

Praise for Jenkins 2: Up and Running

“This is now both my new go-to book for reference as well as the one I recommend to
those new to Jenkins. It’s quite a feat to write a book that can serve both audiences and

Brent has pulled it off in spades.”
—Chaim “Tinjaw” Krause

“Brent Laster does a fantastic job at distilling the power of Jenkins down to its essential
components while still providing the comprehensive guide to getting the most out of

Jenkins 2. Valuable examples of the pipeline as code provide building blocks for
implementing continuous delivery. This belongs in the toolbox of

new and experienced Jenkins users alike.”
—Brian Dawson, DevOps Evangelist, CloudBees

Brent Laster

Jenkins 2: Up and Running
Evolve Your Deployment Pipeline
for Next-Generation Automation

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-97959-4

[LSI]

Jenkins 2: Up and Running
by Brent Laster

Copyright © 2018 Brent Laster. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Foster
Development Editor: Angela Rufino
Production Editor: Justin Billing
Copyeditors: Dwight Ramsey and Rachel Head
Proofreader: Jasmine Kwityn

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2018: First Edition

Revision History for the First Edition
2018-05-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491979594 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Jenkins 2: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491979594

To my best friend and wife, Anne-Marie,
who brings beauty and happiness to each day.
And to my sons Walker, Chase, and Tanner,

who have taught me more than I could ever teach them.

Table of Contents

Foreword. xvii

Preface. xix

1. Introducing Jenkins 2. 1
What Is Jenkins 2? 2

The Jenkinsfile 3
Declarative Pipelines 4
Blue Ocean Interface 6
New Job Types in Jenkins 2 7

Reasons for the Shift 10
DevOps Movement 10
Assembling Pipelines 11
Resumability 11
Configurability 11
Sharing Workspaces 12
Specialized Knowledge 12
Access to Logic 12
Pipeline Source Management 12
Competition 13

Meeting the Challenges 13
Compatibility 13

Pipeline Compatibility 14
Plugin Compatibility 15
Checking Compatibility 20

Summary 21

vii

2. The Foundations. 23
Syntax: Scripted Pipelines Versus Declarative Pipelines 24

Choosing Between Scripted and Declarative Syntax 25
Systems: Masters, Nodes, Agents, and Executors 26

Master 27
Node 27
Agent 27
Executor 28
Creating Nodes 29

Structure: Working with the Jenkins DSL 31
node 32
stage 34
steps 35

Supporting Environment: Developing a Pipeline Script 36
Starting a Pipeline Project 37
The Editor 38
Working with the Snippet Generator 40
Running a Pipeline 45
Replay 52

Summary 56

3. Pipeline Execution Flow. 59
Triggering Jobs 60

Build After Other Projects Are Built 60
Build Periodically 61
GitHub Hook Trigger for GitSCM Polling 64
Poll SCM 64
Quiet Period 64
Trigger Builds Remotely 64

User Input 65
input 65
Parameters 69
Return Values from Multiple Input Parameters 75
Parameters and Declarative Pipelines 76

Flow Control Options 81
timeout 81
retry 83
sleep 83
waitUntil 83

Dealing with Concurrency 85
Locking Resources with the lock Step 86
Controlling Concurrent Builds with Milestones 87

viii | Table of Contents

Restricting Concurrency in Multibranch Pipelines 89
Running Tasks in Parallel 89

Conditional Execution 99
Post-Processing 100

Scripted Pipelines Post-Processing 101
Declarative Pipelines and Post-Processing 103

Summary 104

4. Notifications and Reports. 105
Notifications 105

Email 106
Collaboration Services 116

Reports 128
Publishing HTML Reports 129

Summary 131

5. Access and Security. 133
Securing Jenkins 133

Enabling Security 134
Other Global Security Settings 137

Credentials in Jenkins 142
Credential Scopes 143
Credential Domains 144
Credential Providers 144
Credential Stores 144

Administering Credentials 145
Selecting Credential Providers 145
Selecting Credential Types 146
Specifying Credential Types by Provider 146

Creating and Managing Credentials 147
Context Links 150
Adding a New Domain and Credential 151
Using the New Domain and Credential 153

Advanced Credentials: Role-Based Access 155
Basic Use 155
Manage Roles 157
Assign Roles 162
Role Strategy Macros 166

Working with Credentials in the Pipeline 168
Username and Password 168
SSH Keys 168
Token Credentials 169

Table of Contents | ix

Controlling Script Security 170
Script Checking 171
Script Approval 172

Groovy Sandboxing 173
Using Jenkins Credentials with Vault 175

Approach 176
Setup 176
Creating a Policy 176
Authentication 177
Using Vault in Jenkins 179

Summary 182

6. Extending Your Pipeline. 183
Trusted Versus Untrusted Libraries 183
Internal Versus External Libraries 184

Internal Libraries 184
External Libraries 187

Getting a Library from the Source Repository 188
Modern SCM 188
Legacy SCM 188

Using Libraries in Your Pipeline Script 189
Automatic Downloading of Libraries from Source Control 190
Loading Libraries into Your Script 190

Library Scope Within Jenkins Items 193
Library Structure 193
Sample Library Routine 194

Structure of Shared Library Code 195
Using Third-Party Libraries 205
Loading Code Directly 206
Loading Code from an External SCM 207
Replaying External Code and Libraries 208
A Closer Look at Trusted Versus Untrusted Code 211
Summary 214

7. Declarative Pipelines. 215
Motivation 216

Not Intuitive 216
Getting Groovy 216
Additional Assembly Required 217

The Structure 218
Block 218
Section 218

x | Table of Contents

Directives 219
Steps 219
Conditionals 220

The Building Blocks 220
pipeline 221
agent 222
environment 225
tools 226
options 229
triggers 232
parameters 234
libraries 237
stages 238
post 241

Dealing with Nondeclarative Code 242
Check Your Plugins 243
Create a Shared Library 243
Place Code Outside of the Pipeline Block 243
The script Statement 244

Using parallel in a Stage 244
Script Checking and Error Reporting 245
Declarative Pipelines and the Blue Ocean Interface 248
Summary 248

8. Understanding Project Types. 251
Common Project Options 251

General 251
Source Code Management 258
Build Triggers 259
Build Environment 267
Build 277
Post-Build Actions 277

Types of Projects 278
Freestyle Projects 278
The Maven Project Type 279
The Pipeline Project Type 282
The External Job Project Type 284
The Multiconfiguration Project Type 287
Ivy Projects 293
Folders 295
Multibranch Pipeline Projects 300
GitHub Organization Projects 305

Table of Contents | xi

Bitbucket Team/Project Projects 310
Summary 313

9. The Blue Ocean Interface. 315
Part 1: Managing Existing Pipelines 316

The Dashboard 316
The Project-Specific Page 321
The Run Page 332

Part 2: Working with the Blue Ocean Editor 342
Creating a New Pipeline Without an Existing Jenkinsfile 342
Working in the Editor 347
Editing an Existing Pipeline 359
Importing and Editing Existing Pipelines 363
Working with Pipelines from Non-GitHub Repositories 375

Summary 377

10. Conversions. 379
Common Preparation 380

Logic and Accuracy 380
Project Type 380
Systems 380
Access 381
Global Configuration 381
Plugins 381
Shared Libraries 382

Converting a Freestyle Pipeline to a Scripted Pipeline 382
Source 386
Compile 391
Unit Tests 396
Integration Testing 400
Migrating the Next Parts of the Pipeline 403

Converting from a Jenkins Pipeline Project to a Jenkinsfile 409
Approach 412
Final Steps 418

Converting from a Scripted Pipeline to a Declarative Pipeline 420
Sample Pipeline 421
The Conversion 422
Completed Conversion 426

General Guidance for Conversions 427
Summary 429

xii | Table of Contents

11. Integration with the OS (Shells, Workspaces, Environments, and Files). 431
Using Shell Steps 432

The sh Step 432
The bat Step 437
The powershell Step 438

Working with Environment Variables 440
The withEnv Step 441

Working with Workspaces 442
Creating a Custom Workspace 442
Cleaning a Workspace 444

File and Directory Steps 446
Working with Files 446
Working with Directories 448
Doing More with Files and Directories 449

Summary 450

12. Integrating Analysis Tools. 453
SonarQube Survey 454
Working with Individual Rules 455
Quality Gates and Profiles 459
The Scanner 461
Using SonarQube with Jenkins 462

Global Configuration 462
Using SonarQube in a Freestyle Project 463
Using SonarQube in a Pipeline Project 464
Leveraging the Outcome of the SonarQube Analysis 465
SonarQube Integration Output with Jenkins 469

Code Coverage: Integration with JaCoCo 470
About JaCoCo 470
Integrating JaCoCo with the Pipeline 471
JaCoCo Output Integration with Jenkins 473

Summary 474

13. Integrating Artifact Management. 477
Publishing and Retrieving Artifacts 477
Setup and Global Configuration 478
Using Artifactory in a Scripted Pipeline 479
Performing Other Tasks 484

Downloading Specific Files to Specific Locations 484
Uploading Specific Files to Specific Locations 485
Setting Build Retention Policies 485
Build Promotion 485

Table of Contents | xiii

Integration with a Declarative Pipeline 486
Artifactory Integration with Jenkins Output 486
Archiving Artifacts and Fingerprinting 487
Summary 493

14. Integrating Containers. 497
Configured as a Cloud 497

Global Configuration 498
Using Docker Images as Agents 501
Using Cloud Images in a Pipeline 505

Agent Created on the Fly for a Declarative Pipeline 509
Docker Pipeline Global Variable 512

Global Variables 512
Docker Application Global Variable Methods 514

Docker Image Global Variable Methods 519
Docker Container Global Variable Methods 524

Running Docker via the Shell 524
Summary 526

15. Other Interfaces. 527
Using the Command-Line Interface 528

Using the Direct SSH Interface 528
Using the CLI Client 531

Using the Jenkins REST API 534
Filtering Results 534
Initiating Builds 536

Using the Script Console 538
Summary 541

16. Troubleshooting. 543
Diving into Pipeline Steps 543
Dealing with Serialization Errors 547

Continuous Passing Style 547
Serializing Pipelines 547
NotSerializableException 548
Handling Nonserializable Errors 549

Identifying the Line in Your Script that Caused an Error 551
Handling Exceptions in a Pipeline 552
Using Nondeclarative Code Within a Declarative Pipeline 553
Unapproved Code (Script and Method Approval) 556
Unsupported Operations 557
System Logs 558

xiv | Table of Contents

Timestamps 559
Pipeline Durability Settings 560
Summary 562

Index. 563

Table of Contents | xv

Foreword

The software development industry is going through a slow but real transformation.
Software is increasingly a part of everything, and we, the software developers, are try‐
ing to cope with this exploding demand through more automation. I’d imagine you
are reading this book because you are a part of that transformation.

To serve you better in this transformation, Jenkins is itself going through a major
transformation of its own as well—from the world of “classic” Jenkins, where you
configure Jenkins through a series of jobs from server-rendered GUI, to the world of
“modern” Jenkins, where you configure Jenkins through Jenkinsfiles in Git reposito‐
ries and look at results through a pleasant single-page application.

As we develop the modern Jenkins in the community and roll out these new features,
I keep running into this challenge. Most users are simply unaware of this transforma‐
tion that’s going on in Jenkins. People keep using Jenkins like they have been doing
for years!

And to be fair, it made complete sense. On the one hand is people’s inertia and this
massive body of information and knowledge accumulated in Google, Stack Overflow,
our mailing lists, issue trackers, and so on that tells people how to effectively use Jen‐
kins the “classic” way. On the other hand, we have the community that is, generally
speaking, too busy building the “modern” Jenkins; and collectively not enough effort
has been spent on telling people how to effectively use Jenkins the modern way.

So I was very happy to hear about this book, which really takes this challenge head
on. In this book, Brent steps back and forgets everything we’ve known about Jenkins
from the past decade. Then he goes on to reconstruct how Jenkins should be used
today. Unlike Google, Stack Overflow, and so on, where knowledge is captured piece‐
meal, this book gives you a systematic path to explore the whole landscape, which
makes it really valuable.

xvii

It’s an ideal book for those who are new to CI/CD, as well as those who have been
using Jenkins for many years. This book will help you discover and rediscover Jen‐
kins.

— Kohsuke Kawaguchi
Creator of Jenkins

CTO, CloudBees, Inc.
February 2018

xviii | Foreword

Preface

How to Use This Book
This book is big—bigger than I ever thought it would be. I’ve worried about this at
some level, but decided that there were two ways to go when writing it: I could either
limit the content to only what was needed to do a basic tutorial, or I could spend
some time explaining concepts, creating code examples, and diving into what termi‐
nology, functions, and programming with pipelines-as-code really mean. If you’ve
scanned the book, you can probably figure out that I opted to do the latter.

My reasoning for that was due to my experiences over many years of training people
on using Jenkins. In a short class or workshop, we could only cover a small number of
topics. And people were always hungry for more—more detail and more examples
that they could apply. At the end of conference presentations, I would invariably get
lines of people asking for more information sources, examples, and where to find info
about such and such. Oftentimes, it would come down to “Google this” or “See this
question on Stack Overflow.” Nothing wrong with that, but also not the most conve‐
nient approach.

This book is intended to help you find answers on how to use this powerful technol‐
ogy. Granted, it’s more mechanics than DevOps, but chances are if you are reading
this, you already have some grasp of continuous integration (CI), continuous deploy‐
ment (CD), DevOps, and Jenkins, and are looking for how to make the most out of
the new Jenkins features.

So here are a few guidelines (feel free to use them or ignore them as fits your situa‐
tion):

• Don’t try to read the entire book through—unless you need to get a lot of sleep.
• Scan the sections listed in the Table of Contents. A chapter’s title only hints at its

full contents. Also, don’t forget about consulting the index to find topics you
might be interested in.

xix

• If you want to understand the basic ideas and get going quickly, read the first two
chapters and then start playing with some basic pipelines. As you run into ques‐
tions or problems, consult the appropriate chapters in the book for the particular
areas.

• If you already know the basics of Jenkins and want to convert to pipelines-as-
code, take a look at Chapter 10 to get some ideas on conversions and then con‐
sult other chapters as needed.

• If you’re looking to create a larger pipeline, take a look at the chapter on conver‐
sions and the various chapters on integration with the OS and other technologies
(Chapters 10–14). And don’t forget about security—there’s a chapter on that, too
(Chapter 5).

• If you’re looking to automate Jenkins, take a look at Chapter 15.
• If you run into problems, each chapter contains some details that may help. Look

at the notes, warnings, and sidebars for information on unusual situations or
functionality that may trip you up (or provide an advantage you hadn’t thought
about). There’s also a chapter on more general troubleshooting at the end of the
book.

I freely acknowledge the problem with any technical book these days: that the tech‐
nology is rapidly evolving. Over the course of writing the chapters for the book, I’ve
gone back and tried to keep up with the latest changes and innovations and revised as
appropriate. It is my firm belief that the material in the book will provide you with a
good foundation and reference for working with Jenkins 2. But, of course, you should
always consult the latest community documentation for updates and new innova‐
tions.

Finally, a request—even if you don’t need to read most of the book, if you find the
parts you read useful, please take a moment and post a review. The main way people
find out about useful books is by word of mouth and online reviews. Your review can
have a tremendous impact.

Thank you, and I hope to see you in a future training or conference!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xx | Preface

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

<Constant width in angle brackets>

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://resources.oreilly.com/examples/0636920064602.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

Preface | xxi

https://resources.oreilly.com/examples/0636920064602

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Jenkins 2: Up and Running by Brent
Laster (O’Reilly). Copyright 2018 Brent Laster, 978-1-491-97959-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Important Note About Code Examples in This Book

In many cases where code listings occur in the book, individual
lines of the code are too long to fit in the printed space. In those
cases, the code is wrapped around and continued on the next
line(s). There are generally not line continuation characters on
these lines. However, you can usually tell where code has been con‐
tinued from the line above by the semantics of the command or by
the indentation.

A Note About the Figures in This Book

Many screenshots and figures have been used throughout this book
to help clarify information for the reader. The quality and scaling
of some visual elements may vary depending on the methods used
to capture them. As well, since the Jenkins community frequently
releases updated versions of the application and its plugins, visual
representations shown in the book are subject to change.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

xxii | Preface

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/jenkins-2-ur.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The biggest thanks of all for this book has to go to the Jenkins community. Jenkins is
proof that community-developed and community-supported software can be of
incredible utility, versatility, and quality. To all those who have contributed to Jenkins
or played a role in developing plugins or training materials, answering questions, or
getting releases of Jenkins out, thank you.

On the individual side, there are many people to thank. The only way I can think to
do this is via some broad categories.

Thank you to Kohsuke Kawaguchi for creating Hudson—and then Jenkins—and
agreeing to write the foreword for this book. The technical drive and leadership you
bring to Jenkins through the community and CloudBees has made a huge and posi‐
tive difference in how we create and deliver software.

Thanks to the technical editors, Patrick Wolfe, Brian Dawson, and Chaim Krause.
Their investment of time in agreeing to review this book was significant—and appre‐
ciated. The content is immeasurably better because of their feedback.

Preface | xxiii

http://bit.ly/jenkins-2-ur
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Patrick Wolfe has been instrumental in providing technical updates and additional
information since the book’s early stages. This has helped to ensure that the book is,
hopefully, up to date with the current state of Jenkins in most cases (at least at its
release date). His input has been invaluable and I appreciate the time and openness
that he has given to this project.

Brian Dawson has also been extremely helpful in noting changes and places where
the book could be improved for Jenkins users. Though Brian and Patrick both work
at CloudBees, they exemplify the focus of the company on freely giving back to the
Jenkins community.

Chaim Krause is among the most dedicated people I know. Having worked with him
on two books now, I always appreciate his effort and attention to detail. He takes the
time to try things out and point out where wording or examples need updates or
don’t make sense initially. There are a number of details in the book that owe their
correctness to him.

A huge thanks to the staff at O’Reilly. First, thanks to Brian Foster, the editor who was
willing to take a chance on this book and supported it all along the way. Thanks to
Angela Rufino, who has helped keep the book on course, answered all of my ques‐
tions, and provided the oversight to see the book through to completion. Thanks also
to Nan Barber for her early work on the book editing.

Shoutouts as well to Dwight Ramsey and Rachel Head, the copyeditors, for making
my writing readable and clear, and to Justin Billing, the production editor, and Jas‐
mine Kwityn, the proofreader, for bringing everything together to create a final, pol‐
ished product.

Much of the material in this book was first shared and honed in the live training
classes I do for O’Reilly’s Safari platform and at conference workshops. Thanks to
Susan Conant (along with Brian Foster again) for listening to my ideas for Jenkins 2
live trainings and helping develop them. Also, thanks to Virginia Wilson for the addi‐
tional writing opportunities around CI and CD and to conference organizers Rachel
Roumeliotis and Audra Carter for shepherding the conference sessions.

Finally at O’Reilly, I want to thank the training staff who have supported the many
live training sessions I’ve done around Git and Jenkins. Thank you to Yasmina Greco,
Lindsay Ventimiglia, Nurul Ishak, and Shannon Cutt for overseeing all of the train‐
ings and keeping everything on track in such a professional manner.

I would be remiss if I did not also mention Jay Zimmerman on the conference side.
Jay is the founder and organizer of the No Fluff Just Stuff conference series and first
provided me an opportunity to speak at events all across the country on Jenkins.

Thanks to the management at SAS for supporting my initiatives to create and present
corporate training courses over the years to employees across the company and

xxiv | Preface

around the world. I especially thank Glenn Musial, Cyndi Schnupper, and Andy Dig‐
gelmann for their encouragement and support of my endeavors.

To everyone who’s attended one of my trainings or workshops on Jenkins, thanks—
especially to those who have asked a question and/or provided feedback to cause me
to think more about topics and ways to improve content.

To those at CloudBees, acting on behalf of the Jenkins community to evolve Jenkins,
answer questions, and provide documentation for all of us as users, your efforts are
appreciated. There are too many to list them all, but several names have come up
repeatedly as I researched material for the book, including Patrick Wolfe, Jessie Glick,
Andrew Bayer, James Dumay, Liam Newman, and James Brown. If you see content by
these guys, read it and you will likely learn something useful. Also thanks to Max
Arbuckle for his coordination of the Jenkins World conferences, where much of the
information about Jenkins 2 was first presented.

The deepest gratitude of all must go to my wife, Anne-Marie, and to my children.
This book was written over a long period of time, mostly nights and weekends, which
took time away from them while I wrote about something that seemed very foreign to
them. Nevertheless, they never failed in their words of encouragement. Anne-Marie,
you have been my greatest support and source of strength and encouragement, as you
are in everything. Thank you for that and for helping me keep a sense of order and
balance between life, dreams, and work. You bring me kindness, love, and inspiration
each and every day of our lives together, and for that I am truly grateful.

Finally, thanks to the readers of this book. It is my sincere hope that you will get value
out of it and it will help you make progress in your use of Jenkins and all the related
pieces.

Preface | xxv

CHAPTER 1

Introducing Jenkins 2

Welcome to Jenkins 2: Up and Running. Whether you’re a build administrator, devel‐
oper, tester, or any other role, you’ve come to the right place to learn about this evolu‐
tion in Jenkins. With this book, you’re on your way to leveraging the features of
Jenkins 2 to design, implement, and execute your pipelines with a level of flexibility,
control, and ease of maintenance that hasn’t been possible with Jenkins before. And,
no matter what your role, you’ll quickly see the benefits.

If you’re a developer, writing your pipeline-as-code will feel more comfortable and
natural. If you’re a DevOps professional, maintaining your pipeline will be easier
because you can treat it like any other set of code that drives key processes. If you’re a
tester, you’ll be able to take advantage of increased support for features such as paral‐
lelism to gain more leverage for your efforts. If you’re a manager, you’ll be able to
ensure the quality of your pipeline as you do for your source code. If you’re a Jenkins
user, you’re going to grow your skill base substantially and be ready for this new evo‐
lution of “pipelines-as-code.”

Getting to these goals requires understanding and mapping out the transition from
your existing implementations. Jenkins 2 represents a significant shift from the older,
more traditional, form-based versions of Jenkins. And with such a shift, there’s a lot
to learn. But it’s all manageable. As the first step, we need to lay a solid foundation of
Jenkins 2 fundamentals (What is it? What are the big-ticket items?), including its new
features, the changes in the working environment, and an understanding of the new
concepts that it is based on. That’s what this chapter and the next are all about. Some
of this you may already be familiar with. And if so, that’s great. But I suggest at least
scanning those sections that look familiar. There may be something in there that’s
new or has changed enough to be worth noting.

In this chapter, we’ll explore at a high level what makes Jenkins 2 different and how
that will fit in with what you’re accustomed to. We’ll look at three key areas:

1

• What is Jenkins 2, in terms of the significant new features and functionality it
introduces?

• What are the reasons (motivations and drivers) for the shift in Jenkins?
• How compatible is Jenkins 2 with previous versions? What are the compatibility

considerations?

Let’s get started by taking a look at what makes Jenkins 2 different from the tradi‐
tional Jenkins versions.

What Is Jenkins 2?
In this book, the term “Jenkins 2” is used a bit loosely. In our specific context, this is a
way to refer to the newer versions of Jenkins that directly incorporate support for
pipelines-as-code and other new features such as Jenkinsfiles that we will talk about
throughout the book.

Some of these features have been available for Jenkins 1.x versions for some time via
plugins. (And, to be clear, Jenkins 2 gains much of its new functionality from major
updates of existing plugins as well as entirely new plugins.) But Jenkins 2 represents
more. It represents a shift to focusing on these features as the preferred, core way to
interact with Jenkins. Instead of filling in web forms to define jobs for Jenkins, users
can now write programs using the Jenkins DSL and Groovy to define their pipelines
and do other tasks.

DSL here refers to Domain-Specific Language, the “programming language” for Jen‐
kins. The DSL is Groovy-based and it includes terms and constructs that encapsulate
Jenkins-specific functionality. An example is the node keyword that tells Jenkins that
you will be programmatically selecting a node (formerly “master” or “slave”) that you
want to execute this part of your program on.

Jenkins and Groovy
Jenkins has included a Groovy engine for a long time. This was used to allow
advanced scripting operations and to provide access/functionality not available
through the web interface.

The DSL is a core piece of Jenkins 2. It serves as a building block that makes other key
user-facing features possible. Let’s look at a few of these features to see how they dif‐
ferentiate Jenkins 2 from “legacy” Jenkins. We’ll quickly survey a new way to separate
your code from Jenkins in a Jenkinsfile, a more structured approach to creating work‐
flows with Declarative Pipelines, and an exciting new visual interface called Blue
Ocean.

2 | Chapter 1: Introducing Jenkins 2

The Jenkinsfile
In Jenkins 2, your pipeline definition can now be separate from Jenkins itself. In past
versions of Jenkins, your job definitions were stored in configuration files in the Jen‐
kins home directory. This meant they required Jenkins itself to be able to see, under‐
stand, and modify the definitions (unless you wanted to work with the XML directly,
which was challenging). In Jenkins 2, you can write your pipeline definition as a DSL
script within a text area in the web interface. However, you can also take the DSL
code and save it externally as a text file with your source code. This allows you to
manage your Jenkins jobs using a file containing code like any other source code,
including tracking history, seeing differences, etc.

The JobConfigHistory Plugin
For completeness, I should mention that there is a JobConfigHistory plugin available
for Jenkins that tracks the history of the XML configuration changes over time and
allows you to look at what was changed each time. It is available on the Jenkins wiki.

The filename that Jenkins 2 expects your job definitions/pipelines to be stored as is
Jenkinsfile. You can have many Jenkinsfiles, each differentiated from the others by the
project and branch it is stored with. You can have all of your code in the Jenkinsfile,
or you can call out/pull in other external code via shared libraries. Also available are
DSL statements that allow you to load external code into your script (more about
these in Chapter 6).

The Jenkinsfile can also serve as a marker file, meaning that if Jenkins sees a Jenkins‐
file as part of your project’s source code, it understands that this is a project/branch
that Jenkins can run. It also understands implicitly which source control management
(SCM) project and branch it needs to work with. It can then load and execute the
code in the Jenkinsfile. If you are familiar with the build tool Gradle, this is similar to
the idea of the build.gradle file used by that application. I’ll have more to say about
Jenkinsfiles throughout the book.

Figure 1-1 shows an example of a Jenkinsfile in source control.

What Is Jenkins 2? | 3

http://bit.ly/2J5fmyb

Figure 1-1. An example Jenkinsfile in source control

Declarative Pipelines
In the previous incarnations of pipelines-as-code in Jenkins, the code was primarily a
Groovy script with Jenkins-specific DSL steps inserted. There was very little imposed
structure, and the program flow was managed by Groovy constructs. Error reporting

4 | Chapter 1: Introducing Jenkins 2

and checking were based on the Groovy program execution rather than what you
were attempting to do with Jenkins.

This model is what we now refer to as Scripted Pipelines. However, the DSL for the
pipeline has continued to evolve.

In Scripted Pipelines, the DSL supported a large number of different steps to do tasks,
but was missing some of the key metafeatures of Jenkins-oriented tasks, such as post-
build processing, error checking for pipeline structures, and the ability to easily send
notifications based on different states. Much of this could be emulated via Groovy
programming mechanisms such as try-catch-finally blocks. But that required
more Groovy programming skills in addition to the Jenkins-oriented programming.
The Jenkinsfile shown in Figure 1-1 is an example of a Scripted Pipeline with try-
catch notification handling.

In 2016 and 2017, CloudBees, the enterprise company that is the majority contributor
to the Jenkins project, introduced an enhanced programming syntax for pipelines-as-
code called Declarative Pipelines. This syntax adds a clear, expected structure to pipe‐
lines as well as enhanced DSL elements and constructs. The result more closely
resembles the workflow of constructing a pipeline in the web interface (with Freestyle
projects).

An example here is post-build processing, with notifications based on build statuses,
which can now be easily defined via a built-in DSL mechanism. This reduces the need
to supplement a pipeline definition with Groovy code to emulate traditional features
of Jenkins.

The more formal structure of Declarative Pipelines allows for cleaner error checking.
So, instead of having to scan through Groovy tracebacks when an error occurs, the
user is presented with a succinct, directed error message—in most cases pointing
directly to the problem. Figure 1-2 shows a snippet of the output produced by the
following Declarative Pipeline with the enhanced error checking:

pipeline {
 agent any
 stages {
 stae('Source') {
 git branch: 'test', url: 'git@diyvb:repos/gradle-greetings'
 stash name: 'test-sources', includes: 'build.gradle,/src/test'
 }
 stage('Build') {

 }
 }
}

What Is Jenkins 2? | 5

Figure 1-2. Declarative Pipeline with enhanced error checking

Blue Ocean Interface
The structure that comes with Declarative Pipelines also serves as the foundation for
another innovation in Jenkins 2—Blue Ocean, the new Jenkins visual interface. Blue
Ocean adds a graphical representation for each stage of a pipeline showing indicators
of success/failure and progress, and allowing point-and-click access to logs for each
individual piece. Blue Ocean also provides a basic visual editor. Figure 1-3 shows an
example of a successful pipeline run with logs as displayed in Blue Ocean. Chapter 9
is devoted entirely to the new interface.

6 | Chapter 1: Introducing Jenkins 2

Figure 1-3. Displaying a successful run and examining logs via the Blue Ocean interface

New Job Types in Jenkins 2
Jenkins 2 comes with a number of new job types, mostly designed around taking
advantage of key functionalities such as pipelines-as-code and Jenkinsfiles. These
types make it easier than ever to automate job and pipeline creation and organize
your projects. Creation of each new job/item/project starts the same way.

New Job Types and Plugins

To be clear, having these new job types available is dependent on
having the requisite plugins installed. If you accept the recom‐
mended plugins during the install process, you will get the job
types discussed here.

Once Jenkins 2 is installed and you have logged in, you can create new jobs just as
before. As Figure 1-4 shows, the blurb under the “Welcome to Jenkins!” banner sug‐
gests users “create new jobs,” but the menu item for this is actually labeled “New
Item.” Most of these items are ultimately a kind of project as well. For our purposes,
I’ll use the terms “job,” “item,” and “project” interchangeably throughout the book.

What Is Jenkins 2? | 7

Figure 1-4. The Jenkins welcome screen: the launching point for creating new jobs, items,
and projects

When you choose to create a new item in Jenkins 2, you’re presented with the screen
to select the type of new job (Figure 1-5). You’ll notice some familiar types, such as
the Freestyle project, but also some that you may not have seen before. I’ll briefly
summarize the new job types here and then explain each of them in more detail in
Chapter 8.

8 | Chapter 1: Introducing Jenkins 2

Figure 1-5. Jenkins 2 project choices

Pipeline
As the name implies, the Pipeline type of project is intended for creating pipelines.
This is done by writing the code in the Jenkins DSL. This is the main type of project
we’ll be talking about throughout the book.

As already noted, pipelines can either be written in a “scripted” syntax style or a
“declarative” syntax style. Pipelines created in this type of project can also be made
easily into Jenkinsfiles.

Folder
This is a way to group projects together rather than a type of project itself. Note that
this is not like the traditional “View” tabs on the Jenkins dashboard that allow you to

What Is Jenkins 2? | 9

filter the list of projects. Rather, it is like a directory folder in an operating system.
The folder name becomes part of the path of the project.

Organization
Certain source control platforms provide a mechanism for grouping repositories into
“organizations.” Jenkins integrations allow you to store Jenkins pipeline scripts as Jen‐
kinsfiles in the repositories within an organization and execute based on those. Cur‐
rently GitHub and Bitbucket organizations are supported, with others planned for the
future. For simplicity in this book, we’ll talk mainly about GitHub Organization
projects as our example.

Assuming sufficient access, Jenkins can automatically set up an organization webhook
(a notification from the website) on the hosting side that will notify your Jenkins
instance when any changes are made in the repository. When Jenkins is notified, it
detects the Jenkinsfile as a marker in the repository and executes the commands in
the Jenkinsfile to run the pipeline.

Multibranch Pipeline
In this type of project, Jenkins again uses the Jenkinsfile as a marker. If a new branch
is created in the project with a Jenkinsfile in it, Jenkins will automatically create a new
project in Jenkins just for that branch. This project can be applied to any Git or Sub‐
version repository.

We’ll be taking a closer look at each of these new project types in Chapter 8 of the
book. However, it is also worth noting that Jenkins still supports the traditional work‐
horse of jobs—Freestyle projects. You can still create jobs using web-based forms
there and execute them as you have before. But certainly the emphasis in Jenkins 2 is
on Pipeline jobs.

It’s easy to see that Jenkins 2 represents a major shift from the traditional Jenkins
model. As such, it’s worth spending a few minutes to discuss the reasons for the
change.

Reasons for the Shift
Arguably, Jenkins has been the most prolific workflow and pipeline management tool
for many years. So what drove the need to make the shift in Jenkins 2? Let’s look at a
few potential causes, both external and internal to Jenkins.

DevOps Movement
The ideas behind continuous integration, continuous delivery, and continuous
deployment have been around for a number of years. But early on, they were more of
an end goal rather than a starting point. With the increased focus on DevOps in

10 | Chapter 1: Introducing Jenkins 2

recent years, users and enterprises have come to expect that tooling will support them
in implementing DevOps and continuous practices out of the box (or at least not
make it more difficult).

Given its place in the workflow automation space, it was somewhat expected (and
perhaps required) that Jenkins would evolve in its capabilities to support these indus‐
try drivers.

Assembling Pipelines
Creating any one job in the Jenkins Freestyle interface wasn’t necessarily problematic.
But trying to assemble multiple jobs into a continuous software delivery pipeline, that
could take code from commit to deployment, could frequently be a challenge. Jen‐
kins’ core functionality allowed for kicking off a specific job after another one fin‐
ished, but sharing data between jobs, such as workspaces, parameters, etc., was often
problematic or required special plugins or tricks to accomplish.

Resumability
A key part of Jenkins 2 functionality hinges on the ability of pipelines to be durable—
meaning jobs continue to run on agents or pick up where they left off if the master
node restarts. In fact, one of the requirements for a plugin to be compatible with Jen‐
kins 2 is the ability to serialize states so that those can be recovered in the event of a
master restart. That was not the case with prior versions of Jenkins; users and pro‐
cesses were often left in a place where they needed to either wade through logs to fig‐
ure out where things were left or just opt to start the process again from the
beginning.

Configurability
Since users were largely limited to the web-based interface, working with legacy Jen‐
kins usually required finding the right place on the screen, figuring out the buttons
and fields, and trying not to make typos when entering data. Workflow changes (such
as reordering steps in a job or changing the order in which jobs executed) could
require multiple interactions of clicking and dragging and typing, as opposed to sim‐
pler updates available in a text editor interface. In some cases where GUI elements
were provided to interface with tooling, ways to send particular commands to the
tooling through the Jenkins interface weren’t available. The web-based forms preva‐
lent in Jenkins lent themselves well to simple, structured choices, but not as well to
iterative or decision-based flow control.

Reasons for the Shift | 11

Sharing Workspaces
Traditionally in Jenkins, each job had its own workspace to pull down the source
code, do builds in, or do whatever other processing was needed. This worked well for
distinct jobs, isolating their environments and preventing writing over data. However,
when chaining jobs together, this could result in an ineffective process that was chal‐
lenging to overcome. For example, if multiple jobs in a pipeline needed to perform
processing on built artifacts, having to rebuild the artifacts each time was highly inef‐
ficient. Storing and retrieving the artifacts in a repository between execution of the
jobs required adding multiple steps and configuration to each job. A more efficient
strategy would be to share the workspace between the jobs—but doing this in legacy
Jenkins was not easily supported. Rather, the user was required to define custom
workspaces and employ parameters that pointed to the workspace, or use a special‐
ized plugin to make it work.

Specialized Knowledge
As the previous shared workspaces discussion illustrates, users often needed to know
the “right tricks” to implement something in the legacy Jenkins system that they could
easily do in a typical program or script (data transfer, flow control, external calls,
etc.).

Access to Logic
Legacy Jenkins typically relied on web forms to input data and stored it in XML con‐
figuration files in its home directory. With this implementation, there was no easy
way to view at a glance the logic involved in executing multiple jobs. For users not
familiar with it, understanding a Jenkins setup and job definitions could require quite
a bit of scrolling through screens, looking at values in forms, flipping back and forth
between global configurations, and so on. This made wider support, collaboration
among multiple users, and understanding of multijob pipelines challenging, espe‐
cially if there were substantial changes, reviews, or debugging that needed to be done.

Pipeline Source Management
As highlighted in the previous section, the “source” for a legacy Jenkins job was an
XML file. This was not only difficult to read, but difficult to change and get correct
without going through the web interface. The configuration was not designed to exist
in the same place as the source code. Configuration and source code were two sepa‐
rate entities, managed in two different ways.

A corollary was lack of auditability. While there were plugins to help track changes
over time, this was not as convenient as tracking simple source file changes and still
required the Jenkins application itself to be able to track changes in jobs.

12 | Chapter 1: Introducing Jenkins 2

Competition
One additional factor that undoubtedly has come into play here is that other applica‐
tions have sprung up around setting up pipelines-as-code. There are various exam‐
ples, such as Pivotal’s Concourse, which uses containerization to do jobs and allows
pipelines to be described in YAML files.

Meeting the Challenges
So how does Jenkins 2 meet these challenges? I’ve already alluded to some of the
ways, but there are a few points that are worth highlighting in this space:

• Pipelines are treated as first-class citizens. That means that there is design and
support for working with pipelines as an entity in the application, rather than
pipelines being something produced from connecting together jobs in Jenkins.

• Pipelines can be programmed through coding, rather than just expressed
through a configuration interface. This allows for additional logic and workflows
to be used, as well as programming constructs that were not available or not sur‐
faced in legacy Jenkins.

• There is a structured DSL specifically to program pipelines.
• A pipeline can be created directly as a script in a job without requiring any sub‐

stantial web form interaction. Additionally, they can be created completely sepa‐
rately in Jenkinsfiles.

• Pipelines stored as Jenkinsfiles can now be stored with the source code separate
from Jenkins.

• The DSL includes functions to easily share files across workspaces.
• There is more advanced, built-in support for working with Docker containers.

All of this leads to easier maintainability and testing as well as more resiliency. We
can handle exception cases with typical constructs and better survive events like
restarts.

Before we go further into the Jenkins 2 features, it’s worth taking a moment to talk
about compatibility between the old and new.

Compatibility
For the vast majority of items, there are corresponding ways to get the same function‐
ality through pipelines as through the traditional web interface and Freestyle jobs. In
fact, there may be multiple ways, some built-in and some more contrived. This can
best be described with a brief discussion about the two different syntax styles that Jen‐
kins supports for creating pipelines.

Meeting the Challenges | 13

Pipeline Compatibility
As noted, Jenkins 2 now supports two styles of pipelines—scripted and declarative—
each with their own syntax and structure. We will delve more into both types in the
next few chapters, but for now let’s look at one specific example: post-build notifica‐
tion in a traditional Freestyle structure and corresponding functionality in Scripted
and Declarative Pipelines.

Figure 1-6 shows a traditional Freestyle project’s post-build configuration for a typical
operation, sending email notifications. In a Freestyle project, there’s a specific web
page element for this with fields to fill in to do the configuration.

Figure 1-6. Post-build actions in a Freestyle project

In the syntax for a Scripted Pipeline, we don’t have a built-in way to do such post-
build actions. We are limited to the DSL steps plus whatever can be done with Groovy
coding. So, to always send an email after a build, we need to resort to coding as
shown here:

node {
 try {
 // do some work
 }
 catch(e) {
 currentBuild.result = "FAILED"
 throw e
 }
 finally {
 mail to:"buildAdmin@mycompany.com",
 subject:"STATUS FOR PROJECT: ${currentBuild.fullDisplayName}",
 body: "RESULT: ${currentBuild.result}"
 }
}

Assuming we have our email setup already configured globally in Jenkins, we can use
the DSL mail statement to send an email. Because we don’t have a pipeline statement/

14 | Chapter 1: Introducing Jenkins 2

feature in the scripted syntax to always do something as a post-build operation, we
fall back to the Groovy try-catch-finally syntax.

This highlights compatibility exceptions in the case of some Jenkins functions such as
post-build processing. DSL constructs can be missing for cases like this. In those
instances, you may have to resort to using Groovy constructs that can mimic the pro‐
cessing that Jenkins would do. (This approach is covered in more detail in Chapter 3.)

If you choose to use the Declarative Pipeline structure, then chances are good that
you will have constructs available to handle most of the common Jenkins functions.
For example, in the Declarative Pipeline syntax, there is a post section that can be
defined to handle post-processing steps along the lines of the traditional post-build
processing and notifications (we cover this more in Chapter 7):

pipeline {
 agent any
 stages {
 stage ("dowork") {
 steps {
 // do some work
 }
 }
 }
 post {
 always {
 mail to:"buildAdmin@mycompany.com",
 subject:"STATUS FOR PROJECT: ${currentBuild.fullDisplayName}",
 body: "RESULT: ${currentBuild.result}"
 }
 }
}

Compatibility doesn’t just come into play in the actual coding. An additional area
that’s worth mentioning is plugin compatibility.

Plugin Compatibility
As with legacy Jenkins, the majority of functionality for Jenkins 2 is provided through
integration with plugins. With the advent of Jenkins 2, new requirements were cre‐
ated for plugins to be compatible. We can broadly categorize the requirements into
two categories: they must survive restarts and provide advanced APIs that can be
used in pipeline scripts.

Surviving restarts
One of the features/requirements of Jenkins 2 pipelines is that they must be able to
survive restarts of a node. In order to support this, the main criterion is that stateful
objects in plugins be serializable—that is, able to have their state recorded. This is not

Compatibility | 15

a given for many of the constructs in Java and Groovy, so plugins may have to be sub‐
stantially changed to meet this requirement.

Having Restartable Pipeline Scripts

If there is a certain piece of code that is not serializable, there are
ways to work around its use in some cases. See Chapter 16 for some
suggestions on how to work around this type of issue.

Providing scriptable APIs
To be compatible with writing pipeline scripts, steps that were formerly done by fill‐
ing in the Jenkins web forms now have to be expressible as pipeline steps with com‐
patible Groovy syntax. In many cases, the terms and concepts may be close to what
was used in the forms. Where Foo was a label for a text entry box in the form-based
version of the plugin, there may now be a DSL call with Foo as a named parameter
with a value passed in.

As an example, we’ll use configuration and operations for Artifactory, a binary arti‐
fact manager. Figure 1-7 shows how we might configure the build environment for a
Freestyle Jenkins job to be able to access Artifactory repositories.

Figure 1-7. Configuring Artifactory servers in a Freestyle job

And here’s how we could do the similar configuration in a pipeline script:

16 | Chapter 1: Introducing Jenkins 2

// Define new Artifactory server based on our configuration
def server = Artifactory.server "LocalArtifactory"
// Create a new Artifactory for Gradle object
def artifactoryGradle = Artifactory.newGradleBuild()
 artifactoryGradle.tool = "gradle4" // Tool name from Jenkins configuration
 artifactoryGradle.deployer repo:'libs-snapshot-local', server:server
 artifactoryGradle.resolver repo:'remote-repos', server:server

Beyond configuration, we have the actual operations that need to be done. In the
Freestyle jobs, we have checkboxes and web forms again to tell Jenkins what to do.
(See Figure 1-8.)

Figure 1-8. Specifying Artifactory operations in a Freestyle job

And, again, in the context of a pipeline script, if the plugin is pipeline-compatible we
will likely have similar DSL statements to make the API calls to provide the same
functionality. The following shows a corresponding pipeline script example for the
preceding Artifactory Freestyle example:

Compatibility | 17

// buildinfo configuration

def buildInfo = Artifactory.newBuildInfo()

buildInfo.env.capture = true

// Deploy Maven descriptors to Artifactory

artifactoryGradle.deployer.deployMavenDescriptors = true

// extra gradle configurations
artifactoryGradle.deployer.artifactDeploymentPatterns.addExclude("*.jar")

artifactoryGradle.usesPlugin = false

// run the Gradle piece to deploy

artifactoryGradle.run buildFile: 'build.gradle'
 tasks: 'cleanartifactoryPublish'
 buildInfo: buildInfo

// publish build info

server.publishBuildInfo buildInfo

In some cases, pipeline scripts may also take advantage of items already configured in
the traditional Jenkins interface, such as global tools. An example with the use of Gra‐
dle is shown next.

In the first figure (Figure 1-9), we see the global tool setup for our Gradle instance.
Then we see it used in a Freestyle project (Figure 1-10), and finally we see it used in a
pipeline project via a special DSL step called tool that allows us to refer back to the
global configuration based on the supplied name argument.

Figure 1-9. Global tool configuration for Gradle

18 | Chapter 1: Introducing Jenkins 2

Figure 1-10. Using the global tool Gradle version in a Freestyle project

stage('Compile') { // Compile and do unit testing
 // Run gradle to execute compile
 sh "${tool 'gradle3.2'}/bin/gradle clean build"
}

Declarative Pipelines also have a tool directive that allows for the same functionality
in that type of pipeline. (Chapter 7 discusses Declarative Pipelines in detail.)

Compatibility | 19

Global Configuration
In older versions of Jenkins, most of the global configuration was set up via the Con‐
figure System page accessible from the Manage Jenkins screen. In the current versions
of Jenkins, global configuration is split between Configure System and Global Tool
Configuration pages.

It can be confusing at first to remember which section you should go to for which
kinds of configuration. One trick I use is to think of “systems” as being similar to
“servers” (easy to remember because they both start with “s”). In general, any kind of
server setup or similar task is done on the Configure System screen.

Also, if you think of tools as frequently being standalone executable applications (Git,
Gradle, etc.), then those belong in the Global Tool Configuration section. Obviously
these aren’t exact classifications, but they may serve you as a handy memory device
when you are first getting familiar with this arrangement.

As we have seen, providing APIs (and thus plugin pipeline compatibility) is central to
being able to execute traditional functionality in pipelines. Eventually all plugins will
need to be Pipeline-compatible, but at this point, there are still plugins that are not
compatible, or not completely compatible. There are places a user can go to check for
compatibility, though.

Checking Compatibility
To help users know whether or not existing plugins are compatible with using pipe‐
lines in Jenkins 2, there are a couple of websites available. Note that information here
is not guaranteed to be up to date, but these sites offer probably the best summary
information available.

One site is on GitHub, as shown. An example of the page from it is shown in
Figure 1-11.

20 | Chapter 1: Introducing Jenkins 2

http://bit.ly/2qQ3gT5

Figure 1-11. GitHub page for Jenkins plugin pipeline compatibility

The other is the Pipeline Steps Reference on the Jenkins.io site, which lists the
pipeline-compatible plug-ins.

Some of these specific plugins and their steps will be discussed in later chapters of
this book.

Summary
This chapter has provided a quick survey of what makes Jenkins 2 different from tra‐
ditional Jenkins. There is core support for pipelines both as jobs themselves and also
separate from Jenkins, as Jenkinsfiles. In writing your code for a pipeline, you can

Summary | 21

https://jenkins.io/doc/pipeline/steps/

choose from the traditional, more flexible Scripted Pipeline or the more structured
Declarative Pipeline syntax.

Jenkins 2 also provides several new project types. The Folder type allows for grouping
projects together under a shared namespace and shared environment. The Multi‐
branch Pipeline type provides easy automated job creation per branch and continu‐
ous integration, all triggered by Jenkinsfiles residing in the branches. And the
organization project type extends the multibranch functionality across all projects in
an organization structure on GitHub or Bitbucket.

We also looked at some of the drivers for the evolution from the traditional Jenkins
model to the pipeline-centric model. These included the growth of pipelines as an
entity, as well as the challenges of making multiple jobs work together across Jenkins.
Another factor was the traditional tight coupling of the pipeline configuration to the
Jenkins application.

Finally, we discussed some of the compatibility factors to be aware of when moving
from classic Jenkins to Jenkins 2. We will discuss specifics for various applications
throughout the book, but familiarity with the general ideas laid out here will give you
a good foundation to understand this, and begin thinking about what it may take to
convert your existing pipelines.

Speaking of foundations, in Chapter 2 we’ll cover more of the foundational aspects of
working with pipelines in Jenkins 2. This will help to fill out the basic knowledge you
need to begin making use of pipelines.

22 | Chapter 1: Introducing Jenkins 2

CHAPTER 2

The Foundations

Now that you understand the big ideas around which Jenkins 2 is built, we can move
on to how Jenkins 2 supports pipelines-as-code. A key first step is understanding the
development environment that Jenkins provides specifically for working with pipe‐
lines. This includes the systems we run our pipelines on as well as the interfaces for
creating, executing, and monitoring pipelines. Additionally, you need to know about
some of the basic structures that make up a pipeline, and how they fit together.
Together, these elements will provide a solid foundation to build on for the rest of the
book.

We’ll approach this task by concentrating on four basic areas:

• The two styles of syntax that can be used for creating pipelines
• The systems used to run the pipeline processes
• The basic structure of a pipeline
• The support environment (and tooling) that Jenkins provides for pipeline devel‐

opment and execution

We’ll start by defining and disambiguating some key concepts and terminology used
with pipelines. Then we’ll survey the required DSL structures. Along the way, we’ll
look at how to use the built-in editor and how to use a new tool in Jenkins to help
figure out pipeline syntax.

Once you know how to input your pipeline code, we’ll move on to executing a pipe‐
line and understanding the new views that Jenkins provides. We’ll also look at how to
access logs from a run. Finally, we’ll explore new functionality in Jenkins that allows
us to try out changes to pipelines, without overwriting our existing versions.

23

Let’s get started by learning more about the different pipeline syntax styles supported
in Jenkins 2.

Syntax: Scripted Pipelines Versus Declarative Pipelines
In Chapter 1, we discussed some of the motivations that led to the shift to pipelines-
as-code and making that support central to Jenkins 2. As we author our pipelines in
Jenkins, we now have two different styles we can use to code them: scripted syntax
and declarative syntax.

Scripted syntax refers to the initial way that pipelines-as-code have been done in Jen‐
kins. It is an imperative style, meaning it is based on defining the logic and the pro‐
gram flow in the pipeline script itself. It is also more dependent on the Groovy
language and Groovy constructs—especially for things like error checking and deal‐
ing with exceptions.

Declarative syntax is a newer option in Jenkins. Pipelines coded in the declarative
style are arranged in clear sections that describe (or “declare”) the states and out‐
comes we want in the major areas of the pipeline, rather than focusing on the logic to
accomplish it. The following code example shows a pipeline written in scripted syn‐
tax on top and a similar one written in declarative syntax underneath:

// Scripted Pipeline
node('worker_node1') {
 stage('Source') { // Get code
 // get code from our Git repository
 git 'git@diyvb2:/home/git/repositories/workshop.git'
 }
 stage('Compile') { // Compile and do unit testing
 // run Gradle to execute compile and unit testing
 sh "gradle clean compileJava test"
 }
}

// Declarative Pipeline
pipeline {
 agent {label 'worker_node1'}
 stages {
 stage('Source') { // Get code
 steps {
 // get code from our Git repository
 git 'git@diyvb2:/home/git/repositories/workshop.git'
 }
 }
 stage('Compile') { // Compile and do unit testing
 steps {
 // run Gradle to execute compile and unit testing
 sh "gradle clean compileJava test"
 }

24 | Chapter 2: The Foundations

 }
 }
}

You can think of it this way: Scripted Pipelines are more like scripts or programs
written in any imperative language to execute the program flow and logic, while
Declarative Pipelines are more like what was traditionally done in Jenkins if you were
using the web forms—filling in key information in predefined sections that have a
predefined purpose and expected behavior. Like with the traditional web forms, when
you run a Declarative Pipeline the type of each section defines what happens and
how, based on the data you entered.

Choosing Between Scripted and Declarative Syntax
So what are the factors that come into play in choosing between scripted and declara‐
tive? As with most things, it’s not an exact science; in any particular situation, one
model may work better than the other based on the need, the structures and flows to
be implemented, and the skill and background of the person(s) implementing the
pipeline.

We can best derive guidance here by looking at the advantages and disadvantages of
each model and then making some general observations.

Briefly, a Scripted Pipeline has the following advantages:

• Generally fewer sections and less specification needed
• Capability to use more procedural code
• More like creating a program
• Traditional pipeline-as-code model, so more familiar and backward compatible
• More flexibility to do custom operations if needed
• Able to model more complex workflows and pipelines

A Scripted Pipeline has the following disadvantages:

• More programming required in general
• Syntax checking limited to the Groovy language and environment
• Further away from the traditional Jenkins model
• Potentially more complex for the same workflow if it can be comparably done in

a Declarative Pipeline

A Declarative Pipeline has the following advantages:

• More structured—closer to the traditional sections of Jenkins web forms

Syntax: Scripted Pipelines Versus Declarative Pipelines | 25

• More capability to declare what is needed, so arguably more readable
• Can be generated through the Blue Ocean graphical interface
• Contains sections that map to familiar Jenkins concepts, such as notifications
• Better syntax checking and error identification
• Increased consistency across pipelines

A Declarative Pipeline has the following disadvantages:

• Less support for iterative logic (less like a program)
• Still evolving (may not support or have constructs for things you would do in tra‐

ditional Jenkins)
• More rigid structure (harder to handle custom pipeline code)
• Currently not well suited for more complex pipelines or workflows

In short, the declarative model should be easier to learn and maintain for new pipe‐
line users or those wanting more ready-made functionality like the traditional Jenkins
model. This comes at the price of less flexibility to do anything not supported by the
structure.

The scripted model offers more flexibility. It provides the “power-user” option, allow‐
ing users to do more things with less imposed structure.

But, ultimately, either model can be made to work in most cases.

We’ll talk more about declarative syntax and pipelines in Chapter 7, which is devoted
to helping you understand that model. In this book, which only aims to provide small
examples of specific concepts, we won’t worry about the distinctions or differences in
syntax. Where I need to explain larger constructs, I’ll include examples of both,
where it would make a difference.

For now, let’s move on to exploring the systems that Jenkins can make use of to run
these pipelines.

Systems: Masters, Nodes, Agents, and Executors
Regardless of whether we are using scripted or declarative syntax, every Jenkins pipe‐
line has to have one or more systems to execute code on. The term system is used here
as a generic way to describe all of the items we’re talking about. Keep in mind,
though, that there can be multiple instances of Jenkins on any given system or
machine.

26 | Chapter 2: The Foundations

In traditional Jenkins, there were only two categories: masters and slaves. Those are
probably familiar to you. Here’s a brief description of similar terms, highlighting
some of the main points for comparison.

Master
A Jenkins master is the primary controlling system for a Jenkins instance. It has com‐
plete access to all Jenkins configuration and options and the full list of jobs. It is the
default location for executing jobs if another system is not specified.

However, it is not intended for running any heavyweight tasks. Jobs requiring any
substantial processing should be run on a system other than the master.

Another reason for this is that a job running on the master has the master’s access to
all data, configuration, and operations, which can pose a security risk. It is also
important to note that a master system should not have potentially blocking opera‐
tions executed on it, since it needs to be able to respond and manage operations con‐
tinuously.

Node
Node is the generic term that is used in Jenkins 2 to mean any system that can run
Jenkins jobs. This covers both masters and agents, and is sometimes used in place of
those terms. Furthermore, a node might be a container, such as one for Docker.

A master node is always present in any Jenkins installation, but for the reasons
already cited, it is not recommended to run jobs on the master node. We’ll talk more
about how to define nodes in an upcoming section of this chapter.

Agent
An agent is the same as what earlier versions of Jenkins referred to as a slave. Tradi‐
tionally in Jenkins, this refers to any nonmaster system. The idea is that these systems
are managed by the master system and allocated as needed, or as specified, to handle
processing the individual jobs. For example, we might allocate different agents to do
different builds for different OS flavors, or we might allocate multiple agents to run in
parallel for testing.

In order to simplify the load on these systems and reduce security concerns, typically
only a lightweight Jenkins client application with limited access to resources is
installed to handle running jobs.

Systems: Masters, Nodes, Agents, and Executors | 27

As far as the relationship between agents and nodes goes, agents run on nodes. In a
Scripted Pipeline, “node” is used as the term for a system with an agent. In a Declara‐
tive Pipeline, specifying a particular agent to use allocates a node.

Directives Versus Steps
There is a high-level distinction we can make between a node and an agent in terms
of how they are used in the respective declarative versus scripted syntax.

node is associated with a Scripted Pipeline. It is technically a step, meaning something
that can be used to cause an action to occur in a pipeline. It allocates an executor on a
node with an agent and further runs code that is in its definition block. The following
code excerpt shows a simple example of specifying a node step:

// Scripted Pipeline
node('worker') {
 stage('Source') { // Get code
 // Get code from our Git repository

agent, on the other hand, is a directive in a Declarative Pipeline. Unless you use the
special case agent none, it causes a node to be allocated. A simple agent declaration
is shown here:

// Declarative Pipeline
pipeline {
 agent {label:'worker'}
 stages {
 stage('Source') { // Get code

Outside of the syntax for the two different pipeline specifications, this distinction is
not significant and you can think of them as the same. Just use node for Scripted Pipe‐
lines and agent for Declarative Pipelines.

Executor
Related to all the previous systems are executors. Let’s clarify here what Jenkins
means with this term.

Basically, an executor is just a slot in which to run a job on a node/agent. A node can
have zero or more executors. The number of executors defines how many concurrent
jobs can be run on that node. When the master funnels jobs to a particular node,
there must be an available executor slot in order for the job to be processed immedi‐
ately. Otherwise, it will wait until an executor becomes available.

The number of executors and other parameters can be configured when creating
nodes, the subject of our next section.

28 | Chapter 2: The Foundations

Figure 2-1 shows a representation comparing the different kinds of systems we just
talked about.

Figure 2-1. Types of systems involved in doing work in Jenkins

Creating Nodes
In traditional versions of Jenkins, jobs would run either on the master instance or on
slave instances. As noted previously, in Jenkins 2 terminology these kinds of instances
are both referred to by the generic term “node.” We can set up new nodes just as we
would have set up slaves on legacy Jenkins instances. A quick example follows.

To start with, after logging into Jenkins, go to the Manage Jenkins page and select the
Manage Nodes link (Figure 2-2).

Figure 2-2. The Manage Nodes option on the Manage Jenkins page

Systems: Masters, Nodes, Agents, and Executors | 29

On the Manage Nodes screen, select New Node and fill in the forms, including the
number of executors (see Figures 2-3 and 2-4).

Figure 2-3. Node basics: choosing the node’s name and type

Figure 2-4. Entering parameters to define how the node should be used

If you need to first set up credentials, you can find more information about that in
Chapter 5. Notice that you also have checkboxes near the bottom of the page for

30 | Chapter 2: The Foundations

“Environment variables” and “Tool Locations.” Checking these will allow you to spec‐
ify particular variables and tools for use on this node. This is only necessary if you
need or want to use ones other than those set up on the master.

In the Labels section of the configuration, you can supply multiple labels. Spaces can
be included in a label name with quotes around the label.

A quick note about node labels
Labels can be used for both system and user purposes. For example, labels can be
used to:

• Identify a specific node (via a unique label).
• Group classes of nodes together (by giving them the same label).
• Identify some characteristic of a node that is useful to know for processing (via a

meaningful label, such as “Windows” or “West Coast”).

The last bullet is a recommended practice.

These labels can be referenced directly in the pipeline to define where to run code.
An example is discussed in “node” on page 32.

For information on the different launch methods and other settings for nodes, con‐
sult the online Jenkins documentation.

Once nodes are available to execute code, we can start focusing on creating pipelines.
We do this with a structured program using the Jenkins DSL.

Structure: Working with the Jenkins DSL
As previously mentioned, DSL stands for Domain-Specific Language, a type of pro‐
gramming language for a particular context. The context in Jenkins is creating pipe‐
lines.

The Jenkins DSL, like many others, is written using the Groovy programming lan‐
guage. This is done because of some of the nice features that Groovy provides that
make creating DSLs easier than in other languages. However, that also comes with a
caution against relying on Groovy aspects too heavily (see the sidebar on the Jenkins
DSL and Groovy to follow).

In this section, we’ll cover some basic terms and the structure and functionality of a
Jenkins DSL pipeline. We’ll be talking about this in terms of a Scripted Pipeline
(meaning without the enhancements that the declarative functionality adds). In

Structure: Working with the Jenkins DSL | 31

Chapter 7, we’ll explain the differences and look at the changes that creating a Declar‐
ative Pipeline entails.

The Jenkins DSL and Groovy
The DSL for Jenkins pipelines is based on the Groovy language.

This means we can use Groovy constructs and idioms in our pipeline code if needed.

Normally, however, we want to avoid using any strictly Groovy code that is too com‐
plex, or at least separate it from the main script. The reason is that too much Groovy
code makes the script less readable and maintainable by someone who doesn’t know
Groovy.

Declarative Pipelines prevent the use of nearly all Groovy code outside of their
defined structure. They also provide more capabilities that resemble traditional Jen‐
kins features, so you have to resort less to using custom Groovy code.

Leveraging Other Languages

If you need to access/use functions written in Groovy or another
language, or ones that involve a more iterative workflow, you can
make them part of a shared library, as we’ll talk about in Chapter 6.
That way they will be abstracted out from your main pipeline code
base.

Here’s a very simple pipeline expressed in the Jenkins DSL:

node ('worker1') {

 stage('Source') { // for display purposes

 // Get some code from our Git repository

 git 'https://github.com/brentlaster/gradle-greetings.git'

 }
}

Let’s break this down and explain what each part is doing.

node
First, we have the keyword node. As mentioned in “Node” on page 27, we can think of
this as the new term for a master or agent. Nodes are defined through the Manage
Jenkins → Manage Nodes interface and can be set up just like slaves. Each node then

32 | Chapter 2: The Foundations

http://www.groovy-lang.org

has a Jenkins agent installed on it to execute jobs. (Note that in this case we are
assuming we have a node already set up on the Jenkins instance labeled worker1.)

Nodes and Agents

We previously talked about the difference between nodes and
agents in Jenkins terminology. In the context here, we’re using
agent to mean the Jenkins code running on the “nonmaster” nodes.

This line tells Jenkins on which node it should run this part of the pipeline. It binds
the code to the particular Jenkins agent program running on that node. A particular
one is specified by passing a defined name as a parameter (label). This must be a node
or system that has already been defined and that your Jenkins system is aware of. You
can omit supplying a label here, but if you omit a label, then you need to be aware of
how this will be handled:

• If master has been configured as the default node for execution, Jenkins will run
the job on master. (master can be configured to not run any jobs.)

• Otherwise, an empty node label (or agent any in declarative syntax) will tell Jen‐
kins to run on the first executor that becomes available on any node.

On the other hand, using multiple names here (with logic operators) is perfectly valid
and can make a lot of sense when you need to select nodes based on multiple dimen‐
sions (such as location, type, etc.). The following sidebar explains how to take advan‐
tage of this functionality.

Leveraging Multiple Labels on a Node
In the configuration for a node, you can assign multiple labels in the Labels entry box.
To do this, separate them by spaces. Then, when specifying a node to execute part of
your pipeline, you can specify multiple labels using standard logic operands such as
|| for “or” and && for “and.”

Why would you do this? Suppose that you had two sets of Linux systems on different
coasts of the United States. Depending on the particular processing, you might want
some Jenkins jobs sent to one set, and some sent to the other set.

So, in this case, you could add the label Linux to all of the nodes and an additional
label to indicate where each is located—i.e., east or west. Once that’s done, you could
specify which nodes to use by using combinations of operands and labels. For exam‐
ple, to direct a job to run on a Linux node on the East Coast, you could use:

node("linux && east") {

Structure: Working with the Jenkins DSL | 33

There are more sophisticated operands available as well, which you’ll find if you look
in the help for the node step.

The braces construct ({}) here is known as a Groovy closure and essentially marks the
start and end of the block of code associated with this node for this part of the pipe‐
line. Closures also act like entities that can be passed around in a program, with the
last statement being the return value. (See the Groovy documentation for more infor‐
mation about closures.)

When this part of the pipeline is executed, it connects to the node, creates a work‐
space (working directory) for the code to execute in, and schedules the code to run
when an executor is available.

Nodes and Mappings

In addition to defining nodes to run particular stages, nodes can
also be associated with mappings to designate where to run other
sections of code, such as in the parallel structure shown here:

parallel (
 win: { node ('win64'){
 ...
 }},
 linux: { node ('ubuntu') {
 ...
 }},
)

stage
Within a node definition, a stage closure allows us to group together individual set‐
tings, DSL commands, and logic. A stage is required to have a name, which provides a
mechanism for describing what the stage does. As of the time of this writing, it
doesn’t actually do anything in the script but does show up in the output to identify
the stage when running a pipeline.

How much of the pipeline’s logic goes into a particular stage is up to the developer.
However, a general practice is to create stages that mimic the separate pieces of a tra‐
ditional pipeline. For example, you might have a stage that handles retrieving the
source code, one that handles compiling the source code, one that handles running
unit tests, one that handles integration tests, and so on. We’ll use this sort of structure
when we work with example pipelines in the book.

34 | Chapter 2: The Foundations

http://groovy-lang.org/closures.html

steps
Inside the stage, we have the actual Jenkins DSL commands. These are referred to as
steps in Jenkins terminology. A step is the lowest level of functionality defined by the
DSL. These are not Groovy commands, but can be used with Groovy commands. In
the case of our example, we have this initial step to get our source:

git 'https://github.com/brentlaster/gradle-greetings.git'

This is pretty straightforward to figure out. It calls Git and passes a parameter—the
location from which to pull the code (using the secure HTTP protocol). This is using
a shorthand format for the full step syntax.

You will be encountering both the shorthand and full step syntax when working with
the DSL in scripts, so it’s worth taking a moment to better understand the syntax
model in more detail.

Understanding step syntax
Steps in the Jenkins DSL always expect mapped (named) parameters. To illustrate
this, here’s another version of the git step definition:

git branch: 'test',
 url: 'https://github.com/brentlaster/gradle-greetings.git'

Notice that we have two named parameters here, mapped to their intended values:
branch to 'test' and url to 'http://github.com/brentlaster/gradle-

greetings.git'.

This syntax itself is actually a shorthand notation for a mapping syntax used by
Groovy. The [named parameter: value, named parameter: value] form equates to the
Groovy mapping syntax of [key: value, key: value]. The named parameters function as
the keys of the map.

Groovy also allows skipping the parentheses for parameters. Without these shortcuts,
the longer version of our step would be:

git([branch: 'test',
 url: 'http://github.com/brentlaster/gradle-greetings.git'])

Another trick is this: if there is a single required parameter, and only one value is
passed, the parameter name can be omitted. This is how we arrive at our short ver‐
sion of the step as:

 git 'https://github.com/brentlaster/gradle-greetings.git'

The required url parameter here is the only one we needed to provide in this case.

Structure: Working with the Jenkins DSL | 35

If a named parameter is not required, then the default parameter is the script object.
An example here is with the bat step, which is used to run batch or shell processing
on Windows system. Writing this with the full syntax would look like this:

bat([script: 'echo hi'])

Taking into account the shortcuts that are offered, this can simply be written as:

bat 'echo hi'

Figure 2-5 shows a graphical representation of the relationship between nodes, stages,
and steps.

Figure 2-5. Relationship between nodes, stages, and steps

Now that we understand the basic structure of a Scripted Pipeline, let’s examine the
process of creating a pipeline job in Jenkins and using the associated tools to create a
script.

Supporting Environment: Developing a Pipeline Script
In all versions of Jenkins, you begin a new project by creating a new item of a particu‐
lar type. Jenkins 2 supports an integrated project type of “Pipeline.” This type of
project creates an environment to develop code to define a pipeline. As you start to
work with this type of project, it will be beneficial to understand how to set it up and
how to use the environment to create, edit, run, and monitor your pipelines.

A pipeline script in Jenkins can either be created within a Jenkins job of type Pipeline
or as an external file named Jenkinsfile. If created as a Jenkinsfile, then it can be stored
with the source. While learning about creating DSL scripts here, we’ll use the
approach of creating a script in a pipeline job. Creating a Jenkinsfile can be done in
any editor, or it can even be copied from the pipeline job. However, there may need to
be adjustments made for actions such as calling external routines. We’ll look at those
considerations more when we discuss Jenkinsfiles in detail in Chapter 10.

36 | Chapter 2: The Foundations

Starting a Pipeline Project
When you select Pipeline as the type of project to create, you’re presented with a
familiar web-based form for a new Jenkins project. Each major section of the form
has a tab associated with it. You start out on the General tab (Figure 2-6).

Tabs and Navigation

The tabs for sections make it easier to jump between the major sec‐
tions of the page. However, you can still scroll to the individual sec‐
tions as well.

Figure 2-6. The General tab of a new Pipeline project

This tab should look familiar if you’ve used Jenkins before. You can configure any of
these sections as needed or not. The main tab we are interested in for our new Pipe‐
line project is the Pipeline tab. Switching to that presents a text entry screen where we
can enter the code for our pipeline script. Figure 2-7 shows an example of the tab
with a simple pipeline script typed in.

Supporting Environment: Developing a Pipeline Script | 37

Figure 2-7. Pipeline tab with a simple script example

The code for our pipeline is entered through the built-in Jenkins editor.

Visual Editor

With the advent of the new Blue Ocean interface and Declarative
Pipelines, a visual pipeline editor is available in Jenkins. The Blue
Ocean interface and editor are discussed in Chapter 9.

The Editor
As you begin to work with the editor, there a couple of features that are helpful to be
aware of:

Syntax checking
Where possible, the editor will make an attempt to check for valid Groovy syntax
and references. As Figure 2-8 shows, it will mark any problems it finds with a red
square with an “X” in it beside the offending line.

38 | Chapter 2: The Foundations

Figure 2-8. Error indications in the pipeline script window

However, it is possible that not all the errors flagged are actual errors—in some
cases the script may not have been able to yet resolve a dependency or an import
that was recently created, although this is the exception rather than the rule.

Extended error information
While the “X” indicator provides a quick visual way to identify lines with prob‐
lems, it is not very informative beyond that. You can see more information by
hovering over the “X.” When you do this, a pop-up is displayed with the full text
of the error (Figure 2-9).

Figure 2-9. Hovering displays the full text of the error message

Autocomplete
The editor also includes autocomplete functionality for items like brackets. That
is, if you type an opening bracket, {, the editor will automatically insert (after a
space) a corresponding closing bracket, } (Figure 2-10). This is a convenient fea‐
ture, but can also trip you up until you get accustomed to it. The reason is that if
you’re in the habit of always typing a closing bracket and one is inserted for you,
you’ll end up with an extra bracket in your program that won’t compile.

Figure 2-10. Autocompletion of brackets

Outside of the editor, we have an additional tool to help us get the syntax correct. It’s
called the Snippet Generator.

Supporting Environment: Developing a Pipeline Script | 39

Working with the Snippet Generator
Switching from a form-based web interface for configuring jobs and pipelines to
using a DSL script has many advantages—but having to know the right step and syn‐
tax to use for each task is not one of those. For some cases, such as our simple git
step from earlier, the syntax and parameters may be fairly intuitive, but for others, not
so much. To simplify finding the correct semantics and syntax for steps, Jenkins 2
includes a pipeline syntax help wizard, also known as the Snippet Generator.

Snippet Generator Content

The Snippet Generator content is seeded and updated based on
definitions of pipeline steps added by plugins. If a plugin provides
a pipeline-compatible step, that is included in the Snippet Genera‐
tor. This also means the content of the Snippet Generator on any
particular Jenkins instance is a function of what plugins are
installed on that instance.

The Snippet Generator provides a way to search through the available DSL steps and
find out the syntax and semantics of ones you are interested in. Additionally, it pro‐
vides online help to explain what the step is intended to do. But perhaps the most
useful option it provides is a web form with areas to enter values for the parameters
you want to use. You can then, with the push of a button, generate the needed Groovy
DSL code to call the step. Once you have that, it’s a simple cut and paste to get it into
your program. This greatly simplifies trying to figure out how to use a particular step.

Let’s work through a simple example to see how this works. Suppose we want to cre‐
ate the earlier step to retrieve our Git code. Figure 2-11 shows our starting point.

40 | Chapter 2: The Foundations

Figure 2-11. Code block for source pull

We know we want to use Git, but we’re not sure of the syntax, so we click the Pipeline
Syntax link at the bottom of the Pipeline tab’s window, as shown in Figure 2-12. This
takes us to the opening screen for the Snippet Generator.

Supporting Environment: Developing a Pipeline Script | 41

Figure 2-12. The Snippet Generator

From here, we can select the “git” step from the Sample Step drop-down, as seen in
Figure 2-13. This brings up additional fields for the named parameters that we can
supply to the step. We can then accept the defaults for those parameters or set them
to specific values as needed. Finally, we click the button to generate the pipeline
script. As the figure shows, this results in the simple git step we saw earlier.

42 | Chapter 2: The Foundations

Figure 2-13. Generating pipeline code for the git step with defaults

Putting this into our stage closure, we end up with this:

 stage('Source') {
 // Get some code from our Git repository
 git 'https://github.com/brentlaster/gradle-greetings.git'
 }

If, on the other hand, we choose to override the defaults, our step changes to reflect
passing those overrides (Figure 2-14). Notice that, in this case, overriding those val‐
ues requires unchecking the checkboxes.

Supporting Environment: Developing a Pipeline Script | 43

Figure 2-14. Overriding default values for the git step

Any time multiple parameters are specified, they must all be named. As with the pre‐
vious example, this code could be directly copied and pasted into a script to use.

Polling and Changelog Options

In case you are wondering, setting poll to false means that
changes in the source management repository will not be automati‐
cally detected and rebuilt. Without this set to false, after an initial
run, and if polling is configured for the job, changes in the source
management repository will be detected and cause another run of
the job.
Setting the changelog option to false means that Jenkins will not
compute the changes that initiated a new run (and thus they will
not show up in the Changes section of the job output). The only
benefit of doing this is that it reduces some load on the SCM.

44 | Chapter 2: The Foundations

Running a Pipeline
With code entered, we’re ready to run our pipeline. Pipelines are made up of several
stages, such as compilation, integration testing, analysis, etc. It was typical in past ver‐
sions of Jenkins to set up the different parts as separate Freestyle jobs and chain them
together by having one job kick off another job when it finished.

Over the years, plugins were created to help visualize the flow of these jobs represent‐
ing the stages. One of the common ones used was the Build Pipeline plugin. This
plugin allowed for setting up special views that displayed a series of jobs in a pipeline
as a connected set of boxes. The boxes were color-coded depending on the current
activity happening in them: blue for the job not having been run yet, yellow for the
job in progress, green for a successful run, and red for a failed run. Figure 2-15 shows
what this looked like.

Figure 2-15. The original Build Pipeline plug-in

In Jenkins 2, we have the Pipeline project type for scripting an entire pipeline. We can
represent the larger pieces of the pipeline via stage{} blocks, as we did for the git
command previously. To illustrate this, let’s add another stage to our pipeline. To keep
things simple for now (since we haven’t covered using globally configured tools in
pipelines yet), we’ll just add a placeholder for the build step.

Supporting Environment: Developing a Pipeline Script | 45

To do this, we add another stage definition and insert a call to the sh step to echo out
a message (“sh” stands for “shell,” and this allows us to make calls to the OS on *nix
systems; the corresponding command for Windows systems is bat):

node ('worker1') {
 stage('Source') {
 // Get some code from our Git repository
 git 'https://github.com/brentlaster/gradle-greetings.git'
 }
 stage('Build') {
 // TO-DO: Execute the gradle build associated with this project
 sh 'echo gradle build will go here'
 }
}

Figure 2-16 shows the script in the Pipeline tab.

Figure 2-16. Script in the Pipeline tab

When we first save this pipeline, the UI reminds us that we haven’t run it yet with a
message (Figure 2-17): “No data available. This Pipeline has not yet run.” Note the
heading above it that reads “Stage View”—this is the new default pipeline output view
in Jenkins 2.

46 | Chapter 2: The Foundations

Figure 2-17. Before the first run

If we click Build Now in the menu on the left, Jenkins executes the pipeline build. In
our case, everything is successful. Notice the representation of the job execution as
tiles in the Stage View output in Figure 2-18. The tiles are green, indicating success.
More explanation of how to interpret this view follows.

Figure 2-18. Successful first run

In each build, for each stage in the pipeline, Jenkins creates a new tile. Each row rep‐
resents a build of the project and each column represents a stage in the pipeline, so
each tile represents one run of a particular stage. Note that the text that was passed as

Supporting Environment: Developing a Pipeline Script | 47

the parameter (name) to the stage step in our code is listed at the top of each column.
The amount of time the processing in the stage took to execute is shown inside the
tile.

As we alluded to, the color of the tiles is significant as well. The general meanings for
the color codes are shown in Table 2-1.

Table 2-1. Color processing legend

Color Meaning
Blue stripes Processing in progress
White Stage has not been run yet
Rose stripes Stage failed
Green Stage succeeded
Rose Stage succeeded but some other stage failed downstream

Color Changes When Processing

Even though a tile may be green at one point, it can still change to
the rose color later if a downstream stage fails.

Viewing logs
As with traditional Jenkins, you can view the console output by clicking on either the
Console Output link or the colored ball next to the build in the Build History win‐
dow.

The Stage View also provides a shortcut for seeing the logs related to any particular
stage for a particular run of a build. Simply hover over the tile representing the build
and stage that you’re interested in and click the Logs button in the block that appears,
and you’ll get a pop-up showing the stage logs. Figures 2-19 and 2-20 illustrate the
steps in the process.

48 | Chapter 2: The Foundations

Figure 2-19. Hover over a tile to get the pop-up with the Logs button

Figure 2-20. Click on the Logs button to get the pop-up with the actual logs for the stage

Supporting Environment: Developing a Pipeline Script | 49

Jenkins Pop-ups and Autorefresh

Since the log window is a pop-up window, you may want to disable
the autorefresh feature, if it is turned on, so that it doesn’t automat‐
ically dismiss the pop-up window with the log in it. (This is done
by clicking DISABLE AUTO REFRESH in the upper-right corner.)

Stage View with errors
Now let’s see what the Stage View looks like when we have errors. Assume that our
code was running on a Windows system instead of Linux. There would have been
only one small change in our pipeline; instead of:

sh 'echo gradle build will go here'

the line would be:

bat 'echo gradle build will go here'

Now suppose that we had copied over the code with the bat command exactly to a
Linux system. When we tried to build it, we would get a Stage View that looked
something like Figure 2-21.

Figure 2-21. Stage View with errors

Notice that the second run added another row to our matrix. The row at the top rep‐
resents the stages in the latest run. The striped color of the Build tile in the top row
indicates that that stage failed (and thus our run failed). The lighter solid rose color of
the Source stage indicates that it succeeded but another stage downstream failed.

50 | Chapter 2: The Foundations

When an Earlier Stage Fails

If the Source stage had failed, the Build stage would not have been
attempted. In that case, the Source stage would have been striped
and the Build stage would have been white.

To see the error, we can apply the same steps as before. When we hover over the failed
tile, we again get a pop-up displaying the link to the logs—but notice that it also has
information about what failed. At the top of the pop-up is the text “Failed with the
following error(s) Windows Batch Script Batch scripts can only be run on Windows
nodes.” Figure 2-22 displays this condition.

Figure 2-22. Viewing the failures in one stage

Jenkins attempts to display meaningful information about the failure in the pop-up.
We could click on the Logs button and open up the log, but in this case, we wouldn’t
get more information. The first executable statement in this stage is the one that is
failing, so there’s no further execution information to log.

This essentially completes our quick tour of Jenkins 2 and the basic features you need
to be aware of when coding pipelines. But there is one more feature that Jenkins pro‐
vides to allow you to experiment and try things out without having to change your
saved pipeline code. That feature is called Replay.

Supporting Environment: Developing a Pipeline Script | 51

Replay
Coding pipelines is more involved than web form interaction with Jenkins. There
may be times where something fails and you want to retry it in a temporary way
without modifying your code. Or you may want to prototype a change and try it out
before committing to it. Jenkins 2 includes functionality called Replay for such cases.
Replay allows you to modify your code after a run, and then run it again with the
modifications. A new build record of that run is kept, but the original code remains
unchanged.

We can see how that works using our current failure. Suppose we think the right step
to use is sh, but we want to try it out before changing our code. First we switch to the
Console Output for the job, and then we select Replay in the lefthand menu as shown
in Figure 2-23.

Figure 2-23. Location of the Replay menu item

Now Jenkins presents us with an edit window just like the one for the Pipeline tab of
a Pipeline project (Figure 2-24). In this window, we can make any changes to our
program that we want and then select Run to try out the changes. (Here, we’re chang‐
ing bat back to sh.)

52 | Chapter 2: The Foundations

Figure 2-24. Instituting a replay for a failed run

Jenkins will attempt to run the edited code in the Replay window. In this case it will
succeed, creating run #3 (Figure 2-25).

Supporting Environment: Developing a Pipeline Script | 53

Figure 2-25. A successful replay

However, if we click Configure in the menu on the left and go back and look at our
code in the Pipeline tab, we’ll see that it still shows bat (Figure 2-26). The Replay
functionality allowed us to try out a change, but we still need to go back and update
our code in the pipeline job to make the change.

54 | Chapter 2: The Foundations

Figure 2-26. The original code is unchanged

Replay from the Command Line

Jenkins also has a command-line interface (CLI) available via the
CLI client JAR. (See Chapter 15 for more information.) In the CLI
there is a replay-pipeline command available. Here’s a simple
example of using it to replay from a Jenkinsfile:

java -jar ~/jenkins-cli.jar -s http://<jenkins-url>
 replay-pipeline "<Name>" < Jenkinsfile

Supporting Environment: Developing a Pipeline Script | 55

Replay and Source Code Versions

Be aware that, at least at the time of this writing, if you use a direct
SCM step (such as git) in your pipeline code, replays will always
pull the latest code from the SCM repository, even if you are
replaying an earlier run. If the code is using the more generic check
out scm step in a Jenkinsfile (discussed in Chapter 10), then a
replay will pull the code that was current at the time of the run.

Pipeline Testing Framework
A question that frequently comes up for both new and experienced pipeline users is
whether there are frameworks available to test pipelines. In early 2017, work was
begun on an independent unit testing framework for pipelines called Jenkins Pipeline
Unit. As of fall 2017, that framework has been incorporated officially into the Jenkins
Project. You can find the latest code and documentation on GitHub.

What does it do? From the project description: “This testing framework lets you write
unit tests on the configuration and conditional logic of the pipeline code, by provid‐
ing a mock execution of the pipeline. You can mock built-in Jenkins commands, job
configurations, see the stacktrace of the whole execution and even track regressions.”

Examples on the documentation page show ways to test functions used in pipelines,
including shared libraries. The basic execution mechanism is to import the pipeline
unit classes into your Gradle or Maven projects and execute them in a way similar to
JUnit tests. The basic testing functionality allows producing tracebacks that can be
programmatically searched and compared for regressions.

The project has a good working premise and is promising. It is currently not intuitive
to use, however, as it requires wrapping pipeline code in a job or structure that emu‐
lates an external routine that can be loaded and executed. It’s also important to note
that most pipeline steps will need to be mocked via special mapping code.

In its current state, while a valid option, this framework is challenging for the typical
user to make use of and looks poised for refining, so we do not cover it in more detail
here. Going forward, since it has been transferred to Jenkins community ownership,
we expect this project to grow in ease of use and utility and provide even more value
for pipeline authors.

Summary
In this chapter, we walked through the foundational concepts needed to start working
with Jenkins 2. From a high level, we explored the differences between two syntactical
models (Scripted Pipelines and Declarative Pipelines), disambiguated the different
types of systems that pipelines can be executed on, examined the core structure

56 | Chapter 2: The Foundations

http://bit.ly/2HCTCg3

expected in Scripted Pipelines, and walked through the supporting environment and
tools that Jenkins provides for developing our pipelines.

This information should provide a solid basis for you to use in your work and to
explore the remaining content of the book. We’ll be diving into more details in the
following chapters, with the assumption that you have the knowledge from this chap‐
ter. Feel free to refer back to it as many times as needed as you begin using Jenkins 2
and creating your pipelines-as-code.

In the next chapter, we’ll move from exploring the structure of pipelines to under‐
standing the flow of execution through the pipeline, and the different ways we can
control and direct that.

Summary | 57

CHAPTER 3

Pipeline Execution Flow

Working with the legacy Jenkins web interface and items such as Freestyle jobs, our
ability to control the flow of processing was limited. Typically, this would take the
form of job chaining—having jobs kick off other jobs when they completed. Or we
might include post-build processing to always do things like send notifications no
matter whether the job finished successfully or not.

Beyond that basic functionality, we could also add the Conditional BuildStep plugin
to define more complex flows of build steps based on single or multiple conditions.
But even that was limited, compared to the ways we can direct the execution flow
when writing programs.

In this chapter, we’ll explore the different constructs provided by the Jenkins pipeline
DSL for controlling the execution flow in pipelines. We’ll start with specifying prop‐
erties to trigger jobs and how to accept input.

Then we’ll look at how to keep things moving through constructs including timeouts,
retries, and running tasks in parallel. We’ll also look at the constructs available to map
the Conditional BuildStep functionality into pipelines.

Finally, we’ll see how to use pipeline methods to emulate the post-build processing
functionality of traditional Jenkins jobs. Along the way, we’ll see how things differ for
Scripted and Declarative Pipelines.

Let’s get started with defining the properties for triggering jobs.

59

http://bit.ly/2Hc46zp

Triggering Jobs
To specify triggering events for pipeline code, there are three different approaches:

• If working in the Jenkins application itself in a pipeline job, the trigger(s) can be
specified in the traditional way within the project’s General configuration section
in the web interface.

• If creating a Scripted Pipeline, a properties block can be specified (usually
before the start of the pipeline) that defines the triggers in code. (Note that this
properties section will be merged with any properties defined in the web inter‐
face, with the web properties taking precedence.)

• If creating a Declarative Pipeline, there is a special triggers directive that can be
used to define the types of things that should trigger the pipeline.

We’ll briefly look at each of the trigger options available in the traditional Jenkins
interface, along with the corresponding scripted syntax and declarative syntax (if
there is one).

Other Types of Triggering for Special Projects

Note that the triggers discussed here do not apply to Multibranch
Pipeline, GitHub organization, or Bitbucket team/project jobs.
These types of jobs are identified by having Jenkinsfiles and are
triggered otherwise, such as by a webhook that notifies Jenkins
when a change is made.
These project types are discussed in more detail in Chapter 8.

Sections on each of the available options for build triggers follow.

Build After Other Projects Are Built
As the name implies, selecting this option allows you to start your project building
after one or more other projects. You can choose the ending status you want the
builds of the other projects to have (stable, unstable, or failed).

For a Scripted Pipeline, the syntax for building your pipeline after another job, Job1,
is successful would be like the following:

properties([
 pipelineTriggers([
 upstream(
 threshold: hudson.model.Result.SUCCESS,
 upstreamProjects: 'Job1'
)

60 | Chapter 3: Pipeline Execution Flow

])
])

If you need to list multiple jobs, separate them with commas. If you need to specify a
branch for a job (as for a multibranch job), add a slash after the job name and then
the branch name (as in 'Job1/master').

Build Periodically
This option provides a cron type of functionality to start jobs at certain time intervals.
While this is an option for builds, this is not optimal for continuous integration,
where the builds are based on detecting updates in source management. But it may
have use in other types of applications for Jenkins, such as starting jobs at particular
intervals to avoid collisions for resources. (Related: See the discussion on the H sym‐
bol in the “Cron syntax” section.)

Here’s an example of the syntax in a Scripted Pipeline. In this case, the job runs at 9
a.m., Monday–Friday:

properties([pipelineTriggers([cron('0 9 * * 1-5')])])

And here’s an example of the syntax in a Declarative Pipeline:

triggers { cron(0 9 * * 1-5)

This trigger (and the polling one) both make use of the Jenkins cron syntax, which is
described next (with examples in the declarative format).

Cron syntax
The cron syntax used in Jenkins is a specification of when (how often) to do some‐
thing based on five fields, separated by spaces. Each of the fields represents a different
unit of time. The five fields are:

MINUTES
Desired minutes value within the hour (0–59).

HOURS
Desired hours value within the day (0–23).

DAYMONTH
Desired day of the month (1–31).

MONTH
Desired month of the year (1–12).

DAYWEEK
Desired day of the week (0–7). Here, 0 and 7 both represent Sunday.

Triggering Jobs | 61

Also, the */<value> syntax can be used in a field to mean “every <value>” (as in */5
meaning “every 5 minutes”).

Additionally, the symbol H can be used in any of the fields. This symbol has a special
meaning to Jenkins. It tells Jenkins to, within a range, use the hash of the project
name to come up with a unique offset value. This value is then added to the lowest
value of the range to define when the activity actually starts within the range of val‐
ues.

The idea with using the symbol is to not have all projects with the same cron values
starting at the same time. The offset from the hash serves to stagger the execution of
projects that have the same cron timing.

Use of the H symbol is encouraged to avoid having projects starting execution at the
same time. Note that since the value is a hash of the project name, each value will be
different from all others, but will remain the same for that project over time.

The H symbol can also have a range attached to it to specify limits on the interval it
can pick. See the following note on Advanced cron syntax for more details.

