O'REILLY"

7,
YIHI 7

Aoyt
«"ﬁtf% ¢

i

Jenkins
Up & Runnin

EVOLVE YOUR DEPLOYMENT PIPELINE FOR
NEXT-GENERATION AUTOMATION

Brent Laster
Foreword by Kohsuke Kawaguchi

9

O'REILLY"

Jenkins 2: Up and Running

Design, implement, and execute continuous delivery pipelines with a level
of flexibility, control, and ease of maintenance that was not possible with
Jenkins before. With this practical book, build administrators, developers,
testers, and other professionals will learn how the features in Jenkins
2 let you define pipelines as code, leverage integration with other key
technologies, and create automated, reliable pipelines to simplify and
accelerate your DevOps environments.

Author Brent Laster shows you how Jenkins 2 is significantly different from the
more traditional, web-only versions of this popular open source automation
platform. If you're familiar with Jenkins and want to take advantage of the
new technologies to transform your legacy pipelines or build new modern,
automated continuous delivery environments, this is your book.

Create continuous delivery pipelines in code with Jenkins
Understand how to migrate existing jobs and pipelines
Harness best practices for controlling access and security
Grasp the structure, coding, and use of shared pipeline libraries
Learn when to use declarative syntax and scripted syntax
Explore new and existing project types in Jenkins

Master the new Blue Ocean graphical interface

Leverage the underlying OS in your pipeline

Integrate analysis tools, artifact management, and containers

Brent Laster is a senior R&D manager at a top technology company. An expert
on open source technologies and methodologies, he is the author of Professional
Git (Wrox), a frequent speaker at major conferences, and a global trainer who
regularly conducts live trainings on Safari. You can find him on LinkedIn (https;//
www.linkedin.com/in/brentlaster/) and on Twitter as @BrentClLaster.

% This is now both my new

go-to book for reference
as well as the one I
recommend to those new
to Jenkins. It's quite a feat
to write a book that can
serve both audiences and
Brent has pulled it off in

spades.”
-Chaim "Tinjaw" Krause

“Brent Laster does a

fantastic job at distilling
the power of Jenkins
down to its essential
components while

still providing the
comprehensive guide

to getting the most out
of Jenkins 2. Valuable
examples of the pipeline
as code provide building
blocks for implementing
continuous delivery. This
belongs in the toolbox

of new and experienced

Jenkins users alike.”

-Brian Dawson
DevOps Evangelist, CloudBees

US $59.99 CAN $79.99
ISBN: 978-1-491-97959-4
VIOV i
AL DRI

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Jenkins 2: Up and Running

“This is now both my new go-to book for reference as well as the one I recommend to
those new to Jenkins. It’s quite a feat to write a book that can serve both audiences and
Brent has pulled it off in spades.”

—Chaim “Tinjaw” Krause

“Brent Laster does a fantastic job at distilling the power of Jenkins down to its essential
components while still providing the comprehensive guide to getting the most out of
Jenkins 2. Valuable examples of the pipeline as code provide building blocks for
implementing continuous delivery. This belongs in the toolbox of

new and experienced Jenkins users alike”

—Brian Dawson, DevOps Evangelist, CloudBees

Jenkins 2: Up and Running

Evolve Your Deployment Pipeline
for Next-Generation Automation

Brent Laster

Beijing + Boston - Farnham - Sebastopol - Tokyo SYRI=[ANG

Jenkins 2: Up and Running
by Brent Laster

Copyright © 2018 Brent Laster. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Foster Indexer: Judith McConville
Development Editor: Angela Rufino Interior Designer: David Futato
Production Editor: Justin Billing Cover Designer: Karen Montgomery
Copyeditors: Dwight Ramsey and Rachel Head lllustrator: Rebecca Demarest

Proofreader: Jasmine Kwityn
May 2018: First Edition

Revision History for the First Edition
2018-05-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491979594 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Jenkins 2: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-97959-4
[LSI]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491979594

To my best friend and wife, Anne-Marie,
who brings beauty and happiness to each day.
And to my sons Walker, Chase, and Tanner,

who have taught me more than I could ever teach them.

Table of Contents

Foreword.oovi Xvii
Preface. ...ooon Xix
1. Introducing Jenkins 2.verniiiniriiit i iiieiieeie e eeieeenaaeas 1
What Is Jenkins 2? 2
The Jenkinsfile 3
Declarative Pipelines 4

Blue Ocean Interface 6
New Job Types in Jenkins 2 7
Reasons for the Shift 10
DevOps Movement 10
Assembling Pipelines 11
Resumability 11
Configurability 11
Sharing Workspaces 12
Specialized Knowledge 12
Access to Logic 12
Pipeline Source Management 12
Competition 13
Meeting the Challenges 13
Compatibility 13
Pipeline Compatibility 14
Plugin Compatibility 15
Checking Compatibility 20
Summary 21

vii

. The Foundations. . ..ovvevrininiii it ieenenennenenennenens

Syntax: Scripted Pipelines Versus Declarative Pipelines
Choosing Between Scripted and Declarative Syntax
Systems: Masters, Nodes, Agents, and Executors
Master
Node
Agent
Executor
Creating Nodes
Structure: Working with the Jenkins DSL
node
stage
steps
Supporting Environment: Developing a Pipeline Script
Starting a Pipeline Project
The Editor
Working with the Snippet Generator
Running a Pipeline
Replay
Summary

Pipeline Execution Flow.cooviiiiiiiiiiiiiiiiiiiiinnnes

Triggering Jobs
Build After Other Projects Are Built
Build Periodically
GitHub Hook Trigger for GitSCM Polling
Poll SCM
Quiet Period
Trigger Builds Remotely
User Input
input
Parameters
Return Values from Multiple Input Parameters
Parameters and Declarative Pipelines
Flow Control Options
timeout
retry
sleep
waitUntil
Dealing with Concurrency
Locking Resources with the lock Step
Controlling Concurrent Builds with Milestones

24
25
26
27
27
27
28
29
31
32
34
35
36
37
38
40
45
52
56

59
60
60
61
64
64
64
64
65
65
69
75
76
81
81
83
83
83
85
86
87

viii

| Table of Contents

Restricting Concurrency in Multibranch Pipelines
Running Tasks in Parallel
Conditional Execution
Post-Processing
Scripted Pipelines Post-Processing
Declarative Pipelines and Post-Processing
Summary

. Notificationsand Reports.covviiiiiiiiriiiiiiiiiiiiieneeeennnns

Notifications

Email

Collaboration Services
Reports

Publishing HTML Reports
Summary

. ACCeSS AN SECUMItY. ..o v et ereeeie e e e eie e eeeeeneeennernneeenenenes

Securing Jenkins
Enabling Security
Other Global Security Settings
Credentials in Jenkins
Credential Scopes
Credential Domains
Credential Providers
Credential Stores
Administering Credentials
Selecting Credential Providers
Selecting Credential Types
Specifying Credential Types by Provider
Creating and Managing Credentials
Context Links
Adding a New Domain and Credential
Using the New Domain and Credential
Advanced Credentials: Role-Based Access
Basic Use
Manage Roles
Assign Roles
Role Strategy Macros
Working with Credentials in the Pipeline
Username and Password
SSH Keys
Token Credentials

89
89
99
100
101
103
104

105
105
106
116
128
129
131

133
133
134
137
142
143
144
144
144
145
145
146
146
147
150
151
153
155
155
157
162
166
168
168
168
169

Table of Contents

ix

Controlling Script Security
Script Checking
Script Approval
Groovy Sandboxing
Using Jenkins Credentials with Vault
Approach
Setup
Creating a Policy
Authentication
Using Vault in Jenkins
Summary

Extending Your Pipeline.........coovuiiiiiiiiiiiiiiiiiiiiiiie

Trusted Versus Untrusted Libraries

Internal Versus External Libraries
Internal Libraries
External Libraries

Getting a Library from the Source Repository
Modern SCM
Legacy SCM

Using Libraries in Your Pipeline Script
Automatic Downloading of Libraries from Source Control
Loading Libraries into Your Script

Library Scope Within Jenkins Items

Library Structure

Sample Library Routine
Structure of Shared Library Code

Using Third-Party Libraries

Loading Code Directly

Loading Code from an External SCM

Replaying External Code and Libraries

A Closer Look at Trusted Versus Untrusted Code

Summary

Declarative Pipelines.c.coovvniiiiiiiiiiiiiiiiiiiiiii e,

Motivation

Not Intuitive

Getting Groovy

Additional Assembly Required
The Structure

Block

Section

170
171
172
173
175
176
176
176
177
179
182

183
183
184
184
187
188
188
188
189
190
190
193
193
194
195
205
206
207
208
211
214

215
216
216
216
217
218
218
218

X

Table of Contents

Directives 219

Steps 219
Conditionals 220
The Building Blocks 220
pipeline 221
agent 222
environment 225
tools 226
options 229
triggers 232
parameters 234
libraries 237
stages 238
post 241
Dealing with Nondeclarative Code 242
Check Your Plugins 243
Create a Shared Library 243
Place Code Outside of the Pipeline Block 243
The script Statement 244
Using parallel in a Stage 244
Script Checking and Error Reporting 245
Declarative Pipelines and the Blue Ocean Interface 248
Summary 248
. Understanding Project TYpes.oveuererneeiiereneeenneennerenerenanennnns 251
Common Project Options 251
General 251
Source Code Management 258
Build Triggers 259
Build Environment 267
Build 277
Post-Build Actions 277
Types of Projects 278
Freestyle Projects 278
The Maven Project Type 279
The Pipeline Project Type 282
The External Job Project Type 284
The Multiconfiguration Project Type 287
Ivy Projects 293
Folders 295
Multibranch Pipeline Projects 300
GitHub Organization Projects 305

Table of Contents | xi

10.

Bitbucket Team/Project Projects
Summary

. TheBlueOcean Interface.ovvririiiriiiiiiiiiiiiniiii i enenenen,

Part 1: Managing Existing Pipelines
The Dashboard
The Project-Specific Page
The Run Page
Part 2: Working with the Blue Ocean Editor
Creating a New Pipeline Without an Existing Jenkinsfile
Working in the Editor
Editing an Existing Pipeline
Importing and Editing Existing Pipelines
Working with Pipelines from Non-GitHub Repositories
Summary

COMVOISIONS. + vt eveeeeeneeneeneeneeneeneensenssnssnssnssnnsnnennes

Common Preparation
Logic and Accuracy
Project Type
Systems
Access
Global Configuration
Plugins
Shared Libraries
Converting a Freestyle Pipeline to a Scripted Pipeline
Source
Compile
Unit Tests
Integration Testing
Migrating the Next Parts of the Pipeline
Converting from a Jenkins Pipeline Project to a Jenkinsfile
Approach
Final Steps
Converting from a Scripted Pipeline to a Declarative Pipeline
Sample Pipeline
The Conversion
Completed Conversion
General Guidance for Conversions
Summary

310
313

315
316
316
321
332
342
342
347
359
363
375
377

379
380
380
380
380
381
381
381
382
382
386
391
396
400
403
409
412
418
420
421
422
426
427
429

Xii

| Table of Contents

11. Integration with the 0S (Shells, Workspaces, Environments, and Files)
Using Shell Steps
The sh Step
The bat Step
The powershell Step
Working with Environment Variables
The withEnv Step
Working with Workspaces
Creating a Custom Workspace
Cleaning a Workspace
File and Directory Steps
Working with Files
Working with Directories
Doing More with Files and Directories
Summary

12. Integrating Analysis TOOIS.ovuverieiiiriiiiiiiiiiiiieriineenneens

SonarQube Survey

Working with Individual Rules

Quality Gates and Profiles

The Scanner

Using SonarQube with Jenkins
Global Configuration
Using SonarQube in a Freestyle Project
Using SonarQube in a Pipeline Project
Leveraging the Outcome of the SonarQube Analysis
SonarQube Integration Output with Jenkins

Code Coverage: Integration with JaCoCo
About JaCoCo
Integrating JaCoCo with the Pipeline
JaCoCo Output Integration with Jenkins

Summary

13. Integrating Artifact Management...............cceviiiniiinnnen,
Publishing and Retrieving Artifacts
Setup and Global Configuration
Using Artifactory in a Scripted Pipeline
Performing Other Tasks
Downloading Specific Files to Specific Locations
Uploading Specific Files to Specific Locations
Setting Build Retention Policies
Build Promotion

432
432
437
438
440
441
442
442
444
446
446
448
449
450

453
454
455
459
461
462
462
463
464
465
469
470
470
471
473
474

477
477
478
479
484
484
485
485
485

Table of Contents

| xiii

14.

15.

16.

Integration with a Declarative Pipeline
Artifactory Integration with Jenkins Output
Archiving Artifacts and Fingerprinting
Summary

Integrating Containers.covvviiiiiiiiiiiiiiiriinienneenns,

Configured as a Cloud

Global Configuration

Using Docker Images as Agents

Using Cloud Images in a Pipeline
Agent Created on the Fly for a Declarative Pipeline
Docker Pipeline Global Variable

Global Variables

Docker Application Global Variable Methods

Docker Image Global Variable Methods
Docker Container Global Variable Methods

Running Docker via the Shell
Summary

Other INterfaces. . ..ottt ettt ereenenenenenenes

Using the Command-Line Interface
Using the Direct SSH Interface
Using the CLI Client

Using the Jenkins REST API
Filtering Results
Initiating Builds

Using the Script Console

Summary

Troubleshooting.c.oovviiiiiiiiiiiiiiiiiiiiiiii e,

Diving into Pipeline Steps
Dealing with Serialization Errors

Continuous Passing Style

Serializing Pipelines

NotSerializableException

Handling Nonserializable Errors
Identifying the Line in Your Script that Caused an Error
Handling Exceptions in a Pipeline
Using Nondeclarative Code Within a Declarative Pipeline
Unapproved Code (Script and Method Approval)
Unsupported Operations
System Logs

486
486
487
493

497
497
498
501
505
509
512
512
514
519
524
524
526

527
528
528
531
534
534
536
538
541

543
543
547
547
547
548
549
551
552
553
556
557
558

Xiv

| Table of Contents

Timestamps 559
Pipeline Durability Settings 560
Summary 562
INAEX. 563
Table of Contents | xv

Foreword

The software development industry is going through a slow but real transformation.
Software is increasingly a part of everything, and we, the software developers, are try-
ing to cope with this exploding demand through more automation. I'd imagine you
are reading this book because you are a part of that transformation.

To serve you better in this transformation, Jenkins is itself going through a major
transformation of its own as well—from the world of “classic” Jenkins, where you
configure Jenkins through a series of jobs from server-rendered GUI, to the world of
“modern” Jenkins, where you configure Jenkins through Jenkinsfiles in Git reposito-
ries and look at results through a pleasant single-page application.

As we develop the modern Jenkins in the community and roll out these new features,
I keep running into this challenge. Most users are simply unaware of this transforma-
tion that’s going on in Jenkins. People keep using Jenkins like they have been doing
for years!

And to be fair, it made complete sense. On the one hand is people’s inertia and this
massive body of information and knowledge accumulated in Google, Stack Overflow,
our mailing lists, issue trackers, and so on that tells people how to effectively use Jen-
kins the “classic” way. On the other hand, we have the community that is, generally
speaking, too busy building the “modern” Jenkins; and collectively not enough effort
has been spent on telling people how to effectively use Jenkins the modern way.

So I was very happy to hear about this book, which really takes this challenge head
on. In this book, Brent steps back and forgets everything we've known about Jenkins
from the past decade. Then he goes on to reconstruct how Jenkins should be used
today. Unlike Google, Stack Overflow, and so on, where knowledge is captured piece-
meal, this book gives you a systematic path to explore the whole landscape, which
makes it really valuable.

Xvii

It's an ideal book for those who are new to CI/CD, as well as those who have been
using Jenkins for many years. This book will help you discover and rediscover Jen-
kins.

— Kohsuke Kawaguchi
Creator of Jenkins
CTO, CloudBees, Inc.
February 2018

xviii | Foreword

Preface

How to Use This Book

This book is big—bigger than I ever thought it would be. I've worried about this at
some level, but decided that there were two ways to go when writing it: I could either
limit the content to only what was needed to do a basic tutorial, or I could spend
some time explaining concepts, creating code examples, and diving into what termi-
nology, functions, and programming with pipelines-as-code really mean. If you've
scanned the book, you can probably figure out that I opted to do the latter.

My reasoning for that was due to my experiences over many years of training people
on using Jenkins. In a short class or workshop, we could only cover a small number of
topics. And people were always hungry for more—more detail and more examples
that they could apply. At the end of conference presentations, I would invariably get
lines of people asking for more information sources, examples, and where to find info
about such and such. Oftentimes, it would come down to “Google this” or “See this
question on Stack Overflow” Nothing wrong with that, but also not the most conve-
nient approach.

This book is intended to help you find answers on how to use this powerful technol-
ogy. Granted, it's more mechanics than DevOps, but chances are if you are reading
this, you already have some grasp of continuous integration (CI), continuous deploy-
ment (CD), DevOps, and Jenkins, and are looking for how to make the most out of
the new Jenkins features.

So here are a few guidelines (feel free to use them or ignore them as fits your situa-
tion):

« Don't try to read the entire book through—unless you need to get a lot of sleep.

o Scan the sections listed in the Table of Contents. A chapter’s title only hints at its
full contents. Also, don’t forget about consulting the index to find topics you
might be interested in.

Xix

o If you want to understand the basic ideas and get going quickly, read the first two
chapters and then start playing with some basic pipelines. As you run into ques-
tions or problems, consult the appropriate chapters in the book for the particular
areas.

o If you already know the basics of Jenkins and want to convert to pipelines-as-
code, take a look at Chapter 10 to get some ideas on conversions and then con-
sult other chapters as needed.

o If youre looking to create a larger pipeline, take a look at the chapter on conver-
sions and the various chapters on integration with the OS and other technologies
(Chapters 10-14). And don’t forget about security—there’s a chapter on that, too
(Chapter 5).

o Ifyou're looking to automate Jenkins, take a look at Chapter 15.

o If you run into problems, each chapter contains some details that may help. Look
at the notes, warnings, and sidebars for information on unusual situations or
functionality that may trip you up (or provide an advantage you hadn’t thought
about). There’s also a chapter on more general troubleshooting at the end of the
book.

I freely acknowledge the problem with any technical book these days: that the tech-
nology is rapidly evolving. Over the course of writing the chapters for the book, I've
gone back and tried to keep up with the latest changes and innovations and revised as
appropriate. It is my firm belief that the material in the book will provide you with a
good foundation and reference for working with Jenkins 2. But, of course, you should
always consult the latest community documentation for updates and new innova-
tions.

Finally, a request—even if you don't need to read most of the book, if you find the
parts you read useful, please take a moment and post a review. The main way people
find out about useful books is by word of mouth and online reviews. Your review can
have a tremendous impact.

Thank you, and I hope to see you in a future training or conference!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xx | Preface

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

<Constant width in angle brackets>
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

N

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://resources.oreilly.com/examples/0636920064602.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

Preface | xxi

https://resources.oreilly.com/examples/0636920064602

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Jenkins 2: Up and Running by Brent
Laster (O'Reilly). Copyright 2018 Brent Laster, 978-1-491-97959-4”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Important Note About Code Examples in This Book

In many cases where code listings occur in the book, individual
lines of the code are too long to fit in the printed space. In those
cases, the code is wrapped around and continued on the next
line(s). There are generally not line continuation characters on
these lines. However, you can usually tell where code has been con-
tinued from the line above by the semantics of the command or by
the indentation.

A Note About the Figures in This Book

Many screenshots and figures have been used throughout this book
to help clarify information for the reader. The quality and scaling
of some visual elements may vary depending on the methods used
to capture them. As well, since the Jenkins community frequently
releases updated versions of the application and its plugins, visual
representations shown in the book are subject to change.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
1) training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

xxii | Preface

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://www.oreilly.com/safari

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/jenkins-2-ur.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

The biggest thanks of all for this book has to go to the Jenkins community. Jenkins is
proof that community-developed and community-supported software can be of
incredible utility, versatility, and quality. To all those who have contributed to Jenkins
or played a role in developing plugins or training materials, answering questions, or
getting releases of Jenkins out, thank you.

On the individual side, there are many people to thank. The only way I can think to
do this is via some broad categories.

Thank you to Kohsuke Kawaguchi for creating Hudson—and then Jenkins—and
agreeing to write the foreword for this book. The technical drive and leadership you
bring to Jenkins through the community and CloudBees has made a huge and posi-
tive difference in how we create and deliver software.

Thanks to the technical editors, Patrick Wolfe, Brian Dawson, and Chaim Krause.
Their investment of time in agreeing to review this book was significant—and appre-
ciated. The content is immeasurably better because of their feedback.

Preface | xxiii

http://bit.ly/jenkins-2-ur
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Patrick Wolfe has been instrumental in providing technical updates and additional
information since the booK’s early stages. This has helped to ensure that the book is,
hopefully, up to date with the current state of Jenkins in most cases (at least at its
release date). His input has been invaluable and I appreciate the time and openness
that he has given to this project.

Brian Dawson has also been extremely helpful in noting changes and places where
the book could be improved for Jenkins users. Though Brian and Patrick both work
at CloudBees, they exemplify the focus of the company on freely giving back to the
Jenkins community.

Chaim Krause is among the most dedicated people I know. Having worked with him
on two books now, I always appreciate his effort and attention to detail. He takes the
time to try things out and point out where wording or examples need updates or
don’t make sense initially. There are a number of details in the book that owe their
correctness to him.

A huge thanks to the staff at O’Reilly. First, thanks to Brian Foster, the editor who was
willing to take a chance on this book and supported it all along the way. Thanks to
Angela Rufino, who has helped keep the book on course, answered all of my ques-
tions, and provided the oversight to see the book through to completion. Thanks also
to Nan Barber for her early work on the book editing.

Shoutouts as well to Dwight Ramsey and Rachel Head, the copyeditors, for making
my writing readable and clear, and to Justin Billing, the production editor, and Jas-
mine Kwityn, the proofreader, for bringing everything together to create a final, pol-
ished product.

Much of the material in this book was first shared and honed in the live training
classes I do for O'Reilly’s Safari platform and at conference workshops. Thanks to
Susan Conant (along with Brian Foster again) for listening to my ideas for Jenkins 2
live trainings and helping develop them. Also, thanks to Virginia Wilson for the addi-
tional writing opportunities around CI and CD and to conference organizers Rachel
Roumeliotis and Audra Carter for shepherding the conference sessions.

Finally at O'Reilly, I want to thank the training staff who have supported the many
live training sessions I've done around Git and Jenkins. Thank you to Yasmina Greco,
Lindsay Ventimiglia, Nurul Ishak, and Shannon Cutt for overseeing all of the train-
ings and keeping everything on track in such a professional manner.

I would be remiss if I did not also mention Jay Zimmerman on the conference side.
Jay is the founder and organizer of the No Fluff Just Stuff conference series and first
provided me an opportunity to speak at events all across the country on Jenkins.

Thanks to the management at SAS for supporting my initiatives to create and present
corporate training courses over the years to employees across the company and

xxiv | Preface

around the world. I especially thank Glenn Musial, Cyndi Schnupper, and Andy Dig-
gelmann for their encouragement and support of my endeavors.

To everyone who's attended one of my trainings or workshops on Jenkins, thanks—
especially to those who have asked a question and/or provided feedback to cause me
to think more about topics and ways to improve content.

To those at CloudBees, acting on behalf of the Jenkins community to evolve Jenkins,
answer questions, and provide documentation for all of us as users, your efforts are
appreciated. There are too many to list them all, but several names have come up
repeatedly as I researched material for the book, including Patrick Wolfe, Jessie Glick,
Andrew Bayer, James Dumay, Liam Newman, and James Brown. If you see content by
these guys, read it and you will likely learn something useful. Also thanks to Max
Arbuckle for his coordination of the Jenkins World conferences, where much of the
information about Jenkins 2 was first presented.

The deepest gratitude of all must go to my wife, Anne-Marie, and to my children.
This book was written over a long period of time, mostly nights and weekends, which
took time away from them while I wrote about something that seemed very foreign to
them. Nevertheless, they never failed in their words of encouragement. Anne-Marie,
you have been my greatest support and source of strength and encouragement, as you
are in everything. Thank you for that and for helping me keep a sense of order and
balance between life, dreams, and work. You bring me kindness, love, and inspiration
each and every day of our lives together, and for that I am truly grateful.

Finally, thanks to the readers of this book. It is my sincere hope that you will get value
out of it and it will help you make progress in your use of Jenkins and all the related
pieces.

Preface | xxv

CHAPTER 1
Introducing Jenkins 2

Welcome to Jenkins 2: Up and Running. Whether you're a build administrator, devel-
oper, tester, or any other role, you've come to the right place to learn about this evolu-
tion in Jenkins. With this book, youre on your way to leveraging the features of
Jenkins 2 to design, implement, and execute your pipelines with a level of flexibility,
control, and ease of maintenance that hasn’t been possible with Jenkins before. And,
no matter what your role, you’ll quickly see the benefits.

If you're a developer, writing your pipeline-as-code will feel more comfortable and
natural. If youre a DevOps professional, maintaining your pipeline will be easier
because you can treat it like any other set of code that drives key processes. If you're a
tester, you'll be able to take advantage of increased support for features such as paral-
lelism to gain more leverage for your efforts. If youre a manager, you'll be able to
ensure the quality of your pipeline as you do for your source code. If you're a Jenkins
user, you're going to grow your skill base substantially and be ready for this new evo-
lution of “pipelines-as-code”

Getting to these goals requires understanding and mapping out the transition from
your existing implementations. Jenkins 2 represents a significant shift from the older,
more traditional, form-based versions of Jenkins. And with such a shift, there’s a lot
to learn. But it’s all manageable. As the first step, we need to lay a solid foundation of
Jenkins 2 fundamentals (What is it? What are the big-ticket items?), including its new
features, the changes in the working environment, and an understanding of the new
concepts that it is based on. That’s what this chapter and the next are all about. Some
of this you may already be familiar with. And if so, that’s great. But I suggest at least
scanning those sections that look familiar. There may be something in there that’s
new or has changed enough to be worth noting.

In this chapter, we'll explore at a high level what makes Jenkins 2 different and how
that will fit in with what you're accustomed to. We'll look at three key areas:

o What is Jenkins 2, in terms of the significant new features and functionality it
introduces?

o What are the reasons (motivations and drivers) for the shift in Jenkins?

« How compatible is Jenkins 2 with previous versions? What are the compatibility
considerations?

Let’s get started by taking a look at what makes Jenkins 2 different from the tradi-
tional Jenkins versions.

What Is Jenkins 2?

In this book, the term “Jenkins 2” is used a bit loosely. In our specific context, this is a
way to refer to the newer versions of Jenkins that directly incorporate support for
pipelines-as-code and other new features such as Jenkinsfiles that we will talk about
throughout the book.

Some of these features have been available for Jenkins 1.x versions for some time via
plugins. (And, to be clear, Jenkins 2 gains much of its new functionality from major
updates of existing plugins as well as entirely new plugins.) But Jenkins 2 represents
more. It represents a shift to focusing on these features as the preferred, core way to
interact with Jenkins. Instead of filling in web forms to define jobs for Jenkins, users
can now write programs using the Jenkins DSL and Groovy to define their pipelines
and do other tasks.

DSL here refers to Domain-Specific Language, the “programming language” for Jen-
kins. The DSL is Groovy-based and it includes terms and constructs that encapsulate
Jenkins-specific functionality. An example is the node keyword that tells Jenkins that
you will be programmatically selecting a node (formerly “master” or “slave”) that you
want to execute this part of your program on.

Jenkins and Groovy

Jenkins has included a Groovy engine for a long time. This was used to allow
advanced scripting operations and to provide access/functionality not available
through the web interface.

The DSL is a core piece of Jenkins 2. It serves as a building block that makes other key
user-facing features possible. Let’s look at a few of these features to see how they dif-
ferentiate Jenkins 2 from “legacy” Jenkins. We'll quickly survey a new way to separate
your code from Jenkins in a Jenkinsfile, a more structured approach to creating work-
flows with Declarative Pipelines, and an exciting new visual interface called Blue
Ocean.

2 | Chapter 1:Introducing Jenkins 2

The Jenkinsfile

In Jenkins 2, your pipeline definition can now be separate from Jenkins itself. In past
versions of Jenkins, your job definitions were stored in configuration files in the Jen-
kins home directory. This meant they required Jenkins itself to be able to see, under-
stand, and modify the definitions (unless you wanted to work with the XML directly,
which was challenging). In Jenkins 2, you can write your pipeline definition as a DSL
script within a text area in the web interface. However, you can also take the DSL
code and save it externally as a text file with your source code. This allows you to
manage your Jenkins jobs using a file containing code like any other source code,
including tracking history, seeing differences, etc.

The JobConfigHistory Plugin

For completeness, I should mention that there is a JobConfigHistory plugin available
for Jenkins that tracks the history of the XML configuration changes over time and
allows you to look at what was changed each time. It is available on the Jenkins wiki.

The filename that Jenkins 2 expects your job definitions/pipelines to be stored as is
Jenkinsfile. You can have many Jenkinsfiles, each differentiated from the others by the
project and branch it is stored with. You can have all of your code in the Jenkinsfile,
or you can call out/pull in other external code via shared libraries. Also available are
DSL statements that allow you to load external code into your script (more about
these in Chapter 6).

The Jenkinsfile can also serve as a marker file, meaning that if Jenkins sees a Jenkins-
file as part of your project’s source code, it understands that this is a project/branch
that Jenkins can run. It also understands implicitly which source control management
(SCM) project and branch it needs to work with. It can then load and execute the
code in the Jenkinsfile. If you are familiar with the build tool Gradle, this is similar to
the idea of the build.gradle file used by that application. I'll have more to say about
Jenkinsfiles throughout the book.

Figure 1-1 shows an example of a Jenkinsfile in source control.

WhatlIsJenkins2? | 3

http://bit.ly/2J5fmyb

Marketplace Explore

brentlaster / j2book © Unwa

<» Code lssues 0 Pull requests 0 Projects 0 Wik Insights Sett

Bmnch: master = | j2book / Jenkinsfile

[2] Add Jenkinsfike

1 contributor

48 linez {¥3 =zloc) 1.8z KB

! grooy
ALibramyd ttilitiesdl,s')_
node § ‘worker_nodel’) {
try {
stage Source') |
fi always run with @ new workspace
cleanupWs])
checkout som
=tash neme: ‘test-sources', includes: ‘build,gradle,=roftesty”
}
stage) ' Build') {
ff Run the gradle build
Ebuildz ‘clean build -x test’
}
stage {'Test') {
Jf execute reguired unit tests in parallel
parallel
workerz: { node | ‘worker_nodez’ 3
fi always run with @ new workspace
cleanupWs])
unstash 'test-sources’
Ebuildz *-D test,=ingle=TestExamplel test’
e
workers: { node {'worker_nodes')|
fi always run with @ new workspace
cleanupWs])
unstash 'test-sources’
Ebuildz *-D test,=ingle=TestExamplez test’
e
)
}
}
catch {err) {
echo "Caught: ${err}"
}
stage {'Motify') |
Ff mailuozer’ <your email address:', “Finizhed")
}
}

Figure 1-1. An example Jenkinsfile in source control

Declarative Pipelines

In the previous incarnations of pipelines-as-code in Jenkins, the code was primarily a
Groovy script with Jenkins-specific DSL steps inserted. There was very little imposed
structure, and the program flow was managed by Groovy constructs. Error reporting

4 | Chapter 1:Introducing Jenkins 2

and checking were based on the Groovy program execution rather than what you
were attempting to do with Jenkins.

This model is what we now refer to as Scripted Pipelines. However, the DSL for the
pipeline has continued to evolve.

In Scripted Pipelines, the DSL supported a large number of different steps to do tasks,
but was missing some of the key metafeatures of Jenkins-oriented tasks, such as post-
build processing, error checking for pipeline structures, and the ability to easily send
notifications based on different states. Much of this could be emulated via Groovy
programming mechanisms such as try-catch-finally blocks. But that required
more Groovy programming skills in addition to the Jenkins-oriented programming.
The Jenkinsfile shown in Figure 1-1 is an example of a Scripted Pipeline with try-
catch notification handling.

In 2016 and 2017, CloudBees, the enterprise company that is the majority contributor
to the Jenkins project, introduced an enhanced programming syntax for pipelines-as-
code called Declarative Pipelines. This syntax adds a clear, expected structure to pipe-
lines as well as enhanced DSL elements and constructs. The result more closely
resembles the workflow of constructing a pipeline in the web interface (with Freestyle
projects).

An example here is post-build processing, with notifications based on build statuses,
which can now be easily defined via a built-in DSL mechanism. This reduces the need
to supplement a pipeline definition with Groovy code to emulate traditional features
of Jenkins.

The more formal structure of Declarative Pipelines allows for cleaner error checking.
So, instead of having to scan through Groovy tracebacks when an error occurs, the
user is presented with a succinct, directed error message—in most cases pointing
directly to the problem. Figure 1-2 shows a snippet of the output produced by the
following Declarative Pipeline with the enhanced error checking:

pipeline {
agent any
stages {
stae('Source') {
git "test’, 'git@diyvb:repos/gradle-greetings'
stash 'test-sources', 'build.gradle,/src/test'
}

stage('Build') {

}
}
}

WhatlsJenkins2? | 5

Q Console Output

Started by user Jenkins Admin
org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:
HorkflowScript: 4: Expected a stage @ line 4, column 7.

stae('Source') {
M

HorkflowScript: 4: Stage does not have a name @ line 4, column 7.
stae('Source') {

-

HWorkflowScript: 4: Nothing to execute within stage "null" @ line 4, column 7.
stae('Source') {

P

HorkflowScript: 7: Nothing to execute within stage "Build" @ line 7, column 7.
stage('Build') {

P

4 errors

Figure 1-2. Declarative Pipeline with enhanced error checking

Blue Ocean Interface

The structure that comes with Declarative Pipelines also serves as the foundation for
another innovation in Jenkins 2—Blue Ocean, the new Jenkins visual interface. Blue
Ocean adds a graphical representation for each stage of a pipeline showing indicators
of success/failure and progress, and allowing point-and-click access to logs for each
individual piece. Blue Ocean also provides a basic visual editor. Figure 1-3 shows an
example of a successful pipeline run with logs as displayed in Blue Ocean. Chapter 9

is devoted entirely to the new interface.

6

Chapter 1: Introducing Jenkins 2

B

Figure 1-3. Displaying a successful run and examining logs via the Blue Ocean interface

New Job Types in Jenkins 2

Jenkins 2 comes with a number of new job types, mostly designed around taking
advantage of key functionalities such as pipelines-as-code and Jenkinsfiles. These
types make it easier than ever to automate job and pipeline creation and organize
your projects. Creation of each new job/item/project starts the same way.

New Job Types and Plugins

To be clear, having these new job types available is dependent on
having the requisite plugins installed. If you accept the recom-
mended plugins during the install process, you will get the job
types discussed here.

Once Jenkins 2 is installed and you have logged in, you can create new jobs just as
before. As Figure 1-4 shows, the blurb under the “Welcome to Jenkins!” banner sug-
gests users “create new jobs,” but the menu item for this is actually labeled “New
Item.” Most of these items are ultimately a kind of project as well. For our purposes,

I’ll use the terms “job,” “item,” and “project” interchangeably throughout the book.

What s Jenkins 22 | 7

L3 Dashboard [enkins] x |\ dh

* lncalhost v

£ Jenkins denkins Admin | log o
Jenking ENAELE AUTOD BEFRESH

= New [tem [EFadd description
& Feopie Welcome to Jenkins!

= Build Histary .
Flease create new jobs to gt started.
M. Manage Jenkins

a. My Views

4. Credentials

Build Queus

Mo builds In the quaue.

Build Executor Status =

1 ldie
2 ldle

Page generated: Nov 17, 2016 1:13:06 PMEST RESTAP| Jenkins ver.2.19.3
localhost:B0B0/manage

Figure 1-4. The Jenkins welcome screen: the launching point for creating new jobs, items,
and projects

When you choose to create a new item in Jenkins 2, youre presented with the screen
to select the type of new job (Figure 1-5). You’ll notice some familiar types, such as
the Freestyle project, but also some that you may not have seen before. I'll briefly
summarize the new job types here and then explain each of them in more detail in
Chapter 8.

8 | Chapter 1:Introducing Jenkins 2

Enter an item name

simple-pipe]

» Required fiald

A i.’_"\ Freestyle project
1" This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build
o system, and this can be even used for something other than software build

Pipeline

J'uj Orchestrates long-running activities that can span multiple build slaves, Suitable for building pipelines
(formerly known as workflows) andfor organizing complex activities that do not easily fit in free-style job
type.

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a remote
machine. This is designed so that you can use Jenkins as a dashboard of your existing autormation
system.

Suitable for projects that need a large number of different configurations, such as testing on multiple
environments, platform-specific builds, etc.

ﬂ Multi-configuration project
&

Folder
D Creates a container that stores nested items in it. Useful for grouping things together. Unlike view, which is
just afilter, a folder creates a separate namespace, s0 you can have multiple things of the same name as
long as they are in differant folders

GitHub Organization

P& Seane 3 GitHub organization (ar user account) for all repositories matching some defined markers.

rranch Pipeline

; a set of Pipeline projects according to detected branches in one SCM repository.

Figure 1-5. Jenkins 2 project choices

Pipeline

As the name implies, the Pipeline type of project is intended for creating pipelines.
This is done by writing the code in the Jenkins DSL. This is the main type of project
we'll be talking about throughout the book.

As already noted, pipelines can either be written in a “scripted” syntax style or a
“declarative” syntax style. Pipelines created in this type of project can also be made
easily into Jenkinsfiles.

Folder

This is a way to group projects together rather than a type of project itself. Note that
this is not like the traditional “View” tabs on the Jenkins dashboard that allow you to

WhatlsJenkins2? | 9

filter the list of projects. Rather, it is like a directory folder in an operating system.
The folder name becomes part of the path of the project.

Organization

Certain source control platforms provide a mechanism for grouping repositories into
“organizations.” Jenkins integrations allow you to store Jenkins pipeline scripts as Jen-
kinsfiles in the repositories within an organization and execute based on those. Cur-
rently GitHub and Bitbucket organizations are supported, with others planned for the
future. For simplicity in this book, we'll talk mainly about GitHub Organization
projects as our example.

