementation details of these subsystems. For all 
these reasons, I have written this book.

About ten years ago I made my first steps in kernel programming. I was a developer in a startup taking part in a 
VoIP project for a Linux-based set-top box (STB). There were crashes in the USB stack with some USB cameras, and 
we had to delve into the code to try to find a solution, because the vendors of that STB did not want to spend time to 
solve the problem. In fact, it was not that they did not want to, they simply did not know how to. In these days, there 
was almost no documentation about the USB stack. The Linux Device Drivers book from O’Reilly in those days was 
only in its second edition (the USB chapter was added only in the third edition). Success in that project was crucial for 
us as a startup. I had learned much about kernel programming in the process of solving the USB crash. Later on we 
had a project where a NAT traversal solution was needed. The userspace solution was so heavy that the device quickly 
crashed. When I suggested a kernel solution, my managers were very skeptical, but they did let me try. The kernel 
solution proved to be very stable and took much less CPU than the userspace solution. Since then I have taken part in 
many kernel networking projects. This book is a result of my many years of development and research.

Who This Book Is For
This book is intended for computer professionals, including developers, software architects, designers, project 
managers, and CTOs, who are working on networking-related projects. These projects can be in a wide range of 
professional areas, such as communication, data centers, embedded devices, virtualization, security, and more. In 
addition, students and academy researchers and theorists who deal with networking projects or networking research 
or operating systems research will find a lot of help in this book.

How This Book Is Structured
In Chapter 1 you will find a general overview of the Linux kernel and the Linux network stack. Other topics in this 
chapter include the implementation of the network device, the socket buffer, and the Rx and Tx paths. Chapter 1 
concludes with a section about the Linux Kernel Networking Development Model.

In chapter 2 you will learn about netlink sockets, which provide a mechanism for bidirectional communication 
between userspace and the kernel, and which are used by the networking subsystem as well as by other subsystems. 
You will also find a section in this chapter about generic netlink sockets, which can be perceived as advanced netlink 
sockets, and which you will encounter in Chapter 12 and while browsing the kernel networking source code.

In Chapter 3 you will learn about the ICMP protocol, which helps to keep the system behaving correctly by 
sending error and control messages about the network layer (L3). You will learn about the implementation of the 
ICMP protocol both in IPv4 and in IPv6.
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Chapter 4 delves into the IPv4 protocol—the Internet and modern life cannot be described without it. You 
will learn about the structure of IPv4 header, about the Rx and Tx path, about IP options, about fragmentation and 
defragmentation and why they are needed, and about forwarding packets, which is one of the important tasks of IPv4.

Chapters 5 and 6 are devoted to the IPv4 Routing Subsystem. In chapter 5 you will learn how a lookup in the 
routing subsystem is performed, how the routing tables are organized, which optimizations are used in the IPv4 
routing subsystem and about the removal of the IPv4 routing cache. Chapter 6 discusses advanced routing topics such 
as Multicast Routing, Policy Routing, and Multipath Routing. 

Chapter 7 endeavors to explain the neighbouring subsystem. You will learn about the ARP protocol, which is used 
in IPv4, and about the the NDISC protocol used in IPv6, and about some of the differences between the two protocols. 
You will also learn about the Duplicate Address Detection (DAD) mechanism in IPv6.

Chapter 8 discusses the IPv6 protocol, which seems to be the inevitable solution to the shortage of IPv4 addresses. 
This chapter describes the implementation of IPv6 and discusses topics such as IPv6 addresses, the IPv6 header and 
extension headers, autoconfiguration in IPv6, Rx path, and forwarding. It also describes the MLD protocol. 

Chapter 9 deals with the netfilter subsystem. You will learn about netfilter hooks and how they are registered, 
about Connection Tracking, about IP tables and Network Address Translation (NAT), and about callback used by 
Connection Tracking and NAT.

Chapter 10 deals with IPsec, one of the most complex networking subsystems. Topics like the IKE protocol  
(which is implemented in userspace) and cryptography aspects of IPsec are discussed briefly (full treatment is beyond 
the scope of the book). You will learn about the XFRM framework, which is the basis of the Linux IPsec subsystem, 
and about its two most important structures: XFRM policy and XFRM state. The ESP protocol is briefly described, as 
well as the IPsec Rx path and Tx path in transport mode. The chapter concludes with a section about XFRM lookup 
and a short section about NAT traversal.

Chapter 11 describes four Layer 4 protocols, starting with the most commonly used protocols, UDP and TCP, and 
concluding with two newer protocols, SCTP and DCCP. 

Chapter 12 deals with wireless in Linux (IEEE 802.11). You will learn about the mac80211 subsystem and its 
implementation, about various wireless network topologies, about power save mode, and about IEEE 802.11n and 
packet aggregation. There is also a section devoted to Wireless Mesh networks in this chapter.

Chapter 13 delves into the InfiniBand subsystem, a technology enjoying a rising popularity in datacenters. You 
will learn about the RDMA stack organization, about addressing in InfiniBand, about the organization of InfiniBand 
packets, and about the RDMA API.

Chapter 14 concludes the book with a discussion of advanced topics such as Linux namespaces and network 
namespaces in particular, Busy Poll Sockets, the Bluetooth subsystem, the IEEE 802.15.4 subsystem, the Near Field 
Communication (NFC) subsystem, the PCI subsystem, and more. 

Appendices A, “Linux API,” and C, “Glossary ,” provide complete reference information for many topics dicussed 
in the book. Appendix B, “Network Administration,” provides information about various tools which you will need 
while working with Linux kernel networking.

Conventions
Throughout the book, I’ve kept a consistent style. All code snippets, whether inside text paragraphs or on lines of their 
own, along with library paths, shell commands, URLs, and other code-related elements, are set in monospaced font, 
like this. New terms are set off in italics, and other emphasis may be given in bold.
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