To solidify this a bit more, let’s look at some examples:

// Start a pipeline execution at 15 minutes past the hour
triggers { cron(15 * * * *) }

// Scan for SCM changes at 20-minute intervals
triggers { pollSCM(*/20 * * * *) }

// Start a pipeline session at some point between
// 0 and 30 minutes after the hour
triggers { cron(H(0,30) * * * *) }

// Start a pipeline execution at 9 a.m. Monday through Friday
triggers { cron(0 9 * * 1-5) }

62 | Chapter 3: Pipeline Execution Flow

Advanced cron Syntax

The help for building periodically in Jenkins contains some
advanced cron syntax examples, excerpted below.
The H symbol can be used with a range. For example, H H(0-7) *
* * means some time between 12:00 AM (midnight) to 7:59 AM.
You can also use step intervals with H, with or without ranges.
The H symbol can be thought of as a random value over a range,
but it actually is a hash of the job name, not a random function, so
that the value remains stable for any given project.
Beware that for the day of month field, short cycles such as */3 or
H/3 will not work consistently near the end of most months, due to
variable month lengths. For example, */3 will run on the 1st, 4th,
…31st days of a long month, then again the next day of the next
month. Hashes are always chosen in the 1–28 range, so H/3 will
produce a gap between runs lasting from 3 to 6 days at the end of a
month. (Longer cycles will also have inconsistent lengths but the
effect may be relatively less noticeable.)
Empty lines and lines that start with # will be ignored as comments.
In addition, @yearly, @annually, @monthly, @weekly, @daily, @mid
night, and @hourly are supported as convenient aliases. These use
the hash system for automatic balancing. For example, @hourly is
the same as H * * * * and could mean at any time during the
hour. @midnight actually means some time between 12:00 AM and
2:59 AM.
Examples:

every fifteen minutes (perhaps at :07, :22, :37, :52)
H/15 * * * *

every ten minutes in the first half of every hour
(three times, perhaps at :04, :14, :24)
H(0-29)/10 * * * *

once every two hours at 45 minutes past the hour
starting at 9:45 AM and finishing at 3:45 PM every
weekday
45 9-16/2 * * 1-5

once in every two hours slot between 9 AM and 5 PM
every weekday (perhaps at 10:38 AM, 12:38 PM,
2:38 PM, 4:38 PM)
H H(9-16)/2 * * 1-5

once a day on the 1st and 15th of every month except
December
H H 1,15 1-11 *

Triggering Jobs | 63

GitHub Hook Trigger for GitSCM Polling
A GitHub project configured as the source location in a Jenkins project can have a
push hook (on the GitHub side) to trigger a build for the Jenkins project. When this
is in place, a push to the repository causes the hook to fire and trigger Jenkins, which
then invokes the Jenkins SCM polling functionality. So the SCM polling functionality
has to be configured for this to work as well.

Most of the initial work for this is in the setup for the hook side and in the source
setup in the Jenkins project. More information is available on the Jenkins wiki.

The syntax for setting the property in a Scripted Pipeline is as follows:

properties([pipelineTriggers([githubPush()])])

There currently isn’t a specific syntax for Declarative Pipelines.

Poll SCM
This is the standard polling functionality that periodically scans the source control
system for updates. If any updates are found, then the job processes the changes. This
can be a very expensive operation (in terms of system resources) depending on the
SCM, how much content is scanned, and how often.

Specifying the values for this uses the same Jenkins cron syntax as is used for the
“build periodically” option.

The syntax for Scripted Pipelines is as follows (polling every 30 minutes):

properties([pipelineTriggers([pollSCM('*/30 * * * *')])])

The corresponding syntax for Declarative Pipelines would be this:

triggers { pollSCM(*/30 * * * *) }

Quiet Period
The value specified here serves as a “wait time” or offset between when the build is
triggered (an update is detected) and when Jenkins acts on it. This can be useful for
staggering jobs that frequently have changes at the same time, for example. If a value
is not provided here, the value from the global configuration is used.

While the pipeline build step has a quietPeriod option, as of this writing, there isn’t
a direct pipeline option or step to do this. You may be able to achieve a similar effect
by using the throttle() step from the Throttle Concurrent Builds plugin.

Trigger Builds Remotely
This allows for triggering builds by accessing a specific URL for the given job on the
Jenkins system. This is useful for triggering builds via a hook or a script. An authori‐

64 | Chapter 3: Pipeline Execution Flow

http://bit.ly/2HM7a6z
http://bit.ly/2Hf0pJs

zation token is required. For an example, see the note on “URLs and Crumbs” later in
this chapter.

In the pipeline-as-code semantics, Multibranch Pipelines can be triggered via changes
in a Jenkinsfile. See Chapter 8 for more details on those.

After being triggered, certain stages of a pipeline may request or require input from a
user for purposes such as verification, or to direct processing down one of multiple
paths. We’ll look next at how to handle collecting that input in our pipelines.

User Input
A key aspect of some Jenkins jobs is the ability to change their behavior based on user
input. Jenkins offers a wide variety of parameters for gathering specific kinds of
input. Jenkins pipelines provide constructs for this as well.

The DSL step input is the way we get user input through a pipeline. The step accepts
the same kinds of parameters as a regular Jenkins job for a Scripted Pipeline. For a
Declarative Pipeline, there is a special parameters directive that supports a subset of
those parameters.

We describe this step and the parameters, as they can be used in the pipeline, next.

input
As the name suggests, the input step allows your pipeline to stop and wait for a user
response. Here’s a simple example:

input 'Continue to next stage?'

This step can also optionally take parameters to gather additional information.
Within the Jenkins application, the default form is to print a message and offer the
user a choice of “Proceed” or “Abort.” In the GUI Stage View, this will be a dialog box
that looks like Figure 3-1. In the console output, this will be a line of output with
links to click on to continue or stop (Figure 3-2).

User Input | 65

Figure 3-1. GUI prompt for input

Figure 3-2. Console prompt for input

Choosing Proceed allows the pipeline to continue. Choosing Abort causes the pipe‐
line to stop at that point with a status of “aborted.”

It is important to note that when the system executes an input step, the processing is
paused on that node. This can lead to monopolizing system resources, as explained in
the following warning.

The input Step and Executors

As defined earlier in the book, an executor is a slot on a node for
processing code. Using the input step in a node block ties up the
executor for the node until the input step is done.

66 | Chapter 3: Pipeline Execution Flow

The input step can have several parameters. These include:

Message (message)
The message to be displayed to the user, as demonstrated in the previous exam‐
ple. Can also be empty, as indicated by input ''.

Custom ID (id)
An ID that can be used to identify your input step to automated or external pro‐
cessing, such as when you want to respond via a REST API call. A unique identi‐
fier will be generated if you don’t supply one.

As an example, you could add the custom ID, ctns-prompt (for “Continue to
next stage” prompt) to our input step definition. The input step would then look
as follows:

input id: 'ctns-prompt', message: 'Continue to the next stage?'

Given this step, when you run the job, a POST to this URL could be used to
respond. The URL format would be:

http://[jenkins-base-url]/job/[job_name]/[build_id]/input/Ctns-prompt/
proceedEmpty

to tell Jenkins to proceed without any input, or:

http://[jenkins-base-url]/job/[job_name]/[build_id]/input/Ctns-prompt/
abort

to tell Jenkins to abort. (Notice that the parameter name is capitalized in the
URL.)

User Input | 67

URLs and Crumbs

If your Jenkins is configured to prevent Cross-Site Request Forgery
(CSRF) exploits via the Security settings (strongly recommended),
then any URL used to POST will need to also include a CSRF pro‐
tection token.
One way to do this is to first define an environment variable to get
the token:

CSRF_TOKEN=
 $(curl -s 'http://<username>:<password
 or token>@<jenkins base
 url>/crumbIssuer/api/xml?xpath=
concat(//crumbRequestField,":",//crumb)')

If you look at the environment variable with the token afterwards,
you’ll see something like this:

$ echo $CSRF_TOKEN
Jenkins-Crumb:0cd0babef95a70d0836c3f3e5bc4eea8

Then you can include the token in your POST call. Here’s an exam‐
ple using curl:

$ curl --user <userid>:<password or token>
 -H "$CSRF_TOKEN" -X POST
 -s <jenkins base url>/job/<job name>/<build number>/
input/
 <input parameter with 1st letter capped>/proceedEmpty

If you don’t include the token, you’ll end up with a 403 error.

OK button caption (ok)
A different label you can use instead of “Proceed.” For example:

input message: '<message text>', ok: 'Yes'

Allowed submitter (submitter)
A comma-separated list of user IDs or group names for people authorized to
respond. For example:

input message: '<message text>', submitter: 'user1,user2'

68 | Chapter 3: Pipeline Execution Flow

Submitter Caveats

There are two points to be aware of when working with the submit‐
ter option:

• Do not use spaces (only commas) within the list of users/
groups.

• At least in some cases, users not in the list may still be able to
abort the input step.

Parameter to store the approving submitter (submitterParameter)
A variable to store the user that approves proceeding. To use this, you define a
variable to hold the response(s) from the input step. If there are no other param‐
eters (see below) specified, then the name given to the submitterParameter
argument doesn’t matter—the return value is dereferenced simply by accessing
the name of the variable.

def resp = input id: 'ctns-prompt', message:
 'Continue to the next stage?', submitterParameter: 'approver'
 echo "Answered by ${resp}"

If you have any other parameters, then you must supply the submitterParameter’s
name to access it:

 def resp = input id: 'ctns-prompt', message:
 'Continue to the next stage?',
 parameters: [string(defaultValue: '', description: '',
 name: 'para1')], submitterParameter: 'approver'
 echo "Answered by " + resp['approver']

Traditional Jenkins parameter types
These are explained more in the next section.

Parameters
With the input statement, you have the option to add any of the standard Jenkins
parameter types. If you’ve done any work with Jenkins before, you’re probably already
familiar with most of these. The following sections briefly introduce each one and
offer an example of what it looks like when used in a script.

For each parameter type, the different “subparameters” (arguments) that it can take
are also listed. If the purpose of the subparameter is self-evident from its name (e.g.,
name, default value, description), the argument name will be listed without addi‐
tional explanation.

User Input | 69

Boolean
This is the basic true/false parameter. The subparameters for a Boolean are Name,
Default Value, and Description.

An example of the syntax would be:

def answer = input message: '<message>',
 parameters: [booleanParam(defaultValue: true,
 description: 'Prerelease setting', name: 'prerelease')]

Note that this returns a java.lang.boolean.

Figure 3-3 shows what this looks like in the Stage View when run.

Figure 3-3. Boolean parameter console input

In the console output, you will simply get an “Input requested” link that, when
clicked, takes you to a screen like Figure 3-4.

Figure 3-4. Redirect screen for parameter input from console

Choice
This parameter allows the user to select from a list of choices. The subparameters for
a Choice are Name, Choices, and Description. Here, Choices refers to a list of choices
you enter to present to the user. The first one in the list will be the default.

70 | Chapter 3: Pipeline Execution Flow

An example of the syntax would be:

def choice = input message: '<message>',
 parameters: [choice(choices: "choice1\nchoice2\nchoice3\nchoice4\n",
 description: 'Choose an option', name: 'Options')]

Notice the syntax here for the list of choices—a single string with each choice separa‐
ted by a newline character. There are other ways to instantiate a set of choices, but
this is the simplest.

Snippet Generator Generated Incorrect Code for choice Parameter

In versions of Jenkins prior to 2.112, the Snippet Generator gener‐
ated incorrect code for a Choice parameter. The syntax looks like
this:

input message: '<message>',
 parameters: [choice(choices: ['choice1', 'choice2',
 'choice3', 'choice4'],
 description: 'Choose an option', name: 'Options')]

This resulted in a java.lang.IllegalArgumentException. If you
encounter this, upgrade to a more recent version of Jenkins or you
can just follow the suggested syntax previously noted.

Running a pipeline and having it prompt you with this parameter type is similar to
the Boolean example. In the Stage View, there is a graphical dialog with a drop-down
list to select the choice in place of the checkbox.

In the console output, you again have the “Input requested” link, which takes you to a
screen with graphical elements where you can select your choice.

Credentials
This parameter allows the user to select a type and set of credentials to use. The avail‐
able subparameters include Name, Credential Type, Required, Default Value, and
Description.

The options for Credential Type include Any, Username with password, Docker Host
Certificate Authentication, SSH Username with private key, Secret file, Secret text,
and Certificate.

If Required is specified, then a credential must be specified when the user is asked for
this field. (It can’t be empty.) This doesn’t imply that a build will be able to use the
credentials or that they will be valid, but just specifies that a selection is required.

The Default Value is the default credentials (selected from the set of ones already
defined in Jenkins).

User Input | 71

An example of the syntax follows for an SSH key:

def creds = input message: '<message>',
 parameters: [[$class: 'CredentialsParameterDefinition', credentialType:
 'com.cloudbees.jenkins.plugins.sshcredentials.impl.BasicSSHUserPrivateKey',
 defaultValue: 'jenkins2-ssh', description: 'SSH key for access',
 name: 'SSH', required: true]]
 echo creds

This will print out the ID of the selected credentials.

And here is an example for username and password:

def creds = input message: '', parameters: [[$class:
 'CredentialsParameterDefinition', credentialType:
 'com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl',
 defaultValue: '', description: 'Enter username and password',
 name: 'User And Pass', required: true]]

Note that this will not prompt with fields to enter a username and password. Rather,
it presents the interface to select an existing credential or add a new one. In the Stage
View, it looks like Figure 3-5.

Figure 3-5. Credentials input prompt in Stage View

Once you click the “Please redirect to approve” link, you are taken to the prompts for
selecting credentials (Figure 3-6). The prompt from the console is the same as in the
previous cases.

Figure 3-6. Credentials prompt

72 | Chapter 3: Pipeline Execution Flow

File
This parameter allows for choosing a file to use with the pipeline. The subparameters
include File Location and Description. The syntax is:

def selectedFile = input message: '<message>',
 parameters: [file(description: 'Choose file to upload', name: 'local')]

Note that the item returned for this type of parameter is a hudson.FilePath object.
Some of the methods associated with FilePath are not permitted to be used by
default by Jenkins scripts, and may require approval by an administrator through the
process outlined in Chapter 5.

Processing for This Parameter Is Currently Broken

The File Location is intended to specify where to put the file that
will be selected and uploaded, relative to the workspace. However,
as of the time of this writing, while you can select a file via a File
parameter, the file is not uploaded or placed anywhere. Check the
latest Jenkins documentation for your version to see if this has been
corrected.

The interface is the same as the advanced ones previously described, except that you
have a Browse button to select a file.

List Subversion tags
This parameter allows you to specify a set of tags in Subversion to select from when
running a build. The subparameters include Name, Repository URL, Credentials, Tag
Filter, Default Value, the Maximum tags to display, and sorting options for newest
first and/or alphabetical sorting.

For the Repository URL subparameter, Jenkins expects you to specify the URL of the
Subversion repository that contains the tags you want to display. If this does not con‐
tain the tags and there are subfolders, then the subfolders will be displayed to enable
drilling down.

Jenkins will check whether it can access this repository or not and prompt for creden‐
tials if needed.

The Credentials subparameter contains the credentials to access the repository, if
required. (See Chapter 5 for an explanation of credentials.)

The Tag Filter refers to a regular expression to filter the list of tags presented.

The Default Value is used only if required for SVN polling or similar features.

User Input | 73

Here’s some example syntax:

def tag = input message: '<message>',
 parameters: [[$class: 'ListSubversionTagsParameterDefinition',
 credentialsId: 'jenkins2-ssh', defaultValue: '', maxTags: '',
 name: 'LocalSVN', reverseByDate: false, reverseByName: false,
 tagsDir: 'file:///svnrepos/gradle-demo', tagsFilter: 'rel_*']]

The interfaces act like the ones for the File and Credentials parameters, except that
there is a drop-down with the matching list of tags to choose from instead of a file or
credential selection widget.

Multiline String
This parameter allows the user to input multiple lines of text. The subparameters
include Name, Default Value, and Description.

Here’s some example syntax:

def lines = input message: '<message>',
 parameters: [text(defaultValue: '''line 1
 line 2
 line 3''', description: '', name: 'Input Lines')]

Notice the entries in the commands are on different lines. This is because they have
newlines entered with the default values. Also notice the triple quotes before and after
the multiline message. The triple quotes are a standard notation used with Groovy for
things that span multiple lines.

As you might expect, when executing, this will pop up (or link to) an entry box where
you can type multiple lines of text.

Password
This parameter allows the user to enter a password. For passwords, the text the user
enters is hidden while they type it. The available subparameters are Name, Default
Value, and Description.

Here’s an example:

def pw = input message: '<message>',
 parameters: [password(defaultValue: '',
 description: 'Enter your password.', name: 'passwd')]

When run, the user is presented with a field to enter the password, with the text being
hidden as they type.

74 | Chapter 3: Pipeline Execution Flow

Run
This parameter allows the user to select a particular run (executed build) from a job.
This might be used, for example, in a testing environment. The subparameters avail‐
able include Name, Project, Description, and Filter.

The Project subparameter is the job that you want to allow the user to select a run
from. The default run will be the most recent one.

The Filter subparameter allows you to filter the type of runs to offer based on the
overall build status. Choices include:

• All Builds (including “in-progress” ones)
• Completed Builds
• Successful Builds (this includes stable and unstable ones)
• Stable Builds Only

Here’s an example of code for this one:

def selection = input message: '<message>',
 parameters: [run(description: 'Choose a run of the project',
 filter: 'ALL', name: 'RUN', projectName: 'pipe1')]
 echo "selection is ${selection}"

This will output a response like:

selection is <project name> #<run number>

String
This parameter allows the user to enter a string. (This value is not hidden, like with a
Password parameter.) The subparameters include Name, Default Value, and Descrip‐
tion.

Here’s an example:

def resp = input message: '<message>', parameters: [string(defaultValue: '',
 description: 'Enter response', name: 'Response')]

When run, the user is presented with a field to enter in the desired string.

Return Values from Multiple Input Parameters
In all of the examples just shown, we included only a single parameter. This syntax
provides a simple return value that directly contains the value input by the user. If
there were instead no parameters, such as having only a Proceed or Abort option,
then the return value would be null. And when you have multiple parameters, a map
is returned where you can extract each parameter’s return value via the parameter’s
name. An example follows.

User Input | 75

Suppose we wanted to add a traditional login screen to our pipeline. We would use
two parameters—one String parameter for the login name and one Password param‐
eter for the password. We can do that in the same input statement and then extract
the return values for each from the returned map.

The following example code shows how to define the input statement along with
some print statements that show different ways to access the individual return values
(don’t forget that you can use the Snippet Generator for generating the input state‐
ment as well):

 def loginInfo = input message: 'Login',
 parameters: [string(defaultValue: '', description:
 'Enter Userid:', name: 'userid'),
 password(defaultValue: '',
 description: 'Enter Password:', name: 'passwd')]
 echo "Username = " + loginInfo['userid']
 echo "Password = ${loginInfo['passwd']}"
 echo loginInfo.userid + " " + loginInfo.passwd

Parameters and Declarative Pipelines
Since creating new local variables to hold the return values from input statements
doesn’t fit the declarative model, you may be wondering how we can use the input
statement in Declarative Pipelines. There are several approaches here, including one
that leverages the declarative structure and one that works around it.

Using the parameters section
Within the Declarative Pipeline structure, there is a section/directive for declaring
parameters. This is within the agent block of the main pipeline closure. Figure 3-7
shows where this fits overall.

Use of the parameters directive is covered in detail with Declarative Pipelines in
Chapter 7, but here’s a simple example of the syntax (see “parameters” on page 234 for
more details):

pipeline {
 agent any
 parameters {
 string(name: 'USERID', defaultValue: '',
 description: 'Enter your userid')
 }
 stages {
 stage('Login') {
 steps {
 echo "Active user is now ${params.USERID}"
 }
 }

76 | Chapter 3: Pipeline Execution Flow

 }
}

Figure 3-7. Declarative Pipeline structure

If you are working in the Jenkins application itself, creating parameters like this in the
code will also instantiate the “This build is parameterized” part of the job.

This approach is the recommended approach for Declarative Pipelines.

Using the Jenkins application to parameterize the build
If you have created a job in the Jenkins application (rather than using a Jenkinsfile
automatically), a second approach for adding parameters is to simply use the tradi‐
tional method for parameterizing a job. That is, in the General configuration section,

User Input | 77

select the checkbox for “This project is parameterized” and then define your parame‐
ters as normal in the job’s web interface (Figure 3-8).

Figure 3-8. Corresponding generation of parameters in Jenkins job

You can then simply reference the job parameters via params.<name of parameter>
without having the input line in the code, as shown here:

pipeline {
 agent any
 stages {
 stage('Login') {
 steps {
 echo "Active user is now ${params.USERID}"
 }
 }
 }
}

A variant of this approach is to define the parameters as properties before the pipe‐
line. This can actually be done either for Scripted or Declarative Pipelines. Here’s how
it might look in the code:

properties ([
 parameters ([
 string(defaultValue: '', description: '', name : 'USERID')
])
])
pipeline {
 agent any
 stages {
 stage('Login') {
 steps {
 echo "Active user is now ${params.USERID}"
 }
 }
 }
}

78 | Chapter 3: Pipeline Execution Flow

However, since this works only within the scope of the Jenkins application and the
particular job within it, this is not recommended for production use. It also will over‐
write any existing properties defined in Jenkins for the job.

With that said, it can be a useful way to prototype parameter usage in a pipeline for
certain cases.

Using a script block
While Declarative Pipelines are continuing to evolve and add more functionality,
there may still be instances where you need to do something in one that the declara‐
tive style doesn’t support or renders very difficult to implement. For those cases, the
declarative syntax supports a script block.

A script block allows you to use nondeclarative syntax within the bounds of the
block. This includes defining variables, which is not something you can do in a
Declarative Pipeline outside of a script block. This also means that you cannot refer‐
ence variables that are defined inside a script block outside of that block. Jenkins
flags those with a “no such property” error.

As an example of all of this, consider the following section of code:

 stage ('Input') {
 steps {
 script {
 def resp = input message: '<message>',
 parameters: [string(defaultValue: '',
 description: 'Enter response 1',
 name: 'RESPONSE1'), string(defaultValue: '',
 description: 'Enter response 2', name: 'RESPONSE2')]
 echo "${resp.RESPONSE1}"
 }
 echo "${resp.RESPONSE2}"
 }
}

Here we have two parameters defined as part of an input step inside of a stage in a
Declarative Pipeline. Since the first echo is in the script block where the variable
resp is also defined, it will print out the response that is entered for that parameter as
expected.

Notice, though, that the second echo is outside of the scope where the resp variable is
defined. Groovy/Jenkins will throw an error when it gets to this one.

Because of this, it is advisable to try to limit accessing input to a small section of your
code if you have to use a script block. However, there is one other workaround if
you need to use the value outside the scope of the script block. You can put the
return value into an environment variable and then access the environment variable
wherever you need the value.

User Input | 79

Updating our code to use this method could look like the following:

stage ('Input') {
 steps {
 script {
 env.RESP1 = input message: '<message>', parameters: [
 string(defaultValue: '', description: 'Enter response 1',
 name: 'RESPONSE1')]
 env.RESP2 = input message: '<message>', parameters: [
 string(defaultValue: '', description: 'Enter response 2',
 name: 'RESPONSE2')]
 echo "${env.RESP1}"
 }
 echo "${env.RESP2}"
 }
 }

We are putting the results of the input steps into the environment variable name‐
space (env). Because these are environment variables, the values are set in the envi‐
ronment and therefore available for the pipeline to use wherever it needs.

Note that we’ve broken the single input statement down into two separate input
statements. This results in the two environment variables RESP1 and RESP2 each hav‐
ing just the contents of their respective input lines. You can instead use multiple
parameters in an input statement and set an environment variable with the results.
The environment variable will have the form:

<parameter_name>=<input_value>, <parameter_name>=<input_value>, ...

You will then need to write code to parse out the unique values you are interested in.

Using external code
One other option available to you is putting scripted statements (like the calls to
input) in an external shared library or an external Groovy file that you load and exe‐
cute. For example, we could code our input processing in a file named vars/
getUser.groovy in a shared library structure, like this:

#!/usr/bin/env groovy

def call(String prompt1 = 'Please enter your data', String prompt2 = 'Please
enter your data') {
 def resp = input message: '<message>', parameters: [string(defaultValue: '',
description: prompt1, name: 'RESPONSE1'), string(defaultValue: '', description:
prompt2, name: 'RESPONSE2')]
 echo "${resp.RESPONSE1}"
 echo "${resp.RESPONSE2}"
 // do something with the input
}

80 | Chapter 3: Pipeline Execution Flow

If our library were named Utilities, then we could import it and call the getUser
function as shown here:

@Library('Utilities')_
pipeline {
 agent any
 stages {
 stage ('Input') {
 steps {
 getUser 'Enter response 1','Enter response 2'
 }
 }
 }
}

Chapter 6 discusses creating and using shared pipeline libraries in detail.

Nondeclarative Code and Blue Ocean

If you plan to use your pipeline with Blue Ocean, be aware that the
built-in editor is designed to work primarily with declarative syn‐
tax. Any nondeclarative syntax may be ignored or may not work as
expected in the Blue Ocean editor.

One of the challenges with using an input statement is what happens if you don’t get
input in an expected amount of time. While waiting for input, the node is effectively
stopped, waiting on a response. To prevent this from going on too long, you should
consider wrapping the input call with another type of flow control construct: the time
out statement. We’ll discuss that in the next section.

Flow Control Options
One of the benefits of writing your pipeline-as-code in Jenkins (versus using the tra‐
ditional web forms) is that you have more options for controlling the flow through
the pipeline. This includes handling cases that might otherwise cause your pipeline to
stop or fail. The options available include ways to accomplish waiting, retries, etc.
We’ll walk through each of them now.

timeout
The timeout step allows you to limit the amount of time your script spends waiting
for an action to happen. The syntax is fairly simple. Here’s an example:

timeout(time:60, unit: 'SECONDS') {
 // processing to be timed out inside this block
}

Flow Control Options | 81

The default unit for time is minutes. If you only specify a time value, it will be
assumed to be in minutes. If the timeout is hit, then the step will throw an exception.
This will cause the processing to abort if the exception isn’t handled some other way.

A best practice is to wrap any step that can pause the pipeline (such as an input step)
with a timeout. This is so that your pipeline continues to execute (if desired) even if
something goes wrong and the expected input doesn’t occur within the time limit.
Here’s an example:

node {
 def response
 stage('input') {
 timeout(time:10, unit:'SECONDS') {
 response = input message: 'User',
 parameters: [string(defaultValue: 'user1',
 description: 'Enter Userid:', name: 'userid')]
 }
 echo "Username = " + response
 }
}

In this case, Jenkins will wait for 10 seconds for the user to enter a response. If that
time passes, Jenkins will throw an exception causing the pipeline to abort. You can
see the sequence in the output captured in Figure 3-9.

Figure 3-9. Console output from a timeout

As shown by the console output, the timeout does stop the pause in processing while
waiting on input. However, when it does this, it throws an exception, causing our
pipeline to abort. In order to not abort the pipeline, we can wrap the timeout in a

82 | Chapter 3: Pipeline Execution Flow

traditional try-catch block, as shown in the following code. Notice that we set the
response to the desired default when we handle the exception:

node {
 def response
 stage('input') {
 try {
 timeout(time:10, unit:'SECONDS') {
 response = input message: 'User',
 parameters: [string(defaultValue: 'user1',
 description: 'Enter Userid:', name: 'userid')]
 }
 }
 catch (err) {
 response = 'user1'
 }
 }
}

retry
The retry closure wraps code in a step that retries the process n times if an exception
occurs in the code. n here refers to a value you pass in to the retry step. The syntax is
just:

retry(<n>) { // processing }

If the retry limit is reached and an exception occurs, then the processing is aborted
(unless that exception is handled, such as with a try-catch block).

sleep
This is the basic delay step. It accepts a value and delays that amount of time before
continuing processing. The default time unit is seconds, so sleep 5 waits for 5 sec‐
onds before continuing processing. If you want to specify a different unit, you just
add the unit name parameter, as in:

sleep time: 5, unit: 'MINUTES'

waitUntil
As you might guess, this step causes processing to wait until something happens. The
“something” in this case is the closure returning true.

If the processing in the block returns false, then this step waits a bit longer and tries
again. Any exceptions thrown in the processing cause the step to exit immediately
and throw an error.

Flow Control Options | 83

The syntax for waitUntil is simply:

waitUntil { // processing that returns true or false }

How Long Does It Wait?

I mentioned that if the processing in the block returns false, then
the waitUntil step waits a bit longer and tries again. You may be
wondering what is meant by “a bit longer” here. Currently, the sys‐
tem starts out with a 0.25 second wait time. If it needs to loop
again, it multiplies that by a factor of 1.2 to get 0.3 seconds for the
next wait cycle. On each succeeding cycle, the last wait time is mul‐
tiplied again by 1.2 to get the time to wait. So, the sequence goes as
0.25, 0.3, 0.36, 0.43, 0.51...
Figure 3-10 shows an example of what this looks like.

Figure 3-10. Example retry run

Because this step could end up waiting indefinitely if the processing never returns
true (whether by intention or not), it is recommended to wrap this step with a time
out step so that eventually processing will.

Here is an example of using a waitUntil block to wait until we have a marker file in
place. Notice that we have a timeout around the waitUntil to avoid staying in the
waitUntil indefinitely. Also, we are setting the returnStatus parameter to true for
the shell call, so that we get the return code back from the operation to check for suc‐
cess:

 timeout(time:15, unit:'SECONDS') {
 waitUntil {

84 | Chapter 3: Pipeline Execution Flow

 def ret = sh returnStatus: true,
 script: 'test -e /home/jenkins2/marker.txt'
 return (ret == 0)
 }

 }

As another example, suppose we are waiting for a Docker container to start up so that
we can get some data via a REST API call as part of our pipeline testing. In this case
we get an exception if the URL isn’t available yet. To ensure that we don’t exit right
away when the exception is thrown, we can use a try-catch structure to catch the
exception and return false in that case. We also wrap it in a timeout as a guard
against it not being available at all for some reason and holding up our pipeline:

 timeout(time: 120, unit: 'SECONDS') {
 waitUntil {
 try {
 sh "docker exec ${webContainer.id} curl
 --silent http://127.0.0.1:8080/roar/api/v1/registry
 1>test/output/entries.txt"
 return true
 }
 catch (exception) {
 return false
 }
 }
 }

Note that if we were doing this inside of a Declarative Pipeline, we would have to use
a method such as a script block or shared library to handle this code.

Now that we understand how to process individual flow control sections within a
pipeline, the next step up is dealing with multiple simultaneous lines of pipeline exe‐
cution and concurrency.

Dealing with Concurrency
For the most part, having concurrency in your pipeline builds is a good thing. Typi‐
cally, concurrency refers to parallelism—being able to run similar parts of your jobs
concurrently on different nodes. This can be especially useful in cases such as run‐
ning tests, as long as you limit duplicate access to resources appropriately.

Another form of concurrency in Jenkins is when multiple builds of the same job try
to run at the same time or use the same resources. In the case of very active reposito‐
ries, branches, or pull requests, this may be an expected, common situation.

But there may also be cases where this is not expected and not desirable. Let’s look
briefly at two mechanisms that Jenkins pipelines have to address that situation.

Dealing with Concurrency | 85

Locking Resources with the lock Step
If you have the Lockable Resources plugin installed, there is a DSL lock step available
to restrict multiple builds from trying to use the same resource at the same time.
(There will also be a Lockable Resources section on the Configure System page where
you can globally define and reserve resources if necessary—for example, if you tem‐
porarily need to take a set of resources offline for a system.)

“Resource” here is a loose word. It could mean a node, an agent, a set of them, or just
a name to use for the locking. If the specified resource isn’t defined in the global con‐
figuration, it will be added automatically.

The DSL lock step is a blocking step. It locks the specified resource until the steps
within its closure are completed. In its simplest case, you just supply the resource
name as the default argument. For example:

lock('worker_node1') {
 // steps to do on worker_node1
}

Alternatively, you can supply a label name to select a set of resources that have a cer‐
tain label and a quantity to specify the number of resources that match that label to
lock (reserve):

lock(label: 'docker-node', quantity: 3) {
 // steps
}

You can think of this as, “How many of this resource do I have to have available to
proceed?” If you specify a label but no quantity, then all resources with that label are
locked.

Finally, there is an inversePrecedence optional parameter. If this parameter is set to
true, then the most recent build will get the resource when it becomes available.
Otherwise, builds are awarded the resource in the same order that they requested it.

As a quick example, consider a Declarative Pipeline where we want to use a certain
agent to do the build on, no matter how many instances of the pipeline we are run‐
ning. (Perhaps it is the only agent with the specific tools or setup we want at the
moment.) Our code might look like this with the lock step:

stage('Build') {
 // Run the gradle build
 steps {
 lock('worker_node1') {
 sh 'gradle clean build -x test'
 }
 }
}

86 | Chapter 3: Pipeline Execution Flow

http://bit.ly/2vtAOej

If we start multiple builds running of the same project or if we have multiple projects
with this same lock code for the resource, then one build/project will get the resource
first and other builds/projects will have to wait.

For the first build or project that gets the resource, the console log might show some‐
thing like this:

[Pipeline] stage
[Pipeline] { (Build)
[Pipeline] lock
00:00:02.858 Trying to acquire lock on [worker_node1]
00:00:02.864 Resource [worker_node1] did not exist. Created.
00:00:02.864 Lock acquired on [worker_node1]
[Pipeline] {
[Pipeline] tool
[Pipeline] sh
00:00:02.925 [gradle-demo-simple-pipe] Running shell script
00:00:03.213 + /usr/share/gradle/bin/gradle clean build -x test
00:00:06.671 Starting a Gradle Daemon
...
00:00:16.887
00:00:16.887 BUILD SUCCESSFUL
00:00:16.887
00:00:16.887 Total time: 13.16 secs
[Pipeline] }
00:00:17.187 Lock released on resource [worker_node1]
[Pipeline] // lock

And for the other builds/jobs trying to acquire the same lock, console output might
look like this:

[Pipeline] // stage
[Pipeline] stage
[Pipeline] { (Build)
[Pipeline] lock
00:00:03.262 Trying to acquire lock on [worker_node1]
00:00:03.262 Found 0 available resource(s). Waiting for correct
 amount: 1.
00:00:03.262 [worker_node1] is locked, waiting...

Locks allow us to control access to resources that eventually should become available.
Another method of controlling concurrency is preventing other builds from continu‐
ing past a point once a build has already gotten there. These points can be established
with milestones.

Controlling Concurrent Builds with Milestones
One of the scenarios that you might have to deal with at some point in Jenkins is
builds of the same pipeline running concurrently that can have contention for resour‐
ces. The runs could be reaching key points at different times and stepping on each
other, or one run could be modifying required resources that leave things in a bad

Dealing with Concurrency | 87

state when the other run makes it to that point. In short, there’s no guarantee that
after one run has modified a resource, another run won’t come along and modify it
while the earlier run is still in progress.

To prevent the case where builds could run out of order (in terms of the order they
were started) and step on each other, Jenkins pipelines can use the milestone step.
When a milestone step is put in the pipeline, it prevents an older build from moving
past the milestone, if the newer build has already gotten there.

The following example shows a milestone step placed in a script after a Gradle build:

 sh "'${gradleLoc}/bin/gradle' clean build"
}
milestone label: 'After build', ordinal: 1
stage("NotifyOnFailure") {

Suppose we have two runs of this build happening concurrently, as shown in
Figure 3-11.

Figure 3-11. Two ordered builds of the same job running concurrently

If build #11 gets to the milestone step first during its processing, then when build
#10 arrives, it will be canceled. This prevents build #10 from overwriting or modify‐
ing any resources already in use or modified by build #11. The console log for build
#10 for this part of the process is shown in Figure 3-12.

Figure 3-12. Console log for build #10

88 | Chapter 3: Pipeline Execution Flow

The rules for milestone processing can be summed up as:

• Builds pass the milestones in order by build number.
• Older builds abort if a newer build has already passed the milestone.
• When a build passes a milestone, Jenkins aborts older builds that have passed the

previous milestone, but not this milestone.
• If an older build passes a milestone, newer builds that haven’t passed the mile‐

stone won’t abort it.

To be clear, if concurrent builds reach the milestone in the order they were started,
they can all pass the milestone.

The milestone step can take a couple of parameters. The first is a label, which is to
identify the milestone. It will be shown in the build log. The second is an ordinal
number. This is autogenerated if not set specifically. You only need to do this if you’re
going to be adding/deleting milestones during the builds. There is also a way to
restrict concurrent builds running for multiple branches in a Multibranch Pipeline
project. That’s covered in the next section.

Restricting Concurrency in Multibranch Pipelines
The pipeline DSL includes a way to restrict Multibranch Pipelines to only building
one branch at a time. This is done with a property for either a Scripted or Declarative
Pipeline. When this is in place (in the Jenkinsfiles of the branches), requested builds
for branches other than the one currently building will be queued.

In a scripted syntax, the property can be set this way:

properties([disableConcurrentBuilds()])

In declarative syntax, it would look like this:

options {
 disableConcurrentBuilds()
}

Next, we’ll look at one of the main ways to benefit from concurrency—running tasks
in parallel.

Running Tasks in Parallel
In addition to the other constructs for controlling the logic flow of a pipeline, steps
can also be run in parallel. In fact, the pipeline DSL has special constructs for doing
this—a traditional one that fits both Scripted and Declarative Pipelines, and a newer
one just for Declarative Pipelines. To illustrate the main points, we’ll talk about the
more general one first and then the newer declarative syntax.

Dealing with Concurrency | 89

Traditional parallel syntax

The traditional parallel pipeline step takes a map as an argument. For this con‐
struct, the values of the map are generally closures consisting themselves of pipeline
steps. Wrapping those steps in different nodes allows for the best parallelism. If spe‐
cific nodes aren’t indicated, Jenkins will run the parallel steps on unused nodes.

Map Is Required

For this parallel step, if you don’t supply a map as the argument,
then your jobs will not be run in parallel. Also note that stages can‐
not be used inside of this parallel block (unlike the newer syntax
for Declarative Pipelines).

The following is a simple script that constructs a set of parallel operations. In this
example, stepsToRun = [:] is the Groovy syntax for declaring a map. The loop then
iterates, setting the key to "Step<loop counter>" and the value for each to a node
block that echos start, sleeps, and then echos done. Finally, the parallel step exe‐
cutes, taking the map as an argument:

node ('worker_node1') {
 stage("Parallel Demo") {
 // Run steps in parallel

 // The map we'll store the steps in
 def stepsToRun = [:]

 for (int i = 1; i < 5; i++) {
 stepsToRun["Step${i}"] = { node {
 echo "start"
 sleep 5
 echo "done"
 }}
 }
 // Actually run the steps in parallel
 // parallel takes a map as an argument,
 parallel stepsToRun
 }
}

Figure 3-13 shows the console output of this section of code running. Note that since
we didn’t specify any specific nodes, each step is allowed to run on any available node.
If you look carefully at the output, you can see the interleaving of the steps as the par‐
allel jobs run.

90 | Chapter 3: Pipeline Execution Flow

Figure 3-13. Parallel execution of dynamic steps

Dealing with Concurrency | 91

It is also possible to just define the mapping directly in the invocation of the parallel
step. The following is an implementation done this way. Notice again that we are
passing in a mapping with closures and nodes. In this implementation, the first
occurrences of master and worker2 are the keys to the maps. The sections after the
colons are the closures that make up the value portions of the map. In each of the
closures for the map values, we allocate a block of code to run on specific nodes. In
this case, the code block is a shell step (sh) that invokes Gradle to run a single test—a
different one on each node.

stage ('Test') {
// execute required unit tests in parallel

 parallel (
 master: { node ('master'){
 sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExample1 test'
 }},
 worker2: { node ('worker_node2'){
 sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExample2 test'
 }},
)
}

However, trying to run this particular piece of code in most instances will run into a
problem, as shown in Figure 3-14.

Figure 3-14. Error trying to run parallel jobs without a workspace

The challenge here is that the original build happened in a workspace on a different
node and the new node (master, in this case) does not have access to that workspace.

We could archive artifacts here or try to copy them over ourselves, but Jenkins
includes special steps to help with such a case. This is a good place to cover those.

stash and unstash

In the Jenkins DSL, the stash and unstash functions allow for saving and retrieving
(respectively) files between nodes and/or stages in a pipeline. Their format is:

92 | Chapter 3: Pipeline Execution Flow

stash name: "<name>" [includes: "<pattern>" excludes: "<pattern>"]

unstash "<name>"

The basic idea here is that we designate a set of included or excluded files via names
and/or patterns. This stash of files is given a name to refer to it by.

Then, when we need to retrieve the set of files, we can simply pass the name of the
stash to the unstash command. This can be done on a different stage or node.

Git stash Versus Jenkins stash

To be clear, these functions are different from the Git stash func‐
tion. The Git stash function allows for stashing the contents of a
working directory and cache that haven’t yet been committed to
the local repository. The Jenkins stash function allows for stashing
files to share between nodes.

The stash and unstash functions are not intended for formal management of large
groups of files such as where you need to keep track of version numbers. For that type
of requirement, it is better to use an artifact repository designed for managing binary
artifacts such as Artifactory or Nexus. (Artifactory and integration with Jenkins is
discussed in Chapter 13.)

An example of the use of the stash and unstash commands across nodes is shown
next. In this case, after we get the source, we are stashing the build.gradle file and the
entire src/test tree. This stash is given the name test-sources. Then, in the parallel
section that runs on the other node (worker_node2 in this case), the unstash com‐
mand creates a copy of the stashed files and tree on that node. This allows the files to
be present so the testing can take place on that node as well and we can achieve the
parallelism:

stages {

 stage('Source') {
 git branch: 'test', url: 'git@diyv:repos/gradle-greetings'
 stash name: 'test-source', includes: 'build.gradle,src/test/'
 }
 ...
 stage ('Test') {
 // execute required unit tests in parallel

 parallel (
 master: { node ('master') {
 unstash 'test-sources'
 sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExample1 test'
 }},
 worker2: { node ('worker_node2') {

Dealing with Concurrency | 93

 unstash 'test-sources'
 sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExample2 test'
 }},
)
 }
}

The log of running this sequence can be seen in Figure 3-15. Again, note the inter‐
leaving of execution between the nodes. (In this case there is a test that is supposed to
fail, so this run is successful.)

Figure 3-15. Parallel run with stash and unstash used to share files across nodes

94 | Chapter 3: Pipeline Execution Flow

Parallel Test Executor Plugin

A separate plugin is available that can help with parallelizing sets of
tests if they are taking up significant time in your pipeline. The
Parallel Test Executor plugin looks at a run of your tests with the
execution times and attempts to split the tests up into groups of
roughly equal size. (This is done with a splitTests DSL step that
is added by the plugin.) The groups are put into lists that you can
then map into the parallel step in your pipeline. Optimally, each
group would be mapped to run on a separate node.
Using this plugin requires that your test environment/setup:

• Create JUnit-compatible XML files.
• Use a tool that can accept a test-exclusion list in a file.

Alternative parallel syntax for Declarative Pipelines
With the release of Declarative Pipeline 1.2 in September 2017, a new, alternative syn‐
tax was introduced for use in Declarative Pipelines. The new syntax more closely
matches the structured form of Declarative Pipelines. It also doesn’t require the setup
of a map or use of node, and produces output separated by each branch of the parallel
operation.

The new syntax elevates the parallel step to a separate construct within a stage. It
can have stages defined within itself for each branch to run in parallel. Within each
branch you can define an agent to run on and steps to execute just as you can for
other Declarative Pipeline sections.

An excerpt of a stage from a Declarative Pipeline that uses this syntax is shown here:

 stage('Unit Test') {
 parallel{
 stage ('Util unit tests') {
 agent { label 'worker_node2' }
 steps {
 cleanWs()
 unstash 'ws-src'
 gbuild4 ':util:test'
 }

 }
 stage ('API unit tests set 1') {
 agent { label 'worker_node3'}
 steps {
 // always run with a new workspace
 cleanWs()
 unstash 'ws-src'
 gbuild4 '-D test.single=TestExample1* :api:test'

Dealing with Concurrency | 95

http://bit.ly/2HCEJdw

 }
 }
 stage ('API unit tests set 2') {
 agent { label 'worker_node2' }
 steps {
 // always run with a new workspace
 cleanWs()
 unstash 'ws-src'
 gbuild4 '-D test.single=TestExample2* :api:test'
 }
 }
 }
 }

As you can see, this syntax is somewhat “cleaner” than the map syntax and more con‐
sistent with the declarative syntax. When run, due to the individual stage definitions,
it will also produce stage output for each “substage” (Figure 3-16) as opposed to the
single set of output of the traditional parallel syntax (Figure 3-17).

Figure 3-16. Stage output for new parallel syntax

Figure 3-17. Stage output for traditional parallel syntax

parallel and failFast

Sometimes when doing multiple processing steps in a parallel block, you may want
to quit processing all steps if one branch fails. For example, if you are doing deploy‐
ment in one parallel section and testing in another section, you may want to abort the
deployment if testing fails and abort the testing if deployment fails. To facilitate this,
Jenkins pipelines can use the failFast option when invoking the parallel step.

96 | Chapter 3: Pipeline Execution Flow

To use this option, you add failFast:true to the parallel step options. When this
option is present and one of the branches in the parallel step fails, Jenkins will ter‐
minate all running branches.

As an example, consider the following code. This is a simple Declarative Pipeline with
one stage to demonstrate the parallel failFast usage. In the parallel step, we have
the group1 branch that simply sleeps for 10 seconds and then echos out a message.
The group2 branch sleeps for 5 seconds before throwing an error (via the error step)
that will cause the failFast (the last argument to the parallel step) to fire. We have
wrapped the group1 branch in catchError and timestamps steps so that we can
detect when the branch is interrupted/terminated by the failFast operation:

pipeline {
 agent any
 stages {
 stage ('Parallel') {
 steps {
 parallel (
 'group1': {
 timestamps {
 catchError {
 sleep 10
 echo 'Completed group1 processing'
 }
 }
 },
 'group2': {
 sleep 5
 error 'Error in group2 processing'
 },
 failFast: true
)
 }
 }
 }
}

When we run this pipeline, we will get output like that shown in Figure 3-18.

Dealing with Concurrency | 97

Figure 3-18. Running with the failFast option enabled

Looking at this output, you can see that 5 seconds into the group1 branch processing,
the branch was terminated (note the “Exception” in the log). This was because after
the 5-second sleep, the group2 branch threw the error. Then the failFast option ter‐
minated group1.

If we were to take the failFast option out or set it to false, then we would still see the
group2 branch terminate with the error, but the group1 branch would run to comple‐
tion after the 10-second sleep, as shown in the alternate output in Figure 3-19.

98 | Chapter 3: Pipeline Execution Flow

Figure 3-19. Running without the failFast option

We move on now from dealing with running multiple operations in parallel to exe‐
cuting operations based on (potentially multiple) conditions.

Conditional Execution
Historically, the Conditional BuildStep plugin let users add conditional execution
functionality to Freestyle jobs in Jenkins. It allowed a way to test certain conditions,
and, based on the outcome, execute single or multiple build steps.

Jenkins pipelines can provide similar functionality. In the case of a Scripted Pipeline,
it’s as simple as using the Groovy/Java language conditionals in your pipeline code.
An example is included here using an if statement with conditions that must be true
for multiple parameters:

node ('worker_node1') {
 def responses = null
 stage('selection') {
 responses = input message: 'Enter branch and select build type',
 parameters:[string(defaultValue: '', description: '',
 name: 'BRANCH_NAME'),choice(choices: 'DEBUG\nRELEASE\nTEST',
 description: '', name: 'BUILD_TYPE')]
 }
 stage('process') {
 if ((responses.BRANCH_NAME == 'master') &&
 (responses.BUILD_TYPE == 'RELEASE')) {
 echo "Kicking off production build\n"
 }
 }
}

Conditional Execution | 99

Since these kinds of Groovy/Java-specific language features don’t fit in a declarative
model, Declarative Pipelines in Jenkins provide their own implementation for execut‐
ing code based on conditionals. In general, it takes the form of a when that tests one
or more expression blocks to see whether they are true. If so, then the remaining
code in a stage is executed. If not, then the code is not executed.

Here’s an example of a Declarative Pipeline that corresponds to the Scripted Pipeline
just shown:

pipeline {
 agent any
 parameters {
 string(defaultValue: '',
 description: '',
 name : 'BRANCH_NAME')
 choice (
 choices: 'DEBUG\nRELEASE\nTEST',
 description: '',
 name : 'BUILD_TYPE')
 }
 stages {
 stage('process') {
 when {
 allOf {
 expression {params.BRANCH_NAME == "master"}
 expression {params.BUILD_TYPE == 'RELEASE'}
 }
 }
 steps {
 echo "Kicking off production build\n"
 }
 }
 }
}

Notice the use of the parameters section to formally define the parameters in use in
the Declarative Pipeline. Also, you can see how the when and allOf blocks combine
like the if-&& construct in the Scripted Pipeline.

Using these kinds of conditional constructs in Declarative Pipelines is covered in
more detail in “Conditional execution of a stage” on page 239.

Post-Processing
Traditional (web-based) Jenkins Freestyle jobs include a Post-build Actions section
where users can add actions that always occur after a build is finished, regardless of
whether it completed successfully, failed, or was aborted.

100 | Chapter 3: Pipeline Execution Flow

We can replicate this functionality in both Scripted and Declarative Pipelines. The
Scripted Pipeline relies on programming constructs to emulate this, while Declarative
Pipelines have built-in functionality for it. We’ll look at both of these implementa‐
tions next.

Scripted Pipelines Post-Processing
Scripted Pipelines do not have built-in support for post-build processing. In Scripted
Pipelines, when we don’t have built-in functionality, we traditionally rely on Groovy
programming constructs to provide it. This applies in this case as well, if we use the
try-catch-finally mechanism.

However, the Jenkins DSL includes another step that acts as a shortcut for the try-
catch-finally functionality: catchError. The catchError step can be useful in mul‐
tiple instances, but fits well for our post-build use case here.

More details on these scripted choices follow.

try-catch-finally
What we want to have is a way to always do certain actions regardless of the final state
of the build. We can accomplish that by catching any exceptions with a try-catch
and using the finally clause to then do our processing based on the build’s state.
Most commonly, the processing we do in the finally clause would be sending mail
or other notifications about the build’s state. Here’s an example of the structure with
try-catch-finally:

def err = null
try {
 // pipeline code
 node ('node-name') {
 stage ('first stage') {
 ...
 } // end of last stage
 }
}
catch (err) {
 currentBuild.result = "FAILURE"
}
finally {
 (currentBuild.result != "ABORTED"){
 // Send email notifications for builds that failed
 // or are unstable
 }
}

Notice that we are setting the value of currentBuild.result if there is an error, to
ensure the build status is consistent with what we expect from Jenkins. Also, we don’t

Post-Processing | 101

send mail if the build was aborted. (For examples of how to send mail and other noti‐
fications, see Chapter 4.)

The try-catch could also be within the node block if we preferred. That would, how‐
ever, not catch issues thrown while trying to get the node, which might also not be
able to send the notification. Finally, if we wanted to propagate the error, we could
throw it again in our finally block.

catchError
The Jenkins pipeline syntax also provides a more advanced way of handling excep‐
tions. The catchError block provides a way to detect the exception and change the
overall build status, but still continue the processing.

With the catchError construct, if an exception is thrown by a block of code, the
build is marked as a failure. But the code in the pipeline continues to be executed
from the statement following the catchError block.

The advantage of this processing is that you can still do things like send notifications
after processing has failed. This simulates the post-build processing that we’re accus‐
tomed to in the more traditional Jenkins model and also provides a shortcut over the
try-catch block.

An example of using this is shown here:

node ('node-name') {
 catchError {
 stage ('first stage') {
 ...
 } // end of last stage
 }
 // step to send email notifications
}

This is essentially equivalent to the following code:

node ('node-name') {
 try {
 stage ('first stage') {
 ...
 } // end of last stage
 } catch (err) {
 echo "Caught: ${err}"
 currentBuild.result = 'FAILURE'
 }
 // step to send email notifications
}

The advantages are the simpler syntax and the build result automatically being
marked as failed if an exception occurs.

102 | Chapter 3: Pipeline Execution Flow

Declarative Pipelines and Post-Processing
Declarative Pipelines have a dedicated section for post-build processing. Not surpris‐
ingly, the section is called post. A post section can be at the end of a stage or at the
end of a pipeline—or both.

The most common use for this is to mimic the post-build operations, especially noti‐
fications, that are available for Freestyle jobs. The declarative syntax provides several
predefined “build conditions” that can be checked and, if true, then initiate further
action. Their names and uses are explained in tTable 3-1.

Table 3-1. Declarative build conditions for post-processing

Condition Description
always Always executes the steps in the block
changed Executes the steps in the block if the current build’s status is different from the previous build’s status
success Executes the steps in the block if the current build was successful
failure Executes the steps in the block if the current build failed
unstable Executes the steps in the block if the current build’s status is unstable

So, for example, we can declare that if the failure condition is true, we want to send
an email about the failure.

The syntax here is fairly simple. Here’s an outline for a simple post structure at the
end of a build:

 }
 } // end stages
 post {
 always {
 echo "Build stage complete"
 }
 failure {
 echo "Build failed"
 mail body: 'build failed', subject: 'Build failed!',
 to: 'devops@company.com'
 }
 success {
 echo "Build succeeded"
 mail body: 'build succeeded', subject: 'Build Succeeded',
 to: 'devops@company.com'
 }
 }
} // end pipeline

Notice that the post section for the entire build comes after all of the stages in the
pipeline. Also, we could do other things when checking these conditions, such as
archiving artifacts.

Post-Processing | 103

Summary
In this chapter, we’ve looked at pipeline constructs and steps that affect the overall
execution flow of your pipeline.

We started with seeing how to specify the kinds of events that you want to trigger
your pipeline. And once triggered, we saw how to accept different kinds of input to
direct the behavior of the pipeline.

We looked at ways to have the pipeline try again when there’s a failure or move on
after a certain time period. And we saw ways to deal with concurrency—both to pre‐
vent it for multiple runs of the same pipeline, and to leverage it for running tasks in
parallel. And we noted how to provide conditional build execution.

Finally, we looked at ways to accomplish post-build processing in pipelines similar to
the functionality provided in Freestyle projects.

All of this should give you a good start on controlling the flow of execution through
your Scripted or Declarative Pipeline. In the next chapter, we’ll look at ways that Jen‐
kins can send messages and notifications through some of the more popular commu‐
nication tools.

104 | Chapter 3: Pipeline Execution Flow

CHAPTER 4

Notifications and Reports

One of the core uses of Jenkins is implementing automation. In addition to repeatable
processing that is triggered by some event, we also rely on being automatically noti‐
fied when processes have completed, and of their overall status. Additionally, many
plugins and steps produce useful reports as part of their processing.

The pipeline DSL contains steps that help with notifications. In this chapter, we’ll
look at what it takes to configure Jenkins and implement code to leverage some com‐
mon notification methods and services.

Starting out, we’ll look at some of the types of notifications that Jenkins can send—
from basic and extended email to using services such as Slack and HipChat.

Then we’ll move on to how to surface reports that are generated by pipeline process‐
ing to a more convenient location.

With these tools, you should be equipped to get the information you need from Jen‐
kins and share it with other users.

Notifications
In this section, we’ll look at notifications—that is, informing users of some status,
event, or piece of information that we want them to be aware of. For most cases, this
will happen in the “post-processing” parts of a pipeline. In a Scripted Pipeline, this
usually entails using a try-catch-finally construct if you want to always do post-
processing (as described in Chapter 3). For Declarative Pipelines, we have the more
straightforward post section that we can use.

Regardless of where you employ notifications, users today have a lot more options
with Jenkins than just the traditional email route. Many of the options fall into the

105

area of instant messaging, and even allow the user to do things like specify coloring
for messages. We’ll look at several of these in this chapter.

Email
Traditionally in Jenkins, email was the primary means of notification. As such, there
is significant support (and significant options) for configuring email notifications in
Jenkins. The options are managed on the Configure System page of the Manage Jen‐
kins area. We’ll break these down for simplicity.

Jenkins Location
In addition to the “nice” URL that you can set in this section (see the following note),
this is where you can set the system administrator’s email address. This is intended to
be the “from” address that users will see in emails from Jenkins to the project owners.
As described in the help screen shown in Figure 4-1, this can be a simple email
address or a fuller one with a name for your Jenkins instance. Regardless, it is a
required field.

Figure 4-1. Jenkins Location settings

Jenkins URL

The Jenkins URL field in this section provides a place to put in the
more user-friendly name of your Jenkins system. Jenkins can’t
detect the URL itself. Note that this is optional, and you could leave
it as something like “localhost:8080”. However, this is the Jenkins
URL that will appear in the links in emails sent from Jenkins. So
you will need to reference a clickable URL.

In reality, for most purposes, the email address for the user (configured later) will be
the one surfaced in the emails. In most cases, you likely won’t see the admin address
unless you dig into the headers for the email. An example of deep-diving into those is
shown next. Here, you can see the value of the “System Admin e-mail address” field
in the X-Google-Original-From header:

X-Received: by 10.55.93.197 with SMTP id r188mr35950021qkb.277.1502803051345;
 Tue, 15 Aug 2017 06:17:31 -0700 (PDT)
Received: from diyvb2 (sas08001.nat.sas.com. [149.173.8.1])

106 | Chapter 4: Notifications and Reports

 by smtp.gmail.com with ESMTPSA id 131sm6301940qki.23.2017.08.15.06.17.30
 for <bcl@nclasters.org >
 (version=TLS1 cipher=ECDHE-RSA-AES128-SHA bits=128/128);
 Tue, 15 Aug 2017 06:17:30 -0700 (PDT)
From: jenkins-demo@gmail.com
X-Google-Original-From: jenkins-notifications@myserver.com
Date: Tue, 15 Aug 2017 09:17:30 -0400 (EDT)
Reply-To: no-reply@jenkins.foo
To: bcl@nclasters.org
Message-ID: <2007092803.5.1502803050373.JavaMail.jenkins@diyvb2>
Subject: Test email #6
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

Next, we’ll look at the traditional settings for email notifications in Jenkins.

E-mail Notification
Still on the global configuration page, there is an E-mail Notification section that you
fill in to set up the basic email functionality. These fields should be pretty much self-
explanatory in terms of setup, as long as you can gather the details for your email
configuration. Note that there is an Advanced button to the right that you need to
click to get access to some fields.

Figure 4-2 shows this section of the page.

Figure 4-2. E-mail Notification settings

A couple of notes:

• The SMTP server will default to the one on localhost if this field is left empty.

Notifications | 107

https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=bl1%40nclasters.org
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=nfjsuser1%40gmail.com
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=jenkins-notifications%40myserver.com
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=jenkins-notifications%40myserver.com
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=no-reply%40jenkins.foo
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=bl1%40nclasters.org

• If using SSL, the port will default to 465; otherwise, it defaults to 25.
• The Reply-To Address field here is optional, but can be convenient if you need to

set one.
• Arguably the most important part of this section is the ability to test your email

configuration by sending a test email (the last fields at the bottom). Doing this is
highly recommended. If this test fails, you will commonly see a Java error trace‐
back, as shown in Figure 4-3. This is typically due to a bad username or pass‐
word, or a bad address for the email recipient.

Figure 4-3. Traceback for failure sending test email

With this background, let’s see how we might use this in a pipeline script.

Sending email in pipelines

The following code listing shows an example of using the basic mail step in a Scripted
Pipeline. As explained in other chapters of the book, the try-catch-finally block is
the primary way with a Scripted Pipeline to ensure that post-processing is always
done regardless of success or failure:

node ('worker_node1') {
 try {
 ...
 }
 currentBuild.result = 'SUCCESS'
 }
 catch (err) {
 currentBuild.result = 'FAILURE'
 }
 finally {

108 | Chapter 4: Notifications and Reports

 mail to: 'bcl@nclasters.org',
 subject: "Status of pipeline: ${currentBuild.fullDisplayName}",
 body: "${env.BUILD_URL} has result ${currentBuild.result}"
 }
}

Setting Build Results

You may have noticed that we specifically set the current
Build.result value in this listing. The reason for this is that you
can’t depend on pipeline steps to explicitly set the build result, and
if the build result is not set the emails will show a status of null.

In a similar way, the pipeline mail step can be used in a Declarative Pipeline. Here’s a
simple example:

pipeline {
 agent any
 stages {
 ...
 }
 post {
 always {
 mail to: 'bcl@nclasters.org',
 subject: "Status of pipeline: ${currentBuild.fullDisplayName}",
 body: "${env.BUILD_URL} has result ${currentBuild.result}"
 }
 }
}

post Section of a Declarative Pipeline

Note that, as described in Chapter 7, the post section supports sep‐
arate processing for build statuses such as success, failure, etc. In
this case, we are simply using the always clause for a generic dem‐
onstration.

These pipelines will produce an email like the following if there is a failure:

---------------------------- Original Message ----------------------------
Subject: Status of pipeline: pipeline2 #1
From: jenkins-demo@gmail.com
Date: Tue, August 15, 2017 9:33 pm
To: bcl@nclasters.org
--

http://jenkins1.demo.org/job/pipeline2/1/ has result FAILURE

If there is a successful build, this will look the same except FAILURE will be replaced
with SUCCESS.

Notifications | 109

While the built-in functionality covers the basic email needs, there may be times
when you need or want to further customize and control the emails that Jenkins
sends. The Email Extension plugin provides many additional options for expanding
how emails are handled, but it also comes with trade-offs when using it in a pipeline
environment. We’ll dive into it next.

Extended email notifications
In addition to the basic email functionality, there is also an Extended Email (email-
ext) plugin that adds numerous additional options and levels of control for sending
email through Jenkins. It contains a similar general mail configuration section similar
to the mail plugin, but also adds functionality in three areas:

Content
It’s possible to dynamically modify the contents of an email notification’s subject
and body.

Recipients
You can define which user roles should receive an email notification.

Triggers
You can specify what conditions should initiate sending an email notification.
(Note that these do not currently apply to pipelines.)

We’ll look at each of these areas in more detail next and see how to incorporate them
where applicable.

Global configuration. The email-ext plugin requires some global configuration before
being used in Pipeline jobs. Most of this is the same as the configuration we did for
the basic email functionality (see Figure 4-4).

110 | Chapter 4: Notifications and Reports

https://plugins.jenkins.io/email-ext

Figure 4-4. General configuration for extended emails

A few new fields deserve further explanation. They include:

Use List-ID Email Header
Selecting this option allows you to apply a list-id header to all emails. As the help
suggests, this can be useful with filtering and also avoiding autoresponders. The
help contains example formats.

Add ‘Precedence: bulk’ Email Header
This option adds a header to emails from Jenkins. Based on a standard used by
mail systems, this option should eliminate or cut down on autoresponses being
sent back to Jenkins.

Reply To List
This isn’t a new one, but note that we can provide a comma-separated list of
users/addresses.

Emergency reroute
If this field is filled in, all Jenkins emails will be sent to just that or those recipi‐
ents. This could be useful for temporarily not allowing Jenkins to send out wider
emails if there is an issue that warrants that.

Excluded Recipients
As the name implies, this can exclude (filter out) any email addresses from the
list generated by other functionality in this plugin.

Next, we’ll look at the functionality in the plugin that allows us to set the default ele‐
ments of emails.

Notifications | 111

Content. Still in the global configuration, we have a set of fields that are intended to
allow us to dynamically generate/modify the contents of the email notices sent out
from Jenkins. Figure 4-5 shows these fields.

Figure 4-5. Default global content settings for extended email

The emailext Step and Default Fields

Currently, these fields are of no value in Pipeline scripts as there
doesn’t seem to be a way to tell the emailext step to use the
defaults from here. However, we’re including them in our discus‐
sion in case that functionality becomes available later.

The first three fields (Default Subject, Maximum Attachment Size, and Default Con‐
tent) are pretty self-explanatory. Note that the attachment size should be expressed in
terms of megabytes and this is cumulative for all attachments.

The Default Pre-send Script and Default Post-send Script areas offer places to enter a
Groovy script to run before the email is sent (and potentially modify it) and after the
email is sent, respectively. If you’re interested in these, there are a number of “recipes”
available on the web. A good place to start is the plugins page.

You can also use a number of tokens in constructing the contents of the Default Sub‐
ject and Default Content fields. “Tokens” here refers to what we might call build or
environment variables filled in by Jenkins in other contexts. $BUILD_NUMBER contains
the number of the build and $PROJECT_NAME contains the name of the project, for
example. If defined, the default pre-send and post-send scripts can be referenced in
other jobs as ${DEFAULT_PRESEND_SCRIPT} and ${DEFAULT_POSTSEND_SCRIPT},
respectively.

112 | Chapter 4: Notifications and Reports

https://plugins.jenkins.io

As well as providing more options for the content of emails, the extended email func‐
tionality also provides more options for choosing the types of recipients to send
emails to. That’s next.

Recipients. The Email Extension plugin provides several categories of recipients
through the emailext pipeline step. These are in addition to any designated individ‐
ual recipients.

Figure 4-6 shows the selectable categories in the drop-down for the step.

Figure 4-6. Adding extended email recipients

Table 4-1 lists the categories along with their definitions, drawing on the wording
from the plugin documentation.

Table 4-1. Extended email recipients categories

Name Description (from plugin documentation)
Culprits Sends email to the list of users who committed a change between the last nonbroken build and now.

This list at least always includes people who made changes in this build, but if the previous build was a
failure it also includes the culprit list from that.

Developers Sends email to all the people who caused a change in the changeset.
Requestor Sends email to the user who initiated the build (assuming it was manually initiated).
Suspects Causing
Unit Tests to Begin
Failing

Sends email to the list of users suspected of causing a unit test to begin failing. This list includes
committers and requestors of the build where the test began to fail, and of any consecutive failed
builds prior to the build in which the test began to fail.

Suspects Causing
the Build to Begin
Failing

Sends email to the list of users suspected of causing the build to begin failing.

Upstream
Committers

Sends email to the list of users who committed changes in upstream builds that triggered this build.

Notifications | 113

When using these in the emailext pipeline step, we need to use the $class notation
to reference the names (at least as of the time of this writing). For example:

emailext body: 'body goes here',
 recipientProviders: [[$class: 'CulpritsRecipientProvider'],
 [$class: 'DevelopersRecipientProvider'],
 [$class: 'RequesterRecipientProvider'],
 [$class: 'FailingTestSuspectsRecipientProvider'],
 [$class: 'FirstFailingBuildSuspectsRecipientProvider'],
 [$class: 'UpstreamComitterRecipientProvider']],
 subject: 'subject goes here'

Triggers. The global configuration for the email-ext plugin also allows you to select a
set of default triggers for events to send email on. However, this adds those automatic
emails only when you are using Freestyle jobs and add “Editable Email Notifications”
to the “Post-build Actions” part of the job. As such, they are not useful in the Pipeline
context.

A similar approach can be constructed in a pipeline by doing things like checking the
build status in a finally block in a Scripted Pipeline, or in a post block with condi‐
tionals in a Declarative Pipeline, and sending email off of that. See Chapter 3 (on
Pipeline flow) and Chapter 7 (on Declarative Pipelines) for examples of post-build
processing like this.

Including logs. One of the other useful built-in functions for the email-ext plugin is
that it can also include (and compress) logs. To use this setting in the pipeline step,
you can simply enable the options shown here:

attachLog: true, compressLog:true

Ultimately, the plugin provides a mixed bag for Pipeline developers. On the good
side, it allows adding the extended classes of recipients and doing things like attach‐
ing logs. On the downside, emailext is one of those steps that was targeted to do a lot
by default based on global configuration and adding a post-build action to a Freestyle
job. That doesn’t translate well into a Pipeline environment unless (until) there is
some way to set a similar post-processing property, so the default functionality can be
activated. Perhaps that will be added in the future, past this writing.

One other note is that using pre-send or post-send scripts in the emailext pipeline
step seems to currently be broken. Objects that those scripts should have access to,
such as the build object, are not accessible. Hopefully, this too will be fixed in the
not-too-distant future.

With all that in mind, here’s a final example of using the emailext pipeline step with
many of the useful components:

emailext attachLog: true, body:
 """<p>EXECUTED: Job \'${env.JOB_NAME}:${env.BUILD_NUMBER})\'

114 | Chapter 4: Notifications and Reports

 </p><p>View console output at "
 ${env.JOB_NAME}:${env.BUILD_NUMBER}"</p>
 <p><i>(Build log is attached.)</i></p>""",
 compressLog: true,
 recipientProviders: [[$class: 'DevelopersRecipientProvider'],
 [$class: 'RequesterRecipientProvider']],
 replyTo: 'do-not-reply@company.com',
 subject: "Status: ${currentBuild.result?:'SUCCESS'} -
 Job \'${env.JOB_NAME}:${env.BUILD_NUMBER}\'",
 to: 'bcl@nclasters.org Brent.Laster@domain.com'

There are several items worth noting about this step:

• The step is formatted to fit the space available on the page.
• A better approach when you’re writing a Scripted Pipeline would be to define

variables to hold some of the longer values and then use the variables in the step.
• Note the use of the triple double quotes around the text of the body. This is a

Groovy-ism, where triple quotes are used to encapsulate multiline messages.
• We are using HTML tags in the body of the email. In order for this to be ren‐

dered as HTML, the default content type needs to be set to HTML (not text) in
the global configuration for the email-ext plugin.

• Note the use of double quotes around strings that have variables to interpolate—
another Groovy-ism.

• The syntax ${currentBuild.result?:'SUCCESS'} checks whether current
Build.result is NULL and, if so, assigns it the 'SUCCESS' value. This is necessary
because a NULL value in Jenkins for the build result indicates success.

• We have used the replyTo field to set an address for replies.
• Note that multiple names can be used in the to string, separated by spaces.

Figure 4-7 shows an example of an email generated by the previous command.

Notifications | 115

Figure 4-7. Example email from sample command

While emails still provide the most ubiquitous means of notifying Jenkins users of
events and sharing information, more and more teams are using instant messaging
services for collaboration and notifications. Two of the most popular are Slack and
HipChat. Let’s look at how Jenkins can work with each of them.

Collaboration Services
For several of the popular messaging/communications services, there are plugins to
provide notifications to the services from Jenkins. In this section, we’ll look at two of
these—for Slack and HipChat.

Slack notifications
To send notifications to Slack, you first need to install the Slack Notification plugin.
After installing and configuring the global parts of this plugin, your pipeline will be
able to send notifications to a Slack channel via a slackSend step. But first, you’ll
need to enable the integration through Slack.

Setup in Slack. Enabling the Jenkins integration with Slack assumes you have a Slack
account, a team, and a channel defined first. (We won’t cover that here, but there is
plenty of documentation for this available on the web.) For our purposes here, I’ve
created an explore-jenkins team and a #jenkins2 channel on Slack.

Next, you’ll want to configure the Jenkins integration. This will guide you through
creating a Slack API integration token to allow Jenkins to connect to Slack.

116 | Chapter 4: Notifications and Reports

https://plugins.jenkins.io/slack
http://bit.ly/2vuSVjV

Figure 4-8 shows an example of the first screen of the configuration. Here, we are log‐
ged into the explore-jenkins team and are going to enable Jenkins CI integration for
the #jenkins2 channel within that team.

Figure 4-8. Enabling the Jenkins Slack integration on a channel

After clicking the “Add Jenkins CI integration” button, you’ll be taken to the next
screen, which will have directions for what to do in Jenkins to use the integration.
Further down on the page will be the integration settings to use in Jenkins.

The main things you need from this are the base URL and the token. Both of these
currently can be found in the output for Step 3 on the page (Figure 4-9). Modify any
other settings you want and then click the Save Settings button at the bottom of the
page. This will save the options but will return you to the same page.

Figure 4-9. Information from Slack integration page with info needed for Jenkins config

This is a good time to take care of a security issue. While you could use the token
directly in the Jenkins global configuration, this is considered a security risk. You are
better off creating a “Secret text” credential to hold this. More information on creat‐
ing credentials is in Chapter 5, but Figure 4-10 shows the main step of filling in the
dialog for a new credential.

Notifications | 117

Figure 4-10. Creating a new “Secret text” credential for Slack

The next section assumes that you’ve created such a credential to use in the global
configuration.

Global configuration in Jenkins. The global setup for the Slack notifications involves
just a few basic pieces of information, as shown in Figure 4-11.

Figure 4-11. Global configuration for the Jenkins/Slack notifications

First is the base URL. This can be obtained from the Slack integration output as
described in the previous section.

Next is the team subdomain, which is the team you will be using in Slack (the same
one you configured the token for). Likewise, you can fill in the last argument with the
channel that you configured the token for.

As we discussed in the previous section, it’s better to create a new credential to use for
the Slack integration token than to directly expose the token itself. The Integration
Token Credential ID field is where you select the credential you previously set up that
contains the token. When using this option, you can leave the “Integration Token”
field blank.

Finally, there’s the “IsBot User?” checkbox. Enabling (checking) this option allows
notifications to be sent from a bot user. For this to work, credentials for the bot user
(integration token credentials) need to be provided.

118 | Chapter 4: Notifications and Reports

Once you have these fields filled in, you can test the connection by clicking the Test
Connection button. If all went well, you should see a Success message. And then, in
Slack itself, you’ll be able to see the notifications regarding the integration setup
(Figure 4-12).

Figure 4-12. Notifications of Slack integration setup

Webhooks in Slack. While API tokens are fairly easy to set up for integration, there is
another approach that can be used—webhooks. This is the newer approach for inte‐
gration between Jenkins and Slack, allowing Slack to send a payload to a public end‐
point defined in Jenkins when it has something to share. This is also the approach for
Slack-compatible applications. We won’t go into all the details here, but I’ll provide
some pointers on getting this set up just in case you need to at some point.

As with the Jenkins CI integration previously outlined, you first need to enable the
webhook integration for your subdomain/team from within Slack. Note that you
want to set up an outgoing webhook (information sent from Slack) as opposed to an
incoming webhook. Figure 4-13 shows the screen in Slack to enable the outgoing
webhook integration.

Notifications | 119

Figure 4-13. Enabling the outgoing webhook integration in Slack

After you click the “Add Outgoing WebHooks Integration” button, you’ll be taken to a
screen where you’ll find additional information about your new integration, includ‐
ing the token (Figure 4-14).

120 | Chapter 4: Notifications and Reports

Figure 4-14. Outgoing webhook integration details—including token

You can then configure the global setup for Slack webhooks with the token and your
endpoint (Figure 4-15).

Figure 4-15. Setting global configuration in Jenkins for Slack webhooks

Sending Slack notifications in a job. The slackSend pipeline step allows for actually
sending the message via Slack. The only required (default) parameter is the message
string to send. While you can send any message string, if you are using this for notifi‐
cations from Jenkins then you probably want to include Jenkins environment vari‐
ables or global variables, such as env.JOB_NAME, env.BUILD_NUM, etc. When using
these, remember to enclose them in the ${} syntax in a string that is enclosed itself in
double quotes so that the Groovy interpolation will work correctly. Here’s a simple
example with only the default parameter:

slackSend "Build ${env.BUILD_NUMBER} completed for ${env.JOB_NAME}."

Notifications | 121

Adding Links in the Message

Links can be added using standard HTML code (assuming the
“Text format” option is not set)—simply code the item as
(<link | text>). For example, to add a link to the URL
you send out, you could modify the previous step this way:

slackSend "Build ${env.BUILD_NUMBER} completed for
${env.JOB_NAME}. Details: (<${env.BUILD_URL} | here >)"

The other likely parameter that you’ll use will be color. This setting is used to color
the border along the left side of the message attachment.

Colors can be specified via a couple of predefined labels or a hex string (explained
more in the upcoming note). The predefined labels are good (dark green), warning
(orange-yellow), and danger (dark red).

Adding in a color and a link, the example step might look like this:

slackSend color: 'good', message: "Build ${env.BUILD_NUMBER}
 completed for ${env.JOB_NAME}. Details: (<${env.BUILD_URL} |
 here >)"

Note that the part of the message with the variables must be enclosed in double
quotes to allow for the interpolation of the values.

122 | Chapter 4: Notifications and Reports

Colors and Color Codes

The slackSend step can use a color code represented by a string of
hexadecimal (base-16) characters. The hipchatSend step (dis‐
cussed shortly) uses a name for the color. Let’s take a moment and
see how these map.
The hex representation for a color consists of six characters, which
can be numbers from 0–9 or characters from A–F. Each character
position represents a certain part/tone of the color, and the combi‐
nation of values for the six characters makes up a unique color.
Within this combination, the first two characters represent the red
elements, the next two colors represent the green elements, and the
final two characters represent the blue elements.
Using combinations of the hex digits in the different positions
allows us to create any unique color with different combinations of
the red, green, and blue elements. Here are some examples:

• #000000 means that all color parts are off, so this equates to
black.

• #FFFFFF means that all color parts are on, so this equates to
white.

• #FF0000 means that all of the red elements are on, so this is
red.

• #00FF00 means that all of the green elements are on, so this is
green.

• #FFFF00 means that all of the red and green elements are on,
which makes yellow (red mixed with green).

So, if you wanted to have the color be purple, you could turn on the
red components (two left hex digits) and the blue components (two
right hex digits) and turn off the green components (middle two
digits), as in #FF00FF.

There are additional parameters that the slackSend step can take. Most of these have
the same names and types of settings as the values in the global configuration for
Slack integration. They are designed to allow the step to override the default settings
if desired. You can find out more about these by going to the Pipeline Syntax screen,
selecting the slackSend step, and clicking the Advanced button.

Finally, one other parameter that is available is failOnError. Setting this to true
causes the run to abort if there is a problem sending the notification.

Notifications | 123

HipChat notifications
Similar to the Slack Notification plugin, there is also a HipChat Notification plugin. It
adds a hipchatSend step to the Pipeline DSL. Like the Slack plugin, the HipChat
plugin requires some configuration in the application itself first. Unlike with Slack,
you have a choice (currently) of using either HipChat’s version 1 API or the new ver‐
sion 2 API. Although version 2 is recommended going forward, as of the time of this
writing version 1 is still supported, so we’ll cover setup for both.

For these examples, I assume that you have an account already with at least one room
set up. For the example here, I have a room set up named explore-jenkins.

Setup in HipChat for version 1 API use. From your room’s menu, you can select Integra‐
tions and then browse to find the Jenkins tile (Figure 4-16).

Figure 4-16. The Jenkins integration tile in HipChat

Select this tile and you’ll be presented with a screen that has the version 1 token on it
(Figure 4-17).

Figure 4-17. v1 token screen

124 | Chapter 4: Notifications and Reports

To use this token in the Jenkins global configuration, you must create a new Jenkins
“Secret text” credential. The process is shown in “Setup in Slack” on page 116. Note
that you do not have the option to use the token in plain text in the Jenkins global
configuration, as you do with the Slack setup.

Setup in HipChat for version 2 API use. If you want to (or are required to) use the Hip‐
Chat version 2 API, the easiest way to get a token is to go to http://<your room>.hip‐
chat.com/account/api. (Note that this is for a personal token.) Once there, in the
“Create new token” section, provide a label for the token and select the type. (The
examples here use the label “jenkins” and the Send Notification scope). Click the Cre‐
ate button and you’ll see a v2 token that you can use (Figure 4-18).

Figure 4-18. Getting a HipChat v2 token

To use this token in the Jenkins global configuration, you must create a new Jenkins
“Secret text” credential. The process is shown in “Setup in Slack” on page 116.

Global configuration in Jenkins. For the HipChat global configuration, you need to first
fill in the location of the HipChat server. Unless you have a dedicated server with its
own name for this, you can just leave it as the default api.hipchat.com.

Next is the checkbox to indicate whether or not you are using the v2 API. If you are
using the v1 API, leave it unchecked.

Notifications | 125

Under that, enter the room name you want to send notifications to. This can be either
the room name (case-sensitive) or the HipChat ID number. Multiple names can be
provided as long as they are comma-separated.

Next, if you are using v1, you can specify a different ID from which to send the notifi‐
cations. The default is “Jenkins”.

The Card Provider field has to do with notification cards in HipChat. A discussion of
notification cards is outside the scope of this book; unless you have a specific reason
to do otherwise, you can just leave this as “Default cards”.

Figure 4-19 shows an example of the global configuration for HipChat in Jenkins.

Figure 4-19. HipChat global configuration

Once you have this information filled in, it is a good time to test out the communica‐
tion between Jenkins and HipChat. You can do that by pressing the “Test configura‐
tion” button. If all is set up correctly, you should see a Test Notification Sent message
like that in Figure 4-20.

Figure 4-20. Test notification from Jenkins

Default notifications. There is one more piece of global configuration for the HipChat
plugin—default notifications. This is the last section of the globally configured
options. The boldfaced headers in that section are columns that you can configure
when you add a default notification. To add a default notification, you simply click
the Add button and fill in the fields.

As the name implies, the intent is to allow setting up default notifications for a job.
However, these notifications are only sent if specific notifications aren’t configured in
a job and if the HipChat Notifications option is added as a post-build action. Since
those conditions can only be met with a Freestyle project, and since Pipeline projects

126 | Chapter 4: Notifications and Reports

using the HipChat integration will have a specific notification step by definition,
these don’t apply for Pipeline projects.

Sending HipChat notifications in a job. The HipChat Notification plugin provides the
previously mentioned hipchatSend step that you can use in your pipeline. The only
required (default) parameter is a message. While you can send any message string, if
you are using this for notifications from Jenkins then you probably want to include
Jenkins environment variables or global variables, such as env.JOB_NAME,
env.BUILD_NUM, etc. When using these, remember to enclose them in the ${} syntax
in a string that is enclosed itself in double quotes so that the Groovy interpolation will
work correctly. Here’s a simple example with only the default parameter:

 hipchatSend "Build Started: ${env.JOB_NAME} ${env.BUILD_NUMBER}"

The other common option to use sets the color for the background of the message in
the interface. Unlike the Slack color options, the color value can only be one of GREEN,
YELLOW, RED, PURPLE, GRAY, or RANDOM. The default is GRAY.

Additional options control other aspects of the message. The notify option can be
set to true or false; it indicates whether the message should trigger a user notifica‐
tion with sounds for notifying mobile devices and so on. And the textFormat option
indicates whether the message should be sent in text format (if set to true). The
default is false (HTML).

Adding Links in the Message

Assuming the textFormat option is not set to true, links can be
added in hipchatSend messages by just using standard HTML. For
example:

hipchatSend "Build ${env.BUILD_NUMBER} completed for
 ${env.JOB_NAME}. Details:
 here"

An example of a more elaborate command with the color option and notifications
for the room would look like this:

 hipchatSend color: 'GREEN',
 notify: true,
 message: "Build ${env.BUILD_NUMBER} completed for
 ${env.JOB_NAME}. Details: here"

The notification in HipChat would look like Figure 4-21.

Notifications | 127

Figure 4-21. HipChat notification from Jenkins

There are additional parameters that the hipchatSend step can take. These have the
same names and types of settings as the values in the global configuration for Hip‐
Chat. They are designed to allow the step to override the default settings if desired.
You can find out more about these by going to the Pipeline Syntax screen, selecting
the hipChat step, and clicking the Advanced button.

Unlike the underlying email functionality, the integration points for the collaboration
services continue to evolve. HipChat is moving from the v1 API to the v2 API. Slack
is adding more support for webhooks. And compatible services may also use slightly
different approaches. Always check the Plugins index for the latest information.

There are certainly other types of notifications that Jenkins can provide with appro‐
priate plugin integration, but hopefully this section has given you enough to get going
with meaningful communication.

Another means that Jenkins uses to convey information is producing reports—or
rather, the applications that Jenkins integrates with produce reports. Getting these
exposed for easier access is the subject of our next section.

Reports
Many plugins or tools used with Jenkins generate HTML reports for various tasks.
Example tasks include code analysis, code coverage, and unit test reports. Some of
these, such as those for SonarQube and JaCoCo, provide custom integrations with
Jenkins job output. These usually take the form of visual elements such as badges or
graphs or simple links that the user can click to get to the application itself and view
the reports.

However, some tooling doesn’t supply that level of integration with Jenkins. It simply
creates the reports in a location relative to the workspace and leaves it up to the user
to determine the location, browse to it, and view the content there. This is less conve‐
nient than having a link to the report on the job output page, especially if you are
trying to locate the report within one of Jenkins’s workspaces and/or need to access
this information over multiple runs of a job.

Fortunately, the HTML Publisher plugin is available. This plugin allows you to add a
step in your pipeline code to point to an HTML report. It also allows you to have a

128 | Chapter 4: Notifications and Reports

https://plugins.jenkins.io
https://plugins.jenkins.io/htmlpublisher

custom link created on the job’s output page, and it provides options such as ensuring
that reports are preserved over time (archived).

Publishing HTML Reports
To see how the HTML Publisher plugin works, let’s look at an example. Assume we
have a Gradle build for a project with multiple subprojects, including one named api
and one named util. Our pipeline runs the Gradle test task against these subprojects,
exercising a set of unit tests that we have created for each.

By convention, Gradle creates a report named index.html for any unit testing it does,
and places it in a <component>/build/reports/test directory. For our pipeline, we want
to add links to the HTML test reports produced by Gradle for the api and util subpro‐
jects.

This provides us with the basic information we need to pass to the DSL step, which is
named publishHTML. An invocation of this step for the api report might look like this:

publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: 'api/build/reports/test',
 reportFiles: 'index.html',
 reportName: "API Unit Testing Results"
])

The purpose of most of the fields specified for the step are obvious from their names,
and with the HTML Publisher plugin installed the syntax is available via the Snippet
Generator. We’ll cover the fields here anyway, but as usual, it may be easier to gener‐
ate the actual code through the generator.

To start with, notice that we have the target block as the main parameter. Within
that we have a number of subparameters:

allowMissing

This setting has to do with whether or not the build should fail if the report is
missing. If set to false, a missing report will fail the build.

alwaysLinkToLastBuild

If this setting is true, then Jenkins will always show a link to the report from the
last successful build—even if the current build failed.

keepAll

If this is set to true, then Jenkins archives the reports for all successful builds.
Otherwise Jenkins only archives the report for the most recent successful build.

Reports | 129

reportDir

This is the path to the HTML file, relative to the Jenkins workspace.

reportFiles

This is the name of the HTML file(s) to display (if multiple, they should be sepa‐
rated by commas).

reportName

This is the name you want the link to the report to have on the job output page.

Typically, like a notification, we may want this step to run at the end of the build. And
we may want it to run regardless of whether the build succeeded (especially if we have
it set up to link to the last successful build). We can add it to a notifications stage in a
try-catch-finally section for a Scripted Pipeline or a post stage for a Declarative
Pipeline. An example finally section of a pipeline script with this step is shown
next. Note that here we are unstashing content because it was produced on separate
nodes running in a parallel step:

 finally {

 unstash 'api-reports'

 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: 'api/build/reports/test',
 reportFiles: 'index.html',
 reportName: "API Unit Testing Results"
])

 unstash 'util-reports'

 publishHTML (target: [
 allowMissing: false,
 alwaysLinkToLastBuild: false,
 keepAll: true,
 reportDir: 'util/build/reports/test',
 reportFiles: 'index.html',
 reportName: "Util Unit Testing Results"
])
 }

A corresponding post section could be used in a Declarative Pipeline.

Figure 4-22 shows the output page from our job with the custom report name links
that we created on the left side.

130 | Chapter 4: Notifications and Reports

Figure 4-22. Job output showing the custom report links in the left menu

Summary
In this chapter, we’ve covered some of the basic ways to facilitate Jenkins-to-user
communication when working with pipelines. We’ve looked at the built-in and exten‐
ded email functionality and how we can leverage those, and we’ve seen how to use
collaboration services like Slack and HipChat to send dynamic status information
back to wherever you use those apps.

We also looked at how to better integrate the HTML reports produced by many appli‐
cations with the job’s output page for easier access.

It’s important to realize that the information presented here is the most basic imple‐
mentation for several of the steps, particularly the ones on notifications. Other pipe‐
line constructs could certainly be used to render these in a more elegant way in the
code.

For example, for the sake of space, long strings were included in some of the steps
that, in a Scripted Pipeline, would be better defined as variables and passed in to the
step.

As another point, shared library routines could be used to encapsulate functions with
any of the steps to make them easier to call and more generic. (Shared libraries are
discussed in Chapter 6.)

However, hopefully this chapter has given you the information you need to get
started. I encourage you to explore and build on these examples to make your pipe‐
line the best fit for the notification mechanisms that you and your team need.

In the next chapter, we’ll explore how to set up and use Jenkins credentials and some
key items around securing your pipelines.

Summary | 131

CHAPTER 5

Access and Security

Being able to create pipelines-as-code offers enormous potential and flexibility. In
Scripted Pipelines, calls to any Groovy construct or Jenkins functionality or external
method can be keyed into the pipeline script. However, that also significantly increa‐
ses the ability to accidentally or intentionally do something within the code for a
pipeline that shouldn’t be done. So, security has to be a first-class concern—and a
first-class feature—for both pipelines and the Jenkins environment they are created
and run in.

In this chapter, we’ll survey the different ways that Jenkins has for controlling access
and security. We’ll first look at the overall security options, then we’ll survey the tradi‐
tional credentials mechanisms that Jenkins offers and how to use those in pipelines.

After that, we’ll do a deeper dive into the advanced functionality available via the
Role-Based Access Control (RBAC) plugin. We’ll then explore how Jenkins can inte‐
grate with Vault, a modern approach to storing credentials with a limited lifetime.

Finally, we’ll see what new features Jenkins 2 provides for ensuring that the steps in a
pipeline have only the appropriate access and are executed in an approved context.

Let’s start off by looking at the most basic options for securing Jenkins once it’s
installed.

Securing Jenkins
Prior to Jenkins 2.0, the default configuration for Jenkins was to have security dis‐
abled—not doing any security checking. This meant that Jenkins was wide open by
default. Since Jenkins 2.0, the default has changed to have security enabled. Initially
this means that when you use Jenkins, you need to supply a user ID and password. In
fact, when you install Jenkins 2.0, you must enter a generated initial password—pro‐

133

http://bit.ly/2uEfJNP

vided in an obscure file—as part of the installation. You also need to create an initial
user with a user ID and password.