Assuming sufficient access, Jenkins can automatically set up an organization webhook
(a notification from the website) on the hosting side that will notify your Jenkins
instance when any changes are made in the repository. When Jenkins is notified, it
detects the Jenkinsfile as a marker in the repository and executes the commands in
the Jenkinsfile to run the pipeline.

Multibranch Pipeline

In this type of project, Jenkins again uses the Jenkinsfile as a marker. If a new branch
is created in the project with a Jenkinsfile in it, Jenkins will automatically create a new
project in Jenkins just for that branch. This project can be applied to any Git or Sub-
version repository.

We'll be taking a closer look at each of these new project types in Chapter 8 of the
book. However, it is also worth noting that Jenkins still supports the traditional work-
horse of jobs—Freestyle projects. You can still create jobs using web-based forms
there and execute them as you have before. But certainly the emphasis in Jenkins 2 is
on Pipeline jobs.

It’s easy to see that Jenkins 2 represents a major shift from the traditional Jenkins
model. As such, its worth spending a few minutes to discuss the reasons for the
change.

Reasons for the Shift

Arguably, Jenkins has been the most prolific workflow and pipeline management tool
for many years. So what drove the need to make the shift in Jenkins 2? Let’s look at a
few potential causes, both external and internal to Jenkins.

DevOps Movement

The ideas behind continuous integration, continuous delivery, and continuous
deployment have been around for a number of years. But early on, they were more of
an end goal rather than a starting point. With the increased focus on DevOps in

10 | Chapter 1: Introducing Jenkins 2

recent years, users and enterprises have come to expect that tooling will support them
in implementing DevOps and continuous practices out of the box (or at least not
make it more difficult).

Given its place in the workflow automation space, it was somewhat expected (and
perhaps required) that Jenkins would evolve in its capabilities to support these indus-
try drivers.

Assembling Pipelines

Creating any one job in the Jenkins Freestyle interface wasn't necessarily problematic.
But trying to assemble multiple jobs into a continuous software delivery pipeline, that
could take code from commit to deployment, could frequently be a challenge. Jen-
kins’ core functionality allowed for kicking off a specific job after another one fin-
ished, but sharing data between jobs, such as workspaces, parameters, etc., was often
problematic or required special plugins or tricks to accomplish.

Resumability

A key part of Jenkins 2 functionality hinges on the ability of pipelines to be durable—
meaning jobs continue to run on agents or pick up where they left off if the master
node restarts. In fact, one of the requirements for a plugin to be compatible with Jen-
kins 2 is the ability to serialize states so that those can be recovered in the event of a
master restart. That was not the case with prior versions of Jenkins; users and pro-
cesses were often left in a place where they needed to either wade through logs to fig-
ure out where things were left or just opt to start the process again from the
beginning.

Configurability

Since users were largely limited to the web-based interface, working with legacy Jen-
kins usually required finding the right place on the screen, figuring out the buttons
and fields, and trying not to make typos when entering data. Workflow changes (such
as reordering steps in a job or changing the order in which jobs executed) could
require multiple interactions of clicking and dragging and typing, as opposed to sim-
pler updates available in a text editor interface. In some cases where GUI elements
were provided to interface with tooling, ways to send particular commands to the
tooling through the Jenkins interface weren’t available. The web-based forms preva-
lent in Jenkins lent themselves well to simple, structured choices, but not as well to
iterative or decision-based flow control.

Reasons for the Shift | 11

Sharing Workspaces

Traditionally in Jenkins, each job had its own workspace to pull down the source
code, do builds in, or do whatever other processing was needed. This worked well for
distinct jobs, isolating their environments and preventing writing over data. However,
when chaining jobs together, this could result in an ineffective process that was chal-
lenging to overcome. For example, if multiple jobs in a pipeline needed to perform
processing on built artifacts, having to rebuild the artifacts each time was highly inef-
ficient. Storing and retrieving the artifacts in a repository between execution of the
jobs required adding multiple steps and configuration to each job. A more efficient
strategy would be to share the workspace between the jobs—but doing this in legacy
Jenkins was not easily supported. Rather, the user was required to define custom
workspaces and employ parameters that pointed to the workspace, or use a special-
ized plugin to make it work.

Specialized Knowledge

As the previous shared workspaces discussion illustrates, users often needed to know
the “right tricks” to implement something in the legacy Jenkins system that they could
easily do in a typical program or script (data transfer, flow control, external calls,
etc.).

Access to Logic

Legacy Jenkins typically relied on web forms to input data and stored it in XML con-
figuration files in its home directory. With this implementation, there was no easy
way to view at a glance the logic involved in executing multiple jobs. For users not
familiar with it, understanding a Jenkins setup and job definitions could require quite
a bit of scrolling through screens, looking at values in forms, flipping back and forth
between global configurations, and so on. This made wider support, collaboration
among multiple users, and understanding of multijob pipelines challenging, espe-
cially if there were substantial changes, reviews, or debugging that needed to be done.

Pipeline Source Management

As highlighted in the previous section, the “source” for a legacy Jenkins job was an
XML file. This was not only difficult to read, but difficult to change and get correct
without going through the web interface. The configuration was not designed to exist
in the same place as the source code. Configuration and source code were two sepa-
rate entities, managed in two different ways.

A corollary was lack of auditability. While there were plugins to help track changes
over time, this was not as convenient as tracking simple source file changes and still
required the Jenkins application itself to be able to track changes in jobs.

12 | Chapter 1: Introducing Jenkins 2

Competition

One additional factor that undoubtedly has come into play here is that other applica-
tions have sprung up around setting up pipelines-as-code. There are various exam-
ples, such as Pivotal’s Concourse, which uses containerization to do jobs and allows
pipelines to be described in YAML files.

Meeting the Challenges

So how does Jenkins 2 meet these challenges? I've already alluded to some of the
ways, but there are a few points that are worth highlighting in this space:

« Pipelines are treated as first-class citizens. That means that there is design and
support for working with pipelines as an entity in the application, rather than
pipelines being something produced from connecting together jobs in Jenkins.

o Pipelines can be programmed through coding, rather than just expressed
through a configuration interface. This allows for additional logic and workflows
to be used, as well as programming constructs that were not available or not sur-
faced in legacy Jenkins.

o There is a structured DSL specifically to program pipelines.

o A pipeline can be created directly as a script in a job without requiring any sub-
stantial web form interaction. Additionally, they can be created completely sepa-
rately in Jenkinsfiles.

« Pipelines stored as Jenkinsfiles can now be stored with the source code separate
from Jenkins.

+ The DSL includes functions to easily share files across workspaces.

o There is more advanced, built-in support for working with Docker containers.

All of this leads to easier maintainability and testing as well as more resiliency. We
can handle exception cases with typical constructs and better survive events like
restarts.

Before we go further into the Jenkins 2 features, it's worth taking a moment to talk
about compatibility between the old and new.

Compatibility

For the vast majority of items, there are corresponding ways to get the same function-
ality through pipelines as through the traditional web interface and Freestyle jobs. In
fact, there may be multiple ways, some built-in and some more contrived. This can
best be described with a brief discussion about the two different syntax styles that Jen-
kins supports for creating pipelines.

Meeting the Challenges | 13

Pipeline Compatibility

As noted, Jenkins 2 now supports two styles of pipelines—scripted and declarative—
each with their own syntax and structure. We will delve more into both types in the
next few chapters, but for now let’s look at one specific example: post-build notifica-
tion in a traditional Freestyle structure and corresponding functionality in Scripted
and Declarative Pipelines.

Figure 1-6 shows a traditional Freestyle project’s post-build configuration for a typical
operation, sending email notifications. In a Freestyle project, there’s a specific web
page element for this with fields to fill in to do the configuration.

Post-build Actions

E-mail Notification o
Recipients | bel@nclasters_ org

Whilespace-separaled list of recipient addresses. May reference build paramelers like $PARAM. E-mail will be sent when a
build fails, becomes unstable or retums to stable.

»f Send a-mail for every unstable build

Send separate e-mails to individuals who broke the build

Add post-build aclion ¥

Figure 1-6. Post-build actions in a Freestyle project

In the syntax for a Scripted Pipeline, we don’t have a built-in way to do such post-
build actions. We are limited to the DSL steps plus whatever can be done with Groovy
coding. So, to always send an email after a build, we need to resort to coding as
shown here:

node {
try {
// do some work
}
catch(e) {
currentBuild.result = "FAILED"
throw e
}
finally {
mail "buildAdmin@mycompany.com",
"STATUS FOR PROJECT: ${currentBuild.fullDisplayName}",
"RESULT: ${currentBuild.result}"
}
}

Assuming we have our email setup already configured globally in Jenkins, we can use
the DSL matil statement to send an email. Because we don’t have a pipeline statement/

14 | Chapter 1: Introducing Jenkins 2

feature in the scripted syntax to always do something as a post-build operation, we
fall back to the Groovy try-catch-finally syntax.

This highlights compatibility exceptions in the case of some Jenkins functions such as
post-build processing. DSL constructs can be missing for cases like this. In those
instances, you may have to resort to using Groovy constructs that can mimic the pro-
cessing that Jenkins would do. (This approach is covered in more detail in Chapter 3.)

If you choose to use the Declarative Pipeline structure, then chances are good that
you will have constructs available to handle most of the common Jenkins functions.
For example, in the Declarative Pipeline syntax, there is a post section that can be
defined to handle post-processing steps along the lines of the traditional post-build
processing and notifications (we cover this more in Chapter 7):

pipeline {
agent any
stages {
stage ("dowork") {
steps {
// do some work
}
}
}
post {
always {
mail "buildAdmin@mycompany.com",
"STATUS FOR PROJECT: S${currentBuild.fullDisplayName}",
"RESULT: S${currentBuild.result}"
}
}
}

Compatibility doesn’t just come into play in the actual coding. An additional area
that’s worth mentioning is plugin compatibility.

Plugin Compatibility

As with legacy Jenkins, the majority of functionality for Jenkins 2 is provided through
integration with plugins. With the advent of Jenkins 2, new requirements were cre-
ated for plugins to be compatible. We can broadly categorize the requirements into
two categories: they must survive restarts and provide advanced APIs that can be
used in pipeline scripts.

Surviving restarts

One of the features/requirements of Jenkins 2 pipelines is that they must be able to
survive restarts of a node. In order to support this, the main criterion is that stateful
objects in plugins be serializable—that is, able to have their state recorded. This is not

Compatibility | 15

a given for many of the constructs in Java and Groovy, so plugins may have to be sub-
stantially changed to meet this requirement.

Having Restartable Pipeline Scripts

If there is a certain piece of code that is not serializable, there are
ways to work around its use in some cases. See Chapter 16 for some
suggestions on how to work around this type of issue.

Providing scriptable APIs

To be compatible with writing pipeline scripts, steps that were formerly done by fill-
ing in the Jenkins web forms now have to be expressible as pipeline steps with com-
patible Groovy syntax. In many cases, the terms and concepts may be close to what
was used in the forms. Where Foo was a label for a text entry box in the form-based
version of the plugin, there may now be a DSL call with Foo as a named parameter
with a value passed in.

As an example, we'll use configuration and operations for Artifactory, a binary arti-
fact manager. Figure 1-7 shows how we might configure the build environment for a
Freestyle Jenkins job to be able to access Artifactory repositories.

Build Environment

L anttvy-Artitactory Integration
O Generic-Artitactory Integration
™ Gradie-Aritactory Integration
Artitactary Configuration
Deployment Detalls

Artifactory deployment server hitpziflocalhost:8082/artitactory

Publishing repository Ibs-snapshot-local

Custom staging configuration

Overide delaull credentials
Resolution Details

Artifactory resolve server hitp/fiocalhost-A082/ertifactory

Resolution repository o

T ovenige getault cregentials

More Details

Figure 1-7. Configuring Artifactory servers in a Freestyle job

And here’s how we could do the similar configuration in a pipeline script:

16 | Chapter 1: Introducing Jenkins 2

// Define new Artifactory server based on our configuration
def server = Artifactory.server "LocalArtifactory"

// Create a new Artifactory for Gradle object

def artifactoryGradle = Artifactory.newGradleBuild()

artifactoryGradle.tool = "gradle4" // Tool name from Jenkins configuration
artifactoryGradle.deployer 'libs-snapshot-local’, server
artifactoryGradle.resolver 'remote-repos’, server

Beyond configuration, we have the actual operations that need to be done. In the
Freestyle jobs, we have checkboxes and web forms again to tell Jenkins what to do.
(See Figure 1-8.)

More Detalis

] Projact uses ;e Arstaciory Gradie Plugin

[wf Capture and puilsh buld Inta

[

Inciude emvironment variabies

Inciude Panerns.

Exciude Patirns | .. .
password","secref

[

M mnow promosion of non-staged builds

) asow pusn %o Birray tor non-staged bulids
) aunas tactary license checks |requines Arstaciary Fra)
[compilance checks {requires Aritacary Pra)

) Discard ol buids trom Arstactory {requires Arstactary Pra)

v

M pusiisn armtacs s Arstactary

[

Putiish Manven descripars.
[mueen Wy descriptars.

[

Use Maven compatitie paterms
MBI o oris o) o ey - [revisicn] xm
ARSI s ason ot frevision) farstact] [revision]|-[iassier]) fax]

Inciude Panerns.

Exclude Paterns |

[
Depioyment properses
[et isctasect resctuson tor iwnsrsam tuics frequires Arstactory Fra)

Enabied Rsteass Management

Figure 1-8. Specifying Artifactory operations in a Freestyle job

And, again, in the context of a pipeline script, if the plugin is pipeline-compatible we
will likely have similar DSL statements to make the API calls to provide the same
functionality. The following shows a corresponding pipeline script example for the
preceding Artifactory Freestyle example:

Compatibility | 17

In some cases, pipeline scripts may also take advantage of items already configured in
the traditional Jenkins interface, such as global tools. An example with the use of Gra-

// buildinfo configuration

def buildInfo = Artifactory.newBuildInfo()
buildInfo.env.capture = true

// Deploy Maven descriptors to Artifactory
artifactoryGradle.deployer.deployMavenDescriptors = true

// extra gradle configurations
artifactoryGradle.deployer.artifactDeploymentPatterns.addExclude("*.jar")

artifactoryGradle.usesPlugin = false
// run the Gradle piece to deploy
artifactoryGradle.run 'build.gradle’
'cleanartifactoryPublish'’
buildInfo
// publish build info

server.publishBuildInfo buildInfo

dle is shown next.

In the first figure (Figure 1-9), we see the global tool setup for our Gradle instance.
Then we see it used in a Freestyle project (Figure 1-10), and finally we see it used in a
pipeline project via a special DSL step called tool that allows us to refer back to the

global configuration based on the supplied name argument.

Gradle

Gradle installations Gradle

name gradied.2

GRADLE_HOME fusrishara/gradle

Install automatically

Figure 1-9. Global tool configuration for Gradle

18

| Chapter 1: Introducing Jenkins 2

General Build Triggers Build Environment Build Yost-build Actions
Build

Inveke Gradie script (7]
* Invoke Gradle
Gradle Version gradie3 2 j
Use Gradle Wrapper
Build step description v |
Switches = |@E
Taaks clean build ¥ | L]
Root Build script []
Build File ®

Specify Gradle build file to run. Also, some environment variables are available fo the
build script

®

Force GRADLE_USER_HOME o use workspace

Pass job parameters as Gradle properties ‘@

Add bulld step ~

Figure 1-10. Using the global tool Gradle version in a Freestyle project

stage('Compile') { // Compile and do unit testing
// Run gradle to execute compile
sh "${tool 'gradle3.2'}/bin/gradle clean build"

}

Declarative Pipelines also have a tool directive that allows for the same functionality

in that type of pipeline. (Chapter 7 discusses Declarative Pipelines in detail.)

Compatibility

19

Global Configuration

In older versions of Jenkins, most of the global configuration was set up via the Con-
figure System page accessible from the Manage Jenkins screen. In the current versions
of Jenkins, global configuration is split between Configure System and Global Tool
Configuration pages.

It can be confusing at first to remember which section you should go to for which
kinds of configuration. One trick I use is to think of “systems” as being similar to

“servers” (easy to remember because they both start with “s”). In general, any kind of
server setup or similar task is done on the Configure System screen.

Also, if you think of tools as frequently being standalone executable applications (Git,
Gradle, etc.), then those belong in the Global Tool Configuration section. Obviously
these aren’t exact classifications, but they may serve you as a handy memory device
when you are first getting familiar with this arrangement.

As we have seen, providing APIs (and thus plugin pipeline compatibility) is central to
being able to execute traditional functionality in pipelines. Eventually all plugins will
need to be Pipeline-compatible, but at this point, there are still plugins that are not
compatible, or not completely compatible. There are places a user can go to check for
compatibility, though.

Checking Compatibility

To help users know whether or not existing plugins are compatible with using pipe-
lines in Jenkins 2, there are a couple of websites available. Note that information here
is not guaranteed to be up to date, but these sites offer probably the best summary
information available.

One site is on GitHub, as shown. An example of the page from it is shown in
Figure 1-11.

20 | Chapter 1:Introducing Jenkins 2

http://bit.ly/2qQ3gT5

Branch: master = | pipeline-plugin / COMPATIBILITY md Find file Copy path

iy artern-fedorow update Performance plugin and Blazeheter plugin compatibility Farszds on Mar 12

83 coneibutos [RE@ TV NATSPERE-HEL DS 2 2 2 SWED oo othes

179 lines {158 sloc) | 11.8 KB Raw Blame History L[#

Plugin Compatibility with Pipeline

For architectural reasons, pluging providing wanous extensions of interest to builds cannot be made autom atically compatible with
Pipeling, Typicalty they require use of some newer APIs, large or small (see the bottom of this document for details). This document
captures the angeing status of plugins known to be caompatible or incompatible,

Entries list the class name serving as the entry point to the relevant functionality of the plugin generzlly an @Extension), the
plugin short name, and implementzation status,

Mewly filed issues should bear the label pipeline for ease of tracking.

SCMs

GitscH [git) supported as of 2.3 native git step also bundled
SubversionSCH (subwersion)i supported as of 25 native swn step also bundled
HercurialScH ([mercurial)i supported as of 1.51
perforcescn (pd, not the older perforce) supported as of 1.2.0
DinensionsSCH (dinensionssen i JEMKING-26165

¢ IntegritySCM (imtegrity-plugin)i supported as of 1.36
RepoScm { repo): suppaorted as of 1.9.0
teamconcert : supported as of 1.94
CWSSCH [cws 1 scheduled to be supported in 2,13
TeamFoundationServerscn [tfs) supported as of 3.34

fecuRewscH {sccurew) supported as af 0.7.10

Build steps and post-build actions

artifactarchiver (core)
Fingerprinter (core)
JunitResultarchiver [junit)

Javadocarchiver { javadoc)

Figure 1-11. GitHub page for Jenkins plugin pipeline compatibility
The other is the Pipeline Steps Reference on the Jenkins.io site, which lists the
pipeline-compatible plug-ins.

Some of these specific plugins and their steps will be discussed in later chapters of
this book.

Summary

This chapter has provided a quick survey of what makes Jenkins 2 different from tra-
ditional Jenkins. There is core support for pipelines both as jobs themselves and also
separate from Jenkins, as Jenkinsfiles. In writing your code for a pipeline, you can

Summary | 21

https://jenkins.io/doc/pipeline/steps/

choose from the traditional, more flexible Scripted Pipeline or the more structured
Declarative Pipeline syntax.

Jenkins 2 also provides several new project types. The Folder type allows for grouping
projects together under a shared namespace and shared environment. The Multi-
branch Pipeline type provides easy automated job creation per branch and continu-
ous integration, all triggered by Jenkinsfiles residing in the branches. And the
organization project type extends the multibranch functionality across all projects in
an organization structure on GitHub or Bitbucket.

We also looked at some of the drivers for the evolution from the traditional Jenkins
model to the pipeline-centric model. These included the growth of pipelines as an
entity, as well as the challenges of making multiple jobs work together across Jenkins.
Another factor was the traditional tight coupling of the pipeline configuration to the
Jenkins application.

Finally, we discussed some of the compatibility factors to be aware of when moving
from classic Jenkins to Jenkins 2. We will discuss specifics for various applications
throughout the book, but familiarity with the general ideas laid out here will give you
a good foundation to understand this, and begin thinking about what it may take to
convert your existing pipelines.

Speaking of foundations, in Chapter 2 we'll cover more of the foundational aspects of
working with pipelines in Jenkins 2. This will help to fill out the basic knowledge you
need to begin making use of pipelines.

22 | Chapter 1:Introducing Jenkins 2

CHAPTER 2
The Foundations

Now that you understand the big ideas around which Jenkins 2 is built, we can move
on to how Jenkins 2 supports pipelines-as-code. A key first step is understanding the
development environment that Jenkins provides specifically for working with pipe-
lines. This includes the systems we run our pipelines on as well as the interfaces for
creating, executing, and monitoring pipelines. Additionally, you need to know about
some of the basic structures that make up a pipeline, and how they fit together.
Together, these elements will provide a solid foundation to build on for the rest of the
book.

We'll approach this task by concentrating on four basic areas:

o The two styles of syntax that can be used for creating pipelines
o The systems used to run the pipeline processes
o The basic structure of a pipeline

o The support environment (and tooling) that Jenkins provides for pipeline devel-
opment and execution

We'll start by defining and disambiguating some key concepts and terminology used
with pipelines. Then we'll survey the required DSL structures. Along the way, we'll
look at how to use the built-in editor and how to use a new tool in Jenkins to help
figure out pipeline syntax.

Once you know how to input your pipeline code, we’ll move on to executing a pipe-
line and understanding the new views that Jenkins provides. We'll also look at how to
access logs from a run. Finally, we'll explore new functionality in Jenkins that allows
us to try out changes to pipelines, without overwriting our existing versions.

23

Let’s get started by learning more about the different pipeline syntax styles supported
in Jenkins 2.

Syntax: Scripted Pipelines Versus Declarative Pipelines

In Chapter 1, we discussed some of the motivations that led to the shift to pipelines-
as-code and making that support central to Jenkins 2. As we author our pipelines in
Jenkins, we now have two different styles we can use to code them: scripted syntax
and declarative syntax.

Scripted syntax refers to the initial way that pipelines-as-code have been done in Jen-
kins. It is an imperative style, meaning it is based on defining the logic and the pro-
gram flow in the pipeline script itself. It is also more dependent on the Groovy
language and Groovy constructs—especially for things like error checking and deal-
ing with exceptions.

Declarative syntax is a newer option in Jenkins. Pipelines coded in the declarative
style are arranged in clear sections that describe (or “declare”) the states and out-
comes we want in the major areas of the pipeline, rather than focusing on the logic to
accomplish it. The following code example shows a pipeline written in scripted syn-
tax on top and a similar one written in declarative syntax underneath:

// Scripted Pipeline
node('worker_nodel') {
stage('Source') { // Get code
// get code from our Git repository
git 'git@diyvb2:/home/git/repositories/workshop.git'
}
stage('Compile') { // Compile and do unit testing
// run Gradle to execute compile and unit testing
sh "gradle clean compileJava test"

}
}
// Declarative Pipeline
pipeline {
agent {label 'worker_nodel'}
stages {
stage('Source') { // Get code
steps {
// get code from our Git repository
git 'git@diyvb2:/home/git/repositories/workshop.git'
}
}
stage('Compile') { // Compile and do unit testing
steps {
// run Gradle to execute compile and unit testing
sh "gradle clean compileJava test"
}

24 | Chapter2: The Foundations

}

You can think of it this way: Scripted Pipelines are more like scripts or programs
written in any imperative language to execute the program flow and logic, while
Declarative Pipelines are more like what was traditionally done in Jenkins if you were
using the web forms—filling in key information in predefined sections that have a
predefined purpose and expected behavior. Like with the traditional web forms, when
you run a Declarative Pipeline the type of each section defines what happens and
how, based on the data you entered.

Choosing Between Scripted and Declarative Syntax

So what are the factors that come into play in choosing between scripted and declara-
tive? As with most things, it's not an exact science; in any particular situation, one
model may work better than the other based on the need, the structures and flows to
be implemented, and the skill and background of the person(s) implementing the
pipeline.

We can best derive guidance here by looking at the advantages and disadvantages of
each model and then making some general observations.

Briefly, a Scripted Pipeline has the following advantages:

« Generally fewer sections and less specification needed

« Capability to use more procedural code

o More like creating a program

« Traditional pipeline-as-code model, so more familiar and backward compatible
+ More flexibility to do custom operations if needed

« Able to model more complex workflows and pipelines
A Scripted Pipeline has the following disadvantages:

o More programming required in general
« Syntax checking limited to the Groovy language and environment
o Further away from the traditional Jenkins model

« Potentially more complex for the same workflow if it can be comparably done in
a Declarative Pipeline

A Declarative Pipeline has the following advantages:

o More structured—closer to the traditional sections of Jenkins web forms

Syntax: Scripted Pipelines Versus Declarative Pipelines | 25

» More capability to declare what is needed, so arguably more readable

o Can be generated through the Blue Ocean graphical interface

« Contains sections that map to familiar Jenkins concepts, such as notifications
« Better syntax checking and error identification

o Increased consistency across pipelines
A Declarative Pipeline has the following disadvantages:

o Less support for iterative logic (less like a program)

« Still evolving (may not support or have constructs for things you would do in tra-
ditional Jenkins)

o More rigid structure (harder to handle custom pipeline code)

o Currently not well suited for more complex pipelines or workflows

In short, the declarative model should be easier to learn and maintain for new pipe-
line users or those wanting more ready-made functionality like the traditional Jenkins
model. This comes at the price of less flexibility to do anything not supported by the
structure.

The scripted model offers more flexibility. It provides the “power-user” option, allow-
ing users to do more things with less imposed structure.

But, ultimately, either model can be made to work in most cases.

We'll talk more about declarative syntax and pipelines in Chapter 7, which is devoted
to helping you understand that model. In this book, which only aims to provide small
examples of specific concepts, we won't worry about the distinctions or differences in
syntax. Where I need to explain larger constructs, I'll include examples of both,
where it would make a difference.

For now, lets move on to exploring the systems that Jenkins can make use of to run
these pipelines.

Systems: Masters, Nodes, Agents, and Executors

Regardless of whether we are using scripted or declarative syntax, every Jenkins pipe-
line has to have one or more systems to execute code on. The term system is used here
as a generic way to describe all of the items were talking about. Keep in mind,
though, that there can be multiple instances of Jenkins on any given system or
machine.

26 | Chapter2: The Foundations

In traditional Jenkins, there were only two categories: masters and slaves. Those are
probably familiar to you. Here’s a brief description of similar terms, highlighting
some of the main points for comparison.

Master

A Jenkins master is the primary controlling system for a Jenkins instance. It has com-
plete access to all Jenkins configuration and options and the full list of jobs. It is the
default location for executing jobs if another system is not specified.

However, it is not intended for running any heavyweight tasks. Jobs requiring any
substantial processing should be run on a system other than the master.

Another reason for this is that a job running on the master has the master’s access to
all data, configuration, and operations, which can pose a security risk. It is also
important to note that a master system should not have potentially blocking opera-
tions executed on it, since it needs to be able to respond and manage operations con-
tinuously.

Node

Node is the generic term that is used in Jenkins 2 to mean any system that can run
Jenkins jobs. This covers both masters and agents, and is sometimes used in place of
those terms. Furthermore, a node might be a container, such as one for Docker.

A master node is always present in any Jenkins installation, but for the reasons
already cited, it is not recommended to run jobs on the master node. We'll talk more
about how to define nodes in an upcoming section of this chapter.

Agent

An agent is the same as what earlier versions of Jenkins referred to as a slave. Tradi-
tionally in Jenkins, this refers to any nonmaster system. The idea is that these systems
are managed by the master system and allocated as needed, or as specified, to handle
processing the individual jobs. For example, we might allocate different agents to do
different builds for different OS flavors, or we might allocate multiple agents to run in
parallel for testing.

In order to simplify the load on these systems and reduce security concerns, typically
only a lightweight Jenkins client application with limited access to resources is
installed to handle running jobs.

Systems: Masters, Nodes, Agents, and Executors | 27

As far as the relationship between agents and nodes goes, agents run on nodes. In a
Scripted Pipeline, “node” is used as the term for a system with an agent. In a Declara-
tive Pipeline, specifying a particular agent to use allocates a node.

Directives Versus Steps

There is a high-level distinction we can make between a node and an agent in terms
of how they are used in the respective declarative versus scripted syntax.

node is associated with a Scripted Pipeline. It is technically a step, meaning something
that can be used to cause an action to occur in a pipeline. It allocates an executor on a
node with an agent and further runs code that is in its definition block. The following
code excerpt shows a simple example of specifying a node step:

// Scripted Pipeline
node('worker") {
stage('Source') { // Get code
// Get code from our Git repository

agent, on the other hand, is a directive in a Declarative Pipeline. Unless you use the
special case agent none, it causes a node to be allocated. A simple agent declaration
is shown here:

// Declarative Pipeline
pipeline {
agent { 'worker'}
stages {
stage('Source') { // Get code

Outside of the syntax for the two different pipeline specifications, this distinction is
not significant and you can think of them as the same. Just use node for Scripted Pipe-
lines and agent for Declarative Pipelines.

Executor

Related to all the previous systems are executors. Let’s clarify here what Jenkins
means with this term.

Basically, an executor is just a slot in which to run a job on a node/agent. A node can
have zero or more executors. The number of executors defines how many concurrent
jobs can be run on that node. When the master funnels jobs to a particular node,
there must be an available executor slot in order for the job to be processed immedi-
ately. Otherwise, it will wait until an executor becomes available.

The number of executors and other parameters can be configured when creating
nodes, the subject of our next section.

28 | Chapter2: The Foundations

Figure 2-1 shows a representation comparing the different kinds of systems we just
talked about.

Jenkins Environment

Master

| Executor

PN

Agent Agent Agent

Executor

| Executor I | Executor I | Executor I

Executor Executor
—

Figure 2-1. Types of systems involved in doing work in Jenkins

Creating Nodes

In traditional versions of Jenkins, jobs would run either on the master instance or on
slave instances. As noted previously, in Jenkins 2 terminology these kinds of instances
are both referred to by the generic term “node” We can set up new nodes just as we
would have set up slaves on legacy Jenkins instances. A quick example follows.

To start with, after logging into Jenkins, go to the Manage Jenkins page and select the
Manage Nodes link (Figure 2-2).

E Jenkins CLI

[EHTTENT
f Script Console
Executes arbitrary script for

-ﬂ_' Manage Nodes

Figure 2-2. The Manage Nodes option on the Manage Jenkins page

Systems: Masters, Nodes, Agents, and Executors | 29

On the Manage Nodes screen, select New Node and fill in the forms, including the
number of executors (see Figures 2-3 and 2-4).

® | worker_node

*'| Permanent Agent
Adds a plain, permanent agent to Jenkins. This is called "permanent™ bacause Jenkins doesn’t provide higher level of
Integration with these agents, such as dynamic provisioning. Select this type if no other agent types apply — for example such
as when you are adding a physical computer, virtual machines managed outside Jenkins, etc.
Copy Existing Node
Copy from

Figure 2-3. Node basics: choosing the node’s name and type

Name

worker_node @'

Description @.
of executors 1 - @.
Remote root directory Jnode1/root (7]
Labels worker_node (2]
Usage Use this node as much as possible - @
Launch method Launch slave agents on Unix machines via SSH @

Host nodehost
o= Add ¥ @
Advanced...
Availability Keep this agent online as much as possible j ®
Node Properties

| Environment variables

] Tool Locations

Figure 2-4. Entering parameters to define how the node should be used

If you need to first set up credentials, you can find more information about that in
Chapter 5. Notice that you also have checkboxes near the bottom of the page for

30 | Chapter2: The Foundations

“Environment variables” and “Tool Locations.” Checking these will allow you to spec-
ify particular variables and tools for use on this node. This is only necessary if you
need or want to use ones other than those set up on the master.

In the Labels section of the configuration, you can supply multiple labels. Spaces can
be included in a label name with quotes around the label.

A quick note about node labels

Labels can be used for both system and user purposes. For example, labels can be
used to:

« Identify a specific node (via a unique label).
 Group classes of nodes together (by giving them the same label).

« Identify some characteristic of a node that is useful to know for processing (via a
meaningful label, such as “Windows” or “West Coast”).

The last bullet is a recommended practice.

These labels can be referenced directly in the pipeline to define where to run code.
An example is discussed in “node” on page 32.

For information on the different launch methods and other settings for nodes, con-
sult the online Jenkins documentation.

Once nodes are available to execute code, we can start focusing on creating pipelines.
We do this with a structured program using the Jenkins DSL.

Structure: Working with the Jenkins DSL

As previously mentioned, DSL stands for Domain-Specific Language, a type of pro-
gramming language for a particular context. The context in Jenkins is creating pipe-
lines.

The Jenkins DSL, like many others, is written using the Groovy programming lan-
guage. This is done because of some of the nice features that Groovy provides that
make creating DSLs easier than in other languages. However, that also comes with a
caution against relying on Groovy aspects too heavily (see the sidebar on the Jenkins
DSL and Groovy to follow).

In this section, we'll cover some basic terms and the structure and functionality of a
Jenkins DSL pipeline. We'll be talking about this in terms of a Scripted Pipeline
(meaning without the enhancements that the declarative functionality adds). In

Structure: Working with the Jenkins DSL | 31

Chapter 7, we'll explain the differences and look at the changes that creating a Declar-
ative Pipeline entails.

The Jenkins DSL and Groovy
The DSL for Jenkins pipelines is based on the Groovy language.
This means we can use Groovy constructs and idioms in our pipeline code if needed.

Normally, however, we want to avoid using any strictly Groovy code that is too com-
plex, or at least separate it from the main script. The reason is that too much Groovy
code makes the script less readable and maintainable by someone who doesn’t know
Groovy.

Declarative Pipelines prevent the use of nearly all Groovy code outside of their
defined structure. They also provide more capabilities that resemble traditional Jen-
kins features, so you have to resort less to using custom Groovy code.

Leveraging Other Languages

If you need to access/use functions written in Groovy or another
language, or ones that involve a more iterative workflow, you can
make them part of a shared library, as we'll talk about in Chapter 6.
That way they will be abstracted out from your main pipeline code
base.

Here’s a very simple pipeline expressed in the Jenkins DSL:
node ('workerl") {
stage('Source') { // for display purposes
// Get some code from our Git repository

git 'https://github.com/brentlaster/gradle-greetings.git'

}
}

Let’s break this down and explain what each part is doing.

node

First, we have the keyword node. As mentioned in “Node” on page 27, we can think of
this as the new term for a master or agent. Nodes are defined through the Manage
Jenkins - Manage Nodes interface and can be set up just like slaves. Each node then

32 | Chapter2: The Foundations

http://www.groovy-lang.org

has a Jenkins agent installed on it to execute jobs. (Note that in this case we are
assuming we have a node already set up on the Jenkins instance labeled worker1.)

Nodes and Agents

We previously talked about the difference between nodes and
agents in Jenkins terminology. In the context here, were using
agent to mean the Jenkins code running on the “nonmaster” nodes.

This line tells Jenkins on which node it should run this part of the pipeline. It binds
the code to the particular Jenkins agent program running on that node. A particular
one is specified by passing a defined name as a parameter (label). This must be a node
or system that has already been defined and that your Jenkins system is aware of. You
can omit supplying a label here, but if you omit a label, then you need to be aware of

how this will be handled:

o If master has been configured as the default node for execution, Jenkins will run
the job on master. (master can be configured to not run any jobs.)

o Otherwise, an empty node label (or agent any in declarative syntax) will tell Jen-
kins to run on the first executor that becomes available on any node.

On the other hand, using multiple names here (with logic operators) is perfectly valid
and can make a lot of sense when you need to select nodes based on multiple dimen-
sions (such as location, type, etc.). The following sidebar explains how to take advan-
tage of this functionality.

Leveraging Multiple Labels on a Node

In the configuration for a node, you can assign multiple labels in the Labels entry box.
To do this, separate them by spaces. Then, when specifying a node to execute part of
your pipeline, you can specify multiple labels using standard logic operands such as
| | for “or” and && for “and”

Why would you do this? Suppose that you had two sets of Linux systems on different
coasts of the United States. Depending on the particular processing, you might want
some Jenkins jobs sent to one set, and some sent to the other set.

So, in this case, you could add the label Linux to all of the nodes and an additional
label to indicate where each is located—i.e., east or west. Once that’s done, you could
specify which nodes to use by using combinations of operands and labels. For exam-
ple, to direct a job to run on a Linux node on the East Coast, you could use:

node("linux && east") {

Structure: Working with the Jenkins DSL | 33

There are more sophisticated operands available as well, which you’ll find if you look
in the help for the node step.

The braces construct ({}) here is known as a Groovy closure and essentially marks the
start and end of the block of code associated with this node for this part of the pipe-
line. Closures also act like entities that can be passed around in a program, with the
last statement being the return value. (See the Groovy documentation for more infor-
mation about closures.)

When this part of the pipeline is executed, it connects to the node, creates a work-
space (working directory) for the code to execute in, and schedules the code to run
when an executor is available.

Nodes and Mappings

In addition to defining nodes to run particular stages, nodes can
also be associated with mappings to designate where to run other
sections of code, such as in the parallel structure shown here:

parallel (

{ node ('win64'){
13
{ node ('ubuntu') {

M,

stage

Within a node definition, a stage closure allows us to group together individual set-
tings, DSL commands, and logic. A stage is required to have a name, which provides a
mechanism for describing what the stage does. As of the time of this writing, it
doesn’t actually do anything in the script but does show up in the output to identify
the stage when running a pipeline.

How much of the pipelin€’s logic goes into a particular stage is up to the developer.
However, a general practice is to create stages that mimic the separate pieces of a tra-
ditional pipeline. For example, you might have a stage that handles retrieving the
source code, one that handles compiling the source code, one that handles running
unit tests, one that handles integration tests, and so on. We'll use this sort of structure
when we work with example pipelines in the book.