Beyond the basic logins, a number of security mechanisms are available through the
Configure Global Security link on the Manage Jenkins page. This should be your
starting point for a secure instance. (See Figure 5-1.)

Figure 5-1. Accessing the configuration for the Global Security options

We’ll briefly look at each of the security options configurable from this page next.

Enabling Security
The top option on the global security configuration page is also the most high-level
one—meaning that it encompasses the most related functionality. Without the
“Enable security” option checked, security-checking operations are not enabled. With
this option turned on, security can be configured along two dimensions—authentica‐
tion and authorization.

Authentication here refers to how users can identify themselves to the system, such as
by user ID and password. This is now called “Security Realm” in Jenkins. Authoriza‐
tion refers to what permissions authorized users have. These two orthogonal dimen‐
sions can, together, implement nearly any desired security policy.

Setting Permissions Too Loosely

It is possible to implement policies using authentication and
authorization that actually make your Jenkins instance very inse‐
cure. For example, Jenkins provides an option to allow users to sign
up for access—less secure authentication. If you also use very open
authorization policies, such as allowing logged-in users to do
most/all operations, then you are effectively leaving your system
wide open to anyone who wants to use it in whatever way they
want.

The username/password login info is required for any operation unless anonymous
users are specifically allowed to do the operation. In Jenkins 2, by default, logged-in
users have full control and anonymous users have no access.

134 | Chapter 5: Access and Security

Under the checkbox to enable security, we have the “Disable remember me” check‐
box. Checking this option to enable it removes the “Remember me on this computer”
option from the login screen.

Next, we have the Access Control section. This section provides the options to config‐
ure the two dimensions we talked about earlier (authentication and authorization).

Access Control—Security Realm
This section allows us to specify which entity will be responsible for authenticating
users to Jenkins. There are several choices.

Delegate to servlet container. The servlet container being referenced here is the one
running the Jenkins instance. These days, this is usually Jetty, but it might also be
Tomcat or some other servlet if the installation has been customized. With this
option, you are allowing authentication via whatever mechanism the servlet container
uses.

The specifics of how to set this up depend on how authentication is configured for
the particular servlet container being used. The best approach is to consult the docu‐
mentation for the servlet container. Up until v1.163 this was the default security
realm. It is not as likely to be used these days given the other options, but can still be
worthwhile for backward compatibility, or if you have invested significant setup for
authentication in the servlet container’s configuration.

Jenkins’ own user database. This option delegates authentication to the list of people
maintained by/known to Jenkins. This is not a typical use case, but can be suitable for
smaller, basic setups. Note that this includes not only all the users that Jenkins specifi‐
cally knows about, but also users mentioned in commit messages.

A suboption allows enabling users to “sign up”—meaning they can create their own
accounts at the time they first need to log in to Jenkins. This suboption is disabled by
default to more tightly control access.

LDAP. The Lightweight Directory Access Protocol (LDAP) is a software protocol for
locating people, organizations, devices, and other resources on a network. If your
company uses LDAP, this is where you can configure it for Jenkins. You can add more
than one LDAP server (each having a different configuration if needed).

Unix user/group database. This option delegates authentication to the host Unix sys‐
tem’s user database. If this is used, users can log into Jenkins using their Unix user‐
name and password. Unix groups can also be used for authentication. If a user and a
group have the same name, prepending an “@” onto the name differentiates it as a
group. Note that there may be extra configuration required to make this all work,

Securing Jenkins | 135

such as making Jenkins a member of the shadow group for access on operating sys‐
tems that use that.

Access Control—Authorization
Once authenticated, Jenkins needs to know what kind of operations users should be
allowed to do. Like in the Security Realm section, there are several options here.

Anyone can do anything. No real authentication is done with this option. Basically,
everyone is considered as “trusted”—including anonymous users (even if they haven’t
logged in yet). This is not recommended, but can be suitable in rare cases for com‐
pletely trusted environments to allow unrestricted access for simplicity and efficiency.

Legacy mode. This mode emulates Jenkins behavior prior to v1.164: anyone who has
the “admin” role has full control, and everyone else has read-only access.

Logged-in users can do anything. As the name implies, users must first log in, but then
have full access. This is useful if you don’t mind allowing everyone full access, but
want to keep track of who is doing what (via them being logged in).

A suboption here enables anonymous users to have read-only access.

Matrix-based security. This option allows you to specify very specific permissions for
individual users or groups via checkboxes in a matrix arrangement. The columns in
the matrix are divided into categories (groupings) such as “Overall,” “Job,” “Run,” etc.
Then underneath each of those items are further specific permissions related to that
category.

The rows of the matrix each represent a user or group. There are two default groups
that are automatically added: “Anonymous Users” (users who have not logged in) and
“Authenticated Users” (users who have logged in). A text box under the matrix allows
you to add new users.

Granting a particular permission to a user or group is just a matter of clicking in the
box that corresponds to the appropriate row for the user/group and the column for
the specific permission. Removing a permission involves just clicking again to clear
the checkbox.

At the end of each row are boxes you can click on to grant all permissions or remove
all permissions for that user/group.

Figure 5-2 shows an example matrix.

136 | Chapter 5: Access and Security

Figure 5-2. Example of matrix-based authentication

Project-based matrix authorization strategy. This option is an extension to the “Matrix-
based security” model described in the preceding section. When selected, this adds a
similar matrix to each project’s configuration page. This allows for configuration by
user/group per project, so you can restrict access to some projects while allowing it
for others.

More specifically, when this option is set in the global security page, each project’s
configuration page will have an “Enable project-based security” option in the General
configuration section. Selecting this option will then present an authorization matrix
for that project that can be configured like the global matrix to provide project-
specific access. An additional option allows you to select whether to inherit permis‐
sions from a parent access control list, the globally defined permissions, or not at all.

Figure 5-3 shows an example of one such matrix in a project.

Figure 5-3. Per-project authorization matrix

Other Global Security Settings
Beyond the authentication and authorization settings, there are a number of other
options on the global security configuration page that can be set. This is a miscellane‐
ous collection centered around keeping Jenkins implicitly safe (locking down security
holes) rather than explicitly defining access.

Securing Jenkins | 137

Markup formatter
Jenkins allows users to put in free-form text in various fields, such as job descriptions,
build descriptions, etc. You can choose to format those as plain text or HTML. If you
want to use HTML, set this option to Safe HTML. “Safe” here refers to allowing only
HTML constructs that don’t pose a security risk of being hacked (i.e., modified in a
way that would execute operations that would put the system at risk). Examples of
safe HTML constructs include the basic ones such as bold, italics, hyperlinks, etc.

Agents
Despite the generic name, this section is about configuring the TCP port for agents
launched through the JNLP process. (JNLP refers to the Java Network Launch Proto‐
col—a way that an application can be launched on a client’s desktop using resources
hosted on a remote server.)

Normally, a random port is used for this. However, you can specify a fixed port
instead to make it more secure (only having to open the firewall for the fixed port). If
you are not making use of the JNLP functionality, you can use the Disable option
here to make your system even more secure.

A suboption allows you to choose a particular version of the JNLP protocol if needed.

Prevent Cross-Site Request Forgery exploits
Cross-Site Request Forgery (CSRF) is a type of attack that can force a user to execute
unwanted actions on a web application that they are authenticated to. Part of the pre‐
vention of this has to do with verifying that a crumb trail (navigation history) exists
for the user in Jenkins.

A suboption allows specifying proxy compatibility to help prevent the proxy from fil‐
tering out information about the crumb trail.

CLI
A legacy option for using the command-line interface allowed what was called
“remoting” as a mode. This mode is considered insecure, as opposed to other modes
such as HTTP or SSH. This has to do with its use of certain programming styles, such
as Java serialization, that open up security holes and concerns. The legacy protocol
was also viewed as slow and challenging to understand, and so newer, safer options
were implemented starting in Jenkins 2.54.

The “Enable CLI over Remoting” option is off by default, but can be turned back on
here if you understand the risk and need it for backward compatibility.

(You can learn more about the command-line interfaces available in Jenkins in Chap‐
ter 15.)

138 | Chapter 5: Access and Security

Plugin manager
The option here is “Use browser for metadata download,” and it is normally
unchecked (off). Turning this option on tells Jenkins to let the browser download
metadata around plugins instead of Jenkins doing it itself. Unless you have a specific
reason to activate this, it is best to just leave it turned off and allow Jenkins to do the
downloads.

Access Control for Builds
If you choose to install the Authorize Project plugin, you may have additional entries
here. This plugin allows additional per-project options for running builds with spe‐
cific authorization.

The global configuration part that would appear here allows you to select which types
of authorized users appear as choices in projects. The list is shown in Figure 5-4 and
is fairly self-explanatory.

Figure 5-4. List of choices to present in project authorization if Authorize Project plugin
is installed

The plugin adds a new Authorization item on the page for each job (Figure 5-5).

Securing Jenkins | 139

https://plugins.jenkins.io/authorize-project

Figure 5-5. Job Authorization link

Clicking on that link brings up a simple configuration screen that allows you to select
from the choices configured globally for the plugin, to control who can run the job
(Figure 5-6).

Figure 5-6. Configuring the individual job authorization

Hidden security warnings
The options here have to do with surfacing security warnings from update sites for
installed components. (In older versions of Jenkins, these weren’t shared directly in
Jenkins but rather in emails, blogs, etc. Starting with v2.40, they can now be shown
directly in Jenkins.) If you have a list of warnings present, then checked warnings are
shown, and unchecked ones aren’t.

140 | Chapter 5: Access and Security

Figure 5-7 shows an example of configuring these warnings if they exist. Note that
there are two warnings—one is unchecked here and one is checked.

Figure 5-7. Configuring the hidden security warnings

Figure 5-8 shows what the warnings look like with this configuration. Notice that
only the one that is checked is shown.

Figure 5-8. Shown security warnings

Another option here is to enable “agent to master” access control. This has to do with
what commands agents can send to the master to make those interactions safer. If you
need to tweak those rules to work with a specific instance or plugin, there is a link
here to do that as well.

SSH server
For executing a subset of command-line commands over SSH, Jenkins can function
as an SSH server. Some plugins may also use this functionality. If this is needed, a
fixed port can be set up here to simplify security. A random port can also be chosen
each time to avoid conflicts. If this functionality is not needed, it is best to use the
Disable option to disable having an open port exposed.

See Chapter 15 for more on command-line usage and options in Jenkins. Now that
we’ve covered the general security options, let’s talk about how we can use credentials
to secure access to more specific items.

Securing Jenkins | 141

Credentials in Jenkins
In addition to globally securing different aspects of Jenkins, using specific, secure cre‐
dentials forms a key part of having a secure Jenkins environment. The Credentials
plugin (included with installations of Jenkins) provides mechanisms for users to cre‐
ate and manage credentials, as well as an API for plugins to use to store and access
credentials.

It’s worth saying a word here about what we mean by the general term “credentials.”
Often you will hear this also described as a “secret.” In general, we mean any value or
values that provide access to a restricted resource. A list of the credential types
includes:

• Usernames with passwords—may be conjoined when used (treated as one item)
or separated

• Docker certificates directories (now deprecated)
• Docker host certificate authentications
• SSH usernames with private keys
• Secret ZIP files—ZIP files with the credentials
• Secret files—flat files with the credentials
• Secret texts—tokens or other chains
• Certificates—Java KeyStores with the certificates/certificate chain

Specific examples might include:

• A username and password combination to gain access to a source control reposi‐
tory

• A digital key and certificate to sign an entity
• A secret text string that can be matched to identify that content is from a specific

source
• An SSH key set to deploy to a server

Other types of credentials could include less formalized items, such as binary data, or
more formalized ones, such as OAuth credentials.

Once created, credentials have to be stored somewhere. The Credentials API allows
for accessing an external credential store (an application capable of storing and
retrieving credentials). However, Jenkins has an internal encrypted credential store
that is used by default.

142 | Chapter 5: Access and Security

Securing Access to the Internal Credential Store

The internal credential store in Jenkins is stored in the JEN‐
KINS_HOME directory. It is also encrypted with a key that is
stored in the JENKINS_HOME directory. If a malicious user can
get access to this, and in particular to the JENKINS_HOME/secrets
directory, they can gain access to the secrets. For this reason, it is
important to secure the filesystem access to JENKINS_HOME if
you want to be truly secure. Furthermore, you should follow the
recommended settings described in “Securing Jenkins” on page
133.

One other fundamental point about credentials is that they are associated with a con‐
text. Contexts represent a way of thinking about the different entities that make up
Jenkins as a hierarchy. The root context is Jenkins itself. Other contexts include jobs,
users, build agents, and folders. Additionally, plugins can define new contexts.

With this background, we can delve more into the characteristics and properties asso‐
ciated with managing credentials in Jenkins. The first one we’ll look at is the creden‐
tial’s scope.

Credential Scopes
Credentials have a scope associated with them. This is a way to say how they can be
exposed. There are three main scopes that Jenkins uses:

System
As the name implies, this scope is associated with the root context, the Jenkins
system. Credentials in this scope are only exposed to system and background
tasks and may be used to do things such as connect to build nodes/agents.

Global
The global scope is the default scope and the one to use generally to ensure that
credentials are available to jobs in Jenkins. Credentials in this scope are exposed
to their context and all child contexts of that context. (Recall that credentials are
associated with a context and that contexts represent a hierarchical structure of
the main parts of Jenkins.)

User
As the name implies, this scope is per-user. This means that the credentials are
only available when threads in Jenkins are authenticating as that user.

Credentials in Jenkins | 143

Credential Domains
Credential domains provide a way to group together, under a common domain name,
sets of credentials. Typically, the common domain name will imply some functional‐
ity or application type that the credentials are expected to work with.

When you define a credential domain, you provide a domain name and a “specifica‐
tion” such as a hostname or URL pattern.

Jenkins always has at least one credential domain—the global domain. The global cre‐
dential domain has no specification, so it is available for anything in Jenkins to use.

Credential Providers
A credential provider is a place where credentials can be stored and retrieved. This
can be an internal credential store or an external credential vault.

There are several standard credential providers. These are:

System credentials provider (Jenkins credentials provider)
This exposes credentials at the root context (Jenkins itself). Two credential scopes
are available: system and global. To look at this, you can go to Jenkins → Creden‐
tials → System.

User credentials provider
This exposes a per-user credential store for a user. Only the user scope is avail‐
able, and a user cannot see the per-user credentials of another user. To see these
credentials, you can either go to Jenkins → <username> → Credentials → User or
Jenkins → People → <username> → Credentials → User.

Folder credentials provider
This is provided by the Folders plugin. It exposes a per-folder credential store
and supports the global scope for the folder and any children. To see these cre‐
dentials, go to Jenkins → <folder name> → Credentials → Folder.

BlueOcean credentials provider
This scopes credentials to the Blue Ocean interface and items created/accessed
directly through it.

All of these can be used with credential domains.

Credential Stores
Credential stores allow credential providers to expose credentials to Jenkins. Stores
are associated with a specific context and are either tied to the global domain or can
use a custom domain. They can support a set of credential domains.

144 | Chapter 5: Access and Security

Internal stores store the actual credentials. External stores will typically be either a
simple flat reference of credentials or a service with metadata and more advanced fea‐
tures like querying. Later in this chapter we’ll look at one such external store, called
Vault.

Administering Credentials
Administration for credentials can be done through the Configure Credentials inter‐
face, accessible under the Manage Jenkins menu. The options on this screen allow a
Jenkins user to:

• Select which credential providers will be available to Jenkins to resolve creden‐
tials.

• Select the types of credentials that can be resolved and configured.
• Specify the types of credentials that can be included or excluded for a specific

provider.

Selecting Credential Providers
At the top of the Configure Credentials screen is a drop-down list to tell Jenkins
which credential providers it can use. The default choice is to use “All available” pro‐
viders. However, if you need to subset the list by including or excluding certain pro‐
viders, there are options to do that. (See Figure 5-9.)

Figure 5-9. Options for selecting credential providers

If either the “Exclude selected” (exclude providers) or “Only selected” (include pro‐
viders) option is chosen, a list of providers with checkboxes is displayed. Depending
on the option, the checkboxes next to the appropriate providers can be checked to
either exclude them from the set of available providers or include them in the set of
available providers (see Figure 5-10).

Administering Credentials | 145

Figure 5-10. Selecting specific providers to include as available

Selecting Credential Types
Just as the subset of credential providers can be chosen, the next section on the screen
allows you to select the set of credential types that Jenkins can use. The default choice
is to use “All available” types. However, if you need to subset the list by including or
excluding certain types, there are options to do that. (See Figure 5-11.)

Figure 5-11. Selecting which types of credentials are available in Jenkins

If either the “Exclude selected” (exclude types) or “Only selected” (include types)
option is chosen, a list of types is provided with checkboxes. Depending on the
option, the checkboxes next to the appropriate types can be checked to either exclude
them from the set of available types (see Figure 5-12) or include them in the set of
available types.

Figure 5-12. Selecting which specific types of credentials to exclude

Specifying Credential Types by Provider
The last part of the Configure Credentials screen is the Restrictions section. This
allows you to specify the types of credentials Jenkins will allow or exclude from a

146 | Chapter 5: Access and Security

specific provider (see Figure 5-13). This is a way to fine-tune what Jenkins can use
from a provider. Note that doing this is optional and not required.

Figure 5-13. Refining/restricting the credential types allowed from a credential provider

The Add button in this section has two options (“include” and “exclude”). Selecting
either will create a new page element allowing you to select a provider and then a
type. If you have selected “include,” this type of credential will be included for that
provider, and vice versa for “exclude.”

If you need to set up restrictions for multiple types and/or multiple providers, adding
all of the elements can take some time. However, as noted earlier, using this is
optional, not required.

Limiting Access for Build Jobs
As discussed in “Credential Scopes” on page 143, most internal operations and con‐
nections between systems in Jenkins run at the “system” level—meaning they have full
permissions to the system.

For build jobs, this high level of access is not always advisable or desirable. To allow
build jobs to run at lower levels of authorization, the Authorize Project plugin has
been developed.

With this plugin installed, new controls are added to the global security configuration
page and to each individual build job that allow users to specify the “authorizations”
(types of credentials) to use for the job. See “Access Control for Builds” on page 139
for more on how this works.

Creating and Managing Credentials
Suggested Reading

If you haven’t already read the previous sections on credential
domains, stores, providers, etc., it is recommended to read over
those to have a foundation for this section.

Creating and Managing Credentials | 147

https://plugins.jenkins.io/authorize-project

Earlier, we discussed the notion of “contexts” in Jenkins. Each context in Jenkins that
has an associated credential store will also have a credential “operation” added to it by
the Credentials plugin. That means that, by default, you will have Credentials menu
items specific to the system, user, and folder contexts.

Management for system-level credentials can be accessed simply by selecting Creden‐
tials from the top level of Jenkins (Figure 5-14).

Figure 5-14. Accessing system credentials

Management for user-level credentials can be accessed by selecting the People menu,
and then the desired user, and then Credentials (Figure 5-15).

Figure 5-15. Accessing user credentials

Management for folder-level credentials can be accessed by selecting a particular
folder item and then Credentials (Figure 5-16).

148 | Chapter 5: Access and Security

Figure 5-16. Accessing folder credentials

On each credentials screen, the top table lists the available credentials in this context
and any parent contexts. This table has six columns:

• Type(T)
• Provider(P)
• Store
• Domain
• ID
• Name

Grayed-out Credentials

If you happen to have a credential in this table that has the same ID
as a credential in the parent context, it will be grayed out in this
table to indicate that.

The next table (in the middle) lists the credential stores available in the current con‐
text. The columns here are:

• Provider
• Store
• Domains

Creating and Managing Credentials | 149

The bottom block lists the credential stores available in the parent context. It has the
same three columns as the preceding table.

Context Links
On any of these credentials pages, the links in the tables are “context links”—meaning
that if you hover over them, a small downward-pointing arrowhead will appear to the
right of the link. Clicking on that will then display a small pop-up menu that will pro‐
vide shortcuts to certain actions or quick navigation links.

The basic rules for what shows up in the pop-ups when you click on one of these con‐
text links follows from the hierarchy of store, domain, credentials.

If you click on the link itself:

• For a store link, it will take you to a page that shows information about the
domains in the store.

• For a domain link, it will take you to a page that shows information about the
credentials defined in that domain.

• For a credentials link, it will take you to a page that shows usage information for
that credential (whether or not that credential has been recorded as used).

If you click on the drop-down arrow next to the link:

• For a store link, it will give you a menu option to create a new domain.
• For a built-in domain, it will give you a menu option to create a new credential.
• For a custom domain (one that has been created by a user), it will give you a

menu with options to create a new credential, configure the domain, or delete the
domain.

• For a credential, you will get an option to update, move, or delete a credential.

Moving Credentials

Note that it is currently only possible to move credentials between
domains that are in the same store, not across stores.

With this background, let’s look at an example of how to add a new domain, add new
credentials, and use them in Jenkins.

150 | Chapter 5: Access and Security

Adding a New Domain and Credential
From several of the context links on the credentials screens or by drilling down from
the Credentials menu item, you can get to the screen to add a new domain.

Figure 5-17 shows an example of filling in that screen. In this example, we’re adding a
new credential domain for a set of nodes geographically located on the East Coast.
(Perhaps we want to shift processing to those at a certain time of day.)

Figure 5-17. Adding a new credential domain and selecting the specification

The Domain Name and Description are simply text fields. The Specification field
allows us to differentiate this domain. This field lets you specify a type of filtering via
patterns. After the specification is created, when you are choosing a credential for use
in Jenkins and enter a related value that matches the pattern, credentials from this
domain will be presented as options. (We’ll see an example of this shortly.) Note that
if you don’t provide a specification for a new domain, that domain will be effectively
equal to the global domain.

For the example we’re working with here, we’ll choose the simplest kind of specifica‐
tion: Hostname. Then we can add a pattern to match the naming convention of our
nodes, as shown in Figure 5-18.

Creating and Managing Credentials | 151

Figure 5-18. Filling in a Hostname specification

Once the domain is created, it is ready to have credentials created for it (Figure 5-19).

Figure 5-19. Domain created and ready for credentials

On the screen to create a credential, we can select a kind (such as username and pass‐
word, SSH key, secret file, etc.). We can then fill in the actual values needed for access
and supply an ID and a description. If you don’t provide an ID, a rather long random
ID will be supplied. Because of the length and format, this ID can be difficult to spec‐
ify manually, so it is recommended to provide a simpler, more easily handled ID that
has meaning to you.

In our example, we’ll add an SSH key credential (Figure 5-20) associated with our
new domain.

152 | Chapter 5: Access and Security

Figure 5-20. Adding an SSH credential to our new domain

After the credential is added, a summary screen is shown (Figure 5-21).

Figure 5-21. Summary screen after credential is added

Now that we have the new domain and credential set up, let’s see how we might use
them in practice.

Using the New Domain and Credential
Suppose that we want to now set up some new worker nodes for our Jenkins master
based on the East Coast systems. After going through the Manage Jenkins → Manage
Nodes → New Node menus, we arrive at the configuration page for the new node.

For the launch method we want to use SSH, so we select that and then type in the
name of our host. Notice that in Figure 5-22, the pattern we type in (“primary-
ec1.mysite.com”) matches the hostname specification (“*-ec1.mysite.com”) we used in
setting up our domain. Because of this, when we go to choose a credential, our SSH
credential from the East Coast Nodes domain shows up in the drop-down list (the
third item from the top).

Creating and Managing Credentials | 153

Figure 5-22. Host pattern matches domain’s hostname specification, allowing credentials
from domain to be included

If the hostname we entered did not match the specification, then the credential entry
from the domain would not be listed, as shown in Figure 5-23.

Figure 5-23. Host pattern does not match hostname specification from East Coast nodes
domain, so corresponding credential from that domain is not listed

154 | Chapter 5: Access and Security

Note that in both cases (matching and nonmatching), credentials from the global
domain are available by default.

Beyond the basic credential setup we’ve described here (for access to resources via
simple credentials), there is a plugin that provides a way to define roles with certain
levels of access that users can be added to. We’ll look at this more advanced function‐
ality next.

Advanced Credentials: Role-Based Access
While the common credentials options will handle many use cases, there may be
times where you want to use a more granular approach to security and authorization.
An example use case would be creating new roles with a set of specific permissions
assigning roles to individual users. The Role-based Authorization Strategy plugin is
designed to provide this kind of functionality.

More specifically, the plugin allows for the definition of three types of roles:

Global roles
Roles that span across projects with permissions such as Job, Run, and SCM

Project roles
Roles particular to a project from the Job or Run category

Slave roles
Roles with permissions to administer nodes

The plugin also provides a macro facility so that macros can be used as criteria for
what roles apply to.

Basic Use
Installation of the plugin is the same as for any other Jenkins plugin. Once installed, if
security is enabled in Jenkins, there will be a new option named Role-Based Strategy
under Authorization in the Access Control section of the global security configura‐
tion page (Figure 5-24).

Advanced Credentials: Role-Based Access | 155

https://plugins.jenkins.io/role-strategy

Figure 5-24. Selection enabled for the Role-Based Strategy Authorization setting

If this option is selected and saved, there will then be a new selection on the Manage
Jenkins page named “Manage and Assign Roles” (Figure 5-25). This is the gateway to
the plugin’s functionality.

Figure 5-25. “Manage and Assign Roles” option on Manage Jenkins page

On the Manage and Assign Roles screen are three selections for the main functions:
Manage Roles, Assign Roles, and Role Strategy Macros (Figure 5-26). We’ll look at
each of those in more detail in the next sections.

156 | Chapter 5: Access and Security

Figure 5-26. Manage and Assign Roles selections

Manage Roles
As the name implies, this screen allows you to create or delete roles and assign per‐
missions to them. There are three sections here for each of the three kinds of roles
mentioned earlier: global, project, and slave.

The mechanics of using each section are similar to the Jenkins matrix–based authori‐
zation model. There is a matrix where each row contains a defined role and each col‐
umn is a specific permission within a category of Jenkins object (Overall, Credentials,
Agent, etc.). To grant a permission to a role, you simply click on the checkbox for the
column of the desired permission in the row for the role. If a checkbox is blank, that
indicates the role does not have that permission. To remove an existing permission
for a role, simply uncheck the box in the appropriate column.

You can create a new role by entering the desired role name in the “Role to add” box.
The Project and Slave sections also expect a pattern. These patterns are used to asso‐
ciate the project or slave role to matching project names or node names, respectively.
The Global section does not require a pattern, since we assign specific users to those
roles rather than relying on matching user IDs. The following note details more about
the syntax of the patterns.

Defining Role Patterns

Role patterns are regular expressions designed to match based on
the names of objects—either projects or nodes depending on the
type of role. The name of a project includes any Jenkins folder
name in the path.
You can use these like any other regular expression—for example, if
you have projects that start with Daily, you could use a pattern here
of Daily-*. The patterns are case-sensitive unless you use some‐
thing like (?i)Daily-* to indicate that it should be a case-insensitive
match.

Advanced Credentials: Role-Based Access | 157

Let’s take a look at an example of how to set up each type of role.

Global role example
By default, we have an admin role that has all permissions. To add a new role, we sim‐
ply type in the desired role name in the “Role to add” box and click Add. In this case,
let’s suppose we want to create a new job-admin role. The idea is that this role can
administer things around jobs. It does not need (and should not have) all the permis‐
sions of the traditional admin role. Figure 5-27 shows the initial step to add this role.

Figure 5-27. Setting up a global role

Extended Descriptions

Figure 5-27 also demonstrates another aspect of the controls on
this page. If you want to know more about what a permission in a
particular category does, you can hover over the permission name
in the column. A pop-up window will appear with a brief explana‐
tion of what that particular permission does.

After adding the role, we can check the appropriate boxes to give the role the desired
permissions, as shown in Figure 5-28.

Figure 5-28. Selecting permissions for the global role

158 | Chapter 5: Access and Security

One additional role that you should consider adding here is a global role specifying
the permissions that you want available to authenticated users. There is a built-in
authenticated group that you can assign to a role, but you first need a role available
that represents what authenticated users can do. For simplicity, you can just create an
authenticated role with Overall/Read access (Figure 5-29).

Figure 5-29. Creating an authenticated role

Project example
Carrying our example further, let’s suppose that we have two main types of jobs that
we run on our Jenkins instance—daily and weekly. We want to define a role of daily-
job-admin to allow a subset of people to administer the daily jobs but not the weekly
jobs. Our daily jobs all have names or folder paths that start with daily, so we can use
that for a pattern. Figure 5-30 shows the initial steps to set this up.

Figure 5-30. Defining a new daily project role

Once we add the new project role based on the project pattern, we can select permis‐
sions for the role just as we did for the global one (Figure 5-31). However, because
we’ve supplied the pattern, users with this role will only have the selected permissions
for jobs matching that pattern.

Advanced Credentials: Role-Based Access | 159

Figure 5-31. Assigning permissions to the project role

To round out our example, we would also add a weekly-job-admins role and roles for
the daily and weekly users (nonadmins). An example of the completed list is shown
in Figure 5-32.

Figure 5-32. Daily and weekly roles added in for projects

Order of Precedence

Permissions in a global role override permissions in a project role,
so if a user has both a global role with a given permission and a
local role without that permission, they will have access via the
global specification.
If you plan for project-specific roles to be additive to a global role
(global + project = full set), then you’ll want to only set the smallest
base subset of common permissions in the global role and add less
common ones in the project roles. If, on the other hand, you intend
for the global role to be a separate superset of permissions (global
or project), you can define the wider set of permissions in the
global role.

Slave role example
In addition to defining global and per-project roles, we can also define roles around
the administration of nodes. This is done via the last section on this screen.
Figure 5-33 shows an example of adding a new role to administer nodes with names

160 | Chapter 5: Access and Security

starting with node-day. (This pattern identifies nodes that we are using to run our
daily jobs.)

Figure 5-33. Defining a new node (slave) role

Once added, we can assign permissions to the role just as with the previous sections
for global and project roles (Figure 5-34).

Figure 5-34. Adding permissions to the node role

To finish out our example model, we can add a project role for the jobs that run
weekly, and a slave role for users who can administer the nodes that run the weekly
jobs (see Figure 5-35).

Figure 5-35. Adding the weekly node role

Advanced Credentials: Role-Based Access | 161

Assign Roles
Once we have our desired roles set up, we can assign users or groups to particular
roles. We do this using the Assign Roles screen, accessible from the “Manage and
Assign Roles” page). For each category of role on the Manage Roles page, we have a
corresponding section on the Assign Roles page. However, corresponding sections on
the latter have the more “modern” names—“Item roles” and “Node roles.” To be clear,
“Item roles” here corresponds to “Project roles” and “Node roles” corresponds to
“Slave roles.” Figure 5-36 shows an example of a starting page for assigning roles.

Figure 5-36. Assign Roles screen

Usage here is straightforward. Within each section (Global, Item, and Node), the
rows represent users or groups, and the columns represent the roles that have been
defined for that category. Note that there is a default entry for the Anonymous user.
Any other users/groups already defined will have rows as well.

162 | Chapter 5: Access and Security

To allow a user/group to have the permissions associated with a role, you simply enter
the user/group name into the “User/group to add” text box, click the Add button, and
then check the boxes in the columns corresponding to the roles you want them to
have.

For example, suppose that we have the following user IDs: all-jobs-admin, day-admin-
user, day-user, weekly-admin-user, weekly-user, sysadmin-daily, and sysadmin-weekly.
The “admin” user IDs are intended to be the administrators for their respective cate‐
gories. Once we fill in the particular users to match up to the intended categories, we
will have a configuration like the one in Figure 5-37.

Figure 5-37. Finished configuration for assigning roles

Adding the “authenticated” Group

The authenticated group (meaning anyone who can log in) is a
built-in group in Jenkins. We can simply type in “authenticated”
and add it to the authenticated role we defined previously.

Advanced Credentials: Role-Based Access | 163

Dealing with invalid users
The forms for assigning users will allow you to type in and add any user/group name
initially. Once you save your changes, validation will be done to make sure the user/
group is valid. If it is not, then when you go back into the Assign Roles page, you will
see the user/group name with a line through it—indicating the user/group doesn’t
exist or isn’t valid (Figure 5-38). At that point, you can delete the user/group by click‐
ing on one of the small, red “X” symbols on either end of the row.

Figure 5-38. Identifying an invalid user

Verifying the roles setup
Now, we can verify that our roles setup works. First, if we log in as the all-jobs-admin
user, we can see the list of all of our jobs (Figure 5-39).

Figure 5-39. Verifying that the role allows seeing all jobs

If we log in as day-admin-user, we can see only the set of daily jobs, and we have the
ability to configure them (as one example of the admin permissions). Figures 5-40
and 5-41 show this.

164 | Chapter 5: Access and Security

Figure 5-40. The restricted view of the day-admin-user

Figure 5-41. The day-admin- user has the Configure option

If we log in as day-user (a nonadmin user), note that we can again see only the daily
jobs but that we do not have the Configure permission (Figures 5-42 and 5-43).

Figure 5-42. The view of the day-user (nonadmin)

Figure 5-43. The day-user does not have permission to configure jobs

Advanced Credentials: Role-Based Access | 165

Role Strategy Macros
The third piece of functionality provided by the Role-based Authorization Strategy
plugin is the ability to use Role Strategy Macros. The idea behind this is to be able to
have macros that define access permissions based on some characteristic of an item.
As of the time of this writing, there is only one available example—the BuildableJob
macro. This macro is designed to filter the list of jobs to only ones that are “builda‐
ble.” There are several reasons why an item in Jenkins might not be buildable, but at
the level of an individual job, it would typically be because the job has been disabled.
A quick indicator that a job is not buildable is the absence of a Build Now icon and
menu option.

If you go to the Role Strategy Macro screen, there is general information about how
macros are intended to work. One of the key phrases here is “Listed macros should be
used in the ‘Role’ field of the ‘Manage Roles’ page.” After that, you can see informa‐
tion about the BuildableJob macro (Figure 5-44).

Figure 5-44. Listing macros available for use in roles

From this table, apart from the name and description, the Applicable Role Types col‐
umn is the most useful. It notes which of the role types that this macro applies to. In
this case, the listed macro is intended for the Project role type.

To add a macro to a role, we use the @ sign in front of the macro name. Figure 5-45
shows adding the macro as a role in our set of Project roles. We’re giving it the same
permissions as the weekly-user role.

Figure 5-45. Using a macro in defining a role

166 | Chapter 5: Access and Security

Assume we have created a new user called Weekly User 2. After adding the @Builda‐
bleJob role, on the Assign Roles page we can assign the new user to the @BuildableJob
role (Figure 5-46).

Figure 5-46. Adding a user to a role defined by a macro

Let’s now look at the macro use in practice. If we first log in as the user Weekly User,
which has the weekly-user role, we can see the list of all weekly jobs—including
weekly-job-2, which is not currently buildable (note the absence of the Build Now
icon). This is shown in Figure 5-47.

Figure 5-47. User view not filtered by @BuildableJob role

If we then log in as the user Weekly User 2, which is attached to our @BuildableJob
role, we only see the weekly jobs that are actually buildable (Figure 5-48).

Figure 5-48. User view filtered by @BuildableJob role

Advanced Credentials: Role-Based Access | 167

As you can see, the advanced credentials functionality allows for much more flexibil‐
ity in defining roles around specific criteria.

Next, we’ll look at the basics of using credentials in the pipeline.

Working with Credentials in the Pipeline
There will be times you’ll need to supply credentials in your pipeline for your pipeline
steps. In this section, we explore some Pipeline constructs for working with the basic
types of credentials.

Username and Password
First, we want to make sure we have the Credentials Binding plugin installed. Then
we’ll define a set of credentials with a username and password in Jenkins
(Figure 5-49).

Figure 5-49. Username/password credentials in Jenkins

We can now use the withCredentials block in our pipeline to work with the desig‐
nated credentials. The syntax for this block starts with the following:

withCredentials([usernamePassword(credentialsId: '<ID>',
 passwordVariable: '<variable to hold password>',
 usernameVariable: '<variable to hold username>')])

The idea here is that whatever variables are used for usernameVariable and password‐
Variable will be filled in the username and password from the credentials specified by
credentialsId.

SSH Keys
To use SSH credentials in our pipeline, we can use the withCredentials block again,
as shown here:

168 | Chapter 5: Access and Security

https://plugins.jenkins.io/credentials-binding

withCredentials([sshUserPrivateKey(credentialsId: '<credentials-id>',
 keyFileVariable: 'MYKEYFILE',
 passphraseVariable: 'PASSPHRASE',
 usernameVariable: 'USERNAME')])
 {
 // some block
 }

As an alternative, we can use an sshagent block. For this, we first need to make sure
we have the SSH Agent plugin installed.

Now, we can use the sshagent block to do our access, passing in the credentials ID:

sshagent([<credentials id>]) { }

Figure 5-50 shows an example of using this in a pipeline script.

Figure 5-50. Using the SSH credentials in a pipeline script

Token Credentials
When working with other types of credentials, the same general idea (using the with
Credentials block) applies. The following is an example of using a token credential
modeled on an example in the Jenkins documentation:

node {
 withCredentials([string(credentialsId: '<token>', variable: 'TOKEN')])
 {
 sh '''
 set +x
 curl -H "Token: $TOKEN" https://some.api/
 '''
 }
}

A couple of points are worth mentioning about this:

Working with Credentials in the Pipeline | 169

https://plugins.jenkins.io/ssh-agent

• The shell script uses the triple quotes to handle a multiline script inline. (You can
discover more about using the sh step in Chapter 11.)

• The set +x prevents echoing out the credential as the script executes.

For other types of credentials, you can use the Snippet Generator for the withCreden
tials step and fill in the desired binding.

As we introduce credentials into the pipeline, it’s important to understand more
about what we can and can’t do in scripts, and how Jenkins handles it when some‐
thing we try to do isn’t approved.

Controlling Script Security
The pipeline functionality introduces the ability to run any arbitrary script. With this
increased flexibility to execute commands and do processing comes an increased
importance of being able to control script security. In Jenkins 2, this security is pro‐
vided by the Script Security plugin.

Scripts Written as Declarative Pipelines

To some degree, Declarative Pipelines lessen the likelihood of
scripts violating security concerns. Their required structure and
syntax limit the programming you can do with Groovy and so
make the pipeline conform better to best practices.

By default, users with the Overall/Administer permission can write or run whatever
scripts they want. This level of permissions is equivalent to admin permissions on the
Jenkins instance, and so is not appropriate for all users. So, Jenkins 2 includes two
mechanisms to help with script security: script approval and Groovy sandboxing.

170 | Chapter 5: Access and Security

https://plugins.jenkins.io/script-security

Deprecated Permissions

In previous versions of the role-based access/matrix plugin, there
were additional permissions that could be set:

• Overall/Run Scripts
• Overall/Upload Plugins
• Overall/Configure Update Center

This was deemed a security risk because these permissions were as
powerful in some cases as the Overall/Administer permissions, so
now you need to have the Overall/Administer permission to auto‐
matically be able to run scripts without approval.
If you do need to go back to the old insecure permissions for some
reason, the org.jenkinsci.plugins.rolestrategy.permis

sions.DangerousPermissionHandlingMode.enableDangerousPer

missions system property can be set to true.

Script Checking
When a Jenkins administrator creates a script or includes a script in a configuration
and saves it, the script is automatically approved and added to an approved list. Those
scripts in the approved list can be run by anyone. If a nonadministrator tries to run a
script and it is not one in the approved list, then it is prohibited from running until/
unless approved by an administrator.

The reason for this is that, unlike filling in web forms, scripts can (attempt to) do any
arbritrary operations, including referencing internal objects in Jenkins. This could be
a security risk as well as a technical risk, depending on what the script is trying to do.

An example of a script that needs to be approved is shown in Figure 5-51. This one is
flagged because it is trying to use the internal rawBuild object to get information. The
figure also shows the output from trying to run the script—note the error message.

Controlling Script Security | 171

Figure 5-51. Script not approved for use

Script Approval
If a nonadministrator tries to run a script that needs approval, Jenkins will prohibit
running it. It will also add a notice about the need for approval to a queue, for an
administrator to review. An administrator can then log in to Jenkins and go to Man‐
age Jenkins → “In-process Script Approval.” An alert of the form “1 scripts pending
approval” will be waiting for the administrator (Figure 5-52).

Figure 5-52. Script pending approval

Once the administrator goes to the script approval area, they will have an option to
approve or deny executing the script. The upper part of Figure 5-53 shows this part of
the form.

172 | Chapter 5: Access and Security

Figure 5-53. Script approval interface for administrators

Groovy Sandboxing
While the script approval mechanism provides a good signoff mechanism to validate
scripts, approving every new script from a nonadministrator can become laborious
and unmanageable over time. To help with simplifying that burden, Jenkins 2 also
supports the ability to run scripts in a Groovy Sandbox. This is enabled by checking
the Use Groovy Sandbox option at the bottom of the pipeline script text window
(Figure 5-54).

Groovy Sandboxing | 173

Figure 5-54. Running in the Groovy Sandbox

The basic idea here is that there are a set of “whitelisted” methods maintained by Jen‐
kins. This means that these methods are deemed to be safe to use in any script. If the
option to use the Groovy Sandbox is selected and the script only makes use of meth‐
ods in the whitelist that are known as safe, the script is allowed to run without appro‐
val. This saves the extra overhead of requiring an administrator to approve it.

However, if any of the methods in the script are not in the whitelist, then the script is
not allowed to run and an error is flagged (Figure 5-55). In that case, the method is
queued for approval by the administrator—just as the scripts are in the regular script
approval process.

Figure 5-55. Method flagged as not allowed in the Sandbox

174 | Chapter 5: Access and Security

Here again, when the administrator logs in and goes to Manage Jenkins, they will see
the alert that there is a method signature waiting for their approval (Figure 5-56).

Figure 5-56. Method signature pending approval

On the “In-process Script Approval” page, the administrator will be presented with a
choice to Approve, Approve assuming permission check, or Deny the method
(Figure 5-57). The Approve and Deny options are self-explanatory. The “Approve
assuming permission check” option permits running this method if an actual user is
doing it (not a system call) and assuming the user has appropriate Jenkins permis‐
sions to allow doing the operation. If approved, the method will be added to the
internal whitelist.

Figure 5-57. Administrator option to approve use of a method

Using Jenkins Credentials with Vault
HashiCorp’s Vault application bills itself as a tool for managing secrets. At its core
that’s what it is, but it also handles far more—including providing leasing, key revoca‐
tion, token generation, and auditing services. It also provides external “auth back‐

Using Jenkins Credentials with Vault | 175

https://www.hashicorp.com/products/vault?

ends” for different kinds of user and system authentication and access to stored
credentials.

For Jenkins, Vault can be used as an external credential store that Jenkins authenti‐
cates to (through one of Vault’s auth backends); it gets a temporary token and then is
able to pull in the credentials in the pipeline. We’ll look at a simplistic example of how
to make Jenkins work with Vault in this section as a final example of working with
credentials.

Approach
Vault includes a number of interfaces for working with it. These include a command-
line interface as well as a REST API. As you might expect, there is also a Jenkins
plugin for working with Vault.

In this section, we’ll show how to spin up Vault and do initial setup via its command-
line interface. We’ll also leverage the “dev” mode that Vault comes with to further
simplify things. Within Jenkins, we’ll use the Jenkins plugin for Vault, but be aware
that there are other approaches (such as the REST API and shell commands) that
could be used to do these things, and that you would not want to use the dev mode in
a production setting.

Setup
To start the Vault server running in dev mode, you simply do:

vault server -dev

Vault and Dev Mode

One of the reasons we start with dev mode is because that starts
Vault in an unsealed state, meaning that it already knows how to
decrypt information in it. The default mode starts Vault in a sealed
state where it knows how to access information but not decrypt it.
In that scenario, a longer process must be used to reconstruct the
master key to use for decryption purposes.

With our Vault server running, we simply need to export the URL as a VAULT_ADDR
environment variable to complete the basic setup:

export VAULT_ADDR='http://127.0.0.1:8200'

Creating a Policy
From the standpoint of how to use Vault, you can think of it as similar to a filesystem
with the top level being the root path secret. We can define subpaths under this to
hold our various “secrets” and write data into the subpaths of the form key = value.

176 | Chapter 5: Access and Security

https://plugins.jenkins.io/hashicorp-vault-plugin
https://plugins.jenkins.io/hashicorp-vault-plugin

Policies describe what capabilities are provided once someone or something gets
access to a path. Capabilities here might include such operations as “list”, “read”, etc.
for the secrets stored in this path. You can think of these as being like the read, write,
and other permissions that are attached to files in a directory path. We’ll start out by
creating a simple policy for Jenkins to use. To create the policy, we specify the path
and the capabilities in Vault and use the Vault policy-write command to store the
new policy. We can write this into a file or just take a shortcut and echo it out:

echo 'path "secret/example" {
 capabilities = ["read", "list"]
}' | vault policy-write jenkins-example -

Vault should then respond with a message like:

Policy 'jenkins-example' written.

With this in place, once Jenkins has access to this area it can read and list the secrets
stored under this path, supplying a key and getting the secret value back.

Authentication
To be precise, Jenkins itself won’t have direct access to this area—rather, it will receive
a token assigned to this policy, and that token will have the specified capabilities. You
can think of the token in a similar way to having a session available after you log on
to a system. While the session is active, you can execute the specified capabilities
(permissions) against the objects stored in the system.

To continue our analogy, to get a session, you must be able to log on, or “authenti‐
cate,” to the system. That is, you must be able to supply credentials up front to a login
process to authenticate and get a session to do your work.

Vault supports various types of authentication. Each authentication type is imple‐
mented via an interface that Vault refers to as an auth backend.

Authentication (auth) backends are Vault components that do two things:

• Handle the different types of authentication.
• Assign a set of policies and identities to users.

There are a number of auth backends for many of the most popular services and
applications that may make use of Vault. These include GitHub, Google Cloud,
Kubernetes, AWS, LDAP, etc. One that you may not recognize is called AppRole. This
is the one we would typically use in Jenkins. We’ll look at it in more detail next.

AppRole
The idea with the AppRole backend is that services and systems can communicate
with Vault through a defined set of roles (thus, “App” for services plus “Role”). These

Using Jenkins Credentials with Vault | 177

can be used at multiple scopes, including an individual system, a service that exists on
multiple systems, or even a particular user on a particular system.

To use an auth backend like AppRole, we first need to enable it using Vault’s auth-
enable functionality, as shown here (again from a command-line perspective):

vault auth-enable approle

And Vault should respond with something like:

Successfully enabled 'approle' at 'approle'!

To make this work, we need two pieces of information to pass to Vault: a role-id to
identify a role to use and a secret-id to identify a secret. A secret-id in this case is
a temporary access “token” to a secret stored in Vault. Typically, the secret-id exists
for only a short time after creation.

To create the role-id, we can just use Vault’s write command and write a new role
that maps to the policy we set up earlier. This definition also includes various “time-
to-live”(ttl) settings for the generated info. An example syntax for this is shown here:

vault write auth/approle/role/jenkins-example
 secret_id_ttl=200m token_ttl=20m token_max_tll=40m
 policies=jenkins-example

And Vault should respond with:

Success! Data written to: auth/approle/role/jenkins-example

Once we’ve completed this operation, we can get our role-id token:

vault read auth/approle/role/jenkins-example/role-id

Vault will then display the information:

Key Value
--- -----
role_id 5e50c99a-1b96-e747-f310-81451b78977c

Now we need to create another policy that allows us to use the role-id to generate
secret-ids. This is similar to the way we created the earlier policy example. The fol‐
lowing command shows how to do this:

echo 'path "auth/approle/role/jenkins-example" {
 capabilities = ["read", "create", "update"]
}' | vault policy-write jenkins -

And here’s Vault’s output:

Policy 'jenkins' written.

We can now ask Vault for a secret-id to use to access our data and retrieve it as
shown next. When we set up the secret-id, we also specify a number of lease time‐
outs via the ttl (time-to-live) values:

178 | Chapter 5: Access and Security

vault write auth/approle/role/jenkins-example
 secret_id_ttl=100m
 token_ttl=200m token_max_ttl=300m
 policies=jenkins-example

vault write -f auth/approle/role/jenkins-example/secret-id

Vault will display the following:

Key Value
--- -----
secret_id eba9887f-afa7-5e0a-9b55-5cfbf1668a6d
secret_id_accessor 2323f05f-5312-895a-3902-46250cbed6a4

secret_id_accessor

The secret_id_accessor value can be used to find the properties
of the secret_id without having to share the secret_id itself. It
can also be used to delete the secret_id from the AppRole.

With the basic setup and authentication ready from the Vault side, we are ready to
configure Jenkins for Vault use and include it in our pipeline.

Using Vault in Jenkins
We can move on now to using Vault in Jenkins. The first prerequisite is to make sure
you have the Vault plugin installed (Figure 5-58).

Figure 5-58. Installing the Vault plugin

Once that is done, you can move on to defining credentials for use with Vault.

Jenkins credentials for Vault
The Vault plugin allows us to select from a number of different types of credentials:

Vault AppRole credential
For supplying a role-id and secret-id as we’ve been discussing

Vault GitHub Token credential
Allows for authentication to GitHub via a personal access token (Vault does not
use OAuth with GitHub and so requires a personal access token, as of the time of
this writing)

Using Jenkins Credentials with Vault | 179

Vault Token credential
For basic authentication using a user-supplied token.

Vault Token File credential
The same as the Vault Token credential, but the token is read from a file on your
Jenkins system

Since we’ve been talking about AppRole and it is generally recommended for systems
to use when accessing Vault, we’ll use that one. Primarily, what we need to do is just
plug in our role-id and secret-id (Figure 5-59).

Figure 5-59. Setting up an AppRole credential

Credential Lifetimes

Note that since credentials here have a limited lifetime, using a
static secret-id in an AppRole credential may not be the best
choice unless the secret-id is set up to be long-lived.
In such a case, you may want to instead use the Vault Token File
credential, where Jenkins reads the credential from a file. Arguably,
having the credential exposed in a file is not as secure—but doing it
this way, another process could monitor when the token is about to
expire, get another one from Vault, and then update the file to
make the process of token expiration/renewal a nonevent for Jen‐
kins.

With our credential set up, we can then do the system configuration for the plugin.
This is done on the Manage Jenkins → Configure System page and is straightforward;
just put in the Vault URL and select the credential you have set up (Figure 5-60).

Figure 5-60. Vault global configuration in Jenkins

180 | Chapter 5: Access and Security

Folders and Vault

It’s worth noting that Vault settings can also be configured at the
folder level. Look for the Vault Plugin section in the folder configu‐
ration.

With the basic Jenkins configuration out of the way, we can move on to using Vault in
our pipeline.

Using Vault in a Pipeline
To use Vault in a pipeline, there are a couple of steps.

First, we want to define an object that can identify which secret(s) and value(s) we
want to access, as well as the environment variables we want to put them in for using
in the pipeline. An example in Scripted Pipeline syntax is shown here (at the time of
this writing, the Vault integration doesn’t seem to be supported for Declarative Pipe‐
lines):

// define the secrets we want to access and the env variables
// we want to put the retrieved values in
def secrets = [
 [$class: 'VaultSecret', path: 'secret/example', secretValues:
 [[$class: 'VaultSecretValue', envVar: 'msg', vaultKey: 'value']]
]]

Here, secret/example is the path, 'value' is the key to the keypair stored in Vault,
and 'msg' is the environment variable we will access in our script.

Once we have that set up, we can use the pipeline DSL step/construct "wrap" to
access the credentials, as shown here:

// inside this block our credentials will be accessible as env variables
wrap([$class: 'VaultBuildWrapper', vaultSecrets: secrets]) {
 def myMsg = "The message is $msg"
 ...
}

About the wrap Step

The wrap step is a special step that allows a pipeline to call “build
wrappers” (aka “environment configuration” in Freestyle jobs).
This is a block step/construct, meaning that it defines an environ‐
ment or setup that is in effect for all statements inside the block.
As far as using this for Vault integration, be aware that in the
future, the plugin might migrate to an actual DSL build step of its
own just for Vault.

Using Jenkins Credentials with Vault | 181

There is one other configuration/pipeline item that is worth being aware of here. It is
also possible to define your own local configuration for Vault within your pipeline.
Code similar to the following could be used (plugging in our previous configuration
values):

 def configuration = [$class: 'VaultConfiguration',
 vaultUrl: 'http://127.0.0.1:8200',
 vaultCredentialId: 'approle-example']

To use this configuration locally, we would include it in our wrap step as shown here:

// inside this block our credentials will be accessible as env variables
wrap([$class: 'VaultBuildWrapper', configuration: configuration,
vaultSecrets: secrets]) {
 def myMsg = "The message is $msg"
 ...
}

We have only scratched the surface of working with Vault and how it can be used
with Jenkins here. There are many more things it can do for you that can be useful in
a pipeline, such as helping to automatically instantiate database credentials. For more
details and use cases, you’re encouraged to explore the documentation and various
examples on the Vault website.

Summary
In this chapter, we’ve covered some key elements of securing and accessing Jenkins.
We dove into setting up user permissions and extended functionality that allows for
defining role-based permissions not only for global tasks, but also for projects and
nodes. We then spent some time looking at how to work with credentials in Jenkins
and the various entities associated with them, such as providers, stores, and scopes.

Then we looked at some common problems authors and users of pipelines may
encounter when invoking scripts, operations, and methods that need additional
approval.

Finally, we took a look at how to use Jenkins with one of the newer secret-
management applications, Vault, and saw how to make use of it.

Security and access control are constantly evolving topics in any application such as
Jenkins. Securing Jenkins and controlling access is not only a good practice, but also a
requirement for safety for any public multiuser instances. To ensure that your Jenkins
instance is kept as secure as possible, pay attention to security notices on plugins and
Jenkins itself, and update as frequently as your use cases and policies will allow.

In the next chapter, we’ll look at how to extend our pipelines and Jenkins by using
shared libraries and other methods to bring in external code.

182 | Chapter 5: Access and Security

https://www.vaultproject.io/intro/index.html

CHAPTER 6

Extending Your Pipeline

Like in any programming environment, in Jenkins pipelines, centralizing functions,
sharing common code, and code reuse are all essential techniques for quickly and
effectively doing development. These practices encourage standard ways to invoke
functionality, create building blocks for more complex operations, and mask com‐
plexity. They can also be used to provide uniformity and encourage convention over
configuration to simplify tasks.

One key way that Jenkins allows users to do all of this is through the use of shared
pipeline libraries. Shared pipeline libraries are composed of code stored in a source
code repository that is automatically downloaded by Jenkins and made available to
pipelines.

In this chapter, we’ll explore the structure, implementation, and use of pipeline libra‐
ries, as well as seeing how to create our own global functions and even incorporate
code that’s not written in Groovy or Java. To start building our understanding, let’s
look at the different classifications of shared libraries that are available in Jenkins.

Trusted Versus Untrusted Libraries
Shared libraries in Jenkins can be in one of two forms: trusted or untrusted.

Trusted libraries are ones that can call/use any methods in Java, the Jenkins API, Jen‐
kins plugins, the Groovy language, etc. Because trusted libraries have such wide lati‐
tude in what they can call and use, it’s important that access to add or change code in
them is managed. Making updates to trusted libraries should require an appropriate
level of source control access and verification. For these same reasons, code that can
potentially do any damage should always be contained in a trusted library where
there is oversight.

183

Untrusted code is code that is restricted in what it can invoke and use. It is not
allowed the same level of freedom to call the previously listed kinds of methods, and
it cannot access the larger set of internal objects that trusted code can.

Untrusted code is run in the Groovy Sandbox, which has a list of methods that are
“safe” to call. When running in the Sandbox, Jenkins monitors to see whether the
library code attempts to call any methods not in the safe list. If so, the code is stopped
and approval must be granted by an administrator. (See Chapter 5 for a discussion of
the Groovy Sandbox and the related method approval process.)

Scope of Trust

As we will talk about later in this chapter, shared libraries can have
a “scope” associated with them. Those at the “root” level of Jenkins
are global (available to all jobs). By virtue of being at the root level,
they are trusted. Those that are specified for use for specific sets of
jobs (in folders, for example) are untrusted. (See Chapter 8 for
more on Folder projects.)

Internal Versus External Libraries
Another distinction for shared libraries refers to where the source management
repository is hosted—whether internally within the Jenkins instance or in an external
source management system. Internal is viewed as more of a legacy option in most
cases, but a description of it is included here for completeness.

Internal Libraries
This is an older method for managing libraries, but still an option. Jenkins 2 includes
an internal Git repository that can be leveraged to store internal libraries or for test‐
ing purposes. Any content put in this library is trusted for all scripts, but anyone
pushing to it has to have the appropriate administrative permissions.

Internal Library Use in CloudBees Jenkins

The internal Git repository is leveraged more in the internal
CloudBees Jenkins system to provide a way to do code review
checking before changes are added in to the system.

The internal Git repository has a specific name: workflowLibs.git. Note the mixed case
in the name. It can be used with Git either through SSH access or through HTTP
access. Details of how to use each protocol for this are next.

184 | Chapter 6: Extending Your Pipeline

SSH access
To use this functionality you need to do a couple of things first:

1. Specify the SSHD port in Jenkins via Manage Jenkins → Configure Global Secu‐
rity. Use a high number here to avoid needing to use a privileged port. (See
Figure 6-1.)

Figure 6-1. Setting up the SSHD port for internal library usage

2. Add the user’s public SSH key in the SSH Public Keys field on http://<jenkins-
url>/user/<userid>/configure page. (See Figure 6-2.)

Figure 6-2. Adding in the public SSH key

Once this is set up, then you should be able to clone down the internal Git repository,
workflowLibs.git. The clone command would be:

git clone ssh://<userid>@<system-name>:<port>/workflowLibs.git

In our example, this would translate into:

git clone ssh://jenkins2@localhost:22222/workflowLibs.git

Internal Versus External Libraries | 185

HTTP access
The HTTP access is fairly straightforward. Assuming your local Jenkins system is
running on localhost on port 8080, you can clone the repository with the command:

git clone http://localhost:8080/workflowLibs.git

Potential Issue During HTTP Access of Internal Git Repository

The one “gotcha” you can sometimes run into with this is an error
message like the following:

Error: RPC failed; HTTP 403 curl 22 The requested URL
returned error: 403 No valid crumb was included in the
 request
fatal: The remote end hung up unexpectedly

If this happens, it may be due in part to being logged out of Jen‐
kins. So try logging back in. If the problem persists or you were
logged in when the problem occurred, you may need to disable the
option to prevent CSRF attacks in the Jenkins security settings
(temporarily at least). The setting to disable is shown in Figure 6-3.

Figure 6-3. Try temporarily disabling the “Prevent Cross Site Request Forgery
exploits” option if you run into problems cloning the internal Git repo via
HTTP

Once you’ve cloned the internal repository down, it will be empty initially. To begin
working with it, you’ll need to change into the working directory and create a new
master branch:

cd workflowLibs
git checkout -b master

186 | Chapter 6: Extending Your Pipeline

External Libraries
To define an external library (one stored in a source repository separate from Jen‐
kins) you need to provide a couple of pieces of information:

• A name for the library (this will be used in your scripts to access it)
• A way to get it from the source repository
• A version (optional)

Figure 6-4 shows an example.

Figure 6-4. Defining an external library

The “Default version” can be a branch or a tag. Note the information underneath the
completed field that describes what that value currently maps to for the Git reference.
This information is available after saving the library specifications since Jenkins needs
to check the revision in the repository.

The “Load implicitly” option is intended to allow users to have the external library
loaded automatically.

If the “Allow default version to be overridden” option is checked, then scripts can
override the default version selected here. This can be done by specifying @version in
the @Library annotation. That looks like this:

@Library('libname@version')_

The “Include @Library changes in recent job changes” option has to do with whether
or not library code changes are included in the changesets of a build. If this is
checked, they will be. This setting can be overridden by adding the change
log=<boolean> parameter in the actual annotation, as in:

@Library(value="libname[@version]", changelog=true|false)

Internal Versus External Libraries | 187

More detail on how to include libraries in your pipeline scripts is found in “Using
Libraries in Your Pipeline Script” on page 189.

After completing this part of the library configuration, we need to specify how to
retrieve the library from source control.

Getting a Library from the Source Repository
There are two options to select from for Jenkins to be able to get the library code out
of source control: Modern SCM and Legacy SCM.

Modern SCM
Most Jenkins SCM plugins have been updated with a new API to handle pulling a
named version. Currently, nearly all of these should fall into this category. Figure 6-5
shows an example of the configuration section for this. At the top, you can see the
name and version followed by the choice of Modern SCM for the retrieval method.

Figure 6-5. Using the Modern SCM retrieval method

Legacy SCM
If your particular SCM plugin for Jenkins isn’t in the Modern SCM list, you can fall
back to using the Legacy SCM option, shown in Figure 6-6. When using this option,
the Jenkins documentation recommends including the string ${library.<your
library name>.version} in the specification somewhere. Here, <your library

name> should actually be replaced with the name of your library. The other parts are
literals in the string.

188 | Chapter 6: Extending Your Pipeline

Figure 6-6. Using the Legacy SCM retrieval method

The idea here is that this string will get expanded to allow Jenkins to pick up the spe‐
cific version of your content that is needed. In the Git example in the figure, I’ve put
it in the refspec area. For SVN, you might include it at the end of the URL. In general,
if you just always want to get the latest from a particular branch, you may be able to
omit it altogether.

For the Branch Specifier field, you can enter any branch or tag. If you want to include
a specific version of the library (and don’t overwrite that version in the script), you
can tag the code, and include the tag in this field. If you do include a tag for Git, a
good practice is to include the fully qualified tag, as in refs/tags/<tag>. Notice that you
can also specify multiple branches by clicking the Add Branch button to add new
ones. If you select multiple branches, they will all be brought down. The “default ver‐
sion” setting can be used to specify which one is the default.

Modern Preferred

In some instances, a particular source control tool may show up in
both the Legacy and Modern options. In such cases, the Modern
SCM option is recommended.

Using Libraries in Your Pipeline Script
Now that we know how to define and configure libraries for availability in Jenkins,
we need to understand how to load them into our pipelines. The first thing to under‐
stand is how Jenkins actually handles making libraries available for pipelines.

Using Libraries in Your Pipeline Script | 189

Automatic Downloading of Libraries from Source Control
When we either have content in the internal library or have declared external libraries
that we want Jenkins to make available, Jenkins takes care of getting the correct con‐
tent at the start of the run for each job.

Suppose for our example setup we have added content to the internal workflowLibs.git
repository and configured a repository external to Jenkins at /home/git/repositories/
shared-libraries. Figure 6-7 shows what happens when we run a job with this setup.
You can see both the external library and the internal one being downloaded so they
are available in that run’s workspace.

Figure 6-7. Shared global libraries being downloaded at the start of a job

Loading Libraries into Your Script
If there is content, the workflowLibs global internal library will be loaded automati‐
cally. You can specify that external libraries should be loaded automatically for your
pipeline using the “Load implicitly” option.

If you choose to load the library implicitly, you can still specify a set of methods by
using an import statement of the following form:

// importing a collection of methods
import static org.demo.Utilities.*

190 | Chapter 6: Extending Your Pipeline

If you do not use an option that loads the library automatically, then you must use a
statement in your pipeline script to explicitly load the library and make it available.
There are a couple of different ways to do this, detailed next.

The @Library annotation
In Java-based languages, an annotation is metadata that can be put in the code to aug‐
ment (or “annotate”) other code. In the case of Jenkins pipeline syntax, the annota‐
tion construct is used less as an annotation and more as another syntax construct.

Specifically, you can use the @Library annotation in your pipeline script to load a
library. The name of the library to load, and optionally a version, are specified as
arguments. Here’s the basic syntax:

@Library('<libname>[@<version>]')_ [<import statement>]

A couple of points about the syntax:

• The library name is required.
• The version should be preceded by the @ sign.
• The version can be a tag, branch name, or other specification of a revision in the

source code repository.
• Specific subsets of methods can be imported by including an import statement at

the end of the annotation or on the next line.
• An import statement is not required. If one is not specified, all methods will be

imported.
• If no import statement is specified, then an underscore (_) must be placed at the

end of the annotation, directly after the closing parenthesis. (This is required
since an annotation needs something to annotate by definition. In this case, the _
is simply serving as a placeholder.)

• Multiple library names (with respective versions if desired) can be specified in
the same annotation. Just separate them with commas.

Here are some simple examples:

// Load the default version of a library
@Library('myLib')_

// Override the default version and load a specific version of a library
@Library('yourLib@2.0')_

// Accessing multiple libraries with one statement
@Library(['myLib', 'yourLib@master'])_

// Annotation with import
@Library('myLib@1.0') import static org.demo.Utilities.*

Using Libraries in Your Pipeline Script | 191

The annotation would be placed at the beginning of your script, above the node line
for a Scripted Pipeline, or above the pipeline line for a Declarative Pipeline.

Using @Library with Declarative Pipelines

While you can use the @Library annotation with a Declarative
Pipeline, you have to put it outside of the pipeline closure. Putting
code outside of the main closure is not recommended as it may
cause confusion. A better approach for loading libraries in declara‐
tive syntax is to use one of the other methods we discuss.

The library step

Starting in Jenkins 2.7, an actual library step is available to use in pipelines. The syn‐
tax is similar to that of the annotation:

library "<libname>[@<version>]"

Since this is an actual pipeline step, it can be placed anywhere in the pipeline. It also
allows using variables in place of the arguments. For example, you could define it to
pick up the shared library from whatever version is currently represented by the
built-in BRANCH_NAME variable.

library "<libname>@$<BRANCH_NAME>"

Or, in a Scripted Pipeline, you could create your own variable to use here. Another
option would be to pass a version in as a parameter, and use that in the step.

The libraries directive
Within a Declarative Pipeline, we have one other option for pulling in libraries. We
can use the libraries directive to specify a library to load. Within the directive, we
can specify libraries using a lib statement. The syntax for each lib statement is simi‐
lar to the syntax we’ve already seen in the other approaches: <libname>@<version>.
Given the previous sections, a simple example should suffice:

pipeline {
 agent any
 libraries {
 lib("mylib@master")
 lib("alib")
 }
 stages {
 ...

Declarative Pipelines are covered in detail in Chapter 7.

192 | Chapter 6: Extending Your Pipeline

Library Scope Within Jenkins Items
So far, we have only talked about pipeline libraries in a global context—usable for all
projects. However, Jenkins 2 has many different types of items that can be created.
And, for a subset of those types, shared libraries can be defined that only apply to
items in a particular scope.

Specifically, the Folder, Multibranch Pipelines, GitHub Organizations, and Bitbucket
Team/Project types can each have their own “local” shared pipeline libraries that they
use. Limiting the scope allows for more dedicated, related functions to be available at
that granularity.

For example, if you specify “Load implicitly” at the global/root level in Jenkins, all
jobs will have the library automatically downloaded and available. But if you are con‐
figuring a folder and specify a shared library to load implicitly, only the jobs in that
folder will have the library automatically downloaded and accessible.

One other note about shared libraries at these local scopes: they are considered
untrusted and run in the Groovy Sandbox.

Figure 6-8 illustrates the different granularities of shared libraries available in Jenkins.
While not specifically shown, any pipeline job has access to the global libraries.

Figure 6-8. Shared library scope in Jenkins items

Library Structure
Now that we’ve covered the configuration of shared libraries, we can move on to
looking at how to write and create them, and the structure that Jenkins provides for
that. To start, we’ll outline a sample routine that we’ll use in many of the examples.

Library Scope Within Jenkins Items | 193

Sample Library Routine
To give us something to work with as we explore using pipeline libraries, we’ll create a
simple routine that invokes a Gradle build for us and adds timestamps to it.

In its simplest form, our routine will look something like this:

timestamps {
 <path-to-gradle-home>/bin/gradle <tasks>
}

timestamps is a Jenkins pipeline DSL step. The timestamps closure here simply tells
Jenkins to add timestamps to the console output for this part of our pipeline (the
Gradle build step).

We don’t want to have to supply the <path-to-gradle-home> value every time we call
this, and we don’t want to hardcode it in. If we have Gradle configured globally in
Jenkins, we can have this routine automatically use the global version of Gradle. Let’s
assume for the cases here, we have version 3.2 of Gradle installed in /usr/share/gradle
and configured in our Global Tool Configuration under the name “gradle3.2,” as
shown in Figure 6-9.

Figure 6-9. Our local installation of Gradle

With this in place, we’ll be able to then reference our global tool location for Gradle
in the library routines.

Our second set of code, for example use in the shared libraries, will run a shell com‐
mand and print out the result with timestamps:

def commandOutput
timestamps {
 commandOutput = sh(script: "${<command-to-run>}",
 returnStdout: true).trim()
}
echo commandOutput

Here, we intend <command-to-run> to be the shell command we pass in—the one that
we want to be executed. In the third line, we are invoking the pipeline DSL’s sh com‐
mand. As we have discussed previously, when we have more than one argument to a

194 | Chapter 6: Extending Your Pipeline

DSL command, we pass them as a map. Here, our first argument is the “script” that
we want to execute (i.e., our command), and the second argument is telling it to
return the output of stdout (which our statement will print). The trim() command
on the end is simply making the output cleaner.

We will tweak and wrap other code around these basic forms as we explore the differ‐
ent ways to create and use pipeline libraries. Now let’s talk about the expected struc‐
ture for a pipeline library.

Structure of Shared Library Code
The shared libraries feature has a predefined structure it expects. At the highest level,
a shared library tree has three subtrees: src, vars, and resources. We describe each sec‐
tion in detail here.

src
This area is intended to be set up with Groovy files in the standard Java directory
structure (i.e., src/org/foo/bar.groovy). It is added to the classpath when pipelines are
executed.

Any Groovy code is valid to use here. However, in most cases, you’ll probably want to
invoke some kind of pipeline processing, using actual pipeline steps. There are several
options for how to implement the step calls within the library, and correspondingly,
how to invoke them from the script.

Here are some examples of things you could have in the src area:

• You can create a simple method, not enclosed by a class. Fitting our example
code into this model could look like this:

// org.demo.buildUtils

package org.demo

def timedGradleBuild(tasks) {
 timestamps {
 sh "${tool 'gradle3.2'}/bin/gradle ${tasks}"
 }
}

This can be invoked within a pipeline by:
def myUtils = new org.demo.buildUtils()
git "<gradle project to clone>"
myUtils.timedGradleBuild("clean build")

Sample Library Routine | 195

• You can create an enclosing class (to facilitate things like defining a superclass).
You can then get access to all of the DSL steps by passing the steps object to a
method, in a constructor or in a method of the class:

// org.demo.buildUtils
package org.demo

class buildUtils implements Serializable {
 def steps
 buildUtils(steps) { this.steps = steps}
 def timedGradleBuild(tasks) {
 def gradleHome = steps.tool 'gradle3.2'
 steps.timestamps {
 steps.sh "${gradleHome}/bin/gradle ${tasks}"
 }
 }
}

Here, the tool step in steps.tool again references the installed version of Gradle
that we have configured in the Global Tool Configuration. It returns the path
associated with the tool of that name. This is a cleaner way to do it than the way
we did it in the preceding example.
Since we are enclosing this in a class, the class must implement Serializable to
support saving the state if the pipeline is stopped or restarted.
Once loaded, libraries defined in this way can be invoked from the main script
via calls like the following:

@Library('bldtools') import org.conf.buildUtils.*
def bldtools = new buildUtils(steps)

node {
 git "<gradle project to clone>"
 bldtools.timedGradleBuild 'clean build'
}

Other items, like environment variables, can be passed in in the same way as the
steps. In the following code we pass in the env object and utilize it in our code:

// org.demo.buildUtils
package org.demo

class buildUtils implements Serializable {
 def env
 def steps
 buildUtils(env,steps) {
 this.env = env
 this.steps = steps
 }
 def timedGradleBuild(tasks) {

196 | Chapter 6: Extending Your Pipeline

 def gradleHome = steps.tool 'gradle3.2'
 steps.sh "echo Building for ${env.BUILD_TAG}"
 steps.timestamps {
 steps.sh "${gradleHome}/bin/gradle ${tasks}"
 }
 }
}

• For a simpler case, you can just pass in the script object, which already has
access to everything. In this case, we are passing it into a static method:

// org.demo.buildUtils
package org.demo

class buildUtils {
 static def timedGradleBuild(script,tasks) {
 def gradleHome = script.tool 'gradle3.2'
 script.sh "echo Building for ${script.env.BUILD_TAG}"
 script.timestamps {
 script.sh "${gradleHome}/bin/gradle ${tasks}"
 }
 }
}

This version uses the sh step from the script as well as the env value from the
script to do the same things as the previous version.
This can then be invoked as:

@Library('<library-name>') import static org.demo.buildUtils.*
node {
 git "<gradle project to clone>"
 timedGradleBuild this, 'clean build'
}

vars
This area is for hosting scripts that define variables and associated methods that you
want to access in the pipeline. The basename of a script should be a valid Groovy
identifier. You can have a <basename>.txt file that contains help or other documenta‐
tion for the variable. This documentation file can be HTML or Markdown.

You can define whatever methods you may want to use for variables in your pipeline
in a Groovy file in the vars area. As an example, let’s use the timed command example
from the beginning of this section. Recall that this code is intended to take a com‐
mand, call the DSL function sh on it to execute it as a shell script, capture the output,
and print out timestamps during the operation. Let’s first create a timedCom‐
mand.groovy file in the vars area for this with a few basic methods:

Sample Library Routine | 197

// vars/timedCommand.groovy
def setCommand(commandToRun) {
 cmd = commandToRun
}

def getCommand() {
 cmd
}

def runCommand() {
 timestamps {
 cmdOut = sh (script:"${cmd}", returnStdout:true).trim()
 }
}

def getOutput() {
 cmdOut
}

cmd and cmdOut here are not fields. These are objects created on demand. Now, we
can use the timedCommand object as follows in our pipeline script:

node {
 timedCommand.cmd = 'ls -la'
 echo timedCommand.cmd
 timedCommand.runCommand()
 echo timedCommand.getOutput()
}

Using a Class with vars

As was done with the code in src, you could create a class to encap‐
sulate the vars commands. However, doing so is problematic and
not particularly beneficial.

Automatic documentation references for global variables. As mentioned previously, one
of the types of files that can be in the vars section is a .txt file with the same name as
the .groovy file containing code. This .txt file can be used for documentation on the
operation and can be written in either Markdown or HTML. Figure 6-10 shows an
example timedCommand.txt file. This file has corresponding user-facing documenta‐
tion about the functions defined in our timedCommand.groovy file. The file is
optional, but if created, it should be committed and pushed in the vars directory of
the same shared library structure as the corresponding .groovy file.

198 | Chapter 6: Extending Your Pipeline

Figure 6-10. Creating a timedCommand.txt file to correspond to our implementation file

After the variable code has been loaded and executed in a successful run of a pipeline
script, an entry for the variable will be added to the list of global variables in the pipe‐
line syntax section (accessible via the Pipeline Syntax screen). Figure 6-11 shows how
to get to that area through the interface.

Figure 6-11. Accessing the Global Variable Reference

Sample Library Routine | 199

If you’re not familiar with the Global Variable Reference page, its purpose is to pro‐
vide documentation on variables and their associated methods (see Figure 6-12).

Figure 6-12. The Global Variable Reference

After we have a successful run of a job with our timedCommand variable, the contents
of our timedCommand.txt file will be included in this page (Figure 6-13). This pro‐
vides a convenient way of documenting any variables we add in the application.

Figure 6-13. Our timedCommand variable is included now in the Global Variable Refer‐
ence

Using global variables like steps. You can create global variable definitions that act like
steps in pipeline scripts. That is, they can be called like regular pipeline steps. The
trick to this is to define the call method in the global variable’s definition. Let’s see
what it would look like to do this for our timedCommand code. Since this is a slightly
different version, we’ll refer to it as timedCommand2:

// vars/timedCommand2

def call (String cmd) {
 timestamps {
 cmdOutput = echo sh (script:"${cmd}", returnStdout:true).trim()
 }

200 | Chapter 6: Extending Your Pipeline

 echo cmdOutput
 writeFile
}

We can use any valid pipeline DSL code in the body of the call. Let’s suppose that we
decide we want to add code to write our output to a log file as well as printing it out.
For this, we will need the writeFile sDSL statement. If we’re not clear on the syntax,
we can use the pipeline syntax generator (aka Snippet Generator) to help us with that.
Figure 6-14 shows using the Snippet Generator to determine the right format of the
command for our purposes. (Notice that we just supply the variable names we intend
to use in the individual fields.)

Figure 6-14. Using the Snippet Generator to get the correct syntax for the writeFile DSL
call

Now we can add the writeFile command to our function and pass in a value for the
location:

// vars/timedCommand2

def call (String cmd, String logFilePath) {
 timestamps {
 cmdOutput = sh (script:"${cmd}", returnStdout:true).trim()
 }
 echo cmdOutput
 writeFile file: "${logFilePath}", text: "${cmdOutput}"
}

Sample Library Routine | 201

Here’s an example of using the command this way. Notice the invocation resembles a
pipeline step:

timedCommand2 'ls -la', 'listing.log'

Suppose that we want to pass a block of code to a library “step”. When that happens,
our library step will receive a Groovy closure. To handle this case, we define our step
to accept the closure and then execute it:

// vars/timedCommand3

def call(Closure commands) {
 timestamps {
 commands()
 }
}

Or suppose we want to time how long it takes to read a file, do some kind of transfor‐
mation on it, and then write the transformed data back out to another location. An
example of how this could be called from a script is:

timedCommand3 {
 def content = readFile file: '<path to huge datafile>'
 sh "<some processing on content>"
 writeFile file: '<path to transformed file>', text: content
 echo "Done"
}

This becomes even more useful if we want to do something like restrict the routine to
a particular environment, such as a particular node. For example, we could set up two
nodes, one running Windows and one running Linux, and then define two separate
routines in vars, one to run our timing of commands on Windows and one to run the
timing on Linux. Our code in vars might look like this:

// vars/timedCommandWindows.groovy

def call(Closure commands) {
 node('windows') {
 timestamps {
 commands()
 }
 }
}

// vars/timedCommandLinux.groovy

def call(Closure commands) {
 node('linux') {
 timestamps {
 commands()
 }
 }
}

202 | Chapter 6: Extending Your Pipeline

Finally, in this category, we can extend the call mechanism to create a simple frame‐
work that makes using the “step” in our scripts very simple and more like standard
DSL calls with multiple values.

This is done by delegating the values passed in to a mapping and then using the map‐
ping in additional processing in the step. This is easiest to understand with an exam‐
ple:

// vars/timedCommand4.groovy

def call(body) {
 // collect assignments passed in into our mapping
 def settings = [:]
 body.resolveStrategy = Closure.DELEGATE_FIRST
 body.delegate = settings
 body()

 // now, time the commands
 timestamps {
 cmdOutput = echo sh (script:"${settings.cmd}", returnStdout:true).trim()
 }
 echo cmdOutput
 writeFile file: '${settings.logFilePath}', text: '${cmdOutput}'
}

In this form, we declare a Groovy map via the def settings = [:] syntax. Then the
values we pass in get mapped and we can execute whatever other steps we need to.
The references to delegate here have to do with Groovy functionality. A complete
discussion of delegation behavior in Groovy is beyond the scope of this section, but
you can essentially think of it as telling Groovy to allow us to reference any values
passed in utilizing the mapping we’re doing in this function.

Note that here, as in other vars steps, you should only use valid pipeline steps. Non-
step Groovy code may not work or may have uncertain behavior.

With this form, we can invoke the code from our pipeline script very simply, as
shown here:

node {
 timedCommand4 {
 cmd = 'sleep 5'
 logfilePath = 'log.out'
 }
}

What this really buys us is the ability to invoke our function with named parameters,
passed in whatever order we choose. This can make our code in the pipeline script
simpler and easier to understand and maintain.

Sample Library Routine | 203

resources

Non-Groovy files can be stored in this directory. They can be loaded via the libraryR
esource step in an external library.

This is intended for allowing your external libraries to load up any additional non-
Groovy files they may need. An example could be a datafile of some kind, such as an
XML or JSON file, or any other file that the library needs to use. The file is loaded as
a string.

The syntax is straightforward. In your library code, you would have something like
the following:

def datafile = libraryResource 'org/conf/data/lib/datafile.ext'

Another Use of libraryResource

While typically used for loading resources from external files for
use in shared libraries, the libraryResource feature can be used to
load up any resource you need to use in your script. Here’s an
example:

 def myExternalScript =
 libraryResource 'externalCommands.sh'
 sh myLatestScript

Of course, this should be used carefully and not in a way that could
lead to masking potentially dangerous code. But it can be useful in
certain cases, such as if you want to separate out nonpipeline code
or need to programmatically specify different files to load based on
conditions.

Mapping library Step Calls to src and vars
The form of the library step that we saw earlier in the chapter works for global vari‐
ables (items made available from the vars structure). This means that any global vari‐
ables from the library will be available in the script.

However, if you want to reference classes from the src area using the library step, the
process is not as straightforward. The @Library annotation updates a script’s class‐
path before compiling, but since library is a step, compilation has already occurred.
This means you can’t import items from the library.

You can, though, still get to individual classes by referencing their fully qualified paths
based on the return value from the library step. For example:

library('<libname>').com.mypipe.demo.Utilities.myStaticMethod

Here’s a simple script using this type of syntax:

204 | Chapter 6: Extending Your Pipeline

node ('worker_node1') {
 stage('Source') { // Get code
 // Get code from the source repository
 git url: 'http://github.com/brentlaster/greetings.git',
 branch: 'demo'
 }
 stage('Compile') { // Compile and do unit testing
 // Run Gradle
 library('Utilities').org.demo.BuildUtils3.timedGradleBuild
 this, 'clean build'
 }
}

Using Third-Party Libraries
Shared libraries can also make use of third-party libraries using the @Grab annotation.
The @Grab annotation is provided through the Grape dependency manager that is
built into Groovy. It allows you to pull in any dependency from a Maven repository,
such as Maven Central. This can be done from trusted libraries, but does not work in
the Groovy Sandbox.

Here’s an example function using @Grab to pull in an Apache Commons dependency.
In a similar vein to our other examples, we’re using a “stopwatch” function here to
time how long execution of a command takes. The routine is written entirely with
Groovy code (as noted earlier, libraries have access to all Groovy constructs):

// vars/timedCommand5

@Grab('org.apache.commons:commons-lang3:3.4+')
import org.apache.commons.lang.time.StopWatch

def call(String cmdToRun) {
 def sw = new StopWatch()
 def proc = "$cmdToRun".execute()
 sw.start()
 proc.waitFor()
 sw.stop()
 println("The process took ${(sw.getTime()/1000).toString()} seconds.\n")
}

Assuming this code has been pushed into the shared library area that is being implic‐
itly loaded, the code could be invoked like this from a pipeline script:

node {
 timedCommand5("sleep 10")
}

Other than the downloads for the libraries, the output would look something like
this:

Using Third-Party Libraries | 205

[Pipeline] node
Running on worker in /home/jenkins2/worker_node1/workspace/mypipe11
[Pipeline] {
[Pipeline] echo
The process took 10.009 seconds.

[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Loading Code Directly
You can also load code directly via the load operation. This is similar to the shared
library code in terms of the syntax. It is different in that it is not pulling it from
source control. In order to use this, you just need to have your function stored in a
location that is accessible. Here’s an example using one of our timedCommand imple‐
mentations:

def call(String cmd, String logFilePath) {
 timestamps {
 cmdOutput = sh (script:"${cmd}", returnStdout:true).trim()
 }
 echo cmdOutput
 writeFile file: "${logFilePath}", text: "${cmdOutput}"
}
return this;

The def here could also be public. Notice that we have made one change to the func‐
tion: we added a return this line at the end of the definition. This line is necessary
to make sure the correct scope is returned so the load function works correctly.

Once this is in place, we can load it and invoke it from our pipeline script through the
following:

node {
 def myProc = load '/home/diyuser2/timedCommand2.groovy'
 myProc 'ls -la', 'command.log'
}

We can utilize the direct myProc(...) syntax here because the function was defined
with call. If we used a formal name instead of call, then we would invoke the func‐
tion in the pipeline with myProc.<name>(...) instead. For example, if the first line of
our function definition was:

def timedCommmand(String cmd, String logFilePath) {

then we would need to invoke it in the pipeline script via:

myProc.timedCommand("sleep 5","command.log")

206 | Chapter 6: Extending Your Pipeline

Loading Code from an External SCM
We have seen how to both define an external shared library and load code directly
from a location in our filesystem. There is another process that allows for a sort of
hybrid approach: it allows us to directly load code from an external SCM, without
having to include it as part of a shared library.

To make this work, we first need to install the Pipeline Remote Loader plugin, if it is
not already installed. Figure 6-15 is a screenshot showing how to locate this plugin.

Figure 6-15. Installing the Remote Loader plugin

This plugin provides a fileLoader DSL function to load code from Git, GitHub, or
SVN repositories (assuming you have the appropriate plugins installed for Git or
SVN). After installation, you’ll have a Global Variable Reference entry for it that you
can look at for more details. This is shown in Figure 6-16.

Loading Code from an External SCM | 207

Figure 6-16. The global variable pipeline syntax reference for the fileLoader command

Let’s look at a quick example of this. On one of my GitHub sites, I have the same
timedCommand code as used in the preceding section.

An example of running this from a pipeline script is shown here:

def timestampProc = fileLoader.fromGit('jenkins/pipeline/timedCommand',
 'https://github.com/brentlaster/utilities.git', 'master', null, '')

timestampProc.timedCommand("ls -la","command.log")

Support for the Remote Loader Plugin

Be aware that while this functionality is still available, it is no
longer being supported and updated. It served a more substantial
purpose prior to the development of shared pipeline libraries.

Replaying External Code and Libraries
In Chapter 2, we introduced the Jenkins pipeline Replay functionality. After a success‐
ful run of a pipeline item, you can select a run and edit it from the job screen to try
out changes. These changes cause another run to happen, but do not update the origi‐
nal job. This provides a powerful way to try out fixes or other changes to your code
without having to go back and change the configuration every time.

208 | Chapter 6: Extending Your Pipeline

http://bit.ly/2vz147g

In addition to providing the replay capability for basic jobs, Jenkins also provides it
for code brought in via the load and fileLoader statements discussed in the preced‐
ing sections, and for untrusted libraries.

Untrusted Libraries

Recall from our earlier definition in this chapter that an untrusted
library is one that has to run in the Sandbox and doesn’t have
unlimited access to Groovy constructs, Jenkins objects, etc. This
includes libraries that are shared across a Folder, Multibranch Pipe‐
line, GitHub Organization, Bitbucket Team/Project.

To see how Replay looks for these cases, let’s take a quick look at a couple of examples.
First, in Figure 6-17, we can see a Replay screen for our direct loading of the code
from GitHub via the fileLoader DSL function that we looked at in the last section.
In this case, we have had a successful run of the job, then gone to the job output
screen for the run and selected Replay.

Figure 6-17. Replay of a pipeline script and script loaded from a GitHub site

This looks similar to the Replay screen for other jobs, except that we have two Replay
areas: one for the main pipeline script and one for the script we loaded from GitHub.
We can modify either or both and then click the Run button to see the results. Again,
this doesn’t modify the original saved script (either the main one or the one loaded
from GitHub). What it does do is provide a significant time and cost savings, by not
having to modify the scripts in their stored locations just to test changes.

Replaying External Code and Libraries | 209

As another example, consider a case where we have created a Folder project and set
up a shared pipeline library for it (Figure 6-18).

Figure 6-18. Setting up a shared pipeline library for a folder

Since this is a shared pipeline library for a Folder, it is considered untrusted. Untrus‐
ted libraries that are loaded are included in Replay operations, so after we create an
item in the folder and successfully run it, we can use the Replay operation. When we
invoke the Replay command, Jenkins presents sections for all of the pieces of the
shared library (Figure 6-19). This way, we have an opportunity to modify any of the
library functions.

210 | Chapter 6: Extending Your Pipeline

Figure 6-19. Replay for untrusted library components

A Closer Look at Trusted Versus Untrusted Code
We previously discussed the distinction between trusted and untrusted code. We can
demonstrate the difference here simply by trying to reference a restricted Jenkins
object. In keeping with our time theme, we’ll attempt to use a Jenkins internal object
that allows us to get the elapsed time since the build started—the getTimestamp
String method of the rawBuild object of the currentBuild. Putting this into a
println, it might look like this:

println "ELAPSED TIME: ${currentBuild.rawBuild.getTimestampString()}"

First, we’ll try adding the line to our current pipeline script, as seen in Figure 6-20.

A Closer Look at Trusted Versus Untrusted Code | 211

Figure 6-20. Adding the getTimestampString call to the main script

Notice that we’re running this in the Groovy Sandbox. If we try to execute this script
we’ll get a RejectedAccessException error, as seen in Figure 6-21. Since untrusted
libraries run in the Sandbox, they get the same exception as if they were specifically
limited to an untrusted type, such as a Folder, GitHub Organization, Bitbucket Team/
Project, or Multibranch Pipeline project.

Figure 6-21. Access failure trying to use internal method in script

However, if we add the method to a trusted library, such as our global shared library,
and remove it from our pipeline script, it should work. Figure 6-22 shows the edit to
add this to the appropriate runCommand library routine.

212 | Chapter 6: Extending Your Pipeline

Figure 6-22. Adding the getTimestampString command to our trusted pipeline library

And, in fact, when we run the original script now (without the call in it), we can see
that the call gets executed successfully in the trusted library code (Figure 6-23) even
though our main script is still running in the Sandbox.

Figure 6-23. Successfully executing the command through the trusted library instead of
the restricted pipeline script

A Closer Look at Trusted Versus Untrusted Code | 213

Summary
In this chapter, we explored the many ways you can utilize external library routines in
your Jenkins pipelines. We looked at the different classifications that shared pipeline
libraries can have (trusted, untrusted, internal, external), and we saw how to tell Jen‐
kins to load code from its own internal library or from an external library. We also
examined the structure that an external library is expected to have, and what kind of
content is in each section.

We spent time in the vars section to understand how we can create global variables
and functions that can be used in pipelines. We also noted how you can create code
that can be called like a DSL step or with named parameters to make using it simple
in pipelines. We also talked about how to create and automatically get integrated doc‐
umentation for global variables that you create.

We noted the newer types of projects that Jenkins supports now and how shared
libraries fit into their structure. These include the Multibranch Pipeline, GitHub
Organization, and Bitbucket Team/Project types.

Finally, we got a feeling for how the Replay functionality can be used for untrusted
libraries, and walked through an example demonstrating trusted versus untrusted
calls.

This information provides examples of how you can create and leverage common
library code for pipelines and how to store and reference that code in external source
management systems, including GitHub projects.

In the next chapter, we’ll explore Declarative Pipelines in more detail.

214 | Chapter 6: Extending Your Pipeline

CHAPTER 7

Declarative Pipelines

In this part of the book, we’re going to be talking about another evolution in Jenkins
pipelines—Declarative Pipelines. Declarative Pipelines allow users to define a pipe‐
line in a way similar to how they would define jobs in the traditional Jenkins web
forms. By this we mean:

• There is a well-defined, enforced structure. (You can think of this like the sec‐
tions on the pages of a Jenkins web form.)

• Defining a pipeline section is more about declaring the high-level steps/goals
than defining the logic to accomplish it. (This is similar to filling in the fields in a
Jenkins web form.)

• Familiar Jenkins processing constructs are provided and don’t have to be emula‐
ted with programming. (For example, you have a way to do post-build processing
and send notifications, as opposed to having to use try-catch-finally Groovy
programming to handle this.)

• All of the above enable better validation and error checking. (Errors are identi‐
fied and presented in the context of the expected structure and keywords, not just
Groovy tracebacks.)

These features distinguish Declarative Pipelines from the alternative way of creating a
pipeline that ties DSL steps and sections together with programming constructs
(assignments, conditionals, etc.)—essentially writing a program. That style of free-
form coding for a pipeline is what we call a “Scripted Pipeline.”

Both types of pipelines have their place, with advantages and disadvantages to each.
Broadly speaking, Declarative Pipelines are easiest for someone new to using the
pipeline functionality. This is because they more closely resemble what was done and

215

available in the web forms, and they have clearer, more contextual validation and
error checking.

Scripted Pipelines provide more flexibility and the ability to mix in programming
constructs to execute logical flows, decision handling, assignments, etc. that are not
available in Declarative Pipelines. For more experienced users or advanced applica‐
tions, Scripted Pipelines can be the best option.

It is also worth noting that not all plugins that support Scripted Pipelines have inter‐
faces and flows that support Declarative Pipelines directly.

One last general note about Declarative Pipelines: you may be wondering how sup‐
port for them is integrated with Jenkins. Like nearly every piece of additional func‐
tionality in Jenkins, they’re supported via plugins. The set of plugins that support
Declarative Pipelines and the new Blue Ocean interface (described in Chapter 9) are
largely tied together.

Now, let’s start diving into the world of Declarative Pipelines by taking a look at the
motivation behind them.

Motivation
To understand why we can benefit from another way to structure pipelines in Jenkins,
it’s helpful to understand some of the shortcomings specifically associated with the
traditional Scripted Pipeline creation and model.

Not Intuitive
As we’ve discussed, moving from a web interface (with specific forms, help buttons,
and UI elements that guide you in setting up jobs) to creating scripts, is not intuitive.
One key part of the original UI job pages was the separation into sections, such as
post-build processing, that guided users through the various phases. When moving to
scripts, the elements for the different phases are available, but it’s not clear how to
structure or order them out of the box. Worse, some familiar processes don’t have
corresponding constructs in the nondeclarative DSL.

Getting Groovy
While it’s not a requirement to be able to program in Groovy to create DSL scripts,
sometimes it can feel that way to users. For missing functionality, Groovy constructs
may be the only alternative. Verification such as syntax checking is done at the
Groovy level. Also, errors are surfaced as Groovy errors (tracebacks) and not as DSL-
specific ones.

216 | Chapter 7: Declarative Pipelines

Additional Assembly Required
Building on a point raised earlier, additional code can be required to get the familiar
Jenkins constructs we had in the web forms version. For example, the simple task of
sending email after a failed build has to be handled with something like a try-catch-
finally construct, instead of the familiar built-in post-build functionality.

The following code highlights the contrast between sending emails after a failure in a
Scripted Pipeline versus the way this was typically handled in traditional Jenkins, as
shown in Figure 7-1.

node {
 try {
 sendEmailStarted()
 stage('Source') {...}
 stage('Build') {...}
 ...
 sendEmailSuccess()
 } catch (err) {
 currentBuild.result = "FAILED"
 sendEmailFail()
 throw err
 }
}

Figure 7-1. Post-build action in a Freestyle project in Jenkins

For these and other reasons, the CloudBees staff, as part of the Jenkins community,
created an expanded DSL and simpler environment for programming pipelines. Note
that Declarative Pipelines are still pipelines-as-code. We are still using the same envi‐
ronment to code our pipelines; we enter the Declarative Pipeline syntax in the Pipe‐
line tab script window or in Jenkinsfiles, just as we would for any other pipeline code.
However, as we’ve noted, the Declarative Pipeline syntax is more structured and the
environment provides improved DSL-specific validation and error checking. We’ll
explore that structure next and discuss script checking and error reporting later in
this chapter.

Motivation | 217

The Structure
A declarative is made up of an outer block that contains directives and sections. Each
section in turn can contain other sections, directives, and steps, and in some cases con‐
ditionals. The distinction between blocks, sections, and directives is somewhat arbi‐
trary, but since they’re used in the formal documentation, we’ll define those and the
other terms more clearly.

Block
A block here is really just any set of code that has a beginning and end. In Groovy,
this translates to a closure (a section of code where the beginning and end are brack‐
eted with { and }).

While many parts of the pipeline are technically blocks, that term is used primarily to
describe the overall pipeline block, which contains all of the code associated with a
Declarative Pipeline.

It looks like this:

pipeline {
 // code in declarative syntax
}

Section
Sections in a Declarative Pipeline are a way to collect items that need to be executed
at particular points during the overall flow of the pipeline. The grouped items may
include directives, steps, and conditionals (defined in the following sections). As the
pipeline is executed, it looks for sections to define the various groupings and phases.

Currently, there are three areas we refer to as sections:

stages

This section wraps all of the individual stage definitions (directives) that define
the main body and logic for the pipeline.

steps

This section wraps a set of DSL steps within a stage definition. It serves to sepa‐
rate the collection of steps from other items within a stage, such as environment
definitions.

posts
This section wraps around steps and conditions to be done or checked at the end
of a pipeline run or at the end of a stage.

An example layout with sections identified in bold font is shown here:

218 | Chapter 7: Declarative Pipelines

pipeline {
 agent any
 stages {
 stage('name1') {
 steps {
 ...
 }
 post {
 ...
 }
 }
 stage('name2') {
 steps {
 ...
 }
 }
 }
 post {
 ...
 }
}

Directives
A directive can be thought of as a statement or block of code that does any of the fol‐
lowing in a pipeline:

Defines values
An example of this is the agent directive, which allows us to specify a node or
container to run an entire pipeline or a stage in. If we wanted to run our pipeline
on a node named worker, we could use agent ('worker').

Configures behavior
An example of this is the triggers directive that lets us configure how often Jen‐
kins checks for source updates or triggers our pipeline. If we wanted it to retrig‐
ger our pipeline at 7 a.m. every weekday, we could use triggers { cron ('0 7
0 0 1-5') }.

Specifies actions to be done
An example of this is the stage directive, which is expected to have a steps sec‐
tion containing DSL steps to be executed.

Steps
The label steps itself is a section title with in a stage of the pipeline. However, within
the steps section, we can have any valid DSL statement, such as git, sh, echo, etc.
You can think of a step here as corresponding to one of these statements.

The Structure | 219

Conditionals
Conditionals supply a condition or criteria under which an action should occur.
These are optional. There are two cases you may encounter/use:

• When: Strictly speaking, this is a directive. It resides within a stage definition
and defines criteria for whether or not a stage should be executed. For example:

 stage ('build') {
 when {
 branch 'foo'
 }
 <steps>
 }

• Conditions blocks in the post section that define the criteria for doing post-
processing. The criteria (conditions) here refer to the status of the build, such as
success or failure.

Now that we have a basis for the terminology, let’s look at the different building
blocks in more detail.

The Building Blocks
In this section we’ll cover specifics on each of the sections and directives available to
you to use in a Declarative Pipeline, including syntax, parameters, and example
usage.

At a high level, the blocks stack up as shown in Figure 7-2. Here, each box represents
the specific section or directive indicated by its text, and their placement indicates
where they can be in the Declarative Pipeline structure. For example, pipeline is the
outermost block, and all of your other sections and directives must be inside of it.

Those with dotted lines around them are optional in that part of the structure. Those
with solid lines are required in that part of the structure. Note that there are some
directives that can occur at both the pipeline and stage level. They may be required in
one area and optional in another.

220 | Chapter 7: Declarative Pipelines

Figure 7-2. Overview of Declarative Pipeline structure

Obviously, there are directives here that we haven’t talked about yet. So, let’s dive in
deeper to learn about each of the areas in the structure.

pipeline
The pipeline block is required in a Jenkins Declarative Pipeline. It is the outermost
section and signals that this is a Pipeline project. The syntax is simply pipeline {}
with the rest of the code within the closure:

pipeline {
 // pipeline code
}

The Building Blocks | 221

agent
The agent directive specifies where the entire pipeline or a specific stage runs. This is
similar to how the node directive is used in Scripted Pipelines. In fact, you can rea‐
sonably think of an agent as a node, except that the master node is not an agent.

An agent directive near the top of the pipeline block is required as a “default” place
for execution. However, individual agent directives can optionally be specified at the
beginning of individual stages to indicate where the code in those stages should be
run.

Label Refresher

As a reminder, a label is an identifier attached to a node. You can
have as many labels as you like, and the same label can be used
across multiple nodes to identify a “class” of nodes. Configuring
labels is done in the node setup under Manage Nodes. An example
is shown in Figure 7-3.

Figure 7-3. Specifying labels for a node

What the agent directive actually does is indicate which (if any) nodes to use in the
execution of the pipeline or stage. It does this by mapping the argument supplied to it
to the label(s) specified for the nodes in your Jenkins system. The format of the argu‐
ment can be a single predefined type, an indicator with a specific label, or a label
block with additional characteristics, such as for Docker containers. The possible
options are summarized in the following sections.

agent any

This syntax tells Jenkins that the pipeline or stage can run on any agent that is
defined, without regard to what label it has.

agent none

When used at the top level, this indicates that we are not specifying an agent
globally for the pipeline. The implication is that an agent will be specified, if
needed, for individual stages.

agent { label “<label>”}

This indicates that the pipeline or stage can run on any agent that has the label
<label>.

222 | Chapter 7: Declarative Pipelines

More About Labels

Note that <label> here cannot be a regular expression or use wild‐
card characters. However, multiple nodes/agents can have the same
label specified. In this way, <label> may match a label specified on
multiple systems, thus allowing multiple options to choose from.

Labels and custom workspaces
A recent addition to the label syntax for agents allows us to specify a custom work‐
space for a pipeline or stage. Given an agent definition, we can include the custom
Workspace directive to specify where the workspace that the agent uses should live.
The syntax looks like this:

agent {
 label {
 label "<labelname>"
 customWorkspace "<desired directory>"
 }
}

node and label

It’s worth mentioning that you can use node in place of the label
closure here. This is to help disambiguate the way label is used for
the Docker agent, as described in the next section. The alternative
syntax is:

agent {
 node {
 label "<labelname>"
 ...

Agents and Docker
The final agent options we’ll look at are Docker containers. There are two shorthand
ways to get a Docker image—specifying an existing image or creating an image from
a Dockerfile—in the agent declaration. Alternatively, the longer version of the decla‐
ration can be used to specify additional elements, such as a node to use for the con‐
tainer, and arguments for the container.

First, we’ll look at the formats for using an existing Docker image:

agent { docker '<image>' }

This short syntax tells Jenkins to pull the given image from Docker Hub and run
the pipeline or stage in a container based on the image, on a dynamically provi‐
sioned node.

The Building Blocks | 223

agent { docker { <elements> } }

This long syntax allows for defining more specifics about the Docker agent.
There are three additional elements that you can add in the declaration (within
the { } block):

image '<image>'

Like the short form, this tells Jenkins to pull the given image and use it to
run the pipeline code.

label '<label>'

If this element is present in the declaration, it tells Jenkins to instantiate the
container and “host” it on a node matching <label>.

args '<string>'.

If this element is present in the declaration, it tells Jenkins to pass these argu‐
ments to the Docker container; the syntax here should be the same as you
would normally pass to a Docker container.

Here’s an example declaration using the long form:

agent {
 docker {
 image "image-name"
 label "worker-node"
 args "-v /dir:dir"
 }
}

The syntax for using a Dockerfile as the basis for the container is similar. Again, there
are short and long forms:

agent { dockerfile true }

This short syntax is intended to be used when you have a source code repository,
that you retrieve, that has a Dockerfile in its root (note that dockerfile here is a
literal). In that case, this will tell Jenkins to build a Docker image using that
Dockerfile, instantiate a container, and then run the pipeline (or the stage’s code
if run in a stage) in that container.

agent { dockerfile { <elements> } }

This long syntax allows for defining more specifics about the Docker agent you
are trying to create from a Dockerfile. There are three additional elements that
you can add in the declaration (within the { } block):

filename '<path to dockerfile>'

This allows for specifying an alternate path to a Dockerfile, including a dif‐
ferent name. Jenkins will try to build an image from the Dockerfile, instanti‐
ate a container, and use it to run the pipeline code.

224 | Chapter 7: Declarative Pipelines

label '<label>'

If this element is present in the declaration, it tells Jenkins to instantiate the
container and “host” it on a node matching <label>.

args '<string>'

If this element is present in the agent Dockerfile declaration, it tells Jenkins
to pass these arguments to the Docker container; the syntax here should be
the same as you would normally pass to a Docker container.

An example of specifying a Docker agent via a Dockerfile using the long form is
shown here:

agent {
 dockerfile {
 filename "<subdir/dockerfile name>"
 label "<agent label>"
 args "-v /dir:dir"
 }
}

Using the same node for Docker and non-Docker stages. There is one other aspect associ‐
ated with using Docker agents. Suppose you define a particular non-Docker agent at
the top of your pipeline:

pipeline {
 agent {label 'linux'}

Later, in a particular stage, you want to run the code in a Docker container—but you
also want to use the same node and workspace that you defined for the pipeline. To
enable this, the pipeline has a directive you can use with the Docker specification:
reuseNode. It would look something like the following in practice:

stage 'abc' {
 agent {
 docker {
 image 'ubuntu:16.6'
 reuseNode true

This tells Jenkins to reuse the same node and workspace that were defined for the
original pipeline agent to “host” the resulting Docker container.

Next, we’ll look at how to configure environment values for a pipeline.

environment
This is an optional directive for your Declarative Pipeline. As the name implies, this
directive allows you to specify names and values for environment variables that are
then accessible within the scope of your pipeline. Like agent, you can have an
instance of environment in the main pipeline definition and/or in individual stages.

The Building Blocks | 225

An environment definition in the top-level pipeline block will make the variable
accessible to all steps in the pipeline. An environment definition within a stage will
make the variable accessible to only the scope of the stage.

Here is an example of defining an environment variable in this way:

environment {
 TIMEZONE = "eastern"
}

Environment variable definitions can also incorporate variables that are already
defined. The syntax for this is just to include the existing variable in the definition
string in ${<variable>}:

environment {
 TIMEZONE = "eastern"
 TIMEZONE_DS = "${TIMEZONE}_daylight_savings"
}

Credentials and environment variables
We talked in Chapter 5 about the different kinds of credentials that can be used with
pipelines. Each of those methods required the identifier of a set of credentials that
had been defined in Jenkins. In the environment block, you can assign a global vari‐
able to a particular credentials ID. Then you can use that variable throughout your
pipeline in place of the ID. This can simplify things if you need to specify the ID in
multiple places. The syntax is to assign the variable name to the string
credentials('<credentials-id>'). For example:

environment {
 ADMIN_USER = credentials('admin-user')
}

In this case, we would have admin-user previously defined as the specified ID for
some set of credentials. If you hadn’t explicitly specified a named string (admin-user)
as the ID, you would use the identifying string that Jenkins automatically generates
during the creation of the credentials.

While we can define environment variables for anything we want, Jenkins provides a
specific directive to access globally defined tools: the tools directive.

tools
Jenkins users are familiar with using the Global Tool Configuration screen to config‐
ure versions, paths, and installers for tools. Once configured there, the tools direc‐
tive allows us to specify which of these we want to have autoinstalled and made
available in the path on the agent we’ve chosen.

226 | Chapter 7: Declarative Pipelines

tools Without an Agent

If an agent is not specified, such as when only agent none is used
at the top of the pipeline, the tools directive does not have any
effect. This is because there is no node/agent to make the tool avail‐
able on.

For example, suppose we had the configuration shown in Figure 7-4.

Figure 7-4. Global configuration for a Gradle version

Then, in our tools block, we could refer to Gradle via:

tools {
 gradle "gradle3.2"
}

The lefthand part of this declaration is a specific string defined in the pipeline model.
As of this writing, the valid tool types you can specify in declarative syntax are:

• ant

• git

• gradle

• jdk

• jgit

• jgitapache (JGit with Apache HTTP client)
• maven

Attempts to use other types that are not yet valid will result in an “Invalid tool type”
error when running your pipeline.

Extended Tool Types for Scripted Pipelines
The tool DSL step (not the declarative section) can take an additional parameter of
type. Some of the supported types correspond to the types you can specify in the

The Building Blocks | 227

declarative tools section, but some are only specifiable as class names currently and
don’t fit in the tools section.

Jenkins currently lists the full range of supported types as:

• ant, hudson.tasks.Ant$AntInstallation

• org.jenkinsci.plugins.docker.commons.tools.DockerTool

• git

• hudson.plugins.git.GitTool

• gradle

• hudson.plugins.gradle.GradleInstallation

• hudson.plugins.groovy.GroovyInstallation

• jdk

• hudson.model.JDK

• jgit

• org.jenkinsci.plugins.gitclient.JGitTool

• jgitapache

• org.jenkinsci.plugins.gitclient.JGitApacheTool

• maven

• hudson.tasks.Maven$MavenInstallation

• hudson.plugins.mercurial.MercurialInstallation

• hudson.plugins.sonar.SonarRunnerInstallation

• hudson.plugins.sonar.MsBuildSQRunnerInstallation

If you use the Snippet Generator, you’ll see the more user-friendly versions of the
names listed in the drop-down for the Tool Type parameter. Then, if needed, the class
name is inserted when you select the type. For example, if you select SonarQube
Scanner for the Tool Type and you have a scanner named sq-scanner configured in
the global configuration, the generated step is:

tool name: 'sq-scanner',
 type: 'hudson.plugins.sonar.SonarRunnerInstallation'

In most cases, you don’t need to specify the type when using the tool step. The cur‐
rent exception would be if you had two different types of tools configured with the
same name in the global configuration. Then the type value could be used as a differ‐
entiator.

The righthand part should map to the Name field in the Global Tool Configuration.

228 | Chapter 7: Declarative Pipelines

Once this is set up, the tool is autoinstalled and put on the path. We can then simply
use the string gradle in place of the GRADLE_HOME path in our pipeline steps and Jen‐
kins will map it back to this Gradle installation on our system. For example:

steps {
 sh 'gradle clean compile'
}

Also, it’s worth noting that the tools directive can use the value of a parameter if you
need to input a particular version to use. Here’s an example:

pipeline {
 agent any
 parameters {
 string(name: 'gradleTool', defaultValue: 'gradle3',
 description: 'Gradle Version')
 }
 tools {
 gradle "${params.gradleTool}"
 }

Just keep in mind that there is currently a limitation with the declarative syntax such
that Jenkins doesn’t recognize that a build requires a parameter the first time the
pipeline is run.

tools is another directive that can be used either in the pipeline block or separately
in a stage.

Docker and the tools Directive

The tools directive does not work on Docker or Dockerfile agents.
The recommended practice is to use an image with the tools
already installed.

In addition to the tools directive to allow us to access the globally defined tools, we
also have the options directive to allow us to set project-level options.

options
This directive can be used to specify properties and values for predefined options that
should apply across the pipeline. These would be the type of things that we would set
on the General tab of a project in the Jenkins web forms (other than parameters,
which have their own section). You can think of it as a place to set Jenkins-defined
job options.

A simple example is the option to discard builds. Assume we had the setup in
Figure 7-5 in our Jenkins job.

The Building Blocks | 229

Figure 7-5. Example job build discarder configuration

We could use the following code to achieve the same behavior in our Declarative
Pipeline:

options {
 buildDiscarder(logRotator(numToKeepStr:’3’))
}

As well, there can be specific options for the declarative structure. Here’s an example
of one:

options {
 skipDefaultCheckout()
}

About skipDefaultCheckout()
Since we use this option as an example, it’s worth saying a word about what it does. If
you specify an agent in a Declarative Pipeline, Jenkins allocates a node for it, and
then, if in a Jenkinsfile, it does a global checkout scm. The checkout scm syntax is a
shorthand way to pull down a set of source code. It can work with this shorthand
notation because the Jenkinsfile should be stored with the source and so it can use the
location and branch from the repository.

However, there might be instances where you don’t want this global source checkout
to happen. In such cases, you can use this option to prevent that. Note that if you do
use this option, you are responsible for doing the checkout scm later in your script if
needed.

Options summary
The following list below enumerates the available options and, briefly, their meaning
and usage:

230 | Chapter 7: Declarative Pipelines

buildDiscarder

Keep the console output and artifacts for the specified number of executions of
the pipeline.

logRotator

If you’re wondering what the logRotator element does here, it
doesn’t imply any particular functionality. It’s there mainly for his‐
torical reasons.

 options { buildDiscarder(logRotator(numToKeepStr: '10')) }

disableConcurrentBuilds

Prevent Jenkins from starting concurrent executions of the same pipeline. The
use case could be for preventing simultaneous access to shared resources or pre‐
venting a faster concurrent execution from overtaking a slower one. (This option
is also discussed in Chapter 3.)

options { disableConcurrentBuilds() }

retry

If the pipeline execution fails, retry the entire pipeline the specified number of
times.

options { retry(2) }

skipDefaultCheckout

As just explained in the ““About skipDefaultCheckout()” on page 230” sidebar,
this removes an implied checkout scm statement, thus skipping the automatic
source code checkout from a pipeline defined in a Jenkinsfile.

skipStagesAfterUnstable

If a stage of the pipeline renders the pipeline unstable, don’t process the remain‐
ing stages.

options { skipStagesAfterUnstable()}

timeout

Sets a timeout value for an execution of the pipeline. If this timeout value is
passed, Jenkins will abort the pipeline.

options { timeout(time: 15, unit: 'MINUTES') }

The Building Blocks | 231

Scripted Versus Declarative Example

The timeout option here highlights another useful difference of
declarative syntax versus scripted syntax. In a Scripted Pipeline
(where we don’t have a global options area), to get this same func‐
tionality we would have to wrap all of our code in a timeout block:

timeout(time: 2, unit: 'MINUTES') {
 // pipeline processing
}

timestamps

Add timestamps to the console output. This option requires the Timestamper
plugin. Note that this option applies globally to the whole pipeline execution.

 options { timestamps() }

triggers
This directive allows you to specify what kinds of triggers should initiate builds in
your pipeline. Note that these do not apply to Multibranch Pipeline or GitHub orga‐
nization or Bitbucket team/project jobs that are marked by Jenkinsfiles and triggered
otherwise—such as by a webhook that notifies Jenkins when a change is made.

There are four different (SCM-neutral) triggers currently available: cron, pollSCM,
upstream, and githubPush.

cron

Refers to executing the pipeline at a specified regular interval, and pollSCM is for
checking for source code updates (polling the source control management sys‐
tem) at a specified regular interval. If a source change is detected, the pipeline
will be executed.

upstream

Takes a comma-separated string of Jenkins jobs and a condition to check. When
a job in the string finishes and the result matches the treshold, the current pipe‐
line will be retriggered. For example:

triggers {
 upstream(upstreamProjects: 'jobA,jobB', threshold:
 hudson.model.Result.SUCCESS)
}

githubPush

Refers to the same kind of behavior as the “GitHub hook trigger for GitSCM poll‐
ing” setting in the Build Triggers section of a project in the Jenkins application.
That is, if a webhook is set up on the GitHub side for events related to the GitHub

232 | Chapter 7: Declarative Pipelines

repository, then when the payload is sent to Jenkins, it will trigger SCM polling
for that repo from the Jenkins job to pick up any changes. The syntax should be
simply:

triggers { githubPush() }

Bitbucket Project Triggers

According to some sources, there should also be a bitbucketPush
trigger type available that should behave like the githubPush trig‐
ger. However, this doesn’t seem to show up as a valid option with
the versions of the plugins at the time of this writing. If you need
this functionality, check the plugin pages and try adding it to your
pipeline to see if it is available.

Both pollSCM and cron can use the cron syntax, a summary of which was given in an
earlier chapter and which is repeated here for convenience.

Cron syntax
The cron syntax used in Jenkins is a specification of when and/or how often to do
something based on five fields, separated by spaces. Each of the fields represents a dif‐
ferent unit of time. The five fields are:

MINUTES
The desired minutes value within the hour (0–59).

HOURS
The desired hours value within the day (0–23).

DAYMONTH
The desired day of the month (1–31).

MONTH
The desired month of the year (1–12).

DAYWEEK
The desired day of the week (0–7). Here, 0 and 7 both represent Sunday.

Also, the */<value> syntax can be used in a field to mean “every <value>” (as in */5
meaning “every 5 minutes”).

Additionally, the symbol H can be used in any of the fields. This symbol has a special
meaning to Jenkins. It tells Jenkins to, within a range, use the hash of the project
name to come up with a unique offset value. This value is then added to the lowest

The Building Blocks | 233

value of the range to define when the activity actually starts, within the range of val‐
ues.

The idea here is not to have all projects that have the same cron values specified,
starting at the same time. The offset from the hash serves to “stagger” the execution
of projects that have the same cron timing.

Use of the H symbol is encouraged to avoid having projects start executing at the same
time. Note that since the value is a hash of the project name, each value will be differ‐
ent from all others, but will remain the same for that project over time.

The H symbol can also have a range attached to it to specify limits on the interval it
can pick. The syntax is H(<start range>, <end range>).

To solidify this a bit more, let’s look at some examples:

// Start a pipeline execution at 10 minutes past the hour
triggers { cron(10 * * * *) }

// Scan for SCM changes at 10-minute intervals
triggers { pollSCM(*/10 * * * *) }

// Start a pipeline session at some point between 0 and 30 minutes after
// the hour
triggers { cron(H(0,30) * * * *) }

// Start a pipeline execution at 8 a.m. Monday through Friday
triggers { cron(0 8 * * * 1-5) }

Next, we’ll take a look at how we can supply input to a Declarative Pipeline via the
parameters directive.

parameters
This directive allows us to specify project parameters for a Declarative Pipeline. The
input values for these parameters can come from a user or an API call. You can think
of these parameters as being the same sort that you would specify in the web form
with the “This build is parameterized” option.

You can get an idea of the syntax for these from the Snippet Generator by selecting
the input step and then selecting the parameters and values you want to use.

The valid parameter types, with a description and example of each, are listed here
(these are the same kinds of parameters we discussed in conjunction with the input
step in Chapter 3):

booleanParam

This is the basic true/false parameter. The subparameters for a booleanParam
are name, defaultValue, and description.

234 | Chapter 7: Declarative Pipelines

parameters { booleanParam(defaultValue: false,
 description: 'test run?', name: 'testRun')}

choice

This parameter allows selection from a list of choices. The subparameters for a
choice are name, choices, and description. Here, choices refers to a list of
choices you enter, separated by newlines, to present to the user. The first one in
the list will be the default.

parameters{ choice(choices: 'Windows-1\nLinux-2', description:
 'Which platform?', name: 'platform')}

file

This parameter allows for choosing a file to use with the pipeline. The subpara‐
meters include fileLocation and description.

The selected file location specifies where to put the file that is selected and uploa‐
ded. The location will be relative to the workspace.

parameters{ file(fileLocation: '', description: 'Select the file to
 upload')}

text

This parameter allows the user to input multiple lines of text. The subparameters
include name, defaultValue, and description.

parameters{ text(defaultValue: 'No message', description:
 'Enter your message', name: 'userMsg')

password

This parameter allows the user to enter a password. For passwords, the text
entered is hidden. The available subparameters are name, defaultValue, and
description.

parameters{ password(defaultValue: "userpass1", description:
'User password?', name: 'userPW')}

run

This parameter allows the user to select a particular run from a job. This might
be used, for example, in a testing environment. The subparameters available
include name, project, description, and filter.

The project subparameter is the job that you want to allow the user to select a
run from. The default run will be the last one. You also have access to certain
environment variables in the script from whichever project you select. These
include:

• PARAMETER_NAME=<jenkins_url>/job/<job_name>/<run_number>/

• PARAMETER_NAME_JOBNAME=<job_name>

The Building Blocks | 235

• PARAMETER_NAME_NUMBER=<run_number>

• PARAMETER_NAME_NAME=<display_name>

• PARAMETER_NAME_RESULT=<run_result>

The filter subparameter allows you to filter the type of runs to offer based on
the overall build status. Choices include:

• All Builds—including “in-progress” ones
• Completed Builds

• Successful Builds—this includes stable and unstable ones
• Stable Builds Only

parameters{ run(name: "Last success", description:
 'Last successful project', project: 'project1',
 filter: 'Successful Builds')}

string

This parameter allows for entering a string. (This is not hidden like a password
parameter is.) The subparameters include description, defaultValue, and
name.

parameters{ string(defaultValue: "Linux",
 description: 'What platform?', name: 'platform')}

Using parameters in a pipeline

Once you define a parameter in the parameters block, you can reference it in your
pipeline via the params namespace, as in params.<parameter_name>. Here’s a simple
example using a string parameter in a Declarative Pipeline:

pipeline {
 agent any
 parameters{
 string(defaultValue: "maintainer",
 description: 'Enter user role:', name: 'userRole')
 }
 stages {
 stage('listVals') {
 steps {
 echo "User's role = ${params.userRole}"
 }
 }
 }
 }

236 | Chapter 7: Declarative Pipelines

Issues with Parameters on First Execution

As of this writing, the first time that you run a pipeline script, you
won’t be prompted for the parameter values. From the second time
on, you will.
This is due to a type of catch-22. The parameters are defined in the
pipeline script, so they are not known by Jenkins until the script is
run. But it’s when the script is first run that you would expect to
have the parameters available. As of this writing, there isn’t a work‐
around, although it is being considered by the Jenkins project.
As a suggested best practice, use the params.<parameter_name>
syntax. Then you can at least get the default values (assuming they
are set) for the parameters on the first run.

libraries
One of the newer directives introduced in Jenkins for Declarative Pipelines is the
libraries directive. This directive allows Declarative Pipelines to import shared
libraries so that code contained in them can then be called and used. As discussed in
Chapter 6, a shared library is just a collection of code built to work with Jenkins pipe‐
lines, and stored and accessed from a source control system outside of your pipeline.

In addition to providing a way to share and include common code, shared libraries
can also be valuable for Declarative Pipeline use by encapsulating code that is not
declarative, and couldn’t normally be directly used in a pipeline. (This is discussed
more near the end of the chapter.)

The syntax here is pretty straightforward, as shown in the following example. Note
that the @ sign here provides a way of specifying (after it) which version of a shared
library we want. In the first lib statement here, we are asking for the latest version
from the master branch for this library:

pipeline {
 agent any
 libraries {
 lib("mylib@master")
 lib("alib")
 }
 stages {
 ...

Shared libraries are covered in much more detail in Chapter 6.

Now that we’ve covered the directives available for us to use in Declarative Pipelines,
it’s time to look at how to structure the code that will use those directives and DSL
statements to do our pipeline actions. We start with the stages section.

The Building Blocks | 237

stages
Whether in a Scripted Pipeline or a Declarative Pipeline, Jenkins wants our code steps
to be contained in one or more stages. In a Declarative Pipeline, the collection of
individual stages is wrapped by the stages section. This makes our Declarative Pipe‐
line more structured and tells Jenkins where the stages begin and end, as opposed to
the pipeline-level directives that we’ve been looking at. stages is a required section,
and you must have at least one stage within it. A section of a pipeline demonstrating
this syntax is shown here:

pipeline {
 agent any
 stages {
 stage('name1') {
 steps {
 ...
 }

stage

Within the stages section are the individual stages. Each stage has at least a name
and one or more DSL steps. Within a stage, you may also have local environment,
tools, and agent directives. If there are also corresponding global directives that
define values with the same names, then the value defined in the directive in the stage
will override the global one.

An example of this situation could be having the same environment variable defined
in both an environment directive at the pipeline level and an environment directive
in a stage.

If additional values (with different names) are defined in a directive at the pipeline
level and the same directive in a stage, the additional settings in the stage are just
added to the set already defined globally for the pipeline.

Other than the stage closure itself, the only required element in a stage (for a Declar‐
ative Pipeline) is the steps section.

steps

The steps block is required and indicates the actual work that will happen in the
stage. It has the form:

steps {
 <individual steps - i.e., DSL statements>
}

The individual steps can be any valid DSL statements, such as echo, archiveArti
facts, git, mail, etc. The syntax at this level is the same for Scripted or Declarative

238 | Chapter 7: Declarative Pipelines

Pipelines in terms of using DSL statements. You cannot, however, use Groovy non-
DSL statements or constructs, such as if-then or assignments.

Snippet Generator

Remember that if you need more information about the syntax for
a particular DSL statement, you can look that up in the Jenkins
Snippet Generator, available through the Pipeline Syntax links in
Jenkins.

Execution of the steps section can also be done conditionally in a pipeline, based on
a set of conditions defined at the start of the stage. Let’s take a look at how that works.

Conditional execution of a stage. In any stage, you can have conditional execution. That
is, you can have Jenkins decide whether or not to execute the steps in the stage based
on one or more conditions evaluating to true. This is an optional construct that is
not available at the top level of the script.

There are several different conditions that you can work with. The choices are:

branch "<name>"

Only proceed if the branch name is <name> or matches the (Ant-style) pattern.

stage('debug_build') {
 when {
 branch 'test'
 }
 ...
}

environment name: <name>, value: <value>

Only proceed if the specified environment variable <name> has the specified envi‐
ronment variable <value>.

 stage('debug_build') {
 when {
 environment name: "BUILD_CONFIG", value: "DEBUG"
 }
 ...
 }

expression <valid Groovy expression>
Only proceed if the specified Groovy expression evaluates to true (meaning not
false and not null).

stage('debug_build') {
 when {
 expression {

The Building Blocks | 239

 echo "Checking for debug build parameter..."
 expression { return params.DEBUG_BUILD }
 }
 ...
}

Conditional execution with and, or, not. In addition to using these conditions one at a
time only when they are true, we can also use logical operators to check multiple
conditions, or the inverse of one. The Declarative Pipeline syntax provides keywords
that allow us to use the equivalent of “and,” “or,” and “not” logical operations with the
three types of conditions we just discussed. The keywords for the three logical opera‐
tors are:

allOf

When used in a when statement for conditional stage execution, the allOf key‐
word functions like an “and.” In order for the stage to proceed with its process‐
ing, “all of ” the conditions included must be true.

when {
 allOf {
 environment name: "BUILD_CONFIG", value: "DEBUG"
 branch 'test'
 }
}

anyOf

When used in a when statement for conditional stage execution, the anyOf key‐
word functions like an “or.” In order for the stage to proceed with its processing,
“any of ” the conditions included must be true.

when {
 anyOf {
 environment name: "BUILD_CONFIG", value: "DEBUG"
 branch 'test'
 }
}

not

When used in a when statement for conditional stage execution, the not keyword
functions just as the name implies. In order for the stage to proceed with its pro‐
cessing, the specified conditions must not be true.

when {
 not {
 branch 'prod'
 }
}

240 | Chapter 7: Declarative Pipelines

There is one additional part of a stage that can also execute based on conditionals:
post, for processing at the end of a stage. This is a powerful way to emulate the tradi‐
tional post-build processing type of behavior within a stage.

post Subsection

Stages can also have a subsection called post defined in them. For
more information, see the following section. We share the detail
there since this is most commonly used at the pipeline level.

post
post is another section available for use in the pipeline or in a stage. It is optional in
both places. If present, it gets executed at the end of a pipeline or stage if the condi‐
tions are met. You can think of it like post-build actions for a traditional Jenkins Free‐
style job or set of jobs.

The conditions in the post block are based on the build status. The syntax is as fol‐
lows:

post {
 <condition name> {
 <valid DSL statements>
 }
 <condition name> {
 <valid DSL statements
 }
...

The available conditions are:

always

Always execute the steps in the block.

changed

If the current build’s status is different from the previous build’s status, then exe‐
cute the steps in the block.

success

If the current build was successful, then execute the steps in the block.

failure

If the current build failed, then execute the steps in the block.

unstable

If the current build’s status was unstable, then execute the steps in the block.

The Building Blocks | 241

The Weird Status

There is also an “aborted” build status, but that one is described as
“weird” (by a certain CloudBees employee) and not recommended
to be used.

Here’s an example of using these notifications in a stage:

stage('Build') {
 steps {
 gradle 'clean build'
 ...
 }
 post {
 always {
 echo "Build stage complete"
 }
 failure{
 echo "Build failed"
 mail body: <some text>, subject: 'Build failed!',
to: 'devops@mycompany.com'
 }
 success {
 echo "Build succeeded"
 archiveArtifacts '**/*'
 }
 }
 }

Dealing with Nondeclarative Code
The Declarative Pipeline syntax is great for simplifying the way we define pipelines.
However, if you need to do something that can’t be expressed declaratively, it can be
challenging to figure out how to accomplish that within the declarative structure.

Let’s take, for example, cases where you may need to do a simple assignment opera‐
tion, or multiple ones. Here are some sample assignments needed to use Artifactory
with Gradle in Scripted Pipeline code:

def server = Artifactory.server 'my-server-id'
def rtGradle = Artifactory.newGradleBuild()
rtGradle.tool = 'gradle tool name'

Attempting to put these in a steps section in a stage and run them yields a failed
build with error messages like these:

org.codehaus.groovy.control.MultipleCompilationErrorsException:
startup failed:
WorkflowScript: 15: Expected a step @ line 15, column 16.
 def server = Artifactory.server 'my-server-id'
 ^

242 | Chapter 7: Declarative Pipelines

WorkflowScript: 17: Expected a step @ line 17, column 1.
 def rtGradle = Artifactory.newGradleBuild()
 ^
WorkflowScript: 19: Expected a step @ line 19, column 1.
 rtGradle.tool = 'gradle3'
 ^
3 errors

The problem here is that these assignment statements are trying to directly modify
values via the DSL and are not declarative. While these statements are legal to use in
Scripted Pipelines, they are not in Declarative Pipelines.

So how do we handle such cases? There are a couple of options, each with their
advantages and disadvantages, as we discuss next.

Check Your Plugins
If you are trying to port scripted code that works with a plugin, check to see if there is
an updated version of the plugin that supports the declarative syntax. There may not
be currently, but it may be in the works, so it’s worth checking periodically for
updates.

Create a Shared Library
Earlier in this chapter, we discussed the libraries directive for importing shared
libraries into Declarative Pipelines. Rather than having to try to embed the code
directly in the pipeline, you can put it in a shared library, then load the shared library
and call the function declaratively through that. This requires some knowledge of
how to create a shared library—and how to create it such that its methods will be call‐
able with declarative syntax—but this is the preferred way to make this work. Chap‐
ter 6 discusses shared libraries and using them to extend your pipeline in detail.

Place Code Outside of the Pipeline Block
Another alternative is to put your code outside of the entire pipeline block. For
example, you could place it above the pipeline { statement. Any code that works in
a Scripted Pipeline can be placed in the same file/script area as a Declarative Pipeline,
as long as it is not within the pipeline block.

Dealing with Nondeclarative Code | 243

Problems with Putting Code Outside the Pipeline Block

While this is a valid alternative currently, it is not ideal. This can
make the pipeline code difficult to read and manage since you’re
mixing the two styles, and it may also confuse the parser in certain
cases. Worse, if you ever want to use the Blue Ocean pipeline editor
(discussed in Chapter 10) with this code, it will get rid of the code
outside of the pipeline block. The editor only understands things
within the pipeline block.

The script Statement
The script DSL statement is a special statement intended just for use in Declarative
Pipelines; it allows you to define a block/closure that can house any nondeclarative
code. As you may have guessed, the name is a reference to “Scripted” Pipelines.

The statement is put inside your Declarative Pipeline wherever you have to have non-
declarative code. This method is likely the best way to handle this sort of situation, if
you must use nondeclarative code and don’t want to create a shared library.

Turning back to our example assignment statements, wrapping them in a script
statement would look like this:

stage('stage1') {
 <declarative code>
 script {
 def server = Artifactory.server 'my-server-id'
 def rtGradle = Artifactory.newGradleBuild()
 rtGradle.tool = 'gradle tool name'
 }
 <declarative code>

This will execute fine (assuming we have the requisite Artifactory integration set up).

Using parallel in a Stage
We covered the parallel syntax for declarative syntax in Chapter 3. With regard to
using parallel in Declarative Pipelines, you can use it in a stage if it’s the only step in
that stage. Note that the parallel definition itself can be of the traditional style
(using a mapping to define the different parallel “branches”) or a newer style (as of
Declarative Pipelines 1.2) that allows for the branches to be defined by stages. Code
snippets of both are shown here (refer to Chapter 3 for more details and complete
examples):

stage ('Unit Test') {
 steps {
 parallel(
 set1 : {

244 | Chapter 7: Declarative Pipelines

 ...

 stage('Unit Test') {
 parallel{
 stage ('set1') {
 agent { label 'worker_node2' }
 steps {

Script Checking and Error Reporting
As mentioned at the beginning of the chapter, one of the other nice features of
Declarative Pipelines is that the formal structure allows for better script checking and
more precise error reporting. That is, the checking and reporting are expressed in
terms of the DSL and not just Groovy code with stacktraces.

The verification is done at the start, in the editor, and errors are clearly identified,
including line numbers. Argument types are also validated, and the environment is
checked to make sure the necessary tools are available. If a required tool or tool ver‐
sion isn’t installed, the script will stop with an error.

The following code shows a Scripted Pipeline listing with a syntax error (stae instead
of stage). Figure 7-6 shows the resulting Groovy stacktrace that serves as error iden‐
tification.

@Library('Utilities') import static org.foo.Utilities.*
node ('worker_node1') {
 stae('Source') { // for display purposes
 // Get some code from our Git repository
 git 'git@diyvb:repos/gradle-greetings.git'
 }
 stage('Build') {
...

Script Checking and Error Reporting | 245

Figure 7-6. Error reporting for Scripted Pipeline syntax error

The following code shows a corresponding Declarative Pipeline listing. Figure 7-7
shows the clearer error checking that surfaces from using it.

pipeline {
 // ensure we have the needed tools

 // run on worker node 1
 agent label:''

 stages {

 stae('Source') {
 git branch: 'test', url: 'git@diyvb:repos/gradle-greetings.git'
 stash name: 'test-sources', includes: 'build.gradle,src/test/'
 }
 stage('Build')
 ...

246 | Chapter 7: Declarative Pipelines

Figure 7-7. Error reporting for declarative syntax error

Notice how much clearer and more precise the error message is, in terms of the Jen‐
kins pipeline DSL, in the second example.

You may also recall the error messages we saw in the section “Dealing with Nonde‐
clarative Code” on page 242 when we looked at trying to put nondeclarative code into
a Declarative Pipeline:

org.codehaus.groovy.control.MultipleCompilationErrorsException:
startup failed:
WorkflowScript: 15: Expected a step @ line 15, column 16.
 def server = Artifactory.server 'my-server-id'
 ^
WorkflowScript: 17: Expected a step @ line 17, column 1.
 def rtGradle = Artifactory.newGradleBuild()
 ^
WorkflowScript: 19: Expected a step @ line 19, column 1.
 rtGradle.tool = 'gradle3'

Script Checking and Error Reporting | 247

 ^
3 errors

Notice again the DSL-oriented error message (“Expected a step”) with the exact line
number and column references.

Declarative Pipelines and the Blue Ocean Interface
Before we leave our detailed discussion of Declarative Pipelines, we should note one
other aspect of them—they are uniquely suited for working with the new Jenkins
Blue Ocean interface and the associated visual pipeline editor that it provides. This
visual interface is regularly being enhanced and updated by CloudBees and the Jen‐
kins community, and it presents an interesting new way to work with and create pipe‐
lines.

Blue Ocean plugins and Declarative Pipeline plugins go hand in hand. The well-
defined structure of a Declarative Pipeline lends itself well to being parsed for presen‐
tation in a visual form. The limited structure also makes it easier to do the reverse:
create a simple visual interface with specific selections that can be transformed into a
pipeline.

That’s not to say that Scripted Pipelines can’t be used with the Blue Ocean interface—
they will have a visual representation of separate stages, and point-and-click inter‐
faces to view logs and errors. However, trying to dive deeper into the code in the vis‐
ual interface will result in an error message, because Scripted Pipelines do not have
“step” sections that contain the DSL statements. Likewise, Scripted Pipelines cannot
be created or edited through the editor, since it expects to have a pipeline block (clo‐
sure) encompassing all of the pipeline code.

Chapter 9 is devoted to the Blue Ocean interface, and the interactive features such as
the editor.

Summary
In this chapter, we’ve looked at an alternative syntax and structure for creating a
pipeline-as-code in Jenkins. We call this new type “Declarative” because it is more
oriented around declaring what we want to instantiate and have occur.

In the other kind of pipelines we typically do more “programming,” using Groovy
constructs such as assignments, decision statements, exception handling, etc. Fre‐
quently, this is to compensate for some of the built-in Jenkins constructs we tradi‐
tionally had available in Freestyle jobs. That kind of pipeline (which more closely
resembles a Groovy program) is called “Scripted.”

Declarative Pipelines have a well-defined structure, with code blocks, sections, and
directives that are similar to the sections traditionally found on the page for a Free‐

248 | Chapter 7: Declarative Pipelines

style job in the web interface. They also more clearly identify errors in the expected
pipeline syntax, in comparison to the Groovy tracebacks that happen with errors in
Scripted Pipelines.

Because of factors like the well-defined structure, similar “feel” to the traditional
setup of a Freestyle job, and better error checking, Declarative Pipelines offer a sim‐
pler and clearer path for moving from Freestyle jobs and the web interface to crafting
pipelines-as-code.

However, certain types of operations, such as assignments, do not fit in the declara‐
tive model, and so can present challenges when they are needed in a Declarative Pipe‐
line. Ways to work around some of these issues are discussed in Chapter 16. If none
of these are viable, or if they present significant challenges, that may be an indicator
that a Scripted Pipeline would be a better option.

In the next chapter, we’ll look at the different types of projects available in Jenkins,
including several that are new with Jenkins 2.

Summary | 249

CHAPTER 8

Understanding Project Types

In the Jenkins 2 environment, several new project types have been added to provide
extended functionality. Many of them leverage Jenkinsfiles, as markers, to automati‐
cally create jobs for the user. In this chapter, we’ll look at the most common project
types in Jenkins, including these newer ones as well as traditional ones (like Freestyle
and Maven projects).

For most of the project types, there are certain common options present on the con‐
figuration page. These are in sections such as General, Build, Source Code Manage‐
ment, etc. In the first part of this chapter, we’ll cover those common options. Also,
since we are focused on getting up and running with Jenkins 2, we’ll cover the corre‐
sponding pipeline functionality where we have an equivalent.

Common Project Options
A number of the project types in Jenkins have configuration pages that are divided
into specific sections. These sections can be scrolled to, or selected via tabs at the top
of the page. We’ll look at each of the major sections, explain what the options mean,
and also look at ways to implement corresponding functionality in pipelines. We’ll
break these down based on the tab positions in a Freestyle project. Other types of
projects may have some options on different tabs.

General
The General section is where we configure the unique identifying information about
the project, such as the description. (The project name will have already been set
when the type of project was selected from the project selection dialog.) Figure 8-1
shows this section.

251

Figure 8-1. General configuration section for a Freestyle project

This is also where we can set some global options for the project, including ones that
control job-level aspects. A survey of these follows.

Discard old builds
This option allows you to set up a strategy for Jenkins to follow in discarding previ‐
ous builds of your project. While not required, it is helpful for aspects such as manag‐
ing disk space (since each run of a project allocates a workspace area).

As shown in Figure 8-2, once you check the box, you can select the strategy to use for
how many builds to keep. Although there is a Strategy drop-down, Log Rotation is
currently the only choice; it is really the options underneath that dictate the strategy.
Essentially, you can choose to keep each run’s work items and artifacts for a particular
number of days or a particular number of builds.

Figure 8-2. Options for deleting old builds

Clicking the Advanced button provides you with the further option to limit the delete
operation to just artifacts (Figure 8-3).

252 | Chapter 8: Understanding Project Types

Figure 8-3. Advanced options for deleting just artifacts

Discarding builds in pipeline projects. For pipeline projects, there is a buildDiscarder
option that can be configured. In a Scripted Pipeline, this is done via the properties
step. Here’s an example constructed from the Snippet Generator:

properties([buildDiscarder(logRotator(artifactDaysToKeepStr: '',
 artifactNumToKeepStr: '', daysToKeepStr: '3', numToKeepStr: '5')),
 pipelineTriggers([])])

In a Declarative Pipeline, a similar entry can be made in the options section:

options {
 buildDiscarder(logRotator(numToKeepStr:'5'))
}

GitHub project
If you have the GitHub plugin installed, this option allows you to specify a GitHub
URL for integration. With this integration, you can have links to your GitHub project
in Jenkins (such as on the Changes page), and you can do integration builds based on
changes to GitHub repositories. (Note that to be notified of changes from GitHub,
there is additional setup required. See “GitHub hook trigger for Git polling” on page
261.)

The project URL is the main parameter to set here. There is also an Advanced button,
but it simply allows you to specify a simple name for information sent back to Git‐
Hub.

Note that using this functionality requires having a Jenkins URL reachable from the
internet and some specific setup. See the GitHub plugin page for more information.

Specifying the GitHub project property in pipeline projects. For Scripted Pipelines, you can
set the GithubProjectProperty values in the properties step. For example:

properties([[$class: 'GithubProjectProperty',
 displayName: '',
 projectUrlStr: 'http://github.com/brentlaster/sampleproject/'],
 pipelineTriggers([])]

Common Project Options | 253

https://plugins.jenkins.io/github

This project is parameterized
This option allows you to add various kinds of input parameters to your job. Clicking
the Add Parameter button brings up additional fields that you can fill in for the name
of your parameter, default values, etc.

The different types of parameters and how to use them in pipeline projects are cov‐
ered extensively in Chapter 3.

Throttle builds
This option allows you to specify the number of builds to be allowed within a given
time period. One field is for the number of builds and one is for the time period
(hour, day, etc.).

Throttling builds in pipelines. The properties step does have a way to call the throttle
builds functionality, but as of this writing, that functionality seems to be broken. It is
also currently missing for the Declarative Pipeline options section. Here is an exam‐
ple of what the Snippet Generator creates for this:

properties([[$class: 'JobPropertyImpl',
 throttle: [count: 1, durationName: 'hour']], pipelineTriggers([])])

Disable this project
As the name implies, clicking this box will disable the project (keep it from being exe‐
cuted). When this is unset, it will reenable the project.

Disabling Pipeline projects. For Pipeline projects within the Jenkins interface, there is
an option in the Build Triggers tab to disable projects. See Figure 8-4.

Figure 8-4. Disabling Pipeline projects

Execute concurrent builds if necessary
By default, concurrent builds for the same project are not allowed. If this option is
checked, and enough executors are available, then parallel builds are allowed. This
can be useful for large or long-running project builds, and also for ones that are para‐

254 | Chapter 8: Understanding Project Types

meterized and can benefit from running with different parameters (such as for testing
scenarios).

When concurrent builds happen, workspace names are appended with @# (where # is
a number) to separate the workspaces. However, if a custom workspace is used, all of
the concurrent builds run there.

Concurrent builds in pipelines. In the context of pipelines, the sense of this option is
reversed. That is, we set an option to disable concurrent builds if desired. The syntax
looks like this:

properties([disableConcurrentBuilds()])

or:

options { disableConcurrentBuilds() }

Restrict where this project can be run
This option allows you to enter one or more “labels” identifying which nodes can be
used to run the project. Labels are identifiers you put on nodes to make them selecta‐
ble.

Selecting this option displays an additional entry box to enter the label(s).

Pipelines and nodes. The node block and agent step (in Scripted and Declarative Pipe‐
lines, respectively) allow for deciding where all or part of a pipeline should run. This
and related steps are covered in Chapter 2 for Scripted Pipelines and Chapter 7 for
Declarative Pipelines.

A set of additional options can also be set on the General tab by clicking on the
Advanced button below the “Restrict where this project can be run” option. We cover
those next.

Quiet period
Clicking on this option gives you a field where you can enter a number of seconds for
Jenkins to wait before starting a build of this project. If builds are triggered, they will
be added to the queue, waiting for this time period. If this is not set, the system will
default to the global quiet period if one is configured in the Configure System settings
(shown in Figure 8-5).

Common Project Options | 255

http://bit.ly/2HXNZH5

Figure 8-5. Global options including the default quiet period

This option is mainly a vestige from the early days of using systems like CVS where
you might need to wait until all files were committed before initiating builds, rather
than acting when the system saw the first one. It can still have similar applications
today.

Pipelines and the quiet period. Pipelines have a build step where you can initiate the
build of another project. From within that step, you can specify a quiet period for the
intended job. The syntax is as follows:

build job: 'myJob', quietPeriod: 5

Retry count
This setting is for retrying SCM checkouts. Clicking on the option pops up a field
where you can enter the number of attempts to make to check code out. There is a
10-second delay between attempts. If this value is not set, then the system will default
to the global retry value, if set, in the Configure System settings (the “SCM checkout
retry count” setting in Figure 8-5). Note that it is up to each SCM plugin provider to
define what constitutes a failure that warrants a retry.

Pipelines and retry count. Currently, pipelines should honor the global (Configure Sys‐
tem) retry count, if set. Pipelines also include a general retry step that can be used to
retry any operation. This is discussed in detail in Chapter 3.

Block build when upstream project is building
When this option is checked, the project won’t be allowed to build if one of its depen‐
dencies (direct or transitive) is building or in the queue.

Block build when downstream project is building
When this option is checked, the project won’t be allowed to build if one of its chil‐
dren (direct or transitive) is building or in the queue.

Waiting for downstream in pipelines. For pipelines, the build step has an option that
defaults to true to wait for downstream builds. If you do not want to wait, then you
need to explicitly set that value to false as shown here:

256 | Chapter 8: Understanding Project Types

build job: 'declar2', wait: false

Note that if you use the default value of true, then the return value from the step is
an object that you can examine for the build result and other attributes. More details
can be found in the Snippet Generator help.

Use custom workspace
As the name implies, selecting this option allows you to specify a particular directory
as your workspace. (The location is entered in a separate field that opens up when
this option is checked.) The location can be an absolute path or a relative path. If it is
a relative path, it is relative to the node’s root directory.

Normally, it’s best (and easiest) to just let Jenkins manage the workspace. However, if
the job requires builds or source downloads to be done in a specific location, this is a
way you can accommodate that need.

Custom workspaces and pipelines. For Declarative Pipelines, there is a customWork
space option to the label definition for an agent that can be used (see Chapter 7).
Pipelines also include dir and ws steps to set custom areas. These steps are discussed
in detail in Chapter 11.

Display name
The value put in this field is displayed in the Jenkins web interface as the name of the
project. Duplicate names are allowed since this is just for display purposes. You could
use this, for example, to display additional information about the project that is worth
being easily seen.

Display name and pipelines. To set a display name and description in a pipeline, you
can use code like the following:

currentBuild.displayName = <project name>
currentBuild.description = <project description>

Keep the build logs of dependencies
This option overrides log rotation policies for dependencies connected to your
project. It is useful for ensuring those logs are still available to coincide with your
project’s logs.

Next is the Source Code Management section.

Common Project Options | 257

Source Code Management
Depending on which source code management plugins you have installed, you’ll have
options here to select one and configure it appropriately. The specific options will
vary depending on the system selected, but there are certain common features.

Repository URL
This setting specifies the location of the repository you want to access for the project.
Note that different protocols can be used, such as HTTPS or SSH.

Credentials
These are simply the credentials you’ve defined in Jenkins to access the SCM.

Revision
Specifying a revision is a way to specify a particular version of the code that you want
to use (typically this might be a branch, but it could also be something like a tag or
whatever the SCM uses to indicate a specific version).

Figure 8-6 shows a setup for accessing a Git repository.

Figure 8-6. Typical Git configuration

Source code management in a pipeline

The pipeline includes a corresponding checkout step that you can use in place of the
source code management forms in this section. The easiest way to fill this in is via the
Pipeline Syntax/Snippet Generator form. Figure 8-7 shows an example of using the
Snippet Generator to duplicate the setup in the previous section.

258 | Chapter 8: Understanding Project Types

Figure 8-7. Configuring the checkout pipeline step for a GitSCM operation

This in turn would generate the following code:

checkout([$class: 'GitSCM', branches: [[name: '*/master']],
 doGenerateSubmoduleConfigurations: false, extensions: [],
 submoduleCfg: [], userRemoteConfigs: [[credentialsId:
'localUser',
 url:'git@diyvb2:/home/git/repositories/shared_libraries']]])

Depending on the SCM, the pipeline may also have a dedicated step to use for that
SCM. For example, for Git, there is a git step. The syntax for that is:

git credentialsId: 'localUser', url:
 'git@diyvb2:/home/git/repositories/shared_libraries'

Notice that the syntax for the dedicated step is somewhat simpler (although not all
options are shown). For this reason, it is usually preferable to use a dedicated step if
one exists for the SCM. However, if there is no dedicated step, then the checkout step
is a fallback.

With the source management aspects defined, we can move on to what events or pro‐
cesses will cause the build to run. These are referred to as Build Triggers.

Build Triggers
In this section of the project configuration, we define the events and/or processes that
will start a build of our project running. The basic options are described in the fol‐
lowing sections.

Common Project Options | 259

Trigger builds remotely
If you select this option, then Jenkins will provide you with a special URL that you
can use to trigger a build (see Figure 8-8). Jenkins also asks you to provide a string
that can be used as an authorization token in the URL. This is an additional security
step since anyone or anything trying to trigger the build needs to also know the
token.

Figure 8-8. Setting up remote trigger

With this URL, you can then use tools like wget or curl or a custom web page to
trigger the build. For example:

 curl http://localhost:8080/job/freestyle2/build?token
 =MY_TRIGGER_TOKEN

The localhost:8080 in this case is the Jenkins URL.

When you execute this, the target job will start doing a build. In the log it will say
“Started by remote host...”

Tokens and Access

Assuming that you have Jenkins secured such that anonymous
users lack read permissions, then you will need some kind of
authentication to be able to trigger the build—especially since Jen‐
kins checks the URL hierarchically down the path. If you do not
have other access set up, then there is a Build Token Root plugin
that offers an alternate URL that is accessible to anonymous users
to trigger such builds.

Remotely triggering pipeline builds. You can use an sh call to curl, wget, etc. in your
pipeline. to remotely trigger a build if it is set up as described. Or, if the build is on
the same Jenkins instance, you can just use the build pipeline step and tell it which
project to build.

Building after other projects are built
This option allows you to trigger a build of the current project based on completion
of another project’s build. There are options for building only if the build of the other
project is stable (successful), is unstable, or failed.

260 | Chapter 8: Understanding Project Types

Build after other projects in a pipeline. Getting this same functionality through the pipe‐
line is a function of the properties step. The parameter for the upstream project to
trigger from is upstreamProjects, and the result we look for is set by the threshold
parameter. Here is a code sample:

properties([pipelineTriggers([upstream
 (threshold: 'SUCCESS',
 upstreamProjects: 'upstream-project')])])

Build periodically
When you click this option, it brings up a Schedule text box where you can specify
how often to build using standard cron syntax (five space-separated fields in which
you indicate values for the minute, hour, day of the month, month, and day of the
week). For more details on cron syntax, see “Build Periodically” on page 61, or the
online help for this option.

Building periodically in a pipeline. As with the previous option, the properties step
can be used to set a periodic build schedule for a Pipeline project. The syntax follows
the same format as discussed for other uses of the cron syntax.

For example, to build every 15 minutes, the step would look like this:

properties([pipelineTriggers([cron('H/15 * * * *')])])

GitHub hook trigger for Git polling
This method of triggering builds allows you to set up a GitHub service to send notifi‐
cations to Jenkins when an event happens in your repository on GitHub. So, rather
than polling for changes in the repository, Jenkins is notified of updates by GitHub.

To use this, first you’ll need to have the GitHub Integration plugin installed. Then you
need to do some global configuration for GitHub access.

On the Configure System screen, you will have a GitHub setup area (Figure 8-9). Ini‐
tially there are two fields that need setup: the URL and credentials. If you just need to
use the public GitHub, you can leave the API URL field as the default: https://
api.github.com. If you had an enterprise GitHub system, you would put the URL for
that in here instead. Likewise, the Name field can be left blank unless you have multi‐
ple GitHub enterprise systems, and need to easily differentiate one from the others.

Common Project Options | 261

Figure 8-9. Basic GitHub setup in Configure System

For credentials, you need some kind of token to use with GitHub. One common
choice is a personal access token. This can be set up in your personal settings area on
GitHub, then added as a credential in Jenkins and selected here.

Alternatively, if you have a user ID and password that you use already with GitHub,
you can let Jenkins automatically create a token for you. To do this, look for an the
Advanced button further down in the GitHub section on this screen. Click that, then
click Manage Additional GitHub Actions and “Convert login and password to token.”
From here, you can convert an existing user ID and password credential to a token (if
you already have that set up in Jenkins) or just a standard user ID and password. See
Figure 8-10.

Figure 8-10. Creating a GitHub token from existing credentials

This will then show up in your list of credentials in Jenkins and can be selected to use
with GitHub (Figure 8-11).

262 | Chapter 8: Understanding Project Types

Figure 8-11. Credential token for GitHub

Now you want to tell Jenkins how to manage the notifications from GitHub. The
notifications are sent as webhooks. There are two modes, referred to as “automatic”
and “manual.”

With the automatic mode, Jenkins automatically creates and sets up the webhook on
the GitHub side. To use this mode, you need to have created an access token on the
GitHub side that has (at least) the admin:repo_hook scope. If you don’t already have
such a token, log in to GitHub, go to your personal settings, and create it. Figure 8-12
shows a screenshot of a token with the appropriate scope.

Figure 8-12. Scopes for access token on GitHub to allow Jenkins to do automatic set up of
webhook

Common Project Options | 263

Create a credential in Jenkins with this token, then, in the GitHub section of the Con‐
figure System screen, click the “Manage hooks” checkbox and supply the token as a
credential (Figure 8-13).

Figure 8-13. Configuration for GitHub token and managing hooks

As previously mentioned, using webhooks in this way assumes that your Jenkins
instance is accessible to the outside world—at least on the particular URL used by the
webhook. Jenkins can tell you what this URL is, but it does it in an indirect way.

To find the URL that the webhook will use, click the blue question mark help icon
next to the “Test connection” button, to the right of the “Manage hooks” checkbox
item. A new help text box will open up. This help box will have within it a URL on
the local Jenkins system. This is the URL that the webhook will send information to.
Figure 8-14 shows this part of the screen, with the help button to click and the web‐
hook URL in the resulting dialog highlighted.

Figure 8-14. Locating the URL for the webhook

With all of this done, you then just need to update some settings in the project itself:

264 | Chapter 8: Understanding Project Types

• Select the option to indicate that this is a GitHub project, and specify the GitHub
URL in the Project URL field in the General section.

• In the Build Triggers section, select the “GitHub hook trigger for GitSCM poll‐
ing” option.

Then when you save your changes, if everything is set up correctly, Jenkins will talk to
your GitHub project and create a new webhook there. When a change is made to the
project, that will send the webhook notification. Jenkins will respond accordingly.
Most commonly, this would be a push to the project on GitHub that then causes a
build of the project to start up (Figure 8-15).

Figure 8-15. Build started by push to GitHub project and subsequent webhook from Git‐
Hub to Jenkins

For the manual mode, the main change is that you need to go to GitHub, then to the
project, and then to “Integrations and Services” and create a webhook manually. This
isn’t hard. Figure 8-16 shows the setup screen.

Figure 8-16. Manually adding a service on GitHub to create the webhook and send noti‐
fications

Once the webhook is set up, you’ll see it listed on the GitHub page for your project
(Figure 8-17).

Common Project Options | 265

Figure 8-17. After manual webhook setup

Now, you just configure the GitHub section of the Configure System screen as
described before, selecting the “Manage hooks” checkbox and using a credential that
Jenkins knows about, and that supplies the appropriate accesses.

Then, again as noted in the automatic mode discussion, you just need to configure
the project in the same way. That is, you select “GitHub project” in the General sec‐
tion of the project setup and put in the URL (Figure 8-18), and then select the “Git‐
Hub hook trigger for GitSCM polling” option in the Build Triggers section.
Afterwards, a push made to the project on GitHub should trigger a new build of the
project.

Figure 8-18. Configuring the project’s general setup area for GitHub

GitHub triggering in a pipeline. Like the other build triggers, the properties step is
used here again for specifying this option:

properties([pipelineTriggers([githubPush()])])

Here’s an example set of code. This assumes we have set up the global configuration
(via the Configure System screen) and also set up a webhook in GitHub for this
project:

266 | Chapter 8: Understanding Project Types

properties([[$class: 'GithubProjectProperty',
 displayName: '',
 projectUrlStr:
 'http://github.com/bclasterorg/greetings.git/'],
 pipelineTriggers([githubPush()])])
git url: 'https://github.com/bclasterorg/greetings.git',
 branch: 'master'

Note that you may need to manually run this once before the automatic notices take
effect.

Bitbucket Project Triggers

According to some sources, there should also be a bitbucketPush
trigger that behaves similarly to the githubPush trigger. However,
at the time of this writing, this doesn’t seem to be supported. If you
need this functionality, you may want to try it in your pipeline to
see if it is valid, and/or consult the latest documentation for the Bit‐
bucket Source plugin.

Poll SCM
This option is like the “Build periodically” option discussed earlier. In fact, it uses the
same cron-like syntax as that option. The difference is that instead of telling Jenkins
when to start a build, we are telling it when to check the repository for changes. See
“Cron syntax” on page 233 for details on the syntax.

This choice has an additional option to “Ignore post-commit hooks.” Basically, this
tells Jenkins to not start activities based on signals from hooks after changes are
made, but only to respond to changes in the SCM. This prevents double-triggering
operations.

Polling in the pipeline. Once more, we use the properties step and cron specification
for this option. Here’s the syntax for telling the pipeline to check every 15 minutes for
changes in the repository, along with the option to ignore the post-commit hooks:

properties([pipelineTriggers
([pollSCM(ignorePostCommitHooks: true, scmpoll_spec:
 'H/15 * * * *')])])

Up next is the Build Environment section.

Build Environment
This section allows you to specify certain global actions and integration settings for
the project. There can be many of these, depending on which plugins you have
installed. (For example, if you have the Artifactory plugin installed, you’ll have Arti‐
factory integration items.) We’ll cover some common ones here.

Common Project Options | 267

Delete workspace before build starts
This one is pretty self-explanatory. The workspace is removed before the build
begins.

Deleting workspaces in a pipeline. The Jenkins pipeline DSL provides the deleteDir
step to clean a directory out of the workspace and also the cleanWs (clean workspace)
step to delete a workspace. These steps are covered in more detail in Chapter 11.

Provide configuration files
This option allows you to select files of a certain type and copy them to all your
nodes, as well as providing a way to edit them through the Jenkins UI. Some global
setup is required first.

Web Examples

For whatever reasons, at least at the time of this writing, many of
the examples and some of the documentation provided online for
the Config File Provider plugin (for use in both Freestyle and Pipe‐
line jobs) is incorrect and/or out of date. Be aware that you may not
be able to completely rely on these resources.

Under Manage Jenkins, there is a “Managed files” menu item to select to start the
process (Figure 8-19).

Figure 8-19. The global “Managed files” item

From there, you can select the type of file you want to include and also get an ID to
work with it (Figure 8-20).

Config File IDs

Jenkins will automatically generate a default ID for your config file
when you create it. However, it is a long hexadecimal string. If you
prefer to have a more user-friendly ID, you can edit it when you are
setting up your file on the Type screen and type in whatever name
you want. You cannot edit it later.

268 | Chapter 8: Understanding Project Types

Figure 8-20. Choosing the managed file type (note that the ID is automatically filled in
at the bottom)

After you click Submit here, you move on to filling in the file’s actual content
(Figure 8-21).

Figure 8-21. Supplying content for the managed file

Once you are done with that, you’ll have a screen where you can edit or delete your
new file (Figure 8-22). Note that there is also a menu item to add additional config
files in the menu on the left.

Common Project Options | 269

Figure 8-22. Options for working with the config file

Now that you’ve completed the global setup for this, you can use the file in your
project. After selecting the “Provide Configuration files” option in the project, you’re
presented with a dialog like the one in Figure 8-23.

Figure 8-23. Selecting config files in the project

The File field allows you to select a file that you have previously configured globally
as we just described.

The Target field allows you to specify where the file should be created on a node. If
this is left blank, then the file will be created in a temporary location.

The Variable field allows you to define an environment variable name to reference the
file in job steps. This also gives you a handle to get to the file in the temporary loca‐
tion if the Target field was left blank.

Finally, the Replace Tokens option replaces environment variables set by Jenkins and
specified in your configuration file with their values. (This relies on the Token Macro
plugin.) The syntax to use in your config files for token replacement is:

${ENV, var="<variable-name>"}

where <variable-name> is replaced with the name of the variable you want to get the
value of (such as JOB_NAME).

270 | Chapter 8: Understanding Project Types

Config Files and Credentials

Using some types of config files, such as ones associated with
Maven, may require additional credential setup. See the Config File
Provider plugin page for more details.

Managing configuration files in a pipeline. There is a configFileProvider step that you
can use in your pipeline code. This is another block step, meaning that you invoke the
step with some context, and it provides a closure in which you execute other code. So,
for example, if you were using this functionality to access a properties file or custom
XML file, you would first configure the file globally (as described previously). Then,
in your pipeline code, you would invoke the step, passing in the file ID and related
information. Then, within the step block, you could invoke other pipeline commands
that use the properties file, the XML file, or their data.

For example, suppose we have a config file set up as shown in Figure 8-24.

Figure 8-24. Example Groovy config file

We could then add a step in our pipeline like the following to use it:

 configFileProvider(
 [configFile(fileId: 'my-groovy-script',
 variable: 'MY_GROOVY_SCRIPT',
 replaceTokens:true)]) {
 sh "cat ${MY_GROOVY_SCRIPT}"
 }

Notice the syntax here. We first have the configFile parameter, which takes argu‐
ments that correspond to our Freestyle ones:

Common Project Options | 271

https://plugins.jenkins.io/config-file-provider
https://plugins.jenkins.io/config-file-provider

fileId

This is the file ID that was set up when you globally configured the file.

Meaningful File Identifiers

As mentioned previously, you can change the default hex
string ID that Jenkins generates for your config file at the time
you create it (on the Type screen). It is recommended that you
do this for files that will be used in pipeline projects, since the
configFileProvider step requires the file’s ID string be
passed in to the fileId parameter to identify the file.

variable

This is a variable you can use to access the file itself on the node.

replaceTokens

If set to true, this tells Jenkins to replace known environment variables with their
actual values in the configuration file. (See the preceding section on Freestyle
usage for syntax.)

Running this step in the pipeline would yield results like the following:

[Pipeline] node
Running on worker_node2 in
 /home/jenkins2/worker_node2/workspace/config-file1
[Pipeline] {
[Pipeline] configFileProvider
provisioning config files...
copy managed file [GroovyConfig] to
file:/home/jenkins2/worker_node2/workspace/
config-file1@tmp/config2453863098810806031tmp
[Pipeline] {
[Pipeline] sh
[config-file1] Running shell script
+ cat /home/jenkins2/worker_node2/workspace/
config-file1@tmp/config2453863098810806031tmp
println config-file1
[Pipeline] }
Deleting 1 temporary files
[Pipeline] // configFileProvider
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Note that when we ran the shell cat command in the block, we used the variable we
defined in the step’s invocation. And when the contents of the file were printed out,
because we have the replaceTokens value set to true, the environment variable

272 | Chapter 8: Understanding Project Types

string inside the configuration file was replaced with the value of the environment
variable in the output—in this case, the job name.

One other point about this step is that multiple config files can be specified in the step
using an array syntax, as shown in the following example:

 configFileProvider(
 [configFile(fileId: 'my-custom-file',
 variable: 'MY_CUSTOM_FILE',
 replaceTokens:true),
 configFile(fileId: 'my-groovy-script',
 variable: 'MY_GROOVY_SCRIPT',
 replaceTokens:true)]) {
 sh "cat ${MY_GROOVY_SCRIPT}"
 }

Abort the build if it’s stuck
This setting allows you to specify a timeout strategy and related values to stop the
build if it appears to be taking too long. The main parameters are a timeout value in
minutes and the choice of strategy to use for determining when a build is stuck.

As defined in the help for the setting, the following strategies are available:

Absolute
Abort the build based on a fixed timeout.

Deadline
Abort the build based on a deadline time specified in HH:MM:SS or HH:MM
(24-hour time) format.

Elastic
Define the time to wait before killing the build as a percentage of the mean of the
duration of the last n successful builds.

Likely stuck
Abort the build when the job has taken many times longer than previous runs.

No Activity
Trigger a timeout when the specified number of seconds have passed since the
last log output.

Additionally, we can define an environment variable that is automatically filled in
with the timeout value (in milliseconds) and can be referenced in our jobs. And
finally, we can define what actions Jenkins should take when the timeout is hit.
Options include failing the build, aborting the build, and writing information to the
run’s description. For the information that goes in the description, the special value
“{0}” will be filled in with the timeout in minutes.

Common Project Options | 273

As an example, suppose we have a job where the properties are configured like in
Figure 8-25.

Figure 8-25. Configuring timeout information for a job

Here we are telling Jenkins to do an absolute timeout after the job has been running
for three minutes. We’ve defined an environment variable named MY_TIMEOUT that we
can reference in our job, and we’ve added some actions to happen after the timeout
occurs. We will be writing the string “Stopping the build after {0} minutes” (using the
special variable) and then failing the build.

An extremely simple job to test this could be a shell command that executes some‐
thing like:

echo $MY_TIMEOUT
sleep 4m

When this runs, and the timeout occurs, the last part of the console log will be:

+ echo 180000
180000
+ sleep 4m
Build timed out (after 3 minutes). Marking the build as failed.
Build was aborted
Finished: FAILURE

And the latest run will have the description we set in it (Figure 8-26).

274 | Chapter 8: Understanding Project Types

Figure 8-26. Custom timeout message written to description

Timing out builds in a pipeline. The pipeline DSL has a simple timeout step that pro‐
vides similar functionality. This step is a block step, meaning it wraps around a set of
code. It takes a default parameter of a number of minutes to wait for the code in the
block to time out. If you want to use a different unit than minutes, you need to spec‐
ify that as an additional parameter. A simple example is shown here (see Chapter 3
for more explanation and related examples):

timeout(time: 1, unit: 'HOURS') {
 // block of code
}

Add timestamps to console output
As the name implies, this setting will print timestamps in the console log as parts of
your job are executed. An example of the default output is shown in Figure 8-27.

Figure 8-27. Console output with timestamps

Note that this option also adds a dialog on the console log screen with controls that
allow you to modify the timestamps to show elapsed time (instead of clock time) or
even turn off displaying the timestamps.

Common Project Options | 275

Adding timestamps to a pipeline. The timestamps step in the pipeline provides similar
functionality. This is another block step that wraps around a block of code and gen‐
eres timestamps in the console output for that block. The syntax is straightforward:

timestamps {
 // block of code
}

Use secret text(s) or files(s)
This option will be present if you have installed the Credentials Binding plugin. Acti‐
vating this option allows you to add bindings in your Jenkins jobs between creden‐
tials defined in Jenkins and environment variables. Basically, you select the credential
(one that is already defined in Jenkins) and then specify an environment variable
name for it. Then you can use that environment variable in your job in place of the
sensitive information from the credentials. When you execute the build, the environ‐
ment variable(s) will be instantiated with the actual values of the credentials.

Checking the box brings up another control that allows you to select the type of cre‐
dential to add, the actual credential to use, and the environment variable that will be
used in the job in place of it. See Figure 8-28 for an example.

Figure 8-28. Setting up credential bindings

The With Ant option is for working with Apache Ant (doing setup, annotating Ant
output, etc.).

Using credentials in a pipeline. A corresponding withCredentials block step exists for
pipeline use. The matching step for the preceding setup in a pipeline would be:

withCredentials([usernameColonPassword(credentialsId:
 'mysql-access', variable: 'MY_ACCESS_CREDS')]) {
 // block of code in which you can use the variable
}

276 | Chapter 8: Understanding Project Types

https://jenkins.io/doc/pipeline/steps/credentials-binding/

There is also a withAnt block step that corresponds to that option. See Chapter 5 for
more details on using credentials in Jenkins and in pipelines.

Other build environment options
Depending on what other plugins you have installed in Jenkins and what other appli‐
cations you are running on your system, you may have more environment options
here. For example, if you are using the Artifactory plugin, you may have an option
here to configure Artifactory integration with Ant, Gradle, or Maven.

Because of the number of possibilities we won’t try to cover all of them here, but you
can generally find out the details you need by clicking on the help buttons next to the
options and/or going to the plugin’s web page.

As far as corresponding pipeline steps, many are covered in related chapters of this
book.

Build
The Build section of the configuration is where the main logic for your job goes. For
many of the traditional job types that Jenkins supports, this is where the projects
most extensively differentiate from one another—from the wide-open Freestyle
project to the more specialized ones like Maven and Ivy. Depending on the type of
project and the set of plugins and other applications you are using, you may have
many different choices on this page; rather than attempting to detail all of them here,
we will cover the most significant parts of each respective project type in later sec‐
tions. For remaining items not covered in the project-specific sections in the chapter,
refer to the help associated with each step (available via the blue help buttons as well
as the plugins’ web pages).

For corresponding pipeline functionality, see the other chapters of this book.

Post-Build Actions
The final configuration section allows us to select specific post-build actions for a job.
These are actions that are always run after the build finishes—in some cases whether
successfully or not.

Again, there are too many options based on plugins and integrations to cover here.
See the help for a particular option or the plugin’s web page to find out more about a
particular available action.

Common Project Options | 277

Post-build actions in a pipeline
Post-build actions are not built in for Scripted Pipelines. Chapter 3 describes how you
can use the try-catch Java/Groovy construct to create a workflow with similar
actions.

For Declarative Pipelines, there is a specific post section that can be put in the pipe‐
line to provide this functionality. See Chapter 7 for more information.

Types of Projects
Now that we have a basic understanding of the sections and options that are common
to many of the Jenkins projects, we’ll look at how those projects differ from one
another.

The differentiation between project types can be based on one or multiple criteria,
including:

• Open configuration to do any task: Freestyle, Pipeline projects
• Specialization for an application: Maven, Ivy projects
• Specialization for an advanced or challenging use case: Multiconfiguration,

External Job projects
• Organizational purposes: Folder, Multibranch Pipeline, GitHub Organization,

Bitbucket Team/Project projects
• Automated configuration and building: Multibranch Pipeline, GitHub Organiza‐

tion, Bitbucket Team/Project projects

In the following sections, we’ll briefly cover the intent and main points for each of the
basic set of Jenkins project types. Keep in mind that there are more aspects and
details than we can cover here. Also, for many, the previous discussion of common
options accounts for a substantial amount of the project’s configuration.

Freestyle Projects
Freestyle projects are the traditional working base for most Jenkins jobs. The name
“Freestyle” refers to the relatively open way that these projects can be constructed to
do many different tasks. Prior to Pipeline projects, Freestyle projects were considered
the most flexible. They were also considered the easiest to set up, at least for individ‐
ual projects.

As pointed out at the start of the chapter, for the traditional Jenkins project types,
what differentiated them mostly was the Build section. For Freestyle projects, proba‐
bly the most common item in the Build section is a call to the shell. The Build section
provides options to execute a shell call as well as a Windows batch command.

278 | Chapter 8: Understanding Project Types

These steps are pretty straightforward; just type the command into the dialog box
after selecting the type of shell step you want.

Pipeline Steps Like Freestyle

The pipeline DSL provides similar steps—one for Unix-style shells
(sh) and one for Windows-style shells (bat). The sh and bat steps
are described in detail in Chapter 11.

The Maven Project Type
In addition to the Freestyle project type, Jenkins also offers some project types cus‐
tomized for different applications. Probably the best-known legacy one is the Maven
project type.

The Maven project type is intended to simplify some common tasks, such as trigger‐
ing downstream dependency jobs, deploying artifacts to a Maven repo, optionally
rebuilding only changed modules, and breaking out test results by module.

This type of project has a few additional options, such as a build trigger that you can
set up to have the project build if dependencies are built on the same system
(Figure 8-29).

Figure 8-29. Maven project build trigger based on dependencies

Some traditional non-Maven build steps are moved to sections named Pre Steps
(Figure 8-30) and Post Steps. (The same set of steps appears in both.)

Types of Projects | 279

Figure 8-30. Pre-build steps defined for a Maven project

As seen in Figure 8-31, these Pre and Post Steps sections “sandwich” the main build
area, where you can enter the root POM filename (if different from “pom.xml”), the
Maven goals to build, and any Maven options (via the Advanced button).

Figure 8-31. Maven project primary options

Clicking the Advanced button reveals a number of other options you can set for your
build (Figure 8-32).

280 | Chapter 8: Understanding Project Types

Figure 8-32. Maven project advanced options

After a successful build, Jenkins can do the archiving of your Maven artifacts for you
(Figure 8-33).

Figure 8-33. Automatically archiving artifacts from a Maven build

Types of Projects | 281

And within the job output, you can easily get to the artifacts and even redeploy them
if needed: simply click on the “modules” item in the lefthand menu on the build sta‐
tus page and drill down to get to the various artifacts/modules (Figure 8-34).

Figure 8-34. Looking at modules after a build

The Pipeline Project Type
Pipeline projects are the main focus of this book, so we won’t go into too much detail
on them here. The simple way to define a Pipeline project is as a Jenkins project type
where the steps and logic are specified in a structured Groovy script instead of in a
web form. That script can be structured in a declarative or scripted form. It can also
be entered as part of a Jenkins Pipeline project or stored externally in a file named
Jenkinsfile.

Since our focus here is on the configuration aspects of the various project types, it is
worth briefly calling out some of the ways that the Pipeline project configuration
overlaps with the actual pipeline scripts themselves.

On the Pipeline project configuration page, the area where you can type in the pipe‐
line script is located in a dedicated tab/section named Pipeline (just like the General,
Build Triggers, and other tabs/sections).

At the top of this section, there is a configurable option—the Definition field. The
choices here are either “Pipeline script” or “Pipeline script from SCM” (Figure 8-35).

Figure 8-35. Pipeline definition option

282 | Chapter 8: Understanding Project Types

The “Pipeline script” option represents the default: defining the script in the text
entry box below the Definition field. The option that appears underneath the text
entry box—“Use Groovy Sandbox”—is explained in Chapter 3.

If you instead choose the “Pipeline script from SCM” option, this will allow you to
specify the location in a source management system of a Jenkinsfile to use with this
job instead of entering the script in the text entry area.

Once you have selected the “Pipeline script from SCM” option, you’ll be presented
with additional fields to indicate where to get the script from. These fields are the typ‐
ical SCM type of fields for a location, revision, etc. (see Figure 8-36).

Figure 8-36. Completing the specification to use a pipeline script from an SCM instead
of entering it directly

While the Script Path field is editable here, unless you have a particular reason to use
something else, the recommended approach is to stay with the Jenkinsfile in the root
of the project.

The “Lightweight checkout” option refers to telling the SCM plugin to try to check
out only the Jenkinsfile initially instead of the entire project. This is an efficiency to
avoid checking out the entire project twice—once to get the Jenkinsfile and once
when the Jenkinsfile executes the checkout scm statement. Note that this option may
not be supported by all SCM plugins and so may not appear in all cases.

Types of Projects | 283

Read-Only Pipeline Definition Options

There is at least one other value you may see in the Definition field:
“Pipeline from multibranch configuration” (Figure 8-37). This
selection applies for the Multibranch Pipeline, GitHub Organiza‐
tion, and Bitbucket Team/Project types of projects, discussed later
in this chapter.
While this field appears to be selectable when drilling into the con‐
figuration for those types of projects, it is automatically set and
there is, by design, no way to save changes to it.

Figure 8-37. Pipeline definition field for element in a multibranch type of
project

One other interaction to be aware of between the Jenkins Pipeline project configura‐
tion page and the script that defines your Jenkins pipeline has to do with setting
options on the Jenkins configuration screen. In many cases, the options can be set in
the configuration web interface and will define behavior for your script even though
there are no lines explicitly defining or setting those options in your script.

As an example, you can select the “This project is parameterized” option on the con‐
figuration web page and define parameters through that interface. Those parameters
will then be accessible in the pipeline script you define in the Pipeline section.

This behavior is both convenient and inconvenient. It is convenient while you are
running your script within the context of a Pipeline project in the Jenkins application
itself; you don’t have to add the code in your pipeline to define those parameters. It is
inconvenient if you want to use your pipeline script as a Jenkinsfile, separate from the
Jenkins application itself. Then you need to go back and update the code in the script
to explicitly define the parameters.

Chapter 3 discusses this particular interaction with parameters in more detail, but it
is good to be aware of the interdependence between options defined only in the Jen‐
kins application for a Pipeline project’s configuration, and how those options are ref‐
erenced in the pipeline script itself. A best-practice approach is to define all such
options and functionality in the script.

The External Job Project Type
This type of job is intended to allow you to easily monitor an external job run via a
Jenkins process. Unfortunately, the way to go about this is not clearly documented
and certainly not obvious. We’ll walk through the basic steps here.

284 | Chapter 8: Understanding Project Types

When you create an External Job project, you’re presented with a very simple job
configuration—basically all it needs is a name (Figure 8-38).

Figure 8-38. External Job config

The idea here is that the name will map to an external job run in a process outside of
the Jenkins GUI. Of course, this assumes that you have an external job you want to
monitor. For an extremely simple example, suppose we have a small file called list.sh
that just does a directory listing (with the ls -latr command).

To use Jenkins to monitor this, you’ll need a set of JARs in place to support the exter‐
nal monitoring process.

On some Debian systems, you may be able to issue standard commands like:

sudo apt-get install jenkins-external-tool-monitor

But if that doesn’t work, then you’ll need to extract out individual JARs from the Jen‐
kins WAR file. To do this, go to the system where you want to run the external job,
get the jenkins.war file, and extract the following JARs from the WEB-INF\Lib folder
into a directory:

• jenkins-core-*.jar
• remoting-*.jar
• ant-*.jar
• commons-io-*.jar
• commons-lang-*.jar
• jna-posix-*.jar
• xstream-*.jar

With this part of the setup done, you can create a simple wrapper file to run your
command. Basically, you just need two lines. The first is to set the location of your
JENKINS_HOME variable (if not already set in the environment).

Types of Projects | 285

The second line is the line that calls java using the WAR to run your command. It
has the following syntax:

java -jar jenkins-core-<version-#>.jar <jenkins project name>\
 <shell executable> <command or file to monitor>

So, our command to run the external job and sync the results back to Jenkins could
look like this:

export JENKINS_HOME=http://localhost:8080
java -jar jenkins-core-2.46.2.jar extern1 sh list.sh

Here, extern1 is the job name we created in Jenkins and list.sh is our command to
run. The setting of JENKINS_HOME and the matching job name are what make the con‐
nection with Jenkins. sh is just our system shell executable. You could use cmd and
a .bat file on Windows.

Assume we put these lines into an executable file named demo.sh. If we then execute
demo.sh, it will run list.sh and send the results back to the Jenkins external job. The
job runs then show up in the output of our external monitoring job (as shown in Fig‐
ures 8-39 and 8-40).

Figure 8-39. External monitoring job output

286 | Chapter 8: Understanding Project Types

Figure 8-40. External monitor console output

Java Issues Running External Jobs

With recent versions of the external job functionality, you may get
an error like this when you try to invoke java to run your external
job:

Exception in thread "main"
java.lang.NoClassDefFoundError:
 javax/servlet/ServletContextListener
 at java.lang.ClassLoader.defineClass1(Native Method)
 at java.lang.ClassLoader.defineClass
 (ClassLoader.java:763)
 at java.security.SecureClassLoader.defineClass
 (SecureClassLoader.java:142)

If you hit this, there is a kludge you can use to get around it: find
the javax.servlet-api-<version number>.jar file, and copy it into
your JRE’s lib/ext subdirectory. This is not elegant, but it seems to
work.

The Multiconfiguration Project Type
This type of project is designed to simplify running a set of project builds that only
differ in terms of parameters. For example, suppose you needed to run a test build
against a set of five different browsers (IE, Firefox, Safari, etc.) and across a set of five
different operating systems (Debian, Centos, Windows, etc.).