34 | Chapter2: The Foundations

http://groovy-lang.org/closures.html

steps

Inside the stage, we have the actual Jenkins DSL commands. These are referred to as
steps in Jenkins terminology. A step is the lowest level of functionality defined by the
DSL. These are not Groovy commands, but can be used with Groovy commands. In
the case of our example, we have this initial step to get our source:

git 'https://github.com/brentlaster/gradle-greetings.git'’

This is pretty straightforward to figure out. It calls Git and passes a parameter—the
location from which to pull the code (using the secure HTTP protocol). This is using
a shorthand format for the full step syntax.

You will be encountering both the shorthand and full step syntax when working with
the DSL in scripts, so it's worth taking a moment to better understand the syntax
model in more detail.

Understanding step syntax

Steps in the Jenkins DSL always expect mapped (named) parameters. To illustrate
this, here’s another version of the git step definition:
git "test',
"https://github.com/brentlaster/gradle-greetings.git'
Notice that we have two named parameters here, mapped to their intended values:

branch to 'test' and wurl to ‘'http://github.com/brentlaster/gradle-
greetings.git'.

This syntax itself is actually a shorthand notation for a mapping syntax used by
Groovy. The [named parameter: value, named parameter: value] form equates to the
Groovy mapping syntax of [key: value, key: value]. The named parameters function as
the keys of the map.

Groovy also allows skipping the parentheses for parameters. Without these shortcuts,
the longer version of our step would be:

git(["test',
"http://github.com/brentlaster/gradle-greetings.git'])

Another trick is this: if there is a single required parameter, and only one value is
passed, the parameter name can be omitted. This is how we arrive at our short ver-
sion of the step as:

git 'https://github.com/brentlaster/gradle-greetings.git’

The required url parameter here is the only one we needed to provide in this case.

Structure: Working with the Jenkins DSL | 35

If a named parameter is not required, then the default parameter is the script object.
An example here is with the bat step, which is used to run batch or shell processing
on Windows system. Writing this with the full syntax would look like this:

bat(['echo hi'])
Taking into account the shortcuts that are offered, this can simply be written as:
bat 'echo hi'

Figure 2-5 shows a graphical representation of the relationship between nodes, stages,
and steps.

Figure 2-5. Relationship between nodes, stages, and steps

Now that we understand the basic structure of a Scripted Pipeline, let’s examine the
process of creating a pipeline job in Jenkins and using the associated tools to create a
script.

Supporting Environment: Developing a Pipeline Script

In all versions of Jenkins, you begin a new project by creating a new item of a particu-
lar type. Jenkins 2 supports an integrated project type of “Pipeline” This type of
project creates an environment to develop code to define a pipeline. As you start to
work with this type of project, it will be beneficial to understand how to set it up and
how to use the environment to create, edit, run, and monitor your pipelines.

A pipeline script in Jenkins can either be created within a Jenkins job of type Pipeline
or as an external file named Jenkinsfile. If created as a Jenkinsfile, then it can be stored
with the source. While learning about creating DSL scripts here, we'll use the
approach of creating a script in a pipeline job. Creating a Jenkinsfile can be done in
any editor, or it can even be copied from the pipeline job. However, there may need to
be adjustments made for actions such as calling external routines. We'll look at those
considerations more when we discuss Jenkinsfiles in detail in Chapter 10.

36 | Chapter2: The Foundations

Starting a Pipeline Project

When you select Pipeline as the type of project to create, youre presented with a
familiar web-based form for a new Jenkins project. Each major section of the form
has a tab associated with it. You start out on the General tab (Figure 2-6).

Tabs and Navigation

The tabs for sections make it easier to jump between the major sec-
tions of the page. However, you can still scroll to the individual sec-
tions as well.

£ simple-pipe2 Confi... = | &

€ @ localhost:2080/jot - ¢ 1 2 4+ &

General

Pipsling rame | simple-pips2

Descripson

[Plain text] Previow

] Discard old bullds 7]
] Do not allow concurrent buils
| GitHub proyect

! O i proect is parameterizea L]
] Trwotile basids L]

Build Triggers

| Busiar amer caner projects are bt L

|) Buiid pericdically L
| Bustd when & changs is pushed o Gkt L1

| | pont sCM L
= 7]

n Aol [e -

Figure 2-6. The General tab of a new Pipeline project

This tab should look familiar if you've used Jenkins before. You can configure any of
these sections as needed or not. The main tab we are interested in for our new Pipe-
line project is the Pipeline tab. Switching to that presents a text entry screen where we
can enter the code for our pipeline script. Figure 2-7 shows an example of the tab
with a simple pipeline script typed in.

Supporting Environment: Developing a Pipeline Script | 37

Pipeline
Pipeline

Definition Pipeline script j

Seript :: ode) _ y ¢ 0],

v Use Groovy Sandbox 7]

Pipeline Syntax

El -~

Figure 2-7. Pipeline tab with a simple script example

The code for our pipeline is entered through the built-in Jenkins editor.

Visual Editor

With the advent of the new Blue Ocean interface and Declarative
Pipelines, a visual pipeline editor is available in Jenkins. The Blue
Ocean interface and editor are discussed in Chapter 9.

The Editor

As you begin to work with the editor, there a couple of features that are helpful to be
aware of:

Syntax checking
Where possible, the editor will make an attempt to check for valid Groovy syntax
and references. As Figure 2-8 shows, it will mark any problems it finds with a red
square with an “X” in it beside the offending line.

38 | (Chapter2: The Foundations

16 3
17 3
18 3
19 - catch(err) {

E3 20 echo aught: S(err
21 3
22 ~ staae("Notifv') {

Figure 2-8. Error indications in the pipeline script window

However, it is possible that not all the errors flagged are actual errors—in some
cases the script may not have been able to yet resolve a dependency or an import
that was recently created, although this is the exception rather than the rule.

Extended error information
While the “X” indicator provides a quick visual way to identify lines with prob-
lems, it is not very informative beyond that. You can see more information by
hovering over the “X” When you do this, a pop-up is displayed with the full text
of the error (Figure 2-9).

1

19 - atch{err
B2e)

2 illegal string body character after dollar sign;

2 solution: either escape a literal dollar sign "\55" or bracket the value expression "5{5}"
2 ¥ TT

Figure 2-9. Hovering displays the full text of the error message

Autocomplete
The editor also includes autocomplete functionality for items like brackets. That
is, if you type an opening bracket, {, the editor will automatically insert (after a
space) a corresponding closing bracket, } (Figure 2-10). This is a convenient fea-
ture, but can also trip you up until you get accustomed to it. The reason is that if
you're in the habit of always typing a closing bracket and one is inserted for you,
you’ll end up with an extra bracket in your program that won't compile.

18 18

19 ~ node { 19 ~ node {
28 28

21 }

MM
M

27

Figure 2-10. Autocompletion of brackets

Outside of the editor, we have an additional tool to help us get the syntax correct. It’s
called the Snippet Generator.

Supporting Environment: Developing a Pipeline Script | 39

Working with the Snippet Generator

Switching from a form-based web interface for configuring jobs and pipelines to
using a DSL script has many advantages—but having to know the right step and syn-
tax to use for each task is not one of those. For some cases, such as our simple git
step from earlier, the syntax and parameters may be fairly intuitive, but for others, not
so much. To simplify finding the correct semantics and syntax for steps, Jenkins 2
includes a pipeline syntax help wizard, also known as the Snippet Generator.

Snippet Generator Content

The Snippet Generator content is seeded and updated based on
definitions of pipeline steps added by plugins. If a plugin provides
a pipeline-compatible step, that is included in the Snippet Genera-
tor. This also means the content of the Snippet Generator on any
particular Jenkins instance is a function of what plugins are
installed on that instance.

The Snippet Generator provides a way to search through the available DSL steps and
find out the syntax and semantics of ones you are interested in. Additionally, it pro-
vides online help to explain what the step is intended to do. But perhaps the most
useful option it provides is a web form with areas to enter values for the parameters
you want to use. You can then, with the push of a button, generate the needed Groovy
DSL code to call the step. Once you have that, it’s a simple cut and paste to get it into
your program. This greatly simplifies trying to figure out how to use a particular step.

Let’s work through a simple example to see how this works. Suppose we want to cre-
ate the earlier step to retrieve our Git code. Figure 2-11 shows our starting point.

40 | Chapter2: The Foundations

Pipeline

Pipeline

Definition Pipeline script -

Script :: ness T_;;e'_'.' { L try sample Pipeline... = 2]

+ Use Groovy Sandbox 2]

Figure 2-11. Code block for source pull

We know we want to use Git, but we're not sure of the syntax, so we click the Pipeline
Syntax link at the bottom of the Pipeline tab’s window, as shown in Figure 2-12. This
takes us to the opening screen for the Snippet Generator.

Supporting Environment: Developing a Pipeline Script | 41

teatp Pipeiing Synin:

% Snippet Generator

i) Stop Reference

i) Global Variables Reference

) Online Documantation

== IntelliJ IDEA GDSL

This Snippel Generalor wll heip you learn the Pipeiine Soript code which can be sed o define van Pick a siep you are
Interested in from the list, confiqure it, ciick pod pt. and you will see a Pipsline Script et shat would call the siep
with that configuration. Yo and paste tha whole s it irfi your script, or pick up jLst the options you care about (Most
PaFaEters e opBonal A Can b GMIMed In your SCrpL, e T ——"

Sleps
SAMPESIER . crivaAritacts: Archive the artifacts
0
Fites Io arcive P

Advanced...

Global Variables

There are many features of the Fipsline that are nal steps. Thess are often exposed via global variables, which are nat supparisd by the
srippet generaior. See the Gilohal Variables Feference for details.

Figure 2-12. The Snippet Generator

From here, we can select the “git” step from the Sample Step drop-down, as seen in
Figure 2-13. This brings up additional fields for the named parameters that we can
supply to the step. We can then accept the defaults for those parameters or set them
to specific values as needed. Finally, we click the button to generate the pipeline

script. As the figure shows, this results in the simple git step we saw earlier.

)

Chapter 2: The Foundations

Steps

Sample Step git: Git j

Repository URL https.//github.com/brentlaster/gradie-greetings.git

Branch e

Credentials ST j o Add ~

¥ Include in polling?

v Include in changelog?

Generate Pipeline Script

git 'https://github.com/brentlaster/gradie-greetings.git'

Figure 2-13. Generating pipeline code for the git step with defaults

Putting this into our stage closure, we end up with this:

stage('Source') {
// Get some code from our Git repository

git 'https://github.com/brentlaster/gradle-greetings.git’
}

If, on the other hand, we choose to override the defaults, our step changes to reflect
passing those overrides (Figure 2-14). Notice that, in this case, overriding those val-
ues requires unchecking the checkboxes.

Supporting Environment: Developing a Pipeline Script | 43

Steps

Sample Step

git: Git j

©

Hepostiory URL https://github.com/brentlaster/gradie-greetings.git

Branch test

Credentials jenkins2 j e

Include in polling?

Include in changelog?

Generate Pipeline Script

git branch: test’, changelog: false, credentialsid: jenkins2-ssh', poll: false, ur: ‘https:/github.com/brentlaster
/gradie-greetings.git’

Figure 2-14. Overriding default values for the git step

Any time multiple parameters are specified, they must all be named. As with the pre-
vious example, this code could be directly copied and pasted into a script to use.

Polling and Changelog Options

In case you are wondering, setting poll to false means that
changes in the source management repository will not be automati-
cally detected and rebuilt. Without this set to false, after an initial
run, and if polling is configured for the job, changes in the source
management repository will be detected and cause another run of
the job.

Setting the changelog option to false means that Jenkins will not
compute the changes that initiated a new run (and thus they will
not show up in the Changes section of the job output). The only
benefit of doing this is that it reduces some load on the SCM.

44 | Chapter 2: The Foundations

Running a Pipeline

With code entered, we're ready to run our pipeline. Pipelines are made up of several
stages, such as compilation, integration testing, analysis, etc. It was typical in past ver-
sions of Jenkins to set up the different parts as separate Freestyle jobs and chain them
together by having one job kick off another job when it finished.

Over the years, plugins were created to help visualize the flow of these jobs represent-
ing the stages. One of the common ones used was the Build Pipeline plugin. This
plugin allowed for setting up special views that displayed a series of jobs in a pipeline
as a connected set of boxes. The boxes were color-coded depending on the current
activity happening in them: blue for the job not having been run yet, yellow for the
job in progress, green for a successful run, and red for a failed run. Figure 2-15 shows
what this looked like.

) L Buil sipstine [Jeskins] 3 Build Pipeline Pugin - e

* € | D locathost-=08z), 20pip WA @E A
Far quick access, place your bookmarks here on the bookmarks bar. import bockmerks sow,,

i 5
Jenkins & o) marcinp log out
Jeriong Buid ppelne P —

Build Pipeline: My pipeline

D = £ &
L

Hory Cobpes AddSay Dl

3 &
WAy
Pipaline version Test Release Deploy to Test Daplay ta Pre-Prod Depley to Prod
2 Jan 26, 2012 531346 P
6 G
8 - sl -
No parameters '
[__oementadocs]
L &
» EOs »
- >
Pipaling version Test Ralease Deplay ta Pre-frod Deploy 1o Prod
7 L4 L4 L4 »
NO parameters
»

Deploy 10 Test

T s s ke s e Pags generatad: P6-Jun-A 1 denions var 1470

Figure 2-15. The original Build Pipeline plug-in

In Jenkins 2, we have the Pipeline project type for scripting an entire pipeline. We can
represent the larger pieces of the pipeline via stage{} blocks, as we did for the git
command previously. To illustrate this, let’s add another stage to our pipeline. To keep
things simple for now (since we haven't covered using globally configured tools in
pipelines yet), we'll just add a placeholder for the build step.

Supporting Environment: Developing a Pipeline Script | 45

To do this, we add another stage definition and insert a call to the sh step to echo out
a message (“sh” stands for “shell,” and this allows us to make calls to the OS on *nix
systems; the corresponding command for Windows systems is bat):

node ('workerl') {

stage('Source') {

// Get some code from our Git repository
git 'https://github.com/brentlaster/gradle-greetings.git'

}

stage('Build') {

// TO-DO: Execute the gradle build associated with this project
sh 'echo gradle build will go here'

}
}
Figure 2-16 shows the script in the Pipeline tab.
Pipeline
Detinition Pipeline script j
Script ;: e t;;c_ '@'
3
4 git tlast
o stage(
: sh ‘e e
18 }
11
v/ Use Groovy Sandbox (2]
Pipeline Syntax

Figure 2-16. Script in the Pipeline tab

When we first save this pipeline, the UI reminds us that we haven’t run it yet with a
message (Figure 2-17): “No data available. This Pipeline has not yet run” Note the
heading above it that reads “Stage View”—this is the new default pipeline output view
in Jenkins 2.

46 | Chapter2: The Foundations

Jenkins pipedemo
Back to Dashboard
|, Status

= Changes

Pipeline pipedemo

£ Buid MNow =T Bocont Changes
{8 Delete Pipeline
P
e Configure Stage View
W Move

.. Full Staga Viaw héo clata @

e This Pipelin

) Pipeline Syntax

Bulld History trond = Permalinks

B} BSS tor all £} BSS for tnilures

Figure 2-17. Before the first run

If we click Build Now in the menu on the left, Jenkins executes the pipeline build. In
our case, everything is successful. Notice the representation of the job execution as

tiles in the Stage View output in Figure 2-18. The tiles are green, indicating success.
More explanation of how to interpret this view follows.

Jenkins pipelinedemo

Back to Dashboard
“ [Pipeline pipelinedemo

| Status

~= Changes

Lk
@ Build Now 5 Recent Changes
(St
(Delete Pipeline
M. confiaur .
&k Configure Stage View
b Move
| Full Stage View Source Bulld
©) Pipeline Syntax as 750ms
Bulld History trend = # .
o 4s 750ms
¥ 18:52
t
@ n15.20 2 P, s
Permalinks

EJ BSS for all) RSS for failures

Last bulld (#1), 25 sec ago
stable build (#1). 25 sec ago

Figure 2-18. Successful first run

In each build, for each stage in the pipeline, Jenkins creates a new tile. Each row rep-
resents a build of the project and each column represents a stage in the pipeline, so
each tile represents one run of a particular stage. Note that the text that was passed as

Supporting Environment: Developing a Pipeline Script | 47

the parameter (name) to the stage step in our code is listed at the top of each column.
The amount of time the processing in the stage took to execute is shown inside the
tile.

As we alluded to, the color of the tiles is significant as well. The general meanings for
the color codes are shown in Table 2-1.

Table 2-1. Color processing legend

Color Meaning

Blue stripes Processing in progress

White Stage has not been run yet

Rose stripes Stage failed

Green Stage succeeded

Rose Stage succeeded but some other stage failed downstream

Color Changes When Processing

Even though a tile may be green at one point, it can still change to
the rose color later if a downstream stage fails.

Viewing logs
As with traditional Jenkins, you can view the console output by clicking on either the

Console Output link or the colored ball next to the build in the Build History win-
dow.

The Stage View also provides a shortcut for seeing the logs related to any particular
stage for a particular run of a build. Simply hover over the tile representing the build
and stage that you're interested in and click the Logs button in the block that appears,
and you’ll get a pop-up showing the stage logs. Figures 2-19 and 2-20 illustrate the
steps in the process.

48 | Chapter2: The Foundations

Jernkins ¢ pipelinedemo
4 Back to Dashboard x - = a
Pipeline pipelinedemo
.| G Status pe pipe
2 Changes
D v S et
| (9 Delete Pipatne
| & contigure Stage View
T Move
|Gy Full Stage View Bulld
El o Pipeline Syntax Average stage times: 750ms
.} Bulld History trend =
ol == 4s 750ms
I [nm x] lanz
] on Jan 15, 2017 4:52 PM
Permalinks
BSS for all () ASS for failures
® Last build i§1). 25 sec ago
+ Last stable build (#1), 25 sec ago
b Last successful build (#1), 25 sec ago
» Last compieted bulld (#1), 25 sec ago

Al REFA;
[Bracd description

Figure 2-19. Hover over a tile to get the pop-up with the Logs button

Stage Logs (Source)

@ ait self time 4s)

':].ﬂll!.l'q the remote Git r!pn!.ltnry
l:lﬂlllﬂg repnsltury m:tEs:l{g.ltr|uh,col!hrem:lasterrgraﬂle-greetlngs.git
> git init /home/jenkins2/worker_nodel/workspace/pipelinedemo # timeout=18

Fetching upstream changes from https://github.com/brentlaster/gradle-greetings.gi
t

> git --version # timeout=18

= git fetch --tags --progress https://github.com/brentlaster/gradle-greetings.gi
t +refs/heads/*:refs/remotes/origin/*

> git config remote.origin.url https://github.com/brentlaster/gradle-greetings.

it & timeout=18
= git config --add remote.origin.fetch +refs/headss*:refs/remotesforigin/* & tim
eout=18

> git config remote.origin.url https://github.com/brentlaster/gradle-greetings.q
it & timeout=18

Fetching upstream changes from https://github.com/brentlaster/gradle-greetings.gi
t

= git fetch --tags --progress https://github.com/brentlaster/gradle-greetings.gi
L +refs/heads/*:refs/remotes/origin/*

> git rev-parse refs/remotesforigin/master”{commit} # timeout=1@

Figure 2-20. Click on the Logs button to get the pop-up with the actual logs for the stage

Supporting Environment: Developing a Pipeline Script |

49

Jenkins Pop-ups and Autorefresh

Since the log window is a pop-up window, you may want to disable
the autorefresh feature, if it is turned on, so that it doesn’t automat-
ically dismiss the pop-up window with the log in it. (This is done
by clicking DISABLE AUTO REFRESH in the upper-right corner.)

Stage View with errors

Now let’s see what the Stage View looks like when we have errors. Assume that our
code was running on a Windows system instead of Linux. There would have been
only one small change in our pipeline; instead of:

sh 'echo gradle build will go here'
the line would be:
bat 'echo gradle build will go here'

Now suppose that we had copied over the code with the bat command exactly to a
Linux system. When we tried to build it, we would get a Stage View that looked
something like Figure 2-21.

Stage View
Source Build
3s 609ms
— 1s 468ms
22:10 A
Janis 4s 750ms
16:52

Figure 2-21. Stage View with errors

Notice that the second run added another row to our matrix. The row at the top rep-
resents the stages in the latest run. The striped color of the Build tile in the top row
indicates that that stage failed (and thus our run failed). The lighter solid rose color of
the Source stage indicates that it succeeded but another stage downstream failed.

50 | Chapter2: The Foundations

When an Earlier Stage Fails

If the Source stage had failed, the Build stage would not have been
attempted. In that case, the Source stage would have been striped
and the Build stage would have been white.

To see the error, we can apply the same steps as before. When we hover over the failed
tile, we again get a pop-up displaying the link to the logs—but notice that it also has
information about what failed. At the top of the pop-up is the text “Failed with the
following error(s) Windows Batch Script Batch scripts can only be run on Windows
nodes”” Figure 2-22 displays this condition.

Uubal

—# Recent Changes
| S

Failed with the following error(s)
3 e ee:rls Batch scripts can only be rur
Stage View Soript on Windows nodes
Source
- |

—— 1s 468ms

2210 A

Janis 4s 750ms

16:52

Figure 2-22. Viewing the failures in one stage

Jenkins attempts to display meaningful information about the failure in the pop-up.
We could click on the Logs button and open up the log, but in this case, we wouldn’t
get more information. The first executable statement in this stage is the one that is
failing, so there’s no further execution information to log.

This essentially completes our quick tour of Jenkins 2 and the basic features you need
to be aware of when coding pipelines. But there is one more feature that Jenkins pro-
vides to allow you to experiment and try things out without having to change your
saved pipeline code. That feature is called Replay.

Supporting Environment: Developing a Pipeline Script | 51

Replay

Coding pipelines is more involved than web form interaction with Jenkins. There
may be times where something fails and you want to retry it in a temporary way
without modifying your code. Or you may want to prototype a change and try it out
before committing to it. Jenkins 2 includes functionality called Replay for such cases.
Replay allows you to modify your code after a run, and then run it again with the
modifications. A new build record of that run is kept, but the original code remains
unchanged.

We can see how that works using our current failure. Suppose we think the right step
to use is sh, but we want to try it out before changing our code. First we switch to the
Console Output for the job, and then we select Replay in the lefthand menu as shown
in Figure 2-23.

@ senwins Agmin | log out

Jenkins

Jenkins pipelinedemo #2

Back to Project .
. Statue) Console Output
= Changes

started by user lenkins Admin
B console Output

View as plain lext Running on workerl in /home/jenkins2/worker nodel/workspace/pipelinedemo
- Edit Build Information
(9 Delete Build
i > git rev-parse --is-inside-work-tree # timeout=18
‘Q} Git Build Data Fetching changes from the remote Git repositery
= git config e.origin.url https://github.com/brentlaster/gradle-
il NoTags greetings.git ut=18
ing upstream changes from https://github.com/brentlaster/gradle-greetings.git
version # timeout=18
Pipaline Steps = git fetch tags progress https://github.com/brentlaster/gradle
greetings.git +refs/heads/*:refs/remotes/origin,
48 Previous Build > git rev-parse refs/remotes/origin/master~{commit} # timeout=18

= git rev-parse refs/remotes/originforigin/master~{commit} # timeout=18
Checking out Revision efl5dcaSc6577d877e3BaB5bER67002421d92cBa (refs/remotes
forigin/master)

= git config core.sparsecheckeut # time

> git checkout -f eflS5dcaSc65774077e38a

> git branch -a -v no-abbrev # timeout=10

t=18
0670024e1d92c0a

> git branch -D master # tin 8
> j]t checkout b master ef 577d877e38a85b80670024e1d92cBa
> git rev-list efl5dca5c6577d077e38a05b80670024e1d92c0a # timeout=10

Figure 2-23. Location of the Replay menu item

Now Jenkins presents us with an edit window just like the one for the Pipeline tab of
a Pipeline project (Figure 2-24). In this window, we can make any changes to our
program that we want and then select Run to try out the changes. (Here, we're chang-
ing bat back to sh.)

52 | Chapter2: The Foundations

o}
g
g
£
2

=an alse modly the

. stoge
4 Git Buid Data : E
[Mo Tags 18
Replay

Pipeline Steps

d Previous Build

Page generated: Jan 16, 2017 100048 PM EST Jenkins ver. 2.18.3

Figure 2-24. Instituting a replay for a failed run

Jenkins will attempt to run the edited code in the Replay window. In this case it will
succeed, creating run #3 (Figure 2-25).

Supporting Environment: Developing a Pipeline Script | 53

Pipeline pipelinedemo

0505050

—# Recent Changes
[

Stage View
Source
25
' Jan 16 23
22:05
o
Jan 15 15
2210
Jan 15 4s

Build

B833ms

681ms

468ms

tailed|

750ms

Figure 2-25. A successful replay

However, if we click Configure in the menu on the left and go back and look at our
code in the Pipeline tab, we'll see that it still shows bat (Figure 2-26). The Replay
functionality allowed us to try out a change, but we still need to go back and update
our code in the pipeline job to make the change.

54

Chapter 2: The Foundations

Pipeline

Pipeline
Definition Pipeline script j
Script ;: i .|.nJ.-I'“ : . ¥ { 'i*\
: {
4 git
5
6 tage
:i bat
L
18
11
v Use Groovy Sandbox '@'
Pipeline Syntax
Save Apply

Figure 2-26. The original code is unchanged

Replay from the Command Line

Jenkins also has a command-line interface (CLI) available via the
CLI client JAR. (See Chapter 15 for more information.) In the CLI
there is a replay-pipeline command available. Here’s a simple
example of using it to replay from a Jenkinsfile:

java -jar ~/jenkins-cli.jar -s http://<jenkins-url>
replay-pipeline "<Name>" < Jenkinsfile

Supporting Environment: Developing a Pipeline Script

55

Replay and Source Code Versions

Be aware that, at least at the time of this writing, if you use a direct
SCM step (such as git) in your pipeline code, replays will always
" pull the latest code from the SCM repository, even if you are
replaying an earlier run. If the code is using the more generic check
out scm step in a Jenkinsfile (discussed in Chapter 10), then a
replay will pull the code that was current at the time of the run.

Pipeline Testing Framework

A question that frequently comes up for both new and experienced pipeline users is
whether there are frameworks available to test pipelines. In early 2017, work was
begun on an independent unit testing framework for pipelines called Jenkins Pipeline
Unit. As of fall 2017, that framework has been incorporated officially into the Jenkins
Project. You can find the latest code and documentation on GitHub.

What does it do? From the project description: “This testing framework lets you write
unit tests on the configuration and conditional logic of the pipeline code, by provid-
ing a mock execution of the pipeline. You can mock built-in Jenkins commands, job
configurations, see the stacktrace of the whole execution and even track regressions.”

Examples on the documentation page show ways to test functions used in pipelines,
including shared libraries. The basic execution mechanism is to import the pipeline
unit classes into your Gradle or Maven projects and execute them in a way similar to
JUnit tests. The basic testing functionality allows producing tracebacks that can be
programmatically searched and compared for regressions.

The project has a good working premise and is promising. It is currently not intuitive
to use, however, as it requires wrapping pipeline code in a job or structure that emu-
lates an external routine that can be loaded and executed. It’s also important to note
that most pipeline steps will need to be mocked via special mapping code.

In its current state, while a valid option, this framework is challenging for the typical
user to make use of and looks poised for refining, so we do not cover it in more detail
here. Going forward, since it has been transferred to Jenkins community ownership,
we expect this project to grow in ease of use and utility and provide even more value
for pipeline authors.

Summary

In this chapter, we walked through the foundational concepts needed to start working
with Jenkins 2. From a high level, we explored the differences between two syntactical
models (Scripted Pipelines and Declarative Pipelines), disambiguated the different
types of systems that pipelines can be executed on, examined the core structure

56 | Chapter2: The Foundations

http://bit.ly/2HCTCg3

expected in Scripted Pipelines, and walked through the supporting environment and
tools that Jenkins provides for developing our pipelines.

This information should provide a solid basis for you to use in your work and to
explore the remaining content of the book. We'll be diving into more details in the
following chapters, with the assumption that you have the knowledge from this chap-
ter. Feel free to refer back to it as many times as needed as you begin using Jenkins 2
and creating your pipelines-as-code.

In the next chapter, we’ll move from exploring the structure of pipelines to under-
standing the flow of execution through the pipeline, and the different ways we can
control and direct that.

Summary | 57

CHAPTER 3
Pipeline Execution Flow

Working with the legacy Jenkins web interface and items such as Freestyle jobs, our
ability to control the flow of processing was limited. Typically, this would take the
form of job chaining—having jobs kick oft other jobs when they completed. Or we
might include post-build processing to always do things like send notifications no
matter whether the job finished successfully or not.

Beyond that basic functionality, we could also add the Conditional BuildStep plugin
to define more complex flows of build steps based on single or multiple conditions.
But even that was limited, compared to the ways we can direct the execution flow
when writing programs.

In this chapter, we'll explore the different constructs provided by the Jenkins pipeline
DSL for controlling the execution flow in pipelines. We'll start with specifying prop-
erties to trigger jobs and how to accept input.

Then we'll look at how to keep things moving through constructs including timeouts,
retries, and running tasks in parallel. We'll also look at the constructs available to map
the Conditional BuildStep functionality into pipelines.

Finally, we'll see how to use pipeline methods to emulate the post-build processing
functionality of traditional Jenkins jobs. Along the way, we'll see how things differ for
Scripted and Declarative Pipelines.

Let’s get started with defining the properties for triggering jobs.

59

http://bit.ly/2Hc46zp

Triggering Jobs

To specify triggering events for pipeline code, there are three different approaches:

o If working in the Jenkins application itself in a pipeline job, the trigger(s) can be
specified in the traditional way within the project’s General configuration section
in the web interface.

o If creating a Scripted Pipeline, a properties block can be specified (usually
before the start of the pipeline) that defines the triggers in code. (Note that this
properties section will be merged with any properties defined in the web inter-
face, with the web properties taking precedence.)

o If creating a Declarative Pipeline, there is a special triggers directive that can be
used to define the types of things that should trigger the pipeline.

We'll briefly look at each of the trigger options available in the traditional Jenkins
interface, along with the corresponding scripted syntax and declarative syntax (if
there is one).

Other Types of Triggering for Special Projects

Note that the triggers discussed here do not apply to Multibranch
Pipeline, GitHub organization, or Bitbucket team/project jobs.
These types of jobs are identified by having Jenkinsfiles and are
triggered otherwise, such as by a webhook that notifies Jenkins
when a change is made.

These project types are discussed in more detail in Chapter 8.

Sections on each of the available options for build triggers follow.

Build After Other Projects Are Built

As the name implies, selecting this option allows you to start your project building
after one or more other projects. You can choose the ending status you want the
builds of the other projects to have (stable, unstable, or failed).

For a Scripted Pipeline, the syntax for building your pipeline after another job, Job1,
is successful would be like the following:

properties([
pipelineTriggers([
upstream(
hudson.model.Result.SUCCESS,
'Job1’

60 | Chapter3:Pipeline Execution Flow

D
D)

If you need to list multiple jobs, separate them with commas. If you need to specify a
branch for a job (as for a multibranch job), add a slash after the job name and then
the branch name (as in 'Job1/master"').

Build Periodically

This option provides a cron type of functionality to start jobs at certain time intervals.
While this is an option for builds, this is not optimal for continuous integration,
where the builds are based on detecting updates in source management. But it may
have use in other types of applications for Jenkins, such as starting jobs at particular
intervals to avoid collisions for resources. (Related: See the discussion on the H sym-
bol in the “Cron syntax” section.)

Here’s an example of the syntax in a Scripted Pipeline. In this case, the job runs at 9
a.m., Monday-Friday:

properties([pipelineTriggers([cron('0 9 * * 1-5')])])
And here’s an example of the syntax in a Declarative Pipeline:
triggers { cron(® 9 * * 1-5)

This trigger (and the polling one) both make use of the Jenkins cron syntax, which is
described next (with examples in the declarative format).

Cron syntax

The cron syntax used in Jenkins is a specification of when (how often) to do some-
thing based on five fields, separated by spaces. Each of the fields represents a different
unit of time. The five fields are:

MINUTES
Desired minutes value within the hour (0-59).

HOURS
Desired hours value within the day (0-23).

DAYMONTH
Desired day of the month (1-31).

MONTH
Desired month of the year (1-12).

DAYWEEK
Desired day of the week (0-7). Here, 0 and 7 both represent Sunday.

TriggeringJobs | 61

Also, the */<value> syntax can be used in a field to mean “every <value>” (as in */5
meaning “every 5 minutes”).

Additionally, the symbol H can be used in any of the fields. This symbol has a special
meaning to Jenkins. It tells Jenkins to, within a range, use the hash of the project
name to come up with a unique offset value. This value is then added to the lowest
value of the range to define when the activity actually starts within the range of val-
ues.

The idea with using the symbol is to not have all projects with the same cron values
starting at the same time. The offset from the hash serves to stagger the execution of
projects that have the same cron timing.

Use of the H symbol is encouraged to avoid having projects starting execution at the
same time. Note that since the value is a hash of the project name, each value will be
different from all others, but will remain the same for that project over time.

The H symbol can also have a range attached to it to specify limits on the interval it
can pick. See the following note on Advanced cron syntax for more details.

To solidify this a bit more, let’s look at some examples:

// Start a pipeline execution at 15 minutes past the hour
triggers { cron(15 * * * *) }

// Scan for SCM changes at 20-minute intervals
triggers { pollSCM(*/20 * * * *) }

// Start a pipeline session at some point between
// © and 30 minutes after the hour
triggers { cron(H(0,30) * * * *) }

// Start a pipeline execution at 9 a.m. Monday through Friday
triggers { cron(® 9 * * 1-5) }

62 | Chapter3:Pipeline Execution Flow

Advanced cron Syntax

The help for building periodically in Jenkins contains some
advanced cron syntax examples, excerpted below.

The H symbol can be used with a range. For example, H H(8-7) *
* * means some time between 12:00 AM (midnight) to 7:59 AM.
You can also use step intervals with H, with or without ranges.

The H symbol can be thought of as a random value over a range,
but it actually is a hash of the job name, not a random function, so
that the value remains stable for any given project.

Beware that for the day of month field, short cycles such as */3 or
H/3 will not work consistently near the end of most months, due to
variable month lengths. For example, */3 will run on the Ist, 4th,
...31st days of a long month, then again the next day of the next
month. Hashes are always chosen in the 1-28 range, so H/3 will
produce a gap between runs lasting from 3 to 6 days at the end of a
month. (Longer cycles will also have inconsistent lengths but the
effect may be relatively less noticeable.)

Empty lines and lines that start with # will be ignored as comments.

In addition, @yearly, @annually, @monthly, @weekly, @daily, @mid
night, and @hourly are supported as convenient aliases. These use
the hash system for automatic balancing. For example, @hourly is
the same as H * * * * and could mean at any time during the
hour. @midnight actually means some time between 12:00 AM and
2:59 AM

Examples:

every fifteen minutes (perhaps at :07, :22, :37, :52)
H/15 * * * %

every ten minutes in the first half of every hour
(three times, perhaps at :04, :14, :24)
H(0-29)/10 * * * *

once every two hours at 45 minutes past the hour
starting at 9:45 AM and finishing at 3:45 PM every
weekday

45 9-16/2 * * 1-5

once in every two hours slot between 9 AM and 5 PM
every weekday (perhaps at 10:38 AM, 12:38 PM,

2:38 PM, 4:38 PM)

H H(9-16)/2 * * 1-5

once a day on the 1st and 15th of every month except
December
HH1,15 1-11 *

Triggering Jobs

63

GitHub Hook Trigger for GitSCM Polling

A GitHub project configured as the source location in a Jenkins project can have a
push hook (on the GitHub side) to trigger a build for the Jenkins project. When this
is in place, a push to the repository causes the hook to fire and trigger Jenkins, which
then invokes the Jenkins SCM polling functionality. So the SCM polling functionality
has to be configured for this to work as well.

Most of the initial work for this is in the setup for the hook side and in the source
setup in the Jenkins project. More information is available on the Jenkins wiki.

The syntax for setting the property in a Scripted Pipeline is as follows:

properties([pipelineTriggers([githubPush()])])

There currently isn't a specific syntax for Declarative Pipelines.

Poll SCM

This is the standard polling functionality that periodically scans the source control
system for updates. If any updates are found, then the job processes the changes. This
can be a very expensive operation (in terms of system resources) depending on the
SCM, how much content is scanned, and how often.

Specifying the values for this uses the same Jenkins cron syntax as is used for the
“build periodically” option.

The syntax for Scripted Pipelines is as follows (polling every 30 minutes):
properties([pipelineTriggers([pollSCM('*/30 * * * *')7])])
The corresponding syntax for Declarative Pipelines would be this:

triggers { pollSCM(*/30 * * * *) }

Quiet Period

The value specified here serves as a “wait time” or offset between when the build is
triggered (an update is detected) and when Jenkins acts on it. This can be useful for
staggering jobs that frequently have changes at the same time, for example. If a value
is not provided here, the value from the global configuration is used.

While the pipeline build step has a quietPeriod option, as of this writing, there isn't
a direct pipeline option or step to do this. You may be able to achieve a similar effect
by using the throttle() step from the Throttle Concurrent Builds plugin.

Trigger Builds Remotely

This allows for triggering builds by accessing a specific URL for the given job on the
Jenkins system. This is useful for triggering builds via a hook or a script. An authori-

64 | Chapter3:Pipeline Execution Flow

http://bit.ly/2HM7a6z
http://bit.ly/2Hf0pJs

zation token is required. For an example, see the note on “URLs and Crumbs” later in
this chapter.

In the pipeline-as-code semantics, Multibranch Pipelines can be triggered via changes
in a Jenkinsfile. See Chapter 8 for more details on those.

After being triggered, certain stages of a pipeline may request or require input from a
user for purposes such as verification, or to direct processing down one of multiple
paths. We'll look next at how to handle collecting that input in our pipelines.

User Input

A key aspect of some Jenkins jobs is the ability to change their behavior based on user
input. Jenkins offers a wide variety of parameters for gathering specific kinds of
input. Jenkins pipelines provide constructs for this as well.