Without the Multiconfiguration project type, you would need 25 jobs (5 browsers tes‐
ted against each of 5 operating systems) to accomplish this. With the Multiconfigura‐
tion type, you only need one job that does the work of executing the various possible
combinations for you.

The way this works is that you define your base job to do whatever you need to do
based on parameters that represent each of the different “axes” you are using. For the

Types of Projects | 287

example just mentioned, one axis would be the set of browsers and the second would
be the set of operating systems.

Like the other project types we’ve discussed, the Multiconfiguration project has the
common setup, environment, build, post-processing, and other configuration. sec‐
tions. But it also includes a separate new Configuration Matrix section. This is where
you define the axes that you want to include in the job. There are three types of axes
that you can create. Each one takes a name that will become an environment variable
(which you can use in the build step) and a definition. The types of axes that can be
added to the Configuration Matrix are:

Slaves
This type of axis definition allows you to specify either a node’s name or a label
on a node to include in the set of nodes to iterate over. (As discussed elsewhere in
the book, a label is simply a tag or identifying name that we can attach to one or
more nodes. Then we can select one or multiple nodes by specifying a label that
they have.)

Label expression
This type of axis definition allows you to use advanced syntax to choose which
set of nodes to include. For example, you can combine node labels and operators,
as in label1&&label2, to indicate that only a node having both labels is eligible
to be included.

User-defined axis
This type allows you to specify a set of items as values to iterate over in building
the set of jobs.

Multiconfiguration example
Let’s consider a use case for this type of project. We have some jobs to build to create
web pages for a set of company job families in each of several different regions (where
each region has a dedicated node).

In our setup, we have three worker nodes available, with various labels, defined like as
in Table 8-1.

Table 8-1. Available worker nodes

Name Labels
worker_node1 northwest open region1

worker_node2 northeast open region2

worker_node3 southwest restricted region3

The regions (and thus the one-to-one mapping to the nodes) make up one of the axes
our job will use. For the other, we will use a set of company job families defined as

288 | Chapter 8: Understanding Project Types

development, infrastructure, management, and testing. We can now define the
two axes in our Multiconfiguration project’s configuration as shown in Figure 8-41.

Figure 8-41. Defining the axes in the project’s configuration

Note that within the Slaves list, we can select systems based on Labels or Individual
Nodes. The latter term just means selecting them by their name (e.g., worker_node1).

With our axes configured, we can set up our build step to use them. The name sup‐
plied when configuring each axis becomes an environment variable we can reference
in our build step. For example, if we wanted to print out a message for each combina‐
tion when the build ran, we could use a simple echo statement like the one in
Figure 8-42 in our build step.

Figure 8-42. Build step using names of axes via environment variables

We can then run our build and Jenkins will automatically create the appropriate
matrix of jobs to run based on the allowed combinations of our axes (Figure 8-43).

Types of Projects | 289

Figure 8-43. Job matrix based on axes

We can drill into any of the combinations by clicking on the blue ball in the matrix
for the appropriate row and column. Figure 8-44 shows one example.

Figure 8-44. Drilling into results for a particular job

From there, we can also drill into the console output for a particular run of a job in
the matrix, as shown in Figure 8-45.

290 | Chapter 8: Understanding Project Types

Figure 8-45. Console output for a particular job in the multiconfiguration matrix

Note that you can have more than two axes, though at some point, having more axes
may get prohibitive in terms of trying to navigate through the output.

The Matrix Configuration section also includes a few additional options that may be
helpful:

Combination filter
The default for a Multiconfiguration project is for Jenkins to build all combina‐
tions of values in the defined axes. If this is too many, or you need to limit which
ones it builds, you can use this area to define filters to limit which combinations
are built. An example might be:

!(job_family=="management" && region=="northwest")

to prevent running the job for management in the Northwest region. Note the
use of the double equals sign here to check for equality. See the help for the step
for more examples.

Run each configuration sequentially
This option tells Jenkins to build each possible combination one at a time (not in
parallel). This might be needed to limit multiple jobs stepping on each other if
using a shared resource, for example.

Execute touchstone builds first
This option allows you to specify a set of builds to run first as a sort of “sanity
check.” Enabling this option brings up two additional fields. The first is for a
combination filter (as discussed previously) to define which builds to run first.
The second is to select the condition that those builds must match in order for
the rest of the processing to continue (see Figure 8-46). Your choices for the sec‐
ond field are Stable or Unstable.

Types of Projects | 291

Figure 8-46. Configuring touchstone builds

With the touchstone builds in place, the overall console output for the job would look
something like Figure 8-47.

Figure 8-47. Overall console output for a Multiconfiguration job (with touchstone
builds)

Notice the various links in the console output that allow you to drill down to the out‐
put for various combination builds.

Pipeline compatibility
There is no direct correlation to the Multiconfiguration project encapsulated into a
single pipeline step. However, if you are working in a Scripted Pipeline, you can use
Groovy looping constructs to iterate across defined “axes” and create tasks that can
then be executed in parallel. Based on of a CloudBees example, here’s corresponding
pipeline code for the example in the previous section:

def axisRegions = ["northwest","northeast","southwest"]
def axisJobFamilies = ["developers","infrastructure",

292 | Chapter 8: Understanding Project Types

 "management","testing"]
def myTasks = [:]

for(int i=0; i< axisRegions.size(); i++) {
 def axisRegionSetting = axisRegions[i]
 for(int j=0; j< axisJobFamilies.size(); j++) {
 def axisJobFamilySetting = axisJobFamilies[j]
 myTasks["${axisRegionSetting}/${axisJobFamilySetting}"] = {
 node(axisRegionSetting) {
 println "Running task on job family ${axisJobFamilySetting}
 for region ${axisRegionSetting}"

 }
 }
 }
}

stage ("BuildMatrix") {
 parallel myTasks
}

For more detail on how the parallel step works, see Chapter 3.

Ivy Projects
In an Ivy project, Jenkins uses Ivy-related files to provide simplified build operations
and additional functionality. If you’re familiar with Ivy, the setup is pretty straightfor‐
ward. You have the usual common options and sections we covered at the start of the
chapter, and then you have an “Ivy Module Configuration” section where you can
base your Ivy build off of the ivy.xml, build.xml, and other files (Figure 8-48).

Figure 8-48. Basic configuration options

For fields that need locations, these are relative to the workspace you’re using. For
most of these fields, if you have a standard structure and straightforward build, you
can just take the defaults. Of course, you’ll need to fill in the actual targets.

Types of Projects | 293

Note that there are two Advanced buttons right below the Targets field. The first (top)
one expands to advanced options for the “Build with” section, such as a place to spec‐
ify an alternatively named build file.

The second (bottom) Advanced button expands into more options for the Ivy Mod‐
ule Configuration section in general, including one to build modules as separate jobs.
Figure 8-49 shows both sets of expanded options.

Figure 8-49. Advanced configuration options

When you run a build, Jenkins will execute the targets and produce the appropriate
artifacts, as shown by the console output in Figure 8-50.

Figure 8-50. Ivy build console output

Note the list and links to executed Ant targets on the left side.

294 | Chapter 8: Understanding Project Types

When building modules as separate jobs, you can use the Modules menu item on the
left of the Ivy job’s output page to go to the build information for each module. An
example is shown in Figure 8-51.

Figure 8-51. Accessing builds of individual modules in an Ivy project

Folders
One of the newer types of items you can create in Jenkins 2 is a folder. As the name
implies, this is an organizing structure rather than a job or project. Traditionally,
views have been used in Jenkins to filter lists of items on the dashboard. Views offered
the ability to create limited lists of jobs via configuration (by clicking on the “+” tab at
the top of the main project list). Figure 8-52 shows the configuration screen for a typ‐
ical list view.

Types of Projects | 295

Figure 8-52. Configuring a typical Jenkins list view

Unlike views, folders actually add the ability to group items together into a common
namespace, structure, and environment. Specifically, a folder allows a set of jobs to
share:

A container
Creating a folder creates a container to hold a set of jobs. As noted previously,
this is different from a traditional Jenkins view, which only allowed filtering a list
of jobs to restrict which jobs were visible.

A namespace
This namespace also becomes part of the path to the job.

Shared libraries
A folder can have its own set of shared libraries just for the projects in the folder.

Separate permissions
These are available provided the Role-Based Authorization Strategy plugin is
installed and role-based permissions are configured. More details on this are
included later in this section.

All of these elements allow for new ways in Jenkins to organize jobs and restrict the
environment in which they run. This could be used, for example, to separate or group
the projects for a department or larger effort.

296 | Chapter 8: Understanding Project Types

We’ll explore some of the properties and uses of a Jenkins folder in the next section.

Creating a folder
To create a folder, select the folder item from the Jenkins dashboard (Figure 8-53) and
enter a name for the folder.

Figure 8-53. Folder item

This will take you to the configuration page for the folder, an example of which is
shown in Figure 8-54.

Figure 8-54. Folder configuration page

At the top, you can enter user-facing details such as a separate display name to show
for the folder and a description.

Below that is a section for adding “health metrics”—that is, identifying properties of
items in the folder that should contribute to an overall health indication (how suc‐
cessful or not builds for items in the folder have been). As of the time of this writing,

Types of Projects | 297

the only available health metric is “Child item with worst health.” There is also a
Recursive option to indicate whether items in subfolders should contribute to this
metric.

Next is a Properties section. You may or may not have anything in this section,
depending on what plugins you have installed. The idea is to provide a place to define
tools or setups specific to items in this folder or its subfolders (if it has any). An
example here might be a JIRA project configuration for items in the folder.

Further down on the page is the section where you can configure a shared library to
be available to all jobs in the folder structure (this folder and any subfolders). The
same configuration fields and settings are available as for global shared libraries (see
Chapter 6 for details and examples); the only differences are that these libraries are
not trusted (so they cannot make unapproved calls or method invocations, as global
shared libraries can), and they are only available to the items in the folder structure.

Finally, we have the Pipeline Model Definitions section. This one requires some addi‐
tional explanation. (Like for shared libraries, there is also a section for this in the
global Jenkins Configure System screen, so this can be configured at different granu‐
larities.)

By default, Jenkins pipelines make the assumption that all agents are able to run
Docker pipelines. (See Chapter 14 for information on using Docker and Docker-
based agents in your pipelines.) However, in some cases, such as if you’re running on
Windows, where you traditionally can’t run the Docker daemon directly, this assump‐
tion can be incorrect. So, if you don’t explicitly specify an agent that can run Docker
in your pipeline, and you get one of the agents that can’t, your pipeline won’t work.

Assuming you have a label that identifies one or more of your agents as being capable
of running Docker, you can specify that label here. This tells Jenkins to use one of
those agents for any folder items that need Docker, but don’t directly specify an agent
that can run it.

Likewise, you can specify a Docker registry to use here that is scoped to just the items
in the folder.

Creating items in a folder
Once you’ve created a new folder in Jenkins 2, you can create new items in it just like
you’ve always done. When you switch to a Folder project, you have a link in the cen‐
ter of the page to “create new jobs” as well as the New Item link in the lefthand menu
(Figure 8-55). (Note that there is also a Delete Folder item in the lefthand menu.)

298 | Chapter 8: Understanding Project Types

Figure 8-55. Folder links

Views Within Folders

On the main folder page, you’ll also see two small tabs—one that
says All and one that has a + sign in it. These are tabs for working
with view of jobs in this folder. Just like in the dashboard view, the
All tab shows all jobs in the folder. The + tab takes you to a screen
where you can configure custom list views of the jobs in the folder.

Clicking on either of these item creation options takes you to the same screen you
always use for this. The only difference is that any items you create at this point are
organized under the folder’s namespace, and the full name of the new item will
include that namespace.

This is just like creating a file within a directory on the operating system, and just as
you can create directories within directories, you can also create folders within fold‐
ers in Jenkins.

Moving existing items into a folder
In addition to being able to create new items in a folder, you can also move existing
items into a folder. The key is the “move” icon in the lefthand menu of the main page
of an item. This is the icon that looks like a hand truck. (You can also just add “move”
at the end of the URL for a job.) Once you select that icon, you will have a drop-down
list to select the folder to move the item to (Figure 8-56). You simply select the desti‐
nation and then click the Move button.

Types of Projects | 299

Figure 8-56. Moving an item to a folder

You can also move an item from a folder back up to the top level in Jenkins by select‐
ing “Jenkins” in the list of destinations.

Managing permissions for folders
If you need to manage permissions separately for items in a folder, take a look at the
Role-based Authorization Strategy plugin. This plugin allows you to define roles and
groups around items in Jenkins. This is especially useful if you have multiple teams
sharing a Jenkins instance.

An administrator can create groups in a folder around each defined role that a user
can have. A team leader can then be authorized to manage group membership for the
groups in a folder.

The Role-based Authorization Strategy plugin is covered in more detail in Chapter 5.

Multibranch Pipeline Projects
One of the other new project types in Jenkins 2 is the Multibranch Pipeline project.
The primary feature of this type of project is that Jenkins can automatically manage
and build branches of projects managed in a source control management system if it
recognizes them as Jenkins projects. It can also create new Pipeline projects for each
branch it detects in the source control repository.

You can effectively think of this type of project as a Folder project with different jobs
in the folder for each branch of a source project. Creating and automatically building
these jobs is possible by using the presence of a Jenkinsfile as a marker and utilizing a
scanning process known as branch indexing.

Configuration
When you create a new Multibranch Pipeline project, you will typically point the job
to an SCM repository instead of to a specific branch of a project. Figure 8-57 shows
an example of the configuration screen for this type of project.

300 | Chapter 8: Understanding Project Types

Figure 8-57. Example Multibranch Pipeline project config screen

The first few settings here are pretty standard. However, notice that in the Behaviors
section under Branch Sources, there is a default behavior of “Discover branches.” This
is one of the key elements of a Multibranch Pipeline project: the ability to look into
the SCM repository, figure out what branches are there, and set up jobs for them.
Other typical behaviors (as provided by the particular SCM plugin) can be added
with the Add button. For Git, these might include, for example, ignoring branches
based on patterns, specifying options when cloning, and cleaning out workspaces.

Underneath that is the “Property strategy” section. For Multibranch Pipeline projects,
this is either “All branches get the same properties” or “Named branches get different
properties.” Selecting the latter allows you to specify one or more named branches (in
a “Branch name” field) and choose a property to apply. Currently the only available
property is “Suppress SCM triggering,” which suppresses the normal commit trigger
for Jenkins in that branch.

In the Build Configuration section, we have only one option currently: “by Jenkins‐
file.” This is the functionality we’ve already talked about where Jenkins will look for a
file named Jenkinsfile in the root of the checked-out project to see if it can automati‐
cally build the branch of a project. While you could change the path for the Jenkins‐
file in the Script Path field underneath, it’s best to just leave it as the default for
standardization.

Next on that page is a Scan Multibranch Pipeline Triggers setting. This can be set to
“Periodically if not otherwise run” if desired. Basically, if set, this is a fallback in case
one of the standard notification mechanisms (commit trigger, etc.) doesn’t work. The
idea is that you can set a time interval here that specifies the longest period you’re
willing to wait to check for changes if an event doesn’t automatically trigger Jenkins.

Types of Projects | 301

The remaining sections on the configuration page are the same as the standard ones
for a Folder project, such as “Health metrics,” Pipeline Libraries, and Pipeline Model
Definition. These are discussed in “Folders” on page 295.

Branch indexing
After initial configuration, Jenkins will run a “branch indexing” function to look for
the presence of a Jenkinsfile in the branches of the project. If it finds a Jenkinsfile in
any of the branches, it will automatically create a job for those branches and build
them. Figure 8-58 shows what this looks like in the console output for the overall job.
Notice the places in the log where Jenkins is checking to see if the branch meets the
criterion of having a Jenkinsfile and, if so, kicking off a build for it. You can see the
builds running in the lower-left build section.

Figure 8-58. Automatic branch scanning after initial configuration

After the branch indexing completes, you’ll have individual jobs for each of the
matching branches within your Multibranch Pipeline project (Figure 8-59).

302 | Chapter 8: Understanding Project Types

Figure 8-59. Multibranch Pipeline jobs corresponding to branches with Jenkinsfiles

Individual job output and configuration
You can drill into each of the individual jobs created automatically for the project and
see the output/build results page in the Stage View form.

There is also a View Configuration link on that page. If you click that link, it will take
you to a configuration page for the individual job. On that page you will see some of
the common sections we have talked about previously, such as General and Build
Triggers. You can check boxes in these sections, type things in, etc. However, this is a
bit misleading as there is no Save or Apply button at the bottom of the page. As the
menu item implies, you can view the configuration (which isn’t particularly useful in
this case), but you can’t modify it. It is generated by the branch indexing functionality
of the higher-level Multibranch Pipeline project.

Not being able to configure the individual jobs here might seem like a disadvantage,
but remember that you can manage your pipeline through the Jenkinsfile instead of
through the job’s configuration.

Incorporating new branches
Once you have a Multibranch Pipeline project set up, Jenkins can automatically
detect new branches and create corresponding jobs for them as well. Let’s look at an
example.

Suppose that you have a Multibranch Pipeline project set up in Jenkins for a local Git
location. In your repository, you have a master branch that does not have a Jenkins‐
file, and a branch named test that has a Jenkinsfile in it. Since you have set up a Mul‐
tibranch Pipeline project, you have a job for test in Jenkins that was created
automatically. There isn’t a job for master, because it did not have a Jenkinsfile.

Types of Projects | 303

Now suppose you clone that repository down and create a new branch called new
branch from test. newbranch inherits all of the files from test, including the Jen‐
kinsfile.

Next, you push the changes back to the remote Git repository. At this point, if you go
back into Jenkins and tell it to run the branch indexing, it will go out to the reposi‐
tory and check each branch. Figure 8-60 shows the branch indexing running.

Figure 8-60. Branch indexing after newbranch is created

Jenkins identifies that the new branch “Met criteria.” This means that it has a Jenkins‐
file. So, Jenkins creates a new job for it (Figure 8-61) and starts up a build for it
(Figure 8-62).

304 | Chapter 8: Understanding Project Types

Figure 8-61. Kicking off a build for newbranch

Figure 8-62. The new job for newbranch in the Multibranch Pipeline project

The nice thing about this setup is that it allows you to create branches in Git as you
need them (for experimentation, for example) and automatically have corresponding
Jenkins jobs created to execute the pipeline on those branches.

Branch Indexing Versus Build Now

One final note here regarding branch indexing and jobs in a Multi‐
branch Pipeline project. You have two ways to manually kick off
builds for the jobs. First, you can initiate the branch indexing func‐
tionality by clicking the Scan Multibranch Pipeline Now entry in
the lefthand menu.
Second, for each individual job, you can go to the job’s page and tell
it to Build Now, just as for any other job. However, be aware that
even if you have already built the new changes via Build Now, when
you run branch indexing again it will still rebuild the project a sec‐
ond time for the same changes.

GitHub Organization Projects
GitHub is a popular hosting site for open-source projects developed with Git. A Git‐
Hub Organization is a collection of such projects, with infrastructure that provides

Types of Projects | 305

for setting up groups (called teams), that can have different access to sets of projects.
A typical use for a GitHub Organization would be to group together, under a single
umbrella, a company’s collection of projects. To make it easy for an entire GitHub
organization to work with Jenkins, Jenkins provides the GitHub Organization project
type.

Types of Organization Projects

While we are using GitHub here as our detailed example of an
organization project, it should be noted that Bitbucket repositories
can also have “organization” projects (and other types may be
added later). We’ll cover accessing a Bitbucket Team/Project
project as far as setting it up. From there, the general ideas and
overall mechanics we outline here for GitHub Organization
projects should apply to the other types as well.

In terms of structure, it is probably easiest to think of a GitHub Organization project
as a collection of Multibranch Pipeline projects, with each multibranch area corre‐
sponding to one repository in the GitHub organization.

And, like in a Multibranch Pipeline project, Jenkins relies on there being a Jenkinsfile
in each branch of each repository in the GitHub organization that you want to work
with. For each repository in the organization, Jenkins will create a corresponding
Multibranch Pipeline project with corresponding jobs for each branch (assuming
they have Jenkinsfiles).

Creating a GitHub Organization project
Before creating a GitHub Organization project, you’ll need to make sure that you
have the GitHub plugin installed and a GitHub server configured in the Configure
System settings. The setup for that is pretty straightforward (see “GitHub project” on
page 253).

Assuming that is in place, to create a GitHub Organization project, you simply supply
a project name and select the entry for it from the new item screen, as shown in
Figure 8-63.

Figure 8-63. Item to create a GitHub Organization project

306 | Chapter 8: Understanding Project Types

In order for Jenkins to be able to locate and work with the GitHub organization, you
first have to tell it the name of the organization and supply any needed credentials to
access it (Figure 8-64).

Figure 8-64. Pointing Jenkins to the GitHub organization

Credentials for GitHub

Note that Jenkins can generate a token type of credential based on
your GitHub username and password. We discussed this in more
detail in “GitHub hook trigger for Git polling” on page 261.

In addition to the basic source configuration, you can also add additional advanced
behaviors. Many of these are geared around automatic discovery or inclusion/exclu‐
sion of branches, projects, and pull requests. There are help buttons available for
most of these next to the fields themselves. If your intent is just to have Jenkins work
with every project and branch that has a Jenkinsfile, then you probably don’t need to
change these.

The rest of the options for a GitHub Organization project are the same ones we’ve
already covered in earlier sections of this chapter; they include configuring shared
libraries local to the project, health metrics, and a pipeline model definition (for
Docker agents). See the other sections for relevant details.

The last option on the configuration page deserves a little bit of explanation. Under
the heading “Automatic branch project triggering” is a field for “Branch names to
build automatically.” This field takes a regular expression specifying which branches
to actually build when triggered. This doesn’t keep Jenkins from creating jobs auto‐
matically, just from building if changes are indicated. By default, the regular expres‐
sion is set to have all branches build.

Webhooks
The other significant aspect of a GitHub organization project is that it can leverage
webhooks sent by the GitHub organization. Webhooks allow applications to “sub‐
scribe” to events that happen on GitHub. When one of those events happens, an

Types of Projects | 307

HTTP POST is made to a specified external URL to notify it of the event. GitHub also
sends any additional configured information as the webhook’s payload.

With appropriate permissions, Jenkins can even set up the webhook automatically.
Note that in order for all of this to work, Jenkins must have access to the GitHub
organization to set up the webhook, and Jenkins must be accessible for GitHub to
complete the POST. This means, for example, that the Jenkins URL can’t be behind a
firewall.

An example of the GitHub setup is shown in Figure 8-65, and an example of a web‐
hook payload is shown in Figure 8-66.

Figure 8-65. Example GitHub webhook setup

308 | Chapter 8: Understanding Project Types

Figure 8-66. Part of an example webhook payload

In addition to the webhook push technology, the GitHub Organization project
includes a way to “scan” the organization to check for any pull requests or updates.
This is done by selecting the “Scan Organization” menu item in the upper-left menu.
You can think of this as rerunning branch indexing for each project in the organiza‐
tion. Figure 8-67 shows an example of running this.

Types of Projects | 309

Figure 8-67. Re-scanning the GitHub organization to check for changes

Bitbucket Team/Project Projects
This is another type of “organization” project. “Bitbucket Team” here refers to a
grouping of projects associated with a team on the public Bitbucket site. “Bitbucket
Project” refers to a Bitbucket Server instance installed at an enterprise. The example
we’ll use here is with a team setup.

The functionality is supplied by the Bitbucket Branch Source plugin. To set up a new
Bitbucket Team/Project project, you simply select that type from the list of projects
(Figure 8-68).

310 | Chapter 8: Understanding Project Types

https://plugins.jenkins.io/cloudbees-bitbucket-branch-source

Figure 8-68. Bitbucket Team/Project type selection

Configuration for a Bitbucket Team/Project project is almost the same as for a Git‐
Hub Organization project (Figure 8-69). The prerequisite is to have a username/pass‐
word credential already set up in Jenkins, with the email address and password that
you use to log in to Bitbucket. The only other trick is that the Owner field needs to be
a team name (not a username) that you have already set up on Bitbucket, and should
not have any special characters such as hyphens or spaces in it. (That is the way that
Bitbucket stores it, though it may display it differently.)

Figure 8-69. Bitbucket Team/Project project configuration

From here on, the workflow is pretty much the same as for the GitHub Organization
project type discussed in the previous section. Bitbucket connects via the supplied
credentials, scans the projects associated with the team specified in the Owner field,
and creates Multibranch Pipeline projects for each acceptable repository it finds
(Figure 8-70).

Types of Projects | 311

Figure 8-70. Bitbucket Team/Project project created via organization scan in Jenkins

Then, within each repository, for branches that have Jenkinsfiles, it initiates builds
(Figure 8-71).

Figure 8-71. Builds within a repository of a Bitbucket team

312 | Chapter 8: Understanding Project Types

Project Icons
To help you visually distinguish the different types of projects (jobs) in the list view,
Jenkins 2 introduces some additional icons. A sampling of these is shown in
Figure 8-72 (in the “S” column).

Figure 8-72. Example icons for different project types

The first icon at the top is the traditional one for common Jenkins jobs.

The second and fourth ones are organizational projects (Bitbucket and GitHub,
respectively) that have been fully configured and so get the icons of the configured
organizations from those sites.

The third icon is an example of a simple project from GitHub.

The fifth icon is a new GitHub Organization project that has not been fully config‐
ured.

The sixth icon is a new Bitbucket Team/Project project that has not been fully config‐
ured.

The seventh icon is for a Folder project/structure.

The eighth and last icon is for a Multibranch Pipeline project.

An example of one additional type of icon can be seen in Figure 8-70. The icon for
each of the three ervitems in that project represents a Git project stored in Bitbucket.

Summary
In this chapter, we dove into more detail the set of common project types available to
Jenkins users. While the book focuses on elements of Pipeline projects, Jenkins sup‐
ports a number of legacy types of projects that are still actively used and useful. As

Summary | 313

well, with the advent of Jenkins 2, a number of additional project types have been
introduced.

The new project types allow the user to have Jenkins automatically detect projects
that it can work with in source control. It does this by looking for a Jenkinsfile as a
marker, and automatically creating a job for a branch in a project that has such a file.
Additionally, the new Folder type allows for grouping branch jobs together in a single
project as a Multibranch Pipeline configuration. And sets of projects can be grouped
together as multiple folders in a GitHub Organization Organization or Bitbucket
Team/Project configuration.

In addition to exploring the overall project types, we also saw details about many of
the common configuration options available to projects and looked at the corre‐
sponding pipeline statements where available. Armed with this knowledge, you
should not only be able to choose the best project type for your use case (if not Pipe‐
line), but also have the background to more easily convert existing functionality into
pipeline form.

In the next chapter we’ll take a look at Jenkins’s new alternative user interface, Blue
Ocean, and we’ll see what some of the pipeline-oriented project types we’ve discussed
look like in that interface.

314 | Chapter 8: Understanding Project Types

CHAPTER 9

The Blue Ocean Interface

As well as the new Declarative Pipeline syntax, one of the key innovations in Jenkins
2 is the new graphical interface, Blue Ocean. At a high level, we can summarize the
features of Blue Ocean as follows:

• Provides a graphical representation of pipeline processing
• Provides a graphical interface for creating new Declarative Pipelines
• Provides a more segmented view of pipeline processing at the level of the stages

in the pipeline, including being able to drill into logs at that level
• Supports views by branches for Multibranch Pipeline projects
• Supports working with pull requests for Multibranch Pipeline projects
• Provides a guided setup for new pipelines from source management repositories
• Provides a pipeline editor based on adding stages, steps, etc., through a combina‐

tion of interaction with graphical (point-and-click) elements and typing
• Can better represent parallel stages in comparison to the Stage View output
• Provides links back to the “classic” (legacy) Jenkins view for corresponding items

or those that do not have a custom Blue Ocean representation

The interface keys off of the stage definitions in the pipeline and adds graphical ele‐
ments to represent each stage. Those representations include circular icons and colors
to represent the processing progress and the resulting states of success and failure.

You can also view logs segmented by steps and click through to get more details.

That’s the very high-level view of the new interface. As with the traditional Jenkins
interface, it’s easiest to understand the available functionality by presenting the vari‐
ous screens and options with example jobs.

315

The remainder of this chapter is divided into two parts. Part 1 takes you through the
various screens, pages, and views associated with managing existing pipelines that are
being executed. Part 2 takes you through working with the pipeline editor to create,
edit, and debug pipelines. Together, both parts will provide you with a well-rounded
understanding of Blue Ocean.

Existing Issues

While Blue Ocean provides an immense amount of functionality,
it’s important to note that it is still relatively early in terms of for‐
mal releases as of the time of this writing. A number of issues may
be encountered with using it beyond the basic, core functionality.
In particular, when working with the pipeline editor, certain syntax
that is valid for Declarative Pipelines cannot be entered or handled
through the editor interface.
Where these issues currently occur, we will note them and, where
possible, suggest workarounds.
You’re encouraged to always check the latest version of Blue Ocean
and Jenkins to see whether a particular issue noted here has been
fixed.

Part 1: Managing Existing Pipelines
In this first part of the chapter, we’ll cover using the Blue Ocean interface to see how
it handles the execution and output of existing pipelines. The easiest way to do this is
to walk through the different screens you will be exposed to, and discuss the func‐
tionality and features of each.

We’ll start where we always start with Jenkins: the dashboard.

The Dashboard
The main menu on the lefthand side of the Jenkins dashboard contains a menu
option to launch the Blue Ocean interface (see Figure 9-1).

316 | Chapter 9: The Blue Ocean Interface

Figure 9-1. Menu option to open Blue Ocean

You can also launch the interface directly by entering the URL in your browser. The
shortest version is <your Jenkins URL>/blue. Either the menu item or the URL will
open up the Blue Ocean dashboard, as shown in Figure 9-2.

Figure 9-2. The Blue Ocean dashboard

Part 1: Managing Existing Pipelines | 317

The Pipelines Page

Note that the dashboard here maps to a more specific “pipelines”
URL. In fact, we could refer to the dashboard page as the “pipe‐
lines” page.

Like the traditional Jenkins dashboard, this page lists your Jenkins jobs. Although it’s
focused on Pipeline projects, all of your jobs will show up here.

To understand this page completely, let’s discuss the various navigational links and
elements available on it.

In the top blue bar, the terms “Jenkins” and “Pipelines” are links that take you to this
same page. They are useful in certain cases—for example, if you have done an opera‐
tion such as a search that filters the job list, and you then want to get back to the full
list.

The Administration item in the same row links to the traditional Manage Jenkins
page for administering settings for the Jenkins instance.

The square icon with the arrow pointing to the right takes you back to the classic Jen‐
kins dashboard, and the Logout button should be self-explanatory.

In the next row, the Pipelines link serves the same purpose as the Pipelines link in the
row above it that we just mentioned.

Next to that, the magnifying glass is a search function (as you might expect). Clicking
on it allows you to type in an expression to search for among the names of the listed
pipelines. For example, as seen in Figure 9-3, if we click in the search area and enter
an “o,” the list will change to showing only those projects that have an “o” in their
name.

318 | Chapter 9: The Blue Ocean Interface

Figure 9-3. Using the search function on the Blue Ocean dashboard

The New Pipeline button can be used to create a new pipeline—we’ll cover that func‐
tionality in another section of the chapter.

Underneath the top blue rows, you have the main part of the page that lists the
projects/jobs currently defined in the Jenkins instance. The fields for each project row
are described in Table 9-1.

Table 9-1. Dashboard field descriptions

Field Description
Name Name of the project
Health Jenkins health indicator (success or failure over last few runs of the job)
Branches For Multibranch Pipeline projects, status of last branch builds
PR Status of last builds of pull requests, if any
Star icon Allows toggling the project as a “favorite”

The name and health indicators are the same as in the classic Jenkins view.

The Branches column only applies to the new Multibranch Pipeline project type. This
provides a summary of the last run for the set of branches. (Multibranch Pipeline
projects are discussed in detail in Chapter 8.)

The PR column only applies if there are active pull requests (PRs), such as for a
GitHub-based project. It shows the number of outstanding PRs if they exist. (PRs are
covered in more detail later in this chapter.)

Part 1: Managing Existing Pipelines | 319

The last (unnamed) column allows you to choose to make a project a “favorite.” In
this case, that means creating a shortcut to that project under a Favorites section at
the top of the page (Figure 9-4).

Figure 9-4. Adding a favorite

When a project is “favorited” by virtue of being starred, the shortcut at the top of the
screen includes several options on the righthand side. We’ll discuss more about what
each of those does in a later section of this chapter. The favorite shortcut can be
removed by again clicking on the star. In this way, the star icon acts as a toggle for
providing shortcut access to specific projects.

Favorites

Note that wherever the star icon occurs (whether in a row or in a
header), it has the same purpose—to toggle the “favorite” status of
a project. However, if an entry is a container for other entries (such
as a Multibranch Pipeline project that has other jobs in it), the
favoriting functionality will work only if it can determine what the
“default” object is. For example, if you select a Multibranch Pipeline
project to favorite, it will favorite the master branch if there is one.
If there isn’t a good default available, you’ll see an error like this:

Favoriting Error

No default branch (e.g. "master") to favorite.

Finally, near the bottom of the dashboard screen will be some text that identifies the
particular version of Blue Ocean that is running, and the version of Jenkins that it is
being run on.

Clicking on any of the projects listed on the dashboard will take you to the specific
page for that project. We’ll discuss the contents of that page next.

320 | Chapter 9: The Blue Ocean Interface

The Project-Specific Page
From the Blue Ocean dashboard, you can drill into any particular pipeline to see
more information about the stages, commits, etc. Clicking on one of the items on the
dashboard takes you to the page for that specific job.

This page has some elements on it that are similar to those on the dashboard. At the
top, we have the same header that we always have in Blue Ocean, with the Jenkins,
Pipelines, Administration, Go to Classic, and Logout links.

In the next large blue row, we have an icon that represents the health of the project on
its most recent run (such as a sun), the name of the pipeline (also a link to the activity
page for the pipeline), and the star icon (to toggle this as a favorite). The gear icon
after that is a direct link back to the classic configuration page for the pipeline job.

Each such page also has three views available on it—Activity, Branches, and Pull
Requests. We’ll look at the functionality available with those views for both a simple
(single-branch) job and a Multibranch Pipeline job.

Simple pipeline Activity view
As the name implies, the Activity view is intended to show all activity (runs) of a
selected pipeline. This is the default view for this page. It includes the runs for all
branches of the selected pipeline that have been executed. If you select a job from the
Blue Ocean dashboard that hasn’t been executed yet, you’ll see a screen like
Figure 9-5.

Figure 9-5. Job that hasn’t been run yet in Blue Ocean

Part 1: Managing Existing Pipelines | 321

The Run button (either at the top left or in the dialog) then can be used to run the
job. When the job is running, the circle icon on the left will gradually fill in as the job
progresses. The icon in the last (rightmost) column can also be used to stop the job
from running, if needed (Figure 9-6).

Figure 9-6. Blue Ocean run in progress and Stop icon

Blue Ocean Color Codes and Symbols
In Blue Ocean, the status icons (and other symbols associated with individual jobs)
are frequently color-coded and marked with a particular symbol to indicate status.
On some pages, the banner at the top may also be color-coded. The mappings
between statuses, colors, and symbols are shown in Table 9-2.

Table 9-2. Blue Ocean visual status mappings

Status Color Symbol
Successful Green Check mark
Unstable Yellow Exclamation point
Failed Red X character
In progress Blue None
Not run yet Gray None

“Halos”

As previously mentioned, in Blue Ocean, for running jobs you will
see a symbol consisting of the outline of a circle that is gradually
filled in as the job progresses. A symbol like this is also used for
each individual stage when looking at the parts of a job executing
in Blue Ocean. For simplicity in referring to this type of symbol,
we’ll simply call them “halos” in the rest of the chapter.
After the job or stage has executed, the halo will be filled in, color-
coded, and marked with a symbol to indicate the status (as shown
in Figure 9-6 and described in the preceding sidebar).

322 | Chapter 9: The Blue Ocean Interface

As well as triggering new runs (via the Run button), previous runs of the job listed on
the screen can also be “replayed.” This is done by clicking on the “rerun” icon (the
circular arrow) at the end of the designated row. Figure 9-7 shows a screen shot after
a new run and a replay of an older one.

Figure 9-7. New run and replayed run

Replay

Replay is the functionality in Jenkins 2 that allows rerunning the
set of code that was current at the time of the original run. It is dis‐
cussed in more detail in Chapter 2.

One other element to note on this screen is the “Go to Classic” icon (the square with
the right-pointing arrow in it near the top right). This is a common element across
screens in Blue Ocean. Clicking on this icon in the Activity view for a simple pipeline
job like this would take us to the Stage View for this job, as shown in Figure 9-8.

Figure 9-8. Classic view of simple pipeline

Part 1: Managing Existing Pipelines | 323

Simple pipeline Branches and Pull Requests views
In the same line as the Activity tab are the Branches and Pull Requests tabs. While
these tabs are present for all pipelines, they are only applicable to Multibranch Pipe‐
lines.

Clicking on either of these tabs for a non–Multibranch Pipeline will simply bring up
an error dialog telling you that these do not apply, with a link to go to for more infor‐
mation.

Multibranch Pipeline Activity view
Now that we’ve looked at the Blue Ocean interface for a simple pipeline, let’s look at a
Multibranch Pipeline. A similar interface exists for these.

Figure 9-9 shows the Activity screen for a Multibranch Pipeline job. Note that we
have several of the same links, icons, and headings as we saw on the Blue Ocean dash‐
board and on the simple pipeline pages.

Figure 9-9. Multibranch Pipeline activity view

Here again, each row in the main part of the screen represents a run of a job for an
individual branch. Clicking on any part of the row except for the icon in the far right
column opens up a detail screen for that particular run. We’ll discuss the run detail
screens later in this chapter.

The names and values in each column are fairly self-explanatory, except for the last
column. Clicking on that circular arrow executes an operation that reruns that partic‐
ular run. (For previous runs, this amounts to a replay. The Replay feature is discussed
in more detail in Chapter 2.) As with the simple pipeline, once you start a run by
clicking on that icon, the icon under the left Status column will change to a halo; the
icon at the end of the row will change to one that can be used to stop the build (by
clicking on it).

324 | Chapter 9: The Blue Ocean Interface

Additionally, in cases of multiple commits, you will see an “n commits” notification
next to the “Latest message” field (Figure 9-10). Clicking on this will take you to the
detail screen for that run.

Figure 9-10. Recent commits notification for the branch

For a Multibranch Pipeline project, the Branch column header on this screen also
serves as a filtering mechanism. Clicking on the column header makes it become an
editable field. You can select the desired branch from the drop-down or type in the
desired branch name (see Figure 9-11). To close the filtered view, click the “X” to the
right of the branch name.

Figure 9-11. Filtered activity view

Finally, again in the header for the page, we have the right-pointing arrow in the
square next to the Logout button. As before, this is the shortcut for “Go to Classic.”
Also as before, it is contextual. In this case, clicking it will take us to the classic page
for the Multibranch Pipeline project (as shown in Figure 9-12).

Part 1: Managing Existing Pipelines | 325

Figure 9-12. Multibranch Pipeline classic view

With a Multibranch Pipeline project, the Branches and Pull Requests tabs are valid
and provide additional functionality. Let’s take a moment to talk about those.

Multibranch Pipeline Branches view
Whereas the Activity view for a Multibranch Pipeline project shows all the runs for
all branches, the Branches tab is for working with the separate branches at the higher
level as separate jobs. Figure 9-13 shows an example of this view, for the pipeline
we’ve been looking at.

Figure 9-13. Multibranch Pipeline branches view

Each row represents one of the branches in the Multibranch Pipeline. The overall
health indicator and last run status for each branch are on the left, followed by the
branch name and the SHA1 commit that last updated it. In most cases, the value in
the “Latest message” field will be “Branch indexing,” since that’s the process that runs

326 | Chapter 9: The Blue Ocean Interface

when Jenkins scans for changes. Clicking on one of these rows (aside from the four
icons at the end) takes you to a detailed run screen for the most recent run of that
branch.

The four icons at the end of each row are clickable and invoke different functionality,
summarized in Table 9-3.

Table 9-3. Branches view icons

Icon Purpose
Play (circle with arrowhead) Execute a new run of the pipeline in the branch.
Activity (circle with clock hands) Switch to Activity view filtered for this branch.
Pipeline editor (pencil) Open the pipeline editor on the pipeline in this branch (may throw an error if the pipeline is

not declarative).
Favorite (star) Toggle the favorite status of this branch in the interface.

Multibranch Pipeline Pull Requests view
For pipelines based on repositories that support pull requests, such as GitHub, this
view is used to show any open pull requests. If you don’t have any open pull requests,
switching to this view simply pops up a message telling you that you don’t have any.

Pull Requests
If you’re not familiar with pull requests, here’s a little more information (using Git‐
Hub as our reference).

Pull requests are a gating mechanism for merging new or updated code into an exist‐
ing repository on GitHub. They can originate in one of two ways:

• A user forks the GitHub repository of another user and makes changes in the
forked version of their project that they would like to contribute back to the orig‐
inal project.

• A user creates a new branch of an existing project with code intended to be
merged into another branch.

In either case, the user can create a formal PR in the GitHub interface detailing the
source and requested destination for the code to be merged. The owner of the project
or branch, where the merge is intended to happen, can then review the request. If
they feel it is appropriate (and if it can be merged cleanly), they can merge it in, thus
“accepting” the PR.

Jenkins in this case can show PRs that originate from forks of a project and can also
automatically attempt to build those to help verify that a PR is OK to accept and
merge.

Part 1: Managing Existing Pipelines | 327

When you do have one or more open pull requests (originating from a fork) in the
related GitHub project, they will show up in the Pull Requests view, as shown in
Figure 9-14.

Figure 9-14. Multibranch Pipeline Pull Requests view

Note that Jenkins has tried to build these. Thus, we have the typical columns for
things like the status and completed time, and the option to rerun them.

In this case, PR 4 had a conflict when Jenkins tried to build it. Via the connection
already established from Jenkins to GitHub, the fact that Jenkins could not build it
correctly will also be surfaced in the GitHub interface (see Figure 9-15).

Figure 9-15. The conflict for PR 4 in GitHub

328 | Chapter 9: The Blue Ocean Interface

We can then choose to either not accept the PR (and close it), or resolve the conflict
(by updating the code locally and pushing it back, or by updating it directly in Git‐
Hub). In this case, we just resolve the conflict in GitHub and commit the merge
(Figure 9-16).

Figure 9-16. Conflict resolved in GitHub and ready for commit

Once we have resolved the conflict and merged the change back on GitHub, Jenkins
automatically detects that and rebuilds the PR. As shown in Figure 9-17, with the
conflict resolved, the PR builds successfully this time.

Figure 9-17. Pull Requests view after conflict resolution and automatic rebuild

This is also reflected on the GitHub side. Note the “All checks have passed” section in
Figure 9-18.

Part 1: Managing Existing Pipelines | 329

Figure 9-18. GitHub pull request detail page showing all checks (Jenkins PR build) have
passed

The next step is to go ahead and merge the cleanly building PR via the “Merge pull
request” option on GitHub. After doing this, the GitHub interface will show that we
have successfully merged this PR (Figure 9-19).

330 | Chapter 9: The Blue Ocean Interface

Figure 9-19. GitHub pull request detail page after PR merged

After this occurs, at the next refresh interval Jenkins will do the branch indexing,
detect the new change in the branch due to the merged PR, and rebuild the branch
(Figure 9-20). It will also add the tag showing there were multiple commits involved.

Figure 9-20. Automatic rebuild of the branch after the PR has been merged

Since the PR has been merged, it will be removed from the Pull Requests view as well.

From many of the screens that we’ve already looked at in the interface, you can get to
a more detailed view of a pipeline run (either one that has already occurred or one
that has been initiated and is in progress). Next, we’ll look at the screen in Blue Ocean
that shows the details of a particular run of a pipeline.

Part 1: Managing Existing Pipelines | 331

The Run Page
Figure 9-21 shows a pipeline job in progress in the Blue Ocean interface. Like the
other pages we’ve looked at, this page has a number of common graphical elements
on it and tabs that can be selected to see different elements of this particular run. But
regardless of the selected tab, the large banner across the top, which we refer to as the
“status banner,” remains on the screen. Let’s briefly discuss what information it con‐
veys, and then see what’s contained on each tab.

Figure 9-21. Individual run of a job in progress in Blue Ocean

The status banner
When the run is in progress, the status banner will have a blue background (indicat‐
ing it’s running). In the upper-left corner is a halo indicating how much of the overall
job has been completed. Next to that is the job name, the run number, a set of four
tabs (which we’ll talk about shortly), and then some of the same icons we’ve already
discussed that also appear on other screens, including a button to stop the build that’s
in progress (or start it if it’s not running). In the next row, on the left are the branch
name and the last commit SHA1. Still in that row, to the right, we have a “time” col‐
umn. The top time value shows how much time this run is taking (or did take, if pre‐
viously run). The bottom time value notes when this job was last run. Finally, toward
the middle of that row, we may have additional information about the changes that
were incorporated (and presumably are the motivation) for this run.

Within the main run page, the tabs for Pipeline, Changes, Tests, and Artifacts can
change the views. We’ll look at each of those next.

Pipeline
Figure 9-22 shows an example run page with the Pipeline tab selected.

332 | Chapter 9: The Blue Ocean Interface

Figure 9-22. Pipeline tab on the run screen

With the Pipeline tab selected, underneath the banner area is a graphical representa‐
tion of this pipeline. The parts of the pipeline are represented at the granularity of
stages, and each stage in the pipeline is represented by a halo. Where stages are
coded/executed in parallel, the halos are lined up in the same column.

Parallel Stages

When we use the traditional mapping syntax within a parallel
step inside of a stage, Blue Ocean represents the separate branches
as separate stages. Within the text, we don’t distinguish between
these differences. For simplicity, we simply refer to all of the halos
as representing “stages.”
In the Declarative Pipeline 1.2 syntax (covered in Chapter 7), each
parallel branch is really a separate stage.

As each stage is executed, the halo for the stage is updated accordingly. When that
stage is completed, the halo is color-coded and updated with a symbol to indicate suc‐
cess, failure, or an unstable state (as described in “Blue Ocean Color Codes and Sym‐
bols” on page 322). Partially filled in halos represent work in progress in those stages,
and gray/empty halos represent stages in the pipeline that have not been processed
yet.

Underneath the graphical representation of the pipeline is a section with logs for each
step. Another feature of the graphical representation is that other parts of the screen
can be filtered based on which stage is currently active. To make a stage active after a

Part 1: Managing Existing Pipelines | 333

run, you can click on the halo for that particular stage. At any point in time, one (and
only one) stage will be active (except in the case of parallel stages).

Skipped Stages

Blue Ocean can also display “skipped” stages—conditional stages in
a Declarative Pipeline that aren’t executed based on a when state‐
ment.
(Conditional statements in declarative syntax are covered in Chap‐
ter 7.)

The log of steps below the graphical pipeline is filtered based on the currently selected
stage. We’ll look at that next.

Step logs. The section at the bottom of the Pipeline view allows you to look at logs
for any stage of the pipeline, segmented by steps. The set of steps shown are the ones
for the currently selected stage in the graphical representation above.

A separate row is shown for each step in the stage. Table 9-4 lists the possible fields
for a step log entry.

Table 9-4. Fields for a step log entry

Name Representation Purpose
Status Color code and symbol (same scheme as referred to

earlier)
Show status of pipeline step (success, failure, etc.)

Show log Right-facing arrow when collapsed/downward-
facing arrow when expanded

Toggle showing detailed log information for the step

Description Actual step and description Show step (command) and description (same as Snippet
Generator)

Duration Time (generally in seconds) Show time duration for step execution in this run

334 | Chapter 9: The Blue Ocean Interface

Combined Steps

If two or more steps are combined into a single command, then
those steps will be broken down as separate steps in this area. For
example, if your pipeline contained a step like this:

 sh "${tool 'gradle32'}/bin/gradle build"

the tool and sh steps would show up as separate rows. However,
since the tool step is contained within the sh step, it will not have a
separate log entry, so attempting to expand the tool step in this
section will not show any additional information.
Additionally, some steps (such as a mail step) may not have any
output in the logs, and others may only reflect a result, such as
“Build Succeeded.”

The main benefit here is derived from being able to select a stage, and then a step in
that stage, and then dive in to get the logs just for that step. Clicking on the “>” sign
in the second column of the row causes the log to be shown. The sign will then
change to a “V”. Clicking on the field again causes the log to be collapsed.

Figure 9-23 shows some of the logs expanded for selected steps of the selected stage
(Test) in a pipeline. Note also the failed status of one stage.

Figure 9-23. Pipeline view with expanded step logs

One other note about this view: on the far right side, immediately above the set of
rows for the steps, are two icons that allow you to look more closely at logs. The one
in the form of a square with a diagonally pointing arrow allows you to display the log
for the selected step in a new full-size screen. The icon next to it, with the downward
pointing arrow, allows you to download a copy of a log.

Part 1: Managing Existing Pipelines | 335

Changes
The next view to look at is shown by selecting the Changes tab. As the name implies,
this view shows the set of changes that were made in source management for this run.

Figure 9-24 shows the Changes view for one run of a particular pipeline.

Figure 9-24. Changes view for the run of a pipeline

The fields here are fairly self-explanatory if you are familiar with Git; however, we’ll
briefly describe them here for completeness (see Table 9-5).

Table 9-5. Changes view field descriptions

Name Description
Commit A portion of Git’s commit SHA1 (enough to uniquely identify it)
Author The user ID of the person who made the commit
Message The message supplied for the change when it was committed
Date The date of the last run (or time, if fewer than 24 hours have passed since the last run)

One useful feature of this Blue Ocean screen is being able to select and click on any of
the commits. This action will then jump to the change in the source management sys‐
tem. For example, clicking on the highlighted commit in the previous figure takes us
to the GitHub page with the details for it (Figure 9-25).

336 | Chapter 9: The Blue Ocean Interface

Figure 9-25. GitHub change page linked from Changes view

It’s worth noting that the information presented on the Changes screen is a subset of
the information found on the build output screen in the classic view (Figure 9-26).

Figure 9-26. Corresponding build output screen in classic view

Part 1: Managing Existing Pipelines | 337

Tests
Plugins such as JUnit allow us to archive test results and have Jenkins report on them.
Assuming there are steps that actually run the tests in the pipeline, code like the fol‐
lowing can be used to archive the test results:

 junit '**/build/reports/**/*.xml'

Such code would most commonly be included in post-processing designed to always
be run for a pipeline. For a Declarative Pipeline, this could take the form of:

post {
 always {
 junit '**/build/reports/**/*.xml'
 }

In a Scripted Pipeline, you could include it in the finally block of a try-catch-
finally structure:

finally {
 junit 'build/reports/**/*.xml'
 }

Based on this kind of step, in the classic view, Jenkins can create trend reports for suc‐
cess/failure of tests as well as produce detail screens on failing tests as shown in
Figure 9-27.

Figure 9-27. Classic view of failing tests detail

The Tests view in the run screen in Blue Ocean provides a similar detail screen for
failed tests. If the step to archive the tests was not included, the screen will display a
message stating “There are no tests archived for this run.” And if all the tests have
passed, the screen will display a message like Figure 9-28.

338 | Chapter 9: The Blue Ocean Interface

Figure 9-28. All tests passing

Pipelines are usually configured/coded in Jenkins such that failing tests set the build
result to “unstable.” This is represented in the Blue Ocean interface with a yellow
color and an exclamation point, so the Tests view showing an unstable state with the
failing test’s detail would look something like Figure 9-29.

Figure 9-29. Tests tab showing failing tests

Notice that we can expand the row for each of the failing tests to get the related log,
just as we could for the step logs on the Pipeline tab.

Artifacts
If your pipeline is configured to produce and archive artifacts, the Artifacts page will
let you view and optionally open or download those artifacts. This tab corresponds to
the Build Artifacts portion of the classic view’s screen shown in Figure 9-30.

Part 1: Managing Existing Pipelines | 339

Figure 9-30. Classic view screen showing artifacts produced from the build

The archive pipeline step allows for archiving artifacts in your code. In a simple
form, it looks like this:

 archive 'build/libs/**/*.jar'

Like the code to archive test results, such code would most commonly be included in
post-processing designed to always be run for a pipeline. For a Declarative Pipeline,
this could take the form of:

post {
 always {
 archive 'build/libs/**/*.jar'
 }

In a Scripted Pipeline, you could include it in the finally block of a try-catch-
finally structure:

finally {
 archive 'build/libs/**/*.jar'
 }

Figure 9-31 shows an example of the Artifacts view in the Blue Ocean interface.

340 | Chapter 9: The Blue Ocean Interface

Figure 9-31. Artifacts view

Note that the first item listed is pipeline.log. This is the log from this run of the pipe‐
line and is always available here, even if no other artifacts are archived.

Note also that the screen has icons on the far right to download the individual arti‐
facts, and you can click on an artifact’s name to “open” the artifact. (With the excep‐
tion of the pipeline log, opening may translate to just downloading for most
artifacts.)

Finally, there is a Download All button at the bottom. As the name implies, this but‐
ton can be used to download all of the listed artifacts at once as a ZIP file. This is
shown in Figure 9-32.

Figure 9-32. Downloading all artifacts as a ZIP file

One other point is worth mentioning about artifacts and test results. While we have
referred to the two interfaces (the Blue Ocean run screen and the classic view), these
items can also be accessed from the Stage View of a job in Jenkins. Figure 9-33 shows
an example with an unstable and a failed run. Note the artifacts accessible near the
top center and the testing trend graph at the top right.

Part 1: Managing Existing Pipelines | 341

Figure 9-33. Stage View showing Last Successful Artifacts and Test Result Trend graph

Part 2: Working with the Blue Ocean Editor
In this second part of the chapter, we’ll discuss the other key aspect of Blue Ocean, the
pipeline editor. This editor allows you (within limits) to create and update pipelines,
and parts of pipelines, through a more visual interface.

We’ll look at a couple of use cases: creating a new pipeline from a project without an
existing Jenkinsfile, and using the editor to add or edit content in an existing pipeline.

Creating a New Pipeline Without an Existing Jenkinsfile
Having an existing Jenkinsfile that defines your pipeline gives you a foundation for
making changes or adding functionality through the pipeline editor. But you can also
use the pipeline editor to create a completely new pipeline where there wasn’t one
before. In fact, this is the default workflow when you use the Blue Ocean interface to
create a new pipeline. Let’s see how this works.

If we were to start out with a Jenkins instance that did not have any pipelines yet and
opened Blue Ocean, we’d get a screen like the one in Figure 9-34. To create a new
pipeline, we could then simply click the button in the dialog.

342 | Chapter 9: The Blue Ocean Interface

Figure 9-34. Starting Blue Ocean with no pipelines in Jenkins

For the case where we already have existing pipeline projects in Jenkins, those will
show up in the pipelines list on the dashboard (as previously described). In that case,
we can create a New Pipeline by clicking the New Pipeline button on the Blue Ocean
dashboard (as shown in the upper-right corner of Figure 9-34).

From there, Blue Ocean prompts us to choose where the source repository is that we
want to use (Figure 9-35). Currently, the options include Git (meaning a Git repo we
have access to), GitHub (the public Git hosting service), GitHub Enterprise, Bitbucket
Cloud, and Bitbucket Server. For our example here, we’re going to start with a set of
code on GitHub, so we would click the GitHub button.

Figure 9-35. Choosing where to store pipeline code

Part 2: Working with the Blue Ocean Editor | 343

To connect to GitHub, Jenkins needs an access token (Figure 9-36). This is a token
that you generate on GitHub yourself.

Figure 9-36. Asking for credentials

If you already have a token, you can paste it in here. If not, you can click the “Create
an access key here” link to be taken directly to GitHub to create one. If you do that,
you’ll be prompted for your GitHub login information and then taken to the screen
for creating a token (Figure 9-37).

Figure 9-37. Creating a token in GitHub

344 | Chapter 9: The Blue Ocean Interface

The nice thing about this is that the permissions that Jenkins needs are already
selected on this screen. To complete the process, you need to enter something in the
“Token description” field, scroll to the bottom, and click the “Generate token” button.
Then a token will be generated for you (Figure 9-38).

Figure 9-38. GitHub token created

Copy this token and then paste it back into the Jenkins screen. Click the “Connect”
button, and Jenkins will access your GitHub account and present a list of organiza‐
tions for you to choose from, if you have more than one (Figure 9-39).

Figure 9-39. Choosing the GitHub organization

Progress Indicators

You may have noticed that as you’re going through these steps, pro‐
gress is tracked down the side on a line with the familiar halos (the
circular icons) on it. As steps are in progress, the halos are blue and
hollow. As you complete steps, the halos become green, filled in,
and checked off. This is intentional, as it is the same representation
that Blue Ocean uses for presenting pipeline stages.

Part 2: Working with the Blue Ocean Editor | 345

After selecting an organization, you are presented with a list of repositories within
that organization (Figure 9-40). There is a search field to filter the list if desired. From
the list, you can choose a repository and then click the Create Pipeline button to get
started.

Figure 9-40. Selecting a repository from the GitHub organization

In our example, we’re going to choose the “blue-ocean-demo” repository. If the repos‐
itory you choose already has a Jenkinsfile in it, then Jenkins will automatically
attempt to create an instance of the pipeline, defined in that Jenkinsfile, and run it for
you. In this case, there is no initial Jenkinsfile in this project, so Jenkins just reports
that and provides a button to create a new pipeline (Figure 9-41).

Figure 9-41. No Jenkinsfiles found

346 | Chapter 9: The Blue Ocean Interface

Clicking the Create Pipeline button takes us into the Blue Ocean pipeline editor, which
we’ll discuss next.

Working in the Editor
After telling Jenkins which GitHub project we want to base our new pipeline on, Jen‐
kins puts us into the Blue Ocean pipeline editor. The initial screen is shown in
Figure 9-42. The basic idea here is that instead of just typing in all of our Declarative
Pipeline code, we’ll use a combination of GUI elements (such as selecting items from
a list) and typing to create the main parts of our pipeline. Then, when we save our
changes, Jenkins will fill in the necessary syntax to incorporate our changes into a
Declarative Pipeline in a Jenkinsfile. That Jenkinsfile can then be committed and
pushed back into our project’s repository.

Figure 9-42. Initial screen of the editor

Let’s take a quick tour of the elements on the screen. The top row contains the stan‐
dard Jenkins “primary” links that we talked about earlier in the chapter. In the next
row is the name of our repository (not a link, by the way), a Cancel button to take us
out of the editor, and a Save button to save the changes we make.

On the lefthand side of the main part of the screen, we have a Start halo with a line
connecting it to an empty halo. The + in the second halo means we can click on that
to add a new stage to our pipeline.

Part 2: Working with the Blue Ocean Editor | 347

On the righthand side, of this main part of the screen, is the area where we can spec‐
ify pipeline elements. Furthermore, we can choose—or type in—values for them to
make up the parts of our pipeline.

From here, some examples will best serve to demonstrate how to use the editor.

Specifying global parts of the pipeline
We’re going to now create a pipeline using the editor. We’ll start out by specifying a
particular agent (via the agent’s label) that we want to run the main part of the pipe‐
line on. In the Pipeline Settings section, in the Agent field, we have a drop-down list
that we can select the type of agent from (Figure 9-43).

Figure 9-43. List to choose the type of agent

In this case, we’re going to use a standard node that we have available, so we select
“node.” A new Label* text box pops up for us to put the label in. In this case, we’ll use
a node labeled worker_node1. (See Figure 9-44.)

348 | Chapter 9: The Blue Ocean Interface

Figure 9-44. Adding an agent in the editor

This would correspond to code like this in a Jenkinsfile:

pipeline {
 agent{label 'worker_node1'}

Under that, we have an option to add environment variables. For illustration pur‐
poses, we’ll set a variable named COMPLETED_MSG to the value “Build done!” To do this,
we simply click on the circle with the + sign to the right of the Name and Value labels.
Text fields then pop up for us to enter the name and value for the environment vari‐
able, as shown in Figure 9-45.

Figure 9-45. Adding an environment variable in the editor

Part 2: Working with the Blue Ocean Editor | 349

This then would make our pipeline code:

pipeline {
 agent{label 'worker_node1'}
 environment {
 COMPLETED_MSG = "Build done!"
 }

Other Global Sections

You may recall from Chapter 7 that environment is only one of the
multiple global sections available in a Declarative Pipeline struc‐
ture. Currently, other global sections do not have their own GUI
interfaces to set up in the pipeline editor, but more will likely be
added over time.

Entry Errors
What happens if you enter something invalid in a field in the pipeline editor? The
editor will visually alert you with a pop-up with information about what’s wrong.

For example, if we had entered the name of the environment variable as COMPLETED-
MSG, the editor would have flagged it as shown in Figure 9-46 since a hyphen is not a
valid character for an environment variable.

Figure 9-46. Pop-up error notification

350 | Chapter 9: The Blue Ocean Interface

Notice also here that we have the “A stage is required” message since we haven’t yet
added a stage to the pipeline. If we had added a stage and the stage had an error or
invalid code, we would see something like Figure 9-47.

Figure 9-47. Error in pipeline stage

Now, let’s add an initial stage to our pipeline.

Saving Progress

One thing that might cause some confusion in the editor is what to
do after you have entered data in fields on the righthand side. The
Save button in the top row is for saving the contents of the entire
pipeline and updating in source control, and there is no Save or
Apply button for the individual pieces you are adding. As it turns
out, your updates are automatically saved in the editor and you can
simply click on another part of the screen to proceed.

Adding a new stage
To add a new stage to our pipeline, we just need to click on the halo with the + inside
it in the left section of the main screen. This results in the screen shown in
Figure 9-48.

Part 2: Working with the Blue Ocean Editor | 351

Figure 9-48. Adding a new stage

Let’s discuss what happened when we clicked on that halo.

In the left part of the screen:

• Jenkins highlighted the halo we clicked on, by filling it in and turning it blue.
That indicates it’s the currently selected stage that we’re editing.

• A new halo with a + was added under that one. This is a way to add steps to run
in parallel if we need them.

• A new halo with a + was added to the right of our selected stage. That gives us a
means to add another stage in our pipeline if needed.

In the right part of the screen:

• A new entry area was set up for us to type in the name of the stage.
• A button was added so that we can add a step to the stage.

For our purposes here, we’ll go ahead and just define a simple stage to get the source
for our project. So, we’ll type in “Source” for the name (Figure 9-49).

352 | Chapter 9: The Blue Ocean Interface

Figure 9-49. Naming the stage

Additional Commands

Notice the ellipsis (...) that appears at the end of the line where we
type in the name of the stage. In the pipeline editor, clicking on
these will bring up additional commands. In this case, there’s only
one option available: Delete. Selecting this will delete the entire
stage (not just the name), so be sure that is what you want to do
before you use that option.

Now we’re ready to add one or more steps to our stage.

Adding a step to a stage
Each stage in a Jenkins pipeline must have at least one step. If you attempt to move on
from the stage definition without adding a step, the pipeline editor will display an
error indication.

To add a new step to a stage, we just click the “+ Add step” button. Once we do that,
the selection pane on the right turns into a list of available step types to pick from
(Figure 9-50). We can scroll through the list to find the step type we want, or we can
type it into the search area.

Part 2: Working with the Blue Ocean Editor | 353

Figure 9-50. Choosing the step type

Here, we’ll use the GitSCM step for our Source stage to pull down our source code. In
the search box for the steps, we can type “git” and quickly find the “Git” step
(Figure 9-51).

Figure 9-51. Searching for a step

Selecting this step brings up a set of text fields that we can fill in to specify the param‐
eters. Note the * next to the Url field, meaning that it’s required. The main piece of
information we need to put in is the path to our repository, as shown in Figure 9-52.

354 | Chapter 9: The Blue Ocean Interface

Figure 9-52. Adding parameters to a step

Adding a Step to the Desired Stage

It’s important when attempting to add a step to a stage that you
ensure you have the correct stage (halo) selected in the diagram on
the left part of the screen.

At this point, let’s go ahead and save our work and commit it to the repository.

Saving and committing pipeline changes
Clicking the Save button in the pipeline editor brings up a dialog like the one shown
in Figure 9-53.

Part 2: Working with the Blue Ocean Editor | 355

Figure 9-53. Saving the initial pipeline

The fields here are self-explanatory. We’ll enter a simple description and choose to
commit this to a new branch just because we’re still developing this pipeline. We can
always merge it back into master later.

After filling in the fields, our save dialog looks like Figure 9-54.

356 | Chapter 9: The Blue Ocean Interface

Figure 9-54. Saving the new branch

After we click the “Save & run” button, Jenkins will spin for a few moments while it
updates the code and commits and pushes it over to GitHub. If we look in GitHub
after the save, we can see the new branch there with the new Jenkinsfile (Figure 9-55).

Figure 9-55. New branch shown on GitHub

Part 2: Working with the Blue Ocean Editor | 357

If we open up the Jenkinsfile on GitHub, we can see the code that was generated by
our actions in the pipeline editor. This is shown in Figure 9-56.

Figure 9-56. Viewing the generated contents of the Jenkinsfile on GitHub

As soon as the code is updated, Jenkins will spin up a build for it. While it’s running,
this looks like Figure 9-57. Note that the leftmost column features the halo being
updated as the build progresses, and on the far right is the icon to stop the build if
needed.

Figure 9-57. Build in progress

When the build is completed, the screen changes to look like Figure 9-58. Notice the
halo in the left column is now filled in, green, and checked to indicate successful
completion. Also, the icon in the rightmost column has changed into a circular arrow,
indicating it can be used to execute a rerun.

358 | Chapter 9: The Blue Ocean Interface

Figure 9-58. Completed build

Our simple pipeline works, but it doesn’t do anything significant with its one stage.
Let’s add another stage to do a build operation.

Editing an Existing Pipeline
To edit an existing pipeline for a multibranch project, we switch to the Branches view
and click on the next-to-last icon (the one that looks like a pencil) in the row for the
branch we want to update. Figure 9-59 shows the Branches view for our project.

Figure 9-59. Selecting to edit the pipeline in the Branches view

Once we click on the pipeline editor icon, we will be taken back to the pipeline editor
screen. To add a new stage after (and not parallel to) the Source stage, we simply click
the circle with the + sign in it that’s to the right of the Source stage. Then, on the
righthand side of the screen, we’ll name this stage “Build” (see Figure 9-60).

Part 2: Working with the Blue Ocean Editor | 359

Figure 9-60. Adding a new stage for Build

For this step, we’re going to want to invoke our Gradle build instance. We’ll first add
an environment section to ensure the version of Gradle we want is made available
and in the path. In our Jenkins global configuration, we have a version of Gradle con‐
figured under the name “gradle4” (Figure 9-61).

Figure 9-61. Gradle global configuration

In our pipeline, we can use the Declarative Pipeline’s tool step to specify that we want
to use this version and to ensure it is available for the pipeline. To do this, we find the
“tool” entry in the Steps section and then fill in the Name field with “gradle4”
(Figure 9-62). (The Type field can be empty for this case.)

Figure 9-62. Specifying that we want to use the gradle4 tooling

360 | Chapter 9: The Blue Ocean Interface

With this step added, our stage definition now looks like Figure 9-63.

Figure 9-63. tool step added

Next, we actually want to invoke Gradle to do our build. Since there isn’t a gradle
step, we need to use the shell step (sh) to run this. The only thing we need to have
Gradle do is call the build task, so this is straightforward. If we were writing this as
code in a pipeline along with the tool step, we would use commands like this:

tool 'gradle4'
sh 'gradle build'

Since this requires a shell call, we’ll just select the Shell Script step from the list, and
then enter the rest of the command as the argument. Figure 9-64 shows what this
looks like in the editor.

Figure 9-64. Adding a shell step to do a Gradle build

Part 2: Working with the Blue Ocean Editor | 361

No Starting or Ending Quote

Notice that when we are entering this command in the step win‐
dow, we do not put starting or ending quotes around it. If we do,
Jenkins will not be able to interpret it correctly.

Now, if we select the Build halo, our Build stage with the multiple steps looks like
Figure 9-65.

Figure 9-65. Build stage with multiple steps

We can now simply save our pipeline and have it committed and pushed to the pipe1
branch again (Figure 9-66).

362 | Chapter 9: The Blue Ocean Interface

Figure 9-66. Committing and saving a pipeline

Importing and Editing Existing Pipelines
We previously covered how to point Blue Ocean to existing GitHub organizations
and repositories and tell it how to create a new pipeline from a particular repository.
We also saw that there was an option to have it automatically discover any existing
Jenkinsfiles in branches in an organization.

If it can find a Jenkinsfile, then it simply imports it, creates a job for the branch, and
attempts to execute it.

Of course, if you are importing an existing pipeline from GitHub, there’s no guarantee
that the environment the pipeline needs will exist, unless you are importing to the
same or a duplicate system. For example, importing the pipeline we just created to a
different Jenkins instance causes the expected jobs to be set up for the branches with
Jenkinsfiles, but we can also see that those jobs that previously succeeded now fail
(Figure 9-67).

Figure 9-67. Failing jobs after import to a different Jenkins system

Understanding why and fixing these issues will give us a chance for a more in-depth
look at Blue Ocean.

Part 2: Working with the Blue Ocean Editor | 363

Simple debugging and editing of an existing pipeline
As noted earlier in the chapter, one of the nice things about the Blue Ocean interface
is that it segments the logs for a pipeline by the stage and step. To figure out what’s
wrong with our jobs here, let’s drill into the failed run of the job. We do that by click‐
ing on the row with the failure in the Activity view. From here, we can see that it was
the Build stage that failed (Figure 9-68).

Figure 9-68. Drilling in to find the failed stage

Then, by looking at the step logs for the stage below the pipeline graphic, we can see
the reason for the failure (Figure 9-69). In this case, the pipeline was trying to call
“gradle4,” and that isn’t recognized as a globally defined tool on this system.

Figure 9-69. Step log showing error

364 | Chapter 9: The Blue Ocean Interface

Looking at Log

Some of these tips were mentioned in other contexts earlier in the
chapter, but since it’s been a while, here are a few quick reminders
about looking at step logs:

• In our example we have only one step to choose from, but if
there were multiple steps, the one that failed would still be
indicated.

• Clicking anywhere in the “header” row for a step—the one
with the “X” in it, in this case—toggles expanding/collapsing
the logs for the step.

• When collapsed, the second symbol in the header row will be
“>”. When expanded, the second symbol in the header row will
be “V”.

• Clicking the icon with the diagonal, upward pointing arrow on
the far right above the step logs will open up the log for the
selected step in a new window, similar to looking at the con‐
sole output.

• Clicking on the icon with the downward pointing arrow and
the line under it will download a copy of the log as a separate
file.

If we go to the Global Tool Configuration section on this system, we can see why this
failed. (We can get to the Manage Jenkins page from the Blue Ocean screen by click‐
ing on the “X” in the upper-right corner of this screen, and then the Administration
link on the main dashboard page.) Looking at the Gradle installations on this system
(Figure 9-70), we can see that Gradle is referenced as “gradle32” and not “gradle4.”

Figure 9-70. Different Gradle version

Of course, we could change the name for the Gradle global configuration to match
what’s expected, but that might break other existing jobs that use that name. We could
also add a second reference with the new name. But instead, let’s see how to go in and
edit our job in Blue Ocean to match the configuration for this system.

Part 2: Working with the Blue Ocean Editor | 365

Going back to our Branches view, we see that we have the pencil icon available to
open the editor on the pipe1 branch (Figure 9-71).

Figure 9-71. Editable branch in Branches view

This will put us into the pipeline editor. Since it doesn’t know what stage or step we’re
intending to work with, it just starts us out at the initial “Pipeline Settings” point in
the interface (Figure 9-72).

Figure 9-72. Default editor screen

From here, since we want to update a step in the Build stage, we can just select the
Build stage halo. That action then changes the context on the righthand side of the
editor to show the Build stage and its steps. This is shown in Figure 9-73.

366 | Chapter 9: The Blue Ocean Interface

Figure 9-73. Build stage selected

Now, we click on the block containing the step for “Use a tool from a predefined Tool
Installation” and edit as intended. Figure 9-74 shows the updated step in the editor
after our edit.

Figure 9-74. Updated step

After this, we can choose to save and commit our changes back to the repository.
Figure 9-75 shows the Save Pipeline dialog that we get. Note that we have the option
to specify a different branch here if we want. We’ll do that by putting in “pipe2” for
the branch name, since we’re making changes for a different system, and just in case
there are further issues.

Part 2: Working with the Blue Ocean Editor | 367

Figure 9-75. Saving the updated pipeline and committing/pushing to a new branch

After we save our changes and Blue Ocean commits/pushes the changes to pipe2, it
will build the updates.

Debugging editor issues
Let’s look at one additional (more complex) example. Assume that, rather than using
two separate statements to invoke Gradle, we want to combine them into one state‐
ment as we’ve done previously in the book. That is, instead of the code in our Jenkins‐
file being this:

stage('Build') {
 steps {
 tool 'gradle32'
 sh 'gradle build'
 }
}

we want it to be simplified to this:

stage('Build') {
 steps {
 sh "${tool 'gradle32'}/bin/gradle build"
 }
}

To make this change, we first want to remove the unneeded tool step. Doing this sort
of edit in Blue Ocean is fairly easy. On the main page for our pipeline, we first select
the halo representing the Build stage. Then, the righthand side of the screen will show
the steps we currently have in the stage (Figure 9-76).

368 | Chapter 9: The Blue Ocean Interface

Figure 9-76. Selecting the stage to edit

In the Steps area, we can select the tool step (labeled “Use a tool from a predefined
Tool Installation”) and click to drill into it. Once working with the individual step, we
can click on the “...” near the top right and select Delete for the action to delete this
step (Figure 9-77).

Figure 9-77. Deleting a step from a stage in Blue Ocean

We can then select the remaining step in our stage (the step to invoke the shell script)
and modify it to have the combined command (Figure 9-78).

Part 2: Working with the Blue Ocean Editor | 369

Figure 9-78. Editing the shell step to have the combined command

We can then save and commit our updated pipeline (Figure 9-79). As with the other
changes, we’ll save it to a new branch (pipe3).

Figure 9-79. Saving the modified pipeline

Unfortunately, this time our pipeline fails to build after saving and committing
(Figure 9-80).

Figure 9-80. Failed run of our new branch

370 | Chapter 9: The Blue Ocean Interface

Since the only change was the deletion of the separate tool step and creation of the
combined step, the problem must reside in that change. Interestingly, if we look at the
command in the editor, it still looks correct. (We won’t show that here since it is the
same as the earlier figures.) However, if we drill into the run and expand the log for
the step, we see an interesting message (Figure 9-81) that ends with the following text
on line 2:

.../script.sh: Bad substitution

Figure 9-81. Odd error message from the editor

At this point, it can be confusing to try to figure out why the pipeline build fails even
though our step, as shown in the row above the expanded log, looks perfectly valid.
There is one other place we can go to check on things—the generated Jenkinsfile that
was saved and committed/pushed into our GitHub repository. Figure 9-82 shows the
generated Jenkinsfile.

Part 2: Working with the Blue Ocean Editor | 371

Figure 9-82. Jenkinsfile with step with incorrect quoting

Notice line 16:

 sh '${tool \'gradle32\'}/bin/gradle build'

This is not the quoting we entered. The Blue Ocean editor has grouped the entire
command in single quotes and escaped the quotes around gradle32, which is what
has caused the issues. The problem is that we needed to use quotes within our com‐
mand. In fact, to make this command work, we need double quotes around the step
to ensure the value we get back from the tool call is interpolated correctly. However,
the editor engine can’t automatically recognize these requirements and simply sur‐
rounds the statement with single quotes and escapes any quotes within the statement.
This is an example of some functionality that is not (yet) working as it should in the
editor.

372 | Chapter 9: The Blue Ocean Interface

Editor Development

It’s worth noting that the quoting problem mentioned here exists at
the time of this writing, but it may be fixed by the time you read
this. You can attempt operations similar to what we’re doing here
and see if your instance has any issues.
However, the approach for debugging by examining the generated
Jenkinsfile still applies to other situations.

So, how can we fix this? You might wonder if it would fix things if we explicitly put in
the double quotes around the step in the editor. Unfortunately not, as we still get the
same behavior as before. In that case, the error message would be the same, but we
would get this line as the generated step in the Jenkinsfile:

 sh '"${tool \'gradle32\'}/bin/gradle build"'

This, again, is not correct.

Outside of the editor, we could pull the Jenkinsfile down and manually edit it to fix
the quoting, and then push it back. However, if we want to fix it via the editor, we’ll
need to put a different syntax in for the step—something without quoting mixed in.

One “kludge” could be to simply put in the full path to Gradle, taking the value of
GRADLE_HOME from the global configuration and plugging that in, as in:

/usr/share/gradle/bin/gradle build

However, a cleaner approach would be just to set our code back to the way it was
originally with the separate tool and sh steps, and save our changes again.

Adding code not supported in the editor
While the Blue Ocean editor continues to evolve and improve over time, you may still
come across situations where certain constructs are not supported—even for declara‐
tive syntax.

One such example for the pipeline we have been working with could be if we wanted
to use the post section in declarative syntax to always print a “build done” message.

We already have an environment variable defined with the simple string that we want
to print. We can certainly add a step through the editor to print (echo) the message
out. However (at least at the time of this writing), there isn’t a good way to add the
post section via the editor.

In such cases, we can always go outside of Jenkins, pull the latest generated Jenkins‐
file, modify it to have the code we want, and then push it back out. The following
code listing shows a portion of our pipeline modified in this way to add the post
section:

Part 2: Working with the Blue Ocean Editor | 373

...
 stage('Build') {
 steps {
 sh "${tool 'gradle32'}/bin/gradle build"
 }
 }
 }
 environment {
 COMPLETED_MSG = 'Build done!'
 }
 post {
 always {
 sh 'echo $COMPLETED_MSG'
 }
 }
}

With this code in place, we can then run our pipeline again in the editor. In this sce‐
nario, since the added code is not a new stage, there is no new halo for this section.
But the step logs do show the code being executed, and we can view the log details
just as we would for any other step (Figure 9-83).

Figure 9-83. Run of externally updated Jenkinsfile, with new post section

Looking at this sort of workflow, we can see how well GitHub is integrated into this
pipeline creation/editing process. But as you may recall from earlier screens, in this
part of the chapter, GitHub wasn’t our only option for a source repository. We’ll wrap
up this chapter by discussing how the interaction with Blue Ocean works when we
are using a non-GitHub repository.

374 | Chapter 9: The Blue Ocean Interface

Working with Pipelines from Non-GitHub Repositories
When working with pipelines from non-GitHub repositories in the editor, the main
difference is simply how you connect to the repository.

For example, if you wanted to access a local Git repository, you might supply an SSH-
style URL to connect to. Blue Ocean will detect this and then generate a public SSH
key for access. You will need to register this public key with the Git server. If you have
shell access, this may just mean adding it to the authorized_keys file on the server.

Figure 9-84 shows an example of this. One other case that this figure shows is what
happens when the default name for the pipeline already exists in Jenkins. In that case,
Jenkins will require you to create a different name for the copy of the pipeline being
created here.

Figure 9-84. Creating a new pipeline from local Git

Part 2: Working with the Blue Ocean Editor | 375

For Bitbucket Cloud, you need to fill in your Bitbucket user ID (email address) and
password and then proceed from there (Figure 9-85). For GitHub Enterprise or Bit‐
bucket Server, you first need to tell Jenkins where your server is located.

Figure 9-85. Creating a new pipeline from Bitbucket Cloud

This completes our look at using the Blue Ocean pipeline editor. As you can see, it
contains many of the pieces we need to construct and edit pipeline for GitHub—but
not all of them. Some pieces still have to be manually entered and updated.

376 | Chapter 9: The Blue Ocean Interface

Summary
This chapter introduced Blue Ocean, the new visual interface for Jenkins. Blue Ocean
allows you to see graphical representations of existing pipelines, with most of the
familiar types of pages (dashboard, run detail, etc.) as you would have in the Jenkins
“classic” view.

Blue Ocean also contains functionality to create and edit new pipelines for reposito‐
ries that don’t already have a Jenkinsfile.

Blue Ocean works best with Declarative Pipelines. In fact, that’s the only kind of pipe‐
line it can create and/or edit. It also works well for projects that have multiple
branches, and integrates nicely with the various public and local environments for
Git, GitHub, and Bitbucket.

When showing pipelines, Blue Ocean provides a nice feature in segmenting logs by
build step based on which stage is currently selected. It provides views of the changes
that went into updating a pipeline, completed/failed tests, and artifacts generated by
the pipeline. It can also show pull requests for GitHub projects that have them (if they
originated from a fork).

The Blue Ocean interface provides a simpler way for those starting out to get familiar
with building pipelines. Its graphical interface and point-and-click options (such as
the ones for defining new stages and steps) are simple to use once you are familiar
with the workflow. For more complicated pipelines, though (and in some places
where Blue Ocean doesn’t yet support the syntax), you may be better off just editing
and developing the Jenkinsfile outside of the interface.

In our next chapter, we’ll look at different kinds of conversion scenarios you may
encounter as you work with Jenkins 2.

Summary | 377

CHAPTER 10

Conversions

With the advent of Jenkins 2, the Jenkins user now has many options for ways to cre‐
ate and express pipelines. They include the traditional Freestyle jobs, pipeline code in
the Jenkins application itself, and pipeline code stored in Jenkinsfiles. Additionally,
pipeline code can be written either in the Scripted Pipeline syntax or the Declarative
Pipeline syntax. With all of these ways to define pipelines, it is highly likely that the
user will need, or want, to do some sort of conversion between the various forms at
some point. This chapter will provide guidelines on accomplishing some of these
conversions.

In particular, we’ll focus on three main types of conversions:

• Converting from Freestyle jobs to a pipeline in the Jenkins application
• Converting from a Scripted Pipeline to a Jenkinsfile
• Converting from a Scripted Pipeline to a Declarative Pipeline

“Freestyle”

Note that we are using the term “Freestyle” here loosely, to mean
any traditional Jenkins job or pipeline created via the web forms.
This most typically will be using the Freestyle job type, although
other types might be used as well. For other job types, the general
concepts and discussions should still apply.

Rather than attempt to provide every detail about how to do a conversion, we’ll focus
on guidelines and some selected examples to illustrate the approach and principles
involved for each of these categories. While these do not cover every possible case,
they should cover enough to give you a good grasp of how to handle the other cases.

379

Assumptions

It’s worth noting that this chapter assumes you have read the other
chapters and are familiar with the concepts and tools they intro‐
duce, such as the Snippet Generator. If not, you can scan the Table
of Contents or the Index to find the necessary references.

Common Preparation
Before beginning a conversion, there are a few general things to consider. While not
an absolute requirement, this may save you some work later on. Most of the items
descriubed here are in the form of questions, designed to remind you of information
you may want to gather up front for the existing pipeline.

Logic and Accuracy
It may go without saying, but before you convert from an existing pipeline of one
form or another, you want to make sure that the existing pipeline runs as expected
and completes successfully. That doesn’t mean you can’t redesign or refactor parts of
the pipeline as you convert it, but ensuring you have an existing pipeline that works
will give you a reference to test against and compare results and logic to.

Project Type
Jenkins 2 introduces a number of different project types and structures that were not
previously available. It is worth considering at this point whether your converted
pipeline jobs might better fit into a Jenkins folder structure, a Multibranch Pipeline
project (if you can make use of a Jenkinsfile and multiple branches), or a GitHub
Organization or Bitbucket Team/Project project (if you have one of those already set
up).

The various kinds of new projects available in Jenkins 2 are discussed in detail in
Chapter 8.

Systems
Next, consider what nodes the pipeline currently uses. Will the new pipeline have
access to these, or do new ones need to be set up? What are the labels of each system
that is used? Is anything running on the master node? If so, is it appropriate to be run
on the lightweight executor there? Do you need to add any additional labels to the
node configurations to fit your new pipeline?

380 | Chapter 10: Conversions

Access
What access to resources or user permissions are needed for the parts of the pipeline
to run? Are certain credentials required, or do new/additional ones need to be
defined and set up?

Another use case might be transitioning from a Freestyle project to a Multibranch
Pipeline or GitHub Organization/Bitbucket Team project. In those cases, you might
need to ensure you have access to the code in the external repository and set up sup‐
porting pieces like the webhook for a GitHub project (as discussed in Chapter 8).

Also, if you choose to create or use shared libraries, you will want to consider whether
they should be global or not, and who should have access to update them. (Chapter 6
discusses shared libraries in detail.)

Global Configuration
Luckily, telling Jenkins where global tools are located still involves the same basic pro‐
cess. In the Global Tool Configuration (or System Configuration, depending on the
tool), you add an entry for the tool and specify a name and installation location. No
significant changes are needed in most cases for this part. However, it’s worth review‐
ing the configuration to see whether any newer (or different) versions are warranted.
This also serves to refresh your knowledge of what’s available and how it can be
accessed.

Plugins
Since Jenkins derives most of its functionality from plugins, the correct ones need to
be installed. Are there updates that need to be done? If converting from a Freestyle to
a Pipeline project, do the operations done in the Freestyle job have corresponding
pipeline DSL commands?

In order for plugins to be compatible with the new Jenkins 2 features, they must be
updated from the traditional versions. There are primarily two criteria:

• They must be able to survive restarts (be serializable).
• They need to provide steps that can be integrated with pipeline DSL code.

So, the first order of business when looking to migrate the specific functionality of
some technology in a Jenkins pipeline is to ensure that you have an updated plugin
version installed that is compatible with the pipeline DSL. To find out about compati‐
bility with your designated technologies, you can reference sites such as the Pipeline
Steps Reference or Plugin Compatibility with GitHub.

Common Preparation | 381

https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
http://bit.ly/2qQ3gT5

Shared Libraries
Shared libraries are a convenient way to compartmentalize code that needs to be
reused, or that needs to contain complexity, or that must be separated out for security
purposes. Consider whether there is such functionality in your existing pipeline that
you want to move into a shared library. If so, it would be advisable to work on coding
your shared library early to ensure it will work as you think and can be called from
your code.

Note that these comments could also apply to externally loaded code (also discussed
in Chapter 6) if you choose to use that instead of shared libraries.

Converting a Freestyle Pipeline to a Scripted Pipeline
Now that we’ve covered the prerequisites and migration considerations, let’s actually
walk through (at a high level) a conversion of an example Freestyle pipeline to a
Scripted Pipeline. Figure 10-1 shows a typical example of a deployment pipeline and
the pieces associated with it.

Figure 10-1. Parts of a typical deployment pipeline

Stages

Use of the term “stage” in Figure 10-1 does not imply a Jenkins
pipeline stage; it is just a way to describe a section of the pipeline.

For some of my training courses, I have implemented this type of pipeline with Free‐
style jobs in Jenkins. Essentially, each block was implemented by a single Jenkins job
that, if successful, chained to the next job.

Figure 10-2 shows this set of Freestyle jobs in a traditional Jenkins list view. Note that
each job has a descriptive name that maps to a part of the pipeline.

382 | Chapter 10: Conversions

Figure 10-2. Pipeline expressed as a series of traditional Jenkins Freestyle jobs

This pipeline relies on several different open source technologies for implementation.
Table 10-1 lists these and briefly describes their purpose in case you are not familiar
with them.

Table 10-1. Technologies used in example deployment pipeline

Name Purpose
Jenkins Workflow management/orchestration
Git Source management
Gradle Build automation
SonarQube Code analysis and metrics
JaCoCo Code coverage
Artifactory Binary artifact storage and management
Docker Container and image creation

The pipeline performs the following tasks:

• Gets the designated source
• Compiles the source and runs unit tests
• Runs a simplified integration test (using a test database)
• Does code analysis with SonarQube (metrics) and Jacoco (code coverage)
• Assembles an artifact
• Publishes the artifact into the artifact repository (Artifactory)
• Gets the latest artifact out
• Deploys it to a container in Docker for functional testing

Converting a Freestyle Pipeline to a Scripted Pipeline | 383

• Deploys it for public use

The application itself is a simple web app that uses an underlying MySQL database
and exposes a simple REST API. An example of the web app running is shown in
Figure 10-3.

Figure 10-3. Sample web app

The underlying Gradle project is made up of four separate subprojects: one for the
API, one for data access, one for utility code, and one for the web-centric code.

Obviously, this is a very simplistic and contrived pipeline example, but it serves to
illustrate the main parts of a continuous delivery pipeline/workflow.

Let’s now dive in and look at converting some of the Freestyle jobs into correspond‐
ing stages in a Scripted Pipeline.

Scripted or Declarative?
When converting from traditional Freestyle jobs in Jenkins to a pipeline, you have a
key choice up front: Scripted or Declarative. The main factor to consider here is the
complexity of your pipeline. The Declarative Pipeline structure was developed in part
to make it easier for users to convert from Freestyle Jenkins projects to a Pipeline
implementation. One way it does this is by providing a structure with sections similar
to the available sections in a Freestyle job.

Take a look at the Declarative Pipeline structure as shown in Figure 10-4. Even if you
aren’t familiar with Declarative Pipelines (discussed in Chapter 7), you can probably

384 | Chapter 10: Conversions

start to pick out some parts that seem to correspond to sections of a traditional Free‐
style job.

Figure 10-4. Declarative Pipeline structure

This correspondence between the parts of a Declarative Pipeline and the parts of a
Freestyle job make Declarative Pipelines an attractive choice for conversion for sim‐
ple pipelines—when all parts can be expressed in a declarative format. However, cur‐
rently the limitations associated with using some constructs and plugins with
Declarative Pipelines can make them challenging for an initial conversion. For this
reason, we will first walk through converting a traditional pipeline to a Scripted Pipe‐
line and then later show how a Scripted Pipeline might be converted to a Declarative
one.