The DSL step input is the way we get user input through a pipeline. The step accepts
the same kinds of parameters as a regular Jenkins job for a Scripted Pipeline. For a
Declarative Pipeline, there is a special parameters directive that supports a subset of
those parameters.

We describe this step and the parameters, as they can be used in the pipeline, next.

input

As the name suggests, the input step allows your pipeline to stop and wait for a user
response. Here’s a simple example:

input 'Continue to next stage?'

This step can also optionally take parameters to gather additional information.
Within the Jenkins application, the default form is to print a message and offer the
user a choice of “Proceed” or “Abort” In the GUIT Stage View, this will be a dialog box
that looks like Figure 3-1. In the console output, this will be a line of output with
links to click on to continue or stop (Figure 3-2).

Userlnput | 65

Stage View

input

27ms
'
2 x \
Continue to next stage? '
I
\
Apern :

Figure 3-1. GUI prompt for input

() Console Output

Started by user Jenkins Admin
E 2 1 -

Running on worker node2 in /home/jenkins2/wo
Pir

Pipeline] ing

Continue to next stage?

Proceed or Abort

L

Figure 3-2. Console prompt for input

Choosing Proceed allows the pipeline to continue. Choosing Abort causes the pipe-
line to stop at that point with a status of “aborted”

It is important to note that when the system executes an input step, the processing is
paused on that node. This can lead to monopolizing system resources, as explained in
the following warning.

The input Step and Executors

As defined earlier in the book, an executor is a slot on a node for
processing code. Using the input step in a node block ties up the
executor for the node until the input step is done.

66 | Chapter3:Pipeline Execution Flow

The input step can have several parameters. These include:

Message (message)
The message to be displayed to the user, as demonstrated in the previous exam-
ple. Can also be empty, as indicated by input ''.

Custom ID (id)
An ID that can be used to identify your input step to automated or external pro-
cessing, such as when you want to respond via a REST API call. A unique identi-
fier will be generated if you don’t supply one.

As an example, you could add the custom ID, ctns-prompt (for “Continue to
next stage” prompt) to our input step definition. The input step would then look
as follows:

input 'ctns-prompt’', '"Continue to the next stage?'

Given this step, when you run the job, a POST to this URL could be used to
respond. The URL format would be:

http://[jenkins-base-url]j/job/[job_name]/[build_id]/input/Ctns-prompt/
proceedEmpty

to tell Jenkins to proceed without any input, or:

http://[jenkins-base-urlj/job/[job_name]/[build_id]/input/Ctns-prompt/
abort

to tell Jenkins to abort. (Notice that the parameter name is capitalized in the
URL.)

Userlnput | 67

URLs and Crumbs

If your Jenkins is configured to prevent Cross-Site Request Forgery
(CSRF) exploits via the Security settings (strongly recommended),
then any URL used to POST will need to also include a CSRF pro-
tection token.

One way to do this is to first define an environment variable to get
the token:
CSRF_TOKEN=
$(curl -s 'http://<username>:<password
or token>@<jenkins base
url>/crumbIssuer/api/xml?xpath=
concat(//crumbRequestField,":",//crumb)')
If you look at the environment variable with the token afterwards,
you’ll see something like this:
$ echo $CSRF_TOKEN
Jenkins-Crumb:0cd@babef95a70d0836c3f3e5bcdeea8
Then you can include the token in your POST call. Here’s an exam-
ple using curl:
$ curl --user <userid>:<password or token>
-H "S$CSRF_TOKEN" -X POST
-s <jenkins base url>/job/<job name>/<build number>/
input/
<input parameter with 1st letter capped>/proceedEmpty

If you don’t include the token, you'll end up with a 403 error.

OK button caption (ok)
A different label you can use instead of “Proceed.” For example:

input '<message text>', 'Yes'

Allowed submitter (submitter)
A comma-separated list of user IDs or group names for people authorized to
respond. For example:

input '<message text>', 'useril,user2’

68 | Chapter3:Pipeline Execution Flow

Submitter Caveats

There are two points to be aware of when working with the submit-
\ ter option:

« Do not use spaces (only commas) within the list of users/
groups.

o At least in some cases, users not in the list may still be able to
abort the input step.

Parameter to store the approving submitter (submitterParameter)
A variable to store the user that approves proceeding. To use this, you define a
variable to hold the response(s) from the input step. If there are no other param-
eters (see below) specified, then the name given to the submitterParameter
argument doesn’'t matter—the return value is dereferenced simply by accessing
the name of the variable.

def resp = input 'ctns-prompt’,
'Continue to the next stage?', 'approver'
echo "Answered by ${resp}"

If you have any other parameters, then you must supply the submitterParameter’s
name to access it:

def resp = input 'ctns-prompt’,
'"Continue to the next stage?',
[string(', B
'paral')], 'approver'

echo "Answered by " + resp['approver']

Traditional Jenkins parameter types
These are explained more in the next section.

Parameters

With the input statement, you have the option to add any of the standard Jenkins
parameter types. If you've done any work with Jenkins before, youre probably already
familiar with most of these. The following sections briefly introduce each one and
offer an example of what it looks like when used in a script.

For each parameter type, the different “subparameters” (arguments) that it can take
are also listed. If the purpose of the subparameter is self-evident from its name (e.g.,
name, default value, description), the argument name will be listed without addi-
tional explanation.

Userlnput | 69

Boolean

This is the basic true/false parameter. The subparameters for a Boolean are Name,
Default Value, and Description.

An example of the syntax would be:

def answer = input '<message>',
[booleanParam(true,
'Prerelease setting', 'prerelease')]

Note that this returns a java.lang.boolean.

Figure 3-3 shows what this looks like in the Stage View when run.

< Mmessage >

Figure 3-3. Boolean parameter console input

In the console output, you will simply get an “Input requested” link that, when
clicked, takes you to a screen like Figure 3-4.

Paused for Input

< message >
prereiease [f

Prareiease seting

Figure 3-4. Redirect screen for parameter input from console

Choice

This parameter allows the user to select from a list of choices. The subparameters for
a Choice are Name, Choices, and Description. Here, Choices refers to a list of choices
you enter to present to the user. The first one in the list will be the default.

70 | Chapter3:Pipeline Execution Flow

An example of the syntax would be:

def choice = input '<message>',
[choice("choicel\nchoice2\nchoice3\nchoice4\n",
'Choose an option', 'Options')]

Notice the syntax here for the list of choices—a single string with each choice separa-
ted by a newline character. There are other ways to instantiate a set of choices, but
this is the simplest.

Snippet Generator Generated Incorrect Code for choice Parameter

In versions of Jenkins prior to 2.112, the Snippet Generator gener-
ated incorrect code for a Choice parameter. The syntax looks like
* this:

input '<message>',
[choice(['choicel', 'choice2',

'choice3', 'choice4'],
'Choose an option', 'Options')]

This resulted in a java.lang.IllegalArgumentException. If you
encounter this, upgrade to a more recent version of Jenkins or you
can just follow the suggested syntax previously noted.

Running a pipeline and having it prompt you with this parameter type is similar to
the Boolean example. In the Stage View, there is a graphical dialog with a drop-down
list to select the choice in place of the checkbox.

In the console output, you again have the “Input requested” link, which takes you to a
screen with graphical elements where you can select your choice.

Credentials

This parameter allows the user to select a type and set of credentials to use. The avail-
able subparameters include Name, Credential Type, Required, Default Value, and
Description.

The options for Credential Type include Any, Username with password, Docker Host
Certificate Authentication, SSH Username with private key, Secret file, Secret text,
and Certificate.

If Required is specified, then a credential must be specified when the user is asked for
this field. (It can’t be empty.) This doesn’t imply that a build will be able to use the
credentials or that they will be valid, but just specifies that a selection is required.

The Default Value is the default credentials (selected from the set of ones already
defined in Jenkins).

Userlnput | 71

An example of the syntax follows for an SSH key:

def creds = input message: '<message>',

parameters: [[$class: 'CredentialsParameterDefinition', credentialType:
'com.cloudbees. jenkins.plugins.sshcredentials.impl.BasicSSHUserPrivateKey',
defaultValue: 'jenkins2-ssh', description: 'SSH key for access',

name: 'SSH', required: true]]

echo creds

This will print out the ID of the selected credentials.

And here is an example for username and password:

def creds = input message: , parameters: [[$class:
'CredentialsParameterDefinition', credentialType:
'com.cloudbees.plugins.credentials.impl.UsernamePasswordCredentialsImpl’,
defaultValue: '', description: 'Enter username and password',
name: 'User And Pass', required: true]]

Note that this will not prompt with fields to enter a username and password. Rather,
it presents the interface to select an existing credential or add a new one. In the Stage
View, it looks like Figure 3-5.

The paused input step uses advanced npaut

ns. Please redirect to approve

b almost complete

Figure 3-5. Credentials input prompt in Stage View

Once you click the “Please redirect to approve” link, you are taken to the prompts for
selecting credentials (Figure 3-6). The prompt from the console is the same as in the
previous cases.

User And Pass = _I o =

Choose credentals io use

m

Figure 3-6. Credentials prompt

72 | Chapter3:Pipeline Execution Flow

File

This parameter allows for choosing a file to use with the pipeline. The subparameters
include File Location and Description. The syntax is:

def selectedFile = input '<message>',
[file('Choose file to upload', 'local')]

Note that the item returned for this type of parameter is a hudson.FilePath object.
Some of the methods associated with FilePath are not permitted to be used by
default by Jenkins scripts, and may require approval by an administrator through the
process outlined in Chapter 5.

Processing for This Parameter Is Currently Broken

The File Location is intended to specify where to put the file that
will be selected and uploaded, relative to the workspace. However,
~ as of the time of this writing, while you can select a file via a File
parameter, the file is not uploaded or placed anywhere. Check the
latest Jenkins documentation for your version to see if this has been
corrected.

The interface is the same as the advanced ones previously described, except that you
have a Browse button to select a file.

List Subversion tags

This parameter allows you to specify a set of tags in Subversion to select from when
running a build. The subparameters include Name, Repository URL, Credentials, Tag
Filter, Default Value, the Maximum tags to display, and sorting options for newest
first and/or alphabetical sorting.

For the Repository URL subparameter, Jenkins expects you to specify the URL of the
Subversion repository that contains the tags you want to display. If this does not con-
tain the tags and there are subfolders, then the subfolders will be displayed to enable
drilling down.

Jenkins will check whether it can access this repository or not and prompt for creden-
tials if needed.

The Credentials subparameter contains the credentials to access the repository, if
required. (See Chapter 5 for an explanation of credentials.)

The Tag Filter refers to a regular expression to filter the list of tags presented.

The Default Value is used only if required for SVN polling or similar features.

Userlnput | 73

Here’s some example syntax:

def tag = input '<message>',
[[$class: 'ListSubversionTagsParameterDefinition',
'jenkins2-ssh', ", ',
'LocalSVN', false, false,
'file:///svnrepos/gradle-demo’, 'rel_*']]

The interfaces act like the ones for the File and Credentials parameters, except that
there is a drop-down with the matching list of tags to choose from instead of a file or
credential selection widget.

Multiline String

This parameter allows the user to input multiple lines of text. The subparameters
include Name, Default Value, and Description.

Here’s some example syntax:

def lines = input '<message>',
[text(""'"line 1
line 2
line 3''"', ', "Input Lines')]

Notice the entries in the commands are on different lines. This is because they have
newlines entered with the default values. Also notice the triple quotes before and after
the multiline message. The triple quotes are a standard notation used with Groovy for
things that span multiple lines.

As you might expect, when executing, this will pop up (or link to) an entry box where
you can type multiple lines of text.

Password

This parameter allows the user to enter a password. For passwords, the text the user
enters is hidden while they type it. The available subparameters are Name, Default
Value, and Description.

Here’s an example:

def pw = input '<message>',
[password(",
'"Enter your password.', 'passwd')]
When run, the user is presented with a field to enter the password, with the text being
hidden as they type.

74 | Chapter3:Pipeline Execution Flow

Run

This parameter allows the user to select a particular run (executed build) from a job.
This might be used, for example, in a testing environment. The subparameters avail-
able include Name, Project, Description, and Filter.

The Project subparameter is the job that you want to allow the user to select a run
from. The default run will be the most recent one.

The Filter subparameter allows you to filter the type of runs to offer based on the
overall build status. Choices include:

o All Builds (including “in-progress” ones)

o Completed Builds

o Successful Builds (this includes stable and unstable ones)
« Stable Builds Only

Here’s an example of code for this one:

def selection = input '<message>',
[run('Choose a run of the project',
"ALL', "RUN', "pipel')]
echo "selection is ${selection}"

This will output a response like:

selection is <project name> #<run number>

String

This parameter allows the user to enter a string. (This value is not hidden, like with a
Password parameter.) The subparameters include Name, Default Value, and Descrip-
tion.

Here’s an example:

def resp = input '<message>', [string(,
'"Enter response', 'Response')]

When run, the user is presented with a field to enter in the desired string.

Return Values from Multiple Input Parameters

In all of the examples just shown, we included only a single parameter. This syntax
provides a simple return value that directly contains the value input by the user. If
there were instead no parameters, such as having only a Proceed or Abort option,
then the return value would be null. And when you have multiple parameters, a map
is returned where you can extract each parameter’s return value via the parameter’s
name. An example follows.

Userlnput | 75

Suppose we wanted to add a traditional login screen to our pipeline. We would use
two parameters—one String parameter for the login name and one Password param-
eter for the password. We can do that in the same input statement and then extract
the return values for each from the returned map.

The following example code shows how to define the input statement along with
some print statements that show different ways to access the individual return values
(don’t forget that you can use the Snippet Generator for generating the input state-
ment as well):

def loginInfo = input 'Login',
[string(",
'"Enter Userid:', 'userid'),
password(',
'"Enter Password:', "passwd')]

echo "Username = " + loginInfo['userid']
echo "Password = ${loginInfo['passwd']}"
echo loginInfo.userid + " " + loginInfo.passwd

Parameters and Declarative Pipelines

Since creating new local variables to hold the return values from input statements
doesn’t fit the declarative model, you may be wondering how we can use the input
statement in Declarative Pipelines. There are several approaches here, including one
that leverages the declarative structure and one that works around it.

Using the parameters section

Within the Declarative Pipeline structure, there is a section/directive for declaring
parameters. This is within the agent block of the main pipeline closure. Figure 3-7
shows where this fits overall.

Use of the parameters directive is covered in detail with Declarative Pipelines in
Chapter 7, but here’s a simple example of the syntax (see “parameters” on page 234 for
more details):

pipeline {
agent any
parameters {
string('"USERID', ',
"Enter your userid')
}
stages {
stage('Login') {
steps {
echo "Active user is now ${params.USERID}"
}
}

76 | Chapter3:Pipeline Execution Flow

pipeline

5 -
} environment
5 =
1 tools

1 options

:r triggers I

4
1 parameters

-
1 libraries

stages

{ post i

Figure 3-7. Declarative Pipeline structure

If you are working in the Jenkins application itself, creating parameters like this in the
code will also instantiate the “This build is parameterized” part of the job.

This approach is the recommended approach for Declarative Pipelines.

Using the Jenkins application to parameterize the build

If you have created a job in the Jenkins application (rather than using a Jenkinsfile
automatically), a second approach for adding parameters is to simply use the tradi-
tional method for parameterizing a job. That is, in the General configuration section,

Userlnput | 77

select the checkbox for “This project is parameterized” and then define your parame-
ters as normal in the job’s web interface (Figure 3-8).

&
! This project is parameterized
String Parameter [
Mame USERID -

Detault Vake L

@

Descrption Entar yous usard

[Piain text] Proview

Add Parsmater =

Figure 3-8. Corresponding generation of parameters in Jenkins job

You can then simply reference the job parameters via params.<name of parameter>
without having the input line in the code, as shown here:

pipeline {
agent any
stages {
stage('Login') {
steps {
echo "Active user is now ${params.USERID}"
}
}
}
}

A variant of this approach is to define the parameters as properties before the pipe-
line. This can actually be done either for Scripted or Declarative Pipelines. Here’s how
it might look in the code:

properties ([
parameters ([

string(", "', name : 'USERID')
D
D
pipeline {
agent any
stages {
stage('Login') {
steps {
echo "Active user is now ${params.USERID}"
}
}
}

78 | Chapter3:Pipeline Execution Flow

However, since this works only within the scope of the Jenkins application and the
particular job within it, this is not recommended for production use. It also will over-
write any existing properties defined in Jenkins for the job.

With that said, it can be a useful way to prototype parameter usage in a pipeline for
certain cases.

Using a script block

While Declarative Pipelines are continuing to evolve and add more functionality,
there may still be instances where you need to do something in one that the declara-
tive style doesn’t support or renders very difficult to implement. For those cases, the
declarative syntax supports a script block.

A script block allows you to use nondeclarative syntax within the bounds of the
block. This includes defining variables, which is not something you can do in a
Declarative Pipeline outside of a script block. This also means that you cannot refer-
ence variables that are defined inside a script block outside of that block. Jenkins
flags those with a “no such property” error.

As an example of all of this, consider the following section of code:

stage ('Input') {
steps {
script {
def resp = input '<message>',
[string(',
'"Enter response 1',
'"RESPONSE1"), string(',
'"Enter response 2', "RESPONSE2')]
echo "${resp.RESPONSE1}"

}
echo "${resp.RESPONSE2}"

}
}
Here we have two parameters defined as part of an input step inside of a stage in a
Declarative Pipeline. Since the first echo is in the script block where the variable
resp is also defined, it will print out the response that is entered for that parameter as
expected.

Notice, though, that the second echo is outside of the scope where the resp variable is
defined. Groovy/Jenkins will throw an error when it gets to this one.

Because of this, it is advisable to try to limit accessing input to a small section of your
code if you have to use a script block. However, there is one other workaround if
you need to use the value outside the scope of the script block. You can put the
return value into an environment variable and then access the environment variable
wherever you need the value.

Userlnput | 79

Updating our code to use this method could look like the following:

stage ('Input') {

steps {
script {
env.RESP1 = input '<message>', [
string('y, '"Enter response 1',
"RESPONSE1')]
env.RESP2 = input '<message>"', [
string(', '"Enter response 2',

"RESPONSE2')]
echo "${env.RESP1}"

}
echo "${env.RESP2}"

}

We are putting the results of the input steps into the environment variable name-
space (env). Because these are environment variables, the values are set in the envi-
ronment and therefore available for the pipeline to use wherever it needs.

Note that we've broken the single input statement down into two separate input
statements. This results in the two environment variables RESP1 and RESP2 each hav-
ing just the contents of their respective input lines. You can instead use multiple
parameters in an input statement and set an environment variable with the results.
The environment variable will have the form:

<parameter_name>=<input_value>, <parameter_name>=<input_value>, ...

You will then need to write code to parse out the unique values you are interested in.

Using external code

One other option available to you is putting scripted statements (like the calls to
input) in an external shared library or an external Groovy file that you load and exe-
cute. For example, we could code our input processing in a file named vars/
getUser.groovy in a shared library structure, like this:

#!/usr/bin/env groovy

def call(String promptl = 'Please enter your data', String prompt2 = 'Please
enter your data') {

def resp = input message: '<message>', parameters: [string(defaultvValue: '',
description: promptl, name: 'RESPONSE1'), string(defaultValue: '', description:
prompt2, name: 'RESPONSE2')]

echo "${resp.RESPONSE1}"

echo "${resp.RESPONSE2}"

// do something with the input

80 | Chapter3:Pipeline Execution Flow

If our library were named Utilities, then we could import it and call the getUser
function as shown here:

('utilities')_

pipeline {
agent any
stages {
stage ('Input') {
steps {
getUser 'Enter response 1','Enter response 2'
}
}
}
}

Chapter 6 discusses creating and using shared pipeline libraries in detail.

Nondeclarative Code and Blue Ocean

If you plan to use your pipeline with Blue Ocean, be aware that the
built-in editor is designed to work primarily with declarative syn-
* tax. Any nondeclarative syntax may be ignored or may not work as
expected in the Blue Ocean editor.

One of the challenges with using an input statement is what happens if you don’t get
input in an expected amount of time. While waiting for input, the node is effectively
stopped, waiting on a response. To prevent this from going on too long, you should
consider wrapping the input call with another type of flow control construct: the time
out statement. We'll discuss that in the next section.

Flow Control Options

One of the benefits of writing your pipeline-as-code in Jenkins (versus using the tra-
ditional web forms) is that you have more options for controlling the flow through
the pipeline. This includes handling cases that might otherwise cause your pipeline to
stop or fail. The options available include ways to accomplish waiting, retries, etc.
We'll walk through each of them now.

timeout

The timeout step allows you to limit the amount of time your script spends waiting
for an action to happen. The syntax is fairly simple. Here’s an example:

timeout(60, "SECONDS') {
// processing to be timed out inside this block

}

Flow Control Options | 81

The default unit for time is minutes. If you only specify a time value, it will be
assumed to be in minutes. If the timeout is hit, then the step will throw an exception.
This will cause the processing to abort if the exception isn’t handled some other way.

A best practice is to wrap any step that can pause the pipeline (such as an input step)
with a timeout. This is so that your pipeline continues to execute (if desired) even if
something goes wrong and the expected input doesn’t occur within the time limit.
Here’s an example:

node {
def response
stage('input') {

timeout(10, "SECONDS ') {
response = input 'User',
[string('userl',
'"Enter Userid:', 'userid')]
}

echo "Username = " + response

}

In this case, Jenkins will wait for 10 seconds for the user to enter a response. If that
time passes, Jenkins will throw an exception causing the pipeline to abort. You can
see the sequence in the output captured in Figure 3-9.

Console Output

Started by user Jenkins Admin

Running on worker node3 in /Jhome/jenkin

Timeout set to expire in 10 sec

Input reguested

Cancelling nested steps due to timeout

Rejected by SYSTEM
Finished: ABORTED

Figure 3-9. Console output from a timeout

As shown by the console output, the timeout does stop the pause in processing while
waiting on input. However, when it does this, it throws an exception, causing our
pipeline to abort. In order to not abort the pipeline, we can wrap the timeout in a

82 | Chapter3:Pipeline Execution Flow

traditional try-catch block, as shown in the following code. Notice that we set the
response to the desired default when we handle the exception:

node {
def response
stage('input') {

try {
timeout(10, 'SECONDS") {
response = input 'User',
[string('userl',
'"Enter Userid:', 'userid')]
}
}
catch (err) {
response = 'userl'
}
}
}
retry

The retry closure wraps code in a step that retries the process n times if an exception
occurs in the code. 7 here refers to a value you pass in to the retry step. The syntax is
just:

retry(<n>) { // processing }

If the retry limit is reached and an exception occurs, then the processing is aborted
(unless that exception is handled, such as with a try-catch block).

sleep

This is the basic delay step. It accepts a value and delays that amount of time before
continuing processing. The default time unit is seconds, so sleep 5 waits for 5 sec-
onds before continuing processing. If you want to specify a different unit, you just
add the unit name parameter, as in:

sleep 5, '"MINUTES'

waitUntil

As you might guess, this step causes processing to wait until something happens. The
“something” in this case is the closure returning true.

If the processing in the block returns false, then this step waits a bit longer and tries
again. Any exceptions thrown in the processing cause the step to exit immediately
and throw an error.

Flow Control Options | 83

The syntax for wattUntil is simply:

wailtUntil { // processing that returns true or false }

How Long Does It Wait?

I mentioned that if the processing in the block returns false, then
the waitUntil step waits a bit longer and tries again. You may be
wondering what is meant by “a bit longer” here. Currently, the sys-
tem starts out with a 0.25 second wait time. If it needs to loop
again, it multiplies that by a factor of 1.2 to get 0.3 seconds for the
next wait cycle. On each succeeding cycle, the last wait time is mul-
tiplied again by 1.2 to get the time to wait. So, the sequence goes as
0.25, 0.3, 0.36, 0.43, 0.51...

Figure 3-10 shows an example of what this looks like.

[pipe2] Running shell script
+ test -e Jhome/jenkins2/marker. txt

Will try again after 8.25 sec
[pipe2] Running shell script
+ test -e /home/jenkins2/marker.txt
Will try again after 6.3 sec
[pipe2] Running shell script
+ test -e /home/jenkins2/marker.txt
Will try again after 0.36 sec
[pipe2] Running shell script
+ test -e /home/jenkins2/marker.txt

Will try again after 9.43 sec

Figure 3-10. Example retry run

Because this step could end up waiting indefinitely if the processing never returns
true (whether by intention or not), it is recommended to wrap this step with a time
out step so that eventually processing will.

Here is an example of using a waitUntil block to wait until we have a marker file in
place. Notice that we have a timeout around the waitUntil to avoid staying in the
waitUntil indefinitely. Also, we are setting the returnStatus parameter to true for
the shell call, so that we get the return code back from the operation to check for suc-
cess:

timeout(15, "SECONDS ") {
wattUntil {

84 | Chapter3:Pipeline Execution Flow

def ret = sh true,
'test -e /home/jenkins2/marker.txt'
return (ret == 0)

}

As another example, suppose we are waiting for a Docker container to start up so that
we can get some data via a REST API call as part of our pipeline testing. In this case
we get an exception if the URL isn't available yet. To ensure that we don’t exit right
away when the exception is thrown, we can use a try-catch structure to catch the
exception and return false in that case. We also wrap it in a timeout as a guard
against it not being available at all for some reason and holding up our pipeline:

timeout(120, "SECONDS ') {
waltuntil {

try {
sh "docker exec ${webContainer.id} curl
--silent http://127.0.0.1:8080/roar/api/vl/registry
1>test/output/entries.txt"
return true

}
catch (exception) {
return false

}
}

Note that if we were doing this inside of a Declarative Pipeline, we would have to use
a method such as a script block or shared library to handle this code.

Now that we understand how to process individual flow control sections within a
pipeline, the next step up is dealing with multiple simultaneous lines of pipeline exe-
cution and concurrency.

Dealing with Concurrency

For the most part, having concurrency in your pipeline builds is a good thing. Typi-
cally, concurrency refers to parallelism—being able to run similar parts of your jobs
concurrently on different nodes. This can be especially useful in cases such as run-
ning tests, as long as you limit duplicate access to resources appropriately.

Another form of concurrency in Jenkins is when multiple builds of the same job try
to run at the same time or use the same resources. In the case of very active reposito-
ries, branches, or pull requests, this may be an expected, common situation.

But there may also be cases where this is not expected and not desirable. Let’s look
briefly at two mechanisms that Jenkins pipelines have to address that situation.

Dealing with Concurrency | 85

Locking Resources with the lock Step

If you have the Lockable Resources plugin installed, there is a DSL lock step available
to restrict multiple builds from trying to use the same resource at the same time.
(There will also be a Lockable Resources section on the Configure System page where
you can globally define and reserve resources if necessary—for example, if you tem-
porarily need to take a set of resources offline for a system.)

“Resource” here is a loose word. It could mean a node, an agent, a set of them, or just
a name to use for the locking. If the specified resource isn't defined in the global con-
figuration, it will be added automatically.

The DSL lock step is a blocking step. It locks the specified resource until the steps
within its closure are completed. In its simplest case, you just supply the resource
name as the default argument. For example:

lock('worker_node1') {
// steps to do on worker_nodel

}

Alternatively, you can supply a label name to select a set of resources that have a cer-
tain label and a quantity to specify the number of resources that match that label to
lock (reserve):

lock('docker-node', 3) {
// steps
}
You can think of this as, “How many of this resource do I have to have available to
proceed?” If you specify a label but no quantity, then all resources with that label are
locked.

Finally, there is an inversePrecedence optional parameter. If this parameter is set to
true, then the most recent build will get the resource when it becomes available.
Otherwise, builds are awarded the resource in the same order that they requested it.

As a quick example, consider a Declarative Pipeline where we want to use a certain
agent to do the build on, no matter how many instances of the pipeline we are run-
ning. (Perhaps it is the only agent with the specific tools or setup we want at the
moment.) Our code might look like this with the lock step:

stage('Build') {
// Run the gradle build
steps {
lock('worker_nodel') {
sh 'gradle clean build -x test'
}
}

86 | Chapter3:Pipeline Execution Flow

http://bit.ly/2vtAOej

If we start multiple builds running of the same project or if we have multiple projects
with this same lock code for the resource, then one build/project will get the resource
first and other builds/projects will have to wait.

For the first build or project that gets the resource, the console log might show some-
thing like this:

[Pipeline] stage

[Pipeline] { (Build)

[Pipeline] lock

00:00:02.858 Trying to acquire lock on [worker_nodel]
00:00:02.864 Resource [worker_nodel] did not exist. Created.
00:00:02.864 Lock acquired on [worker_nodel]

[Pipeline] {

[Pipeline] tool

[Pipeline] sh

00:00:02.925 [gradle-demo-simple-pipe] Running shell script
00:00:03.213 + /usr/share/gradle/bin/gradle clean build -x test
00:00:06.671 Starting a Gradle Daemon

00:00:16.887

00:00:16.887 BUILD SUCCESSFUL

00:00:16.887

00:00:16.887 Total time: 13.16 secs

[Pipeline] }

00:00:17.187 Lock released on resource [worker_nodel]
[Pipeline] // lock

And for the other builds/jobs trying to acquire the same lock, console output might
look like this:

[Pipeline] // stage

[Pipeline] stage

[Pipeline] { (Build)

[Pipeline] lock

00:00:03.262 Trying to acquire lock on [worker_nodel]

00:00:03.262 Found 0 available resource(s). Waiting for correct
amount: 1.

00:00:03.262 [worker_nodel] is locked, waiting...

Locks allow us to control access to resources that eventually should become available.
Another method of controlling concurrency is preventing other builds from continu-
ing past a point once a build has already gotten there. These points can be established
with milestones.

Controlling Concurrent Builds with Milestones

One of the scenarios that you might have to deal with at some point in Jenkins is
builds of the same pipeline running concurrently that can have contention for resour-
ces. The runs could be reaching key points at different times and stepping on each
other, or one run could be modifying required resources that leave things in a bad

Dealing with Concurrency | 87

state when the other run makes it to that point. In short, there’s no guarantee that
after one run has modified a resource, another run won't come along and modify it
while the earlier run is still in progress.

To prevent the case where builds could run out of order (in terms of the order they
were started) and step on each other, Jenkins pipelines can use the milestone step.
When a milestone step is put in the pipeline, it prevents an older build from moving
past the milestone, if the newer build has already gotten there.

The following example shows a milestone step placed in a script after a Gradle build:

sh "'${gradleLoc}/bin/gradle' clean build"
}
milestone 'After build', 1
stage("NotifyOnFailure") {
Suppose we have two runs of this build happening concurrently, as shown in
Figure 3-11.

@ #11 Nov24, 2016 6:46 PM
I G

9 #0 Nov 24. 2016 6:46 PM
] G

Figure 3-11. Two ordered builds of the same job running concurrently

If build #11 gets to the milestone step first during its processing, then when build
#10 arrives, it will be canceled. This prevents build #10 from overwriting or modify-
ing any resources already in use or modified by build #11. The console log for build
#10 for this part of the process is shown in Figure 3-12.

€ @ localhost:8C

)/job/test-script/10/console EJ -

Jenkins test-script #10
BUILD SUCCESSFUL

Total time: 22.843 secs

Trying to pass milestone 1
Canceled since build #11 already got here

Superseded by test-script#ll
Finished: NOT_BUILT

Figure 3-12. Console log for build #10

88 | Chapter3:Pipeline Execution Flow

The rules for milestone processing can be summed up as:

« Builds pass the milestones in order by build number.
« Older builds abort if a newer build has already passed the milestone.

o When a build passes a milestone, Jenkins aborts older builds that have passed the
previous milestone, but not this milestone.

o If an older build passes a milestone, newer builds that haven’t passed the mile-
stone won't abort it.

To be clear, if concurrent builds reach the milestone in the order they were started,
they can all pass the milestone.

The milestone step can take a couple of parameters. The first is a label, which is to
identify the milestone. It will be shown in the build log. The second is an ordinal
number. This is autogenerated if not set specifically. You only need to do this if youre
going to be adding/deleting milestones during the builds. There is also a way to
restrict concurrent builds running for multiple branches in a Multibranch Pipeline
project. That’s covered in the next section.

Restricting Concurrency in Multibranch Pipelines

The pipeline DSL includes a way to restrict Multibranch Pipelines to only building
one branch at a time. This is done with a property for either a Scripted or Declarative
Pipeline. When this is in place (in the Jenkinsfiles of the branches), requested builds
for branches other than the one currently building will be queued.

In a scripted syntax, the property can be set this way:
properties([disableConcurrentBuilds()])
In declarative syntax, it would look like this:

options {
disableConcurrentBuilds()

}

Next, we'll look at one of the main ways to benefit from concurrency—running tasks
in parallel.

Running Tasks in Parallel

In addition to the other constructs for controlling the logic flow of a pipeline, steps
can also be run in parallel. In fact, the pipeline DSL has special constructs for doing
this—a traditional one that fits both Scripted and Declarative Pipelines, and a newer
one just for Declarative Pipelines. To illustrate the main points, well talk about the
more general one first and then the newer declarative syntax.

Dealing with Concurrency | 89

Traditional parallel syntax

The traditional parallel pipeline step takes a map as an argument. For this con-
struct, the values of the map are generally closures consisting themselves of pipeline
steps. Wrapping those steps in different nodes allows for the best parallelism. If spe-
cific nodes aren’t indicated, Jenkins will run the parallel steps on unused nodes.

Map Is Required

For this parallel step, if you don’t supply a map as the argument,
then your jobs will not be run in parallel. Also note that stages can-
not be used inside of this parallel block (unlike the newer syntax
for Declarative Pipelines).

The following is a simple script that constructs a set of parallel operations. In this
example, stepsToRun = [:] is the Groovy syntax for declaring a map. The loop then
iterates, setting the key to "Step<loop counter>" and the value for each to a node
block that echos start, sleeps, and then echos done. Finally, the parallel step exe-
cutes, taking the map as an argument:

node ('worker_nodel') {
stage("Parallel Demo") {
// Run steps in parallel

// The map we'll store the steps in
def stepsToRun = [:]

for (int 1 = 1; 1 < 5; 1++) {
stepsToRun["Step${i}"] = { node {
echo "start"
sleep 5
echo "done"
1

}
// Actually run the steps in parallel

// parallel takes a map as an argument,
parallel stepsToRun

}
}
Figure 3-13 shows the console output of this section of code running. Note that since
we didn't specify any specific nodes, each step is allowed to run on any available node.
If you look carefully at the output, you can see the interleaving of the steps as the par-
allel jobs run.

90 | Chapter3:Pipeline Execution Flow

[Pipeline] stage

[Pipeline] { (Parallel Demo)
[Pipeline] parallel

[Pipeline] [S5tepl] { (Branch: Stepl)
[Pipeline] [Step2] { (Branch: Stepl)
[Pipeline] [Step3] { (Branch: Stepd)
[Pipeline] [Stepd4] { (Branch: Stepd)
[Pipeline] [Stepl] node

[Stepl] Running on master in /fvar/lib/jenkins/jobs/externlib-test/workspace
[Pipeline] [Step2] node

[Step2] Running on master in /fvar/lib/jenkins/jobs/externlib-test/workspacea2
[Pipeline] [Step3] node

[Step3] Running on worker node2 in /home/jenkins/worker noded/workspace/externlib.test
[Pipeline] [Stepd] node

[Pipeline] [Stepl] {

[Pipeline] [Step2] {

[Pipeline] [Step3] {

[Pipeline] [Stepl] echo

[Stepl] start

[Stepl] Sleeping for 5 sec
[Pipeline] [Stepl] sleep

[Pipeline] [Step2] echo

[Step2] start

[Pipeline] [Step2] sleep

[Step2] Sleeping for 5 sec
[Pipeline] [Step3] echo

[Step3] start

[Pipeline] [Step3] sleep

[Step3] Sleeping for 5 sec
[Pipeline] [Stepl] echo

[Stepl] done

[Pipeline] [Stepl] }

[Stepd] Running on master in fvar/lib/jenkins/jobs/externlib-test/workspace
[Pipeline] [Stepl] // node
[Pipeline] [Stepl] }

[Pipeline] [Stepd] {

[Pipeline] [Stepd] echo

[Stepd] start

[Pipeline] [S5tepd] sleep

[Stepd] Sleeping for 5 sec
[Pipeline] [Step2] echo

[Step2] done

[Pipeline] [Step2] }

[Pipeline] [Step2] // node
[Pipeline] [Step2] }

[Pipeline] [Step3] echo

[Step3] done

[Pipeline] [Step3] }

[Pipeline] [Step3] // node
[Pipeline] [Step3] }

[Pipeline] [Stepd] echo

[Stepd] done

[Pipeline] [Stepd4] }

[Pipeline] [Stepd] // node
[Pipeline] [Stepd] }

[Pipeline] // parallel

[Pipeline] }

[Pipeline] // stage

[Pipeline] }

[Pipeline] // node

[Pipeline] End of Pipeline

Finished: SUCCESS

Figure 3-13. Parallel execution of dynamic steps

Dealing with Concurrency

91

It is also possible to just define the mapping directly in the invocation of the parallel
step. The following is an implementation done this way. Notice again that we are
passing in a mapping with closures and nodes. In this implementation, the first
occurrences of master and worker2 are the keys to the maps. The sections after the
colons are the closures that make up the value portions of the map. In each of the
closures for the map values, we allocate a block of code to run on specific nodes. In
this case, the code block is a shell step (sh) that invokes Gradle to run a single test—a
different one on each node.

stage ('Test') {
// execute required unit tests in parallel

parallel (
{ node ('master'){
sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExamplel test'
1

{ node ('worker_node2'){
sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExample2 test'

13,
}

However, trying to run this particular piece of code in most instances will run into a
problem, as shown in Figure 3-14.

[master]

[master] FAILURE: Build failed with an exception.

[master]

[master] * What went wrong:

[master] Task 'test' not found in root project 'workspace@z'.
[master]

[master] * Try:

[master] Run gradle tasks to get a list of available tasks. Run with
option to get more log output.