Converting a Freestyle Pipeline to a Scripted Pipeline | 385

Source
When you first start looking to convert a Freestyle pipeline, you’ll want to find the
section that pertains to the pipeline stage you’re interested in creating. For example, if
we wanted to create a Source stage to pull down the source for our pipeline, we
would first find the SCM section in our Freestyle project. (In the sample project,
retrieving the source code was tied in with another job in the original version, but it
works well to have it as its own stage in our pipeline.)

Choosing How to Map Traditional Jobs to Pipeline Stages
At a high level, individual Freestyle jobs may be suitable to convert into pipeline
stages. For example, if we look at a representation of a chain of Freestyle jobs in the
older form of the Build Pipeline plugin in Figure 10-5, we can see this looks very
much like the Stage View representation of a Jenkins 2 pipeline.

Figure 10-5. Build Pipeline plugin representation of a pipeline

In general, a good guideline if you have multiple Freestyle jobs chained together is to
create a corresponding stage for each Freestyle job.

This assumes, however, that your Freestyle jobs are each set up to do one operation.
That may not always be the case. For example, some users might have a single job that
pulls down source, does the build, and runs unit tests. Another user might have three

386 | Chapter 10: Conversions

separate Freestyle jobs chained together for those functions. Both are legitimate use
cases, and each may work better in one situation or another.

Both of these cases can also be modeled in pipelines—either as a single stage that
pulls down source, does the build, and runs unit tests, or as three separate stages, each
doing one of those functions.

When you are first learning about and starting out with pipelines, the recommended
approach is to create more separate stages to isolate each type of operation/function
rather than trying to do multiple kinds of operations in each stage. The reason for this
is to allow for focusing on getting the pipeline code correct for each kind of operation
without mixing in other variables. You are going from a guided web form interface to
a programming interface, and breaking the process down into smaller chunks can
simplify the transition.

Here, Declarative Pipelines can offer an advantage since they more closely resemble
the parts of a Jenkins web form. However, as noted in other places in this chapter, that
advantage comes at the price of flexibility. Smaller chunks of functionality also make
it easier to quickly isolate problems if a stage fails.

Unfortunately, there isn’t really a great way in Jenkins pipelines yet to temporarily dis‐
able a stage, short of commenting it out or removing it during a Replay attempt (see
Chapter 2 for more information on the Replay functionality). Plowing through error
reports/tracebacks can also be challenging, so the more granular approach to isolating
functionality in stages can pay off at debug time as well.

This approach can have its challenges, especially if tooling tries to perform multiple
functions for you automatically. You may have to override the tooling or specifically
force it to do less in a stage. As an example of that, consider the Gradle build tool and
its (usually) convenient approach of convention over configuration. For Java projects,
if your Java source files are in a standard Maven-style directory structure, Gradle can
detect those and automatically build them without you having to tell it about where
they are.

Likewise, if Gradle detects files in a corresponding directory structure for tests, it will
assume those are unit tests and build and execute them as part of the same task. So, a
build task for Gradle automatically includes an operation to build and execute unit
tests if Gradle detects test files in the expected structure. This kind of effect can typi‐
cally be mitigated via the application. For example, you can supply a −x option to tell
Gradle not to run a particular task even if it thinks it can and should.

Figure 10-6 shows the section for a GitSCM configuration in a Freestyle project. (The
setup would be similar for other SCMs.)

Converting a Freestyle Pipeline to a Scripted Pipeline | 387

Figure 10-6. Freestyle project SCM form

From this, we can identify the parameters that we need. A reasonable first question
when considering converting this to a new pipeline is whether there is an existing
DSL step for this functionality that we can leverage in our pipeline.

Mapping Web Fields to Pipeline Steps

In many cases, the values and options that were asked for in the
traditional Jenkins forms have become parameters that are passed
to the steps created to allow integration in pipeline code. So often,
you can get a rough idea of what the named parameters for the step
might be based on the former web forms and the names of the
fields or options.

To determine the answer to that question, we can go to the Snippet Generator (via the
Pipeline Syntax link in the left menu of any pipeline job screen) and look for a step
with a related name. In this case, we’ll find one named “git” that looks promising.
Selecting that step gives us a form with similar fields to the ones we are using
(Figure 10-7). We can then plug in those values and click the Generate Pipeline Script
button to get a step for our pipeline.

388 | Chapter 10: Conversions

Figure 10-7. “git” step from Snippet Generator

We can now take the code from the Snippet Generator, wrap it in a stage closure,
and wrap that in a simple node step in a pipeline job to try it out. The code could look
something like this (assuming we are plugging this into a new pipeline project that we
are working on):

node ('worker_node1'){
 stage('Source'){
 git branch: 'lab1', credentialsId: 'jenkins2-ssh',
 url: '/opt/git/pipeline.git'
 }
}

If we are working directly in Jenkins and putting the code into a Pipeline project,
then we can simply save it and tell Jenkins to try to build it now. Jenkins will immedi‐
ately report any syntax errors, and if there are none, it will execute and build the
stage.

You can easily tell whether the code worked via the Stage View (Figure 10-8) or the
Console Log if you need more detail.

Converting a Freestyle Pipeline to a Scripted Pipeline | 389

Figure 10-8. Initial build of our simple Source stage

Working Directly in Jenkins Versus in a Jenkinsfile

We will be talking more about Jenkinsfiles later in this chapter—
but, even once you understand what they are and how to use them,
during a conversion it is generally simpler just to plug the code
directly into a project of type Pipeline that you create within the
Jenkins application. The reason is that using a Jenkinsfile requires
creating a project to reference or find the Jenkinsfile, updating the
Jenkinsfile via an editor, then committing and pushing it out to a
source code repository. If you then run into an error, you have to
make changes to the file and commit and push it again.
Working directly in a Pipeline project in the Jenkins application
saves time and operations, since you can directly enter the code,
save it, and then try to do a build without having to externally edit
or update the code in source control first.
For this reason, during a conversion, it is usually more convenient
to work directly in Jenkins first, and then convert to a Jenkinsfile
(covered later in the chapter) once things are working.

As you can see, working with this approach of taking the parameters from the Free‐
style job, plugging them into the Snippet Generator, and then putting the result into a
stage closure and trying it out is fairly straightforward. It won’t always be that simple,
but for plugins that have contributed simple DSL steps (with data for the Snippet
Generator), this can often get you close.

More complicated cases may require multiple steps, especially if there is additional
configuration to be done, or an environment to use for the operation. In the latter
case, you may often have a “with...” DSL block of some kind to use as well. We’ll look
at these more complicated cases as we go along.

390 | Chapter 10: Conversions

Generic SCM Step

You may be interested to know that the git DSL step we are using
here is just a specialized form of the generic DSL step available for
pipelines. If we were to utilize the generic DSL step instead, it
would look more like this:

checkout([$class: 'GitSCM', branches: [[name: '*/
lab1']],
 userRemoteConfigs: [[url: '/opt/git/pipe
line.git']]])

Next, we’ll look at a simple compile step.

Compile
After pulling down the source, most pipelines will have a “build” stage of some sort.
In some cases, this may involve more than just a compile action. It could also create
deliverables and/or execute defined unit tests, for example.

Figure 10-9 shows an example of a Freestyle job invoking the build tool Gradle to run
a series of “tasks” (Gradle jobs) as part of a pipeline. We want to look at a couple of
details here. First, notice that we have selected a specific Gradle version to use, as
identified by the name “gradle3” in the Gradle Version field.

Figure 10-9. Freestyle build invocation

This maps back to a particular version of Gradle installed on our system, identified by
the “gradle3” name in our Global Tool Configuration. This follows the traditional
approach of installing an application: installing the plugin in Jenkins and then giving
a name to the global installation to reference that particular installation. An example
of the global configuration in Jenkins is shown in Figure 10-10.

Converting a Freestyle Pipeline to a Scripted Pipeline | 391

Figure 10-10. Global configuration of installed Gradle version

Tool Default Versions

It is legitimate in Jenkins Freestyle projects to not select a particular
version by name, but simply to use the “default” version. This will
work as long as there is a version of the application available
through the path that Jenkins checks.
However, accessing tools based on an external path is not a best
practice. A possible exception would be for a tool like Git that typi‐
cally has only one version in use at any one point in time, and is
not updated frequently. Even in those cases, though, for the sake of
clarity, removing ambiguity, and troubleshooting, configuring spe‐
cific versions in Jenkins is preferred.

We are also referencing multiple Gradle tasks here (clean, compileJava, test, arti
factoryPublish). A full explanation of each one of these is beyond the scope of this
book. However, you can probably tell from the names of several of them what they
do. Here is a quick explanation:

• clean cleans out build output.
• compileJava compiles our Java source.
• test attempts to compile and test any Java test cases that it finds.
• artifactoryPublish attempts to publish designated build types (such as a JAR

or WAR for Java) to an “archive repository” such as Artifactory.

The -x option is a switch that tells Gradle not to execute this task. The reason we have
that in front of artifactoryPublish is because Gradle will attempt to execute that
task normally, based on what it can determine about Artifactory being integrated in
our builds. We’ll have more to say about Artifactory integration in Chapter 13, but to
keep things simple, we won’t consider it in our exposition of conversion to pipeline
steps.

So, to convert this section to a pipeline script, we need to first consider whether we
want to do exactly the same set of operations in our stage. For simplicity, let’s say that

392 | Chapter 10: Conversions

we are only going to execute the clean and compileJava tasks in our Compile pipe‐
line stage. We do not want it to do the test task (we will save that for another stage)
nor will the artifactoryPublish task be needed yet.

Deciding What to Include in a Stage

You may be wondering why you might want to save the test task
for another stage. There can be a couple of reasons. Most com‐
monly, you may want to separate out functionality in your pipeline
so that you don’t overload a stage and can easily identify success or
failure for particular steps. Another reason might be to handle an
operation (or set of them) on a different node or multiple nodes (if
running in parallel makes sense), or perhaps in a container instead
of on a typical node. Finally, you might want to have a manual
handoff or check before executing particular functionality.

So, taking all of this into account, our actual Gradle invocation becomes this:

gradle clean compileJava -x test

We use the -x option again here to tell it not to try to do the test processing, since
we’re saving that for another stage. Normally, Gradle would try to do this automati‐
cally for us here if it finds test files in an expected location. (This is an example of
Gradle’s usually helpful “convention over configuration” default behavior.) The test
cases will be present if they are included in the set of source that the git step brought
down.

This looks like a fairly straightforward command (step) to add to our pipeline script,
assuming there is a gradle command provided by the Gradle plugin for the DSL. To
check this, we can go to the Snippet Generator again and look through the list of
steps that are available.

As of the time of this writing, there is no step named gradle. However, you may
notice a step named build. This looks promising at first glance. When you find a step
that you think you can use, it is important to confirm that it will do what you think.
The easiest way to do that is by clicking on the help icon (the blue button with the
question mark in it) that is closest under the step. Doing that in this case shows the
explanation of the step as shown in Figure 10-11.

Converting a Freestyle Pipeline to a Scripted Pipeline | 393

Figure 10-11. Help info for the build step

Looking at this, we can see that this is not a generic step for invoking build tools.
Rather, it is a step designed to kick off building entire Jenkins jobs—not what we
want.

How then do we invoke our Gradle command without a DSL step to do it? In most
cases, if you have an executable to run (such as Gradle here) and you don’t have a
DSL step with that name, that’s an indicator that you need to fall back to running it by
using a shell call. And fortunately, the DSL has two commands for executing shell
steps:

sh

The command used for executing shell calls on Unix-type systems

bat

The command used for executing shell calls on Windows systems

You can find further information on both in the Snippet Generator (and in Chap‐
ter 11). In our case, we want to leverage the sh DSL step. If we go into the Snippet
Generator, find the sh step, and then fill it in with what we think our command
should be, we get this generated Groovy script command:

sh 'gradle clean compileJava -x test'

This will work in our pipeline if we have Gradle in a path where Jenkins can always
find it. However, recall that in our original Freestyle project we were referencing a
specific Gradle installation (one is defined globally in our Jenkins system).

We want to reference that same installed version in our conversion to the pipeline
script. So how do we do that? It turns out that the Jenkins DSL includes a step just for
this purpose. It’s one that we have discussed in earlier chapters, but in case you aren’t
familiar with it yet, the step is named tool. The help text for this step defines it as
follows:

Binds a tool installation to a variable (the tool home directory is returned). Only tools
already configured in Configure System are available here. If the original tool installer
has the auto-provision feature, then the tool will be installed as required.

394 | Chapter 10: Conversions

Essentially, given the tool name in our Global Tool Configuration, the tool step will
return the corresponding <tool>_NAME value. Referring back to Figure 10-10 and our
global setting for the Gradle installation, if we use:

tool 'gradle3'

it should return:

/usr/share/gradle

The trick then becomes how to incorporate this into our shell command that calls
Gradle. In a Scripted Pipeline, one way is to define a variable in the script that cap‐
tures the value and then incorporate that into the shell step. Here’s an example:

def gradleHome = tool 'gradle3'
sh "${gradleHome}/bin/gradle clean compileJava -x test"

Interpreting Values and Quotes

You may have noticed here that we are using the special syntax
${<name>} to tell Groovy to replace that with the value that has
been assigned to <name> elsewhere in our program. When we do
this, we also need to switch to using double quotes for our shell
step since they allow for interpolation of this sort.

This has the advantage that we can put the def gradleHome line globally in the Scrip‐
ted Pipeline (inside the node definition, but outside of any stages) and then reference
it wherever we need it. However, it also has a disadvantage in that it won’t work in
Declarative Pipelines. Furthermore, we can actually combine the two lines to make a
single call. If we do that, our command then incorporates the tool step combined
inside the shell step. It will look like this (adding a stage closure around it):

stage('Compile') {
 sh "'${tool 'gradle3'}/bin/gradle' clean compileJava -x test"
}

To briefly recap how the sh step works here:

• sh is our built-in DSL step to execute something in the Unix shell.
• The double quotes are necessary to allow the ${tool 'gradle3'} to be interpo‐

lated (resolved to a value).
• The '${tool 'gradle3'}/bin/gradle' section here does the following:

— Invokes the tool DSL step with the 'gradle3' argument. This looks up the
'gradle3' name in our Global Tool Configuration, which then maps that part
of the string to the GRADLE_HOME value that corresponds to the 'gradle3'
name.

Converting a Freestyle Pipeline to a Scripted Pipeline | 395

— Substitutes the returned value in the string, so that we end up with the specific
Gradle executable path of '/usr/share/gradle/bin/gradle'.

— Uses that resolved path to execute the specified Gradle tasks, running this
command in the shell: /usr/share/gradle/bin/gradle clean compileJava
-x test.

In the next section, we’ll discuss one approach to processing multiple items at the
same time—using parallelism in the pipeline—with the example of unit tests.

Unit Tests
Historically, one of the challenges with managing multiple projects in Jenkins was
running any of them in parallel. Certain plugins, such as Join and Build Flow, had
some mechanisms to support this, but they were not necessarily straightforward to
configure. One of the benefits of working in a pipeline environment is the ability to
easily script parallel processing using the parallel DSL step.

One case that usually lends itself to this approach is processing large batches of unit
tests, especially if they can be broken down into multiple independent sets.

“Dealing with Concurrency” on page 85 discusses setting up parallel processing in
more detail, but we’ll touch on the main points here and see how we might apply it to
a large set of simple tests.

Traditional Versus Alternative Parallel Syntax

The traditional way to implement parallel processing in a Jenkins
pipeline script is through the parallel step, which uses a map as
an argument. With the release of Declarative Pipeline 1.2, an alter‐
native syntax was added for Declarative Pipelines that allows defin‐
ing stages (instead of map elements) to handle each parallel path.
We will use the traditional map-based approach for the examples in
this section, since it works with either Scripted or Declarative Pipe‐
lines. However, if you are working in a Declarative Pipeline and
want to use the newer syntax, Chapters 3 and 7 both include dis‐
cussions of the alternative syntax.

The key to working with the traditional parallel DSL step is understanding that it
takes a map as an argument. The programmatic keys to the map are just labels to
identify the different branches, while the values contain the actual code blocks to exe‐
cute. As a means of distributing the load, we can use a node block around each code
block to ensure each branch runs on a different node.

Consider, for example, a set of tests for a subproject api of our sample Gradle project.
For simplicity, these unit tests are written in Java programs named Test1.java,

396 | Chapter 10: Conversions

Test2.java, etc. up through Test29.java. If we have two defined nodes avilable, node1
and node2, we might choose to run all Test1* tests on node1 and all Test2* tests on
node2. Using Gradle, we can pass the set of tests to run via a system parameter using
the -D test.single=<pattern> option.

Wrapping the parallel step in a stage (currently if parallel is used, it should be the
only step in a stage) could result in code like the following:

stage('Unit Test') {
 parallel (
 tester1: { node ('worker_node1'){
 sh "'${tool 'gradle3'}/bin/gradle' -D test.single=Test1*
 :api:test"
 }},
 tester2: { node ('worker_node2'){
 sh "'${tool 'gradle3'}/bin/gradle' -D test.single=Test2*
 :api:test"
 }},
)
}

Notice that we simply call the parallel DSL step and pass the map to it. Our map
consists of two branches with the keys tester1 and tester2 and the blocks of code as
the values. Each code block, in turn, consists of a node specification and then a call to
the shell to run the specific Gradle command. The Gradle command identifies a sub‐
set of tests and calls the test task in the api subproject.

Another way to code this would be to declare a map, then run through some code to
fill in the map elements. Afterwards, the parallel step can be invoked, passing just
the name of the map. (See Chapter 3 for an example of this.)

Distributing content across nodes
When coding something to run in parallel, it makes sense to use different nodes (or
node classes) for the different branches to distribute the load. However, this also
presents a requirement that you may not have thought about—how to get the same
content on multiple nodes so that all the needed pieces are there. Of course, one solu‐
tion would be to have a repeated Source step on each node to pull down the code.
However, this is redundant and expensive in terms of cycles and resources.

Fortunately, the DSL provides a simple solution—the stash and unstash steps. (We
discussed these in Chapter 3, but will do a brief repeat of stash and related topics here
for ease of reference.) As the names imply, we can use these commands to create a
“stash” of content from one node and then “unstash” that content onto other nodes.
The syntax is straightforward. The basic form of the stash step takes a set of comma-
separated includes (or excludes) and a name:

stash name: "<name>" [includes: "<pattern>" excludes: "<pattern>"]

Converting a Freestyle Pipeline to a Scripted Pipeline | 397

The idea here is that we designate a set of included or excluded files via names and/or
patterns. The stash itself is also given a name to refer to it by. To simplify things, we
can just add the stash step immediately after we do the source code retrieval within
the Source stage:

stage('Source'){
 git branch: 'lab1', credentialsId: 'jenkins2-ssh',
 url: '/opt/git/pipeline.git'
 stash includes: 'api/**, dataaccess/**, util/**, build.gradle,
 settings.gradle', name: 'testreqs'
 }

Then, when we need to retrieve the set of files in any other part of our pipeline, we
can simply pass the name of the stash to the unstash command. This can be done in
a different stage, node, or branch of a parallel statement. The format is simply:

unstash "<name>"

Appropriate Use of stash

It’s worth noting here that this stash command is different from
the stash command supplied for use in Git. The stash command
in Git allows for stashing content (from the working directory and
staging area) that has not yet been committed.
The scope of content that can be stashed here is wide, but for
longer-term storage and retrieval of large amounts of content, stor‐
age into an artifact repository such as Artifactory (discussed in
Chapter 13) is a better alternative.

Cleaning out workspaces

When using commands like stash and running across multiple nodes, it’s a good idea
to clean out the workspace each time first. Jenkins does not guarantee that workspa‐
ces will be clean or that they will persist over time.

If we have the Workspace Cleanup plugin installed, we can use the cleanWs step to
accomplish this.

398 | Chapter 10: Conversions

https://plugins.jenkins.io/ws-cleanup

Alternative Ways to Clean the Workspace

The cleanWs() call is the recommended way to clean out a Jenkins
workspace. The deleteDir() call may also be an option in some
cases, but it’s more limited in its utility since it only works for the
current node and has to be pointing at the directory. (See Chap‐
ter 11 for more information on both steps.)
In earlier versions of Jenkins 2, there wasn’t a cleanWs DSL step, so
the call to the plugin’s function had to be indirect—through the
generic step DSL step to the class. That looked like this:

step([$class: 'WsCleanup'])

You may see this in older pipelines, and it is still valid syntax as of
the time of this writing. However, the more direct cleanWs() call is
preferred.

Adding in the elements to clean up the workspace and unstash the needed pieces
results in our parallel unit testing stage looking like the following:

stage('Unit Test') {
 parallel (
 tester1: { node ('worker_node1'){
 cleanWs()
 unstash 'testreqs'
 sh "'${tool 'gradle3'}/bin/gradle' -D test.single=Test1*
 :api:test"
 }},
 tester2: { node ('worker_node2'){
 cleanWs()
 unstash 'testreqs'
 sh "'${tool 'gradle3'}/bin/gradle' -D test.single=Test2*
 :api:test"
 }},
)
 }

When executing this part of the pipeline, if you look in the Console Log, you’ll be
able to see the interspersed commands for the tester1 and tester2 branches as they
execute in parallel. (See also the example on this in Chapter 3.)

Converting a Freestyle Pipeline to a Scripted Pipeline | 399

Parallel Test Executor Plugin

Before we leave this section, it’s worth mentioning the Parallel Test
Executor plugin. After an initial good run of your unit tests, the
tool added by this plugin attempts to evaluate the timings for run‐
ning the tests. It then creates “include” or “exclude” files to break
the tests down into appropriate groups that can be spread across
nodes for the best parallelism and load balancing.
As of this writing, however, this plugin has a couple of issues that
make it challenging to use in most cases:

• It depends on the last run (before it is used) being a good run
of all the unit test cases.

• It requires a build tool that can accept include or exclude files
when running. (Currently Maven supports this.)

In the next section, we’ll look at how to incorporate credentials in the context of
another common pipeline stage: integration testing.

Integration Testing
Integration testing can take many forms. In our example Freestyle pipeline, we have a
job that leverages Gradle SourceSets and defines an integrationTest task similar to
the Gradle default test task that is provided by the Java plugin (we used the test task
for the unit testing in the previous section).

We’ll have more to say about Gradle SourceSets shortly. But another technique that
we’re leveraging here (which is more widely applicable) is using a test database for
our web app to run against. In particular, we are creating a test database with a single
command that redirects input into MySQL from an external SQL file. The basic com‐
mand in our Freestyle job is a shell step and looks like this:

 mysql -u<username> -p<password> registry_test < registry_test.sql

What is interesting about this is how we supply the credentials of username and pass‐
word to the command. Traditionally we have had a few choices:

• Hardcode the username and password
• Manually set them as environment variables
• Supply them via parameters
• Read them from an external file
• Leverage injection via a plugin, such as the Credentials Binding plugin

400 | Chapter 10: Conversions

http://bit.ly/2HufJWD
http://bit.ly/2HufJWD
https://plugins.jenkins.io/credentials-binding

Obviously, the first option is completely insecure and a bad practice. The second
option is slightly better but still exposes too much information. The third option is
dependent on input each time, which is less than ideal in an automated environment.
The fourth option provides some isolation, but requires maintaining data outside of
Jenkins.

The last option represents our most direct and secure way to use the credentials
defined in Jenkins for this type of access. Essentially, the Credentials Binding plugin
allows us to bind the credentials (such as username and password) that we have
already set up in Jenkins to variables that we can then pass to our build steps. An
example use case is shown in Figure 10-12.

Figure 10-12. Example of using the Credentials Binding plugin in a traditional Freestyle
job

The Jenkins pipeline DSL also includes a step that allows us to use the Credentials
Binding plugin in a pipeline: the withCredentials step. Like the Freestyle version,
this step takes a type of credentials binding to use and then allows the user to specify
variables to receive the actual values of the credentials. The variables can then be used
within the block in place of the credentials, preventing the values of the credentials
from being exposed. (See Chapter 5 for more details and examples on creating and
using credentials.)

In our case, we’ll assume that we’ve set up a credential named mysql_credentials
that contains the separated username and password for accessing MySQL databases

Converting a Freestyle Pipeline to a Scripted Pipeline | 401

on our system. We can then instantiate a step that uses that binding and dereferences
it into two separate environment variables to be used where the credentials are
needed in statements that we put in the enclosed block.

Translating our example from the Freestyle project would look like this:

withCredentials([usernamePassword(credentialsId: 'mysql_credentials',
 passwordVariable: 'MY_SQL_USER', usernameVariable: 'MY_SQL_PASS')])
{
 sh "mysql -u$MY_SQL_USER -p$MY_SQL_PASS registry_test < registry_test.sql"
}

withCredentials(...) {
 sh "..."
}

About with* Steps

Steps that start with with are often used to reference some global
entity and apply the environment associated with it to an enclosed
set of actions. Those global entities may be for things such as cre‐
dentials (as in the case of withCredentials), servers (we’ll talk
about withSonarQubeEnv blocks in Chapter 12), general environ‐
ment variables (withEnv), or even more significant supporting
pieces such as Docker containers (withDockerContainer). See
Chapter 11 for more information and examples.

The remaining piece of our integration testing stage relies on a mechanism called
SourceSets that the Gradle build tooling supports. A SourceSet in Gradle is simply a
way to define a set of source files with their own environment and structure. When
working with Java files (and the corresponding Java plugin for Gradle), Gradle by
convention is set up with two default SourceSets, one for the main project source
(called main) and one for any associated test cases written in Java (called the test
SourceSet). We used basic functionality of the test SourceSet in the Gradle invoca‐
tions for the parallel unit test processing earlier in this chapter.

Gradle allows us to define the classpath, output path, directory structure, and so forth
for a SourceSet so that Gradle can compile and access them correctly. One of the
other abilities we have with Gradle SourceSets is the ability to create new SourceSets
based on existing ones, with modified characteristics—a sort of SourceSet “inheri‐
tance.” For our pipeline with Gradle, we have created a new integrationTest Sour‐
ceSet based on the default test SourceSet and a functionalTest SourceSet based on
the new integrationTest SourceSet. We won’t go into more detail than that here since
this isn’t a Gradle text, but the bottom line is that once we have the registry database
in place for our integration testing (via the withCredentials step), we can execute

402 | Chapter 10: Conversions

our integration tests by invoking Gradle to run the new integrationTest task. We
can do that simply by invoking it through a shell call:

 sh "'${tool 'gradle3'}/bin/gradle' integrationTest"

Here again, note the use of the tool step to get the location of our Gradle_HOME path,
and the mixture of double and single quotes necessary to make this all work.

At this point, we have the core initial stages of our converted pipeline complete. We
can pull down the source, build it, and test it on multiple levels. The primary remain‐
ing parts of our pipeline require more detailed integration with their respective exter‐
nal applications. To keep the scope and content of this chapter reasonable, we defer
details on integrating/migrating with those applications to their own chapters—but
we’ll briefly cover the high-level ideas and approach of working with these technolo‐
gies in the next sections.

Migrating the Next Parts of the Pipeline
Thus far, we’ve covered integration in two key technology areas, source management
(with Git) and builds and testing (with Gradle). These stages form the minimum
pipeline that we need in order to establish that our code is syntactically correct and
the functionality works in isolated testing.

From here, we want to establish successive levels of confidence in our code by incor‐
porating tools such as source code analysis (via gathering metrics with SonarQube)
and deploying to more comprehensive environments for testing (such as a Docker
container). Along the way, we will need to ensure we can store and retrieve versioned
artifacts produced by our pipeline (done via Artifactory in our case).

Each of the technologies we use for these tasks and their respective integrations with
Jenkins (and pipelines-as-code) deserve more extensive treatment than we can give
them in this one chapter, so the book contains separate chapters for these. As such,
we’ll only touch on these areas at a high level. For more details, refer to Chapter 12,
which covers integration with SonarQube, and Chapter 13, which covers integration
with Artifactory.

Source code analysis
Although testing gives us some assurance that we have written code that does what
we want, it doesn’t provide any feedback on the quality of the source code itself.
Source code analysis can provide that for any code going through our pipeline.

Source code analysis generally refers to a set of quality metrics related to using best
practices, producing code that is insulated against known failure conditions, assessing
technical debt, determining code coverage through testing, etc.

Converting a Freestyle Pipeline to a Scripted Pipeline | 403

The set of metrics is wide and varied. Scores on metrics are obtained by measuring
compliance of the code against a set of rules. Thresholds can be defined for each met‐
ric area. A set of thresholds can be treated as a “quality gate”—a pass/fail criterion for
code being analyzed in a pipeline.

SonarQube is one application that provides this kind of analysis. To integrate with
Jenkins, we have to have a SonarQube server set up, the SonarQube plugin installed
in Jenkins, and a standalone program called a “scanner” or “runner” installed and
configured.

We can define a webhook in SonarQube to notify Jenkins after the analysis is com‐
plete. This same notification will let Jenkins know whether the code passed or failed
the quality gate.

Chapter 12 describes in detail how to integrate with SonarQube. We’ll also look at
how to use a code coverage tool called Jacoco (Java Code Coverage) that integrates
with Jenkins to provide data on how well our tests are testing the source code in our
projects.

Incorporating an artifact repository
An artifact repository is used to store, manage, and track binary artifacts, just as a
source management repository does for source code. It allows users and automated
processes, such as jobs in Jenkins or stages in a Jenkins pipeline, to ensure they are
working with the desired version of an artifact.

Artifacts in this case can be external dependencies that are needed for some operation
or artifacts generated by the current processes for later use or distribution. Reposito‐
ries that store the dependencies are referred to as resolution or resolver repositories.
Repositories used to store generated content for later use or distribution are referred
to as distribution repositories. These repositories may be in any of a number of stan‐
dard formats, such as Maven, Ivy, or Gradle—the important aspect is the versioning.
Let’s dive into more detail on that, as it demonstrates some other techniques that may
be useful as you convert your pipeline.

Setting version information with parameters. In our original pipeline based on the Free‐
style jobs, we used parameters as a way to override default versioning information
(Figure 10-13).

404 | Chapter 10: Conversions

Figure 10-13. Example parameter defined in Freestyle project

We then used those values (or the defaults, if not overridden) to set the values for the
version of the generated WAR file that we placed in the artifact repository. This was
done by manipulating properties for Gradle in a gradle.properties file. Ideally, we
would have passed these values as properties to Gradle via some clear integration
with the web form. However, the Gradle integration with Freestyle projects did not
have a good way to do this. So, instead, we fell back to calling a set of shell commands
that used the Unix sed utility. Basically, the commands did text substitution to get the
desired values into the properties file. The step in the traditional Jenkins job looked
like Figure 10-14.

Figure 10-14. Shell step to update Gradle properties file

In our Scripted Pipeline, we could also use a series of direct shell commands via the
sh step. However, for this conversion, we’ve chosen to actually put these commands
in a separate script and store that script in a different source code repository. This is
mostly illustrative at this point, as it shows how commands can be stored and loaded
from a remote site.

Figure 10-15 shows the shell steps encapsulated in a file stored on GitHub.

Converting a Freestyle Pipeline to a Scripted Pipeline | 405

Figure 10-15. Shell steps encapsulated in a separate script on a different SCM repo

This serves to abstract out operations in case we want to later change the implemen‐
tation. It also avoids hardcoding steps in the pipeline and allows more open sharing
of code.

From within our new pipeline, we can load the script from its remote location using
the Pipeline Remote Loader plugin. With this plugin installed, the DSL has a fromGit
method to load content stored in a Git repository. (There are other methods for other
SCMs as well.) So, we can load the function and then execute a call to it in our pipe‐
line. Putting this as the start of our Assemble stage would yield code like the follow‐
ing:

 stage('Assemble') { // assemble WAR file
 def workspace = env.WORKSPACE
 def setPropertiesProc = fileLoader.fromGit('jenkins/pipeline/
 updateGradleProperties','https://github.com/brentlaster/utilities.git',
 'master', null, '')

 setPropertiesProc.updateGradleProperties(
 "${workspace}/gradle.properties",
 "${params.MAJOR_VERSION}",
 "${params.MINOR_VERSION}",
 "${params.PATCH_VERSION}",
 "${params.BUILD_STAGE}")

406 | Chapter 10: Conversions

The Pipeline Remote Loader Plugin

While we use the Pipeline Remote Loader plugin to illustrate a
technique here, it was created before the shared libraries function‐
ality was fully implemented. At some point it may be deprecated.
Shared libraries provide an alternative way to accomplish separat‐
ing out the code.

Handling the versioning of artifacts is an important part of integration with an arti‐
fact repository. Beyond that is the overall integration with the application you choose.

For our pipeline examples in Chapter 13, we will discuss integration with Artifactory
Community Edition, the free version of one of the most common artifact manage‐
ment tools. We’ll see in that chapter how it is configured globally in Jenkins and inte‐
grated in the traditional web forms of a Freestyle job, including fields to define
common elements such as resolution and deployment repositories, and options about
what to publish into repositories.

To translate this to a pipeline environment, we define variables to point to the server
and repositories that we want. Also, depending on the type of the integration, we have
specific objects that represent the functionality of the combined Artifactory and build
projects. These combined objects then allow us to invoke Artifactory functionality
within the build application in direct calls.

Chapter 13 contains all of the details on the Artifactory integration. Chapter 14 con‐
tains details on the other main component of our pipeline, which we’ll look at briefly
next—working with containers.

Using containers in a pipeline
Containers are becoming more and more ubiquitous in terms of being used in pipe‐
lines today. By “containers” here, we really mean the higher-level orchestration appli‐
cations for Linux Containers (LXC). These allow us to define and run multiple
isolated Linux systems within a single Linux container, achieving many of the goals of
a VM without the overhead.

Of course, the most popular of these applications for defining and using containers is
Docker. In fact, there are whole pipeline applications that are built around only using
Docker containers.

Historically, integration with Docker in a Freestyle project centered around using it as
an agent via the Docker Cloud plugin or invoking it directly via shell commands.
Within a Jenkins 2 pipeline, we now have four options for integration with Docker:

• Configured as a “cloud,” meaning running a standalone Jenkins agent provided
by the Docker plugin

Converting a Freestyle Pipeline to a Scripted Pipeline | 407

• Running as an agent via constructs provided by Declarative Pipelines
• Inside the pipeline, using the docker global variable (provided by the Docker

Pipeline plugin)
• Directly invoking Docker via a shell call

The Docker (cloud) plugin is still available to pipeline creators, but within a pipeline,
we can also create new Docker containers from images and execute commands in
them easily.

The traditional pipeline we are migrating from used Docker as an isolated, repeatable
environment for deploying our artifact into for functional testing. The migration to
our Scripted Pipeline goes further. Chapter 14 shows how we can also create an image
with a different version of a tool than the one we have configured globally in Jenkins
and easily pass our pipeline commands to that container, for execution in the isolated
environment it provides.

This is most easily done with a DSL with block called withDockerContainer, but the
Docker integration with Jenkins 2 also provides a built-in Docker global variable that
has an inside method that can be used. The nice thing about both of these constructs
in the new Jenkins DSL is that they automatically handle a lot of the setup and tear‐
down of using Docker for you. For example, they can automatically pull an image if
not already available, start up containers, and mount Jenkins workspaces as volumes
in the container (assuming filesystem access).

One other key aspect of using Docker in Jenkins 2 comes into play when working
with Declarative Pipelines. The DSL provides a number of ways to easily define
agents based on Docker containers. There are methods to create agents based on a
particular Docker image, as well as a Dockerfile. These mechanisms greatly simplify
integrating containerization more widely in your pipeline.

For all the details and examples of how to incorporate Docker containers, refer to
Chapter 14, Integrating Containers.

Integration with Output

It’s worth mentioning that, for tools (such as Artifactory and
SonarQube) that have traditionally added “badges” (as shortcuts to
the applications) in a Jenkins job’s build history, those are still
added when the job is converted to a Pipeline. However, the output
from the application in the console log may look different, depend‐
ing on the code that was used in the pipeline.

This completes our look at converting traditional pipeline jobs to a Scripted Pipeline.
Next, we’ll look at how to convert a Scripted Pipeline to a Jenkinsfile.

408 | Chapter 10: Conversions

Converting from a Jenkins Pipeline Project to a Jenkinsfile
In this section, we’ll look at how to take a pipeline that we have created in the Jenkins
application itself and convert it into an external Jenkinsfile. As a reminder, a Jenkins‐
file is simply a pipeline (with a few modifications) that is stored in source control sep‐
arately from Jenkins (typically in the same repository as the source code for the
project).

A project in the Jenkins application can be pointed at the source code repository,
detect the presence of the Jenkinsfile, and execute a build based on the pipeline in the
file.

The advantages to storing the pipeline in an external file this way are many. Briefly,
they include:

• Your pipeline specification is stored in source control (just like the project
source). This means changes to it can be tracked, the pipeline code can be
reviewed, etc.

• New branches created from the branch with the Jenkinsfile will have their own
Jenkinsfile, by virtue of inheriting it from the parent branch.

• Jenkins can detect the existence of the Jenkinsfile and even create new jobs auto‐
matically based on it.

Historically, the primary disadvantage of using a Jenkinsfile rather than creating the
pipeline directly in Jenkins itself was delayed feedback. That is, you didn’t know
whether your pipeline was syntactically correct or would work until after you had
staged, committed, and pushed the Jenkinsfile into source control, and then run a job
in Jenkins that pointed to it.

This is still true for Jenkinsfiles written in the scripted syntax. However, there is now
a Pipeline Linter tool that can be used to validate Jenkinsfiles written in the declara‐
tive syntax via a command-line call, so you can find syntax problems before you put
them in source control. The following sidebar describes how to use this tool.

Using the Pipeline Linter Tool for Declarative Jenkinsfiles
The Jenkins Pipeline Linter tool allows a user to validate a Jenkinsfile written in
declarative syntax before pushing it into source control. Otherwise, the code needs to
be validated by having Jenkins point at it in source control and run it. The linter saves
time by allowing validation of the syntax outside of the Jenkins interface and outside
of source control.

The tool is most normally run as a command that is built into Jenkins. Thus, it can be
run via SSH, via the CLI interface (deprecated), or via the Jenkins REST API with an

Converting from a Jenkins Pipeline Project to a Jenkinsfile | 409

HTTP POST command. We’ll briefly look at all three options here. It can also be run as
a pipeline step; we’ll see an example of that, too.

Prerequisites

To use the tool via the command-line interfaces, it is necessary to have Jenkins set up
to handle the SSH or CLI invocations. Chapter 15 has details on how to set up Jenkins
for this. Also, for the REST API invocation, if you have the Cross-Site Request For‐
gery protection enabled (as discussed in Chapter 5), then you will first need to obtain
a “crumb” from Jenkins to use in the request. Chapter 15 also has a section that covers
how to get a crumb from Jenkins to use in such calls.

Running via SSH

As mentioned, to use this option, Jenkins needs to first be set up for SSH access. With
that done, you can invoke the declarative linter as a standard command-line com‐
mand:

ssh [-l <username>] -p <jenkins ssh port> <hostname or localhost>
 declarative-linter < Jenkinsfile

Notice here that the command does not take an argument. Rather, we redirect the
Jenkinsfile into the command.

If the validation of the syntax is successful, you’ll see a message like this:

Jenkinsfile successfully validated.

If the Jenkinsfile has syntax issues, you’ll see messages like these:

Errors encountered validating Jenkinsfile:
WorkflowScript: 2: Undefined section "agnt" @ line 2, column 3.
 agnt {
 ^

WorkflowScript: 20: Undefined section "environ" @ line 20,
column 3.
 environ {
 ^

WorkflowScript: 1: Missing required section "agent" @ line 1,
column 1.
 pipeline {
 ^

Running via the CLI (Deprecated)

For the CLI command to work, you must have the deprecated CLI Remoting mode
enabled and have access to the jenkins-cli.jar file. (See Chapter 15 for information on
how to set all of this up and an explanation of why this protocol is deprecated.)

With that setup done, you can invoke the CLI command with the .jar file as follows:

410 | Chapter 10: Conversions

java -jar [<path to jar>/]jenkins-cli.jar -s <hostname such as
http://localhost:8080> -auth <username>:<password or token>
 declarative-linter < Jenkinsfile

The -auth option is explained in Chapter 15. Username and password options may
be used instead.

Running via the REST API

To invoke the linter via the REST API, if CSRF protection is in place (as it should be),
you will first need to obtain a crumb value (see Chapter 15). Then you can invoke the
validation as follows:

curl --user <username>:<password> -X POST -H <Jenkins crumb value>
 -F "jenkinsfile=<Jenkinsfile"
<jenkins url>/pipeline-model-converter/validate

Note that the "jenkinsfile=<Jenkinsfile" argument has an actual less-than sign in
it.

Running as a Pipeline Step

The linter can also be run as a pipeline step—specifically, the "validateDeclarative
Pipeline" step. The output from a run of the step is the same as for the other invoca‐
tion methods. The advantage is that no special setup is required (unless you consider
writing a small script to be special setup).

An example job to run this step is shown here:

node {
 def valid = validateDeclarativePipeline("<path to file>")
 echo "result = ${valid}"
}

Developing Jenkinsfiles

A typical approach that can work well for creating a pipeline as a
Jenkinsfile is to first develop the pipeline code within the Jenkins
application itself as a Pipeline project. This gives the benefit of
quick turnaround and feedback while developing the code. When
the pipeline is working to your satisfaction in the Pipeline project,
then you can follow the process in this section to convert it into a
Jenkinsfile.

Typically, it only requires a few simple steps to migrate pipeline to a Jenkinsfile. The
approach is outlined in the next section.

Converting from a Jenkins Pipeline Project to a Jenkinsfile | 411

Approach
Since Jenkinsfiles live in the source code repository along with your source, you’ll
first want to make sure you have a cloned/checked out/pulled copy of your source
code for the project. Then, in the appropriate branch, create a new file named Jen‐
kinsfile.

Next, copy and paste the working pipeline code from your project in Jenkins (or enter
new code if you haven’t already created a Pipeline project in Jenkins) into the Jenkins‐
file.

As a best practice, add an identifier at the top of the script of the file that identifies it
as a Groovy script. Typically this is done by adding a line like #!groovy as the first
line in the file.

Modify any lines in your script that pull source code from the same source repository
as the one where your Jenkinsfile will be to be just checkout scm. This is a simplifica‐
tion, since Jenkins will already know the repository location by virtue of being poin‐
ted at that location to find the Jenkinsfile. This will also simplify having to make any
changes to the source control command if you create a new branch that gets the same
Jenkinsfile. The checkout scm step will know to get the code from the correct branch
based on that version of the Jenkinsfile being there.

Figure 10-16 shows part of an example pipeline as created in the Jenkins application.

Figure 10-16. Pipeline code in Jenkins application prior to converting to Jenkinsfile

412 | Chapter 10: Conversions

Figure 10-17 shows the same code converted to a Jenkinsfile.

Figure 10-17. Pipeline code converted to Jenkinsfile

Replay and checkout scm Step Versus Specific SCM Step
As we discussed in Chapter 2, Jenkins includes “replay” functionality to allow you to
edit and rerun a changed version of any completed run (successful or failed). This is
initiated by going to the screen for a particular run and selecting the Replay menu
item on the left. The main use of this is for verifying potential fixes or prototyping; it
allows you to check how a code change to that version of code will affect the running
of the job. The change causes another run to happen, but does not persist the change
in the current code (even if the run being replayed is the current one). This function‐
ality is useful for verifying potential fixes or prototyping.

However, there is a potential issue to be aware of when replaying code that uses a spe‐
cific SCM step, such as git. No matter what version of the code the original run
pulled down, if the branch the step uses has been updated since the original run, the
replay will pull the latest code.

As an example, assume we have a simple project that uses the git step to pull down
code, like this:

stages {
 stage('Source') {
 steps {
 // always run with a new workspace
 cleanWs()
 git branch: 'decl', url: 'git@diyvb2:/opt/git/gradle-demo'

Converting from a Jenkins Pipeline Project to a Jenkinsfile | 413

Suppose the repository where we run this code initially is at this revision:

commit 3235c1f8e141e9f1c02b42b51d782aa4f738e4b8
Author: diyuser2 <diyuser2@diyvb2>
Date: Sat Nov 4 15:22:32 2017 -0400

Add declarative Jenkinsfile

If we run the job and then look at the Git revisions on the output page for run #1,
we’ll see this among the output:

Success Build #1 (Feb 8, 2018 3:17:36 PM)
Started by user Jenkins Admin
 Revision: 3235c1f8e141e9f1c02b42b51d782aa4f738e4b8

Notice that the revision used by the job matches the current one.

Suppose we then update our repository with another commit, and it is at the new
revision shown below:

git log -2
commit 6c75694b8770705b3a27f7c512766e0e3ab0a7d0
Author: diyuser2 <diyuser2@diyvb2>
Date: Thu Feb 8 14:49:53 2018 -0500

updated Jenkinsfile

commit 3235c1f8e141e9f1c02b42b51d782aa4f738e4b8
Author: diyuser2 <diyuser2@diyvb2>
Date: Sat Nov 4 15:22:32 2017 -0400

If we run the job again and look at the Git revisions, we rightfully see this:

Success Build #2 (Feb 8, 2018 3:37:01 PM)
Started by user Jenkins Admin
 Revision: 6c75694b8770705b3a27f7c512766e0e3ab0a7d0

So far, so good.

However, if we now go back and replay run #1, we get this:

Success Build #5 (Feb 8, 2018 3:39:46 PM)
Started by user Jenkins Admin

Replayed #1 (diff)

 Revision: 6c75694b8770705b3a27f7c512766e0e3ab0a7d0

Note the “Replayed #1” line and the revision it pulled this time—the newest one, not
the one that was originally pulled by run #1.

One of the cool features of Replay is that you can replay a Jenkinsfile just like a Jen‐
kins pipeline that you developed in the application.

414 | Chapter 10: Conversions

And, interestingly, for Jenkinsfiles that use the checkout scm step, the replay works as
expected. If our pipeline code in a Jenkinsfile is this for all runs:

stages {
 stage('Source') {
 steps {
 // always run with a new workspace
 cleanWs()
 checkout scm

Given the same Git revisions, the build of the latest yields this:

Success Build #2 (Feb 8, 2018 4:20:21 PM)
Started by user Jenkins Admin
 Revision: 6c75694b8770705b3a27f7c512766e0e3ab0a7d0

while a replay of #1 yields this:

Success Build #3 (Feb 8, 2018 4:53:05 PM)
Started by user Jenkins Admin

Replayed #1 (diff)

 Revision: 3235c1f8e141e9f1c02b42b51d782aa4f738e4b8

So, the checkout scm step will pull the revision of code that was originally associated
with the run. If you are using a specific SCM step and the code base has changed
since the original execution of the run that you are replaying, this is worth being
aware of.

While these basic conversion steps are sufficient in most cases to convert to a Jenkins‐
file, there is one other use case that you may encounter—needing to migrate func‐
tionality for parameters. That discussion deserves its own section.

Migrating parameter usage to Jenkinsfiles
At least as of the time of this writing, if you are creating a pipeline directly in a Pipe‐
line project in the Jenkins application, you can define parameters in the traditional
way in the Pipeline job interface (using the “This project is parameterized” option)
and then reference them in your pipeline code. For example, suppose we define a set
of parameters for versioning information in the Jenkins pipeline job interface as
shown in Figure 10-18.

Converting from a Jenkins Pipeline Project to a Jenkinsfile | 415

Figure 10-18. Defining parameters in a traditional Jenkins pipeline job

Within the pipeline script, we can reference those parameters like this (in example
code where they are being passed to a function to update a properties file):

 setPropertiesProc.updateGradleProperties(
 "${workspace}/gradle.properties",
 "${params.MAJOR_VERSION}",
 "${params.MINOR_VERSION}",
 "${params.PATCH_VERSION}",
 "${params.BUILD_STAGE}")

Notice that we didn’t have to define these in our actual pipeline code since they were
defined in the job in Jenkins. However, when we migrate to a Jenkinsfile, we no
longer have them available, so we need to ensure we define the parameters in the
pipeline code itself.

The easiest way to get the syntax for this is to use the Snippet Generator: select the
“input” step and then, in the Parameters section, plug in the same kind of informa‐

416 | Chapter 10: Conversions

tion that we entered in the Jenkins job when we defined the parameters there
(Figure 10-19).

Figure 10-19. Using the Snippet Generator to figure out the code for pipeline parameters

After doing this, we’ll have the Groovy syntax/code that we can copy into our Jen‐
kinsfile:

 def userInput
 stage('Parameters') {
 userInput = input message:
 'Enter version changes (if any):',
 parameters: [
 string(defaultValue: '1', description: '',
 name: 'MAJOR_VERSION'),
 string(defaultValue: '1', description: '',
 name: 'MINOR_VERSION'),
 string(defaultValue: env.BUILD_NUMBER, description: '',
 name: 'PATCH_VERSION'),
 string(defaultValue: 'SNAPSHOT', description: '',
 name: 'BUILD_STAGE')]
 major_version = userInput.MAJOR_VERSION
 minor_version = userInput.MINOR_VERSION
 patch_version = userInput.PATCH_VERSION
 build_stage = userInput.BUILD_STAGE
 }

Figure 10-20 shows the Jenkinsfile with the new code added to define the parameters.
Notice that we’ve defined a “global” variable outside of the pipeline stages so that we
can reference the input values in multiple stages. We’ve also defined a separate stage

Converting from a Jenkins Pipeline Project to a Jenkinsfile | 417

for gathering the input via the parameters. While not required, this makes a nice, log‐
ical separation.

Figure 10-20. Jenkinsfile with code to handle input parameters

After getting this part set up, we just need to update the code in our Jenkinsfile that
references those parameter values to use our userInput object instead of the params
one. After doing that, the code will look like this:

 setPropertiesProc.updateGradleProperties(
 "${workspace}/gradle.properties",
 "${userInput.MAJOR_VERSION}",
 "${userInput.MINOR_VERSION}",
 "${userInput.PATCH_VERSION}",
 "${userInput.BUILD_STAGE}")

More information on dealing with input and parameters can be found in Chapter 3.

Final Steps
After you have gone through the conversion (or creation) of the Jenkinsfile, it needs
to be updated in source control. There is nothing special here; just use whatever
source control operations you would normally use for any of your pipeline source.

418 | Chapter 10: Conversions

Validation of Declarative Jenkinsfiles

Prior to pushing to source control, a useful step is to run a Jenkins‐
file using declarative syntax through the declarative-linter
command, as discussed in “Using the Pipeline Linter Tool for
Declarative Jenkinsfiles” on page 409.

All that is left to do, then, is to set up a project in the Jenkins application that can use
a Jenkinsfile, and point the project to the location of that file so it can find the pipe‐
line code and execute it. The process of doing this with new project types such as the
Multibranch Pipeline project is covered in detail in Chapter 8.

However, there is also a way to do this with an existing project in Jenkins. This is
worth mentioning as another way to complete the conversion process, or if you want
to specifically test out a Jenkinsfile and not have to create a Multibranch Pipeline
project.

Including a Jenkinsfile back into a native Jenkins project
Another option for referencing a Jenkinsfile from the Jenkins application allows you
to point a single pipeline project in Jenkins at your Jenkinsfile. This eliminates some
of the overhead of a Multibranch Pipeline project, and allows some configuration to
happen in Jenkins. For example, you could configure the general job items, such as
the retention policy, or add parameters in the job itself.

To use this approach, you need a job of type Pipeline in Jenkins. On the configuration
page for the job, scroll down to or select the Pipeline section.

In the Pipeline section of the page, you’ll see a field called Definition. This will have
“Pipeline script” in it by default. At the end of that field is an arrow to select entries
from a list. Click on that arrow and select “Pipeline script from SCM” (see
Figure 10-21).

Figure 10-21. Modifying a pipeline job to use a Jenkinsfile

Converting from a Jenkins Pipeline Project to a Jenkinsfile | 419

You’ll now see a new field named SCM. Select your SCM from the list in that field.

Once you select the SCM, additional fields will show up on the screen to allow you to
specify the location of the SCM repository.

For example, if you select Git, you will fill in the Repository URL and Branches fields
to point to your project in source control that contains the Jenkinsfile you want to
use.

You can leave everything else as is. After completing the fields, you can save the
changes and select Build Now to build the pipeline based on the code in your Jenkins‐
file.

Copy and Paste from Jenkinsfile via Replay
A second, less elegant way to bring the code from a Jenkinsfile back into a Pipeline
project is to copy and paste from a Replay screen. The Replay command (introduced
in Chapter 2) allows a user to temporarily modify a version of the pipeline code for a
job, as it was at the time of the run that’s being replayed.

Normally, for multibranch or organization projects based on Jenkinsfiles in remote
repositories, you can’t access the code from the Jenkinsfile directly in Jenkins itself.

However, if you invoke the Replay command in Jenkins on a completed run of such a
project, it will load the code from the Jenkinsfile into the window on the Replay
screen. You can then copy and paste that into a new project of type Pipeline and
experiment with it there.

The last type of conversion that we’ll look at in this chapter is converting a Scripted
Pipeline to a Declarative one. Declarative Pipelines can be used anywhere Scripted
Pipelines can, including within the Jenkins application and as Jenkinsfiles.

Converting from a Scripted Pipeline to a Declarative
Pipeline
For those familiar with programming or needing to incorporate Groovy constructs
within their pipelines, Scripted Pipelines provide the most flexibility. However, at
some point you may want to move toward the more formalized declarative syntax.
Reasons to do that could include the following:

• Better and tighter integration with the Blue Ocean interface
• Formal syntax checking and error reporting based on the Jenkins DSL
• Closer correspondence with the structure and flow of traditional Jenkins web

forms

420 | Chapter 10: Conversions

• Easier to understand and maintain for those familiar with Jenkins but not with
Groovy

It would be impossible to provide examples and guidance on every possible case that
might arise when converting from a Scripted Pipeline to a Declarative one, so we’ll
just look at a small representative example to illustrate some basic techniques. You
should be able to extrapolate from this example to determine how to handle your
own larger pipelines.

Converting the Other Way

Of course, it is also possible that at some point you may want to
convert from a Declarative Pipeline to a Scripted one. In general,
this should be easier, as you will be going from the more formalized
and restricted syntax to the more flexible syntax. While an example
of that kind of conversion isn’t presented here, you should be able
to reverse the type of operations we do here to perform that kind of
conversion.

Sample Pipeline
Our simplistic pipeline is shown here in the form of a Jenkinsfile (converting pipe‐
lines to Jenkinsfiles was discussed in the previous section of this chapter):

#!groovy
@Library('Utilities@1.5')_
node ('worker_node1') {
try {
 stage('Source') {
 // always run with a new workspace
 cleanWs()
 checkout scm
 stash name: 'test-sources', includes: 'build.gradle,src/test/'
 }
 stage('Build') {
 // run the gradle build
 gbuild2 'clean build -x test'
 }
 stage ('Test') {
 // execute required unit tests in parallel
 parallel (
 worker2: { node ('worker_node2'){
 // always run with a new workspace
 cleanWs()
 unstash 'test-sources'
 gbuild2 '-D test.single=TestExample1 test'
 }},
 worker3: { node ('worker_node3'){
 // always run with a new workspace

Converting from a Scripted Pipeline to a Declarative Pipeline | 421

 cleanWs()
 unstash 'test-sources'
 gbuild2 '-D test.single=TestExample2 test'
 }},
)
 }
 }
 catch (err) {
 echo "Caught: ${err}"
 }
 stage ('Notify') {
 mailUser('<email address>', "Finished")
 }
}

Let’s briefly discuss what this simple pipeline is doing.

First, you see the Groovy designator at the top, preceding the loading of a shared
library named Utilities. This library contains a build routine named gbuild2 that
encapsulates our Gradle build call.

The Source stage first cleans out the workspace and then pulls down the source code.
Note the use of the checkout scm step again here. (As explained in “Approach” on
page 412, this is sufficient since the Jenkinsfile is stored with the source code for the
project, and so can interpret the SCM location to check out based on where it is.)
Finally, this stage creates a stash of testware to share later with the Test stage.

Next, the Build stage simply calls the routine from the shared library to build a set of
Gradle targets, omitting the test target since that is handled in the next stage.

The Test stage leverages the pipeline DSL parallel step to create two branches to
run in parallel, each on a distinct node. Within the code for each branch, the work‐
space is cleaned, the contents of the stash are unstashed on the node so that the test‐
ware is present, and then a call is made to the shared library routine to build and run
the particular set of tests.

Finally, at the end of the pipeline, we include a Notify stage that simply calls a shared
library routine to notify a user that the pipeline has completed. We include this at the
very end, outside of the try-catch block, so that it is always executed, even if an
exception happens within one of the other stages. This simulates the “post-build
actions” processing of the traditional Jenkins Freestyle jobs, which always execute at
the end of the build regardless of what completed (or not) during the build.

The Conversion
Now that we understand how this simple Scripted Pipeline is organized, let’s look at
what it will take to convert it into a declarative format. Our approach will center

422 | Chapter 10: Conversions

around updating the overall structure of the pipeline, but we’ll also update some pro‐
gramming constructs with declarative constructs.

Converting in a Separate Branch

When doing a conversion such as this on a Jenkinsfile, a useful
strategy is to first create a separate branch off of the existing
branch. This is so that you can work on updating the pipeline in
the new branch, but still have the old one as current for reference
and production—just in case. This strategy is also useful in the
context of creating a separate Jenkins job pointing to the new
branch to test out your converted pipeline before putting it into
production.
If you use a Multibranch Pipeline project in Jenkins, Jenkins can
automatically detect the new branch with the converted Jenkinsfile
and create a job to build it.
After conversion and testing, the converted Jenkinsfile can be
merged back into the first branch to replace the original one, if
desired.

Starting at the start
We need to first make some changes in the beginning section of the pipeline script.
We will keep the #!groovy line as an indicator that this is a Jenkins script, but we
need to wrap everything in our Declarative Pipeline in a pipeline closure. Then,
instead of the node definition here, we need an agent specification. We can also
remove the Library block as we’ll do this in a different way in the declarative model.

This translates into changing these lines:

@Library('Utilities@1.5') _
node ('worker_node1') {

to:

pipeline {
 agent{ label 'worker_node1'}

Next, we’ll add a new section (or “directive”) to load the library in a declarative way.

Adding the libraries directive
Declarative Pipelines have special sections called directives that are predefined place‐
holders for specifying certain kinds of information. Based on the name of the direc‐
tive, Jenkins knows to do certain kinds of processing on the declarations inside the
closure.

Converting from a Scripted Pipeline to a Declarative Pipeline | 423

Declarative Pipelines have a specific libraries directive for specifying shared libra‐
ries to load. Syntactically, this directive can go immediately under the agent declara‐
tion from the preceding step (under the agent { line and before the try {vline). It
looks like this:

libraries {
 lib('Utilities@1.5')
}

In addition to directives, Declarative Pipelines also have stages. These are similar to
those in Scripted Pipelines, but they must all be enclosed in a larger closure.

Stages

In a Declarative Pipeline, our collection of stages needs to be wrapped in a stages
closure. Because we used the Groovy try-catch mechanism to wrap all the stages in
our Scripted Pipeline, we can just replace that with the stages closure. (Note that this
is not implying a replacement of equivalent functionality, just a convenient substitu‐
tion based on position of the lines in the file.)

To do this, we change this statement:

 try {

to:

 stages {

The top part of the pipeline will now look like this:

#!groovy
pipeline {
 agent{ label 'worker_node1'}
 libraries {
 lib('Utilities@1.5')
 }
 stages {
 stage('Source') {

Within a stage block, we then have a steps block to enclose statements.

Steps
In the declarative structure, each set of individual steps in a stage needs to be
enclosed in a steps closure. So, within each individual stage section of our pipeline
script (except for the Notify one), we must add a steps closure around the state‐
ments. Since we’re not adding any other directives in the stages in our example, we
can just add steps { after each stage (…) { line and a closing bracket (}) at the end
of each stage.

424 | Chapter 10: Conversions

For example, after these changes, our opening Source stage would look like this:

stage('Source') {
 steps {
 cleanWs()
 checkout scm
 stash name: 'test-sources', includes: 'build.gradle,src/test/'
 }
}

We’ll need to add the steps {} closure in the Build and Test stages as well.

At this point, we have one significant transformation left for our simple pipeline—
improving the post-build processing.

Post-build processing

In the declarative syntax, we have a post section that we can use to emulate the post-
build actions of Freestyle jobs. So, we can replace the scripted catch section with a
declarative post section. Doing this is a multistep process.

In the Jenkinsfile, this translates into removing the catch and Notify blocks from the
pipeline. (Note there should still be a closing bracket after these, from the original
node closure.) The following lines are the ones that we would remove:

catch (err) {
 echo "Caught: ${err}"
}
stage ('Notify') {
 mailUser('<email address>', "Finished")
}

Now, at the place in the file where these lines were deleted, we can add the following
post section, before the final closing bracket of the pipeline block:

post {
 always {
 echo "Build stage complete"
 }
 failure {
 echo "Build failed"
 mail body: 'build failed', subject: 'Build failed!',
 to: '<email address>'
 }
 success {
 echo "Build succeeded"
 mail body: 'build succeeded', subject: 'Build Succeeded',
 to: '<email address>'
 }
}

Converting from a Scripted Pipeline to a Declarative Pipeline | 425

Note the use of the conditionals (always, failure, success) here that allow us to
respond in different ways based on the build outcome. These constructs are discussed
in more detail in Chapter 3.

Completed Conversion
At this point, the conversion of the simple Scripted Pipeline into a Declarative Pipe‐
line is complete. The final form looks like this:

#!groovy
pipeline {
 agent{ label 'worker_node1'}
 libraries {
 lib('Utilities@1.5')
 }
 stages {
 stage('Source') {
 steps {
 cleanWs()
 checkout scm
 stash name: 'test-sources',
 includes: 'build.gradle, src/test/'
 }
 }
 stage('Build') {
 // run the gradle build
 steps {
 gbuild2 'clean build -x test'
 }
 }
 stage ('Test') {
 // execute required unit tests in parallel
 steps {
 parallel (
 worker2: { node ('worker_node2'){
 // always run with a new workspace
 cleanWs()
 unstash 'test-sources'
 gbuild2 '-D test.single=TestExample1 test'
 }},
 worker3: { node ('worker_node3'){
 // always run with a new workspace
 cleanWs()
 unstash 'test-sources'
 gbuild2 '-D test.single=TestExample3 test'
 }},
)
 }
 }
 } // end stages
 post {

426 | Chapter 10: Conversions

 always {
 echo "Build stage complete"
 }
 failure {
 echo "Build failed"
 mail body: 'build failed', subject: 'Build failed!',
 to: '<your email address>'
 }
 success {
 echo "Build succeeded"
 mail body: 'build succeeded', subject: 'Build Succeeded',
 to: '<your email address>'
 }
 }
} // end pipeline

You can then save these changes in the Jenkinsfile, update them in source control,
and point your Jenkins job(s) at the new Jenkinsfile with the Declarative Pipeline (as
detailed at the end of the section on converting to a Jenkinsfile earlier in this chapter).

General Guidance for Conversions
In this chapter, we have covered some of the basic concepts around converting exist‐
ing Freestyle projects into Scripted Pipelines, converting pipelines into Jenkinsfiles,
and converting Scripted Pipelines into Declarative Pipelines. While we haven’t cov‐
ered every potential case, hopefully the cases that we have covered provide some
guidance on other situations.

We can briefly summarize the ideas around converting a traditional Freestyle project
to a Jenkins pipeline as follows:

• Ensure that you have a working reference pipeline to start with.
• For a group of projects, consider whether they might be suitable for a folder

structure in Jenkins.
• If you have (or can create) a GitHub organization or Bitbucket team, consider

whether that might be suitable. If so, create the corresponding item in Jenkins.
• For a project with multiple branches, consider whether the Multibranch Pipeline

project type may be appropriate. If so, create the corresponding item in Jenkins.
• Ensure that the desired versions of all servers and tools that you will need to

access are installed or accessible.
• Ensure that these are configured globally in Jenkins.
• Ensure that you have the latest Jenkins integration plugins installed so that you

will (hopefully) have modern DSL steps that you can use in your pipeline.

General Guidance for Conversions | 427

• Ensure that you have all the needed credentials set up in Jenkins, especially if
migrating from one Jenkins environment to another.

• Ensure that you have set up all the nodes and agents that you will need, with the
appropriate labels.

• For the actual processing of each job, review it and note:
— Where the job runs (slave node, container, etc.)
— Which servers are accessed and with what credentials
— Which tools/applications are accessed and with what credentials
— What filesystem access (if any) is used and how it is invoked

• Armed with this information, consider whether you want to create any new
shared libraries to encapsulate any information. If so, do that first and verify the
routines can be called and work as expected.

• Identify any final processing you may always want to happen, such as sending
mail no matter what the outcome. Consider using a try-catch construct to han‐
dle this if appropriate.

• Define the stages. For each section of the pipeline job that contacts a server, runs
a tool, or performs some other specific piece of key pass/fail functionality, con‐
sider whether that section should become its own stage in the pipeline or
whether the entire job can be a stage or some other division. This depends largely
on how granular your previous pipeline was, defined in terms of division of func‐
tionality. The general rule is that a stage should be created for each part that
works with a particular application, server, and/or repository. If a pass/fail of that
functionality is significant for the overall pipeline, it should probably have its
own stage. It is typically better to break up your pipeline into smaller stages to
start with, especially as you are learning about the pipeline DSL and syntax. This
can simplify processing, isolating issues, and coding/debugging.

• Code up the basic shell of the pipeline. This means defining your empty node
blocks and stage blocks. At this point, you are just defining things of the sort
item ('Name') { } to get the overall framework and flow outlined. An addi‐
tional useful step can be to put a simple processing placeholder in each stage
(such as echo this is where processing for stage <name> goes). Then you
can run the pipeline and verify that your overall structure and node use work as
expected.

• For each stage, define what inputs and outputs are needed for the stage. Do you
need parameters as input, or any environment variables set? Do you need to have
objects from another stage, or to provide objects to another stage? If so, consider
the stash/unstash functionality or an artifact repository. Be sure to consider
adding timeouts for any inputs that may pause the pipeline indefinitely.

428 | Chapter 10: Conversions

• Within the stage, is any parallel processing appropriate? If so, define what makes
sense for the branches of a parallel step, including what nodes each should run
on.

• Within the stage, are there any shell steps that you need to do that haven’t been
otherwise handled (such as by being migrated to a shared library or external
file)? Consider whether you want to invoke them as shell steps with the sh or bat
commands or whether you want to put them in an external file to be loaded and
executed, or in a shared library.

• Given all of this information, identify the DSL steps to invoke in your stage.
Identify any Groovy constructs you may need (such as defining instance vari‐
ables). If you are not sure whether a step exists for the functionality you need,
check the page for the plugin that integrates with Jenkins. If you are not sure
about the syntax of a particular step, check the Snippet Generator.

• If you can’t find an appropriate DSL step for the functionality you need, consider
writing a shell step to call the application. Note that there are options on the sh
step to return more information from the call than it does by default. If you are
comfortable with programming and digging deeper, you may be able to identify
particular classes available within a plugin and call those directly via the step
step.

• Code your pipeline, filling in the framework that you created earlier for each
stage. Execute it and debug as necessary. As you fill in a stage, you can run the
pipeline and verify it works before moving on to the next one. Again, keep in
mind that it is usually easier to code this up in the Jenkins Pipeline project area
and then transfer the code to a Jenkinsfile, following the process outlined in this
chapter.

• Be sure to also code any processing that you want to happen if you catch an
exception or at the end of your pipeline, such as sending email with appropriate
notifications.

Summary
Given this guidance and the examples in this chapter, and the related ones on inte‐
grating with specific applications, you should be in a good place to plan and execute
whatever conversions you need to do.

In the next chapter, we’ll look at how to take full advantage of the sh and bat DSL
steps, along with other aspects of integration with the OS.

Summary | 429

CHAPTER 11

Integration with the OS (Shells,
Workspaces, Environments, and Files)

While it seems like there are plugins for nearly every application and pipeline steps
for every function in Jenkins, there may still be times when you need to do some
operation that you don’t have a step for. If the operation can be done via a shell step in
the operating system, you can use a built-in step in the pipeline to execute that. The
built-in steps offer several integration points in terms of return values that you can
exploit in your pipeline for follow-up actions or decision points.

Another point of integration is the environment: both the external one that Jenkins is
running in and the inherited environment local to the script. In addition to being
able to read and set environment variables, Jenkins contains a block step that allows
steps within a closure to use an isolated environment.

Workspaces also compose part of your pipeline’s environment. Jenkins includes a few
workspace-related steps that are worth knowing about should you ever need to more
closely manage a custom workspace for your project.

Finally, there will undoubtedly be times you need to manipulate files and/or directo‐
ries within your projects. The pipeline includes a limited set of steps to allow for the
most common kinds of file and directory operations. Plugins greatly extend this set.

We’ll cover all of these items in this chapter to give you a complete picture of how you
can integrate your pipeline and the OS.

431

Using Shell Steps
We’ll begin by looking at a set of steps that allow for passing commands to the operat‐
ing system for execution. As you might imagine, there are separate steps for Linux/
Unix and Windows. However, they are nearly identical in the options they supply.

Setting the Shell Executable
In nearly all cases, you can just let Jenkins pick up the shell executable by default. But
if for some reason you want to specify a different shell executable, you can do that on
the Configure System screen, as shown in Figure 11-1.

Figure 11-1. Configuring a different shell executable

The sh Step
Probably the most general-purpose step available to pipelines is the sh step. If there
isn’t a specific step that does what you need, or that integrates a particular application,
you can typically come up with a shell command and arguments to do it. The sh step
can then be used to execute that command.

The default syntax is straightforward:

sh '<shell command string>'

The default form of the step does not provide much integration with the pipeline in
terms of returning information. We’ll explore some useful options to help with that.
Afterwards, we’ll explore some ways to set context around the command and even
run scripts in other programming languages. To begin, let’s look at the set of options
for the step:

432 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

script

The operations to execute, expressed as strings. This is the default parameter, so
script doesn’t have to be specified if that’s the only parameter you’re using. Mul‐
tiple lines are allowed, but you’ll need to enclose them in triple quotes.

encoding

The encoding of the output, expressed as a string. You only need to set this if you
need to use something other than the default value of UTF-8.

returnStdout

A Boolean. If this is set to false (the default), then stdout is just printed to the
console log. If it’s set to true, stdout is returned from the step as a string. (Hint:
You can use trim() to strip a trailing newline if needed.)

returnStatus

A Boolean. If this is set to false (the default), then a nonzero status code will
cause the step to fail and throw an exception. If this is set to true, then the status
code will instead be the return code from the step. You can take that return code
and check it and act accordingly.

Return Values

Note that only one of the options returnStdout or returnStatus
can be set for each invocation of the shell step.
Also, for the returnStdout option, if there is any stderr output, it
will still go to the console log.

Here’s a simple code example using the sh step and “redirecting” the output to a vari‐
able:

def listing = sh script: 'ls -la /', returnStdout:true

There are a few different ways we can modify the behavior of the sh step, including
how and what it runs. We’ll cover some of the more interesting aspects in the next
few sections.

set Options
By default, the shell will not stop if there is an error in your script. It will happily try
to execute all of the lines. However, this is not usually what you want—especially if
you are using shell commands as part of a pipeline script.

So, the sh step in Jenkins automatically includes a set -e option. This tells the shell
to stop execution and not run the rest of the script lines if it encounters an error in a
line.

Using Shell Steps | 433

set

If you’re not familiar with set, it’s simply a built-in OS command
used for setting or unsetting options and positional parameters.

For example, suppose we have a script like this:

 sh '''ech LINE1
 echo LINE2'''

Notice the misspelled echo command in the first line. If we run this in Jenkins, we’ll
see output like this:

[Pipeline] {
[Pipeline] sh
[sh-test2] Running shell script
+ ech LINE1
/home/jenkins2/worker_node3/workspace/sh-test2@tmp ... ech: not found
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
ERROR: script returned exit code 127
Finished: FAILURE

Note that the script stopped being executed after Jenkins encountered the first bad
line.

If, for some reason, you prefer to have Jenkins execute all the lines in your script
regardless of there being a problem with one of them, you can add the set +e state‐
ment at the start to turn off the “stop after a bad line” function. Here’s an example of
that:

[Pipeline] {
[Pipeline] sh
[sh-test2] Running shell script
+ set +e
+ ech LINE1
/home/jenkins2/worker_node3/workspace/sh-test2@tmp ... ech: not found
+ echo LINE2
LINE2
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Notice that even though the script had the same error, the step did not “fail;” the
remaining line was executed, and Jenkins reported the run of the script as a SUCCESS.

You may have also noticed in the output from running shell operations that each shell
command is printed out with a + sign in front of it as it is run. This is due to Jenkins
automatically setting another option, -x. The -x option tells the sh step to echo out

434 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

each OS command as it executes it. If you prefer to turn this off, you can add the set
+x option to your sh step.

If you want to turn both options off, you can combine them in one set command, as
shown in here:

 sh '''set +xe
 ech LINE1
 echo LINE2'''

This code will not echo out the lines as it executes them and will not stop for an error,
so the output will look like this:

[Pipeline] {
[Pipeline] sh
[sh-test2] Running shell script
+ set +xe
/home/jenkins2/worker_node1/workspace/sh-test2@tmp ... ech: not found
LINE2
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Note the absence of the lines starting with +, other than the set line where we turned
that off.

Language interpreters

One of the lesser-known tricks when using the sh step may be that you can add an
interpreter on the first line and then execute programs in the language specified by
the interpreter. For example, the following simple script shows examples of setting a
variable and printing a greeting in different languages using the sh step:

node {
 sh 'export NAME=Jenkins; echo Hello, $NAME from shell!'
 sh '''#!/usr/bin/perl
 my $name = "Jenkins";
 print "Hello, $name from Perl!\n";'''
 sh '''#!/usr/bin/python
name="Jenkins"
print('Hello {} from Python!'.format(name))'''
}

Note that we include the interpreter as the first line for the Perl and Python examples.
Also note that we still need to adhere to the requirements of the particular language.
For example, we don’t have any indenting on the Python statements.

Using Shell Steps | 435

Executing shell scripts from shared libraries
Normally, we think of shared libraries as being Groovy-based code. And certainly,
Groovy functions can call the pipeline sh step just like any other pipeline code. But
there is also a way to load and execute standard shell scripts from a library.

The trick is in putting the script in the resources directory. The resources directory
is normally used for nonprogrammatic resources, such as data files. These typically
are items such as JSON or YAML files needed by your library routines. However, you
can store any kind of file in here, including shell scripts.

Shell scripts stored in this area can be loaded with the standard libraryResource
step. Once you have the script loaded, you can then pass it directly to the sh pipeline
step to execute.

Here’s an example of what code to do this might look like in a Scripted Pipeline:

def myExternalScript = libraryResource 'externalCommands.sh'
sh myExternalScript

In a Declarative Pipeline, since you can’t use def, you can use the trick of treating the
libraryResource command as a variable to be interpolated for the sh command, as
shown here:

 sh "${libraryResource 'ws-get-latest.sh'}"

Take Care When Using sh to Directly Interpret Shell Scripts

Just because you can execute scripts directly from the library’s
resources area doesn’t mean it’s the best or safest approach. As dis‐
cussed in Chapter 6, access to push something to the library should
be controlled. A better approach is to directly code the shell com‐
mands into your pipeline script so they are clearly visible. However,
we include a description of this functionality here since it may be
useful in some cases.

Pipeline shared libraries are discussed in Chapter 6.

Checking the Platform
In some cases, you may have available nodes based on different platforms—some on
Linux/Mac and some on Windows. The pipeline incluced a simple step to allow you
to check which platform the enclosing node is running on.

The step is called isUnix. It takes no arguments and is a simple Boolean check. It
returns true if the node is running on Linux/Mac and false if it is running on Win‐
dows. Using this, you can determine things like which kind of shell step you need to
execute. An overly simple example is shown here:

436 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

if (isUnix()) {
 sh "ls -latr"
}
else {
 bat "dir /o:d"
}

The bat Step
Like the sh step for Linux operations, there is a corresponding bat step for Windows
operations. It has the same options as the sh step. They are:

script

The operations to execute, expressed as strings. This is the default parameter, so
script doesn’t have to be specified if that’s the only parameter you’re using. Mul‐
tiple lines are allowed, but you’ll need to enclose them in triple quotes.

encoding

The encoding of the output, expressed as a string. You only need to set this if you
need to use something other than the default value of UTF-8.

returnStdout

A Boolean. If this is set to false (the default), stdout is just printed to the con‐
sole log. If it’s set to true, stdout is returned from the step as a string. (Hint: You
can use trim() to strip a trailing newline if needed.)

returnStatus

A Boolean. If this is set to false (the default), a nonzero status code will cause
the step to fail and throw an exception. If this is set to true, the status code will
instead be the return code from the step. You can take that return code and check
it and act accordingly.

Return Values

Note that only one of the options (returnStdout or returnStatus)
can be set for each invocation of the bat step.
Also, for the returnStdout option, if there is any stderr output, it
will still go to the console log.

Here’s a simple code example using the bat step:

bat returnStatus: true, script: 'echo Hello Jenkins!'

Using Shell Steps | 437

Executing batch scripts from shared libraries

As with the sh step, batch scripts can also be stored in the resources area of a shared
library and then executed directly. See “Executing shell scripts from shared libraries”
on page 436 for background and important caveats.

Here’s an example of what code to do this might look like in a Scripted Pipeline:

 def test = libraryResource 'test.bat'
 bat test

In a Declarative Pipeline, since you can’t use def, you can use the trick of treating the
libraryResource command as a variable to be interpolated for the sh command, as
shown here:

 bat "${libraryResource 'test.bat'}"

Pipeline shared libraries are discussed in Chapter 6.

The powershell Step
If you are a PowerShell user and have the PowerShell plugin installed, you can use the
powershell step in your pipeline on a Windows node/agent. The step has the same
options as the sh and bat steps. They are:

script

The operations to execute, expressed as strings. This is the default parameter, so
script doesn’t have to be specified if that’s the only parameter you’re using. Mul‐
tiple lines are allowed, but you’ll need to enclose them in triple quotes.

encoding

The encoding of the output, expressed as a string. You only need to set this if you
need to use something other than the default value of UTF-8.

returnStdout

A Boolean. If this is set to false (the default), stdout is just printed to the con‐
sole log. If it’s set to true, stdout is returned from the step as a string. (Hint: You
can use trim() to strip a trailing newline if needed.)

returnStatus

A Boolean. If this is set to false (the default), a nonzero status code will cause
the step to fail and throw an exception. If this is set to true, the status code will
instead be the return code from the step. You can take that return code and check
it and act accordingly.

438 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

Return Values

Note that only one of the options returnStdout or returnStatus
can be set for each invocation of the powershell step.
Also, for the returnStdout option, if there is any stderr output, it
will still go to the console log.

Here’s a simple code example using the powershell step:

powershell returnStatus: true, script: 'Write-Host "Hello Jenkins!"'

Executing PowerShell scripts from shared libraries

As with the sh and bat steps, PowerShell scripts can also be stored in the resources
area of a shared library and then executed directly. See “Executing shell scripts from
shared libraries” on page 436 for background and important caveats.

Here’s an example of what code to do this might look like in a Scripted Pipeline:

 def psscript = libraryResource 'ps-script.ps1'
 powershell psscript

In a Declarative Pipeline, since you can’t use def, you can use the trick of treating the
libraryResource command as a variable to be interpolated for the sh command, as
shown here:

 powershell "${libraryResource 'ps-script.ps1'}"

Pipeline shared libraries are discussed in Chapter 6.

Using Shell Steps for Prototyping or Conversions

Before we leave this section on working with shell steps, it’s worth
pointing out another of their benefits. In addition to providing
direct access to do things we may not have other steps for, shell
steps can be used in prototyping or converting scripts to pipelines.
That is, when we are developing pipelines or converting to a pipe‐
line from another script, it may be quicker and easier to temporar‐
ily add an sh or bat step into our pipeline to get it up and going,
and then later add the more specific step from a plugin with the
exact syntax that it needs.

Next, we’ll look at another aspect of working with the shell—environment variables.

Using Shell Steps | 439

Working with Environment Variables
Environment variables in Jenkins pipeline scripts can be referenced easily in multiple
ways. For example, these four lines all print the value of the current PATH environ‐
ment variable:

 echo "${env.PATH}"
 echo "${PATH}"
 echo env.PATH
 echo PATH

However, this only works if we don’t have a local variable called PATH defined. Other‐
wise, the second and fourth examples would print out the values of the local PATH
variable instead.

In actual fact, the env namespace represents the environment that is available inside
the script. It is available to anything that needs to run within the script.

So, it is a best practice to always prefix operations that use environment variables with
the env namespace, except when invoking the withEnv step that we’ll discuss shortly.

In a Scripted Pipeline, you can set an environment variable simply by assignment. In
the following example, we set an environment variable named USER to the jenkins2
value and append a home directory to the PATH:

env.USER = 'jenkins2'
env.PATH = env.PATH + ':/home/diyuser2'

In a Declarative Pipeline, there is an environment directive that can be used to set
environment variables, as shown here:

environment {
 USER = 'jenkins2'
 PATH = "/home/diyuser2:$PATH"
}

Declarative Pipelines are discussed in more detail in Chapter 7.

Doing More with Environment Variables in Declarative Pipelines

Just a quick note here to point out two additional aspects of using
environment variables in Declarative Pipelines:

• You can assign a global variable to the value of a Jenkins cre‐
dential inside an environment block (as discussed in Chap‐
ter 7).

• You can use a when clause to conditionally execute a stage if an
environment variable has a particular value (as discussed in
Chapter 3).

440 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

This covers the basics of environment variables, but there is a special step in the pipe‐
line for working with them too. We’ll look at that next.

The withEnv Step
Jenkins includes withEnv, a special step for working with environment variables.
Actually, this is a block step, meaning that it sets some context when it is invoked that
is valid for any code put within its block.

Here’s an example that we can look at and discuss:

 withEnv(["PATH+GRADLE=${tool 'gradle3'}/bin", 'USER=Jenkins2']) {
 sh 'echo PATH = $PATH'
 }

In the step’s invocation, we are setting two environment variables: PATH and USER.
Notice the PATH+ syntax here—this is a special syntax that is allowed for the withEnv
step to prepend things to the path. In this case, we’re leveraging the tool pipeline step
to add the path associated with “gradle3” in our Global Tool Configuration. Then we
also set the USER environment variable.

The PATH+... string is enclosed in double quotes, because we are using Groovy inter‐
polation to resolve the value of ${tool 'gradle3'} as part of the string. But also
notice that in the shell call (sh) within the body of the withEnv step, we are using sin‐
gle quotes, even though we use the $PATH value. The reason for this is that we want
this $PATH to be interpreted by the shell itself, not Groovy. The use of single quotes
means that Groovy will not try to interpret it and it will be passed on to the shell call
as intended.

So, this step will have output like the following (assuming gradle3 resolves to /usr/
share/gradle):

PATH = /usr/share/gradle/bin:/usr/local/sbin:/usr/local/bin:
/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:

As you can see, the item we set in the context was prepended to the path (added at the
start). This allows you to make sure the desired item is seen first.

Unsetting Environment Variables

If you need to unset an environment variable, the syntax is simply
an assignment without anything on the right—i.e.:

env.<NAME> =

One of the questions that may come to mind is why you should use the withEnv step
over simple assignment to update environment variables. The answer has to do with
scope within your pipeline script. If you do assignment outside of the withEnv step,

Working with Environment Variables | 441

then the environment variable is updated for any use within your script. So, if you
only want to use that value temporarily, you must remember to reset it—which means
you need to remember what the previous value was if you intend to use it again.

With the withEnv step, the updates done in the first line of the step are only valid
within the block (body) of the step. Outside of that block, in the rest of the pipeline
script, the environment variables have their previous values.

Local Environment Variables for Stages in Declarative Pipelines

Note, though, that if you are using a Declarative Pipeline, you can
also declare an environment block within a stage. In that case, any
environment variables updated in that block apply only to that
stage. If you need finer granularity than the entire stage, then you
could use the withEnv step to achieve that.

Another aspect of the environment associated with your pipeline is the workspace
that Jenkins creates on the system. This is where Jenkins executes the local parts of
your pipeline. There are a few aspects that you can control regarding that. We discuss
those in the next section.

EnvInject

A popular plugin for use with Freestyle jobs is EnvInject. This
plugin allows injecting a wide set of values as environment vari‐
ables for use in a Freestyle project. Unfortunately, at the time of this
writing, this plugin is not compatible with pipelines.

Working with Workspaces
Most of the time when we work with Jenkins, we don’t even think about workspaces.
Jenkins just manages them for us. If there’s a problem with our processing, we may go
out and find the workspace and look in it to try to understand what went wrong, but
otherwise we’re happy to let Jenkins manage things. However, you may come across a
time when you need or want more control over the workspaces you’re using. For
those times, Jenkins provides a couple of pipeline steps that can be useful.

Creating a Custom Workspace
Using the node or agent directive gives you a workspace automatically. However, if
you need or want a custom workspace to work in, you can use the pipeline ws step.
This step takes a single argument—the directory you want to use for the workspace—
and attempts to lock it for exclusive use. The path supplied as the argument can be

442 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

http://bit.ly/2HPVMXs

relative to the node area or an absolute path. The directory will be created if it doesn’t
exist.

An example of the basic syntax is shown here:

ws ('home/diyuser2/myws') {
 // block of code to execute in workspace
}

Note that this step is actually a block step, defining a closure in which you can put the
code that you want to execute in the custom workspace.

@# and @tmp Workspaces

If you’ve spent much time looking around at the workspaces that
Jenkins produces by default, chances are you’ve seen ones of the
form project@2 or project@tmp.
If multiple processes attempt to allocate the same workspace, then
Jenkins will formulate a new workspace name by adding an @ sign
and digit to the end of the directory name (such as home/diyuser2/
myws@2 for our example in the text).
And for cases where it may need to do things like temporarily cre‐
ate a script or other intermediate actions, it will create an @tmp
workspace directory to use for that.

To illustrate how the ws step works, let’s look at a simple example program:

node {
 print pwd()
 ws ('myWorkspace') {
 print pwd()
 ws ('myWorkspace') {
 print pwd()
 }
 }
}

In this script, we’re using the ws step to create a new workspace to work in. And then,
within that, we’re asking for the same workspace again. Within each workspace area,
we’re using the pwd step so we can print out the current working directory.

Here’s the output from this script:

Started by user Jenkins 2 user
[Pipeline] node
Running on worker_node3 in
/home/jenkins2/worker_node3/workspace/ws-test
[Pipeline] {
[Pipeline] pwd
[Pipeline] echo

Working with Workspaces | 443

/home/jenkins2/worker_node3/workspace/ws-test
[Pipeline] ws
Running in /home/jenkins2/worker_node3/myWorkspace
[Pipeline] {
[Pipeline] pwd
[Pipeline] echo
/home/jenkins2/worker_node3/myWorkspace
[Pipeline] ws
Running in /home/jenkins2/worker_node3/myWorkspace@2
[Pipeline] {
[Pipeline] pwd
[Pipeline] echo
/home/jenkins2/worker_node3/myWorkspace@2
[Pipeline] }
[Pipeline] // ws
[Pipeline] }
[Pipeline] // ws
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

As you can see, Jenkins switched to the requested workspace the first time we asked
for it. On the second request, it appended the @2 to the workspace name. In most
cases, this probably won’t matter, but if it did (if you needed the exact name), you
could check the output of a pwd() call and exit or wait depending on what you
wanted to do.

ws Versus dir

If you are not concerned with the locking aspect, you can just use
the dir step to switch the directory you are executing in.

Cleaning a Workspace
Workspaces in Jenkins are not automatically cleaned. However, as we’ve discussed in
other chapters, the pipeline supplies a cleanWs step to clean out a workspace. By
default, the step removes all files in the workspace, regardless of the build result, and
fails the build if the cleanup fails. But there are a number of options to customize the
steps’ behavior, summarized in the next few sections.

File patterns to be deleted
By default, all files in the workspace will be deleted. However, you can add file pat‐
terns to include or exclude from deletion. This is specified using the patterns argu‐
ment and an array of pattern and type pairs (where pattern is the file pattern and
type is include or exclude).

444 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

For example, to only delete the *.bak and *.tmp files from the workspace, you could
use the following syntax:

cleanWs patterns: [[pattern: '*.bak', type: 'INCLUDE'],
 [pattern: '*.tmp', type: 'INCLUDE']]

Pattern Syntax

The syntax for the pattern here is Ant syntax, so the preceding
example only deletes these files in the top-level directory. If you
wanted to delete these files in all subdirectories, you would need to
use syntax like this: '**/*.tmp'.

One thing that may not be obvious here is that you can use the INCLUDE and EXCLUDE
types together. Why would you do this? One reason would be to add specific exclu‐
sions within the context of a larger inclusion—in other words, to keep a specific item
or items when other things of that type are being removed.

In the following code, we are deleting all of the *.tmp files except the one named
keep.tmp:

cleanWs(patterns: [[pattern: '*.tmp', type: 'INCLUDE'],
 [pattern: 'keep.tmp', type: 'EXCLUDE']])

Using other delete programs

Another option that cleanWs provides is the ability to use a different delete program.
This is done via the externalDelete parameter. The argument to this parameter is a
call to the alternative delete application. This takes the form of:

<delete-program> [<delete-program-arguments>] %s

%s here will be replaced by the items to be deleted, as interpreted through the rest of
the cleanWs command options. Environment variables can be incorporated in this
string via the ${} syntax. Note that if an environment variable is used for the
<delete-program> and that environment variable is set to the empty string, the
default delete program on the node will be used.