[master]

[master] BUILD FAILED

[master]

[master] Total time: 22.374 secs

Figure 3-14. Error trying to run parallel jobs without a workspace

The challenge here is that the original build happened in a workspace on a different
node and the new node (master, in this case) does not have access to that workspace.
We could archive artifacts here or try to copy them over ourselves, but Jenkins
includes special steps to help with such a case. This is a good place to cover those.
stash and unstash

In the Jenkins DSL, the stash and unstash functions allow for saving and retrieving
(respectively) files between nodes and/or stages in a pipeline. Their format is:

92 | Chapter3:Pipeline Execution Flow

stash "<name>" ["<pattern>" "<pattern>"]

unstash "<name>"

The basic idea here is that we designate a set of included or excluded files via names
and/or patterns. This stash of files is given a name to refer to it by.

Then, when we need to retrieve the set of files, we can simply pass the name of the
stash to the unstash command. This can be done on a different stage or node.

Git stash Versus Jenkins stash

To be clear, these functions are different from the Git stash func-
tion. The Git stash function allows for stashing the contents of a
working directory and cache that haven’t yet been committed to
the local repository. The Jenkins stash function allows for stashing
files to share between nodes.

The stash and unstash functions are not intended for formal management of large
groups of files such as where you need to keep track of version numbers. For that type
of requirement, it is better to use an artifact repository designed for managing binary
artifacts such as Artifactory or Nexus. (Artifactory and integration with Jenkins is
discussed in Chapter 13.)

An example of the use of the stash and unstash commands across nodes is shown
next. In this case, after we get the source, we are stashing the build.gradle file and the
entire src/test tree. This stash is given the name test-sources. Then, in the parallel
section that runs on the other node (worker_node2 in this case), the unstash com-
mand creates a copy of the stashed files and tree on that node. This allows the files to
be present so the testing can take place on that node as well and we can achieve the
parallelism:

stages {

stage('Source') {
git 'test', 'git@diyv:repos/gradle-greetings'
stash 'test-source', 'build.gradle,src/test/’

}

stage ('Test') {
// execute required unit tests in parallel

parallel (
{ node ('master') {
unstash 'test-sources'
sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExamplel test'
13

{ node ('worker_node2") {

Dealing with Concurrency | 93

unstash 'test-sources'
sh '/opt/gradle-2.7/bin/gradle -D test.single=TestExample2 test'
11,

}

The log of running this sequence can be seen in Figure 3-15. Again, note the inter-
leaving of execution between the nodes. (In this case there is a test that is supposed to
fail, so this run is successful.)

[Pipeline] stage

Pipeline] { (Test)

[Pipeline] parallel

[Pipeline] [master] { (Branch: master)

Pipeline] [worker2] { (Branch: worker2)

[Pipeline] [master] node

[master] Running on master in /var/lib/jenkins/jobs/parallel-test-stash-no-
[Pipeline] [worker2] node

[worker2] Running on worker node2 in /home/jenkins/worker node2/workspace/f
Pipeline] [master] {

[Pipeline] [worker2] {

[Pipeline] [master] unstash

Pipeline] [worker2] unstash

[Pipeline] [master] sh

[master] [workspace@2] Running shell script

[Pipeline] [worker2] sh

[master] + /opt/gradle-2.7/bin/gradle -D test.single=TestExamplel test
[worker2] [parallel-test-stash-no-clean-workspace] Running shell script
[worker2] + fopt/gradle-2.7/bin/gradle -D test.single=TestExample2 test
[master] :compilelava UP-TO-DATE

[master] :processResources UP-TO-DATE

[master] :classes UP-TO-DATE

[worker2] :compilelava UP-TO-DATE

[worker2] :processResources UP-TO-DATE

[worker2] :classes UP-TO-DATE

[worker2] :compileTestlava

[worker2] :processTestResources UP-TO-DATE

[worker2] :testClasses

[master] :compileTestlava

[master] :processTestResources UP-TO-DATE

[master] :testClasses

[worker2] :test

[worker2]

[worker2] TestExample2 = example2 FAILED

[worker2] org.junit.ComparisonFailure at TestExample2.java:10
[worker2]

[worker2] 1 test completed, 1 failed

[worker2] :test FAILED

[worker2]

[worker2] FAILURE: Build failed with an exception.

[worker2]

[worker2] * What went wrong:

[worker2] Execution failed for task ':test'.

[worker2] = There were failing tests. See the report at: file:///home/jenki
[worker2]

Figure 3-15. Parallel run with stash and unstash used to share files across nodes

94 | Chapter3:Pipeline Execution Flow

Parallel Test Executor Plugin

A separate plugin is available that can help with parallelizing sets of
tests if they are taking up significant time in your pipeline. The
Parallel Test Executor plugin looks at a run of your tests with the
execution times and attempts to split the tests up into groups of
roughly equal size. (This is done with a splitTests DSL step that
is added by the plugin.) The groups are put into lists that you can
then map into the parallel step in your pipeline. Optimally, each
group would be mapped to run on a separate node.

Using this plugin requires that your test environment/setup:

o Create JUnit-compatible XML files.

o Use a tool that can accept a test-exclusion list in a file.

Alternative parallel syntax for Declarative Pipelines

With the release of Declarative Pipeline 1.2 in September 2017, a new, alternative syn-
tax was introduced for use in Declarative Pipelines. The new syntax more closely
matches the structured form of Declarative Pipelines. It also doesn’t require the setup
of a map or use of node, and produces output separated by each branch of the parallel
operation.

The new syntax elevates the parallel step to a separate construct within a stage. It
can have stages defined within itself for each branch to run in parallel. Within each
branch you can define an agent to run on and steps to execute just as you can for
other Declarative Pipeline sections.

An excerpt of a stage from a Declarative Pipeline that uses this syntax is shown here:

stage('Unit Test') {
parallel{
stage ('Util unit tests') {
agent { label 'worker_node2' }
steps {
cleanWs()
unstash 'ws-src'
gbuild4 ':util:test'
}

}
stage ('API unit tests set 1') {
agent { label 'worker_node3'}
steps {
// always run with a new workspace
cleanWs()
unstash 'ws-src'
gbuild4 '-D test.single=TestExamplel* :api:test'

Dealing with Concurrency | 95

http://bit.ly/2HCEJdw

}
}
stage ('API unit tests set 2') {
agent { label 'worker_node2' }
steps {
// always run with a new workspace
cleanWs()
unstash 'ws-src'
gbuild4 '-D test.single=TestExample2* :api:test'

}

As you can see, this syntax is somewhat “cleaner” than the map syntax and more con-
sistent with the declarative syntax. When run, due to the individual stage definitions,
it will also produce stage output for each “substage” (Figure 3-16) as opposed to the
single set of output of the traditional parallel syntax (Figure 3-17).

Stage View

Uil wnit APl unit AP unit

Seource Complie Unit Test tests lests set 1 tests set 2

2s 3s 183ms 1min 16s 1min 17s 43s

1min 16s 1min 17s 43s

Figure 3-16. Stage output for new parallel syntax

Stage View

Source Compile Unit Test
1s 20s Tmin 9s
Jan 17 20s 1min 9s

Figure 3-17. Stage output for traditional parallel syntax

parallel and failFast

Sometimes when doing multiple processing steps in a parallel block, you may want
to quit processing all steps if one branch fails. For example, if you are doing deploy-
ment in one parallel section and testing in another section, you may want to abort the
deployment if testing fails and abort the testing if deployment fails. To facilitate this,
Jenkins pipelines can use the failFast option when invoking the parallel step.

96 | Chapter3:Pipeline Execution Flow

To use this option, you add failFast:true to the parallel step options. When this
option is present and one of the branches in the parallel step fails, Jenkins will ter-
minate all running branches.

As an example, consider the following code. This is a simple Declarative Pipeline with
one stage to demonstrate the parallel failFast usage. In the parallel step, we have
the group1 branch that simply sleeps for 10 seconds and then echos out a message.
The group2 branch sleeps for 5 seconds before throwing an error (via the error step)
that will cause the failFast (the last argument to the parallel step) to fire. We have
wrapped the groupl branch in catchError and timestamps steps so that we can
detect when the branch is interrupted/terminated by the failFast operation:

pipeline {
agent any
stages {
stage ('Parallel') {
steps {
parallel (
"groupl': {
timestamps {
catchError {
sleep 10
echo 'Completed groupl processing'
}
}
1
'group2': {
sleep 5
error 'Error in group2 processing'
1
true
)
}
}
}
}

When we run this pipeline, we will get output like that shown in Figure 3-18.

Dealing with Concurrency | 97

o Console Output

Started by user Jenkins Admin

Running on worker node2 in /home/jenkins2

[group2] Sleeping for 5 sec

16:43:80 [groupl] Sleeping for 18 sec

[group2] Failed in branch group2

16:43:085 [groupl] Exception: null

ERROR: Error in group2 processing
Finished: ABORTED

Figure 3-18. Running with the failFast option enabled

Looking at this output, you can see that 5 seconds into the group1 branch processing,
the branch was terminated (note the “Exception” in the log). This was because after
the 5-second sleep, the group2 branch threw the error. Then the failFast option ter-
minated groupi.

If we were to take the failFast option out or set it to false, then we would still see the
group2 branch terminate with the error, but the group1 branch would run to comple-
tion after the 10-second sleep, as shown in the alternate output in Figure 3-19.

98 | Chapter3:Pipeline Execution Flow

[group2] Sleeping for 5 sec

16:42:16 [groupl] Sleeping for 18 sec

[group2] Failed in branch group2

16:42:26 [groupl] Completed groupl processing

ERROR: Error in group2 processing
Finished: FAILURE

Figure 3-19. Running without the failFast option

We move on now from dealing with running multiple operations in parallel to exe-

cuting operations based on (potentially multiple) conditions.

Conditional Execution

Historically, the Conditional BuildStep plugin let users add conditional execution

functionality to Freestyle jobs in Jenkins. It allowed a way to test certain conditions,
and, based on the outcome, execute single or multiple build steps.

Jenkins pipelines can provide similar functionality. In the case of a Scripted Pipeline,
it's as simple as using the Groovy/Java language conditionals in your pipeline code.

An example is included here using an if statement with conditions that must be true

for multiple parameters:

node ('worker_nodel") {
def responses = null
stage('selection') {

}

responses = input

[string(',
'"BRANCH_NAME ') ,choice(
v, "BUILD_TYPE')]

stage('process') {

if ((responses.BRANCH_NAME == 'master') &&

(responses.BUILD_TYPE == 'RELEASE')) {
echo "Kicking off production build\n"

'"Enter branch and select build type',

'DEBUG\NRELEASE\nTEST',

Conditional Execution

99

Since these kinds of Groovy/Java-specific language features don't fit in a declarative
model, Declarative Pipelines in Jenkins provide their own implementation for execut-
ing code based on conditionals. In general, it takes the form of a when that tests one
or more expression blocks to see whether they are true. If so, then the remaining
code in a stage is executed. If not, then the code is not executed.

Here’s an example of a Declarative Pipeline that corresponds to the Scripted Pipeline
just shown:

pipeline {
agent any
parameters {
string(",

name : 'BRANCH_NAME')

choice (
'DEBUG\NRELEASE\nTEST"',

name : 'BUILD_TYPE')
}
stages {
stage('process') {
when {
allof {
expression {params.BRANCH_NAME == "master"}
expression {params.BUILD_TYPE == 'RELEASE'}
}
}
steps {
echo "Kicking off production build\n"

}

}

Notice the use of the parameters section to formally define the parameters in use in
the Declarative Pipeline. Also, you can see how the when and all0f blocks combine
like the if-&& construct in the Scripted Pipeline.

Using these kinds of conditional constructs in Declarative Pipelines is covered in
more detail in “Conditional execution of a stage” on page 239.

Post-Processing

Traditional (web-based) Jenkins Freestyle jobs include a Post-build Actions section
where users can add actions that always occur after a build is finished, regardless of
whether it completed successfully, failed, or was aborted.

100 | Chapter 3: Pipeline Execution Flow

We can replicate this functionality in both Scripted and Declarative Pipelines. The
Scripted Pipeline relies on programming constructs to emulate this, while Declarative
Pipelines have built-in functionality for it. We'll look at both of these implementa-
tions next.

Scripted Pipelines Post-Processing

Scripted Pipelines do not have built-in support for post-build processing. In Scripted
Pipelines, when we don’t have built-in functionality, we traditionally rely on Groovy
programming constructs to provide it. This applies in this case as well, if we use the
try-catch-finally mechanism.

However, the Jenkins DSL includes another step that acts as a shortcut for the try-
catch-finally functionality: catchError. The catchError step can be useful in mul-
tiple instances, but fits well for our post-build use case here.

More details on these scripted choices follow.

try-catch-finally

What we want to have is a way to always do certain actions regardless of the final state
of the build. We can accomplish that by catching any exceptions with a try-catch
and using the finally clause to then do our processing based on the build’s state.
Most commonly, the processing we do in the finally clause would be sending mail
or other notifications about the build’s state. Here’s an example of the structure with
try-catch-finally:

def err = null
try {
// pipeline code
node ('node-name') {
stage ('first stage') {

} // end of last stage
}
}
catch (err) {
currentBuild.result = "FAILURE"
}
finally {
(currentBuild.result != "ABORTED"){
// Send email notifications for builds that failed
// or are unstable

Notice that we are setting the value of currentBuild.result if there is an error, to
ensure the build status is consistent with what we expect from Jenkins. Also, we don’t

Post-Processing | 101

send mail if the build was aborted. (For examples of how to send mail and other noti-
fications, see Chapter 4.)

The try-catch could also be within the node block if we preferred. That would, how-
ever, not catch issues thrown while trying to get the node, which might also not be
able to send the notification. Finally, if we wanted to propagate the error, we could
throw it again in our finally block.

catchError

The Jenkins pipeline syntax also provides a more advanced way of handling excep-
tions. The catchError block provides a way to detect the exception and change the
overall build status, but still continue the processing.

With the catchError construct, if an exception is thrown by a block of code, the
build is marked as a failure. But the code in the pipeline continues to be executed
from the statement following the catchError block.

The advantage of this processing is that you can still do things like send notifications
after processing has failed. This simulates the post-build processing that we’re accus-
tomed to in the more traditional Jenkins model and also provides a shortcut over the
try-catch block.

An example of using this is shown here:

node ('node-name') {
catchError {
stage ('first stage') {

} /)'énd of last stage
}

// step to send email notifications

}

This is essentially equivalent to the following code:

node ('node-name') {

try {
stage ('first stage') {

} // end of last stage
} catch (err) {
echo "Caught: ${err}"
currentBuild.result = 'FAILURE'
}
// step to send email notifications

}

The advantages are the simpler syntax and the build result automatically being
marked as failed if an exception occurs.

102 | Chapter 3: Pipeline Execution Flow

Declarative Pipelines and Post-Processing

Declarative Pipelines have a dedicated section for post-build processing. Not surpris-
ingly, the section is called post. A post section can be at the end of a stage or at the
end of a pipeline—or both.

The most common use for this is to mimic the post-build operations, especially noti-
fications, that are available for Freestyle jobs. The declarative syntax provides several
predefined “build conditions” that can be checked and, if true, then initiate further
action. Their names and uses are explained in tTable 3-1.

Table 3-1. Declarative build conditions for post-processing

Condition Description

always Always executes the steps in the block

changed Executes the steps in the block if the current build’s status is different from the previous build’s status
success Executes the steps in the block if the current build was successful

failure Executes the steps in the block if the current build failed

unstable Executes the steps in the block if the current build’s status is unstable

So, for example, we can declare that if the failure condition is true, we want to send
an email about the failure.

The syntax here is fairly simple. Here’s an outline for a simple post structure at the
end of a build:

}
} // end stages
post {
always {
echo "Build stage complete

}
failure {
echo "Build failed"
mail 'build failed', 'Build failed!',
'devops@company.com'
}
success {
echo "Build succeeded"
mail 'build succeeded', 'Build Succeeded',
'devops@company.com'
}

}
} // end pipeline

Notice that the post section for the entire build comes after all of the stages in the
pipeline. Also, we could do other things when checking these conditions, such as
archiving artifacts.

Post-Processing | 103

Summary

In this chapter, we've looked at pipeline constructs and steps that affect the overall
execution flow of your pipeline.

We started with seeing how to specify the kinds of events that you want to trigger
your pipeline. And once triggered, we saw how to accept different kinds of input to
direct the behavior of the pipeline.

We looked at ways to have the pipeline try again when there’s a failure or move on
after a certain time period. And we saw ways to deal with concurrency—both to pre-
vent it for multiple runs of the same pipeline, and to leverage it for running tasks in
parallel. And we noted how to provide conditional build execution.

Finally, we looked at ways to accomplish post-build processing in pipelines similar to
the functionality provided in Freestyle projects.

All of this should give you a good start on controlling the flow of execution through
your Scripted or Declarative Pipeline. In the next chapter, we'll look at ways that Jen-
kins can send messages and notifications through some of the more popular commu-
nication tools.

104 | Chapter 3: Pipeline Execution Flow

CHAPTER 4
Notifications and Reports

One of the core uses of Jenkins is implementing automation. In addition to repeatable
processing that is triggered by some event, we also rely on being automatically noti-
fied when processes have completed, and of their overall status. Additionally, many
plugins and steps produce useful reports as part of their processing.

The pipeline DSL contains steps that help with notifications. In this chapter, we'll
look at what it takes to configure Jenkins and implement code to leverage some com-
mon notification methods and services.

Starting out, we'll look at some of the types of notifications that Jenkins can send—
from basic and extended email to using services such as Slack and HipChat.

Then we’ll move on to how to surface reports that are generated by pipeline process-
ing to a more convenient location.

With these tools, you should be equipped to get the information you need from Jen-
kins and share it with other users.

Notifications

In this section, well look at notifications—that is, informing users of some status,
event, or piece of information that we want them to be aware of. For most cases, this
will happen in the “post-processing” parts of a pipeline. In a Scripted Pipeline, this
usually entails using a try-catch-finally construct if you want to always do post-
processing (as described in Chapter 3). For Declarative Pipelines, we have the more
straightforward post section that we can use.

Regardless of where you employ notifications, users today have a lot more options
with Jenkins than just the traditional email route. Many of the options fall into the

105

area of instant messaging, and even allow the user to do things like specify coloring
for messages. We'll look at several of these in this chapter.

Email

Traditionally in Jenkins, email was the primary means of notification. As such, there
is significant support (and significant options) for configuring email notifications in
Jenkins. The options are managed on the Configure System page of the Manage Jen-
kins area. We'll break these down for simplicity.

Jenkins Location

In addition to the “nice” URL that you can set in this section (see the following note),
this is where you can set the system administrator’s email address. This is intended to
be the “from” address that users will see in emails from Jenkins to the project owners.
As described in the help screen shown in Figure 4-1, this can be a simple email
address or a fuller one with a name for your Jenkins instance. Regardless, it is a
required field.

Jenkins Location

Jonking LAL hitp://jenkins 1.demo. ong (7]

System Admin e-mall address " " E%
=¥ ne adre jenkins-natifications@myserver.com L2

Motification e-mails from Jenkins to project owners will be sent with this address in the from header. This can be just “foo@acme.org” or it
could be something like “Jenkins Dasmon <foof@acme.ong="

Figure 4-1. Jenkins Location settings

Jenkins URL

The Jenkins URL field in this section provides a place to put in the
more user-friendly name of your Jenkins system. Jenkins can't
detect the URL itself. Note that this is optional, and you could leave
it as something like “localhost:8080”. However, this is the Jenkins
URL that will appear in the links in emails sent from Jenkins. So
you will need to reference a clickable URL.

In reality, for most purposes, the email address for the user (configured later) will be
the one surfaced in the emails. In most cases, you likely won’t see the admin address
unless you dig into the headers for the email. An example of deep-diving into those is
shown next. Here, you can see the value of the “System Admin e-mail address” field
in the X-Google-0Original-From header:

X-Received: by 10.55.93.197 with SMTP id r188mr35950021qkb.277.1502803051345;

Tue, 15 Aug 2017 06:17:31 -0700 (PDT)
Received: from diyvb2 (sas08001.nat.sas.com. [149.173.8.1])

106 | Chapter4: Notifications and Reports

by smtp.gmail.com with ESMTPSA id 131sm6301940gki.23.2017.08.15.06.17.30
for <bcl@nclasters.org >
(version=TLS1 cipher=ECDHE-RSA-AES128-SHA bits=128/128);
Tue, 15 Aug 2017 06:17:30 -0700 (PDT)
From: jenkins-demo@gmail.com
X-Google-Original-From: jenkins-notifications@myserver.com
Date: Tue, 15 Aug 2017 09:17:30 -0400 (EDT)
Reply-To: no-reply@jenkins.foo
To: bcl@nclasters.org
Message-ID: <2007092803.5.1502803050373.JavaMail. jenkins@diyvb2>
Subject: Test email #6
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 7bit

Next, we'll look at the traditional settings for email notifications in Jenkins.

E-mail Notification

Still on the global configuration page, there is an E-mail Notification section that you
fill in to set up the basic email functionality. These fields should be pretty much self-
explanatory in terms of setup, as long as you can gather the details for your email
configuration. Note that there is an Advanced button to the right that you need to
click to get access to some fields.

Figure 4-2 shows this section of the page.

E-mall Notification

SMTP server smip.gmail.com 7]
Default user e-mail suffix @gmail.com)
¥ Use SMTP Authentication 2]
User Name

jenkins-demo

Password

Use SSL ' i

SMTF Port 7]

Reply-To Address no-reply@jenkins.foo

Charset UTF-8
v Test configuration by sending test e-mail
Test e-mail recipient Dctg)nclastels org

Emall was successfully sent Tost configuration

Figure 4-2. E-mail Notification settings

A couple of notes:

o The SMTP server will default to the one on localhost if this field is left empty.

Notifications | 107

https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=bl1%40nclasters.org
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=nfjsuser1%40gmail.com
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=jenkins-notifications%40myserver.com
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=jenkins-notifications%40myserver.com
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=no-reply%40jenkins.foo
https://emailmg.webhost4life.com/sqmail/src/compose.php?send_to=bl1%40nclasters.org

o If using SSL, the port will default to 465; otherwise, it defaults to 25.

 The Reply-To Address field here is optional, but can be convenient if you need to
set one.

o Arguably the most important part of this section is the ability to test your email
configuration by sending a test email (the last fields at the bottom). Doing this is
highly recommended. If this test fails, you will commonly see a Java error trace-
back, as shown in Figure 4-3. This is typically due to a bad username or pass-
word, or a bad address for the email recipient.

UTF-8

bel@nclasters.ong

E1an|c§ﬂlgnuauon§
Failed to send out e-mail

javax.mail.AuthenticationFailedException: 535-5.7.8 Username and Password not accepted. Learn more at
535 5.7.8 https://support.google.com/mail/7p=BadCredentials a5@sm6B91085qtc.25 - gsmtp

at com.sun.mail.smtp.SMTPTransportSAuthenticator.authenticate{SMTPTransport.java:809)
at com.sun.mail.smtp.SMTPTransport.authenticate(SMTPTransport. java:752)

at com.sun.mail.smtp.SMTPTransport.protocolConnect(SMTPTransport. java:669)

at javax.mail.Service.connect{Service.java:317)

at javax.mail.Service.connect(Service.java:176)

at javax.mail.Service.connect(Service.java:125)

at javax.mail.Transport.sendd@{Transport.java:194)

at javax.mail.Transpert.send{Transport.java:124)

at hudson.tasks.MailersDescriptorImpl.doSendTestMailiMailer.java:581)

at java.lang.invoke.MethodHandle.invokeWithArguments(MethodHandle. java:627)

at org.kohsuke.stapler.Function$MethodFunction.invoke(Function. java:343)

at org.kohsuke.stapler.Function.bindAndInvoke(Function.java:184)

at org.kochsuke.stapler.Function.bindAndInvokeAndServeResponse({Function.java:117)
at org.kohsuke.stapler.MetaClass$l.doDispatch{MetacClass. java:129)

at org.kohsuke.stapler ispatcher.dispatch(NameBasedDispatcher. java:58)
at org.kohsuke.stapler.Stapler.tryInvoke(Stapler.java:715)

at org.kohsuke.stapler.Stapler.invoke(Stapler. java:845)

at org.kohsuke.stapler.MetaClass$5.doDispatch{MetaClass. java:248)

Figure 4-3. Traceback for failure sending test email
With this background, let’s see how we might use this in a pipeline script.

Sending email in pipelines

The following code listing shows an example of using the basic mail step in a Scripted
Pipeline. As explained in other chapters of the book, the try-catch-finally block is
the primary way with a Scripted Pipeline to ensure that post-processing is always
done regardless of success or failure:

node ('worker_nodel') {
try {

}
currentBuild.result = 'SUCCESS'

}
catch (err) {
currentBuild.result

"FAILURE'

}
finally {

108 | Chapter4: Notifications and Reports

mail 'bcl@nclasters.org’,
"Status of pipeline: ${currentBuild.fullDisplayName}",
"${env.BUILD_URL} has result ${currentBuild.result}"

Setting Build Results

You may have noticed that we specifically set the current
Build.result value in this listing. The reason for this is that you
can’t depend on pipeline steps to explicitly set the build result, and
if the build result is not set the emails will show a status of null.

In a similar way, the pipeline mail step can be used in a Declarative Pipeline. Here’s a
simple example:

pipeline {
agent any
stages {
}
post {
always {
mail 'bcl@nclasters.org',
"Status of pipeline: ${currentBuild.fullDisplayName}",
"${env.BUILD_URL} has result ${currentBuild.result}"
}
}
}

post Section of a Declarative Pipeline

Note that, as described in Chapter 7, the post section supports sep-
arate processing for build statuses such as success, failure, etc. In
this case, we are simply using the always clause for a generic dem-
onstration.

These pipelines will produce an email like the following if there is a failure:

---------------------------- Original Message ----------------------------
Subject: Status of pipeline: pipeline2 #1

From: jenkins-demo@gmail.com
Date: Tue, August 15, 2017 9:33 pm
To: bcl@nclasters.org

http://jenkinsl.demo.org/job/pipeline2/1/ has result FAILURE

If there is a successful build, this will look the same except FAILURE will be replaced
with SUCCESS.

Notifications | 109

While the built-in functionality covers the basic email needs, there may be times
when you need or want to further customize and control the emails that Jenkins
sends. The Email Extension plugin provides many additional options for expanding
how emails are handled, but it also comes with trade-offs when using it in a pipeline
environment. We'll dive into it next.

Extended email notifications

In addition to the basic email functionality, there is also an Extended Email (email-
ext) plugin that adds numerous additional options and levels of control for sending
email through Jenkins. It contains a similar general mail configuration section similar
to the mail plugin, but also adds functionality in three areas:

Content
It’s possible to dynamically modify the contents of an email notification’s subject
and body.

Recipients
You can define which user roles should receive an email notification.

Triggers
You can specify what conditions should initiate sending an email notification.
(Note that these do not currently apply to pipelines.)

WEell look at each of these areas in more detail next and see how to incorporate them
where applicable.

Global configuration. The email-ext plugin requires some global configuration before
being used in Pipeline jobs. Most of this is the same as the configuration we did for
the basic email functionality (see Figure 4-4).

110 | Chapter4: Notifications and Reports

https://plugins.jenkins.io/email-ext

\nfiguratio
Extended E-mail Matifieation

SMTP saner

Detautt user E-mall suttc

T L SMATP Avithantication &

User Name Jenkins-dema

~ Y

Plain Text ftext/plain - &

nad Heada (]

noe: buls’ Email Header L4

Ememency reroute

Excluded Recipients

Figure 4-4. General configuration for extended emails

A few new fields deserve further explanation. They include:

Use List-ID Email Header
Selecting this option allows you to apply a list-id header to all emails. As the help
suggests, this can be useful with filtering and also avoiding autoresponders. The
help contains example formats.

Add ‘Precedence: bulk’ Email Header
This option adds a header to emails from Jenkins. Based on a standard used by
mail systems, this option should eliminate or cut down on autoresponses being
sent back to Jenkins.

Reply To List
This isn’t a new one, but note that we can provide a comma-separated list of
users/addresses.

Emergency reroute
If this field is filled in, all Jenkins emails will be sent to just that or those recipi-
ents. This could be useful for temporarily not allowing Jenkins to send out wider
emails if there is an issue that warrants that.

Excluded Recipients
As the name implies, this can exclude (filter out) any email addresses from the
list generated by other functionality in this plugin.

Next, we'll look at the functionality in the plugin that allows us to set the default ele-
ments of emails.

Notifications | 111

Content. Still in the global configuration, we have a set of fields that are intended to
allow us to dynamically generate/modify the contents of the email notices sent out
from Jenkins. Figure 4-5 shows these fields.

Default Subject SPROJECT MAME - Buld # SBUILD NUMBER - SBUILD STATUS! w5
Maximum Attachment Sze
Default Content

SPROJECT_MAME - Buld # SBUILD_NUMBER - SBUILD_STATUS

Chack consola output at SBUILD_URAL 1o view the msuls
w5

Defaul Pre send Seript

©

Default Post-send Scnpt

Additicnal groovy classpath "
dditional grocvy pat e)

Figure 4-5. Default global content settings for extended email

The emailext Step and Default Fields

Currently, these fields are of no value in Pipeline scripts as there
doesn’t seem to be a way to tell the emailext step to use the
* defaults from here. However, were including them in our discus-
sion in case that functionality becomes available later.

The first three fields (Default Subject, Maximum Attachment Size, and Default Con-
tent) are pretty self-explanatory. Note that the attachment size should be expressed in
terms of megabytes and this is camulative for all attachments.

The Default Pre-send Script and Default Post-send Script areas offer places to enter a
Groovy script to run before the email is sent (and potentially modify it) and after the
email is sent, respectively. If you're interested in these, there are a number of “recipes”
available on the web. A good place to start is the plugins page.

You can also use a number of tokens in constructing the contents of the Default Sub-
ject and Default Content fields. “Tokens” here refers to what we might call build or
environment variables filled in by Jenkins in other contexts. $BUILD_NUMBER contains
the number of the build and $PROJECT_NAME contains the name of the project, for
example. If defined, the default pre-send and post-send scripts can be referenced in
other jobs as ${DEFAULT_PRESEND_SCRIPT} and ${DEFAULT_POSTSEND_SCRIPT},
respectively.

112 | Chapter4: Notifications and Reports

https://plugins.jenkins.io

As well as providing more options for the content of emails, the extended email func-
tionality also provides more options for choosing the types of recipients to send
emails to. That’s next.

Recipients. The Email Extension plugin provides several categories of recipients
through the emailext pipeline step. These are in addition to any designated individ-
ual recipients.

Figure 4-6 shows the selectable categories in the drop-down for the step.

Steps

Sample Step | gmajlext: Extended Email

To
Recipient Providers Add -
Subject Culprits
Developers
Body e

Fleq ueastor

Suspects Causing Unit Tests to Begin Failing
Suspects Causing the Build to Begin Failing

Upstream Committers

Figure 4-6. Adding extended email recipients

Table 4-1 lists the categories along with their definitions, drawing on the wording
from the plugin documentation.

Table 4-1. Extended email recipients categories

ETH Description (from plugin documentation)

Culprits Sends email to the list of users who committed a change between the last nonbroken build and now.
This list at least always includes people who made changes in this build, but if the previous build was a
failure it also includes the culprit list from that.

Developers Sends email to all the people who caused a change in the changeset.
Requestor Sends email to the user who initiated the build (assuming it was manually initiated).

Suspects Causing Sends email to the list of users suspected of causing a unit test to begin failing. This list includes
Unit Tests to Begin ~ committers and requestors of the build where the test began to fail, and of any consecutive failed
Failing builds prior to the build in which the test began to fail.

Suspects Causing Sends email to the list of users suspected of causing the build to begin failing.

the Build to Begin

Failing

Upstream Sends email to the list of users who committed changes in upstream builds that triggered this build.
Committers

Notifications | 113

When using these in the emailext pipeline step, we need to use the $class notation
to reference the names (at least as of the time of this writing). For example:

emailext 'body goes here',
[[$class: 'CulpritsRecipientProvider'],
[$class: 'DevelopersRecipientProvider'],
[$class: 'RequesterRecipientProvider'],
[$class: 'FailingTestSuspectsRecipientProvider'],
[$class: 'FirstFailingBuildSuspectsRecipientProvider'],
[$class: 'UpstreamComitterRecipientProvider']],
'subject goes here'

Triggers. The global configuration for the email-ext plugin also allows you to select a
set of default triggers for events to send email on. However, this adds those automatic
emails only when you are using Freestyle jobs and add “Editable Email Notifications”
to the “Post-build Actions” part of the job. As such, they are not useful in the Pipeline
context.

A similar approach can be constructed in a pipeline by doing things like checking the
build status in a finally block in a Scripted Pipeline, or in a post block with condi-
tionals in a Declarative Pipeline, and sending email off of that. See Chapter 3 (on
Pipeline flow) and Chapter 7 (on Declarative Pipelines) for examples of post-build
processing like this.

Including logs. One of the other useful built-in functions for the email-ext plugin is
that it can also include (and compress) logs. To use this setting in the pipeline step,
you can simply enable the options shown here:

true, true

Ultimately, the plugin provides a mixed bag for Pipeline developers. On the good
side, it allows adding the extended classes of recipients and doing things like attach-
ing logs. On the downside, emailext is one of those steps that was targeted to do a lot
by default based on global configuration and adding a post-build action to a Freestyle
job. That doesn’t translate well into a Pipeline environment unless (until) there is
some way to set a similar post-processing property, so the default functionality can be
activated. Perhaps that will be added in the future, past this writing.

One other note is that using pre-send or post-send scripts in the emailext pipeline
step seems to currently be broken. Objects that those scripts should have access to,
such as the build object, are not accessible. Hopefully, this too will be fixed in the
not-too-distant future.

With all that in mind, here’s a final example of using the emailext pipeline step with
many of the useful components:

emailext true,
"""<p>EXECUTED: Job \'S${env.JOB_NAME}:${env.BUILD_NUMBER})\'

114 | Chapter 4: Notifications and Reports

</p><p>View console output at "
${env.JOB_NAME}:${env.BUILD_NUMBER}"</p>

nun

<p><i>(Build log is attached.)</i></p>""",
true,
[[$class: 'DevelopersRecipientProvider'],
[$class: 'RequesterRecipientProvider']],

'do-not-reply@company.com',
"Status: ${currentBuild.result?:'SUCCESS'} -

Job \'${env.JOB_NAME}:${env.BUILD_NUMBER}\'",

'bcl@nclasters.org Brent.Laster@domain.com'

There are several items worth noting about this step:

o The step is formatted to fit the space available on the page.

o A better approach when youre writing a Scripted Pipeline would be to define
variables to hold some of the longer values and then use the variables in the step.

 Note the use of the triple double quotes around the text of the body. This is a
Groovy-ism, where triple quotes are used to encapsulate multiline messages.

o We are using HTML tags in the body of the email. In order for this to be ren-
dered as HTML, the default content type needs to be set to HTML (not text) in
the global configuration for the email-ext plugin.

« Note the use of double quotes around strings that have variables to interpolate—
another Groovy-ism.

o The syntax ${currentBuild.result?:'SUCCESS'} checks whether current
Build.result is NULL and, if so, assigns it the 'SUCCESS' value. This is necessary
because a NULL value in Jenkins for the build result indicates success.

o We have used the replyTo field to set an address for replies.

« Note that multiple names can be used in the to string, separated by spaces.

Figure 4-7 shows an example of an email generated by the previous command.

Notifications | 115

<Reply [—gReply All) Forward S IM

2017455 PR

dan 2

f rié@gmall.com
Status: SUCCESS - Job 'emailext-test2:1’

beli@nclesters.org; M Erert Lester jerkinsz@ocalhost.oom

build.zip
492 bytes

=]

EXECUTELD: lob 'emailext-test2:1)°
View console output at " emailext-teat2:1"

(Build log is attackhed,)

Figure 4-7. Example email from sample command

While emails still provide the most ubiquitous means of notifying Jenkins users of
events and sharing information, more and more teams are using instant messaging
services for collaboration and notifications. Two of the most popular are Slack and
HipChat. Let’s look at how Jenkins can work with each of them.

Collaboration Services

For several of the popular messaging/communications services, there are plugins to
provide notifications to the services from Jenkins. In this section, we’ll look at two of
these—for Slack and HipChat.

Slack notifications

To send notifications to Slack, you first need to install the Slack Notification plugin.
After installing and configuring the global parts of this plugin, your pipeline will be
able to send notifications to a Slack channel via a slackSend step. But first, you'll
need to enable the integration through Slack.

SetupinSlack. Enabling the Jenkins integration with Slack assumes you have a Slack
account, a team, and a channel defined first. (We won’t cover that here, but there is
plenty of documentation for this available on the web.) For our purposes here, I've
created an explore-jenkins team and a #jenkins2 channel on Slack.

Next, youwll want to configure the Jenkins integration. This will guide you through
creating a Slack API integration token to allow Jenkins to connect to Slack.

116 | Chapter 4: Notifications and Reports

https://plugins.jenkins.io/slack
http://bit.ly/2vuSVjV

Figure 4-8 shows an example of the first screen of the configuration. Here, we are log-
ged into the explore-jenkins team and are going to enable Jenkins CI integration for
the #jenkins2 channel within that team.

pslack Browse Manage Build g exploreje..

Browse apps Jenkins CI

@ Jenkins Cl

Jenkins Cl is a customizable continuous integration server with over 400 plugins, allowing you to configure it to meet your needs.

This integration will post build notifications to a channel in Slack.

Post to Channel

Start by choosing a channel where
Jenkins notifications will be posted.

#jenkins2 -

Add Jenkins Cl integration

Figure 4-8. Enabling the Jenkins Slack integration on a channel

create a new channel

After clicking the “Add Jenkins CI integration” button, you’ll be taken to the next
screen, which will have directions for what to do in Jenkins to use the integration.
Further down on the page will be the integration settings to use in Jenkins.

The main things you need from this are the base URL and the token. Both of these
currently can be found in the output for Step 3 on the page (Figure 4-9). Modify any
other settings you want and then click the Save Settings button at the bottom of the
page. This will save the options but will return you to the same page.

Step 3 Afterit's installed, click on Manage Jenkins again in the left navigation, and then go to
Configure System. Find the Global Slack Notifier Settings section and add the following values:
» Base URL: nttps://explore-jenkins.slack.com/services/ honks/ jenkins-ci/

« Integration Token: gaqunouyBaqLGHEwxsHE 2

Figure 4-9. Information from Slack integration page with info needed for Jenkins config

This is a good time to take care of a security issue. While you could use the token
directly in the Jenkins global configuration, this is considered a security risk. You are
better off creating a “Secret text” credential to hold this. More information on creat-
ing credentials is in Chapter 5, but Figure 4-10 shows the main step of filling in the
dialog for a new credential.