Invoking the externalDelete option with the delete program shred on a Linux sys‐
tem might look something like this:

cleanWs externalDelete: 'shred -uf %s'

Other arguments

The remaining arguments for the cleanWs step are all Booleans for various aspects.
Remember that the default form of the step is just cleanWs, so these arguments only

Working with Workspaces | 445

need to be specified if you don’t want the default behavior. The available arguments
are:

cleanWhenAborted

Default is true; if set to false, the step will not clean the workspace when the
build status is aborted.

cleanWhenFailure

Default is true; if set to false, the step will not clean the workspace when the
build status is failed.

cleanWhenNotBuilt

Default is true; if set to false, the step will not clean the workspace when the
project was not built.

cleanWhenSuccess

Default is true; if set to false, the step will not clean the workspace when the
build status is success.

cleanWhenUnstable

Default is true; if set to false, the step will not clean the workspace when the
build status is unstable.

deleteDirs

Default is false; if set to true, will delete directories also. Note that if patterns
are supplied (as outlined in the earlier section), this will only delete directories
that have names that also match those patterns.

notFailBuild

Default is true; if set to false, this will fail the overall build if the cleanup step
fails.

File and Directory Steps
Finally in this chapter, we’ll discuss the Jenkins pipeline steps provided for working
with files and directories. We’ll start with the ones specific to files.

Working with Files
Files are another way we can pass information to and from Jenkins. Pipeline DSL
contains simple steps for the most common operations for working with files: read‐
ing, writing, and checking for existence. We’ll cover those operations in this section.

446 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

Reading files

The step for reading a file into a pipeline is readFile. It reads in the contents of the
file and returns those as a string.

readFile has two possible parameters. The first is file, which is the relative path to
the desired file from the current directory. Most often, this will be relative to the
workspace directory, since that’s where the script will be running and thus will be the
default current directory. Path components should be separated by forward slashes
(/). This parameter is required.

The second parameter is the file encoding, such as UTF-8. This parameter is optional.

The following code snippet shows the simple form of the step and then a version that
includes the encoding:

readFile 'dir1/dir2/filename'

readFile encoding: 'UTF-8', file: 'dir1/dir2/filename'

Writing files

Like reading files, writing files is fairly straightforward. The step is writeFile. It takes
a required parameter for the path to the file to write. That parameter is named file.
The path for the file parameter is relative to the current directory which, like with
readFile, is usually going to be the current workspace. Here too, path components
should be separated by slashes.

Also required is the text string to write out to the file, specified by the parameter
text.

Finally, an optional encoding parameter can be specified if needed.

An example call for this step is:

writeFile encoding: 'UTF-8', file: 'dir1/dir2/file.out',
 text: 'Output from build'

Checking for file existence
The last file operation is one that checks for the existence of a file. Not surprisingly,
the name of the step is fileExists. It only takes one argument: the path with the
name of the file to check for. Like the other file operations, this path is expected to be
relative to the current directory (usually the workspace directory when a job is run‐
ning) and with the components separated by slashes.

An example is:

fileExists 'build/reports/index.html'

Now, we’ll move on to the steps that support working with directories.

File and Directory Steps | 447

Working with Directories
The pipeline DSL provides several steps related to directories that can be useful. The
function of most of these may be obvious based on the name, but some of them can
have specialized usage in the context of a pipeline.

dir

As the name suggests, the dir step allows you to switch the current working direc‐
tory. This step is a block step, meaning that you supply a directory and that directory
is the current directory for any other steps in the block.

For example:

dir('/home/user') {
 // some steps
}

Here are a few points to be aware of when using this command:

• The path you supply to the step can be either absolute or relative.
• If the directory does not exist, Jenkins will attempt to create it, but it must have

appropriate permissions to do so.
• If a step inside the block uses a relative path, it will be relative to the directory set

in the step.

You may be wondering what the difference is between using this command to switch
directories for a workspace and the ws command. As mentioned briefly earlier in the
chapter, the ws command provides locking functionality, such that multiple jobs can‐
not use the same directory as the workspace at the same time. dir does not.

pwd

Like the OS command of the same name, a call to the pipeline step pwd just returns
the current directory as a string. The step can take one optional argument: tmp. If tmp
is set to true, then this will return a temporary directory associated with the current
one by appending @tmp onto it.

As an example, if the current directory is /home/jenkins, then the value of tmpDir in
the following code will be /home/jenkins@tmp:

 def tmpDir = pwd tmp:true

448 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

@tmp in Workspaces

Workspaces sometimes have @tmp directories associated with
them. This is because workspaces frequently need places to put files
that are not part of the source checkout/build area, such as tempo‐
rary scripts, libraries, etc.

deleteDir
This step is used to recursively delete a directory. By default it operates against the
current directory. If you want to redirect it to another directory, you can wrap it in a
dir block (per the previous discussion of the dir step):

dir('tmpDir') { deleteDir() }

These pipeline steps provide the basic operations most commonly needed for work‐
ing with files and directories. There are also plugins that provide a more extensive set
of operations to your pipeline. We’ll discuss one of those next.

Doing More with Files and Directories
As with nearly any kind of built-in functionality in Jenkins, plugins have been written
that can extend the set of functionality for working with files and directories. One of
those is the File Operations plugin.

When installed, the File Operations plugin adds a new fileOperations step that has
a number of suboperations to assist with file and directory manipulations. Most of
the functionality should be obvious from the names, but for more information on
what these do, please see the plugin’s documentation.

 fileCreateOperation(String fileName, String fileContent)
 fileCopyOperation(String includes, String excludes,
 String targetLocation, boolean flattenFiles)
 fileDeleteOperation(String includes, String excludes)
 fileDownloadOperation(String url, String userName,
 String password, String targetLocation, String targetFileName)
 fileJoinOperation(String sourceFile, String targetFile)
 filePropertiesToJsonOperation(String sourceFile,
 String targetFile)
 fileTransformOperation(String includes, String excludes)
 fileUnTarOperation(String filePath, String targetLocation,
 boolean isGZIP)
 fileUnZipOperation(String filePath, String targetLocation)
 folderCopyOperation(String sourceFolderPath,
 String destinationFolderPath)
 folderCreateOperation(String folderPath)
 folderDeleteOperation(String folderPath)
 fileRenameOperation(String source, String destination)
 folderRenameOperation(String source, String destination)

File and Directory Steps | 449

https://plugins.jenkins.io/file-operations

The fileOperations step takes an array of file operations as elements with their
respective arguments. The following example shows using this step to create a file,
copy the file to a new name, and then delete the original file:

 fileOperations([
 fileCreateOperation(fileContent: 'This is a text file.',
 fileName: 'file1.txt'),
 fileCopyOperation(excludes: '', includes: 'file1.txt',
 targetLocation: 'file2.txt'),
 fileDeleteOperation(includes: 'file1.txt')
])

The output from the step provides a summary of what it is doing as it executes:

[Pipeline] fileOperations
File Create Operation:
Creating file: /var/lib/jenkins/workspace/file-test1/file1.txt
File Copy Operation:
/var/lib/jenkins/workspace/file-test1/file1.txt
File Delete Operation:
/var/lib/jenkins/workspace/file-test1/file1.txt deleting....
Success.
[Pipeline] }

The main advantage of using this step over calls to the OS shell is that these opera‐
tions are OS-independent. They can be used on *nix or Windows.

Summary
In this chapter, we’ve covered a set of pipeline steps that allow your pipeline to inter‐
act with the underlying operating system.

The sh step (bat on Windows) is a ubiquitous step that allows you to execute any
shell command and, optionally, return the output or return code back to your pipe‐
line for processing. In a mature pipeline, its utility is for accomplishing tasks that may
not have dedicated steps in the pipeline. However, in the earlier stages of pipeline
development, it can also be used for prototyping by executing commands previously
done by other scripts before they are turned into dedicated steps.

The pipeline provides steps as well for working with environment variables. Environ‐
ment variables from outside the pipeline can be queried (have their values read).
Within the pipeline, environment variables can be set at the scope of the entire script,
or, using the withEnv block step, they can be temporarily modified within the scope
of a closure.

Jenkins allows you to change the workspace directory to a custom directory if
needed, using the ws step, and it provides a customizable step (cleanWs) for selec‐
tively cleaning out parts of the workspace. If, however, you are not concerned about

450 | Chapter 11: Integration with the OS (Shells, Workspaces, Environments, and Files)

multiple pipeline instances trying to use the same custom workspace, you can use the
dir step as an alternative to switch directories.

dir is just one of the steps available for working with directories. Others include steps
to delete directories and determine the current directory. An option to the pwd step
for determining the current directory allows you to create an associated temporary
directory. For files, the built-in steps center around reading, writing, and checking for
file existence. However, the File Operations plugin greatly extends the set of OS-
independent file operations that you can do through the pipeline.

In the next chapter, we’ll look at integration with tools that can analyze your source
code for metrics and quality.

Summary | 451

CHAPTER 12

Integrating Analysis Tools

Most pipelines have some version of an “analysis” stage for doing things such as gath‐
ering code metrics, determining complexity, identifying bad coding practices and
likely breaking points, and calculating potential resource costs such as technical debt.
These analytics identify potential problems (some more serious than others), and fix‐
ing these “holes” can enhance key characteristics of the code such as readability, relia‐
bility, and maintainability.

In this chapter, we’ll look at how to integrate one of the most popular of these appli‐
cations, SonarQube, into a Jenkins pipeline. We’ll also see how to integrate a separate
tool, Jacoco, for code coverage analysis. Code coverage analysis is frequently integra‐
ted into a tool like SonarQube, but it’s worth understanding how to separate it out,
given the important role that code coverage can often play in analyzing code.

For SonarQube, we’ll start by briefly discussing the tool and how it is integrated into a
traditional pipeline. Then we’ll look at how that translates into a pipeline-as-code
environment. Along the way, we’ll cover one of the most important aspects of using
such a tool in a pipeline, as a way to pass or fail your pipeline stage based on selected
thresholds set within the application.

Though we’ll utilize Gradle again here as a supporting technology, the approaches we
use should be adaptable to most other technologies once you understand the basics.

Likewise, for Jacoco, we’ll briefly discuss the application, see how it has typically been
integrated into a traditional pipeline, and then look at how we can migrate that into a
pipeline-as-code.

Let’s begin by discussing a little about what SonarQube offers for code quality analysis
in a pipeline.

453

SonarQube Survey
Per its website, SonarQube (formerly known as just “Sonar”) is an open platform for
managing code quality in several key software areas, including:

• Architecture and design
• Comments
• Coding rules
• Potential bugs
• Duplications
• Unit tests
• Complexity

As you can see by this list, the core functionality covers a lot of territory and provides
many metrics that can be beneficial. Within the SonarQube application itself, you can
get a quick overview of how an analyzed project fared by looking at the dashboard.
An example of that is shown in Figure 12-1.

Figure 12-1. SonarQube dashboard

Beyond this core set, the “open” reference refers to the ability to extend the tool’s
functionality with plugins to gather additional metrics, and to the ability to further
define and tune the rules that govern the core functionality. This may be helpful as
you start establishing criteria that your pipeline code needs to meet.

To begin to understand how it fits in with our pipelines, let’s take a quick look at indi‐
vidual violations flagged by SonarQube.

454 | Chapter 12: Integrating Analysis Tools

https://www.sonarqube.org

Working with Individual Rules

SonarQube governs the conditions it checks based on a set of specified “rules.” When
it analyzes source code and detects code that violates these rules, it flags the offending
code and reports the rule violations. A simple example showing a set of violations
that were found can be seen in Figure 12-2.

Figure 12-2. Rule violations in a SonarQube Report

From here we can drill down into individual violations to get more information, as
seen in Figure 12-3.

Figure 12-3. Detailed error explanation

SonarQube Survey | 455

Note that if you go far enough, the explanation will not only show you the location of
the offending source code, but also examples of solutions—ones that are noncompli‐
ant and ones that are compliant.

Assuming you agree with the analysis, you can go back and make a change to the
source code to correct the issue, and then send the code back through another run of
the pipeline (and thus SonarQube).

Other Ways to Respond to Rule Violations in SonarQube
If you have appropriate permissions, you can choose to respond to rule violations in
ways other than fixing them yourself. This may be appropriate, for example, if the
violation should be (or will be) handled differently in a certain context. Here are some
of the options:

• Set the issue type to one of a less (or more) serious nature (see Figure 12-4).

Figure 12-4. Setting the issue type

456 | Chapter 12: Integrating Analysis Tools

• Resolve the issue—for example, if you won’t be fixing it (see Figure 12-5).

Figure 12-5. Setting the issue resolution

• Assign the issue to a particular person (see Figure 12-6).

Figure 12-6. Assigning an issue to an owner

SonarQube Survey | 457

• Supply comments on the issue (see Figure 12-7).

Figure 12-7. Adding a comment to the code

• Change the associated category of the violation (see Figure 12-8).

Figure 12-8. Setting the category of a violation

The amount of information generated by this type of analysis can be significant,
depending on the size and scope of the code being analyzed. Analysis tools nearly

458 | Chapter 12: Integrating Analysis Tools

always have ways to “turn down” the number of issues flagged, by ignoring certain
types of items. But ultimately, in a continuous delivery environment, we want to
establish thresholds for quality analysis. The goal is that our candidate release will
only pass (be able to move further down the pipeline) if it meets or exceeds the mini‐
mum threshold for desirable characteristics, and falls below the maximum threshold
for problematic issues. Examples might be that a minimum percentage of our code
has to be covered by unit testing and we can only have a certain maximum amount of
issues flagged as critical code alerts.

Within SonarQube, thresholds for various metrics and analyses can be set this way.
Selected thresholds can be combined to form a single set of criteria for rendering a
pass/fail judgment on the code being evaluated. In SonarQube, these pass/fail thresh‐
olds are called Quality Gates and the application of specific Quality Gates to different
projects or technologies is done via Quality Profiles.

Quality Gates and Profiles

Quality Gates in SonarQube are made up of sets of conditions. Conditions, in turn,
are made up of:

• Something to be measured (such as the number of critical issues or amount of
code coverage)

• A period of time for the measurement (either current or over some defined
period)

• A threshold value
• A comparison operation (such as “is less than,” “is greater than,” etc.)
• An error value or warning value, as needed

An example would be a condition in a Quality Gate that says we can have no more
than two alert issues. Another might be a condition that requires a minimum of 80%
code coverage by unit tests. Figure 12-9 shows some of the conditions in the default
“SonarQube way” Quality Gate that comes with SonarQube.

SonarQube Survey | 459

Figure 12-9. Configuration for the default SonarQube way Quality Gate

In short, we’re defining tests in different categories of quality analysis against thres‐
hold values. The implication is that we’re setting a baseline for how many “violations”
we’re willing to tolerate to consider our code to be of good quality and suitable for
production. The set of conditions functioning together as a Quality Gate allow us to
translate thresholds into a single pass/fail status. Quality Gates can then be config‐
ured for different projects or technologies via Quality Profiles. For example, you
might have one Quality Profile for your Java projects, another for your JavaScript
projects, and another for your Python projects. Each of these could use the same
Quality Gate(s) if the rules were widely applicable, or specialized Quality Gates for
each language. Figure 12-10 shows the default Quality Profiles setup for a SonarQube
instance.

460 | Chapter 12: Integrating Analysis Tools

Figure 12-10. Default Quality Profiles setup

A full exploration of SonarQube, Quality Profiles, and Quality Gates is beyond the
scope of this text. However, as noted previously, we can leverage the Quality Gate/
Profile functionality as a pass/fail gate for an “analysis” stage in our pipeline. Before
we can do that, though, there is one more aspect of using SonarQube that we need to
understand—the SonarQube scanner.

The Scanner

As the name suggests, a scanner for SonarQube is a program that scans the source
code, checking for issues. The scanner is differentiated from the SonarQube server or
instance that stores results, produces reports, etc., but both elements (some form of
scanning and the server) are needed to form a complete analysis mechanism.

Historically, scanners (or “runners,” as they were sometimes known) were standalone,
separate executables. The other piece that was needed, in conjunction with the scan‐
ner, was a configuration file of some kind that identified key SonarQube properties,
such as the location of the source to be analyzed—including subprojects, the server,
etc.

SonarQube Survey | 461

Scanning Functionality in Other Tools

Scanning functionality and configuration has also been more
tightly integrated into recent versions of some other tools. An
example would be new integration with Gradle that allows for con‐
figuration properties to be specified directly in the Gradle build
file, and the scanning to be invoked via a Gradle task provided by a
plugin. However, these can also be problematic, as we will see later
in the chapter.

Now that we have some background context, let’s look at what it takes to actually use
SonarQube—first with a Jenkins Freestyle project, and then in a Scripted Pipeline.

Using SonarQube with Jenkins
Like with any other external application, integration of SonarQube with Jenkins
requires a few pieces to be put in place. These include having the application up and
running, having the plugin installed, global configuration of the server and (option‐
ally) a scanner, and then invoking it within jobs. Let’s look at these areas in more
detail.

Global Configuration
Figure 12-11 shows an example of the global configuration for a SonarQube server.
(This is done on the Configure System page.)

Figure 12-11. SonarQube global configuration in Jenkins

462 | Chapter 12: Integrating Analysis Tools

Note the option to “Enable injection of SonarQube server configuration as build
environment variables.” This may be needed in cases where tools like Maven incorpo‐
rated environment variables as part of their scanning command. In the job definition,
there is a corresponding option to prepare the environment.

We also need to have the SonarQube scanner installed and configured. Figure 12-12
shows an example of this. (Note that it is configured on the Global Tool Configura‐
tion screen.)

Figure 12-12. SonarQube scanner global configuration

Once we have the application installed and running, the Jenkins plugin installed, and
the global system and tool configuration done, we are ready to make use of Sonar‐
Qube in our pipeline for the analysis. Consistent with our migration/conversion
theme throughout the book, we’ll look first at how it would have been used in a Free‐
style project.

Using SonarQube in a Freestyle Project
In a traditional Freestyle job environment, we might have had a separate “analysis”
job that first called the scanner as a build step. The plugin would have provided some
formal build steps that could be used to run the standard SonarQube scanner or an
MSBuild scanner. Other applications will have relied on calls oriented around their
specific syntax. We won’t go into all the options here since that isn’t our primary goal,
but you can find examples of the different types of scanning for tools like Maven,
Gradle, etc. on the SonarQube website.

A simple fallback was to execute a shell step that simply invoked the scanner exe‐
cutable.

Any scanner invocation also needed to have some basic configuration values defined
for it to know what to process, and how to reference it in SonarQube. These could be
stored in a text file and the location pointed to in the Jenkins job. Or, in the case of
some of the formalized build steps, they could be entered directly into a field in the

Using SonarQube with Jenkins | 463

web job. A simple example of a project configuration file might look like the follow‐
ing:

$ cat sonar-project.properties
Required metadata
sonar.projectKey=workshop-com.demo.pipeline
sonar.projectName=ROAR :: (Workshop) Pipeline Demo
sonar.projectVersion=1.0

Comma-separated paths to directories with sources (required)
sonar.sources=api/src,dataaccess/src,util/src,web/src

Language
sonar.language=java

Encoding of the source files
sonar.sourceEncoding=UTF-8

Given this background, we can move on to how SonarQube can be incorporated into
our Pipeline projects.

Using SonarQube in a Pipeline Project
If we have or had an analysis job in our traditional pipeline, we can carry that idea
forward to create an analysis stage in our Jenkins 2 pipeline. We just need to select the
server, pass on the appropriate environment details, and call the scanner.

Fortunately, with SonarQube version 5.2 or greater, SonarQube Scanner version 2.8
or greater, and a recent version of the SonarQube plugin installed, the Jenkins pipe‐
line DSL simplifies the process for us. It provides a withSonarQubeEnv block that
allows us to select a globally configured SonarQube server to use. Further, it makes
the connection details (associated with the global configuration for that server) avail‐
able to operations done in that block. This simplifies providing an environment for a
call to the scanner.

An example of using this block in a simple analysis stage would be:

stage('Analysis') {
 def scannerLoc = tool 'sq-scanner';
 withSonarQubeEnv('Local SonarQube') {
 sh "${scannerLoc}/bin/sonar-scanner"
 }
 }

464 | Chapter 12: Integrating Analysis Tools

http://bit.ly/2HEe0NN

Using withSonarQubeEnv in Declarative Pipelines

Notice that in the example we defined a separate variable for the
scanner location. You may recall from other sections of this book
that we can’t do that in a Declarative Pipeline. However, we can
shorten the syntax and incorporate the tool DSL method into the
sh call, as in the following example:

sh "{tool 'sq-scanner'}/bin/sonar-scanner"

With the use of the withSonarQubeEnv block, we can run the analysis and get the
results back in the SonarQube application. However, that is not all we want to be able
to do in the pipeline. We also want to have a way to use the results of the analysis to
tell the pipeline whether the changes we are analyzing are of good enough quality to
proceed to the next stage. How do we do that?

Leveraging the Outcome of the SonarQube Analysis
One of the historical challenges with doing a SonarQube analysis as part of a pipeline
process has been getting, and leveraging, the overall results of the analysis—that is,
using the analysis results as a pass/fail indicator of whether to allow the code to pro‐
ceed on to the next part of the pipeline.

Over the years, a number of solutions have been implemented and used. For example,
one solution was a Groovy script that ran in a Jenkins job and accessed the Sonar‐
Qube server via REST API calls. That custom script got the desired result values from
SonarQube, and then evaluated them against thresholds entered as Jenkins job
parameters to determine whether any were out of bounds. If any of the results were
outside of the thresholds set by the parameters, the script would cause the Jenkins
process to abort further processing.

Better options are now available. For the Jenkins–SonarQube integration, we can set
up a webhook in SonarQube and then have Jenkins wait for notification from that
webhook before continuing. Let’s see how to do that.

Setting up the SonarQube webhook
To set up the SonarQube webhook, first sign in to the SonarQube application with
administrator credentials. Then click on the Administration menu and select Config‐
uration, then General Settings. From there, scroll down to the Webhooks section
directly under that column. Click on that and fill in the fields as follows:

• Name: jenkins_sonar
• URL: <jenkins-url>/sonarqube-webhook/ (don’t forget the trailing slash on the

URL!)

Using SonarQube with Jenkins | 465

Once you have filled in the fields, click the Save button to put the webhook is in place.
Figure 12-13 shows the screen with the webhook information completed.

Figure 12-13. SonarQube screen with webhook information completed

Now that we have the webhook set up, we are ready to set up the code to process it in
the Jenkins pipeline.

Processing the SonarQube webhook in the Jenkins DSL
The SonarQube plugin provides a Jenkins DSL method to wait for the SonarQube
webhook to process, named waitForQualityGate. This method pauses pipeline exe‐
cution and waits for the previously submitted SonarQube analysis to complete, per
the webhook notification from SonarQube. The method returns the status of the
Quality Gate that was applied to the project in SonarQube. You can then check the
return status to know whether the analysis was a pass or fail and whether it’s OK to
proceed in the pipeline.

An implementation in a Scripted Pipeline might look like this:

def qg = waitForQualityGate();
if (qg.status != 'OK') {
 error "Pipeline aborted due to quality gate failure: ${qg.status}"
}

There is another important consideration around using this method. Any time you
are using a method that pauses your pipeline, as this one does, you should consider
the consequences if the method never gets the input, or the event that triggers it to
continue. For example, in this case, what if your SonarQube server died or became

466 | Chapter 12: Integrating Analysis Tools

inaccessible while this method was waiting? It is likely you would not want to hold up
your entire pipeline until the problem was discovered and fixed.

A good approach to address this kind of potential issue is to surround the code with a
DSL timeout block (as discussed in Chapter 3). The syntax is straightforward. Here’s
an example with the timeout value set to 5 minutes:

 timeout(time:5, unit:'MINUTES') {
 def qg = waitForQualityGate()
 if (qg.status != 'OK') {
 error "Pipeline aborted due to quality gate failure: ${qg.status}"
 }
 }

This code can be incorporated into the same analysis stage in the pipeline that we
used earlier for the call to the scanner, or it can be put into its own separate stage.
Having a separate stage to wait for the Quality Gate does allow you to easily deter‐
mine (in an interface like the Jenkins Stage View) whether that particular piece failed,
versus a failure in running the scanner. Figure 12-14 shows a representation of this.

Figure 12-14. Stage View of failure in separate stage for Quality Gate

Using SonarQube with Jenkins | 467

If this is not important to you, though, then it really just depends on how granular
you want to make your pipeline stages.

Working with SonarQube Integration Directly in Gradle
As mentioned earlier in this chapter, recently SonarQube has begun providing more
direct integration with applications like Gradle. This effectively eliminates the need to
run a separate scanner application; the scanning functionality is, instead, integrated in
the application as a new operation compatible with it.

As an example, with the newer versions of SonarQube and Gradle, you can simply
include the SonarQube plugin and then define the project properties in a SonarQube
closure in the Gradle build file:

plugins {
 id "org.sonarqube" version "2.4"
}

description = 'Example of SonarQube Scanner for Gradle Usage'
version = '1.0'

sonarqube {
 properties {
 property 'sonar.projectName', 'ROAR :: (Workshop) Pipeline Demo'
 property 'sonar.projectKey', 'workshop-com.demo.pipeline'
 property 'sonar.projectVersion', '1.0'
 property 'sonar.sources', 'api/src,dataaccess/src,util/src,web/src'
 property 'sonar.language', 'java'
 property 'sonar.sourceEncoding', 'UTF-8'
 }
}

Including the plugin also provides a new sonarqube task that can be called in place of
the scanner. As such, it could be added to a pipeline withSonarQubeEnv call, as shown
here:

stage('Analysis') {
 withSonarQubeEnv('Local SonarQube') {
 sh "/usr/share/gradle/bin/gradle sonarqube"
 }
}

While this works to run the analysis, at the time of this writing it does not work with
waiting for the Quality Gate. If you try to incorporate this with the webhook and wait
ForQualityGate call, you get an error such as the one in Figure 12-15:

468 | Chapter 12: Integrating Analysis Tools

Figure 12-15. Error attempting to wait for the quality gate when using direct Gradle-
SonarQube integration

There are some suggestions on the web regarding how to work around this, but noth‐
ing that seems to fully resolve it yet. That may change in the future.

SonarQube Integration Output with Jenkins
SonarQube provides multiple ways to link to the analysis of a Jenkins project from
within the Jenkins output itself. This is most noticeable in the Stage View of a pipe‐
line or job. In Figure 12-16, you can see several links to the SonarQube output for this
project. In the lefthand menu, you see the item named SonarQube as one link. Notice
the icon/symbol next to it with the three curved lines. That same symbol/badge
shows up in the Build History area at the end of the line for the #1 run. Clicking on
that badge there will take you to the same project analysis page in the SonarQube
application. And finally, there is the OK button under the SonarQube Quality Gate
label (after the project name). This is another link to the same location.

Figure 12-16. Stage View links to SonarQube analysis

Clicking on any of these links takes you to the SonarQube analysis page for the
project (like the one in Figure 12-17).

Using SonarQube with Jenkins | 469

Figure 12-17. SonarQube analysis page

Code Coverage: Integration with JaCoCo
Typically, code coverage analysis is included with a tool like SonarQube. However,
since it can be a significant factor on its own, here we’ll look at how to utilize one
code coverage application, JaCoCo, separately in your pipeline. Even if you are not
going to use JaCoCo, the example integration shown here may be useful to you as you
incorporate other tools.

About JaCoCo
The name JaCoCo is short for Java Code Coverage. As the name implies, the intended
purpose of the tool is to provide code coverage information for Java source files—
essentially, how much of your code your test cases are exercising. It does this by
instrumenting the Java class files.

JaCoCo can provide information about a number of coverage aspects, including:

Instruction coverage
Basic info about how much code has been executed

Branch coverage
For if and switch statements, will look at all the possible branches and figure
out the number of executed and missed branches

Cyclomatic complexity
Defined as the minimum number of paths that are capable of generating all pos‐
sible paths through a method; basically, this can suggest the number of unit tests
required to completely cover a piece of code

470 | Chapter 12: Integrating Analysis Tools

Let’s take a look at some example output. Figure 12-18 is a summary of missed
instructions and missed branches in a class.

Figure 12-18. JaCoCo coverage summary for a class

Figure 12-19 is a more detailed summary after drilling into the source code. Fully
covered lines are represented as green, partially covered lines are colored yellow, and
lines that haven’t been exercised yet are red. The diamonds here refer to decision
points, and the colors have similar meanings as before: green means all branches exe‐
cuted, yellow means some branches executed, and red means none of the branches
executed.

Figure 12-19. JaCoCo detail after drilling into source code

Now that we have some basic knowledge about JaCoCo, let’s see how we can integrate
it in our pipeline.

Integrating JaCoCo with the Pipeline
To use JaCoCo, the application must be available and you must have the JaCoCo
plugin installed in Jenkins. (This assumes that you are using JaCoCo separately from
a code analysis application like SonarQube.) Unlike other applications, JaCoCo does
not require any global configuration in Jenkins. Rather, it is made available as a post-
build action in the traditional Jenkins model. Figure 12-20 shows a job set up to run
JaCoCo as a post-build action.

Code Coverage: Integration with JaCoCo | 471

https://plugins.jenkins.io/jacoco
https://plugins.jenkins.io/jacoco

Figure 12-20. Post-build action configuration to run JaCoCo in a Jenkins Freestyle job

The fields in this section allow us to configure various aspects of the code coverage
analysis. The paths define the locations of the various types of files JaCoCo needs
access to. These are relative to the Jenkins workspace. The Inclusions and Exclusions
fields allow excluding certain class files from instrumentation. (Recall that JaCoCo
works by instrumenting class files.) And the bottom numeric fields allow for setting
coverage thresholds. If the bottom checkbox is checked, this tells Jenkins to update
the build status based on whether or not the threshold values were met.

We can translate this into code for our pipeline most easily using the Snippet Genera‐
tor. In fact, as Figure 12-21 shows, the form to fill in for the “jacoco” step using the
Snippet Generator looks remarkably like the form from the traditional Jenkins job.

Figure 12-21. Snippet Generator form for jacoco step

472 | Chapter 12: Integrating Analysis Tools

Filling in the form to match our traditional Jenkins job’s JaCoCo configuration and
pressing the button to generate the Groovy script code yields the following pipeline
code:

jacoco classPattern: '**/classes/main/com/demo/util,
 /classes/main/com/demo/dao', exclusionPattern: '/*Test*.class',
 sourcePattern: '**/src/main/java/com/demo/util,
 **/src/main/java/com/demo/dao'

This can then be placed in a stage block in the pipeline. Most commonly, it might
just be added to the stage for the analysis functions.

JaCoCo Output Integration with Jenkins
Finally, let’s take a quick look at how JaCoCo integrates its output with Jenkins. Once
you have successfully run through an analysis with JaCoCo, Jenkins will add two
things to the output page (Stage View) for the job. The first will be a large graph
showing code coverage trends over time. The second will be an additional Coverage
Trend menu item in the lefthand menu that, when clicked, will bring up a similar
code coverage trend graph. (See Figure 12-22.)

Figure 12-22. Code coverage trend graph in Stage View

Clicking on either graph will allow you to drill down further into the code coverage
details, by packages and then eventually into files and methods.

Figures 12-23, 12-24, and 12-25, show some examples of further drilling down.

Code Coverage: Integration with JaCoCo | 473

Figure 12-23. Drilling into the JaCoCo integration for packages with Jenkins output

Figure 12-24. Drilling into the JaCoCo integration for files with Jenkins output

Figure 12-25. Drilling into the JaCoCo integration for methods with Jenkins output

Summary
In this chapter we covered integration of two tools for code analysis, SonarQube and
JaCoCo, into Jenkins pipelines. Having an analysis stage in your pipeline is para‐
mount to ensuring good code quality and gauging the suitability of code to continue
to production.

474 | Chapter 12: Integrating Analysis Tools

We first looked at SonarQube and how it can generate a wide variety of metrics for us
through its scanning of source code. We also saw how to use Quality Gates to set
thresholds that have to be met for the code to pass the analysis.

We then looked at what JaCoCo is capable of, and how we can leverage it to get an
analysis of how well our test cases are covering our code. JaCoCo provides significant
integration with Jenkins output, allowing us to drill down through the layers of mod‐
ules and methods to get to the details we need.

There are certainly other tools out there that you may wish to use instead of Sonar‐
Qube and JaCoCo, or in addition to them, in your pipeline. Along with choosing a
tool, it’s important to also spend the time to tune each tool, to check for the specific
conditions important to your team and set thresholds for what you are (or aren’t)
willing to accept. This will ensure the pipeline analysis stage can truly do what you
want it to do.

In the next chapter, we’ll look at another tool that serves a broad purpose in our pipe‐
line—artifact management through Artifactory.

Summary | 475

CHAPTER 13

Integrating Artifact Management

Multiple stages of many pipelines rely on working with an artifact repository—both
to publish versions of artifacts created in the pipeline and to retrieve specific versions
for use in the pipeline. In this chapter, we’ll examine how to work with one of the
most popular artifact managers, JFrog Artifactory. We’ll explore how to migrate func‐
tionality from an existing Freestyle project to a pipeline-as-code. We’ll also see how to
do some other common tasks that require extra setup. Next, we’ll look at some chal‐
lenges when trying to use the Artifactory integration with a Declarative Pipeline.

Finally, we’ll take a quick look at the pipeline steps for archiving artifacts and record‐
ing fingerprints (tracking information for which artifacts are associated with which
builds).

First, though, for those who may not be familiar with Artifactory, we’ll take a quick
look at why we use it and the value it can add.

Publishing and Retrieving Artifacts
While the rationale for most of the technologies used in our example pipeline so far is
obvious, that doesn’t always seem to be the case for leveraging an artifact repository.
As such, before diving into how to integrate Jenkins 2 pipelines with Artifactory, it’s
worth noting the benefits that warrant making the investment to use it in your pipe‐
lines.

Just as a well-structured pipeline should have facilities to manage source code, there
should also be a facility to manage binary artifacts and other generated deliverables.
Artifact management of this type is not always a given in pipelines, but in the cases
where it is not initially included, its utility and the need for it are certain to become
apparent quickly when the pipeline’s scope increases.

477

https://jfrog.com/artifactory/

Some key technical and business drivers for using an artifact versioning and manage‐
ment tool include:

• Avoiding rebuilding from potentially unstable or changing source each time an
artifact is needed

• Providing a versioned copy of an artifact (that has undergone some amount of
testing), so that everyone knows what they are getting

• Having multiple versions stored and versioned to allow different consumers to
use different versions (e.g., current, last release, etc.)

• Integrating with CI servers (such as Jenkins) so that, if a build is clean, the arti‐
fact can automatically be published into a repository (optionally with metadata
about the build that generated it)

• Allowing virtual repositories that can aggregate multiple well-known or internal
repositories, simplifying the search and ordering of artifacts

While there are multiple artifact repository management tools available, we will focus
on Artifactory here, since it is one of the most commonly used. Artifactory provides
both a Community Edition and a Pro Edition. Continuing the model from our exam‐
ple pipeline in Chapter 10, we are targeting an open source pipeline at its most basic,
so the focus here is on the free Community Edition of Artifactory. The Pro Edition
may have additional functionality that allows for more easily accomplishing some
tasks. However, most of what we do here should be easily transferable.

Now, let’s see how an Artifactory CE setup that has been integrated with traditional
Jenkins can be integrated with Jenkins 2. We’ll start with the basic setup for using the
tool.

Setup and Global Configuration
As with any other application, we’ll need to have an instance of the application up
and running with access for Jenkins. As well, we will want to have a recent version of
the Artifactory plugin installed. Any reasonably modern version will have pipeline
support built in.

We can search the Plugin Compatibility with Pipeline page on GitHub, we can search
for Artifactory and see that, as of plugin version 2.5.0, we had step compatibility. So,
as long as we have at least that version of the plugin installed, we should be able to use
the basic functionality we need.

Next, we want to make sure that we have the global configuration for the Artifactory
server done in Jenkins. This is done on the Configure System page. (If you have diffi‐
culty remembering whether to go to Configure System or Global Tool Configuration,
think of “system” as being similar to “server”; so, configuring the Artifactory server

478 | Chapter 13: Integrating Artifact Management

http://bit.ly/2J6w4NO
http://bit.ly/2qQ3gT5

would be done in the Configure System area.) Figure 13-1 shows an example configu‐
ration.

Figure 13-1. Global Artifactory configuration

Once Artifactory is installed and configured in Jenkins, it can be used in individual
Jenkins jobs or pipelines. Artifactory integration in pipelines is most easily done in a
Scripted Pipeline. We’ll cover details on how to do that next.

Using Artifactory in a Scripted Pipeline
In the traditional Jenkins web model for using Artifactory, there were a number of
areas to configure (and thus forms to fill in). Typically we would start with defining
where in Artifactory to publish artifacts we produce (the “deployment server”) and
where in Artifactory to resolve (look for) dependencies (the “resolution server”).

In the traditional web interface, we would configure those elements by selecting one
of the options for Artifactory integration in the Build Environment section. There are
several options to choose from, including Ivy, Maven, and Gradle. We’ll focus on a
Gradle example, as that’s what’s used in our example pipeline, but this should trans‐
late fairly easily to other types of available integration.

Figure 13-2 shows the Gradle-Artifactory Integration option selected. This, in turn,
invokes the Artifactory Configuration section with the related forms to fill in for the
deployment server and the resolution server.

Using Artifactory in a Scripted Pipeline | 479

Figure 13-2. Primary Artifactory/Jenkins Freestyle integration

To translate this to a pipeline environment, we need to define some values to point to
the server and repositories that we want. Also, depending on the type of the integra‐
tion, we have specific objects that represent the functionality of the combined Arti‐
factory and build application. These “compound” objects then allow us to invoke
Artifactory functionality with the build application via direct calls.

As an example, here are the related steps we can use to set up the Artifactory/Gradle
integration in a typical pipeline.

First, we need to create an instance of an Artifactory object that points to the Artifac‐
tory server as we have it configured in Jenkins. This is intended to reference the
global name we provided for the server in the configuration, similar to the tool DSL
step that we have used for other applications. The basic form here is:

 def server = Artifactory.server "<name>"

To match what we were using in the Freestyle job of our example pipeline where our
server was configured as “Local Artifactory,” we would set this as follows:

 def server = Artifactory.server "Local Artifactory"

Now, we can create an instance of an object that represents the predefined integration
of Artifactory and the build application. At the same time, we can also point it to the
installed version of the application. The basic form for this part is:

480 | Chapter 13: Integrating Artifact Management

def artifactoryGradle = Artifactory.newGradleBuild()
artifactoryGradle.tool = "<Gradle tool name in Jenkins>"

Adapting from our traditional pipeline example yields this:

def artifactoryGradle = Artifactory.newGradleBuild()
artifactoryGradle.tool = "gradle3"

At this point, we can instantiate (choose) our deployment repository and/or our
resolver repository. The context here is fairly straightforward, so jumping to an
implementation that matches our traditional pipeline looks like this:

artifactoryGradle.deployer repo:'libs-snapshot-local', server:server
artifactoryGradle.resolver repo:'libs-release', server:server

The server:server reference here is actually a parameter and a value. The parameter
name is server:, and the value we are passing in is the server instance object (from
the def server... code) we defined earlier.

Accessing Artifactory Instances Outside of Jenkins

It is also possible to access an Artifactory instance that is not
defined in Jenkins. This can be done by specifying a URL and an
access method for the newServer property of the Artifactory
object.
For example:

def server = Artifactory.newServer url:
<url to external server>, username: <username>,
password <password>

Additionally, if you already have credentials defined in Jenkins that
can access the external Artifactory instance, you can use them in
this call as the username and password:

def server = Artifactory.newServer url:
<url to external server>,
credentialsId:<id of credentials to use>

Beyond the basic configuration of the server and repositories, the traditional Jenkins
interface includes a large number of options for Artifactory integration. Figure 13-3
shows the first part of these options, as shown in the More Details section of the job.

Using Artifactory in a Scripted Pipeline | 481

Figure 13-3. Additional details for the Artifactory Freestyle integration

If you are working with Artifactory, most of these will be well understood already. As
such, we won’t go into detail on each one. We’ll just list a few examples, followed by
the code that can be used to set them in a pipeline script. In the More Details section,
we can:

• Tell Jenkins whether or not Gradle is already including the Artifactory plugin.
artifactoryGradle.usesPlugin = true | false

• Set options to capture build information:

1. Define an instance variable to hold an Artifactory buildInfo object.
2. Set the buildInfo environment capture switch to true.

def buildInfo = Artifactory.newBuildInfo(),
buildInfo.env.capture = true | false

• Set deploy/publish options:

1. Set a flag to indicate whether to deploy Maven descriptors.

482 | Chapter 13: Integrating Artifact Management

2. Define any patterns to be excluded from being deployed to Artifactory.
artifactoryGradle.deployer.deployMavenDescriptors = true | false
artifactoryGradle.deployer.artifactDeploymentPatterns.addExclude(
 "<file pattern>")

Once we have set the appropriate options, we can invoke the object to actually do the
work, such as running the Gradle build and publishing the results. First, we invoke
the artifactoryGradle object as we would for Gradle:

artifactoryGradle.run rootDir: "/", buildFile: 'build.gradle',
tasks: ...

Then we publish the build info:

server.publishBuildInfo buildInfo

A similar approach can be taken with other build tools and Artifactory, such as
Maven. For example, instead of an artifactoryGradle object that is created by
invoking newGradleBuild(), you might have a new artifactoryMaven object defined
this way:

def artifactoryMaven = Artifactory.newMavenBuild()

From there, you could proceed to set options for the Artifactory/Maven integration
based on the object just created. For example, to add a configuration item that both
includes certain files and excludes others, you could do:

artifactoryMaven.deployer.artifactDeploymentPatterns.addInclude(
 "<paths to include>").addExclude("<paths to exclude>")

This is similar to how we might define patterns in a Freestyle project, as shown in
Figure 13-4.

Using Artifactory in a Scripted Pipeline | 483

Figure 13-4. Defining patterns for Artifactory integration

You could also turn off deployment as follows:

artifactoryMaven.deployArtifacts = false

Next, we’ll look at a few examples of some other common tasks that require some
extra setup.

Performing Other Tasks
Once you have the basic integration with Artifactory set up in your pipeline, there are
likely to be other operations you need or want to do with it, such as uploading/down‐
loading specific files, promoting builds, etc. In this section, we take a look at how you
can accomplish some of those tasks.

Downloading Specific Files to Specific Locations
To download particular files, you create a specification in an external file. An example
would be a JSON file that lists what files to download and where to put them when
downloaded, like this:

def downloadInfo = """ {
 "files": [
 {
 "pattern":
"<artifactory repo name>/<file-structure-to-download-within-repo>",
 "target": "<location to download into>"
 }
]
}"""

484 | Chapter 13: Integrating Artifact Management

We can then cause the download to happen by calling the download method on the
server object:

server.download(<file>)

Uploading Specific Files to Specific Locations
Uploading is nearly the same as downloading. We create a specification in an external
file and then call an upload method on the server using that file. Here’s example file
content for that:

def uploadInfo = """ {
 "files": [
 {
 "pattern": "<file-structure-to-upload>",
 "target":
"<artifactory repo name>/<location-in-repository-to-upload-into>"
 }
]
}"""

Setting Build Retention Policies
Setting build retention policies is done with properties related to the buildInfo
object. First, we have to define a buildInfo object, as described earlier:

def buildInfo = Artifactory.newBuildInfo()

Then we can set appropriate properties, either as separate statements or in a com‐
bined form like this:

buildInfo.retention maxBuilds: 3, maxDays, 5

Build Promotion
Promoting a build between repositories in Artifactory requires defining a promotion
Config object and then promoting that object. As an example:

def promotionConfig = [

 // Required
 'buildName' : buildInfo.<name>,
 'buildNumber' : buildInfo.<number>,
 'targetRepo' : '<target repository>'

 // Optional
 'comment' : '<message>'
 'sourceRepo' : '<source repository>'
 'status' : '<status label>',
 'includeDependencies' : <true | false>,
 'copy' : <true | false>,

Performing Other Tasks | 485

 'failFast' : <true | false>
]

failFast here refers to whether or not the operation should stop when the first error
is encountered. This is set to true by default.

Once this is defined, the promotion can be defined simply by invoking the promote
method on the server object:

server.promote promotionConfig

Integration with a Declarative Pipeline
As outlined previously, Artifactory integration in a Jenkins pipeline currently
depends on the ability to define instances of objects to point to the server, the integra‐
tion object, etc. In a pipeline that is created using declarative syntax, such declarations
are not allowed, and trying to use them directly in the pipeline will result in an error.

How, then, do we make use of the Artifactory integration in a Declarative Pipeline?
There are several options, including:

• Placing code in a script block in the Declarative Pipeline
• Placing code outside of the larger pipeline block
• Creating a shared library to handle the Artifactory interactions

See Chapter 7 for more details on the first two options. While doable, these have
trade-offs, especially if you intend to try to manage your pipeline through the Blue
Ocean interface. Details about developing shared libraries (in support of the last
option) can be found in Chapter 6.

One other note here: it is possible at some point in the future that JFrog or someone
else will develop a plugin that provides more direct support for Artifactory integra‐
tion with Declarative Pipelines. If the current situation presents a challenge for you,
you may want to periodically check for newer versions of the plugin that might offer
better direct support.

Artifactory Integration with Jenkins Output
Artifactory provides a shortcut via a “badge” (icon) to its application in the Jenkins
Stage View page. If you look at the Build History section, at the end of the line for a
run that has used Artifactory, you will see a little badge that looks like a circle with a
bar under it. This is a direct link to Artifactory for that build. Figure 13-5 shows the
badge to click on.

486 | Chapter 13: Integrating Artifact Management

Figure 13-5. Artifactory output integration with Jenkins Stage View

Where you end up in Artifactory is the particular info page for the selected build (as
shown in Figure 13-6).

Figure 13-6. Build info page for selected build from Jenkins

Note that if you also have build promotion turned on, there will be a second badge
for that.

Archiving Artifacts and Fingerprinting
As the last part of our discussion on artifact management, we’ll take a look at the sup‐
port Jenkins provides for archiving artifacts and for “fingerprinting” (a way to track
which artifacts are associated with which builds). We’ll also see how to accomplish
these in pipeline code.

Archiving Artifacts and Fingerprinting | 487

Most builds in Jenkins produce artifacts—final objects (usually binary) that result
from operations done during the build. Over the course of multiple builds, many dif‐
ferent versions of artifacts can be produced. And just as Jenkins records the inputs,
environments, outputs, and other features of past builds, it can also store the artifacts
associated with each build. This is what we mean by archiving the artifacts of a build.

As your builds create more and more artifacts, it can become challenging to try to
look back through jobs and builds to determine which versions of artifacts were asso‐
ciated with which jobs, and with which runs of those jobs. Fortunately, Jenkins pro‐
vides another mechanism for tracking this information: fingerprinting.

You can think of fingerprinting as providing a sort of cross-referencing between ver‐
sions of artifacts and the jobs/runs. If you have fingerprinting turned on, Jenkins will
compute the MD5 checksum of each artifact produced by a build run and record the
checksum and build data for it. With that data stored, you can later look up the arti‐
fact and immediately find which jobs and builds it was associated with.

A corollary to the artifact storage and fingerprinting functionality is collecting and
storing test results. Even with innovations such as the Stage View and Blue Ocean,
combing through logs to find test results can be tedious. Most build applications or
test runners can produce some sort of formatted output about test results in their
own directories, but you still need to get to those. Jenkins provides a method for
aggregating the test results for a run. For example, for Java, there is bundled function‐
ality around JUnit to collect these. For other tooling, if the test runner can output
JUnit-style XML reports, plugins are most likely available to do the same kind of
aggregation.

Let’s take a look at an example of how these features might be used in a simple
Declarative Pipeline. In this instance, we’ll use Gradle as our build tool and test run‐
ner, and we’ll handle the recording of artifacts, test results, and fingerprinting in the
post section of the script. The code listing for our pipeline follows:

pipeline {
 agent any
 stages {
 stage ('Source') {
 steps {
 git branch: 'test', url:
 'git@diyvb2:/home/git/repositories/gradle-greetings.git'
 }
 }
 stage('Build and Test') {
 steps {
 sh "${tool 'gradle4'}/bin/gradle build"
 }
 }
 }
 post {

488 | Chapter 13: Integrating Artifact Management

 always {
 archiveArtifacts artifacts: 'build/libs/**/*.jar',
 fingerprint: true
 junit 'build/test-results/**/*.xml'
 }
 }
}

A couple of reminders here:

• We don’t need to explicitly tell Gradle to execute the test task because we are
using the Java plugin (in the Gradle build file); it understands that, since we have
files in a standard testing directory structure, it should execute those as part of
the build.

• The post section of a Declarative Pipeline is executed at the end of every build,
whether the build was successful or not.

• The always clause in the post section is called a conditional. As the name implies,
this conditional ensures that the code inside the closure will always be executed,
regardless of the end state of the build. (Other conditionals allow for only execut‐
ing code in a closure if the build is changed, success, etc.)

The archiveArtifacts DSL step takes a path to the artifacts that you want to archive
as the default parameter. If this is not the only parameter, then you need to specify
artifacts as the parameter name. Notice that, as with other paths in Jenkins, you
can use the ** Ant-style syntax to include the subtree under a given path. Optionally,
you can set the fingerprint argument to true to make fingerprinting happen.

The junit DSL step archives JUnit-formatted test results. testResults, the default
parameter, is a path to the generated reports. (In this case, the test results from Gradle
are stored in the build/test-results subtree in the Gradle project space.)

Let’s take a quick look at what the output from running this looks like (Figure 13-7).

Archiving Artifacts and Fingerprinting | 489

Figure 13-7. Stage View output for archiving tasks

As Figure 13-7 shows, when we run with these steps, in addition to the latest artifact
information, we have a few more output items available:

• A small circular icon in the main run box to indicate an archived artifact
• A pop-up box when we hover over the icon that describes the artifact (clicking

on the name of the artifact in this pop-up box allows us to actually download it)
• A Latest Test Result link that takes us to a page with links that we can click

(Figure 13-8) to get more information about each test.

Figure 13-8. Example of drill-down screen for test results from the junit step

If we go into the output page for a particular run, we can also see the archive and Test
Result elements (Figure 13-9).

490 | Chapter 13: Integrating Artifact Management

Figure 13-9. Output page for individual run

You may notice something else related in Figure 13-9. In the lefthand menu, there’s a
See Fingerprints menu item. Clicking on that link will take you to some basic infor‐
mation about the artifact, including what build it originated with and its age
(Figure 13-10).

Figure 13-10. Basic fingerprint information

Artifact Names

While we are looking at a very simple example here, a more useful
model for artifact naming might include the semantic version
number in the archive name (if you want the version to be obvious
from the name).

Clicking on the “more details” link takes you to another screen (Figure 13-11) with
more information about where the artifact has been used.

Archiving Artifacts and Fingerprinting | 491

Figure 13-11. Additional fingerprint information

Fingerprints and MD5
You may notice that out to the right in Figure 13-11 is a field called “MD5.” This is the
checksum that Jenkins uses to refer uniquely to this artifact as it tracks information
about it (i.e., the “fingerprint”). The fingerprint allows Jenkins to store information
about the artifact without having to keep another copy of the artifact.

Fingerprints are stored in the Jenkins home directory within a fingerprints directory.
Within this directory, the MD5 values are stored under a directory hierarchy based
on the first characters of the actual checksum (Figure 13-12).

Figure 13-12. File hierarchy for storing checksums of artifacts

The files in those directories contain the information about the originating build,
what other builds use the artifact, and so forth.

Access to file fingerprints is also available from other areas in Jenkins, such as the
dashboard (Figure 13-13).

492 | Chapter 13: Integrating Artifact Management

Figure 13-13. File fingerprint selection on the dashboard

Selecting this menu option brings up another screen from which you can browse to
any copy of an artifact accessible to your filesystem and then select Check to check its
fingerprint (Figure 13-14).

Figure 13-14. Checking for the fingerprint of a file

The cool thing about this is that, since Jenkins stores the MD5 checksums of all the
artifacts it fingerprints, it can simply compute the MD5 checksum of whatever file
you point it at and, if it matches the fingerprint of any artifact it is tracking, provide
you with the information about that artifact. This will be in a form like that shown in
Figure 13-11.

Summary
In this chapter, we looked at how to integrate artifact management into a pipeline via
one of the most common artifact management applications in use today: Artifactory.
This is one of multiple artifact management solutions available for Jenkins pipelines.
Currently, Artifactory is only directly usable in the scripted form of pipelines-as-
code.

Summary | 493

In general, we can summarize the steps for integration of Artifactory with a Jenkins 2
pipeline as follows:

1. Ensure that an instance of Artifactory is available and working.
2. Ensure that Jenkins has the Artifactory plugin installed, and the Artifactory

instance configured globally (via Configure System). Also establish any needed
credentials in Jenkins.

3. Create the appropriate pipeline script.
4. In the script, define a server instance that points to the name you gave the Arti‐

factory instance in the global configuration.
5. Define an instance of an object that represents the integration between the build

application and Artifactory. (In the previous sections, this was the artifactory
Gradle and artifactoryMaven objects.)

6. Set the basic properties for the integration object, such as the name in Jenkins for
the tool you are using (from the global configuration) and the deployment and
resolver repositories.

7. Set any additional options as properties on the integration object. This may range
from simple Boolean settings to patterns of files to include/exclude.

8. Run the Artifactory operations by invoking methods on the integration object or
on the server object.

9. Define pipeline code for any other operations, such as uploading/downloading
files or build promotions.

Artifactory has a large amount of other functionality available, but our goal here was
simply to explore the basics of getting this working in a pipeline environment. The
implication here is that these operations will be done in appropriate stages of the
pipeline.

Additionally, we looked at how to use Jenkins to record artifacts produced during the
builds, aggregate test results, and create file “fingerprints.” Fingerprinting is a way to
store information about where an artifact originates from and what uses it by com‐
puting a checksum on it and storing that. Later, the checksum process can be run
against any artifact anywhere, and, if it matches a checksum fingerprint stored in Jen‐
kins, Jenkins can supply the relevant information about it.

Hopefully, this chapter has provided enough examples and information about work‐
ing with Artifactory, artifacts, and pipelines to get you going. This information is rep‐
resentative, but not complete. For full details on all the options and how to make the
integration work, check out the JFrog Artifactory website. You’ll find information
there that specifically addresses how to do all of this (and more) with the Jenkins
pipeline (within the limits of the current capabilities of the system).

494 | Chapter 13: Integrating Artifact Management

In the next chapter, we’ll continue our integration discussions. In particular, we’ll look
at how to use containers with Jenkins 2 through integration with Docker.

Summary | 495

CHAPTER 14

Integrating Containers

Docker forms a key component in many pipelines these days. The ease, flexibility, and
isolation provided by containers allows us to create custom, specific environments for
processing with exact repeatability. In this chapter, we’ll look at the different ways that
Docker can be used with Jenkins 2.

Prerequisite Knowledge

This chapter assumes that you are familiar with the basic concepts
and use of Docker separate from Jenkins. If that is not the case, it
will be helpful to consult some of the online training materials and
documentation widely available for Docker before continuing.

For Jenkins 2, there are essentially four options for incorporating Docker into your
pipeline:

• Configured as a “cloud,” as a standalone Jenkins agent
• As an agent created on the fly for a Declarative Pipeline
• Via the special DSL docker global variable and its associated methods
• Directly in the script via the DSL shell call (sh)

Let’s take a closer look at each of these.

Configured as a Cloud
The idea here is that you are defining one or more Docker images that Jenkins can
use as agents. This is the “cloud” environment from which to start up agents. When
your pipeline runs, it can reference the cloud setup and start up instances of the

497

images as agents. The agents can then be used to run the various stages and steps.
After the pipeline is done, Jenkins will stop and remove the containers running those
images, thus removing the agents.

In order for this option to be available, the Docker plugin has to be installed. (Note
that this is different from the Docker Pipeline plugin that we will talk about later in
this chapter.) The other requirement is that any Docker image you supply here has to
be able to function as a “standalone agent”—meaning it is set up like a node. We’ll
talk more about the requirements for that in a moment. But first, as with all major
functionality in Jenkins, we have some global configuration to do.

Global Configuration
When you install the Docker plugin (or other cloud plugins, such as Amazon EC2), a
new Cloud section is added to the Configure System screen. After you click the “Add
a new cloud” button, you are given the option to select Docker. Then a new configu‐
ration section is presented. Figure 14-1 shows an example of this section with some
completed fields.

Figure 14-1. Initial global configuration for a Docker cloud

Let’s look at some of these fields in more detail. The Name field is simply a name to
refer to this cloud. The Docker URL field refers to a way to access the Docker Remote
API. By default, this is probably not enabled, and you will need to enable it so that
Jenkins can access it.

There is a lot of information on the web on getting the remote API to work with
Docker in Jenkins—much of it confusing. In the simple case, which hopefully will
work for most readers, here’s what you need to do:

498 | Chapter 14: Integrating Containers

http://bit.ly/2J7OLR8

1. Look at the arguments you would supply for the -H option for Docker (the “host
list” option). Most commonly, these would be of the form tcp://<ip-

addr>:<docker-port> and unix:///var/run/docker.sock.
2. Add these arguments into your Docker startup file. If you’re running on a Linux

system, your first thought might be to add these in /etc/init/docker.conf—but
when you look for the startup options, in that file, you’ll typically see a line of the
form # modify these in /etc/default/$UPSTART_JOB (/etc/default/

docker).
3. Assuming that last statement is true, add a line in /etc/default/docker like the fol‐

lowing one (here, for the sake of simplicity, we are running Docker on our local
system and so can use the 0.0.0.0 IP address: if that is not the case, you would use
the IP address of the remote system where you host Docker):

DOCKER_OPTS='-H tcp://0.0.0.0:4243 -H unix:///var/run/docker.sock'

4. After updating the file, you’ll need to restart the Docker service and, depending
on your system, possibly reload the daemon.

With the Remote API enabled, you are ready to configure the connection to it in the
global Jenkins Docker cloud configuration. For this, you’ll want to fill in the Docker
URL field with the same tcp... value you supplied to Docker; i.e., tcp://#.#.#.#:
4243. Optionally, you may be able to use the unix:///var/run/docker.sock setting.

There are some related fields under the URL field. For the Docker API Version, you
only need to supply a value if you want a version other than the default one. Supply a
set of credentials in the Credentials field if needed, and, optionally, provide values for
the read and connection timeouts.

The Container Cap field is there if you want to limit the number of containers the
Docker system can run. Note that this also includes containers not started by Jenkins.
It has a default of 100.

With your API connection set up, it is advisable to test the connection by clicking the
Test Connection button. If everything is working, you should see text with the
Docker version and API version displayed inline (similar to Figure 14-2).

Figure 14-2. Confirmation of correct Docker setup

Configured as a Cloud | 499

After you have the basic Docker configuration working, you’re ready to specify
images that the cloud can use to run as agents. This is done by clicking the Add
Docker Template button and selecting Docker Template. We discuss more setup
details for this in the next section.

Docker Overview Section
With the Docker plugin integration, a new entry is created under Manage Jenkins
(Figure 14-3) for a Docker section.

Figure 14-3. Docker menu item

Clicking on this provides you with a list of Docker “servers” that are provisioned for
this instance (Figure 14-4).

Figure 14-4. Docker servers

Drilling down into a particular server allows you to see what containers are currently
running on it, and information such as which image the containers originated from
(Figure 14-5).

500 | Chapter 14: Integrating Containers

Figure 14-5. Docker server overview

Using Docker Images as Agents
The basic requirement for a Docker image to be used as an agent is that it needs to be
able to run like a standalone agent. Typically this will mean that it has basic applica‐
tions installed on it, such as Java and SSH. As discussed on the Docker plugin page,
depending on how the agent is to be launched, there are different base images that
may be appropriate.

The Jenkins wiki outlines the prerequisites for the Docker image to be used as fol‐
lows, depending on the launch method selected:

Launch via SSH
You must have an sshd server and a JDK installed. You can use jenkins/ssh-slave as
the basis for a custom image. An SSH key based on the unique Jenkins master
instance’s identity can be injected in the container on startup, so you don’t need a
credential set as long as you use the standard openssl sshd.

For backward compatibility or if you have a nonstandard sshd packaged in your
Docker image, you also have the option to provide manually configured SSH cre‐
dentials.

Configured as a Cloud | 501

http://bit.ly/2qLYJA6

Launch via JNLP
You must have a JDK installed. You can use jenkins/jnlp-slave as the basis for a
custom image. The Jenkins master URL must be reachable from the container.
The container will be configured automatically with the agent’s name and secret,
so no special configuration is required for it.

Launch attached
You must have JDK installed. You can use jenkins/slave as a basis for the custom
image. (At the time of this writing, this mode is experimental.)

As you can see, there are a number of starter images you can use to create your own
customized image. To create a customized image, you can start by creating a Docker‐
file with a FROM statement pointing to the desired starter image on the main Docker
Hub. Then you can use RUN or COPY commands to add other pieces. For example, the
following listing shows the contents of a Dockerfile based on the ssh-slave image, but
adding in Gradle:

FROM jenkinsci/ssh-slave

RUN apt-get -y update && apt-get -y install gradle

RUN echo 2 | update-alternatives --config java

Most of this file is pretty self-explanatory. We start with the base image and then
update and install Gradle. (Note that this is the default version of Gradle, which may
be significantly older than the current version.)

However, the last line deserves a bit of explanation. For this type of SSH-launched
node, the connection to the Docker container relies on the SSH Slaves plugin. One of
the things this plugin does is connect to the container and check the version of Java
on it to make sure it is compatible with the Jenkins JARs that need to be used. If it
can’t find a compatible version, it attempts to install one.

The base image has a number of Java versions installed. Unfortunately, the default is
an old level for most versions of Jenkins (as of this writing). So, when Jenkins checks,
it detects the older version and tries to install a new version from Oracle. Unfortu‐
nately, the Oracle installation wants a username and password (which aren’t avail‐
able), so the startup fails.

The base image contains a newer JDK that is compatible. The last line in our file
selects that version. Granted, this isn’t particularly elegant, and there are other ways to
handle this, but it serves for our example purposes.

The idea here is that we are creating images for the cloud to instantiate as agents for
running jobs. If you are using a modified image (with your own Dockerfile), then you
would build the image and push it out to a Docker registry that you have access to.
For the examples here, we’ll assume our images are in the public Docker registry.

502 | Chapter 14: Integrating Containers

The next step in this process is defining the “template” for the cloud to be able to use
our configuration.

No Entrypoint?

You may have noticed that the previous Dockerfile listing has no
ENTRYPOINT specified. By default, when launching via SSH, Jenkins
will send the /usr/sbin/sshd -D command, so we don’t have to
specify a separate entrypoint. (The specific command can be over‐
ridden in the Container Settings section if needed.)

Setting up a Docker cloud template—basic options
With Jenkins and Docker configured to talk to each other via Docker’s REST API,
and the image(s) set up for our cloud, we can move on. We next need to define the
section of the global configuration for the cloud that tells it what image to use, and
provides any needed options and an access method. This configuration is done by
adding a template.

In the Cloud section of the Configure System screen, click the Add Docker Template
button, then click on the “Docker Template” pop-up. Next, you’re presented with a set
of options to fill in for the template. We’ll cover what’s needed for our SSH image
example. Setup for other types can be interpolated from this one.

The first field to fill in is the Docker Image field. This should be the image that you
want to have spun up as the agent. If you have created a custom Docker image and
pushed it to the Docker Hub, you would enter the name of that image.

We’ll come back to the “Container settings...” in a moment.

For pipeline usage, you need to put some text in the Labels field. This text will be
what you include in the pipeline’s agent definition. This will allow your pipeline to
select a container based on the image defined in this template section. For example, if
you put “docker-cloud-gradle” in the Labels field, you could use this label to select a
Docker agent created from the image (assuming declarative syntax):

pipeline {
 agent {
 label 'docker-cloud-gradle'
 }
 stages {

Next, you’ll want to make sure that the launch method is set (only the SSH option is
production-ready at the time of this writing) and that the appropriate credentials are
selected and in place. The credentials should be an “SSH Username with private key”
as explained in the following note. We’ll discuss where the public key goes in a bit.

Configured as a Cloud | 503

Credentials for SSH Docker Agent Images

When choosing credentials for an SSH Docker Agent, the exact
items to use can be a bit confusing. Here are a few guidelines:

• Use “SSH Username with private key” credentials.
• Most SSH images based on the base images create a jenkins

user on the agent and expect that to be the user connecting, so
use “jenkins” as the name.

• If there is any question about which private key will be
included, you can specify the exact key as a file in the creden‐
tials.

• Make sure you have access to view the public key that corre‐
sponds to the private key you choose.

For the additional settings visible here, you can simply take the defaults unless you
have a specific need to change them. For the SSH launch method, you also need to
pass in the public key via the Environment option in the “Container settings...” sec‐
tion. We’ll look at that and other similar settings next.

Advanced Options for Launching Nodes

There are also a set of advanced options related to launching the
nodes available via the Advanced button in the “Launch method”
section.

Container settings
Near the top of the template section is a “Container settings...” button. Clicking on
that brings up additional fields for container-specific options. Here are details on a
few of the common ones:

Docker Command
This is the command to have Jenkins run on the image. Typically, you would just
leave this as the default that starts the SSH daemon (/usr/sbin/sshd -D).

Volumes
A list of volume mounts, such as /host/path:/container/path:mode. If multi‐
ple entries are listed, they should be separated by newlines. The idea of /host/
path:/container/path:mode is that this will mount the path on the host to a
path in the container with the specified mode—either ro for read-only or rw for
read-write. The mode is optional and defaults to read-write.

504 | Chapter 14: Integrating Containers

Environment
Environment variable values to pass into the container. For an example, see the
following note.

Passing a Public SSH Key to an SSH-Based Node Image

For the SSH-based node images, the credentials you select specify a
private key to use. To use the SSH protocol, you need to get the
corresponding public key on the container. The jenkins/ssh-slave
and jenkinsci/ssh-slave base images accomplish this by having an
environment variable named JENKINS_SLAVE_SSH_PUBKEY passed
into the Docker configuration with the public key string. The value
after the equals sign is the full text of the public key file without
quotes:

JENKINS_SLAVE_SSH_PUBKEY=ssh-rsa AAAAB3NzaC1yc2EA...

Port Bindings
The specifications of the form <host-port>:<container-port> to bind a port
between the host and container. This is the same as the -p option on the Docker
command line.

Instance Capacity
The maximum number of instances to run of this image. Note that if this is not
set, the default is unlimited. It’s important to set this to a low value (unless you
have a good reason to do otherwise) to prevent having a large number of instan‐
ces running if something doesn’t go right.

With the cloud configured and templates defined, we are ready to move on to using
the images in our pipeline.

Using Cloud Images in a Pipeline
The following listing shows a simple pipeline script in declarative syntax that makes
use of the cloud we’ve defined so far:

pipeline {
 agent { label 'docker-cloud-gradle'
 }
 stages {
 stage('Source') {
 steps {
 git url: 'http://github.com/brentlaster/greetings',
 branch: 'demo'
 }
 }
 stage('Build') {
 steps {

Configured as a Cloud | 505

 sh 'gradle build'
 }
 }
 }
}

Note again the use of the label that we set in the template area to select the image and
options associated with that template. In this case, we are executing both stages on
the Docker node, but you could also use agent directives within the individual stages
if desired.

Once you start the build of the pipeline, if you look at the console output of the job,
you will probably see a message either that indicates that the node is offline or that all
nodes corresponding to the label you supplied are offline:

Started by user anonymous
[Pipeline] node
Still waiting to schedule task
All nodes of label 'docker-cloud' are offline
Running on docker-cloud-579057d81f2d in
/home/jenkins/workspace/docker-node-demo3
[Pipeline] {
[Pipeline] stage
...

That is to be expected initially, as Jenkins pulls the image, spins up the container, and
validates that it can communicate with the container agent. However, after a brief
delay, if all goes well, you should see a “Running on...” message.

You should also be able to see the temporary agent listed as a node in the Build Exec‐
utor Status area (Figure 14-6).

Figure 14-6. Temporary Docker node executing for the job

506 | Chapter 14: Integrating Containers

If your Docker container has the environment and tooling set up as needed for the
stages of your pipeline, the pipeline should run to completion. At that point, Jenkins
will remove the agent/node and its corresponding running Docker container.

Troubleshooting
If you do not get the “Running on...” message in the console output and/or you see an
indication in the Build Executor Status area that the node is still offline, Jenkins may
be having trouble starting up, or communicating with, the Docker agent. If this is the
case, you can click on the node and go to the corresponding node details page for
more information (Figure 14-7). (You can also get there through the Manage Nodes
menu item under Manage Jenkins.)

Figure 14-7. Temporary Docker node details page

From here, you can click on the Log item in the lefthand menu to drill into more
detail. An example is shown in Figure 14-8.

Figure 14-8. The log of a failed Docker node

In this case, the failure was due to a mismatch between the SSH keys. Even if the ini‐
tial connection is good, there may be issues with the SSH Slaves plugin attempting to
verify things, such as a compatible version of Java.

In most of these cases, a good strategy is to pull the image outside of Jenkins, do a
docker run to start a container based on the image, and then exec into it with a shell.
The basic syntax is:

Configured as a Cloud | 507

docker exec -it <container id> bash

This should put you into a bash shell on the container’s filesystem where you can ver‐
ify assumptions about what’s there, what’s not, etc. Remember that Jenkins will
attempt to use a user ID of jenkins, and you may be initially logged in as root. So, you
may need to do an su jenkins or similar to make sure you are in the expected envi‐
ronment and context. Typically, through looking at the log details and/or exec-ing
into an instance of the container, you can get a good handle on what the problem is.

Disappearing Agents

Keep in mind that there are timeouts, capacity settings, etc. at work
for these Docker clouds. So, after success, or after a certain amount
of time when there is a failure to launch, the container for the agent
will be removed. You then won’t be able to look at the details or log
for that particular node.
In some cases, if a container fails to be launchable as an agent, Jen‐
kins will stop it, but if the job is still running, Jenkins will then start
up one or more completely separate containers to try to match the
capacity setting (always having X number of containers).
Over a relatively short period of time, this can lead to many stop‐
ped containers being left on your system. As a best practice, if you
recognize that a container can’t be launched as an agent, it is best to
kill the build job that is trying to launch it to prevent a plethora of
stopped containers.

Defining Persistent Docker Nodes Without the Cloud
Note that it is also doable (though not as convenient) to manually define Docker
nodes for Jenkins. The process is roughly:

1. Pull the desired image and start a container running on the desired system. Pay
attention to the documentation about how to start the image. For example, for
the one we have been using (jenkinsci/ssh-slave) we need to pass in an SSH public
key through an environment variable. For example:

docker run -e "JENKINS_SLAVE_SSH_PUBKEY=ssh-rsa AAAAB3
NzaC1yc2...BuBSO74siOcjhbNNVKnBw== jenkins@81cd367124a5"
 jenkinsci/ssh-slave

2. With the container up and running, you’ll need the IP address for it. This can be
found via docker inspect with a command like the following:

docker inspect <container id> | grep IPAddress

3. Now you can define a new node (via Manage Jenkins → Manage Nodes), supply‐
ing the IP address of the container in the Host field. See Figure 14-9.

508 | Chapter 14: Integrating Containers

Figure 14-9. Setting up an individual Docker node manually

Of course, you could automate these various pieces, but then that’s essentially what
the cloud feature of the Docker plugin is already doing for you.

Agent Created on the Fly for a Declarative Pipeline
The Declarative Pipeline syntax includes special functionality for creating agents
dynamically at the time they are needed. This is done by pointing the agent directive
to a Dockerfile, from which it can run a container that uses a Docker image, set up to
function as an agent. Most of these are just variations of the syntax for declaring an
agent, as described here:

agent { docker '<image>' }

This short syntax tells Jenkins to pull the given image from Docker Hub and run
the pipeline or stage in a container based on the image, on a dynamically provi‐
sioned node.

agent docker { <elements> }

This longer syntax allows for defining more specifics about the Docker agent.
Three additional elements can be in the declaration (within {} block):

Agent Created on the Fly for a Declarative Pipeline | 509

image '<image>'

Tells Jenkins to pull the given image and use it to run the pipeline code.

label '<label>'

Tells Jenkins to instantiate the container and “host” it on a node matching
<label> (optional).

args '<string>'

Tells Jenkins to pass these arguments to the Docker container; uses the same
Docker syntax as you would normally use (optional).

Here’s an example usage:

agent {
 docker {
 image "image-name"
 label "worker-node"
 args "-v /dir:dir"
 }
}

agent { dockerfile true }

This short syntax is intended to be used when the source code repository that
you retrieve has a Dockerfile in its root (note that dockerfile here is a literal). It
tells Jenkins to build a Docker image using that Dockerfile, instantiate a con‐
tainer, and then run the pipeline or code from the stage in that container.

agent dockerfile { <elements> }

This longer syntax allows for defining more specifics about the Docker agent you
are trying to create from a Dockerfile. Three additional elements can be added in
the declaration (within the {} block):

filename '<path to dockerfile>'

Allows you to specify an alternate path to a Dockerfile, including a different
name. Jenkins will try to build an image from the Dockerfile, instantiate a
container, and use it to run the pipeline code.

label '<label>'

Tells Jenkins to instantiate the container and “host” it on a node matching
<label> (optional).

args '<string>'

Tells Jenkins to pass these arguments to the Docker container; this should be
the same syntax as normally used for Docker (optional).

510 | Chapter 14: Integrating Containers

Here’s an example usage:

agent {
 docker {
 filename "<subdir/dockerfile-name>"
 label "<agent label>"
 args "-v /dir:dir"
 }
}

reuseNode

This tells Jenkins to reuse the same node and workspace that were defined for the
original pipeline agent to “host” the resulting Docker container.

This last one requires a bit of explanation. Remember that even though we are run‐
ning a Docker container for our agent in these cases, we still have to have a system
where Docker is actually hosted and running. That’s what the label argument in
these calls is specifying: which system is hosting Docker.

If we start our pipeline running on a particular node, then it may do operations that
leave code or other input on the node (such as cloning source out of source control).
If we later want to use a Docker container to do something in the pipeline (such as
build the source), then it makes things simpler if we can just run/host the Docker
container on the same underlying node. Since the code is already there and the
Docker commands can mount the workspace as a path inside them, that simplifies
this kind of setup. That’s what the reuseNode option is for—running an upcoming
Docker container on the same node that we started with.

Here’s an example:

pipeline {
 agent label 'linux'
 ...
 stage('abc') {
 agent {
 docker {
 image 'ubuntu:16.6'
 reuseNode true
 ...

Agent Created on the Fly for a Declarative Pipeline | 511

Pipeline Model Definition
Since we’re talking about which nodes can host Docker instances here, it’s a good
place to mention one of the configuration items in Jenkins around Docker—the Pipe‐
line Model Definition section (Figure 14-10).

Figure 14-10. Pipeline model definition configuration

By default, Jenkins pipelines make the assumption that all agents are able to run
Docker pipelines. However, in some cases, where you can’t run the Docker daemon
directly, this assumption can be incorrect. In these cases, if you don’t explicitly specify
an agent that can run Docker in your pipeline and you get one of the agents that can’t,
your pipeline won’t work.

Assuming you have a label on one or more of your agents that uniquely identifies
them as being capable of running Docker, you can specify that label here. This tells
Jenkins to use one of these agents that for any folder items that need Docker, but don’t
directly specify an agent that can run it.

Likewise, you can specify a Docker registry to use here that is scoped to just the items
in the folder.

Docker Pipeline Global Variable
The third way to work with Docker through a pipeline is to use the methods associ‐
ated with the Jenkins docker global variable. To have this available, you need to have
the Docker Pipeline plugin installed. We have mentioned global variables elsewhere
in the book before, but a little explanation is still in order.

Global Variables
If the term “global variables” sounds familiar, you probably recall it from the context
of shared pipeline libraries (as discussed in Chapter 6). There, we talked about a par‐
ticular directory structure including a vars area where we could define classes, meth‐
ods, etc. to implement global variables. These are not pipeline steps that perform
functions, but more like objects of certain types that have supporting methods built

512 | Chapter 14: Integrating Containers

https://plugins.jenkins.io/docker-workflow

around them. In many cases, they are even more flexible than pipeline steps—but
unlike steps, they do not have full support in Jenkins. For example, they are not acces‐
sible or defined in the Snippet Generator.

In fact, this distinction is called out clearly (if not obviously) on the Snippet Genera‐
tor screen. (As a reminder, you can get to the Snippet Generator by clicking on the
Pipeline Syntax link in the left menu on any pipeline job screen.) If you scroll to the
bottom of the Snippet Generator page, you’ll see the blurb shown in Figure 14-11.

Figure 14-11. Notice about global variables

Clicking the Global Variables Reference link brings up the reference page for all the
available global variables (including any that you have defined and provided text for,
as discussed in Chapter 6). Figure 14-12 shows a screenshot of this page.

Figure 14-12. The Global Variable Reference screen

Docker Pipeline Global Variable | 513

At the top of the page is the list of methods associated with the docker global variable.
These methods are divided into categories for three types of objects: the Docker
application, images, and containers. We discuss each of these categories next.

Docker Application Global Variable Methods
The methods in this category revolve around providing environments for using
Docker. The text provided by the plugin outlines the basic functions:

withRegistry(url[, credentialsId]) {...}
 Specifies a registry URL such as https://docker.mycorp.com/,
 plus an optional credentials ID to connect to it.
withServer(uri[, credentialsId]) {...}
 Specifies a server URI such as tcp://swarm.mycorp.com:2376,
 plus an optional credentials ID to connect to it.
withTool(toolName) {...}
 Specifies the name of a Docker installation to use, if any are
 defined in Jenkins global configuration. If unspecified,
 docker is assumed to be in the $PATH of the Jenkins agent.

All of these are “block methods,” meaning they are intended to wrap around a block
of code (pipeline commands) within the environment defined by the step—and all on
the same node. We’ll look at each block method in more detail in the following sec‐
tions.

withServer

The withServer method allows you to specify a system where the Docker host dae‐
mon is running. This is done to provide Docker access for the Docker-related meth‐
ods in your pipeline. For example, if you wanted to pull an image from the Docker
Hub, but didn’t have the Docker daemon installed on your system, you could do it
like this:

node ('<node-name>') {
 docker.withServer('tcp://<host ip>:2375') {
 image = docker.image('bclaster/jenkins-node:1.0').pull()
 }
}

This is assuming the daemon is running on port 2375 and doesn’t require credentials.
If we were also supplying credentials, we would use the form:

docker.withServer('tcp://<host ip>:2375','<jenkins-cred-id>')

514 | Chapter 14: Integrating Containers

Alternative to TCP

If you have filesystem access to the Docker installation on the sys‐
tem where you are using the withServer method, you can also use
the docker.sock path instead of the TCP address and port. An
example is shown here:

 docker.withServer("unix:///var/run/docker.sock"){
 myImage = docker.image
 ("bclaster/jenkins-node:1.0")
 myImage.pull()
 }

Notice that in these examples, we are not using named parameters when we have
multiple parameters to pass in. The reason is that this is a call to a method for a global
variable, not a pipeline step. Thus, the position in the invocation is important here.

However, there is a related (deprecated) pipeline step. To help dispel confusion, we
discuss that in the following note:

The withDockerServer Pipeline Step

While the global variable methods are preferred (recommended)
for use in pipelines, there is also a (deprecated) corresponding
pipeline step. The withDockerServer step takes a Docker host URI
and, optionally, credentials. An example of using this step follows:

node ('<node-name>') {
 withDockerServer([credentialsId: '<jenkins-cred-id>',
 uri: 'tcp://<host ip>:2375'])
 {
 image =
 docker.image(
 "bclaster/jenkins-node:1.0").pull()
 }
}

Note that since this is a pipeline step, when we specify multiple
parameters, we use the named parameter syntax.

withRegistry
This method lets you specify an alternative registry (alternative to hub.docker.com) to
use for pulling and pushing images. If your company has its own custom Docker reg‐
istry, for example, you could add the URL in here, as well as the ID of a defined Jen‐
kins credential with access.

Docker Pipeline Global Variable | 515

Building on our previous example for withServer, we can use the withRegistry
method to pull an image from a local (insecure) registry, hosted on a local system at
the default port 5000, as follows:

node ('<node-name>') {
 docker.withServer("tcp://<host ip>:2375") {
 docker.withRegistry("http://<local uri>:5000") {
 image = docker.image("my-image:latest").pull()
 }
 }
}

Like for the withServer method, there is a corresponding pipeline step (deprecated)
for the withRegistry method, as discussed in the following note.

The withDockerRegistry Pipeline Step

While the global variable methods are preferred (recommended)
for use in pipelines, there is also a corresponding (deprecated)
pipeline step. The withDockerRegistry step takes a Docker regis‐
try URL and, optionally, credentials. An example of using this step
follows:

node ('master') {
 withDockerServer([credentialsId: '<jenkins-cred-id>',
 uri: 'tcp://<host ip>:2375']) {
 withDockerRegistry([credentialsId:
 '<jenkins-registry-creds>',
 url: 'http://<local uri>']) {
 image =
 docker.image("my-image:latest").pull()
 }
 }
}

withTool
Even if you have access to the Docker daemon, if Docker is not installed in a standard
place available in your path, you won’t be able to run Docker command-line opera‐
tions. The withTool method addresses this by pointing your node to where it can
pick up the Docker command line. It does this by specifying the name of a Docker
tool as configured in the Global Tool Configuration.

516 | Chapter 14: Integrating Containers

To illustrate, let’s take one of our previous examples. To make it clear, we’ve also
added a direct call to Docker to list the available images (although other commands
would invoke the Docker executable as well). The code is as follows:

node('worker_node1') {
 stage ('build-image') {
 docker.withServer(<docker daemon connection>){
 sh 'docker images'
 myImage = docker.image("bclaster/jenkins-node:1.0")
 myImage.pull()
 }
 }
}

If Docker is not directly accessible or installed, we’ll get an error like the following
when we run this:

Running on worker_node1 in /home/jenkins2/worker_node1...
[Pipeline] {
[Pipeline] stage
[Pipeline] { (build-image)
[Pipeline] withDockerServer
[Pipeline] {
[Pipeline] sh
[docker-withTool] Running shell script
+ docker images
/home/jenkins2/worker_node1/workspace/docker-withTool@tmp/
durable-45ae13e0/script.sh: 2: /home/jenkins2/worker_node1/
workspace/docker-withTool@tmp/durable-45ae13e0/script.sh:
 docker: not found

To work around this, we could either point the system to an installed version (if we
have filesystem access) or install Docker directly. The withTool method can help in
both of these cases.

Suppose that we have installed Docker in a nonstandard location, such as /usr/docker.
As with other tool configurations, in the Global Tool Configuration section, under
Docker Installations, we can configure an installation named “local” to point to that
location (Figure 14-13).

Figure 14-13. Configuration for a Docker installation in a nonstandard location

Docker Pipeline Global Variable | 517

We can then add the withTool method in our script to point to this installation as
shown here:

node('worker_node1') {
 stage ('build-image') {
 docker.withTool('local') {
 docker.withServer(<docker daemon connection>){
 sh 'docker images'
 myImage = docker.image("bclaster/jenkins-node:1.0")
 myImage.pull()
 }
 }
 }
}

Jenkins will then be able to find the Docker installation and execute as expected:

Running on worker_node1 in /home/jenkins2/worker_node1/workspace...
[Pipeline] {
[Pipeline] stage
[Pipeline] { (build-image)
[Pipeline] tool
[Pipeline] withEnv
[Pipeline] {
[Pipeline] withDockerServer
[Pipeline] {
[Pipeline] sh
[docker-withTool] Running shell script
+ docker images
REPOSITORY TAG IMAGE ID
bclaster/jenkins-maven-node latest 07b718ad2d29
bclaster/jenkins-gradle-node latest d293f3cef560
bclaster/jenkins-node 1.0 d0fd7993d746
jenkinsci/ssh-slave latest e4900408a7c1
[Pipeline] sh
[docker-withTool] Running shell script
+ docker pull bclaster/jenkins-node:1.0
1.0: Pulling from bclaster/jenkins-node

What if we don’t have access to the Docker installation, though? In that case, we can
take advantage of the Install Automatically option for tool instances in the Jenkins
Global Tool Configuration. For example, assume we have an installation set up to
install automatically globally, as shown in Figure 14-14.

We can then change our script to point to this selection for installing the tool, as
shown here:

node('worker_node1') {
 stage ('build-image') {
 docker.withTool('latest') {
 ...

518 | Chapter 14: Integrating Containers

Figure 14-14. Configuration for automatically installing the latest Docker version

When we do this, the latest Docker version will be installed to the node’s workspace
automatically, as shown here:

Running on worker_node1 in /home/jenkins2/worker_node1/workspace...
[Pipeline] {
[Pipeline] stage
[Pipeline] { (build-image)
[Pipeline] tool
Downloading Docker client latest
...
Unpacking https://get.docker.com/builds/Linux/x86_64/
docker-latest.tgz to /home/jenkins2/worker_node2/tools/
org.jenkinsci.plugins.docker.commons.tools.DockerTool/latest
on worker_node1

[Pipeline] withEnv
[Pipeline] {
[Pipeline] withDockerServer
[Pipeline] {
[Pipeline] sh

[docker-withTool] Running shell script
+ docker images
REPOSITORY TAG IMAGE ID
bclaster/jenkins-maven-node latest 07b718ad2d29
bclaster/jenkins-gradle-node latest d293f3cef560
...
[Pipeline] sh
[docker-withTool] Running shell script
+ docker pull bclaster/jenkins-node:1.0
1.0: Pulling from bclaster/jenkins-node
...

Docker Image Global Variable Methods
After the methods focused on using the Docker application itself are the ones for
working with Docker images. Most of these are fairly simple, and some are self-

Docker Pipeline Global Variable | 519

explanatory. Here’s the current text from the information page about this set of meth‐
ods:

image(id)
 Creates an Image object with a specified name or ID. See below.

build(image[, args])
 Runs docker build to create and tag the specified image from a
 Dockerfile in the current directory. Additional args may be added,
 such as '-f Dockerfile.other --pull --build-arg
 http_proxy=http://192.168.1.1:3128 .'. Like docker build,
 args must end with the build context. Returns the resulting Image
 object. Records a FROM fingerprint in the build.

Image.id
 The image name with optional tag (mycorp/myapp,
 mycorp/myapp:latest) or ID (hexadecimal hash).

Image.run([args, command])
 Uses docker run to run the image, and returns a Container which
 you could stop later. Additional args may be added, such as
 '-p 8080:8080 --memory-swap=-1'. Optional command is equivalent
 to Docker command specified after the image. Records a run
 fingerprint in the build.

Image.withRun[(args[, command])] {…}
 Like run but stops the container as soon as its body exits,
 so you do not need a try-finally block.

Image.inside[(args)] {…}
 Like withRun this starts a container for the duration of the body,
 but all external commands (sh) launched by the body run inside
 the container rather than on the host. These commands run in
 the same working directory (normally a Jenkins agent workspace),
 which means that the Docker server must be on localhost.

Image.tag([tagname])
 Runs docker tag to record a tag of this image (defaulting to the
 tag it already has). Will rewrite an existing tag if one exists.

Image.push([tagname])
 Pushes an image to the registry after tagging it as with the tag
 method. For example, you can use image.push 'latest' to publish
 it as the latest version in its repository.

Image.pull()
 Runs docker pull. Not necessary before run, withRun, or inside.

Image.imageName()
 The id prefixed as needed with registry information, such as
 docker.mycorp.com/mycorp/myapp. May be used if running your own
 Docker commands using sh.

520 | Chapter 14: Integrating Containers

While the text explains the intent and general aspects of the operations, there is more
background needed to put these into practice.

First, note that Image (with a capital “I”) implies a reference to an instantiated image.
Two of the methods do not expect that to be passed in—image(id) and build. That is
because these two methods are called from the docker global variable and return an
image. We’ve seen an example of that in the following lines from our earlier listing:

 myImage = docker.image("bclaster/jenkins-node:1.0")
 myImage.pull()

In this case, we instantiate a variable to point to the returned image. Then we use that
variable to invoke the pull()+ command for the specified image.

Alternatively, we could skip the variable and instantiate an instance in the call:

docker.image("bclaster/jenkins-node:1.0").pull()

For the build method, you need to supply at least an image name. By default, it will
use a Dockerfile in the current directory. If you need to pass additional arguments,
you can pass them in the args area. You can pass the same string here as you would
use if you were invoking Docker build directly on the command line. Just like with
the arguments to the actual build command, you need to end with the build context
(usually just ". will suffice unless you have a specific directory you need that has files
to include):

def myImage=docker.build("<registry/image:tag>","--build-arg
 ARG=value ./tmp-context-area")

Here’s the script with the docker.build method:

 node() {
 def myImg
 stage ("Build image") {
 // download the dockerfile to build from
 git 'git@diyvb:repos/dockerResources.git'

 // build our docker image
 myImg = docker.build 'my-image:snapshot'
 }
 stage ("Get Source") {

Figure 14-15 shows the console output running through constructing the Docker
image from the Dockerfile.

Docker Pipeline Global Variable | 521

Figure 14-15. Output from the previous script

The other image-related methods are invoked from an instance of an image (thus the
Image indicator). Many of these are self-explanatory because they mirror the basic
image commands already found in Docker. These include tag, push, pull, and run.
Others are slight variations, such as withRun, which stops the container for you after
the body exits (as opposed to having to use some kind of explicit “post-build” tear‐
down).

However, one of these methods does quite a bit more. We’ll take a look at this method
in more detail next.

522 | Chapter 14: Integrating Containers

The inside method

With the inside method, you choose the image you want to use and use this method
to execute the build steps in the Docker image.

When executed, the inside method will:

1. Get an agent and a workspace (no node is required since the Docker container is
effectively functioning as a node).

2. If the image is not already present, pull it down.
3. Start the container with that image.
4. Mount the workspace from Jenkins. There are a few points to note here:

• This will appear as a volume inside the container.
• This will appear as the same file path.
• This must be on the same filesystem.

5. Execute the build steps.
Note that any sh (pipeline shell) commands are wrapped with docker exec to
allow them to run in the container.

6. Once completed, stop the container and get rid of the storage.
7. Create a record that this image was used for this build. This facilitates image

traceability, updates, etc.

Additionally, options to pass to Docker can be specified. As an example, you could
invoke <image name>.inside('-v ...').

Here’s an example of a pipeline script using the Docker inside method to execute
code:

stage ("Get Source") {
 // run a command to get the source code down
 myImg.inside('-v /home/git/repos:/home/git/repos') {
 sh "rm -rf gradle-greetings"
 sh "git clone --branch test /home/git/repos/gradle-greetings.git"
 }
}
stage ("Run Build") {
 myImg.inside() {
 sh "cd gradle-greetings && gradle -g /tmp clean build -x test"
 }
}

Figure 14-16 shows the resulting Docker commands being processed in the console
output.

Docker Pipeline Global Variable | 523

Figure 14-16. Output from the previous script

Docker Container Global Variable Methods
Finally, we have the global variable methods for working with containers. Again,
these are pretty self-explanatory, and we won’t go into further detail on them. The
text from the online help is as follows:

Container.id
 Hexadecimal ID of a running container.

Container.stop
 Runs docker stop and docker rm to shut down a container and
 remove its storage.

Container.port(port)
 Runs docker port on the container to reveal how the port is
 mapped on the host.

Running Docker via the Shell
Another way to run Docker from within a pipeline script is to simply invoke the
Docker commands via shell (sh) calls. This method requires more overhead to do a
set of operations (such as the ones the inside command does for you), but it does

524 | Chapter 14: Integrating Containers

give you precise control and can be suitable if you only need to do a limited number
of Docker operations, or specialized ones.

The mechanism here is straightforward. You simply supply the appropriate Docker
command line as an argument to the shell step. You can use the advanced features of
the shell step to capture output or return codes. Chapter 11 describes the shell call
and its various options in detail.

Of course, it is also possible to use both global variable methods and shell calls in
your script if appropriate. For example, you might use a shell call to build your image
and then use the docker.image method to get an instance of the built image that you
can work with further.

You can pass in Jenkins environment variables for values to use in the container. The
following code example shows a script that uses the Jenkins WORKSPACE variable, and
Figure 14-17 shows the console output:

try {
 stage ("Run Tests") {
 sh "docker run --privileged --rm -v '${env.WORKSPACE}:${env.WORKSPACE}'
 --name '${env.BUILD_TAG}' ${myImg.id} /bin/sh -c 'cd
 ${env.WORKSPACE}/gradle-greetings && gradle test'"
 }
} finally {
 sh "docker rmi -f ${myImg.id} ||:"
}

Figure 14-17. Console output from the previous script

Running Docker via the Shell | 525

Summary
In this chapter, we’ve covered the basic ways of using containers with Jenkins with
Docker as an example. The container integration allows us to use predefined images
as agents as well as to encapsulate parts of our pipelines in containers.

The docker plugin (as well as others, such as the Amazon EC2 plugin) enable “cloud”
functionality in Jenkins—meaning running nodes/agents as containers. This kind of
functionality allows us to use ready-made container images or create our own with
only some basic setup.

The Docker global variable is provided by the Docker Pipeline plugin. Recall that
global variables are implemented and supported differently than pipeline DSL steps.
(See Chapter 6 for more details.)

The Docker instance is a prime example of how much can be done with a global vari‐
able. There are a wide variety of methods for working with the Docker application,
images, and containers. Of particular note here is the inside method, which handles
startup and teardown of containers as well as allowing any sh (shell) steps within the
inside block to be automatically executed in(side) the container. It will also automat‐
ically mount the workspace as a volume in the container (assuming filesystem
access).

Finally, we briefly looked at calling Docker commands directly from the shell. Argua‐
bly, this is the easiest method to directly transition Docker commands from the com‐
mand line to a script. However, it is advisable to use the global variable methods
where appropriate for encapsulation and ease of use.

Now that we understand how to integrate a number of different technologies with
Jenkins, we’ll circle back around in the next chapter to other interfaces to the Jenkins
application itself.

526 | Chapter 14: Integrating Containers

CHAPTER 15

Other Interfaces

While pipeline scripts and the legacy web interface are the primary interfaces that
most people will use with Jenkins, it also comes with a command-line interface and a
REST-ful API interface. These are limited in what they can do, but they can serve a
purpose for basic operations, such as getting information about jobs and initiating
builds. This chapter will describe the CLI and REST interfaces along with examples of
how to use them.

Additionally, we’ll discuss the scripting console, another interface in Jenkins that
allows you to try out Groovy code. This can be useful for running quick scripts or
getting/setting information about the system.

Eclipse Jenkins Interface
While we are focusing here on the different interfaces built into Jenkins itself, it’s
worth noting that there is also an external interface for the Eclipse IDE (Figure 15-1).
This is a plugin for editing Jenkins build scripts.

As the website states, it provides a number of features:

• Syntax highlighting, customizable colors, predefined default for Dark Theme
• Groovy syntax validation
• Validate by Jenkins Linter directly from editor by context menu
• Bracket switching (Ctrl-p)
• Outline + Quick outline (Ctrl-o) for Declarative Pipelines
• Block commenting (Ctrl-7)

If you are familiar with Eclipse and prefer to work in it as an IDE to develop your
build scripts, this may be worth investigating.

527

https://marketplace.eclipse.org/content/jenkins-editor

Figure 15-1. Eclipse plugin for editing Jenkins build scripts

Using the Command-Line Interface
Jenkins comes with a command-line interface that can be accessed via two main
methods: directly via SSH (for a subset of commands), or via a downloaded JAR. The
client JAR allows access over several different protocols. These include SSH, HTTP,
and the legacy (now deprecated) “Remoting” protocol.

Using the Direct SSH Interface
The idea here is that Jenkins will function as an SSH server. By default, the Jenkins
SSH server is disabled on new installations. To enable the server, an administrator
needs to configure it in the SSH Server section of the Manage Jenkins→Configure
Global Security page.

Figure 15-2 shows the section to configure. Notice that the Disable option is selected.
An administrator can activate the server by specifying a fixed port or allowing Jen‐
kins to pick a random one.

528 | Chapter 15: Other Interfaces

Figure 15-2. SSH Server configuration

If the Random option is selected, we still need a way to find out the random port
number. One way to do this is via doing a simple curl to the login screen and grep‐
ping out the SSH port, as shown here:

curl -v http://localhost:8080/login 2>&1 | grep SSH-Endpoint |
cut -d':' -f3

With the Jenkins system set up to function as an SSH server, the only other thing that
is needed in order to use the CLI directly is an authenticated user. To add authentica‐
tion, go to People, then select the user, and then go to the Configure page for the user
(or simply type in http://<jenkins-url>/users/<username>/configure in your browser’s
address bar). On the configuration page for the user, copy and paste in a public SSH
key in the SSH Public Keys section (Figure 15-3).

Figure 15-3. Configuring the public SSH key to authenticate the user

Assuming your random port was 32881, then you would now be able to access the
Jenkins CLI over SSH like this:

ssh -l <username if needed> -p 32881 localhost help

The help command will provide a list of the commands that are available to you over
the SSH command-line interface. If you want to get help on a specific command, just

Using the Command-Line Interface | 529

add the command name after help. The following example returns help for the build
command:

ssh -l diyuser2 -p 32881 localhost help build

This produces the following:

 JOB : Name of the job to build
 -c : Check for SCM changes before starting the build, and if
 there's no change, exit without doing a build
 -f : Follow the build progress. Like -s only interrupts are
 not passed through to the build.
 -p : Specify the build parameters in the key=value format.
 -s : Wait until the completion/abortion of the command.
 Interrupts are passed through to the build.
 -v : Prints out the console output of the build. Use with -s
 -w : Wait until the start of the command
 --username VAL : User name to authenticate yourself to Jenkins
 --password VAL : Password for authentication. Note that passing a
 password in arguments is insecure.
 --password-file VAL : File that contains the password

As an example, to run the build for job-1 passing in a string parameter and display‐
ing the console output when it runs, this command can be used:

ssh -l diyuser2 -p 32881 localhost build job-1 -p id=myID -s -v

In addition to build, another useful command is console. The console command
can be used to get the console output from a particular job and even a particular run
of the job. The options include:

 JOB : Name of the job
 BUILD : Build number or permalink to point to the build. Defaults
 to the last build
 -f : If the build is in progress, stay around and append
console output as it comes, like 'tail -f'
 -n N : Display the last N lines

As an example, to see the output for the most recent build of the daily-job-1 item
(using our previous examples), you would run:

ssh -l diyuser2 -p 32881 localhost console daily-job-1

530 | Chapter 15: Other Interfaces

The CLI and Permissions

The CLI access is governed by the same permissions model in Jen‐
kins as the web interface. However, certain behaviors may not be as
easily identified as access issues.
For example, if you are using role-based permissions and don’t
have access to see jobs named daily-*, then if you try to build
such a job, you’ll just see a message like:

 ssh -l diyuser2 -p 32881 localhost build daily-job-1

ERROR: No such job 'daily-job-1'

You can get some basic information about the current user via the
CLI’s who-am-i command.

Using the CLI Client
Another option for using the command-line interface (instead of SSH) is the CLI cli‐
ent JAR that ships with Jenkins. This can be downloaded from a Jenkins master at the
following URL:

http://<jenkins-url>/jnlpJars/jenkins-cli.jar

The syntax for using this is a bit more complicated than that of the native SSH
approach. Specifically, you need to invoke it with Java, and it has different ways to
authenticate. There are also global options that can be passed in. The format to call it
is:

java -jar jenkins-cli.jar
 [-s JENKINS_URL] [<global options>]
 <command> [<command options>] [<arguments>]

Running this with no commands will produce the help output.

Essentially, when supplying the commands, command options, and arguments, the
syntax for those parts is the same as for the direct SSH invocation.

JENKINS_URL

If not specified via the -s option, Jenkins will default to using a
value specified in the JENKINS_URL environment variable if one
exists.

The main difference with using the client is that we have multiple connection modes,
and authentication is different (and required) for each of these. We’ll look at these
modes next.

Using the Command-Line Interface | 531

HTTP mode

This is the default mode, but it can also be specified explicitly by using the -http
global option.

Authentication is done via the -auth option, which expects an argument of the form:

<username>:<secret>

<secret> here can either be a password (not recommended) or a Jenkins authentica‐
tion token. Authentication tokens can be generated on the configuration screen for a
user. From the dashboard, go to People, then select the user, then click Configure. In
the API Token section, click the Show API Token button and you can copy the gener‐
ated token. (See Figure 15-4.)

Figure 15-4. Generating an API token for a user

Tying this all together, the command to build the same job as before using the client
JAR and HTTP authentication might look like:

java -jar jenkins-cli.jar -s http://localhost:8080
 -auth jenkins2:a3c7816cdf3874fca6eb9544b7b26546
 build daily-job-1 -p id=myID -s -v

532 | Chapter 15: Other Interfaces

Using Credentials from a File

The -auth option also allows for reading credentials from a file. To
do this, you simply use @<name of file> as the argument to -
auth.
For example, if you had a file named .jenkins-access that contained
this:

jenkins2:a3c7816cdf3874fca6eb9544b7b26546

then you could use that filename in the command invocation as
shown here:

java -jar jenkins-cli.jar -s http://localhost:8080
 -auth @.jenkins-access
 build daily-job-1 -p id=myID -s -v

SSH mode

The CLI client JAR can also emulate an SSH client with the -ssh global option.
Authentication is via a standard key pair. This assumes that the Jenkins system has
been configured for SSH access, as described in “Using the Direct SSH Interface” on
page 528, and that the private SSH key is available in an expected location.

For SSH mode, our build command would look something like this:

java -jar Downloads/jenkins-cli.jar -s http://localhost:8080
 -ssh -user diyuser2 build daily-job-1
 -p id=myID -s -v

Note that the -user option is required when using this mode. The documentation
also notes that if you have trouble getting to the Jenkins host behind a reverse proxy,
you can direct Jenkins to a specific host by setting the Java system property
-Dorg.jenkinsci.main.modules.sshd.SSHD.hostName.

Remoting mode
Remoting mode is a legacy mode that was the default for Jenkins CLI usage up until
version 2.54. It suffered from performance and security concerns, and so is now dep‐
recated in favor of the SSH or HTTP modes.

In cases where it may still need to be used for legacy options, it first has to be specifi‐
cally enabled on the Jenkins master, on the Configure Global Security screen
(Figure 15-5).

Using the Command-Line Interface | 533

Figure 15-5. Enabling the CLI legacy Remoting mode

With this option enabled, Remoting mode can be used by supplying the -remoting
option:

 java -jar Downloads/jenkins-cli.jar
 -s http://localhost:8080
 -remoting
 build daily-job-1 -p id=myID -s -v

Using the Jenkins REST API
As well as the command-line interface, Jenkins can be accessed via a REST API. A
link to the REST API documentation is in the bottom-right corner of each screen in
the web interface when you are working with one of the primary “entities” in Jenkins
—that is, when you’re viewing a page associated with a job or a build as opposed to a
reference page.

The REST API is typically accessed via the /api path off of the current URL for an
item, and the online documentation reflects that. For example, the documentation for
http://<jenkins-url>/job/api is different from the documentation for http://<jenkins-
url>/job/<build-number>/api.

There are three formats for retrieving data using REST API calls: XML, JSON, and
Python. Adding one of those qualifiers onto the end of the URL will provide the data
in that particular format. For example, if you are on the job page for job1, going to:

http://<jenkins-url>/job/job1/api/xml

will display the XML data. You can do a similar thing for JSON, though you probably
want the formatting to look nice, so you’ll want to use something like:

http://<jenkins-url>/job/counter1/api/json?pretty=true

And similarly for Python:

http://<jenkins-url>/job/counter1/api/python?pretty=true

Filtering Results
The API includes two ways of controlling how much information, and what kind, you
get back. The first is the depth parameter. By specifying a depth value, you can con‐
trol how many levels of information the call returns. Depending on the level of infor‐
mation and the scope of the call, the difference in the amount of returned data may

534 | Chapter 15: Other Interfaces

be substantial. An example of invoking the API to return data with a depth of 2 from
the top level would be:

http://<jenkins-url>/api/xml?depth=2

The other parameter allows you to specify what subkeys/fields you want to have
returned in the output. Normally, a query for JSON information might return data in
a format like the following:

{
 "_class" : "hudson.model.Hudson",
 "assignedLabels" : [
 {

 }
],
 "mode" : "EXCLUSIVE",
 "nodeDescription" : "the master Jenkins node",
 "nodeName" : "",
 "numExecutors" : 2,
 "description" : null,
 "jobs" : [
 {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowJob",
 "name" : "counter1",
 "url" : "http://localhost:8080/job/counter1/",
 "color" : "blue"
 },
 {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowJob",
 "name" : "counter2",
 "url" : "http://localhost:8080/job/counter2/",
 "color" : "red"
 },
 {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowJob",
 "name" : "daily-job-1",
 "url" : "http://localhost:8080/job/daily-job-1/",
 "color" : "blue"
 },

But we can specify the tree parameter to qualify which fields to return in the output.
The syntax is:

tree=<keyname>[<field1>,<field2>,<subkeyname>[<subfield1>]]

An example of using it is shown here:

http://<jenkins-url>/api/json?pretty=true&
tree=jobs[name,lastBuild[
number,duration,timestamp,result,changeSet[
items[msg,author[fullName]]]]]

Using the Jenkins REST API | 535

This produces the following output. Notice the displayed fields correspond to the
ones specified in the tree option:

{
 "_class" : "hudson.model.Hudson",
 "jobs" : [
 {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowJob",
 "name" : "counter1",
 "lastBuild" : {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowRun",
 "duration" : 2022,
 "number" : 6,
 "result" : "SUCCESS",
 "timestamp" : 1513967990317
 }
 },
 {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowJob",
 "name" : "counter2",
 "lastBuild" : {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowRun",
 "duration" : 165,
 "number" : 5,
 "result" : "FAILURE",
 "timestamp" : 1513867039252
 }
 },
 {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowJob",
 "name" : "daily-job-1",
 "lastBuild" : {
 "_class" : "org.jenkinsci.plugins.workflow.job.WorkflowRun",
 "duration" : 302,
 "number" : 23,
 "result" : "SUCCESS",
 "timestamp" : 1513888607909
 }
 },

The depth and tree options are recommended when using the REST API, to ensure
the expected data is returned, and to limit the amount of returned data for larger
queries.

Initiating Builds
The REST API is somewhat limited in functionality. Besides retrieving data about
jobs and builds, it can also be used to create jobs and kick off builds—but you have to
work within the bounds of the security model that you have set up. For example, if
you have Cross-Site Request Forgery protection enabled (as discussed in Chapter 5),

536 | Chapter 15: Other Interfaces

you will first need to obtain a “crumb” from Jenkins to use in the request. Without the
crumb, you’ll get an error message like “Forbidden” or “No valid crumb.”

Obtaining crumbs
A crumb can be generated via a command like the following:

$ wget -q --auth-no-challenge --user <userid>
 --password <password or user token>
 --output-document -
'http://<jenkins url>/crumbIssuer/api/xml?
xpath=concat(//crumbRequestField,":",//crumb)

or, to set it in an environment variable:

JENKINS_CRUMB=`curl --user username:password
 "<jenkins-url>/crumbIssuer/api/xml?xpath=concat(//crumbRequestField,
 \":\",//crumb)"`

You can also get a crumb by going to this URL:

http://<jenkins url>/crumbIssuer/api/xml

In return, Jenkins will provide a crumb in a format like this:

Jenkins-Crumb:e894bf4d15e8165726b50b0aacb579f0diyuser2

Armed with the crumb, you can then invoke a build via the REST URL using a com‐
mand of the following form, passing in the crumb (via the -H option to the curl com‐
mand in this case):

curl -I -X POST http://<userid>:<user pw or token>@<jenkins url>
 /job/<jobname>/build -H "<crumb value>"

An actual invocation might look like this:

curl -I -X POST
 http://jenkins2:a3c7816cdf3874fca6eb9544b7b26546@localhost:8080
 /job/counter1/build
 -H "Jenkins-Crumb:e894bf4d15e8165726b50b0aacb579f0"

If you need to pass in the parameter, you will need to encode it appropriately. Here’s
an example syntax for passing in one parameter via JSON:

curl -X POST http://<userid>:<user pw or token>@<jenkins url>
 /job/<jobname>/build --data-urlencode
 json='{"parameter": [{"name":"<name>", "value":"<value>"}]}'
 -H "Jenkins-Crumb:e894bf4d15e8165726b50b0aacb579f0"

An actual invocation might look like this:

curl -X POST
 http://jenkins2:a3c7816cdf3874fca6eb9544b7b26546@localhost:8080
 /job/counter1/build --data-urlencode

Using the Jenkins REST API | 537

 json='{"parameter": [{"name":"param1", "value":"ABC"}]}'
 -H "Jenkins-Crumb:e894bf4d15e8165726b50b0aacb579f0"

A slightly different format allows building via a defined build token. The trick to this
is that you must have configured a token in the Jenkins job to pass to the API call.
The token can be configured in the Build Triggers section of the job under the “Trig‐
ger builds remotely” option, as shown in Figure 15-6.

Figure 15-6. Specifying a token to use in kicking off a build remotely

In this case, if we have the job counter1 configured with the token myToken, the job
can be invoked via a REST API call such as:

curl
 http://<userid>:<pw or user token>@<jenkins url>/job/<job name>/build?
 token=myToken
 -H "Jenkins-Crumb:e894bf4d15e8165726b50b0aacb579f0"

If you are passing parameters, you can use a similar encoding format as for the non-
token invocation:

curl
 http://<userid>:<pw or user token>@<jenkins url>/job/<job name>/build?
 token=myToken
 --data-urlencode
 json='{"parameter": [{"name":"param1", "value":"ABC"}]}'
 -H "Jenkins-Crumb:e894bf4d15e8165726b50b0aacb579f0"

One other way that you can code for Jenkins, as well as get system information, is
using the Script Console. We’ll look at its use next.

Using the Script Console
The Script Console in Jenkins allows you to type in an arbitrary Groovy script and
run it on the server. Sometimes this is a convenient way to try out system functional‐
ity or properties. As shown in Figure 15-7, there is a link to open the Script Console
on the Manage Jenkins page, and you can also go to it directly with the URL http://
<jenkins-home>/script.

538 | Chapter 15: Other Interfaces

Figure 15-7. Script Console item on the Manage Jenkins page

The console itself is fairly simple. There is a text entry area where you can type in the
code, and a Run button at the bottom. The results of running the script will appear
below the text entry area when you click the Run button.

Figure 15-8 shows an example of using this (per the suggested example on the page)
to list out all of the plugins that are installed on the system.

Figure 15-8. Listing out the installed plugins

One thing to be aware of when using the console is that it implicitly has access to
classes from all of the plugins, so there’s no need for any importing of items (unless
they are special classes, such as those used in the examples coming up).

Figure 15-9 shows another example, this time of getting the default timeout value for
the current session, and the actual code listing is below it.

Using the Script Console | 539

Figure 15-9. Using the Script Console to get the default timeout

It’s also worth noting that you can modify values through the console for the current
session. For example, if we wanted to change the default timeout temporarily to an
hour, we could execute the following code in the console:

import org.kohsuke.stapler.Stapler;
Stapler.getCurrentRequest().getSession().setMaxInactiveInterval(3600)

Stapler
In case you’re wondering what Stapler refers to here (and since it’s seen in multiple
places throughout Jenkins), the website describes it as follows: “Stapler is a library
that ‘staples’ your application objects to URLs, making it easier to write web applica‐
tions. The core idea of Stapler is to automatically assign URLs for your objects, creat‐
ing an intuitive URL hierarchy.”

540 | Chapter 15: Other Interfaces

http://stapler.kohsuke.org/what-is.html

Changing the Default Timeout

As you’ve just seen, you can change the default timeout for the cur‐
rent session via the Script Console. If you want to change the
default timeout at startup, there are a couple of options:

• If you start up Jenkins via a command that runs the WAR file,
you can add the --sessionTimeout=<minutes> parameter on
the call.

• Otherwise, you can modify the session-config section in the
Jenkins war/WEB-INF/web.xml file to have a session-

timeout value, as shown here:

 <session-config>
 <session-timeout>1440</session-timeout>

Summary
In this chapter, we’ve covered some alternative ways of interfacing and working with
Jenkins (instead of the web interface).

We’ve seen how we can set up an SSH interface directly to Jenkins, and run a subset of
commands.

We’ve also seen how to download the Jenkins CLI JAR and run commands via it.

For quick command-line needs or simple scripting, these interfaces can provide
value, although there is some setup necessary for both.

Next, we looked at the Jenkins REST API. This API exists as more of a limited REST
interface to Jenkins than a full API with access to all objects; however, it can be useful
for cases where you need that sort of interface.

Lastly, we looked at the Jenkins Script Console, a built-in area (with access to the Jen‐
kins objects) that can be used to enter, run, and test Groovy scripts for Jenkins.

In our next and final chapter, we’ll look at how to troubleshoot problems you may
run into with executing pipelines in Jenkins 2.

Summary | 541

CHAPTER 16

Troubleshooting

There can be a steep learning curve associated with migrating to Jenkins 2. In this
chapter, I’ll attempt to explain some of the common or more complex issues you may
run into, or point you to other sections of the book where they are explained.

This is more a varied collection of tips and processes than a consistent flow of infor‐
mation, but this is by design, since the best method to troubleshoot a situation can
vary widely depending on the circumstances.

Let’s start out by looking at how we can drill in to get more details about the steps in
our pipeline.

Diving into Pipeline Steps
While the Stage View provides a level of separation and detail on pieces of the pipe‐
line, there may be times when it is beneficial to examine processing at an even lower
level to troubleshoot an issue. The Pipeline Steps view provides this capability.

To get to the Pipeline Steps view, you first need to go into the output screen for a sin‐
gle run of a build. You can use a URL of the form:

http://<jenkins-location>/job/<job-name>/<build-number>

or simply click on the build number in the Build History section of the Stage View
page. This will take you to the specific output page for that build. On that page, in the
menu on the left, will be a Pipeline Steps item (Figure 16-1).

543

Figure 16-1. The menu item to get to the Pipeline Steps screen

After clicking on that, you’ll be taken to a screen that shows the breakdown of the
pipeline by steps (Figure 16-2). Each row here represents a step. The first field in each
row lists the step, along with the time it took to execute. This text is also a link to a
more general, but very sparse, page about the step.

Figure 16-2. The Pipeline Steps screen

On the righthand side of the row are any arguments that the step received, a screen
icon that links to the console output (if that makes sense for the step), and a status
indicator of whether the step was successful or not.

544 | Chapter 16: Troubleshooting

With these data points, you can verify that steps got the expected arguments, see
which steps used the most/least time, and view only the portion of the console output
that pertain to a particular step. Figure 16-3 shows the result of clicking on the con‐
sole output icon for a failed step shown in Figure 16-2.

Figure 16-3. Console output limited to the selected step

The Pipeline Steps screen is also the way to get to the workspace from the web inter‐
face. Prior to Jenkins 2, there was a Workspace link on the output page for a build.
This link is not surfaced any longer on that page. Instead, you have to dig deeper
through this area to find it.

Since a workspace is associated with a node, you first click on the console output icon
for a pipeline step associated with allocating a node (Figure 16-4).

Figure 16-4. Selecting the console log for the “allocate node” step

This takes you to the main screen for the step, where you can see the link for the
workspace in the menu on the left (Figure 16-5).

Diving into Pipeline Steps | 545

Figure 16-5. Main screen for “allocate node” step

Clicking that link takes you to the top level of the workspace. From here, you can drill
down using the links provided, or you can type in a relative path in the text entry box
(Figure 16-6).

Figure 16-6. Entering a relative path (to go to) on the Workspace screen

Clicking the arrow at the end of the text box will then take you directly to that loca‐
tion (Figure 16-7).

Figure 16-7. The Workspace screen

546 | Chapter 16: Troubleshooting

Browsing the workspace in this way can be another way to discover what differs from
your expectations, and to help uncover the causes of problems.

Some problems are not caused by the way the steps are organized or used in the pipe‐
line, but by trying to use steps, methods, or libraries that aren’t serializable—that is,
not able to save their state. This violates a requirement of Jenkins 2. Dealing with
errors and problems around serialization is the topic of our next section.

Dealing with Serialization Errors
One of the features of Jenkins pipelines is the ability to recover from restarts. This is
implemented in Pipeline by transforming how control flows as the pipeline is execut‐
ing, and regularly writing the pipeline’s state to disk, so there is data available to
restart if needed.

In order for this to work effectively, the pipeline must use objects and methods that
are themselves serializable—but since not all methods and objects are. Therefore, you
may encounter cases where your pipeline will not execute due to something not being
serializable. In this section, we’ll discuss how to handle that situation.

First, it’s helpful to understand a bit about how pipeline flow is handled in Jenkins.

Continuous Passing Style
Continuous Passing Style (CPS) is a style of (functional) programming where the
control state of the program (the “continuation”) is passed to another function after
each “operation.” This implies that the calling function has to define a procedure
(function) to handle the return value so that control can be passed to it. In the case of
Jenkins pipelines, the Groovy code and DSL steps are transformed into this style
when the program is compiled. A benefit of this type of execution is that the program
state can be tracked more easily from function to function. To support this ability, all
of the language features in the pipeline must be serializable.

Serializing Pipelines
In a Jenkins pipeline, after each step (or in some cases, in the middle of a step that
makes external calls) Jenkins writes the state of the running pipeline to disk. This data
can then be used to resume later from that point.

From a programming perspective, the simple “static” types such as numbers and
strings are serializable. “Transient” types such as connections to build nodes, network
connections, or handles to build logs are not.

Values of local variables, positions in loops, etc. are written out as part of the state.
Loosely, we might say that local variables pointing to items that may be changing

Dealing with Serialization Errors | 547

externally are not serializable and thus require special handling to be used in pipe‐
lines—as do methods that return values that are not serializable.

NotSerializableException
Aside from the basic types that are not serializable, Java/Groovy methods may return
types that are not serializable. In fact, whether methods return serializable types can
even change from one version to the next. An oft-quoted example is the JsonSlurper
class for parsing JSON data. In a recent version of Groovy, this method changed from
returning a type of HashMap to a type of LazyMap—which is not considered thread-safe
and isn’t serializable.

The following code listing shows a simple pipeline that attempts to use this method:

import groovy.json.JsonSlurper

node ('worker_node1') {
 def data = new JsonSlurper().parseText(readFile
 ("/home/diyuser2/output.json")
)
}

When trying to execute this pipeline, Jenkins will report a NonSerializableExcep
tion:

Started by user Jenkins 2 user
[Pipeline] node
Running on worker_node1 in /home/jenkins2/worker_node3/workspace
/jsonslurper
[Pipeline] {
[Pipeline] readFile
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
an exception which occurred:
 in field com.cloudbees.groovy.cps.impl.FunctionCallBlock
$ContinuationImpl.lhs
 in object com.cloudbees.groovy.cps.impl.FunctionCallBlock
$ContinuationImpl@75d2062
 in field com.cloudbees.groovy.cps.impl.ContinuationPtr
$ContinuationImpl.target
 in object com.cloudbees.groovy.cps.impl.ContinuationPtr
$ContinuationImpl@185bb0e8
 in field com.cloudbees.groovy.cps.impl.CallEnv.returnAddress
 in object com.cloudbees.groovy.cps.impl.FunctionCallEnv@5fa2cf60
 in field com.cloudbees.groovy.cps.Continuable.e
 in object com.cloudbees.groovy.cps.Continuable@65c6f676
 in field org.jenkinsci.plugins.workflow.cps.CpsThread.program
 in object org.jenkinsci.plugins.workflow.cps.CpsThread@24364d40
 in field org.jenkinsci.plugins.workflow.cps.CpsThreadGroup.threads
 in object org.jenkinsci.plugins.workflow.cps.CpsThreadGroup@609b17a6

548 | Chapter 16: Troubleshooting

 in object org.jenkinsci.plugins.workflow.cps.CpsThreadGroup@609b17a6
Caused: java.io.NotSerializableException: groovy.json.JsonSlurper

Notice also the Continuous Passing Style references in the flow.

Handling Nonserializable Errors
When faced with errors of this sort, there are a few different approaches to consider:

• If possible and workable, use a different approach or class that doesn’t attempt to
use the nonserializable item. For example, the Groovy language supplies a Json
SlurperClassic method that supports the legacy behavior.

• Consider whether a pipeline DSL step can provide the needed functionality. For
example, with the Pipeline Utility Steps plugin, there is a readJSON step available.

• If the first two options aren’t workable, you can move the user of the local vari‐
able into its own separate method outside of the pipeline/node block and anno‐
tate it with the special annotation @NonCPS.

When a method is annotated with @NonCPS, this tells Jenkins that the method is a
“native” method—i.e., to be run by the usual Groovy runtime, not processed as pipe‐
line DSL. As such, the values of local variables will not be saved to disk, and so any
type of local variable can be used. The caveat is that because this method will not be
processed as part of the pipeline, you are not guaranteed to be able to safely make
pipeline DSL calls inside it.

Moving the nonserializable code in our original example might result in the follow‐
ing:

import groovy.json.JsonSlurper

@NonCPS
def getJSON(def sourceFile) {
 new JsonSlurper().parseText(sourceFile)
}

node ('worker_node1') {
 def data = getJSON(readFile("/home/diyuser2/output.json"))
}

With the separate function and the @NonCPS annotation, the code will build correctly
now.

Even in functions annotated with @NonCPS, you have to be careful of the scope of
items declared from nonserializable classes. For example, suppose we attempted to
use a local variable in our getJSON routine of the Java Matcher class (a nonserializable
type). Our code might look like this:

Dealing with Serialization Errors | 549

import groovy.json.JsonSlurper

@NonCPS
def getJSON(def sourceFile) {
 def MY_REGEX = /.*.json/
 match = (sourceFile =~ MY_REGEX)
 // handle matching filename decision logic
 // ...
 new JsonSlurper().parseText(sourceFile)
}

node ('worker_node1') {
 def data = getJSON(readFile("/home/diyuser2/output.json"))

}

We would get an error because Matcher is instantiated and not serializable:

an exception which occurred:
 in field groovy.lang.Closure.delegate
 in object org.jenkinsci.plugins.workflow.cps.CpsClosure2@520a8955
 in field org.jenkinsci.plugins.workflow.cps.CpsThreadGroup.closures
 in object org.jenkinsci.plugins.workflow.cps.CpsThreadGroup@7a0701d5
 in object org.jenkinsci.plugins.workflow.cps.CpsThreadGroup@7a0701d5
Caused: java.io.NotSerializableException: java.util.regex.Matcher

In such cases, you may be able to work around the problem by uninstantiating the
variable before leaving the function. Notice the match = null line added in the fol‐
lowing version:

import groovy.json.JsonSlurper

@NonCPS
def getJSON(def sourceFile) {
 def MY_REGEX = /.*.json/
 match = (sourceFile =~ MY_REGEX)
 // handle matching logic
 // ...
 new JsonSlurper().parseText(sourceFile)
 match = null
}

node ('worker_node1') {
 def data = getJSON(readFile("/home/diyuser2/output.json"))

}

If your code lends itself to more general use or needs to be abstracted out, you can
instead put it into a shared library. (See Chapter 6 for details on how to create, config‐
ure, and use shared libraries.)

For example, we could put our function into a shared library structure under the
vars global variables area:

550 | Chapter 16: Troubleshooting

import groovy.json.JsonSlurper

def call(sourceFile) {
 new JsonSlurper().parseText(sourceFile)
}

If we push that shared library code into a repository that we then configure as the
global shared library Utilities in Jenkins, our pipeline can load the library and
invoke the method safely that way:

@Library('Utilities')_

node ('worker_node1') {
 def data = getJSON(readFile("/home/diyuser2/output.json"))
}

If you have a problem like a nonserializable exception, you can probably locate the
source of the problem fairly quickly. But the causes of other types of errors, especially
in Scripted Pipelines, can be challenging to identify in the tracebacks that errors pro‐
voke. Declarative Pipelines do a much better job of identifying offending code, but
even in these there can be errors that are difficult to match to a line in some cases.
The next section provides a simple tip to help with tracking down the exact line num‐
ber in your script that caused an error.

Identifying the Line in Your Script that Caused an Error
Sometimes when you’re trying to execute a pipeline, it can be challenging to pinpoint
the actual line that is causing an error. Consider the following pipeline code, with line
numbers as shown on the left:

1. pipeline {
2. agent any
3.
4. stages {
5. stage('loop') {
6. steps {
7. script {
8.
9. def x = ['a', 'b', c, d]
10. println x
11. x.each { println it }
12. }
13. }
14. }
15. }
16. }

Attempting to run this, we get output like the following:

[Pipeline] End of Pipeline
groovy.lang.MissingPropertyException: No such property: c for class:

Identifying the Line in Your Script that Caused an Error | 551

groovy.lang.Binding
 at groovy.lang.Binding.getVariable(Binding.java:63)
 at org.jenkinsci.plugins.scriptsecurity.sandbox.groovy.SandboxIntercept...
 at org.kohsuke.groovy.sandbox.impl.Checker$6.call(Checker.java:284)
 at org.kohsuke.groovy.sandbox.impl.Checker.checkedGetProperty(Checker.j...
 at org.kohsuke.groovy.sandbox.impl.Checker.checkedGetProperty(Checker.j...
 at org.kohsuke.groovy.sandbox.impl.Checker.checkedGetProperty(Checker.j...
 at org.kohsuke.groovy.sandbox.impl.Checker.checkedGetProperty(Checker.j...
 at com.cloudbees.groovy.cps.sandbox.SandboxInvoker.getProperty(SandboxI...
 at com.cloudbees.groovy.cps.impl.PropertyAccessBlock.rawGet(PropertyAcc...
 at WorkflowScript.run(WorkflowScript:9)
 at ___cps.transform___(Native Method)
 at com.cloudbees.groovy.cps.impl.PropertyishBlock$ContinuationImpl.get(...
 at com.cloudbees.groovy.cps.LValueBlock$GetAdapter.receive(LValueBlock....
 at com.cloudbees.groovy.cps.impl.PropertyishBlock$ContinuationImpl.fixN...
 at sun.reflect.GeneratedMethodAccessor676.invoke(Unknown Source)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcce...
 at java.lang.reflect.Method.invoke(Method.java:498)

Looking at this output, it can be challenging to quickly identify the line that is
actually causing the problem. The key here is finding the line that has Workflow
Script in it. That line will provide the exact line number (in this case, line 9) where
the script is failing.

Knowing the line number is the first step in debugging, such as finding where an
exception is being thrown. But exceptions can sometimes be expected and helpful. In
the next section, we reference a useful exception-handling mechanism that we talked
about earlier in the book.

Handling Exceptions in a Pipeline
To ensure exceptions thrown in Scripted Pipeline code are handled, we can use the
standard try-catch-finally processing. This is the same as for any Java or Groovy
code.

However, the Jenkins pipeline syntax also provides a more advanced way of handling
exceptions: catchError. The catchError block provides a way to detect an exception
and change the overall build status, but still continue the processing.

With the catchError construct, if an exception is thrown by a block of code, the
build is marked as a failure, but the code in the pipeline continues to be executed
from the statement following the catchError block.

See “Post-Processing” on page 100 for more details and examples.

This approach works well in Scripted Pipelines where you can use Groovy and
Groovy-like constructs freely, but how can we use Groovy code and constructs in a
Declarative Pipeline? There are multiple ways, depending on the best fit for a situa‐
tion. We’ll cover the options as the next topic in the chapter.

552 | Chapter 16: Troubleshooting

Using Nondeclarative Code Within a Declarative Pipeline
By definition, the format for a Declarative Pipeline relies on a well-defined structure
of sections and declarations. But there may be times when you need to include code
that does not fit the declarative model—for example, in order to declare a variable
and make an assignment to it.

As a more specific example, currently the Artifactory plugin page recommends this
sort of syntax for working with an Artifactory instance in a pipeline:

def server = Artifactory.server 'my-server-id'

Then you would use the server instance throughout the rest of the pipeline where
integration is needed. However, defining variables in this way is not declarative syn‐
tax and won’t be valid in a Declarative Pipeline.

Suppose you have the following code in your Declarative Pipeline:

stage ('Artifactory') {
 steps {
 def server = Artifactory.server 'my-server-id

Jenkins will report an error similar to the following:

org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:
WorkflowScript: 6: Expected a step @ line 6, column 17.
 def server = Artifactory.server 'my-server-id'
 ^

There are multiple ways to work around this limitation of not being able to define
items in a Declarative Pipeline. We’ll take a closer look at the options here:

• If you are trying to use a plugin’s functionality, it’s worth checking the plugin’s
web page to see whether there is an updated version that better supports declara‐
tive syntax.

• Switch to using a Scripted Pipeline. This will allow you to do whatever defini‐
tions you need, but is costly in terms of modifying the entire structure of your
pipeline.

• Put any such code in an external function that you call outside of the pipeline
block. For example:

 stage ('Artifactory') {
 steps {
 handleArtifacts()
 <rest of pipeline>
} // end of pipeline block

def handleArtifacts() {
 def server = Artifactory.server 'my-server-id'

Using Nondeclarative Code Within a Declarative Pipeline | 553

http://bit.ly/2qNyU2m

 // do processing
}

• Put the code before the beginning of the pipeline block. You can put any code
that you want before this block (but note that this is not guaranteed to be legal in
future versions of Jenkins.) Then you can reference the values later in the pipe‐
line. For example:

def server = Artifactory.server 'LocalArtifactory'
server.username = "my-username"
pipeline {
 agent any
 stages {
 stage ('Artifactory') {
 steps {
 echo "${server.username}"
 ...

However, you cannot do assignments in the pipeline block:
def server = Artifactory.server 'my-server-id'
pipeline {
 agent any
 stages {
 stage ('Artifactory') {
 steps {
 server.username = "my-username"

The declarative syntax checking doesn’t allow this and will give an error like the
following:

org.codehaus.groovy.control.MultipleCompilationErrorsException: startup
failed:
WorkflowScript: 8: Method calls on objects not allowed outside "script"
blocks. @ line 8, column 17.
 server.username = "my-username"
 ^

• Use a script block. The declarative syntax supports a script block construct
that allows you to use any valid pipeline code in a Declarative Pipeline. This is
the cleanest way to include nondeclarative code directly in your Declarative Pipe‐
line:

pipeline {
 agent any
 stages {
 stage ('Artifactory') {
 steps {
 script {
 def server = Artifactory.server 'my-server-id'
 server.username = "my-username"

554 | Chapter 16: Troubleshooting

 <script commands processing>
 }

Note that you cannot access items instantiated in the script block outside of that
block. For example, suppose you have the following code:

pipeline {
 agent any
 stages {
 stage ('Artifactory') {
 steps {
 script {
 def server = Artifactory.server 'my-server-id'
 server.username = "my-username"
 }
 echo "${server.username}"

This will result in an error like this:
groovy.lang.MissingPropertyException: No such property: server for
class: WorkflowScript

Working Around the Script Scope Limitation

If you absolutely must have access to some value set within the
script block outside of the scope of the script block, one option
is to set an environment variable to the value within that block. You
can then access the environment variable anywhere in your script.
(Of course, this is not suitable if the value should not be accessible
everywhere.) Here’s an example:

pipeline {
 agent any
 stages {
 stage ('Artifactory') {
 steps {
 script {
 def server = Artifactory.server 'my-server-id'
 server.username = "my-username"
 env.SERVER_USERNAME = server.username
 }
 echo "${SERVER_USERNAME}"

• Use a shared library. You can encapsulate the nondeclarative code into a function
in a shared library, and then load the library and call the function from our
Declarative Pipeline. This is the preferred approach, because it does not involve
putting any nondeclarative code in your pipeline script.
Creating and using shared libraries is covered in detail in Chapter 6.

Using Nondeclarative Code Within a Declarative Pipeline | 555

Nondeclarative Code and the Pipeline Editor

Except for the shared library option, all of these options
involve including nondeclarative code in your Declarative
Pipeline. You should be aware that, depending on the way you
do this, your code may not be completely usable within the
Blue Ocean pipeline editor. Blue Ocean is strongly tied to
Declarative Pipelines and declarative structure. In most cases,
you will still be able to see the visual representation of your
pipeline’s runs and the resulting information, such as logs, but
you may not be able to view the pipeline source or use the
actual editing features on it if it contains nondeclarative syn‐
tax.

By now you should know how to make almost any code that you need to use work in
a pipeline. But there’s still one kind of problem you can encounter when trying to use
certain methods and lower-level Jenkins files: approval. Understanding how these are
flagged and ultimately approved is important in the Jenkins 2 environment. This was
covered in Chapter 5, but we’ll review it in the next section.

Unapproved Code (Script and Method Approval)
Since pipelines make the ability to run any arbitrary script a key part of Jenkins, safe‐
guards are in place to make sure only approved scripts and methods are used.

At the highest access level, Jenkins administrators can create and run any scripts. For
nonadministrators, Jenkins includes two methods for script approval: manual via
administrator and automatic via the Groovy Sandbox environment for certain cases.

The Groovy Sandbox contains a whitelist of methods that are approved for nonadmi‐
nistrators to use in scripts. If the script is run in the Sandbox environment, then as
long as the methods it uses are whitelisted, it is allowed to proceed without manual
approval.

If the script is run by a nonadministrator and it is not run in the Sandbox environ‐
ment, then it will need to be manually approved by an administrator before it can be
executed.

Even if the script is run in the Sandbox environment, if it makes calls to methods not
currently on the whitelist, those calls will need to be manually approved by an admin‐
istrator before the script can be executed.

Here’s an example error message caused by trying to use an unapproved jsonSlurper
method:

556 | Chapter 16: Troubleshooting

org.jenkinsci.plugins.scriptsecurity.sandbox.RejectedAccessException: unclassi-
fied method groovy.json.JsonSlurper parseText java.io.File
 at org.jenkinsci.plugins.scriptsecurity.sandbox.groovy.SandboxInterceptor.onMe-
thodCall(SandboxInterceptor.java:113)

Here’s another example error:

org.jenkinsci.plugins.scriptsecurity.sandbox.RejectedAccessException: Scripts
not permitted to use new java.io.File java.lang.String

Jenkins will then post an automatic request for approval via the In-process Script
Approval function. This function allows those with proper permissions to approve
calling the function.

“Controlling Script Security” on page 170 contains more details, and describes how
the approval process is implemented.

Even if your code is approved and seems perfectly legal, you may still run into certain
cases where code is unsupported. See the next section for an example.

Unsupported Operations
Occasionally, you may still run across some operations that seem like they should
work in pipeline code, but don’t. At the time of this writing, the following code is an
example of one such scenario:

node {
 stage ('iterate') {
 (1..4).each {
 println "Iteration ${it}"
 }
 }
}

Jenkins reports the following error for this:

java.lang.UnsupportedOperationException: Calling public static java.util.List
 org.codehaus.groovy.runtime.DefaultGroovyMethods.each(java.util.List,
 groovy.lang.Closure) on a CPS-transformed closure is not yet supported (
 JENKINS-26481); encapsulate in a @NonCPS method, or use Java-style loop

The error message suggests a solution using the @NonCPS annotation that we previ‐
ously discussed.

Next up is another method that will allow us to get detailed information from the Jen‐
kins system logs.

Unsupported Operations | 557

System Logs
If all else fails when you’re troubleshooting, system logs can be very useful. The sys‐
tem logs are available on disk, but you can also get to them via the System Log item
on the Manage Jenkins page (Figure 16-8).

Figure 16-8. System Log entrypoint

After clicking on this, you’ll see a list of “log recorders” that are set up for the current
instance of Jenkins. These are the currently available logs (Figure 16-9).

Figure 16-9. Available log recorders

You can open up the main log or create a new log recorder. For the latter, just select
the “Add new log recorder” button. You’ll be presented with a screen like Figure 16-10
where you can enter a name for your new log recorder. If we were creating one to
help monitor SSH key authentication, we might call it “MyKeyAuthLog.”

Figure 16-10. Adding a new log recorder

After this, you can type in all or part of the name of the item you want to log and then
select it from the list. Choose the desired log level, and save your choices.
Figure 16-11 shows this.

558 | Chapter 16: Troubleshooting

Figure 16-11. Finding items to log

After this, your new log will be available (Figure 16-12).

Figure 16-12. New log available

It will also be listed in the set of log recorders.

While logs are useful to find out what the system is doing, it can also be useful to
understand when it is doing it. We’ll talk about some options to troubleshoot perfor‐
mance issues next.

Timestamps
We mentioned the Timestamper plugin briefly in Chapter 7. Its job is very simple—to
add timestamps to the console output for a job. Doing this can help you figure out

Timestamps | 559

where your pipelines are getting stuck, consuming large amounts of system resources,
or skipping processing on events they should be handling.

With the plugin installed, turning on timestamps in a pipeline is simple. For Scripted
Pipelines, you can just place a timestamps block around code that you want to track,
as in:

timestamps {
 <code/steps to time>
}

For Declarative Pipelines, you just add it in the options section of your pipeline, as
in:

options { timestamps() }

The system clock and elapsed time formats can be configured in the Timestamper
section of the Configure System screen. The kind of time information you see in the
console log can be updated dynamically (when you are in the console log) by select‐
ing the appropriate box in the control near the top (Figure 16-13).

Figure 16-13. Timestamper options in console output

One of the things that can lead to increased time used in parts of your pipeline is how
often data is serialized to disk. With recent versions of Jenkins, there is now a setting
to control that: the pipeline speed/durability setting.

Pipeline Durability Settings
As we’ve discussed many times in this book, one of the new features of Jenkins 2 is
the ability/requirement that objects be serializable (able to write their state to disk).
This allows nodes to pick up where they left off if something happens that causes a
restart.

While the idea is good and useful, in practice, the execution may become a bottleneck
at times, if items are frequently writing data to disk. This can be mitigated with strate‐

560 | Chapter 16: Troubleshooting

gies such as using SSDs, but the need to be able to tune this has reached a point where
additional controls have been added to Jenkins for it.

Starting with Jenkins LTS 2.73 (or weekly 2.62), there is a new setting on the Config‐
ure System screen to tune this, as shown in Figure 16-14. If you are running into per‐
formance issues, you may be able to tune this setting and try out other options for it
to see if that helps.

Figure 16-14. Pipeline durability settings

Display of Durability Setting

With recent versions of Jenkins, you will see the durability setting
info displayed near the top of the console output, as in:

Started by user Jenkins Admin
Running in Durability level: MAX_SURVIVABILITY

The value has the following levels as options (other than None, which uses the
default):

Maximum durability
This option writes the most state information to disk, at frequent intervals. This
is the default strategy. It has the advantage of having the most recent and compre‐
hensive set of data on disk, to allow for the best chance of restarting/recovering
cleanly. It has the disadvantage of chewing up the most resources in terms of fre‐
quency of writing to disk, thus making it the slowest option. This should be used
when you value recoverability of data and settings over performance.

Performance-optimized
This option significantly cuts back on the automatic writes to disk for recovery
purposes. The advantage is that it can speed up your pipeline. The disadvantage
is that, in order to ensure you have saved state on disk, you have to go through a
clean shutdown. Think of this like the behavior with restarts when you are using
Freestyle jobs. You can use this for noncritical jobs or ones you can simply run
again to recover.

Less durability
This option provides speed at the expense of not guaranteeing that data is always
written to disk before proceeding. Think of it as buffering up the state data and
writing it out in chunks periodically. You get speed because it is not doing as

Pipeline Durability Settings | 561

many writes to disk—writes are not atomic. You lose some small measure of reli‐
ability because there’s a chance the system could go down before the chunk of
data is written to disk (but it’s only a small chance in reality).

Note that this setting only applies to Pipeline projects (since they are the ones that
serialize data). In the worst-case scenario, you are no worse off than with Freestyle
projects in terms of persisting data.

Also note that you can override the global setting in some cases. For example, if you
want to change this for a particular pipeline, you can do that in the pipeline job’s Gen‐
eral settings (Figure 16-15).

Figure 16-15. Overriding global durability settings

See the documentation for scaling pipelines for more details and suggested best prac‐
tices around durability settings.

Summary
In this chapter, we’ve covered a variety of ways to troubleshoot challenges you may
run into when working with Jenkins pipelines. These include ways to use Jenkins to
dive deeper into the causes of problems, as well as how to work around cases where
code doesn’t meet all of the pipeline requirements. Of course, there are also simple
things you can do to help troubleshoot, depending on the interface, such as disabling
Auto Refresh if you need to be able to look at pop-up items for a longer period of
time, or migrating your Jenkinsfile code back into the Jenkins application temporarily
for easier debugging.

And, of course, don’t forget the Replay feature, which allows you to try out simple
changes quickly to see if you can fix a problem or see the effect a change can have.
Remember also that Replay works for Jenkinsfiles referenced in jobs in Jenkins, so it
can save you from having to import Jenkinsfiles just to troubleshoot.

Overall, experience, knowledge sharing, and the ever-present Google searches will go
a long way toward helping you resolve issues and understand details.

This chapter brings us to the end of the book. I hope you have found it useful and
that it has provided answers to many of your questions about Jenkins 2, as well as
examples that you can draw on for your own projects. If you’ve found it helpful,
please consider providing a review to help others find out about it. Thank you for
your interest in the book, and good luck with all of your Pipeline projects!

562 | Chapter 16: Troubleshooting

http://bit.ly/2JZuEWk

Index

Symbols
@# annotation, 443
@Grab annotation, 205
@Library annotation, 187, 191
@NonCPS annotation, 549, 557
@tmp annotation, 443, 449
{} (braces), 34

A
aborted build status, 242
access and security

credentials administration, 145-147
credentials creation and management

adding new domains and credentials,
151-153

context links, 150
folder-level, 148
grayed-out credentials, 149
moving credentials, 150
system-level, 148
user-level, 148
using new domains and credentials, 153

credentials in Jenkins, 142-145
credentials in the pipeline, 168-170
global security settings

agents, 138
Authorize Project plugin, 139
CLI remoting, 138
Cross-Site Request Forgery (CSRF), 138
hidden security warnings, 140
markup formatter, 138
plugin manager, 139
SSH servers, 141

Groovy sandboxing, 173-175, 556

overview of, 182
role of, 133
role-based access

assigning roles, 162
authenticated groups, 163
basic use, 155
command-line interface and, 531
defining role patterns, 157
global role example, 158
invalid users, 164
locating extended descriptions, 158
managing and assigning roles, 157
order of precedence in, 160
project role example, 159
Role Strategy Macros, 166
slave role example, 160
types of roles, 155

script security, 170-172
securing Jenkins

access control settings, 135
access control, authorization, 136
Configure Global Security link, 134
default configuration, 133
enabling security, 134-137

Vault application
approaches to using, 176
authentication, 177
capabilities of, 175
policy creation, 176
secret_id_accessor value, 179
setup, 176
using in Jenkins, 179-182

acknowledgments, xxiii
agent directives, 222-225, 227

563

agents
defined, 27
dynamic agent creation, 509-512
specifying, 348
using Docker images as, 501-505

allOf keyword, 240
analysis tools, 453, 474

(see also JaCoCo; SonarQube)
anyOf keyword, 240
AppRole backend, 177
archiveArtifacts step, 489
artifact repositories

benefits of, 477
naming artifacts, 491
purpose of, 404
support for in Jenkins, 487-493

Artifactory plugin
accessing instances outside of Jenkins, 481
build promotion, 485
build retention policies, 485
in Declarative Pipelines, 486
downloading/uploading files, 484
output integration with Jenkins, 486
overview of, 494
in Scripted Pipelines, 479-484
setup and global configuration, 478

attributions, xxii
authenticated groups, 163
authentication , 134, 177

(see also access and security)
authorization, 134

(see also access and security)
Authorize Project plugin, 139
auto-complete functionality, 39
auto-refresh feature, disabling, 50

B
Bitbucket Team/Project projects, 310-313, 376
bitbucketPush trigger types, 233, 267
block build options, 256
block step, 86
Blue Ocean interface

basics of, 6
color codes and symbols, 322
Declarative Pipelines and, 248
features of, 315
functionality alert, 316, 373
Go to Classic View icon, 323
halos icon, 322, 345

managing existing pipelines
dashboard section, 316-320
project-specific page, 321-331
run page, 332-341

nondeclarative code and, 81, 556
overview of, 315, 377
Pipeline Editor

editing existing pipelines, 359-362
importing and editing existing pipelines,

363-374
new pipeline creation, 342-347
pipelines from non-GitHub repositories,

375-376
working in the editor, 347-359

Scripted Pipelines and, 248
Boolean parameter, 70
booleanParam, 234
braces ({}), 34
branch indexing, 302
Branches view (Blue Ocean), 359
Build History window, 48
build logs, retaining, 257
Build Pipeline plugin, 45
build promotion, 485
build results, setting, 109
build retention policies, 485
Build Token Root plugin, 260
buildDiscarder, 230, 253

C
catchError block, 102, 552
changelog option, 44
Changes tab (Blue Ocean), 336
checkout scm syntax, 230, 413
choice parameter, 70, 235
Classic View (Blue Ocean), 323
cleanWs() call, 399, 445
closures, 34
CloudBees, 5, 184
code coverage analysis, 470

(see also JaCoCo; SonarQube)
code examples, obtaining and using, xxi
command-line interface (CLI)

cli client, 531-534
direct SSH interface, 528-531

comments and questions, xxiii
concurrency

controlling concurrent builds with mile‐
stones, 87

564 | Index

execute concurrent builds if necessary
option, 254

expected and unexpected cases of, 85
locking resources lock step, 86
restricting in Multibranch Pipelines, 89
running tasks in parallel

failFast option, 96-99
Parallel Test Executor Plugin, 95
stash and unstash functions, 92, 397
syntax for Declarative Pipelines, 95
traditional parallel syntax, 89

Conditional BuildStep plugin, 59, 99
conditional execution, 99
conditionals, 218-220
conditions (SonarQube), 459
configuration files

credentials and, 271
editing config file IDs, 268
managing in pipelines, 271
project options for, 268-273

Configure Global Security link, 134
(see also access and security)

Console Output link, 48
containers (see Docker containers)
context links, 150
Continuous Passing Style (CPS), 547
conversions

Freestyles to Scripted Pipelines
compile step, 391-396
integration testing, 400-403
mapping traditional jobs to stages, 386
migrating succeeding parts, 403-408
source step, 386-391
typical deployment pipeline, 382-385
unit tests, 396-400
working in Jenkins versus Jenkinsfiles,

390
Jenkins to Jenkinsfiles

advantages and disadvantages of, 409
approach to, 412-418
final steps, 418-420

main types of, 379
overview of, 427-429
preparing for, 380-382
Scripted to Declarative Pipelines

completed conversion, 426
converting, 422-426
overview of, 420
sample pipeline, 421

using shell steps for, 439
credentials

adding bindings to environment variables,
276

administering, 145-147
configuration files and, 271
creation and management of, 148-155
credential domains, 144
credential providers, 144
credential scopes, 143
credential stores, 144
credentials in the pipeline, 168-170
defined, 142
environment variables and, 226
examples of, 142
for SSH Docker agent images, 504
for GitHub, 307
internal credentials store, 143
Jenkins credentials for Vault, 179
lifetimes of, 180
moving, 150
role of, 142
role-based access

assigning roles, 162
authenticated groups, 163
basic use, 155
command-line interface and, 531
defining role patterns, 157
global role example, 158
invalid users, 164
locating extended descriptions, 158
managing and assigning roles, 157
order of precedence in, 160
project role example, 159
Role Strategy Macros, 166
slave role example, 160
types of roles, 155

SSH credentials, 168
token credentials, 169

Credentials Binding plugin, 168, 276
credentials parameter, 71
cron syntax, 61-63, 233
cron trigger directives, 232
Cross-Site Request Forgery (CSRF), 68, 138,

186, 536
curly braces ({}), 34
custom workspaces

creating, 442
labels and, 223

Index | 565

project option specifying, 257

D
dashboard (Blue Ocean)

favorite shortcut, 320
launching, 316
links and elements available on, 318
pipelines URL, 318
project row field descriptions, 319

Declarative Pipelines
@Library annotation and, 192
artifacts and fingerprinting in, 488
basics of, 4
benefits of, 216
Blue Ocean interface and, 248
building blocks of

agent directives, 222-225, 227
environment directives, 225
graphic representation of, 220
libraries directives, 237
options directives, 229-232
parameters directives, 234-237
pipeline blocks, 221
post section, 241
stages section, 238-241
tools directives, 226
triggers directives, 232-234

challenges of working with
nondeclarative code, 242-244
using parallel in stages, 244

converting to from Scripted Pipelines,
420-427

dynamic agent creation, 509-512
environment variables in, 440
limitations on security concerns, 170
nondeclarative code in, 553-556
overview of, 248
parallel syntax for, 95
parameters and, 76-81
post-processing, 103
role of, 215
script checking and error reporting, 245-248
script DSL statements, 244
versus Scripted Pipelines, 24, 215, 384
structure of, 218-220
support for in Jenkins, 216
using Artifactory in, 486
withSonarQubeEnv block and, 465
work arounds for item definition in, 553

delegation, 203
deleteDir() call, 399
DevOps movement, 10
directives, 218-220
directory steps

deleteDir step, 449
dir step, 448
pwd step, 448

disable project option, 254
disableConcurrentBuilds option, 231
discard old builds option, 252
display name option, 257
Docker containers

benefits of, 407, 497
cloud configuration

benefits of, 497
Docker images as agents, 501-505
Docker plugin integration, 500
entrypoint specification, 503
failed launches, 508
global configuration, 498
requirements for, 498
using cloud images in pipelines, 505-509

dynamic agent creation, 509-512
Jenkins’ Docker Global Variable

global variable methods, 514-524
global variables, 512
requirements for, 512

manual node definition, 508
obtaining Docker images, 223-225
options for, 497
overview of, 526
Pipeline Model Definition, 512
shell commands for, 524
tools directive and, 229

Docker Pipeline plugin, 498, 512
Docker plugin, 498
docker.sock path, 515
Dockerfile syntax, 224
documentation, 198
DSL (Domain-Specific Language)

basics of, 2
Groovy language and, 31
node keyword, 32
stage closures, 34
steps syntax, 35

durability settings, 560-562

566 | Index

E
email notifications

basic notifications, 107
extended notifications

content, 112
global configuration, 110
including logs, 114
overview of, 110
recipients, 113
triggers, 114

Jenkins location, 106
Jenkins URL, 106
sending email in pipelines, 108
setting build results, 109
test emails, 108

Enable CLI over remoting option, 138
EnvInject plugin, 442
environment directives, 225
environment variables, 440-442
environments block, 442
error reporting, 245-248
exception handling, 552

(see also troubleshooting)
executors, 28
external job project type, 284-287
external SCMs, loading code from, 207

F
failFast option, 96-99, 486
file and directory steps

downloading/uploading files in Artifactory,
484

File Operations plugin, 449
working with directories

deleteDir step, 449
dir step, 448
pwd step, 448

working with files
checking for file existence, 447
reading files, 446
writing files, 447

File Operations plugin, 449
file parameter, 73, 235
FilePath objects, 73
fingerprinting, 487-493
flow control options (see also pipeline execu‐

tion flow)
retry closure, 83
sleep step, 83

timeout step, 81
waitUntil step, 83-85

Folders
basics of, 9
creating, 297
creating items in, 298
managing permissions for, 300
moving existing items into, 299
role of, 295
views within, 299

Freestyle project type
basics of, 278
converting to Scripted Pipelines, 382-408
Jenkins support for, 10
typical deployment pipeline, 382-384
using SonarQube in, 463

functional programming, 547

G
GitHub organization project

creating, 306
structure of, 306
uses for, 305
webhooks for, 307

GitHub plugin, 253
githubPush trigger directives, 232
GitSCM polling, 64, 261-267
global configuration, 20
global variables

automatic documentation, 198
in Docker pipelines, 512-524
reference page, 200
using like steps, 200

Go to Classic View icon (Blue Ocean), 323
Gradle, 3
Groovy engine, 2, 31
Groovy Sandbox, 173-175, 184, 556

H
H symbol, 62-63, 233
halos icon, 322, 345
HipChat Notification plugin

adding links in messages, 127
default notifications, 126
global configuration, 125
sending notifications in jobs, 127
setup version 1, 124
setup version 2, 125
versions available, 124

Index | 567

HTML markup formatter, 138
HTML Publisher plugin

benefits of, 128
finally section example, 130
Gradle build example, 129
output page, 130
subparameters, 129

hudson.FilePath objects, 73

I
input step, 65-69
inside method, 523
integration testing, 400-403
interfaces (see also Blue Ocean interface)

command-line, 528-534
Eclipse IDE, 527
REST API, 534-538
scripting console, 538-541

invalid users, 164
items, creating new, 7

(see also jobs)
Ivy projects, 293-295

J
JaCoCo (Java Code Coverage)

output integration with Jenkins, 473
pipeline integration, 471
purpose of, 470

Java Network Launch Protocol (JNLP), 138
Jenkins 2

benefits of, 1
classic versus modern Jenkins, xvii, 1
compatibility

checking for, 20
pipelines, 14
plugins, 15

DSL (Domain-Specific Language), 2
guidelines for learning Jenkins, xix
new features

Blue Ocean interface, 6
Declarative Pipelines, 4
highlights of, 13
Jenkinsfiles, 3
new job types and plugins, 7
pipeline management, 13
shift in focus of, 2

overview of, 21
rationale behind

configuration editing, 11

DevOps movement, 10
ease of workflow, 12
multiple jobs, 11
pipeline durability, 11
pipeline management, 12
support for collaboration, 12
workspace sharing, 12

Jenkins editor
auto-complete functionality in, 39
extended error information in, 39
project creation, 37
syntax checking with, 38
tabs and navigation in, 37

Jenkins Pipeline Linter, 409
Jenkins URL, 106, 531
Jenkins-defined job options, 229
Jenkinsfiles

advantages and disadvantages of, 409
basics of, 3
converting to from Jenkins Pipelines,

409-420
developing, 411
example of in source control, 3
including back into native Jenkins projects,

419
Linter tool for, 409
migrating parameter usage to, 415
in Multibranch Pipeline projects, 300-305
validation of, 419
versus working directly in Jenkins, 390

JenkinsPipelineUnit, 56
job chaining, 59
JobConfigHistory plugin, 3
jobs

behavior changes based on user input, 65-81
creating new, 7
creating new in Blue Ocean, 342-347
synonyms for, 7
triggering, 60-65

JsonSlurper class, 548

K
known user database, 135

L
labels

configuring, 222
custom workspaces and, 223
omitting, 33

568 | Index

uses for, 31
using node in place of, 223

language interpreters, 435
Legacy SCM retrieval, 188
libraries (see shared pipeline libraries)
libraries directives, 237
libraryResource step, 204
Lightweight Directory Access Protocol (LDAP),

135
Linter tool, 409
Linux Containers (LXC), 407
lock step, 86
Lockable Resources plugin, 86
logic operands, 33
logical operators, 240
logRotator element, 231
logs

including in email notifications, 114
retaining build logs of dependencies, 257
step logs in Blue Ocean, 334, 365
troubleshooting using system logs, 558

logs, viewing, 48-51

M
master systems, 27
matrix-based security, 136-137
Maven project type, 279-282
MD5 checksum, 488
milestones, controlling concurrent builds with,

87
Modern SCM retrieval, 188
Multibranch Pipeline project type

activity view in Blue Ocean, 324
basics of, 10
branch indexing, 302
Build Now option, 305
configuring, 300
incorporating new branches, 303
individual job output and configuration,

303
primary feature of, 300
restricting concurrency in, 89

multiconfiguration project type, 287-293
multiline string value parameter, 74

N
nodes

basics of, 27
creating, 29, 32

identifying project run locations, 255
mappings and, 34
node labels, 31, 33, 222
relationship to stages and steps, 36
using same for Docker and non-Docker

stages, 225
nondeclarative code

Blue Ocean interface and, 81, 556
challenges of working with, 242-244
troubleshooting in Declarative Pipelines,

553-556
NonSerializableException, 548
not keyword, 240
notifications (see also reports)

collaboration services
HipChat Notification plugin, 124-128
Slack Notification plugin, 116-123

email
basic notifications, 107
extended notifications, 110-116
Jenkins location, 106
Jenkins URL, 106
sending email in pipelines, 108
setting build results, 109
test emails, 108

overview of, 105, 131

O
offsets, 64
options directives, 229-232
organizations, 10
OS (operating system) integration

environment variables, 440-442
file and directory steps

File Operations plugin, 449
working with directories, 448
working with files, 446

overview of, 431, 450
shell steps

bat step, 437
configuring shell executables, 432
powershell step, 438
sh step, 432-436
using for prototyping or conversions,

439
workspaces

cleaning out, 444
custom, 442

Index | 569

P
Parallel Test Executor plugin, 95, 400
parallelism

for Declarative Pipelines, 95
defined, 85
distributing content across nodes, 397
failFast option, 96-99
Parallel Test Executor Plugin, 95
stash and unstash functions, 92, 397
traditional parallel syntax, 89
traditional versus alternative syntax, 396
using parallel in stages, 244

parameters
Boolean, 70
booleanParam, 234
choice, 70, 235
credentials, 71
Declarative Pipelines and, 76-81
file, 73, 235
multiline string value, 74
on first execution, 237
overview of, 69
password, 74
return values from multiple input parame‐

ters, 75
run, 75, 235
string, 75, 236
Subversion tags, 73
text, 235
using in pipelines, 236

parameters directives, 234-237
PARAM_NAME syntax, 237
password parameter, 74, 235
permissions, 134, 171, 300, 531

(see also access and security)
Personal Access Tokens, 262
pipeline blocks, 221
Pipeline Editor (Blue Ocean)

editing existing pipelines, 359-362
importing and editing existing pipelines

adding unsupported code, 373
challenges of, 363
debugging editor issues, 368-373
simple debugging and editing, 364-368
viewing log steps, 365

new pipeline creation, 342-347
non-GitHub repositories and, 375-376
working in

adding new stages, 351

adding steps to stages, 353
basics of, 347
deleting stages, 353
elements available, 347
entry errors, 350
saving/applying changes, 351
saving/applying pipeline changes,

355-359
specifying global parts of pipelines, 348

pipeline execution flow
concurrency

controlling concurrent builds with mile‐
stones, 87

expected and unexpected cases of, 85
locking resources lock step, 86
restricting in Multibranch Pipelines, 89
running tasks in parallel, 89-99

conditional execution, 99
flow control options

retry closure, 83
sleep, 83
timeout step, 81
waitUntil step, 83-85

in legacy Jenkins, 59
overview of, 104
post-processing

Declarative Pipelines, 103
Scripted Pipelines, 100

triggering jobs
approaches to, 60
build after other projects are built, 60
build periodically, 61
GitHub hook trigger for GitSCM poll‐

ing, 64
poll SCM, 64
quiet periods, 64
remote triggering, 64

user input
input step, 65-69
overview of, 65
parameters, 69-75

pipeline libraries (see shared pipeline libraries)
Pipeline Linter tool, 409
Pipeline Model Definition, 512
Pipeline project type (see also pipeline execu‐

tion flow)
basics of, 9
configuring, 282
defining, 282

570 | Index

setting options, 284
using SonarQube in, 464

Pipeline Steps view, 543-547
Pipeline tab (Blue Ocean), 332
pipeline-as-code

benefits of, 81, 133
Jenkins DSL

Groovy language and, 31
node keyword, 32
stage closures, 34
steps syntax, 35

overview of, 23, 56
pipeline script development

pipeline editor, 38
project creation, 36
Replay feature, 52
running pipelines, 45-56
Snippet Generator, 40

Scripted versus Declarative Pipelines, 24
systems running

agents, 27
definition of, 26
executors, 28
master systems, 27
node creation, 29
node labels, 31
nodes, 27

pipelines, running
approaches to, 45
pipeline testing frameworks, 56
Replay feature, 52
Stage View with errors, 50
tiles and color codes, 47
viewing logs, 48

plugins
plugin manager, 139
troubleshooting, 243

polling functionality, 44, 64
pollSCM trigger directives, 232
post section, 218, 241
post-processing

Declarative Pipelines, 103
Scripted Pipelines, 100

PowerShell plugin, 438
processing flow (see pipeline execution flow)
project options

build environment
abort builds if stuck, 273-275
delete workspace before build starts, 268

provide configuration files, 268-273
secret texts or files, 276

Build section, 277
build triggers

build after other projects are built, 260
build periodically, 261
GitHub hook trigger for Git polling,

261-267
poll SCM option, 267
trigger builds remotely, 260

General section
block build options, 256
concurrent builds, 254
custom workspaces, 257
disable project, 254
discard old builds, 252
display name, 257
GitHub projects, 253
project parametrization, 254
quiet periods, 255
restricting run locations, 255
retaining build logs of dependencies, 257
retry count, 256
throttle builds, 254

overview of, 313
post-build actions, 277
Source Code Management section

credentials setting, 258
repository URL setting, 258
revision setting, 258
SCM in pipelines, 258

project types
Bitbucket Team/Project projects, 310-313
differentiation between, 278
external job project type, 284-287
Folders

creating folders, 297
creating items in, 298
managing permissions for, 300
moving existing items into, 299
role of, 295
views within, 299

Freestyle projects, 278
GitHub organization project

creating, 306
structure of, 306
uses for, 305
webhooks for, 307

Ivy projects, 293-295

Index | 571

Maven project type, 279-282
Multibranch Pipeline project type

branch indexing, 302
Build Now option, 305
configuring, 300
incorporating new branches, 303
individual job output and configuration,

303
primary feature of, 300

multiconfiguration project type, 287-293
overview of, 313
Pipeline project type, 282-284

project-specific page (Blue Ocean)
color codes and symbols, 322
elements and icons available on, 321
halos icon, 322
Multibranch Pipeline, 324, 326-327
simple pipeline activity view, 321-323
simple pipeline branches and pull requests

views, 324
projects, creating new, 7

(see also jobs)
promotionConfig objects, 485
prototyping, 439
pull requests (Git), 327

Q
qualtiy gates/quality profiles (SonarQube), 459,

466
questions and comments, xxiii
quiet periods, 64, 255

R
RejectedAccessException error, 212
remember me on this computer option, 135

(see also access and security)
remote build triggering, 64
Remote Loader plugin, 207, 407
Replay feature, 52, 208-210, 413, 562
reports (see also notifications)

overview of, 131
publishing HTML reports, 129-130
uses for, 128

resources
loading, 204
locking with lock step, 86

REST API
accessing, 534
data retrieval formats, 534

documentation, 534
filtering results, 534
initiating builds, 536

retry option, 83, 231, 256
reuseNode specification, 225
Role Strategy Macros, 166
role-based access

assigning roles, 162
authenticated groups, 163
basic use, 155
command-line interface and, 531
defining role patterns, 157
global role example, 158
invalid users, 164
locating extended descriptions, 158
managing and assigning roles, 157
order of precedence in, 160
project role example, 159
Role Strategy Macros, 166
slave role example, 160
types of roles, 155

Role-based Authorization Strategy plugin, 300
rules (SonarQube), 455-459
run page (Blue Ocean)

Artifacts page, 339-342
Changes tab, 336
combined steps, 335
parallel stages, 333
pipeline tab, 332
skipped stages, 334
status banner, 332
step logs, 334
Tests View, 338

run parameter, 75, 235
runners, 461

(see also scanner program (SonarQube))

S
scanner program (SonarQube), 461
SCM polling functionality, 64
script blocks, 79-80, 554
script checking and error reporting, 245-248
Script Console, 538-541
script DSL statements, 244
Script Security plugin, 170-172
Scripted Pipelines

basics of, 5
Blue Ocean interface and, 248
converting to Declarative Pipelines, 420-427

572 | Index

converting to from Freestyle Pipelines,
382-408

versus Declarative Pipelines, 24, 215, 384
drawbacks of, 216
extended tool types for, 227
post-processing, 100
using Artifactory in, 479-484

secret_id_accessor value, 179
sections, 218-220
security (see access and security)
Security Realm section, 135
security warnings, hidden, 140
serialization errors

benefits of CPS programming style, 547
handling nonserializable errors, 549-551
not serializable exception, 548
role of serialization in Jenkins, 547
serializing pipelines, 547

shared pipeline libraries
benefits of, 183, 243, 555
for Declarative Pipelines, 237
executing batch scripts from, 438
executing PowerShell scripts from, 439
executing shell scripts from, 436
external libraries

defining, 187
loading, 187

internal libraries
basics of, 184
HTTP access, 186
SSH access, 185

library scope within Jenkins items, 193
library structure

mapping step calls to src and vars, 204
resources, 204
sample library routine, 194
src subtree, 195-197
vars subtree, 197-203

loading code directly, 206
loading code from external SCMs, 207
obtaining from source repository

Legacy SCM retrieval, 188
Modern SCM retrieval, 188

overview of, 214
replaying external code and libraries,

208-210
scope of trust, 184
third-party, 205
trusted versus untrusted, 183, 209, 211-213

user-facing documentation, 198
using libraries

@Library annotation, 191
automatic downloading, 190
library directive, 192
library step, 192
loading libraries implicitly, 190

shell steps
bat step, 437
configuring shell executables, 432
for Docker containers, 524
powershell step, 438
sh step, 432-436
using for prototyping or conversions, 439

skipDefaultCheckout, 230
skipStagesAfterUnstable option, 231
Slack notification plugin

adding links in messages, 122
colors and color codes in, 123
global configuration, 118
installing, 116
sending notifications in jobs, 121
setup, 116
webhooks in, 119

slaves, 27
(see also agents)

sleep step, 83
Snippet Generator

choice parameter and, 71
discovering syntax with, 239
purpose of, 40
Tool Type parameter, 228

SonarQube
core functionality of, 454
dashboard, 454
in Freestyle projects, 463
global configuration, 462
integrating output with Jenkins, 469
integrating with Gradle, 468
in Pipeline projects, 464
quality gates and profiles in, 459, 466
rules, 455-459
scanner program, 461
using as pass/fail indicator, 465-469

source code analysis, 403
source code management

checkout scm syntax, 230, 413
credentials setting, 258
GitSCM polling, 64

Index | 573

Legacy SCM retrieval, 188
loading code from external SCMs, 207
Modern SCM retrieval, 188
pollSCM trigger directives, 232
repository URL setting, 258
revision setting, 258
SCM in pipelines, 258
SCM polling functionality, 64

SourceSets mechanism, 402
splitTests step, 95
src shared library subtrees, 195-197
SSH credentials, 168
SSH internal library access, 185
SSH servers, 141, 528
stage closures, 34
Stage View, 48-51
stages section

basics of, 218
conditional execution of stages, 239
individual stages within, 238
role of, 238
steps in, 238

Stapler library, 540
star icon, 320
stash and unstash functions, 92, 397
status banner (Blue Ocean), 332
step logs (Blue Ocean), 334
step syntax, 35
steps, 218-220, 353
string parameter, 75, 236
submitter option, 68
Subversion tags parameter, 73
syntax checking, 38
System Admin email address, 106
system logs, 558

T
TCP ports, 138
test emails, 108
testing frameworks

JenkinsPipelineUnit, 56
viewing test results in Blue Ocean, 338

text parameter, 235
Throttle Concurrent Builds plugin, 64
throttling builds, 254
timeout step

changing default value, 541
Declarative versus Scripted Pipelines and,

232

purpose of, 81, 231
SonarQube and, 467
specifying timeout strategy, 273

timestamps closure, 194, 232, 275, 559
token credentials, 169
tools directives, 226
triggering jobs

approaches, 60
build after other projects are built, 60, 260
build periodically, 61, 261
GitHub hook trigger for GitSCM polling,

64, 261-267
poll SCM, 64, 267
quiet periods, 64
remote triggering, 64
trigger builds remotely, 260

triggers directives, 232-234
troubleshooting

cloud images in pipelines, 507
debugging and editing in Blue Ocean, 364
debugging Pipeline Editor issues, 368-373
exception handling in pipelines, 552
identifying error-causing code, 551
Linter tool, 409
navigating Pipeline Steps view, 543-547
nondeclarative code in Declarative Pipe‐

lines, 553-556
overview of, 562
pipeline durability settings, 560-562
plugins, 243
script checking and error reporting, 245-248
serialization errors, 547-551
system logs, 558
timestamps, 559
unapproved code, 556
unsupported operations, 557
viewing test results in Blue Ocean, 338

true/false parameter, 70
Trusted Libraries, 183

(see also shared pipeline libraries)
try-catch-finally clause, 101, 108, 552
typographical conventions, xx

U
unit tests, 396-400
Unix usernames and passwords, 135
unstash and stash functions, 92, 397
unsupported operations, 557
untrusted code, 184, 209, 211-213, 556

574 | Index

upstream trigger directives, 232
user input

input step, 65-69
parameters, 69-75
return values from multiple input parame‐

ters, 75
username/password login, 134, 168

V
vars shared library subtree, 197-203
Vault application

approaches to using, 176
authentication, 177
capabilities of, 175
policy creation, 176
secret_id_accessor value, 179
setup, 176
using in Jenkins, 179-182

W
wait times, 64
waitForQualityGate method, 466

waitUntil step, 83-85
webhooks

for GitHub organization projects, 307
for Slack notification plugin, 119
for SonarQube, 465
purpose of, 10

Welcome screen, 8
with* annotation, 402
withDockerRegistry step, 516
withDockerServer step, 515
withEnv step, 441
withRegistry method, 515
withServer method, 514
withSonarQubeEnv block, 464
withTool method, 516
workflowLibs.git, 184
workspaces

cleaning out, 398, 444
custom workspaces, 223, 257, 442
sharing, 12

wrap step, 181

Index | 575

About the Author
Brent Laster is a global trainer, author, and speaker on open source technologies as
well as a senior R&D manager at a top technology company. He has been involved in
the software industry for over 25 years, holding various technical and management
positions. In addition to Jenkins 2: Up and Running, he is the author of Professional
Git (Wiley), a comprehensive, easy-to-use guide and tutorial for beginners and
advanced users of Git, and Continuous Integration vs. Continuous Delivery vs. Contin‐
uous Deployment (O’Reilly), a beginner’s guide to understanding the differences. You
can regularly find Brent conducting workshops at industry conferences and conduct‐
ing live training classes on Safari. Brent has always tried to make time to learn and
develop both technical and leadership skills and share them with others, and he
believes that regardless of the topic or technology, there’s no substitute for the excite‐
ment and sense of potential that come from providing others with the knowledge
they need to accomplish their goals. You can contact Brent on LinkedIn or via Twitter
at @BrentCLaster.

Colophon
The animal on the cover of Jenkins 2: Up and Running is the golden jackal (Canis aur‐
eus). Ranging from Northern Italy to Western Thailand, this highly adaptable animal
has more in common with the gray wolf than its more distant African jackal cousins.
Omnivorous scavengers and foragers, they can be found in packs of up to five adults
in areas where food sources are plentiful, though their social structure tends to be ori‐
ented around the territory of a single mating pair.

In Indian folklore, the golden jackal is often depicted in the role of the trickster, dup‐
ing larger predators and travelers out of food and valuables. Hearing the howl of a
jackal in the morning, and seeing a jackal cross one’s path from left to right, are con‐
sidered good omens.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Natural History of Animals. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://www.linkedin.com/in/brentlaster
https://twitter.com/brentclaster
https://twitter.com/brentclaster
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introducing Jenkins 2
	What Is Jenkins 2?
	The Jenkinsfile
	Declarative Pipelines
	Blue Ocean Interface
	New Job Types in Jenkins 2

	Reasons for the Shift
	DevOps Movement
	Assembling Pipelines
	Resumability
	Configurability
	Sharing Workspaces
	Specialized Knowledge
	Access to Logic
	Pipeline Source Management
	Competition

	Meeting the Challenges
	Compatibility
	Pipeline Compatibility
	Plugin Compatibility
	Checking Compatibility

	Summary

	Chapter 2. The Foundations
	Syntax: Scripted Pipelines Versus Declarative Pipelines
	Choosing Between Scripted and Declarative Syntax

	Systems: Masters, Nodes, Agents, and Executors
	Master
	Node
	Agent
	Executor
	Creating Nodes

	Structure: Working with the Jenkins DSL
	node
	stage
	steps

	Supporting Environment: Developing a Pipeline Script
	Starting a Pipeline Project
	The Editor
	Working with the Snippet Generator
	Running a Pipeline
	Replay

	Summary

	Chapter 3. Pipeline Execution Flow
	Triggering Jobs
	Build After Other Projects Are Built
	Build Periodically
	GitHub Hook Trigger for GitSCM Polling
	Poll SCM
	Quiet Period
	Trigger Builds Remotely

	User Input
	input
	Parameters
	Return Values from Multiple Input Parameters
	Parameters and Declarative Pipelines

	Flow Control Options
	timeout
	retry
	sleep
	waitUntil

	Dealing with Concurrency
	Locking Resources with the lock Step
	Controlling Concurrent Builds with Milestones
	Restricting Concurrency in Multibranch Pipelines
	Running Tasks in Parallel

	Conditional Execution
	Post-Processing
	Scripted Pipelines Post-Processing
	Declarative Pipelines and Post-Processing

	Summary

	Chapter 4. Notifications and Reports
	Notifications
	Email
	Collaboration Services

	Reports
	Publishing HTML Reports

	Summary

	Chapter 5. Access and Security
	Securing Jenkins
	Enabling Security
	Other Global Security Settings

	Credentials in Jenkins
	Credential Scopes
	Credential Domains
	Credential Providers
	Credential Stores

	Administering Credentials
	Selecting Credential Providers
	Selecting Credential Types
	Specifying Credential Types by Provider

	Creating and Managing Credentials
	Context Links
	Adding a New Domain and Credential
	Using the New Domain and Credential

	Advanced Credentials: Role-Based Access
	Basic Use
	Manage Roles
	Assign Roles
	Role Strategy Macros

	Working with Credentials in the Pipeline
	Username and Password
	SSH Keys
	Token Credentials

	Controlling Script Security
	Script Checking
	Script Approval

	Groovy Sandboxing
	Using Jenkins Credentials with Vault
	Approach
	Setup
	Creating a Policy
	Authentication
	Using Vault in Jenkins

	Summary

	Chapter 6. Extending Your Pipeline
	Trusted Versus Untrusted Libraries
	Internal Versus External Libraries
	Internal Libraries
	External Libraries

	Getting a Library from the Source Repository
	Modern SCM
	Legacy SCM

	Using Libraries in Your Pipeline Script
	Automatic Downloading of Libraries from Source Control
	Loading Libraries into Your Script

	Library Scope Within Jenkins Items
	Library Structure
	Sample Library Routine
	Structure of Shared Library Code

	Using Third-Party Libraries
	Loading Code Directly
	Loading Code from an External SCM
	Replaying External Code and Libraries
	A Closer Look at Trusted Versus Untrusted Code
	Summary

	Chapter 7. Declarative Pipelines
	Motivation
	Not Intuitive
	Getting Groovy
	Additional Assembly Required

	The Structure
	Block
	Section
	Directives
	Steps
	Conditionals

	The Building Blocks
	pipeline
	agent
	environment
	tools
	options
	triggers
	parameters
	libraries
	stages
	post

	Dealing with Nondeclarative Code
	Check Your Plugins
	Create a Shared Library
	Place Code Outside of the Pipeline Block
	The script Statement

	Using parallel in a Stage
	Script Checking and Error Reporting
	Declarative Pipelines and the Blue Ocean Interface
	Summary

	Chapter 8. Understanding Project Types
	Common Project Options
	General
	Source Code Management
	Build Triggers
	Build Environment
	Build
	Post-Build Actions

	Types of Projects
	Freestyle Projects
	The Maven Project Type
	The Pipeline Project Type
	The External Job Project Type
	The Multiconfiguration Project Type
	Ivy Projects
	Folders
	Multibranch Pipeline Projects
	GitHub Organization Projects
	Bitbucket Team/Project Projects

	Summary

	Chapter 9. The Blue Ocean Interface
	Part 1: Managing Existing Pipelines
	The Dashboard
	The Project-Specific Page
	The Run Page

	Part 2: Working with the Blue Ocean Editor
	Creating a New Pipeline Without an Existing Jenkinsfile
	Working in the Editor
	Editing an Existing Pipeline
	Importing and Editing Existing Pipelines
	Working with Pipelines from Non-GitHub Repositories

	Summary

	Chapter 10. Conversions
	Common Preparation
	Logic and Accuracy
	Project Type
	Systems
	Access
	Global Configuration
	Plugins
	Shared Libraries

	Converting a Freestyle Pipeline to a Scripted Pipeline
	Source
	Compile
	Unit Tests
	Integration Testing
	Migrating the Next Parts of the Pipeline

	Converting from a Jenkins Pipeline Project to a Jenkinsfile
	Approach
	Final Steps

	Converting from a Scripted Pipeline to a Declarative Pipeline
	Sample Pipeline
	The Conversion
	Completed Conversion

	General Guidance for Conversions
	Summary

	Chapter 11. Integration with the OS (Shells, Workspaces, Environments, and Files)
	Using Shell Steps
	The sh Step
	The bat Step
	The powershell Step

	Working with Environment Variables
	The withEnv Step

	Working with Workspaces
	Creating a Custom Workspace
	Cleaning a Workspace

	File and Directory Steps
	Working with Files
	Working with Directories
	Doing More with Files and Directories

	Summary

	Chapter 12. Integrating Analysis Tools
	SonarQube Survey
	
	
	
	Using SonarQube with Jenkins
	Global Configuration
	Using SonarQube in a Freestyle Project
	Using SonarQube in a Pipeline Project
	Leveraging the Outcome of the SonarQube Analysis
	SonarQube Integration Output with Jenkins

	Code Coverage: Integration with JaCoCo
	About JaCoCo
	Integrating JaCoCo with the Pipeline
	JaCoCo Output Integration with Jenkins

	Summary

	Chapter 13. Integrating Artifact Management
	Publishing and Retrieving Artifacts
	Setup and Global Configuration
	Using Artifactory in a Scripted Pipeline
	Performing Other Tasks
	Downloading Specific Files to Specific Locations
	Uploading Specific Files to Specific Locations
	Setting Build Retention Policies
	Build Promotion

	Integration with a Declarative Pipeline
	Artifactory Integration with Jenkins Output
	Archiving Artifacts and Fingerprinting
	Summary

	Chapter 14. Integrating Containers
	Configured as a Cloud
	Global Configuration
	Using Docker Images as Agents
	Using Cloud Images in a Pipeline

	Agent Created on the Fly for a Declarative Pipeline
	Docker Pipeline Global Variable
	Global Variables
	Docker Application Global Variable Methods
	Docker Image Global Variable Methods
	Docker Container Global Variable Methods

	Running Docker via the Shell
	Summary

	Chapter 15. Other Interfaces
	Using the Command-Line Interface
	Using the Direct SSH Interface
	Using the CLI Client

	Using the Jenkins REST API
	Filtering Results
	Initiating Builds

	Using the Script Console
	Summary

	Chapter 16. Troubleshooting
	Diving into Pipeline Steps
	Dealing with Serialization Errors
	Continuous Passing Style
	Serializing Pipelines
	NotSerializableException
	Handling Nonserializable Errors

	Identifying the Line in Your Script that Caused an Error
	Handling Exceptions in a Pipeline
	Using Nondeclarative Code Within a Declarative Pipeline
	Unapproved Code (Script and Method Approval)
	Unsupported Operations
	System Logs
	Timestamps
	Pipeline Durability Settings
	Summary

	Index
	About the Author
	Colophon