Notifications | 117

Jankins Cradantials Systam Global cradentlals (unrestricted!

Back to credential domains Mg gocret text j
@= Add Credentials
Scope Global (Jerking, nodes, lems, all child ilems, elc) MEZ
E o ——
D explore-jenkins)stack ¥
DESCMRNION g)ack Integration foken for explore-janking tsam @

Figure 4-10. Creating a new “Secret text” credential for Slack

The next section assumes that you've created such a credential to use in the global
configuration.

Global configuration in Jenkins. The global setup for the Slack notifications involves
just a few basic pieces of information, as shown in Figure 4-11.

Gilobal Sinck Holifier Settings

Base URL

hitps explore-jenking. slack com/senices nooks jenkins-ol i

explore jerking L

Siack token for the exph jenking team o Add - LT

Test Connection

Figure 4-11. Global configuration for the Jenkins/Slack notifications

First is the base URL. This can be obtained from the Slack integration output as
described in the previous section.

Next is the team subdomain, which is the team you will be using in Slack (the same
one you configured the token for). Likewise, you can fill in the last argument with the
channel that you configured the token for.

As we discussed in the previous section, it’s better to create a new credential to use for
the Slack integration token than to directly expose the token itself. The Integration
Token Credential ID field is where you select the credential you previously set up that

contains the token. When using this option, you can leave the “Integration Token”
field blank.

Finally, there’s the “IsBot User?” checkbox. Enabling (checking) this option allows
notifications to be sent from a bot user. For this to work, credentials for the bot user
(integration token credentials) need to be provided.

118 | Chapter4: Notifications and Reports

Once you have these fields filled in, you can test the connection by clicking the Test
Connection button. If all went well, you should see a Success message. And then, in
Slack itself, you'll be able to see the notifications regarding the integration setup
(Figure 4-12).

explore-jenkins - #jenkins2
bclasler] 22 %0 | Adda lopic

Thursday, August 31st
brent 11:50PM %

added an inlegration Lo this chanmel: fenkins

All Threads

jenkins 250 1153 0

. I Slack/Jenkins pluging vou're all sel an hilp:flocalhos:BOSEDS

@ jenkins
random | Slack/Jenking plugin: vou're all set an http:#lacalhoszB80E0/7

Figure 4-12. Notifications of Slack integration setup

Webhooks in Slack. While API tokens are fairly easy to set up for integration, there is
another approach that can be used—webhooks. This is the newer approach for inte-
gration between Jenkins and Slack, allowing Slack to send a payload to a public end-
point defined in Jenkins when it has something to share. This is also the approach for
Slack-compatible applications. We won’t go into all the details here, but I'll provide
some pointers on getting this set up just in case you need to at some point.

As with the Jenkins CI integration previously outlined, you first need to enable the
webhook integration for your subdomain/team from within Slack. Note that you
want to set up an outgoing webhook (information sent from Slack) as opposed to an
incoming webhook. Figure 4-13 shows the screen in Slack to enable the outgoing
webhook integration.

Notifications | 119

€ ¥ T'@ npsieplore jenkinsslackcom/apps/new/A0FTVRGED o El €@ 9 Search oB +$ & O

@&3 Outgoing WebHooks

Get data out of Slack in real-time.

Outgoing Webhooks allow you to listen for triggers in Slack chat messages, which will then send relevant data to external URL{s) in
real-time. The Outgoing Webhook will only be triggered when one or both of the following conditions are met:

« The message is in the specified Channel
The message begins with one of the defined Trigger Word(s)

If a Channel is specified, then the Trigger Word(s) are optional — Trigger Word(s) are required if no Channel is chosen. If both are
specified, then the message must match both conditions.

By creating an outgoing webhook, you agree to the Slack AP Terms of Service.

Mew to Slack integrations?

Check out our Getting Started guide to familiarize yourself with the most common types of integrations, and tips to keep
in mind while building your own. You can also register as a developer to let us know what you're working on, and to
receive future updates to our APls.

By creating an outgoing webhook, you agree to the Slack AP Terms of Service.

Add Outgoing WebHooks integration Cancel

Figure 4-13. Enabling the outgoing webhook integration in Slack

After you click the “Add Outgoing WebHooks Integration” button, you’ll be taken to a
screen where you’'ll find additional information about your new integration, includ-
ing the token (Figure 4-14).

120 | Chapter4: Notifications and Reports

€ ('@ hitps;//explore-jenkins.slack.com/services/BEYMBFSLT E1 1200 €& Q Sean

p SIaCk Browse Manage
Token
This token will be sent in the US5HMVQSd83syXVrzs2W4wR:

outgoing payload. You can use
it to verify the request came
from your Slack team.

Descriptive Label

Use this label to provide extra
context in your list of

integrations (optional).

Figure 4-14. Outgoing webhook integration details—including token

You can then configure the global setup for Slack webhooks with the token and your
endpoint (Figure 4-15).

Slack Webhook Settings

Cutgoing Webhook Token USSVOHMS. Sy XVrz2344wWRS

Outgoing Webhook URL Endpoint hittp-/fjenkins1. o.org/slackwet ;

Figure 4-15. Setting global configuration in Jenkins for Slack webhooks

Sending Slack notificationsinajob. The slackSend pipeline step allows for actually
sending the message via Slack. The only required (default) parameter is the message
string to send. While you can send any message string, if you are using this for notifi-
cations from Jenkins then you probably want to include Jenkins environment vari-
ables or global variables, such as env.JOB_NAME, env.BUILD_NUM, etc. When using
these, remember to enclose them in the ${} syntax in a string that is enclosed itself in
double quotes so that the Groovy interpolation will work correctly. Here’s a simple
example with only the default parameter:

slackSend "Build ${env.BUILD_NUMBER} completed for ${env.JOB_NAME}."

Notifications | 121

Adding Links in the Message

Links can be added using standard HTML code (assuming the
“Text format” option is not set)—simply code the item as
(<link | text>). For example, to add a link to the URL
you send out, you could modify the previous step this way:

slackSend "Build ${env.BUILD_NUMBER} completed for
${env.JOB_NAME}. Details: (<${env.BUILD URL} | here >)"

The other likely parameter that you'll use will be color. This setting is used to color
the border along the left side of the message attachment.

Colors can be specified via a couple of predefined labels or a hex string (explained
more in the upcoming note). The predefined labels are good (dark green), warning
(orange-yellow), and danger (dark red).

Adding in a color and a link, the example step might look like this:

slackSend 'good’, "Build ${env.BUILD_NUMBER}
completed for ${env.JOB_NAME}. Details: (<${env.BUILD_ URL} |
here >)"

Note that the part of the message with the variables must be enclosed in double
quotes to allow for the interpolation of the values.

122 | Chapter4: Notifications and Reports

Colors and Color Codes

The slackSend step can use a color code represented by a string of
hexadecimal (base-16) characters. The hipchatSend step (dis-
cussed shortly) uses a name for the color. Let’s take a moment and
see how these map.

The hex representation for a color consists of six characters, which
can be numbers from 0-9 or characters from A-F. Each character
position represents a certain part/tone of the color, and the combi-
nation of values for the six characters makes up a unique color.

Within this combination, the first two characters represent the red
elements, the next two colors represent the green elements, and the
final two characters represent the blue elements.

Using combinations of the hex digits in the different positions
allows us to create any unique color with different combinations of
the red, green, and blue elements. Here are some examples:

o #000000 means that all color parts are off, so this equates to
black.

o #FFFFFF means that all color parts are on, so this equates to
white.

o #FFOOOO means that all of the red elements are on, so this is
red.

o #0OFFOO means that all of the green elements are on, so this is
green.

o #FFFFOO® means that all of the red and green elements are on,
which makes yellow (red mixed with green).

So, if you wanted to have the color be purple, you could turn on the
red components (two left hex digits) and the blue components (two
right hex digits) and turn off the green components (middle two
digits), as in #FFOOFF.

There are additional parameters that the slackSend step can take. Most of these have
the same names and types of settings as the values in the global configuration for
Slack integration. They are designed to allow the step to override the default settings
if desired. You can find out more about these by going to the Pipeline Syntax screen,
selecting the slackSend step, and clicking the Advanced button.

Finally, one other parameter that is available is failOnError. Setting this to true
causes the run to abort if there is a problem sending the notification.

Notifications | 123

HipChat notifications

Similar to the Slack Notification plugin, there is also a HipChat Notification plugin. It
adds a hipchatSend step to the Pipeline DSL. Like the Slack plugin, the HipChat
plugin requires some configuration in the application itself first. Unlike with Slack,
you have a choice (currently) of using either HipChat’s version 1 API or the new ver-
sion 2 API. Although version 2 is recommended going forward, as of the time of this
writing version 1 is still supported, so we'll cover setup for both.

For these examples, I assume that you have an account already with at least one room

set up. For the example here, I have a room set up named explore-jenkins.

Setup in HipChat for version 1 APluse. From your room’s menu, you can select Integra-
tions and then browse to find the Jenkins tile (Figure 4-16).

¢ Pseach # T @ + A =

i@ Wt eplonejenkins. hipchat comaddans Troom =4 1420088 ram_location_id=28saurce_id=0
10008 of helpars now =
o Jel s".\' Jenkins @ \K JIRA for HipChat
Know what everyane's werking on. Send Jerkins buld nalifzations b Colaborate and react ta change in
R your goals fastar HipChat rooms reaktime ta resolve lssuss fester and

fam anywhere

o JobdJoy Bot Ay ioin me for HipChat e Kaomaji
Find work & Hire freslancers Seamlessly move from chalting te (e). A-—-b- o HipChat
maating. Start and join meatings rioht

Figure 4-16. The Jenkins integration tile in HipChat

Select this tile and you’ll be presented with a screen that has the version 1 token on it
(Figure 4-17).

€ | (7@ | nitpsyfexplare-jenkins.hipchat.com/addons oom jenkins hipchat fconfiguraTroom - - e @ “Paboutprivatebrowsing *

nbegrations | Giobal (alrooms) J Jenkns
contal (ol reama) -
Jenkins e
34 s biald neaficahens b HIpChat ranms
‘ I

SUPPARTE | [FRET
Overvew | Conhgure
Tk 33eEh3AT RS 455400

INSTALLATION MSTRUCTIONS

o Vsl e pisgin doeams

e Tis ol nulFstizns s “HiChal Kolifatuss” s o pal-tuid slap

nlid hir

Figure 4-17. v1 token screen

124 | Chapter4: Notifications and Reports

To use this token in the Jenkins global configuration, you must create a new Jenkins
“Secret text” credential. The process is shown in “Setup in Slack” on page 116. Note
that you do not have the option to use the token in plain text in the Jenkins global
configuration, as you do with the Slack setup.

Setup in HipChat for version 2 APl use. If you want to (or are required to) use the Hip-
Chat version 2 AP], the easiest way to get a token is to go to http://<your room>.hip-
chat.com/account/api. (Note that this is for a personal token.) Once there, in the
“Create new token” section, provide a label for the token and select the type. (The
examples here use the label “jenkins” and the Send Notification scope). Click the Cre-
ate button and you’ll see a v2 token that you can use (Figure 4-18).

€ ('@ nipsfexplore-jenkins hipchat.com/account/api s O ¥ abay

9 Welcome, Brent

Figure 4-18. Getting a HipChat v2 token

To use this token in the Jenkins global configuration, you must create a new Jenkins
“Secret text” credential. The process is shown in “Setup in Slack” on page 116.

Global configuration in Jenkins. For the HipChat global configuration, you need to first
fill in the location of the HipChat server. Unless you have a dedicated server with its
own name for this, you can just leave it as the default api.hipchat.com.

Next is the checkbox to indicate whether or not you are using the v2 APL If you are
using the v1 API, leave it unchecked.

Notifications | 125

Under that, enter the room name you want to send notifications to. This can be either
the room name (case-sensitive) or the HipChat ID number. Multiple names can be
provided as long as they are comma-separated.

Next, if you are using v1, you can specify a different ID from which to send the notifi-
cations. The default is “Jenkins”.

The Card Provider field has to do with notification cards in HipChat. A discussion of
notification cards is outside the scope of this book; unless you have a specific reason
to do otherwise, you can just leave this as “Default cards”.

Figure 4-19 shows an example of the global configuration for HipChat in Jenkins.

Giobal HIpChat Notifier Settings

HipChat Server

s hipetat com w

w5

HipShat w1 loken for explore-jenkin room - -— Add - o

Explore-jenkine : o

Deetault cards. = &

Motity Text Motification

Room Format Type Cotor Message templats

w
Ada

Test Notification Ser e p—————

Figure 4-19. HipChat global configuration

Once you have this information filled in, it is a good time to test out the communica-
tion between Jenkins and HipChat. You can do that by pressing the “Test configura-
tion” button. If all is set up correctly, you should see a Test Notification Sent message
like that in Figure 4-20.

Jenkins Admin
Test Notification 4

Figure 4-20. Test notification from Jenkins

Default notifications. There is one more piece of global configuration for the HipChat
plugin—default notifications. This is the last section of the globally configured
options. The boldfaced headers in that section are columns that you can configure
when you add a default notification. To add a default notification, you simply click
the Add button and fill in the fields.

As the name implies, the intent is to allow setting up default notifications for a job.
However, these notifications are only sent if specific notifications aren't configured in
a job and if the HipChat Notifications option is added as a post-build action. Since
those conditions can only be met with a Freestyle project, and since Pipeline projects

126 | Chapter4: Notifications and Reports

using the HipChat integration will have a specific notification step by definition,
these don't apply for Pipeline projects.

Sending HipChat notificationsinajob. The HipChat Notification plugin provides the
previously mentioned hipchatSend step that you can use in your pipeline. The only
required (default) parameter is a message. While you can send any message string, if
you are using this for notifications from Jenkins then you probably want to include
Jenkins environment variables or global variables, such as env.JOB_NAME,
env.BUILD_NUM, etc. When using these, remember to enclose them in the ${} syntax
in a string that is enclosed itself in double quotes so that the Groovy interpolation will
work correctly. Here’s a simple example with only the default parameter:

hipchatSend "Build Started: ${env.JOB_NAME} ${env.BUILD_NUMBER}"

The other common option to use sets the color for the background of the message in
the interface. Unlike the Slack color options, the color value can only be one of GREEN,
YELLOW, RED, PURPLE, GRAY, or RANDOM. The default is GRAY

Additional options control other aspects of the message. The notify option can be
set to true or false; it indicates whether the message should trigger a user notifica-
tion with sounds for notifying mobile devices and so on. And the textFormat option
indicates whether the message should be sent in text format (if set to true). The
default is false (HTML).

Adding Links in the Message

Assuming the textFormat option is not set to true, links can be
added in hipchatSend messages by just using standard HTML. For
example:

hipchatSend "Build ${env.BUILD_NUMBER} completed for

${env.JOB_NAME}. Details:
here"

An example of a more elaborate command with the color option and notifications
for the room would look like this:
hipchatSend 'GREEN',
true,

"Build ${env.BUILD_NUMBER} completed for
${env.JOB_NAME}. Details: here"

The notification in HipChat would look like Figure 4-21.

Notifications | 127

Jenkins Admin
Build 12 completed for hipchat-test. Details: here

Figure 4-21. HipChat notification from Jenkins

There are additional parameters that the hipchatSend step can take. These have the
same names and types of settings as the values in the global configuration for Hip-
Chat. They are designed to allow the step to override the default settings if desired.
You can find out more about these by going to the Pipeline Syntax screen, selecting
the hipChat step, and clicking the Advanced button.

Unlike the underlying email functionality, the integration points for the collaboration
services continue to evolve. HipChat is moving from the v1 API to the v2 APL Slack
is adding more support for webhooks. And compatible services may also use slightly
different approaches. Always check the Plugins index for the latest information.

There are certainly other types of notifications that Jenkins can provide with appro-
priate plugin integration, but hopefully this section has given you enough to get going
with meaningful communication.

Another means that Jenkins uses to convey information is producing reports—or
rather, the applications that Jenkins integrates with produce reports. Getting these
exposed for easier access is the subject of our next section.

Reports

Many plugins or tools used with Jenkins generate HTML reports for various tasks.
Example tasks include code analysis, code coverage, and unit test reports. Some of
these, such as those for SonarQube and JaCoCo, provide custom integrations with
Jenkins job output. These usually take the form of visual elements such as badges or
graphs or simple links that the user can click to get to the application itself and view
the reports.

However, some tooling doesn’t supply that level of integration with Jenkins. It simply
creates the reports in a location relative to the workspace and leaves it up to the user
to determine the location, browse to it, and view the content there. This is less conve-
nient than having a link to the report on the job output page, especially if you are
trying to locate the report within one of Jenkinss workspaces and/or need to access
this information over multiple runs of a job.

Fortunately, the HTML Publisher plugin is available. This plugin allows you to add a
step in your pipeline code to point to an HTML report. It also allows you to have a

128 | Chapter 4: Notifications and Reports

https://plugins.jenkins.io
https://plugins.jenkins.io/htmlpublisher

custom link created on the job’s output page, and it provides options such as ensuring
that reports are preserved over time (archived).

Publishing HTML Reports

To see how the HTML Publisher plugin works, let’s look at an example. Assume we
have a Gradle build for a project with multiple subprojects, including one named api
and one named util. Our pipeline runs the Gradle test task against these subprojects,
exercising a set of unit tests that we have created for each.

By convention, Gradle creates a report named index.html for any unit testing it does,
and places it in a <component>/build/reports/test directory. For our pipeline, we want
to add links to the HTML test reports produced by Gradle for the api and util subpro-
jects.

This provides us with the basic information we need to pass to the DSL step, which is
named publishHTML. An invocation of this step for the api report might look like this:

publishHTML ([
false,
false,
true,

'api/build/reports/test’,
"index.html',

"API Unit Testing Results"

D

The purpose of most of the fields specified for the step are obvious from their names,
and with the HTML Publisher plugin installed the syntax is available via the Snippet
Generator. We'll cover the fields here anyway, but as usual, it may be easier to gener-
ate the actual code through the generator.

To start with, notice that we have the target block as the main parameter. Within
that we have a number of subparameters:

allowMissing
This setting has to do with whether or not the build should fail if the report is
missing. If set to false, a missing report will fail the build.

alwaysLinkToLastBuild
If this setting is true, then Jenkins will always show a link to the report from the
last successful build—even if the current build failed.

keepAll
If this is set to true, then Jenkins archives the reports for all successful builds.
Otherwise Jenkins only archives the report for the most recent successful build.

Reports | 129

reportDir
This is the path to the HTML file, relative to the Jenkins workspace.

reportFiles
This is the name of the HTML file(s) to display (if multiple, they should be sepa-
rated by commas).

reportName
This is the name you want the link to the report to have on the job output page.

Typically, like a notification, we may want this step to run at the end of the build. And
we may want it to run regardless of whether the build succeeded (especially if we have
it set up to link to the last successful build). We can add it to a notifications stage in a
try-catch-finally section for a Scripted Pipeline or a post stage for a Declarative
Pipeline. An example finally section of a pipeline script with this step is shown
next. Note that here we are unstashing content because it was produced on separate
nodes running in a parallel step:

finally {
unstash 'api-reports'

publishHTML ([
false,
false,
true,

'api/build/reports/test’,
'index.html"',

"API Unit Testing Results"

D

unstash 'util-reports'

publishHTML ([
false,
false,
true,

'util/build/reports/test’',
'index.html"',

"Util Unit Testing Results"

D
}

A corresponding post section could be used in a Declarative Pipeline.

Figure 4-22 shows the output page from our job with the custom report name links
that we created on the left side.

130 | Chapter4: Notifications and Reports

' Open Blue Ocear)
Stage View
Full Stage View
Source Compile Unit Test

i UV Unk Toating Fesulls 35 205 1min 435

Aug 31 t
& Build History trend =) 2 1min 50s

Aug 3 _

un : 2017 M 1min 49s

Figure 4-22. Job output showing the custom report links in the left menu

Summary

In this chapter, we've covered some of the basic ways to facilitate Jenkins-to-user
communication when working with pipelines. We've looked at the built-in and exten-
ded email functionality and how we can leverage those, and we've seen how to use
collaboration services like Slack and HipChat to send dynamic status information
back to wherever you use those apps.

We also looked at how to better integrate the HTML reports produced by many appli-
cations with the job’s output page for easier access.

It’s important to realize that the information presented here is the most basic imple-
mentation for several of the steps, particularly the ones on notifications. Other pipe-
line constructs could certainly be used to render these in a more elegant way in the
code.

For example, for the sake of space, long strings were included in some of the steps
that, in a Scripted Pipeline, would be better defined as variables and passed in to the
step.

As another point, shared library routines could be used to encapsulate functions with
any of the steps to make them easier to call and more generic. (Shared libraries are
discussed in Chapter 6.)

However, hopefully this chapter has given you the information you need to get
started. I encourage you to explore and build on these examples to make your pipe-
line the best fit for the notification mechanisms that you and your team need.

In the next chapter, we'll explore how to set up and use Jenkins credentials and some
key items around securing your pipelines.

Summary | 131

CHAPTER 5
Access and Security

Being able to create pipelines-as-code offers enormous potential and flexibility. In
Scripted Pipelines, calls to any Groovy construct or Jenkins functionality or external
method can be keyed into the pipeline script. However, that also significantly increa-
ses the ability to accidentally or intentionally do something within the code for a
pipeline that shouldn’t be done. So, security has to be a first-class concern—and a
first-class feature—for both pipelines and the Jenkins environment they are created
and run in.

In this chapter, we'll survey the different ways that Jenkins has for controlling access
and security. We'll first look at the overall security options, then we'll survey the tradi-
tional credentials mechanisms that Jenkins offers and how to use those in pipelines.

After that, welll do a deeper dive into the advanced functionality available via the
Role-Based Access Control (RBAC) plugin. We'll then explore how Jenkins can inte-
grate with Vault, a modern approach to storing credentials with a limited lifetime.

Finally, we'll see what new features Jenkins 2 provides for ensuring that the steps in a
pipeline have only the appropriate access and are executed in an approved context.

Let’s start off by looking at the most basic options for securing Jenkins once it’s
installed.

Securing Jenkins

Prior to Jenkins 2.0, the default configuration for Jenkins was to have security dis-
abled—not doing any security checking. This meant that Jenkins was wide open by
default. Since Jenkins 2.0, the default has changed to have security enabled. Initially
this means that when you use Jenkins, you need to supply a user ID and password. In
fact, when you install Jenkins 2.0, you must enter a generated initial password—pro-

133

http://bit.ly/2uEfJNP

vided in an obscure file—as part of the installation. You also need to create an initial
user with a user ID and password.

Beyond the basic logins, a number of security mechanisms are available through the
Configure Global Security link on the Manage Jenkins page. This should be your
starting point for a secure instance. (See Figure 5-1.)

Gl T
=

. Configure Global Security

Q Configure Credentials
7 f . .

Figure 5-1. Accessing the configuration for the Global Security options

We'll briefly look at each of the security options configurable from this page next.

Enabling Security

The top option on the global security configuration page is also the most high-level
one—meaning that it encompasses the most related functionality. Without the
“Enable security” option checked, security-checking operations are not enabled. With
this option turned on, security can be configured along two dimensions—authentica-
tion and authorization.

Authentication here refers to how users can identify themselves to the system, such as
by user ID and password. This is now called “Security Realm” in Jenkins. Authoriza-
tion refers to what permissions authorized users have. These two orthogonal dimen-
sions can, together, implement nearly any desired security policy.

Setting Permissions Too Loosely

It is possible to implement policies using authentication and
authorization that actually make your Jenkins instance very inse-
~ cure. For example, Jenkins provides an option to allow users to sign
up for access—less secure authentication. If you also use very open
authorization policies, such as allowing logged-in users to do
most/all operations, then you are effectively leaving your system
wide open to anyone who wants to use it in whatever way they
want.

The username/password login info is required for any operation unless anonymous
users are specifically allowed to do the operation. In Jenkins 2, by default, logged-in
users have full control and anonymous users have no access.

134 | Chapter5: Access and Security

Under the checkbox to enable security, we have the “Disable remember me” check-
box. Checking this option to enable it removes the “Remember me on this computer”
option from the login screen.

Next, we have the Access Control section. This section provides the options to config-
ure the two dimensions we talked about earlier (authentication and authorization).

Access Control—Security Realm

This section allows us to specify which entity will be responsible for authenticating
users to Jenkins. There are several choices.

Delegate to servlet container. The servlet container being referenced here is the one
running the Jenkins instance. These days, this is usually Jetty, but it might also be
Tomcat or some other servlet if the installation has been customized. With this
option, you are allowing authentication via whatever mechanism the servlet container
uses.

The specifics of how to set this up depend on how authentication is configured for
the particular servlet container being used. The best approach is to consult the docu-
mentation for the servlet container. Up until v1.163 this was the default security
realm. It is not as likely to be used these days given the other options, but can still be
worthwhile for backward compatibility, or if you have invested significant setup for
authentication in the servlet container’s configuration.

Jenkins’ own user database. This option delegates authentication to the list of people
maintained by/known to Jenkins. This is not a typical use case, but can be suitable for
smaller, basic setups. Note that this includes not only all the users that Jenkins specifi-
cally knows about, but also users mentioned in commit messages.

A suboption allows enabling users to “sign up’—meaning they can create their own
accounts at the time they first need to log in to Jenkins. This suboption is disabled by
default to more tightly control access.

LDAP. The Lightweight Directory Access Protocol (LDAP) is a software protocol for
locating people, organizations, devices, and other resources on a network. If your
company uses LDAP, this is where you can configure it for Jenkins. You can add more
than one LDAP server (each having a different configuration if needed).

Unix user/group database. This option delegates authentication to the host Unix sys-
tem’s user database. If this is used, users can log into Jenkins using their Unix user-
name and password. Unix groups can also be used for authentication. If a user and a
group have the same name, prepending an “@” onto the name differentiates it as a
group. Note that there may be extra configuration required to make this all work,

Securing Jenkins | 135

such as making Jenkins a member of the shadow group for access on operating sys-
tems that use that.

Access Control—Authorization

Once authenticated, Jenkins needs to know what kind of operations users should be
allowed to do. Like in the Security Realm section, there are several options here.

Anyone can do anything. No real authentication is done with this option. Basically,
everyone is considered as “trusted”—including anonymous users (even if they haven’t
logged in yet). This is not recommended, but can be suitable in rare cases for com-
pletely trusted environments to allow unrestricted access for simplicity and efficiency.

Legacymode. This mode emulates Jenkins behavior prior to v1.164: anyone who has
the “admin” role has full control, and everyone else has read-only access.

Logged-in users can do anything. As the name implies, users must first log in, but then
have full access. This is useful if you don’t mind allowing everyone full access, but
want to keep track of who is doing what (via them being logged in).

A suboption here enables anonymous users to have read-only access.

Matrix-based security. This option allows you to specify very specific permissions for
individual users or groups via checkboxes in a matrix arrangement. The columns in
the matrix are divided into categories (groupings) such as “Overall,” “Job,” “Run,” etc.
Then underneath each of those items are further specific permissions related to that
category.

The rows of the matrix each represent a user or group. There are two default groups
that are automatically added: “Anonymous Users” (users who have not logged in) and
“Authenticated Users” (users who have logged in). A text box under the matrix allows
you to add new users.

Granting a particular permission to a user or group is just a matter of clicking in the
box that corresponds to the appropriate row for the user/group and the column for
the specific permission. Removing a permission involves just clicking again to clear
the checkbox.

At the end of each row are boxes you can click on to grant all permissions or remove
all permissions for that user/group.

Figure 5-2 shows an example matrix.

136 | Chapter5: Access and Security

i
"
i
0
w
i
e
Iyl
o

.
PR

&

Figure 5-2. Example of matrix-based authentication

Project-based matrix authorization strategy. This option is an extension to the “Matrix-
based security” model described in the preceding section. When selected, this adds a
similar matrix to each project’s configuration page. This allows for configuration by
user/group per project, so you can restrict access to some projects while allowing it
for others.

More specifically, when this option is set in the global security page, each project’s
configuration page will have an “Enable project-based security” option in the General
configuration section. Selecting this option will then present an authorization matrix
for that project that can be configured like the global matrix to provide project-
specific access. An additional option allows you to select whether to inherit permis-
sions from a parent access control list, the globally defined permissions, or not at all.

Figure 5-3 shows an example of one such matrix in a project.

[Flmin text] Prensios

' Ermbile propect-tase:

cvarity

Inheritance Strategy

Corumbertisdz

=
Usengrous e g H c < » g 8 8 8 = & ; $ @ §)
£ §F E§ g8 ; 3 F g 8 8 8 ¢

& Arcrymoun Uners 4

i Authenticated Users - - = =4 = T
& Jenkina 2 umer o e e T R R A B R R R R R A R e =

i
User/group to acd: | Jenkins2 Add

Figure 5-3. Per-project authorization matrix

Other Global Security Settings

Beyond the authentication and authorization settings, there are a number of other
options on the global security configuration page that can be set. This is a miscellane-
ous collection centered around keeping Jenkins implicitly safe (locking down security
holes) rather than explicitly defining access.

Securing Jenkins | 137

Markup formatter

Jenkins allows users to put in free-form text in various fields, such as job descriptions,
build descriptions, etc. You can choose to format those as plain text or HTML. If you
want to use HTML, set this option to Safe HTML. “Safe” here refers to allowing only
HTML constructs that don’t pose a security risk of being hacked (i.e., modified in a
way that would execute operations that would put the system at risk). Examples of
safe HTML constructs include the basic ones such as bold, italics, hyperlinks, etc.

Agents

Despite the generic name, this section is about configuring the TCP port for agents
launched through the JNLP process. (JNLP refers to the Java Network Launch Proto-
col—a way that an application can be launched on a client’s desktop using resources
hosted on a remote server.)

Normally, a random port is used for this. However, you can specify a fixed port
instead to make it more secure (only having to open the firewall for the fixed port). If
you are not making use of the JNLP functionality, you can use the Disable option
here to make your system even more secure.

A suboption allows you to choose a particular version of the JNLP protocol if needed.

Prevent Cross-Site Request Forgery exploits

Cross-Site Request Forgery (CSRF) is a type of attack that can force a user to execute
unwanted actions on a web application that they are authenticated to. Part of the pre-
vention of this has to do with verifying that a crumb trail (navigation history) exists
for the user in Jenkins.

A suboption allows specifying proxy compatibility to help prevent the proxy from fil-
tering out information about the crumb trail.

(L

A legacy option for using the command-line interface allowed what was called
“remoting” as a mode. This mode is considered insecure, as opposed to other modes
such as HTTP or SSH. This has to do with its use of certain programming styles, such
as Java serialization, that open up security holes and concerns. The legacy protocol
was also viewed as slow and challenging to understand, and so newer, safer options
were implemented starting in Jenkins 2.54.

The “Enable CLI over Remoting” option is off by default, but can be turned back on
here if you understand the risk and need it for backward compatibility.

(You can learn more about the command-line interfaces available in Jenkins in Chap-
ter 15.)

138 | Chapter5: Access and Security

Plugin manager

The option here is “Use browser for metadata download,” and it is normally
unchecked (off). Turning this option on tells Jenkins to let the browser download
metadata around plugins instead of Jenkins doing it itself. Unless you have a specific
reason to activate this, it is best to just leave it turned off and allow Jenkins to do the

downloads.

Access Control for Builds

cific authorization.

is fairly self-explanatory.

Plugin Manager

Use browser for metadata download

Access Control for Builds

Per-project configurable Build Authorization
Strategies # Run as Specific User
¥ Run as User who Triggered Build
Run as anonymous

Run as SYSTEM

Add ~
Hidden security warnings

Security warnings...

is installed

®

The plugin adds a new Authorization item on the page for each job (Figure 5-5).

If you choose to install the Authorize Project plugin, you may have additional entries
here. This plugin allows additional per-project options for running builds with spe-

The global configuration part that would appear here allows you to select which types
of authorized users appear as choices in projects. The list is shown in Figure 5-4 and

Figure 5-4. List of choices to present in project authorization if Authorize Project plugin

Securing Jenkins

139

https://plugins.jenkins.io/authorize-project

4 Back to Dashboard
(., Status

= Changes

{) Build Now

® Delete Pipeline
" Configure

(@) Open Blue Ocean

| Authorization

Figure 5-5. Job Authorization link

Clicking on that link brings up a simple configuration screen that allows you to select
from the choices configured globally for the plugin, to control who can run the job
(Figure 5-6).

Jenkins daily-job-1 Authorization

Back to Dashboard

\ stas) Authorization
- Changes
';D Build Mow ¥ Configure Build Authorization ®
® Delete Pipeline Autherize Stmtegy| Run as Specific User v i@
M canfigure User ID ®
| Authorization @ Required
’— Move Don't restrict job configuration (7]

. Full Stage View

() Open Blue Ocean

€) Pipeline Syntax

Figure 5-6. Configuring the individual job authorization

Hidden security warnings

The options here have to do with surfacing security warnings from update sites for
installed components. (In older versions of Jenkins, these weren't shared directly in
Jenkins but rather in emails, blogs, etc. Starting with v2.40, they can now be shown
directly in Jenkins.) If you have a list of warnings present, then checked warnings are
shown, and unchecked ones aren't.

140 | Chapter5: Access and Security

Figure 5-7 shows an example of configuring these warnings if they exist. Note that
there are two warnings—one is unchecked here and one is checked.

Hidden securlty warnings

This section allows you to disable warnings published on the update site. Checked warnings are visible (the
default), unchecked wamings are hidden

Security wamings

oreMultiple-securty vulnerablities

ecurity/advison/2017-11-08

~ Jenkins core: Multiple security vulnerabilities

hitps-//jenkins io/security/ advisony'2017-10-11

~" Enable Agent — Master Access Control

Aules can be tweaked here

Figure 5-7. Configuring the hidden security warnings

Figure 5-8 shows what the warnings look like with this configuration. Notice that
only the one that is checked is shown.

Manage Jenkins

New version of Jenkins (2.73.3) is available for download (changelog).
Warnings have been published for the following currently installed components:

[—] = Jenkins 2.73.1 core and libraries:
o Multiple security vulnerabilities
<= Multiple security vulnerabilities

Configure which of these warnings are shown

ol

Figure 5-8. Shown security warnings

Another option here is to enable “agent to master” access control. This has to do with
what commands agents can send to the master to make those interactions safer. If you
need to tweak those rules to work with a specific instance or plugin, there is a link
here to do that as well.

SSH server

For executing a subset of command-line commands over SSH, Jenkins can function
as an SSH server. Some plugins may also use this functionality. If this is needed, a
fixed port can be set up here to simplify security. A random port can also be chosen
each time to avoid conflicts. If this functionality is not needed, it is best to use the
Disable option to disable having an open port exposed.

See Chapter 15 for more on command-line usage and options in Jenkins. Now that
we've covered the general security options, let’s talk about how we can use credentials
to secure access to more specific items.

Securing Jenkins | 141

Credentials in Jenkins

In addition to globally securing different aspects of Jenkins, using specific, secure cre-
dentials forms a key part of having a secure Jenkins environment. The Credentials
plugin (included with installations of Jenkins) provides mechanisms for users to cre-
ate and manage credentials, as well as an API for plugins to use to store and access
credentials.

It's worth saying a word here about what we mean by the general term “credentials”
Often you will hear this also described as a “secret” In general, we mean any value or
values that provide access to a restricted resource. A list of the credential types
includes:

 Usernames with passwords—may be conjoined when used (treated as one item)
or separated

o Docker certificates directories (now deprecated)
o Docker host certificate authentications

 SSH usernames with private keys

o Secret ZIP files—ZIP files with the credentials

o Secret files—flat files with the credentials

o Secret texts—tokens or other chains

o Certificates—Java KeyStores with the certificates/certificate chain
Specific examples might include:

o A username and password combination to gain access to a source control reposi-
tory

« A digital key and certificate to sign an entity

o A secret text string that can be matched to identify that content is from a specific
source

« An SSH key set to deploy to a server

Other types of credentials could include less formalized items, such as binary data, or
more formalized ones, such as OAuth credentials.

Once created, credentials have to be stored somewhere. The Credentials API allows
for accessing an external credential store (an application capable of storing and
retrieving credentials). However, Jenkins has an internal encrypted credential store
that is used by default.

142 | Chapter5: Access and Security

Securing Access to the Internal Credential Store

The internal credential store in Jenkins is stored in the JEN-
KINS_HOME directory. It is also encrypted with a key that is
" stored in the JENKINS_HOME directory. If a malicious user can
get access to this, and in particular to the JENKINS_HOME/secrets
directory, they can gain access to the secrets. For this reason, it is
important to secure the filesystem access to JENKINS_HOME if
you want to be truly secure. Furthermore, you should follow the
recommended settings described in “Securing Jenkins” on page
133.

One other fundamental point about credentials is that they are associated with a con-
text. Contexts represent a way of thinking about the different entities that make up
Jenkins as a hierarchy. The root context is Jenkins itself. Other contexts include jobs,
users, build agents, and folders. Additionally, plugins can define new contexts.

With this background, we can delve more into the characteristics and properties asso-
ciated with managing credentials in Jenkins. The first one we'll look at is the creden-
tial’s scope.

Credential Scopes

Credentials have a scope associated with them. This is a way to say how they can be
exposed. There are three main scopes that Jenkins uses:

System
As the name implies, this scope is associated with the root context, the Jenkins
system. Credentials in this scope are only exposed to system and background
tasks and may be used to do things such as connect to build nodes/agents.

Global
The global scope is the default scope and the one to use generally to ensure that
credentials are available to jobs in Jenkins. Credentials in this scope are exposed
to their context and all child contexts of that context. (Recall that credentials are
associated with a context and that contexts represent a hierarchical structure of
the main parts of Jenkins.)

User
As the name implies, this scope is per-user. This means that the credentials are
only available when threads in Jenkins are authenticating as that user.

Credentialsin Jenkins | 143

Credential Domains

Credential domains provide a way to group together, under a common domain name,
sets of credentials. Typically, the common domain name will imply some functional-
ity or application type that the credentials are expected to work with.

When you define a credential domain, you provide a domain name and a “specifica-
tion” such as a hostname or URL pattern.

Jenkins always has at least one credential domain—the global domain. The global cre-
dential domain has no specification, so it is available for anything in Jenkins to use.

Credential Providers

A credential provider is a place where credentials can be stored and retrieved. This
can be an internal credential store or an external credential vault.

There are several standard credential providers. These are:

System credentials provider (Jenkins credentials provider)
This exposes credentials at the root context (Jenkins itself). Two credential scopes
are available: system and global. To look at this, you can go to Jenkins - Creden-
tials - System.

User credentials provider
This exposes a per-user credential store for a user. Only the user scope is avail-
able, and a user cannot see the per-user credentials of another user. To see these
credentials, you can either go to Jenkins - <username> — Credentials - User or
Jenkins — People - <username> — Credentials - User.

Folder credentials provider
This is provided by the Folders plugin. It exposes a per-folder credential store
and supports the global scope for the folder and any children. To see these cre-
dentials, go to Jenkins — <folder name> — Credentials — Folder.

BlueOcean credentials provider
This scopes credentials to the Blue Ocean interface and items created/accessed
directly through it.

All of these can be used with credential domains.

Credential Stores

Credential stores allow credential providers to expose credentials to Jenkins. Stores
are associated with a specific context and are either tied to the global domain or can
use a custom domain. They can support a set of credential domains.

144 | Chapter5: Access and Security

Internal stores store the actual credentials. External stores will typically be either a
simple flat reference of credentials or a service with metadata and more advanced fea-
tures like querying. Later in this chapter we'll look at one such external store, called
Vault.

Administering Credentials

Administration for credentials can be done through the Configure Credentials inter-
face, accessible under the Manage Jenkins menu. The options on this screen allow a
Jenkins user to:

o Select which credential providers will be available to Jenkins to resolve creden-
tials.

« Select the types of credentials that can be resolved and configured.

o Specify the types of credentials that can be included or excluded for a specific
provider.

Selecting Credential Providers

At the top of the Configure Credentials screen is a drop-down list to tell Jenkins
which credential providers it can use. The default choice is to use “All available” pro-
viders. However, if you need to subset the list by including or excluding certain pro-
viders, there are options to do that. (See Figure 5-9.)

.ﬁ . Configure Credentials

Providers e , j

All available
Types Exclude selected
Only selected

Figure 5-9. Options for selecting credential providers

If either the “Exclude selected” (exclude providers) or “Only selected” (include pro-
viders) option is chosen, a list of providers with checkboxes is displayed. Depending
on the option, the checkboxes next to the appropriate providers can be checked to
either exclude them from the set of available providers or include them in the set of
available providers (see Figure 5-10).

Administering Credentials | 145

Prowvicie:s Only selected j

BlueCcean Folder Credentials
~ Folder Credentials Provider
~ Jenkins Credentials Provider [2]

User Credentials Provider &P

Figure 5-10. Selecting specific providers to include as available

Selecting Credential Types

Just as the subset of credential providers can be chosen, the next section on the screen
allows you to select the set of credential types that Jenkins can use. The default choice
is to use “All available” types. However, if you need to subset the list by including or
excluding certain types, there are options to do that. (See Figure 5-11.)

Types e - - - - - - - - - - - - - - - i ;1

All available
FRestrictions EXclude selected
Only o

Provider

Rinasticesan Folder Cradantials »I

Figure 5-11. Selecting which types of credentials are available in Jenkins

If either the “Exclude selected” (exclude types) or “Only selected” (include types)
option is chosen, a list of types is provided with checkboxes. Depending on the
option, the checkboxes next to the appropriate types can be checked to either exclude
them from the set of available types (see Figure 5-12) or include them in the set of
available types.

Types Exclude selected j

Usemame with password

~ Docker Certificates Directory (Deprecated)
Docker Hosl Certificale Authentication
SSH Username with private key

~ Secret tile
Secret text

~ Certificate

Figure 5-12. Selecting which specific types of credentials to exclude

Specifying Credential Types by Provider

The last part of the Configure Credentials screen is the Restrictions section. This
allows you to specify the types of credentials Jenkins will allow or exclude from a

146 | Chapter5: Access and Security

specific provider (see Figure 5-13). This is a way to fine-tune what Jenkins can use
from a provider. Note that doing this is optional and not required.

Restrictions
Includes
Provider
Jenkins Credentlals Provider j
Type s S R] j
Delete
Add -

Figure 5-13. Refining/restricting the credential types allowed from a credential provider

The Add button in this section has two options (“include” and “exclude”). Selecting
either will create a new page element allowing you to select a provider and then a
type. If you have selected “include,” this type of credential will be included for that
provider, and vice versa for “exclude.”

If you need to set up restrictions for multiple types and/or multiple providers, adding
all of the elements can take some time. However, as noted earlier, using this is
optional, not required.

Limiting Access for Build Jobs

As discussed in “Credential Scopes” on page 143, most internal operations and con-
nections between systems in Jenkins run at the “system” level —meaning they have full
permissions to the system.

For build jobs, this high level of access is not always advisable or desirable. To allow
build jobs to run at lower levels of authorization, the Authorize Project plugin has
been developed.

With this plugin installed, new controls are added to the global security configuration
page and to each individual build job that allow users to specify the “authorizations”
(types of credentials) to use for the job. See “Access Control for Builds” on page 139
for more on how this works.

Creating and Managing Credentials

Suggested Reading

If you haven't already read the previous sections on credential
domains, stores, providers, etc., it is recommended to read over
those to have a foundation for this section.

(reating and Managing Credentials | 147

https://plugins.jenkins.io/authorize-project

Earlier, we discussed the notion of “contexts” in Jenkins. Each context in Jenkins that
has an associated credential store will also have a credential “operation” added to it by
the Credentials plugin. That means that, by default, you will have Credentials menu
items specific to the system, user, and folder contexts.

Management for system-level credentials can be accessed simply by selecting Creden-
tials from the top level of Jenkins (Figure 5-14).

* localhast > 1
& Jenkins . @ senkine 2 use
Jenkins Credentials

MNew Item
& People 4. Credentials
= Build History
- T e Stare Domain o Fame
Project Relationship
A Chack File Fingarprint =1 4 enkins [ptobtal my sgi-admir admin« T ¥ =al-admir
2% Manage Jenkins e 4 my=gi-root
& My Views = % VS— [T
Open Blue Ocean
- B Oy e P—— Jemttinas san —rT— ”
4. Credentials
lcon: S ML
Stores scoped to Jenkins
Bulld Quous =
L Store Domalns
Mo bulids In the quouc.
4 Jenkins Qlobal) is COPipoline
Fuilin Evacstar State

Figure 5-14. Accessing system credentials

Management for user-level credentials can be accessed by selecting the People menu,
and then the desired user, and then Credentials (Figure 5-15).

* localhost:

4. Credentials

T P Store Domain -]

4. Credentials

R User

EE

Stores scoped to User: Jenkins 2 user

P Store Domains
Sy, Maseodenki it

Stores from parent
P Store Domains

Figure 5-15. Accessing user credentials

Management for folder-level credentials can be accessed by selecting a particular
folder item and then Credentials (Figure 5-16).

148 | Chapter5: Access and Security

Ilocalhost

>

..... ¥

figure
New ftem

(S Delete Folder

&g Peopie

= Bulld History

- ©
iy
4. Credentials

Config Flles

@ Foider

Bulld Quous

Pdos Builctn ir the cusmun

Bulld Exscutor Status

= master

.Q Credentials

T P Store |
e & sl
e * giobal)
= 4 domuns COPine
toon: ML

Stores scoped to myFolder

P Stora L
® myroise qioban
Stores from parent
P Stora L
3 o= o

o B

e n
Domains
Domains

CDPinealing

dankd

Figure 5-16. Accessing folder credentials

On each credentials screen, the top table lists the available credentials in this context
and any parent contexts. This table has six columns:

o Type(T)

o Provider(P)
« Store

e Domain

« ID

« Name

Grayed-out Credentials

If you happen to have a credential in this table that has the same ID
as a credential in the parent context, it will be grayed out in this
table to indicate that.

The next table (in the middle) lists the credential stores available in the current con-

text. The columns here are:

o Provider
o Store

+« Domains

Creating and Managing Credentials

149

The bottom block lists the credential stores available in the parent context. It has the
same three columns as the preceding table.

Context Links

On any of these credentials pages, the links in the tables are “context links”—meaning
that if you hover over them, a small downward-pointing arrowhead will appear to the
right of the link. Clicking on that will then display a small pop-up menu that will pro-
vide shortcuts to certain actions or quick navigation links.

The basic rules for what shows up in the pop-ups when you click on one of these con-
text links follows from the hierarchy of store, domain, credentials.

If you click on the link itself:

o For a store link, it will take you to a page that shows information about the
domains in the store.

 For a domain link, it will take you to a page that shows information about the
credentials defined in that domain.

« For a credentials link, it will take you to a page that shows usage information for
that credential (whether or not that credential has been recorded as used).

If you click on the drop-down arrow next to the link:

« For a store link, it will give you a menu option to create a new domain.
« For a built-in domain, it will give you a menu option to create a new credential.

« For a custom domain (one that has been created by a user), it will give you a
menu with options to create a new credential, configure the domain, or delete the
domain.

o For a credential, you will get an option to update, move, or delete a credential.

Moving Credentials

Note that it is currently only possible to move credentials between
domains that are in the same store, not across stores.

With this background, let’s look at an example of how to add a new domain, add new
credentials, and use them in Jenkins.

150 | Chapter5: Access and Security

Adding a New Domain and Credential

From several of the context links on the credentials screens or by drilling down from
the Credentials menu item, you can get to the screen to add a new domain.

Figure 5-17 shows an example of filling in that screen. In this example, were adding a
new credential domain for a set of nodes geographically located on the East Coast.
(Perhaps we want to shift processing to those at a certain time of day.)

-*~ localhost
'
New llem
&3 People 4 SYStem

= Build History

Domain Name | =... coas ;
Project Relationship East Coast Nodes

- Check Flle Fingerprint Description des located on the East Coast

Manage Jenkins

~
& ™y views
- Open Blue Ocean

4. Credentials Specification

4 System fad T

J; Add domain Docker Server Gredentials
Hostname

oK Hostname-port
Bulld Queue
Maven serverid
NG bullds In the queues URI path
URI scheme
Bulld Executor Status

Figure 5-17. Adding a new credential domain and selecting the specification

The Domain Name and Description are simply text fields. The Specification field
allows us to differentiate this domain. This field lets you specify a type of filtering via
patterns. After the specification is created, when you are choosing a credential for use
in Jenkins and enter a related value that matches the pattern, credentials from this
domain will be presented as options. (We'll see an example of this shortly.) Note that
if you don’t provide a specification for a new domain, that domain will be effectively
equal to the global domain.

For the example we're working with here, we'll choose the simplest kind of specifica-
tion: Hostname. Then we can add a pattern to match the naming convention of our
nodes, as shown in Figure 5-18.

(reating and Managing Credentials | 151

= Naw faem
& People 2 System

= Bulld History

Domain Name | = cone "

Project Relationship East Coast Nodes
&= | Check File Fingerprint Description . et o e et Conat
#% Manage Jenkins
& My views
- Open Blue Ocean
<. Credentials

Specification
4 System Hostname
i Add domain Include - g mysite.com

Build Queue

Figure 5-18. Filling in a Hostname specification

Once the domain is created, it is ready to have credentials created for it (Figure 5-19).

- localhost . e o B 4 €
Jerkins . = — East Coast Nodes
U= East Coast Nodes
. Modes located on the East Coast
& Delete domain and Fa—"
This credential domain 18 empty. How about adding some credentinla?

Figure 5-19. Domain created and ready for credentials

On the screen to create a credential, we can select a kind (such as username and pass-
word, SSH key, secret file, etc.). We can then fill in the actual values needed for access
and supply an ID and a description. If you don’t provide an ID, a rather long random
ID will be supplied. Because of the length and format, this ID can be difficult to spec-
ity manually, so it is recommended to provide a simpler, more easily handled ID that
has meaning to you.

In our example, we'll add an SSH key credential (Figure 5-20) associated with our
new domain.

152 | Chapter5: Access and Security

* localhost

-

Eack to credential domains [————————— .

@— Add Croedentials

Scope

Configu Ciobal (Jenkins, nodes, ems, all child ilems. etc) -| &
#- Configure

{8 Dslata domain

v mlowehy L

" | East code node SSH Key Cradentials L

Figure 5-20. Adding an SSH credential to our new domain

After the credential is added, a summary screen is shown (Figure 5-21).

< localhost 2 oTTEa - A 2 =

& Jenkins % @ Jonkins2user | log out

East Coast Modes

: East Coast Nodes

Marre Kirvel Deaseriptien

ast code node SEH Key

-

Figure 5-21. Summary screen after credential is added

Now that we have the new domain and credential set up, let’s see how we might use
them in practice.

Using the New Domain and Credential

Suppose that we want to now set up some new worker nodes for our Jenkins master
based on the East Coast systems. After going through the Manage Jenkins - Manage
Nodes - New Node menus, we arrive at the configuration page for the new node.

For the launch method we want to use SSH, so we select that and then type in the
name of our host. Notice that in Figure 5-22, the pattern we type in (“primary-
ecl.mysite.com”) matches the hostname specification (“*-ecl.mysite.com”) we used in
setting up our domain. Because of this, when we go to choose a credential, our SSH
credential from the East Coast Nodes domain shows up in the drop-down list (the
third item from the top).

Creating and Managing Credentials | 153

= east-coast-primary (7]
Description @
of executors 1 :e ©
Remote root directory | edenkins @

Labels east-coast

Usag Use this node as much as possible

Launch method

L [«
& e @

Launch slave agents via SSH

primary-ec.mysite.com

jenkins (East code node SSH Key Credentials)
jenkins (jenkins-ssh) &«
jenkins2 (Jenkins2 SSH)

©

Host Key Verification Strategy

Figure 5-22. Host pattern matches domain’s hostname specification, allowing credentials
from domain to be included

If the hostname we entered did not match the specification, then the credential entry
from the domain would not be listed, as shown in Figure 5-23.

MName east-coast-primary @
Description @
of executors 1 :5 ®
Remote root directory Momejenkins @
Labels east-coast -
Usage Use this node as much as possible j@
Launch method Launch slave agents via SSH j ®
Host

primary . mysite.com

Credentials

(2

admin™====" (mysqgl-admin) be found
Host Key Verification Strategy :eﬂdm I'.I:Jﬂdns-l!-h;s“, ‘e
@

Figure 5-23. Host pattern does not match hostname specification from East Coast nodes
domain, so corresponding credential from that domain is not listed

154 | Chapter 5: Access and Security

Note that in both cases (matching and nonmatching), credentials from the global
domain are available by default.

Beyond the basic credential setup we've described here (for access to resources via
simple credentials), there is a plugin that provides a way to define roles with certain
levels of access that users can be added to. We'll look at this more advanced function-
ality next.

Advanced Credentials: Role-Based Access

While the common credentials options will handle many use cases, there may be
times where you want to use a more granular approach to security and authorization.
An example use case would be creating new roles with a set of specific permissions
assigning roles to individual users. The Role-based Authorization Strategy plugin is
designed to provide this kind of functionality.

More specifically, the plugin allows for the definition of three types of roles:

Global roles
Roles that span across projects with permissions such as Job, Run, and SCM

Project roles
Roles particular to a project from the Job or Run category

Slave roles
Roles with permissions to administer nodes

The plugin also provides a macro facility so that macros can be used as criteria for
what roles apply to.

Basic Use

Installation of the plugin is the same as for any other Jenkins plugin. Once installed, if
security is enabled in Jenkins, there will be a new option named Role-Based Strategy
under Authorization in the Access Control section of the global security configura-
tion page (Figure 5-24).

Advanced Credentials: Role-Based Access | 155

https://plugins.jenkins.io/role-strategy

Authorization
Anyone can do anything
Legacy mode
Logged-in users can do anything
Matrix-based security
Project-based Matrix Authorization Strategy

*' Role-Based Strategy

Enables defining authorizations using a role-based strategy. Once
the strategy is enabled, it can be configured via a separate page in
the Manage Jenkilins window.

(fromm Role-based Authorization Strateqgy)

Figure 5-24. Selection enabled for the Role-Based Strategy Authorization setting

If this option is selected and saved, there will then be a new selection on the Manage
Jenkins page named “Manage and Assign Roles” (Figure 5-25). This is the gateway to

the plugin’s functionality.

- Manage Nodes
o, Add. remove, control and monitor the various nodes that

Manage and Assign Roles

* Docker
- Plugin for launching build Agents as Docker containers

ﬁ\l About Jenkins

Handle permissions by creating roles and assigning them to users/groups

Figure 5-25. “Manage and Assign Roles” option on Manage Jenkins page

On the Manage and Assign Roles screen are three selections for the main functions:
Manage Roles, Assign Roles, and Role Strategy Macros (Figure 5-26). We'll look at

each of those in more detail in the next sections.

156 | Chapter 5: Access and Security

_4] Manage and Assign Roles

a - Manage Roles

Role Strateqgy Macros

Figure 5-26. Manage and Assign Roles selections

Manage Roles

As the name implies, this screen allows you to create or delete roles and assign per-
missions to them. There are three sections here for each of the three kinds of roles
mentioned earlier: global, project, and slave.

The mechanics of using each section are similar to the Jenkins matrix-based authori-
zation model. There is a matrix where each row contains a defined role and each col-
umn is a specific permission within a category of Jenkins object (Overall, Credentials,
Agent, etc.). To grant a permission to a role, you simply click on the checkbox for the
column of the desired permission in the row for the role. If a checkbox is blank, that
indicates the role does not have that permission. To remove an existing permission
for a role, simply uncheck the box in the appropriate column.

You can create a new role by entering the desired role name in the “Role to add” box.
The Project and Slave sections also expect a pattern. These patterns are used to asso-
ciate the project or slave role to matching project names or node names, respectively.
The Global section does not require a pattern, since we assign specific users to those
roles rather than relying on matching user IDs. The following note details more about
the syntax of the patterns.

Defining Role Patterns

Role patterns are regular expressions designed to match based on
the names of objects—either projects or nodes depending on the
type of role. The name of a project includes any Jenkins folder
name in the path.

You can use these like any other regular expression—for example, if
you have projects that start with Daily, you could use a pattern here
of Daily-*. The patterns are case-sensitive unless you use some-
thing like (?i)Daily-* to indicate that it should be a case-insensitive
match.

Advanced Credentials: Role-Based Access | 157

Let’s take a look at an example of how to set up each type of role.

Global role example

By default, we have an admin role that has all permissions. To add a new role, we sim-
ply type in the desired role name in the “Role to add” box and click Add. In this case,
let’s suppose we want to create a new job-admin role. The idea is that this role can
administer things around jobs. It does not need (and should not have) all the permis-
sions of the traditional admin role. Figure 5-27 shows the initial step to add this role.

& Manage and Assign Roles

Gilobal roles

Owverall Credentials Agent Job Fun
Rote 5 o ; I~ g 8 o ¥ > o § o =2 5 »
ole § o © @ < o § 2 ¥ £ 3 o P § s § = » = g
Z g 8 T2 g8 §F 8 = i g £ 8§ EE ¢ 2 8 & T E g £ ¢ g
@ & @ 5§ ¥ ® & g & & & § § =@ - &5 @ @ g = B & 2 7
= 2 = a4 8 3
i The delete permission is ¥ 10 remove i stored in a Pr s l
el ae

L admin of [T (Wt

Role to add | 100, armin|

Add

Figure 5-27. Setting up a global role

Extended Descriptions

Figure 5-27 also demonstrates another aspect of the controls on
this page. If you want to know more about what a permission in a
particular category does, you can hover over the permission name
in the column. A pop-up window will appear with a brief explana-
tion of what that particular permission does.

After adding the role, we can check the appropriate boxes to give the role the desired
permissions, as shown in Figure 5-28.

2 Manage and Assign Roles

Gilobal roles
Overall Croedentials Agerit ot R
=
z -] - - = r] = —
Fole & » o P g s 288§ g g § o § 9 9 § =2 3 g F § §
S § 8 2 BE 3 £ &£ 3 2 8 = 2 & & 2 8§ § B 2 B E Z2
E §F &8 § = =5 &8 F % § =& 2 8 FR 8 § 5 B B 8 2 3 %8
= E = 4 £ 3 =
E
d acdmin W T e w a s
i jobr-acmin T o e w w w "

Figure 5-28. Selecting permissions for the global role

158 | Chapter5: Access and Security

One additional role that you should consider adding here is a global role specifying
the permissions that you want available to authenticated users. There is a built-in
authenticated group that you can assign to a role, but you first need a role available
that represents what authenticated users can do. For simplicity, you can just create an
authenticated role with Overall/Read access (Figure 5-29).

& Manage and Assign Roles

Global roles

et

i aumentcaed g
i pob-achman e e T

Figure 5-29. Creating an authenticated role

Project example

Carrying our example further, let’s suppose that we have two main types of jobs that
we run on our Jenkins instance—daily and weekly. We want to define a role of daily-
job-admin to allow a subset of people to administer the daily jobs but not the weekly
jobs. Our daily jobs all have names or folder paths that start with daily, so we can use
that for a pattern. Figure 5-30 shows the initial steps to set this up.

Project roles

Credentials Job Run SCM Metrics
=

= - r =

B c g 2 s [g 2
Role Pattem Q@ @ €@ § < w § S Q9 § 2 = 2 2 2 8 § < 5 & =
g = S B 2 E 2 E = 2 2 8 8 a2 B B & 2 o 2
= ® § & =T 8% @ £ § ® 3z ® = B @ 2 F =5 £ =

= =1 = 2 & 3

= = o

Role to add dally-job-admin

Pattern (')i]gaily.'l

Add

Figure 5-30. Defining a new daily project role

Once we add the new project role based on the project pattern, we can select permis-
sions for the role just as we did for the global one (Figure 5-31). However, because
we've supplied the pattern, users with this role will only have the selected permissions

for jobs matching that pattern.

Advanced Credentials: Role-Based Access | 159

Project roles

Credentials Job Run SCM Me
=
B - T :
Rol Patt o g9 e g o & o o ¥ g o D o g |
ole attern O] = m § L = =
s 2 5 8 § £ 3 23 £ 58 § F z 2 BEF |
m =2 ¥ B 2 = 8 @ m = 2 = m 5 = =2 & & (=
s = 5 3 & £ & ® 3z ® 8 B @ Z2 3 =
- = v 2
&
i dally-job-admin (7i)daily . A T S S S e

Figure 5-31. Assigning permissions to the project role

To round out our example, we would also add a weekly-job-admins role and roles for
the daily and weekly users (nonadmins). An example of the completed list is shown
in Figure 5-32.

Project roles

-3

Role Patern

4
E
&
%
By
&
o

L
v}
20
HE
B
BBAOOEN]
BORE
B
e
|

~ i~ i i~ i~ i~ A~ i~ i~ dl ~ 4l

THdn ~ ~ ~
~ A~ i div i i~ Qv i i~ al g ~ 4l

atec o ~ ~

Figure 5-32. Daily and weekly roles added in for projects

Order of Precedence

Permissions in a global role override permissions in a project role,
so if a user has both a global role with a given permission and a
local role without that permission, they will have access via the
global specification.

If you plan for project-specific roles to be additive to a global role
(global + project = full set), then you’ll want to only set the smallest
base subset of common permissions in the global role and add less
common ones in the project roles. If, on the other hand, you intend
for the global role to be a separate superset of permissions (global
or project), you can define the wider set of permissions in the
global role.

Slave role example

In addition to defining global and per-project roles, we can also define roles around
the administration of nodes. This is done via the last section on this screen.
Figure 5-33 shows an example of adding a new role to administer nodes with names

160 | Chapter5: Access and Security

starting with node-day. (This pattern identifies nodes that we are using to run our
daily jobs.)

Slave roles
Credentials Agent Metrics
5, o 2 - F =
Role Pattern S E % g = 2@ 3 g’ S § g % g =
S REEREERER R
8 @ 8 £ 3
2

Role to add daily-node-admin
Pattern node-day.*

Add

Figure 5-33. Defining a new node (slave) role

Once added, we can assign permissions to the role just as with the previous sections
for global and project roles (Figure 5-34).

Slave roles
Credentials Agent Metrics
g F =
2 g ? = &= 3
Role Pattern g § é g g_ @ 3 g § g 2 = g 5
=1 2 = z
T = 3 8 E B = i S é_ g
2
i daily-node-admin node-day.” o I W N I W W

Figure 5-34. Adding permissions to the node role

To finish out our example model, we can add a project role for the jobs that run
weekly, and a slave role for users who can administer the nodes that run the weekly

jobs (see Figure 5-35).

Slave roles
Credentals Agent Metncs
=
-] = = : T
Faie Patern ? ¥ % § = == 2 8 g § 5 B =
s 3 & 2 s = £ = £ = 5 5 =
= = 3 = o 5 2 = 5 z s €
; 2 o =]
- Dy NOCE - admEn node-day.” o [[[[[[[[[
i Werakly-node-admen node-weekdy." W e T T I T T T

Figure 5-35. Adding the weekly node role

Advanced Credentials: Role-Based Access | 161

Assign Roles

Once we have our desired roles set up, we can assign users or groups to particular
roles. We do this using the Assign Roles screen, accessible from the “Manage and
Assign Roles” page). For each category of role on the Manage Roles page, we have a
corresponding section on the Assign Roles page. However, corresponding sections on
the latter have the more “modern” names— “Item roles” and “Node roles.” To be clear,
“Item roles” here corresponds to “Project roles” and “Node roles” corresponds to
“Slave roles” Figure 5-36 shows an example of a starting page for assigning roles.

&. Assign Roles

Gilobal roles

User/group admen authentcated job-admen
i & Jenkans 2 user 4 —
i Anonymous e
User/group 1o add
Add
tem roles
Userigroup dady-job-admen dady-user weekly-job-admen weekly-user
Wi Anonymous -
User/group o add
Add
Node roles
Usargroup dady-node-acdmen weaadkdy-node-aamen
i Anonymous il
Userigroup 1o add

Add

=

Figure 5-36. Assign Roles screen

Usage here is straightforward. Within each section (Global, Item, and Node), the
rows represent users or groups, and the columns represent the roles that have been
defined for that category. Note that there is a default entry for the Anonymous user.
Any other users/groups already defined will have rows as well.

162 | Chapter5: Access and Security

To allow a user/group to have the permissions associated with a role, you simply enter
the user/group name into the “User/group to add” text box, click the Add button, and
then check the boxes in the columns corresponding to the roles you want them to

have.

For example, suppose that we have the following user IDs: all-jobs-admin, day-admin-
user, day-user, weekly-admin-user, weekly-user, sysadmin-daily, and sysadmin-weekly.
The “admin” user IDs are intended to be the administrators for their respective cate-
gories. Once we fill in the particular users to match up to the intended categories, we
will have a configuration like the one in Figure 5-37.

Global roles

Add

Figure 5-37. Finished configuration for assigning roles

Adding the “authenticated” Group

The authenticated group (meaning anyone who can log in) is a
built-in group in Jenkins. We can simply type in “authenticated”
and add it to the authenticated role we defined previously.

Advanced Credentials: Role-Based Access

163

Dealing with invalid users

The forms for assigning users will allow you to type in and add any user/group name
initially. Once you save your changes, validation will be done to make sure the user/
group is valid. If it is not, then when you go back into the Assign Roles page, you will
see the user/group name with a line through it—indicating the user/group doesn’t
exist or isn't valid (Figure 5-38). At that point, you can delete the user/group by click-
ing on one of the small, red “X” symbols on either end of the row.

hem roles

Figure 5-38. Identifying an invalid user

Verifying the roles setup

Now, we can verify that our roles setup works. First, if we log in as the all-jobs-admin
user, we can see the list of all of our jobs (Figure 5-39).

_ ‘ A Jobs Admin User Account o9 o

AN
s w Name Last Success Last Failure Last Duration Fawv
< gasy 061 1he-e2 e - o
dasky-pob-2 dA NA A =)
sty 3 A A A
-~ wesidy-job-1 £2 A 4 se (=D,

Figure 5-39. Verifying that the role allows seeing all jobs

If we log in as day-admin-user, we can see only the set of daily jobs, and we have the
ability to configure them (as one example of the admin permissions). Figures 5-40
and 5-41 show this.

164 | Chapter5: Access and Security

@ Day Admin User

log out

Last Duration

Figure 5-40. The restricted view of the day-admin-user

Day Admin User

log out

Pipeline daily-job-1

[oo
Figure 5-41. The day-admin- user has the Configure option

If we log in as day-user (a nonadmin user), note that we can again see only the daily
jobs but that we do not have the Configure permission (Figures 5-42 and 5-43).

I R
AN
s w MHame Last Success Last Failure Last Duration Fav
9 I e sz o
dady o2 A NA MA =)
daiy-job-3 A A dA
k
Figure 5-42. The view of the day-user (nonadmin)
S Pipeline daily-job-1
- Slage View
Proocoss
Build History trered

Figure 5-43. The day-user does not have permission to configure jobs

Advanced Credentials: Role-Based Access | 165

Role Strategy Macros

The third piece of functionality provided by the Role-based Authorization Strategy
plugin is the ability to use Role Strategy Macros. The idea behind this is to be able to
have macros that define access permissions based on some characteristic of an item.
As of the time of this writing, there is only one available example—the BuildableJob
macro. This macro is designed to filter the list of jobs to only ones that are “builda-
ble” There are several reasons why an item in Jenkins might not be buildable, but at
the level of an individual job, it would typically be because the job has been disabled.
A quick indicator that a job is not buildable is the absence of a Build Now icon and
menu option.

If you go to the Role Strategy Macro screen, there is general information about how
macros are intended to work. One of the key phrases here is “Listed macros should be
used in the ‘Rol€’ field of the ‘Manage Roles’ page” After that, you can see informa-
tion about the BuildableJob macro (Figure 5-44).

Avallable Macros

Role Macros

PROJECT SLAVE

Figure 5-44. Listing macros available for use in roles

From this table, apart from the name and description, the Applicable Role Types col-
umn is the most useful. It notes which of the role types that this macro applies to. In
this case, the listed macro is intended for the Project role type.

To add a macro to a role, we use the @ sign in front of the macro name. Figure 5-45
shows adding the macro as a role in our set of Project roles. We're giving it the same
permissions as the weekly-user role.

Project roles

Qobeueyy | §

iy
pang

E

iy

- Al Al A Al Al A s v v
— - v ~ ~
o wee —— AR AN A AR QR SR SRt SRt ST I
o - o ~ ~
- @B e =e o | & 4 o~

Figure 5-45. Using a macro in defining a role

166 | Chapter5: Access and Security

Assume we have created a new user called Weekly User 2. After adding the @Builda-
bleJob role, on the Assign Roles page we can assign the new user to the @Buildablejob
role (Figure 5-46).

hem roles

Figure 5-46. Adding a user to a role defined by a macro

Let’s now look at the macro use in practice. If we first log in as the user Weekly User,
which has the weekly-user role, we can see the list of all weekly jobs—including
weekly-job-2, which is not currently buildable (note the absence of the Build Now
icon). This is shown in Figure 5-47.

I > i e

s w MName . Last Success Last Faikire Last Duration Fawv

Figure 5-47. User view not filtered by @Buildable]ob role

If we then log in as the user Weekly User 2, which is attached to our @BuildableJob
role, we only see the weekly jobs that are actually buildable (Figure 5-48).

s w Name . Last Success Last Failure Last Duration Fav

‘J wag by 1 14 bw - 23 NA 0.34 sec [~

NA NA NA =

Figure 5-48. User view filtered by @BuildableJob role

Advanced Credentials: Role-Based Access | 167

As you can see, the advanced credentials functionality allows for much more flexibil-
ity in defining roles around specific criteria.

Next, we'll look at the basics of using credentials in the pipeline.

Working with Credentials in the Pipeline

There will be times you'll need to supply credentials in your pipeline for your pipeline
steps. In this section, we explore some Pipeline constructs for working with the basic
types of credentials.

Username and Password

First, we want to make sure we have the Credentials Binding plugin installed. Then
we'll define a set of credentials with a username and password in Jenkins
(Figure 5-49).

Q_Credentlals
T P Store | Domain D Name
o Jenkins (global b9EE1314-2550-4175- diyuser/****** (diyuser ame + pw)
fzzn g Sere (OB en 35a75650508 Lus (Gyuser - usemame « pul
-2cdbid-4857-45b8-857h
== 2 Jenkins {global) zjdzsgggcrgi! 508-8570 enkins {sshj
03463f1a-bddd-48cc-
[4 denkins (global) b160-575b1aBb7211 diyuser (ssh (workshop key))
- 7
brentlaster/****** (Personal Credentials for brentlaster
ey 4 [EIIE [EEN SR STGIREE
lcon: SML

Figure 5-49. Username/password credentials in Jenkins

We can now use the withCredentials block in our pipeline to work with the desig-
nated credentials. The syntax for this block starts with the following:

withCredentials([usernamePassword('<ID>',
'<variable to hold password>',
'<variable to hold username>')])

The idea here is that whatever variables are used for usernameVariable and password-
Variable will be filled in the username and password from the credentials specified by
credentialsld.

SSH Keys

To use SSH credentials in our pipeline, we can use the withCredentials block again,
as shown here:

168 | Chapter5: Access and Security

https://plugins.jenkins.io/credentials-binding

withCredentials([sshUserPrivateKey('<credentials-id>',
'"MYKEYFILE',
'"PASSPHRASE ',
"USERNAME') 1)

{
// some block

}

As an alternative, we can use an sshagent block. For this, we first need to make sure
we have the SSH Agent plugin installed.

Now, we can use the sshagent block to do our access, passing in the credentials ID:
sshagent([<credentials id>]) { }

Figure 5-50 shows an example of using this in a pipeline script.

Pipeline script
Seript 1~ node {
P 2 def sshRepodef = "git@diyvb:repos/shared_libraries.gi
3
4= stage ("Get Source”™) {
5 git url: sshRepodef
6
7
B~ stage (“Update Source”) {
18 sh "git config user.name
11 sh "git config user.e
12
13 - sshagent (['0834 3
14 sh "git ta 0 ’ trate pust t
15 sh "git push §{sshRepodef] tags
16 1
17 1
18}

Figure 5-50. Using the SSH credentials in a pipeline script

Token Credentials

When working with other types of credentials, the same general idea (using the with
Credentials block) applies. The following is an example of using a token credential
modeled on an example in the Jenkins documentation:

node {
withCredentials([string('<token>', '"TOKEN') 1)
{
sh '"!
set +x
curl -H "Token: STOKEN" https://some.api/

A couple of points are worth mentioning about this:

Working with Credentials in the Pipeline | 169

https://plugins.jenkins.io/ssh-agent

o The shell script uses the triple quotes to handle a multiline script inline. (You can
discover more about using the sh step in Chapter 11.)

» The set +x prevents echoing out the credential as the script executes.

For other types of credentials, you can use the Snippet Generator for the withCreden
tials step and fill in the desired binding.

As we introduce credentials into the pipeline, it's important to understand more
about what we can and can’t do in scripts, and how Jenkins handles it when some-
thing we try to do isn’t approved.

Controlling Script Security

The pipeline functionality introduces the ability to run any arbitrary script. With this
increased flexibility to execute commands and do processing comes an increased
importance of being able to control script security. In Jenkins 2, this security is pro-
vided by the Script Security plugin.

Scripts Written as Declarative Pipelines

To some degree, Declarative Pipelines lessen the likelihood of
scripts violating security concerns. Their required structure and
syntax limit the programming you can do with Groovy and so
make the pipeline conform better to best practices.

By default, users with the Overall/Administer permission can write or run whatever
scripts they want. This level of permissions is equivalent to admin permissions on the
Jenkins instance, and so is not appropriate for all users. So, Jenkins 2 includes two
mechanisms to help with script security: script approval and Groovy sandboxing.

170 | Chapter5: Access and Security

https://plugins.jenkins.io/script-security

Deprecated Permissions

In previous versions of the role-based access/matrix plugin, there
were additional permissions that could be set:

« Overall/Run Scripts
« Overall/Upload Plugins
« Overall/Configure Update Center

This was deemed a security risk because these permissions were as
powerful in some cases as the Overall/Administer permissions, so
now you need to have the Overall/Administer permission to auto-
matically be able to run scripts without approval.

If you do need to go back to the old insecure permissions for some
reason, the org.jenkinsci.plugins.rolestrategy.permis
sions.DangerousPermissionHandlingMode.enableDangerousPer
missions system property can be set to true.

Script Checking

When a Jenkins administrator creates a script or includes a script in a configuration
and saves it, the script is automatically approved and added to an approved list. Those
scripts in the approved list can be run by anyone. If a nonadministrator tries to run a
script and it is not one in the approved list, then it is prohibited from running until/
unless approved by an administrator.

The reason for this is that, unlike filling in web forms, scripts can (attempt to) do any
arbritrary operations, including referencing internal objects in Jenkins. This could be
a security risk as well as a technical risk, depending on what the script is trying to do.

An example of a script that needs to be approved is shown in Figure 5-51. This one is
flagged because it is trying to use the internal rawBuild object to get information. The
figure also shows the output from trying to run the script—note the error message.

Controlling Script Security | 171

Pipeline script

: 1+ node {
Seript 2. stage (“Results”)
3 currentBuild. rawbuild.getPreviousSuccessFulBuild()
4 }
5
L]
i, A Jenkins administrator will need to approve this script before it can be used

()] Use Groovy Sandbox

) Console Output

Started by user Non Administrator

org. jenkinsci.plugins.scriptsecurity.scripts.UnapprovedUsageException: script not yet approved for use
at org.jenkinsci.plugins.scriptsecurity.scripts.ScriptApproval.using(ScriptApproval.java:459)
at org.jenkinsci.plugins.workflow.cps.CpsFlowDefinition.create(CpsFlowDefinition. java:106)
at org.jenkinsci.plugins.workflow.cps.CpsFlowDefinition.create(CpsFlowDefinition. java:59)
at org.jenkinsci.plugins.workflow. job.wWorkflowRun. run({wWorkflowRun. java:214)
at hudson.model.ResourceController.execute(ResourceController. java:98)
at hudson.model.Executor. run{Executor. java:464)

Finished: FAILURE

-

Figure 5-51. Script not approved for use

Script Approval

If a nonadministrator tries to run a script that needs approval, Jenkins will prohibit
running it. It will also add a notice about the need for approval to a queue, for an
administrator to review. An administrator can then log in to Jenkins and go to Man-
age Jenkins — “In-process Script Approval” An alert of the form “1 scripts pending
approval” will be waiting for the administrator (Figure 5-52).

- them at this page. Also you can manage the list of ignored repos

AMGIMO In-process Script Approval
—#" Allows a Jenkins administrator
|

3 tions. 1 scripts pending
approval. 1 signalures pending approval.

m Prepare for Shutdown

Figure 5-52. Script pending approval

Once the administrator goes to the script approval area, they will have an option to
approve or deny executing the script. The upper part of Figure 5-53 shows this part of
the form.

172 | Chapter5: Access and Security

((-.- i) | localhost:B080/scriptApproval/ [| |"?'.--.-\u-. - | ¥ B8 » =

Qjenkins 333 Local Git (not Gerrit) Q Configure

Jenkins DISABLE AUTO REFRESH
| Approve |/| Deny | Groovy script from non-admin in simpletest:
node {

stage ("Results") {)))
currentBuild. rawBuild.getPreviousSuccessfulBuild()

‘You can alse remove all previous script approvals: | Clear Approvals |

| Approve |/ | Approve assuming permission check | /| Deny |signature : method
org.jenkinsci.plugins.workflow.support.steps.build.RunWrapper
getRawBuild Approving this signat may introd a security vul bility! You are
advised to deny It

Signatures already approved:

Figure 5-53. Script approval interface for administrators

Groovy Sandboxing

While the script approval mechanism provides a good signoff mechanism to validate
scripts, approving every new script from a nonadministrator can become laborious
and unmanageable over time. To help with simplifying that burden, Jenkins 2 also
supports the ability to run scripts in a Groovy Sandbox. This is enabled by checking
the Use Groovy Sandbox option at the bottom of the pipeline script text window
(Figure 5-54).

Groovy Sandboxing | 173

Pipeline script

- 1= node {
Script 2« stage ("Results”™) {

3 currentBuild.rawBuild.getPreviousSuccessfulBuild()
4 1

5 1

6

[Use Groovy Sandbox

Figure 5-54. Running in the Groovy Sandbox

The basic idea here is that there are a set of “whitelisted” methods maintained by Jen-
kins. This means that these methods are deemed to be safe to use in any script. If the
option to use the Groovy Sandbox is selected and the script only makes use of meth-
ods in the whitelist that are known as safe, the script is allowed to run without appro-
val. This saves the extra overhead of requiring an administrator to approve it.

However, if any of the methods in the script are not in the whitelist, then the script is
not allowed to run and an error is flagged (Figure 5-55). In that case, the method is
queued for approval by the administrator—just as the scripts are in the regular script
approval process.

Running on master in /var/lib/jenkins/jobs/simpletest/workspace

org.jenkinsci.plugins.scriptsecurity.sandbox.RejectedAccessException: Scripts not permitted to
use method org.jenkinsci.plugins.workflow.support.steps.build.RunWrapper getRawBuild

at
org.jenkinsci.plugins.scriptsecurity.sandbox.whitelists.Staticwhitelist.rejectMethod(Staticwhiteli
s5t.java:176)

at
org.jenkinsci,.plugins.scriptsecurity.sandbox.groovy.SandboxInterceptor$6.reject(SandboxInterceptor
.Jjava:243)

at
org.jenkinsci.plugins.scriptsecurity.sandbox.groovy.SandboxInterceptor.onGetProperty(SandboxInterc
eptor.java:363)

at org.kohsuke.agroovy.sandbox.impl.Checker$4.call(Checker.java:241)

Figure 5-55. Method flagged as not allowed in the Sandbox

174 | Chapter5: Access and Security

Here again, when the administrator logs in and goes to Manage Jenkins, they will see
the alert that there is a method signature waiting for their approval (Figure 5-56).

In-process Script Approval

— \lows a Jenk :

1 signatures pending
approwval.

“ Prepare for Shutdown

Figure 5-56. Method signature pending approval

On the “In-process Script Approval” page, the administrator will be presented with a
choice to Approve, Approve assuming permission check, or Deny the method
(Figure 5-57). The Approve and Deny options are self-explanatory. The “Approve
assuming permission check” option permits running this method if an actual user is
doing it (not a system call) and assuming the user has appropriate Jenkins permis-
sions to allow doing the operation. If approved, the method will be added to the
internal whitelist.

Jenking SHELE #T0 SEFBESH
e lke
v liem Mo pending script approvals.
FPeopl
&' sople ‘You can alsa remave all previous script approvals: Clear Approvals
= Build History
. Praject Relatianship Apprave / Approve assuming permission check / Deny | signature : nethod
org.jenkinaci. plugins. workl low. support. steps. build, lnkrapper getRawtuild Approving
4~ Check File Fingerprint thiz sig may introd, a ity ility! You are advised to deny it.
" Manage Jenkins Slgnatures already approved:
& "y views

‘-‘- Dpen Blue Ocean
. Credentials

B MewView

Euild Queue =

Mo builds in he gueue

already app ing p ission check:

Euild Executor Status =

1 Idle
2 Idle

Figure 5-57. Administrator option to approve use of a method

Using Jenkins Credentials with Vault

HashiCorp’s Vault application bills itself as a tool for managing secrets. At its core
that’s what it is, but it also handles far more—including providing leasing, key revoca-
tion, token generation, and auditing services. It also provides external “auth back-

Using Jenkins Credentials with Vault | 175

https://www.hashicorp.com/products/vault?

ends” for different kinds of user and system authentication and access to stored
credentials.

For Jenkins, Vault can be used as an external credential store that Jenkins authenti-
cates to (through one of Vault’s auth backends); it gets a temporary token and then is
able to pull in the credentials in the pipeline. We'll look at a simplistic example of how
to make Jenkins work with Vault in this section as a final example of working with
credentials.

Approach

Vault includes a number of interfaces for working with it. These include a command-
line interface as well as a REST API. As you might expect, there is also a Jenkins
plugin for working with Vault.

In this section, we'll show how to spin up Vault and do initial setup via its command-
line interface. We'll also leverage the “dev” mode that Vault comes with to further
simplify things. Within Jenkins, we’ll use the Jenkins plugin for Vault, but be aware
that there are other approaches (such as the REST API and shell commands) that
could be used to do these things, and that you would not want to use the dev mode in
a production setting.

Setup
To start the Vault server running in dev mode, you simply do:

vault server -dev

Vault and Dev Mode

One of the reasons we start with dev mode is because that starts
Vault in an unsealed state, meaning that it already knows how to
decrypt information in it. The default mode starts Vault in a sealed
state where it knows how to access information but not decrypt it.
In that scenario, a longer process must be used to reconstruct the
master key to use for decryption purposes.

With our Vault server running, we simply need to export the URL as a VAULT_ADDR
environment variable to complete the basic setup:

export VAULT_ADDR='http://127.0.0.1:8200"

Creating a Policy

From the standpoint of how to use Vault, you can think of it as similar to a filesystem
with the top level being the root path secret. We can define subpaths under this to
hold our various “secrets” and write data into the subpaths of the form key = value.

176 | Chapter5: Access and Security

https://plugins.jenkins.io/hashicorp-vault-plugin
https://plugins.jenkins.io/hashicorp-vault-plugin

Policies describe what capabilities are provided once someone or something gets
access to a path. Capabilities here might include such operations as “list”, “read’, etc.
for the secrets stored in this path. You can think of these as being like the read, write,
and other permissions that are attached to files in a directory path. We'll start out by
creating a simple policy for Jenkins to use. To create the policy, we specify the path
and the capabilities in Vault and use the Vault policy-write command to store the
new policy. We can write this into a file or just take a shortcut and echo it out:

echo 'path "secret/example" {
capabilities = ["read", "list"]
}" | vault policy-write jenkins-example -

Vault should then respond with a message like:
Policy 'jenkins-example' written.

With this in place, once Jenkins has access to this area it can read and list the secrets
stored under this path, supplying a key and getting the secret value back.

Authentication

To be precise, Jenkins itself won't have direct access to this area—rather, it will receive
a token assigned to this policy, and that token will have the specified capabilities. You
can think of the token in a similar way to having a session available after you log on
to a system. While the session is active, you can execute the specified capabilities
(permissions) against the objects stored in the system.

To continue our analogy, to get a session, you must be able to log on, or “authenti-
cate,” to the system. That is, you must be able to supply credentials up front to a login
process to authenticate and get a session to do your work.

Vault supports various types of authentication. Each authentication type is imple-
mented via an interface that Vault refers to as an auth backend.

Authentication (auth) backends are Vault components that do two things:

 Handle the different types of authentication.

« Assign a set of policies and identities to users.

There are a number of auth backends for many of the most popular services and
applications that may make use of Vault. These include GitHub, Google Cloud,
Kubernetes, AWS, LDAP, etc. One that you may not recognize is called AppRole. This
is the one we would typically use in Jenkins. We'll look at it in more detail next.

AppRole

The idea with the AppRole backend is that services and systems can communicate
with Vault through a defined set of roles (thus, “App” for services plus “Role”). These

Using Jenkins Credentials with Vault | 177

can be used at multiple scopes, including an individual system, a service that exists on
multiple systems, or even a particular user on a particular system.

To use an auth backend like AppRole, we first need to enable it using Vault’s auth-
enable functionality, as shown here (again from a command-line perspective):

vault auth-enable approle
And Vault should respond with something like:

Successfully enabled 'approle' at 'approle'!

To make this work, we need two pieces of information to pass to Vault: a role-1id to
identify a role to use and a secret-1id to identify a secret. A secret-1id in this case is
a temporary access “token” to a secret stored in Vault. Typically, the secret-1id exists
for only a short time after creation.

To create the role-1id, we can just use Vault’s write command and write a new role
that maps to the policy we set up earlier. This definition also includes various “time-
to-live”(ttl) settings for the generated info. An example syntax for this is shown here:

vault write auth/approle/role/jenkins-example
secret_id_tt1=200m token_ttl=20m token_max_t11=40m
policies=jenkins-example

And Vault should respond with:
Success! Data written to: auth/approle/role/jenkins-example
Once we've completed this operation, we can get our role-1id token:
vault read auth/approle/role/jenkins-example/role-1id
Vault will then display the information:

Key Value

role_id 5e50c99a-1b96-e747-f310-81451b78977c

Now we need to create another policy that allows us to use the role-id to generate
secret-1ids. This is similar to the way we created the earlier policy example. The fol-
lowing command shows how to do this:

echo 'path "auth/approle/role/jenkins-example" {
capabilities = ["read", "create", "update"]
}' | vault policy-write jenkins -

And here’s Vault’s output:
Policy 'jenkins' written.

We can now ask Vault for a secret-id to use to access our data and retrieve it as
shown next. When we set up the secret-id, we also specify a number of lease time-
outs via the tt1 (time-to-live) values:

178 | Chapter5: Access and Security

vault write auth/approle/role/jenkins-example
secret_id_tt1=100m
token_tt1=200m token_max_tt1=300m
policies=jenkins-example

vault write -f auth/approle/role/jenkins-example/secret-1id

Vault will display the following:

Key Value
secret_id eba9887f-afa7-5e0a-9b55-5cfbf1668a6d
secret_1id_accessor 2323f05f-5312-895a-3902-46250cbed6a4

secret_id_accessor

The secret_id_accessor value can be used to find the properties
of the secret_id without having to share the secret_1id itself. It
can also be used to delete the secret_id from the AppRole.

With the basic setup and authentication ready from the Vault side, we are ready to
configure Jenkins for Vault use and include it in our pipeline.

Using Vault in Jenkins

We can move on now to using Vault in Jenkins. The first prerequisite is to make sure
you have the Vault plugin installed (Figure 5-58).

Available
install . Name Version

Figure 5-58. Installing the Vault plugin
Once that is done, you can move on to defining credentials for use with Vault.

Jenkins credentials for Vault

The Vault plugin allows us to select from a number of different types of credentials:

Vault AppRole credential
For supplying a role-1id and secret-1id as we've been discussing

Vault GitHub Token credential
Allows for authentication to GitHub via a personal access token (Vault does not
use OAuth with GitHub and so requires a personal access token, as of the time of
this writing)

Using Jenkins Credentials with Vault | 179

Vault Token credential
For basic authentication using a user-supplied token.

Vault Token File credential
The same as the Vault Token credential, but the token is read from a file on your
Jenkins system

Since we've been talking about AppRole and it is generally recommended for systems
to use when accessing Vault, we'll use that one. Primarily, what we need to do is just
plug in our role-1id and secret-1id (Figure 5-59).

Boope Gilobal (Jenkins, nodes, items, all child tems, etc) - @

Se50c00a-1b06-e747-1310-81451b78977¢c

approle-example *i

Descrption

Sample AppRole Vault Credentiale &3

Figure 5-59. Setting up an AppRole credential

Credential Lifetimes

Note that since credentials here have a limited lifetime, using a
static secret-id in an AppRole credential may not be the best
choice unless the secret-1id is set up to be long-lived.

In such a case, you may want to instead use the Vault Token File
credential, where Jenkins reads the credential from a file. Arguably,
having the credential exposed in a file is not as secure—but doing it
this way, another process could monitor when the token is about to
expire, get another one from Vault, and then update the file to
make the process of token expiration/renewal a nonevent for Jen-
kins.

With our credential set up, we can then do the system configuration for the plugin.
This is done on the Manage Jenkins - Configure System page and is straightforward;
just put in the Vault URL and select the credential you have set up (Figure 5-60).

Vault Plugin

Vault URL hitps/127.0.0.1:8200

Wault Credential | Sampie AppRoie Vault Credentials! - -— Add =

Figure 5-60. Vault global configuration in Jenkins

180 | Chapter5: Access and Security

Folders and Vault

It's worth noting that Vault settings can also be configured at the
folder level. Look for the Vault Plugin section in the folder configu-
ration.

With the basic Jenkins configuration out of the way, we can move on to using Vault in
our pipeline.

Using Vault in a Pipeline

To use Vault in a pipeline, there are a couple of steps.

First, we want to define an object that can identify which secret(s) and value(s) we
want to access, as well as the environment variables we want to put them in for using
in the pipeline. An example in Scripted Pipeline syntax is shown here (at the time of
this writing, the Vault integration doesn't seem to be supported for Declarative Pipe-
lines):

// define the secrets we want to access and the env variables

// we want to put the retrieved values in

def secrets = [

[$class: 'VaultSecret', 'secret/example’,
[[$class: 'VaultSecretValue', 'msg’', 'value']]

11

Here, secret/example is the path, 'value' is the key to the keypair stored in Vault,
and 'msg' is the environment variable we will access in our script.

Once we have that set up, we can use the pipeline DSL step/construct "wrap" to
access the credentials, as shown here:

// inside this block our credentials will be accessible as env variables
wrap([$class: 'VaultBuildWrapper', secrets]) {
def myMsg = "The message is $msg"

About the wrap Step

The wrap step is a special step that allows a pipeline to call “build
wrappers’ (aka “environment configuration” in Freestyle jobs).
This is a block step/construct, meaning that it defines an environ-
ment or setup that is in effect for all statements inside the block.

As far as using this for Vault integration, be aware that in the
future, the plugin might migrate to an actual DSL build step of its
own just for Vault.

Using Jenkins Credentials with Vault | 181

There is one other configuration/pipeline item that is worth being aware of here. It is
also possible to define your own local configuration for Vault within your pipeline.
Code similar to the following could be used (plugging in our previous configuration
values):

def configuration = [$class: 'VaultConfiguration',
'http://127.0.0.1:8200',
'approle-example']

To use this configuration locally, we would include it in our wrap step as shown here:

// inside this block our credentials will be accessible as env variables
wrap([$class: 'VaultBuildWrapper', configuration,
secrets]) {
def myMsg = "The message is $msg"

}...

We have only scratched the surface of working with Vault and how it can be used
with Jenkins here. There are many more things it can do for you that can be useful in
a pipeline, such as helping to automatically instantiate database credentials. For more
details and use cases, youre encouraged to explore the documentation and various
examples on the Vault website.

Summary

In this chapter, we've covered some key elements of securing and accessing Jenkins.
We dove into setting up user permissions and extended functionality that allows for
defining role-based permissions not only for global tasks, but also for projects and
nodes. We then spent some time looking at how to work with credentials in Jenkins
and the various entities associated with them, such as providers, stores, and scopes.

Then we looked at some common problems authors and users of pipelines may
encounter when invoking scripts, operations, and methods that need additional
approval.

Finally, we took a look at how to use Jenkins with one of the newer secret-
management applications, Vault, and saw how to make use of it.

Security and access control are constantly evolving topics in any application such as
Jenkins. Securing Jenkins and controlling access is not only a good practice, but also a
requirement for safety for any public multiuser instances. To ensure that your Jenkins
instance is kept as secure as possible, pay attention to security notices on plugins and
Jenkins itself, and update as frequently as your use cases and policies will allow.

In the next chapter, we'll look at how to extend our pipelines and Jenkins by using
shared libraries and other methods to bring in external code.

182 | Chapter5: Access and Security

https://www.vaultproject.io/intro/index.html

CHAPTER 6
Extending Your Pipeline

Like in any programming environment, in Jenkins pipelines, centralizing functions,
sharing common code, and code reuse are all essential techniques for quickly and
effectively doing development. These practices encourage standard ways to invoke
functionality, create building blocks for more complex operations, and mask com-
plexity. They can also be used to provide uniformity and encourage convention over
configuration to simplify tasks.

One key way that Jenkins allows users to do all of this is through the use of shared
pipeline libraries. Shared pipeline libraries are composed of code stored in a source
code repository that is automatically downloaded by Jenkins and made available to
pipelines.

In this chapter, we'll explore the structure, implementation, and use of pipeline libra-
ries, as well as seeing how to create our own global functions and even incorporate
code that’s not written in Groovy or Java. To start building our understanding, let’s
look at the different classifications of shared libraries that are available in Jenkins.

Trusted Versus Untrusted Libraries

Shared libraries in Jenkins can be in one of two forms: trusted or untrusted.

Trusted libraries are ones that can call/use any methods in Java, the Jenkins API, Jen-
kins plugins, the Groovy language, etc. Because trusted libraries have such wide lati-
tude in what they can call and use, it's important that access to add or change code in
them is managed. Making updates to trusted libraries should require an appropriate
level of source control access and verification. For these same reasons, code that can
potentially do any damage should always be contained in a trusted library where
there is oversight.

183

Untrusted code is code that is restricted in what it can invoke and use. It is not
allowed the same level of freedom to call the previously listed kinds of methods, and
it cannot access the larger set of internal objects that trusted code can.

Untrusted code is run in the Groovy Sandbox, which has a list of methods that are
“safe” to call. When running in the Sandbox, Jenkins monitors to see whether the
library code attempts to call any methods not in the safe list. If so, the code is stopped
and approval must be granted by an administrator. (See Chapter 5 for a discussion of
the Groovy Sandbox and the related method approval process.)

Scope of Trust

As we will talk about later in this chapter, shared libraries can have
a “scope” associated with them. Those at the “root” level of Jenkins
are global (available to all jobs). By virtue of being at the root level,
they are trusted. Those that are specified for use for specific sets of
jobs (in folders, for example) are untrusted. (See Chapter 8 for
more on Folder projects.)

Internal Versus External Libraries

Another distinction for shared libraries refers to where the source management
repository is hosted—whether internally within the Jenkins instance or in an external
source management system. Internal is viewed as more of a legacy option in most
cases, but a description of it is included here for completeness.

Internal Libraries

This is an older method for managing libraries, but still an option. Jenkins 2 includes
an internal Git repository that can be leveraged to store internal libraries or for test-
ing purposes. Any content put in this library is trusted for all scripts, but anyone
pushing to it has to have the appropriate administrative permissions.

Internal Library Use in CloudBees Jenkins

The internal Git repository is leveraged more in the internal
CloudBees Jenkins system to provide a way to do code review
checking before changes are added in to the system.

The internal Git repository has a specific name: workflowLibs.git. Note the mixed case
in the name. It can be used with Git either through SSH access or through HTTP
access. Details of how to use each protocol for this are next.

184 | Chapter 6: Extending Your Pipeline

SSH access

To use this functionality you need to do a couple of things first:

1. Specify the SSHD port in Jenkins via Manage Jenkins - Configure Global Secu-
rity. Use a high number here to avoid needing to use a privileged port. (See

Figure 6-1.)

- localheost T LT
Jenkins Configure Global Security
Plugin Manager
Use browser for metadata download
Hidden security warnings
Security warnings...
= Enable Agent - Master Access Control
Rules can be tweaked here
SSH Server

S8HD Port * Fixed : |22222 = Randam Disable

Figure 6-1. Setting up the SSHD port for internal library usage

2. Add the user’s public SSH key in the SSH Public Keys field on http://<jenkins-

url>/user/<userid>/configure page. (See Figure 6-2.)

-« localhost s = 2 =oar TrBa %+ W
Detaur view
FPassword
Password. sssssssssssssssRRREn.

Confinm Password: [e sessssssssssssssas

SSH Public Keya
SSH Publc Kevs poal1 B7GIXW 1 Npan'W:

yBEL BN Emitis

850U BHE AP A BN

OxezGAZGEZDTRGEVIFaRN

ienkins2Pdiyvb2

SEAIHVAgnuA4WABS T POy DGV

Byl TréN Dahe0VTDUImgatarns

o U0 1 Stchoty3x =

Figure 6-2. Adding in the public SSH key

Once this is set up, then you should be able to clone down the internal Git repository,

workflowLibs.git. The clone command would be:
git clone ssh://<userid>@<system-name>:<port>/workflowLibs.git
In our example, this would translate into:

git clone ssh://jenkins2@localhost:22222/workflowLibs.git

Internal Versus External Libraries

185

HTTP access

The HTTP access is fairly straightforward. Assuming your local Jenkins system is
running on localhost on port 8080, you can clone the repository with the command:

git clone http://localhost:8080/workflowLibs.git

Potential Issue During HTTP Access of Internal Git Repository

The one “gotcha” you can sometimes run into with this is an error
N\, message like the following:

Error: RPC failed; HTTP 403 curl 22 The requested URL
returned error: 403 No valid crumb was included in the
request

fatal: The remote end hung up unexpectedly

If this happens, it may be due in part to being logged out of Jen-
kins. So try logging back in. If the problem persists or you were
logged in when the problem occurred, you may need to disable the
option to prevent CSRF attacks in the Jenkins security settings
(temporarily at least). The setting to disable is shown in Figure 6-3.

< localhost: = 5. -2 =

~ Prevent Cross Site Request Forgery exploits Lz
Grumbs Crumb Algorithm
®! Default Crumb lssuer
Enabile proxy compatibility L2
Plugin Manager

Use browser for metadata download L2

Figure 6-3. Try temporarily disabling the “Prevent Cross Site Request Forgery
exploits” option if you run into problems cloning the internal Git repo via
HTTP

Once you've cloned the internal repository down, it will be empty initially. To begin
working with it, you’ll need to change into the working directory and create a new
master branch:

cd workflowLibs
git checkout -b master

186 | Chapter 6: Extending Your Pipeline

External Libraries

To define an external library (one stored in a source repository separate from Jen-
kins) you need to provide a couple of pieces of information:

« A name for the library (this will be used in your scripts to access it)
A way to get it from the source repository

« A version (optional)

Figure 6-4 shows an example.

Global Pipeline Libraries

Sharabile libraries available to any Pipeline jobs running on this system. These libraries will be trusted, meaning they run without “sandbox”

restrictions and may use BGrab.

Library

Hame LUitilities]

Default version 15 .
Cannot validate
default version until
after saving and
reconfiguring

Load implicitly]

Allow default version o be overridden o L 24

Include @Library changes in job recent changes 7]

Retrieval method
* Modern SCM w

Figure 6-4. Defining an external library

The “Default version” can be a branch or a tag. Note the information underneath the
completed field that describes what that value currently maps to for the Git reference.
This information is available after saving the library specifications since Jenkins needs
to check the revision in the repository.

The “Load implicitly” option is intended to allow users to have the external library
loaded automatically.

If the “Allow default version to be overridden” option is checked, then scripts can
override the default version selected here. This can be done by specifying @version in
the @Library annotation. That looks like this:

@Library('libname@version')_

The “Include @Library changes in recent job changes” option has to do with whether
or not library code changes are included in the changesets of a build. If this is
checked, they will be. This setting can be overridden by adding the change
log=<boolean> parameter in the actual annotation, as in:

@Library(value="1ibname[@version]", changelog=true|false)

Internal Versus External Libraries | 187

More detail on how to include libraries in your pipeline scripts is found in “Using
Libraries in Your Pipeline Script” on page 189.

After completing this part of the library configuration, we need to specify how to
retrieve the library from source control.

Getting a Library from the Source Repository

There are two options to select from for Jenkins to be able to get the library code out
of source control: Modern SCM and Legacy SCM.

Modern SCM

Most Jenkins SCM plugins have been updated with a new API to handle pulling a
named version. Currently, nearly all of these should fall into this category. Figure 6-5
shows an example of the configuration section for this. At the top, you can see the
name and version followed by the choice of Modern SCM for the retrieval method.

Retrieval method
= Modem SCM L2

Source Code Management

home/gitrepositones/shared_ibmries gt

none - o Add -

{Marta) - | &

L7

Figure 6-5. Using the Modern SCM retrieval method

Legacy SCM

If your particular SCM plugin for Jenkins isn’t in the Modern SCM list, you can fall
back to using the Legacy SCM option, shown in Figure 6-6. When using this option,
the Jenkins documentation recommends including the string ${library.<your
library name>.version} in the specification somewhere. Here, <your library
name> should actually be replaced with the name of your library. The other parts are
literals in the string.

188 | Chapter 6: Extending Your Pipeline

Source Code Management
Repositores .

Repository URL |y e e repositones/shared_librar | &3
Credentiaiz jenkins2 (Jenkins2 SSH) +

- Add =~

o g

Branch Specifier [lank Tor “any

“/masted [7]

Figure 6-6. Using the Legacy SCM retrieval method

The idea here is that this string will get expanded to allow Jenkins to pick up the spe-
cific version of your content that is needed. In the Git example in the figure, I've put
it in the refspec area. For SVN, you might include it at the end of the URL. In general,
if you just always want to get the latest from a particular branch, you may be able to
omit it altogether.

For the Branch Specifier field, you can enter any branch or tag. If you want to include
a specific version of the library (and don't overwrite that version in the script), you
can tag the code, and include the tag in this field. If you do include a tag for Git, a
good practice is to include the fully qualified tag, as in refs/tags/<tag>. Notice that you
can also specify multiple branches by clicking the Add Branch button to add new
ones. If you select multiple branches, they will all be brought down. The “default ver-
sion” setting can be used to specify which one is the default.

Modern Preferred

In some instances, a particular source control tool may show up in
both the Legacy and Modern options. In such cases, the Modern
SCM option is recommended.

Using Libraries in Your Pipeline Script

Now that we know how to define and configure libraries for availability in Jenkins,
we need to understand how to load them into our pipelines. The first thing to under-
stand is how Jenkins actually handles making libraries available for pipelines.

Using Libraries in Your Pipeline Script | 189

Automatic Downloading of Libraries from Source Control

When we either have content in the internal library or have declared external libraries
that we want Jenkins to make available, Jenkins takes care of getting the correct con-
tent at the start of the run for each job.

Suppose for our example setup we have added content to the internal workflowLibs.git
repository and configured a repository external to Jenkins at /home/git/repositories/
shared-libraries. Figure 6-7 shows what happens when we run a job with this setup.
You can see both the external library and the internal one being downloaded so they
are available in that run’s workspace.

&) Console Output

Started by user Jenkins 2 uyser

Loading library Utilities@master

> git rev-parse --is-inside-work-tree # timeout=-16
ing origin to /home/git/repositories/shared libraries.git

> git config remote.origin.url /fhome/git/repositories/shared_libraries.git # timeout=16
Fetching origin. ..
Fetching upstream changes from origin

= git --version # timeout=18
> git fetch --tags --progre
> git rev-pars
= git rev-pa
= git rev-parse
Fetching changes

origin s+refs/heads/=:refs/remotes/origin/=
timeout=18

commit} # meout=16

side-work-tree # timeout=18

remote Git repository

> git config remote.origin.url /Jhome/git/repositories/shared libraries.git # timeout=18

Fetching upstream changes from /fhome/git/repositories/shared_libraries.git

> git --version # timeout=18

> git fetch --tags --progress /home/git/repositories/shared_libraries.git +refs/heads/*:refs/remotes/origin/~

Checking out Revision aB818784948689al395c46bbc96dc22c4ba5d756 (master)
= git config core.sparsecheckout # timeout=10

= git checkout -T aB818784948689al1395c46bbcI6dc22c4basd756

= git rev-list aB818784940689a1395c46bbc96dc22c4ba5d756 # timeout=10
Loading library workflowlLibs@master

= git rev-parse --is-inside-work-tree # timeout=18
Fetching changes from the remote Git rep
> git config remote.origin.url http://1 BBBO/workflowlibs.git # timeout=18

hing upstream changes from hitp;/
it --version # timeout=10
> git fetch --tags -

88/ workflowlibs. it

-progress hitp://localhost:8680/workflowlibs.git +refs/heads/=:refs/remotes/origin/=
= git rev.parse r remotes/origin/master~{commit} # timeout=18

> git rev-parse refs/remotes/origin/origin/master~{commit} # timeout=16

Checking out Revision ddba3feb3e70aB8455b4548880aarfalf988bld2ecd (refs/remotes/origin/master)

> git config core.sparsecheckout # timeout=16

= git checkout -7 ddba3Beb3e7B8aB455b4548880aarfall88bld2ech

> git rev-list a2e7ce9f3c67688360ecbb502a0574bbb7ffaalBba # timecout=10

Figure 6-7. Shared global libraries being downloaded at the start of a job

Loading Libraries into Your Script

If there is content, the workflowLibs global internal library will be loaded automati-
cally. You can specify that external libraries should be loaded automatically for your
pipeline using the “Load implicitly” option.

If you choose to load the library implicitly, you can still specify a set of methods by
using an import statement of the following form:

// importing a collection of methods
import static org.demo.Utilities.*

190 | Chapter 6: Extending Your Pipeline

If you do not use an option that loads the library automatically, then you must use a
statement in your pipeline script to explicitly load the library and make it available.
There are a couple of different ways to do this, detailed next.

The @Library annotation

In Java-based languages, an annotation is metadata that can be put in the code to aug-
ment (or “annotate”) other code. In the case of Jenkins pipeline syntax, the annota-
tion construct is used less as an annotation and more as another syntax construct.

Specifically, you can use the @Library annotation in your pipeline script to load a
library. The name of the library to load, and optionally a version, are specified as
arguments. Here’s the basic syntax:

('<libname>[@<version>]')_ [<import >]

A couple of points about the syntax:

o The library name is required.
o The version should be preceded by the @ sign.

o The version can be a tag, branch name, or other specification of a revision in the
source code repository.

o Specific subsets of methods can be imported by including an import statement at
the end of the annotation or on the next line.

« An import statement is not required. If one is not specified, all methods will be
imported.

o If no import statement is specified, then an underscore (_) must be placed at the
end of the annotation, directly after the closing parenthesis. (This is required
since an annotation needs something to annotate by definition. In this case, the _
is simply serving as a placeholder.)

 Multiple library names (with respective versions if desired) can be specified in
the same annotation. Just separate them with commas.
Here are some simple examples:
// Load the default version of a library
('myLib')_

// Override the default version and load a specific version of a library
('yourLib@2.0")_

// Accessing multiple libraries with one statement
(['myLib', 'yourLib@master'])_

// Annotation with import
('myL1b@1.0"') import org.demo.Utilities.*

Using Libraries in Your Pipeline Script | 191

The annotation would be placed at the beginning of your script, above the node line
for a Scripted Pipeline, or above the pipeline line for a Declarative Pipeline.

Using @Library with Declarative Pipelines

While you can use the @Library annotation with a Declarative
Pipeline, you have to put it outside of the pipeline closure. Putting
" code outside of the main closure is not recommended as it may
cause confusion. A better approach for loading libraries in declara-
tive syntax is to use one of the other methods we discuss.

The library step

Starting in Jenkins 2.7, an actual library step is available to use in pipelines. The syn-
tax is similar to that of the annotation:

library "<libname>[@<version>]"

Since this is an actual pipeline step, it can be placed anywhere in the pipeline. It also
allows using variables in place of the arguments. For example, you could define it to
pick up the shared library from whatever version is currently represented by the
built-in BRANCH_NAME variable.

library "<libname>@$<BRANCH_NAME>"

Or, in a Scripted Pipeline, you could create your own variable to use here. Another
option would be to pass a version in as a parameter, and use that in the step.

The libraries directive

Within a Declarative Pipeline, we have one other option for pulling in libraries. We
can use the libraries directive to specify a library to load. Within the directive, we
can specify libraries using a 1ib statement. The syntax for each 1ib statement is simi-
lar to the syntax we've already seen in the other approaches: <libname>@<version>.
Given the previous sections, a simple example should suffice:
pipeline {
agent any
libraries {
1ib("mylib@master")
lib("alib")
}
stages {

Declarative Pipelines are covered in detail in Chapter 7.

192 | Chapter 6: Extending Your Pipeline

Library Scope Within Jenkins Items

So far, we have only talked about pipeline libraries in a global context—usable for all
projects. However, Jenkins 2 has many different types of items that can be created.
And, for a subset of those types, shared libraries can be defined that only apply to
items in a particular scope.

Specifically, the Folder, Multibranch Pipelines, GitHub Organizations, and Bitbucket
Team/Project types can each have their own “local” shared pipeline libraries that they
use. Limiting the scope allows for more dedicated, related functions to be available at
that granularity.

For example, if you specify “Load implicitly” at the global/root level in Jenkins, all
jobs will have the library automatically downloaded and available. But if you are con-
figuring a folder and specify a shared library to load implicitly, only the jobs in that
folder will have the library automatically downloaded and accessible.

One other note about shared libraries at these local scopes: they are considered
untrusted and run in the Groovy Sandbox.

Figure 6-8 illustrates the different granularities of shared libraries available in Jenkins.
While not specifically shown, any pipeline job has access to the global libraries.

Jenkins Environment

I WorkflowLibs (internal - trusted) I
I Global Shared Library (external - trusted) I

Local Shared Local Shared Local Shared
Library (external Library (external Library (external
untrusted) untrusted) untrusted)

Multibranch Pipeline GitHub Organization Folder

Figure 6-8. Shared library scope in Jenkins items

Library Structure

Now that we've covered the configuration of shared libraries, we can move on to
looking at how to write and create them, and the structure that Jenkins provides for
that. To start, we'll outline a sample routine that we’ll use in many of the examples.

Library Scope Within Jenkins Items | 193

Sample Library Routine

To give us something to work with as we explore using pipeline libraries, we'll create a
simple routine that invokes a Gradle build for us and adds timestamps to it.

In its simplest form, our routine will look something like this:

timestamps {
<path-to-gradle-home>/bin/gradle <tasks>
}

timestamps is a Jenkins pipeline DSL step. The timestamps closure here simply tells
Jenkins to add timestamps to the console output for this part of our pipeline (the
Gradle build step).

We don't want to have to supply the <path-to-gradle-home> value every time we call
this, and we don’t want to hardcode it in. If we have Gradle configured globally in
Jenkins, we can have this routine automatically use the global version of Gradle. Let’s
assume for the cases here, we have version 3.2 of Gradle installed in /usr/share/gradle
and configured in our Global Tool Configuration under the name “gradle3.2, as
shown in Figure 6-9.

o pcalhost T 8 4+ # =

Gradie

Gendle instaliations Grade

Figure 6-9. Our local installation of Gradle

With this in place, we'll be able to then reference our global tool location for Gradle
in the library routines.

Our second set of code, for example use in the shared libraries, will run a shell com-
mand and print out the result with timestamps:

def commandOutput
timestamps {
commandOutput = sh("${<command-to-run>}",
true).trim()
}

echo commandOutput
Here, we intend <command-to-run> to be the shell command we pass in—the one that
we want to be executed. In the third line, we are invoking the pipeline DSLs sh com-
mand. As we have discussed previously, when we have more than one argument to a

194 | Chapter 6: Extending Your Pipeline

DSL command, we pass them as a map. Here, our first argument is the “script” that
we want to execute (i.e., our command), and the second argument is telling it to
return the output of stdout (which our statement will print). The trim() command
on the end is simply making the output cleaner.

We will tweak and wrap other code around these basic forms as we explore the differ-
ent ways to create and use pipeline libraries. Now let’s talk about the expected struc-
ture for a pipeline library.

Structure of Shared Library Code

The shared libraries feature has a predefined structure it expects. At the highest level,
a shared library tree has three subtrees: src, vars, and resources. We describe each sec-
tion in detail here.

Src

This area is intended to be set up with Groovy files in the standard Java directory
structure (i.e., src/org/foo/bar.groovy). It is added to the classpath when pipelines are
executed.

Any Groovy code is valid to use here. However, in most cases, you'll probably want to
invoke some kind of pipeline processing, using actual pipeline steps. There are several
options for how to implement the step calls within the library, and correspondingly,
how to invoke them from the script.

Here are some examples of things you could have in the src area:

» You can create a simple method, not enclosed by a class. Fitting our example
code into this model could look like this:

// org.demo.buildUtils
package org.demo

def timedGradleBuild(tasks) {
timestamps {
sh "${tool 'gradle3.2'}/bin/gradle ${tasks}"
}
}

This can be invoked within a pipeline by:

def myUtils = new org.demo.buildUtils()
git "<gradle project to clone>"
myUtils.timedGradleBuild("clean build")

Sample Library Routine | 195

» You can create an enclosing class (to facilitate things like defining a superclass).
You can then get access to all of the DSL steps by passing the steps object to a
method, in a constructor or in a method of the class:

// org.demo.butildUtils
package org.demo

class buildUtils implements Serializable {

def steps

buildUtils(steps) { this.steps = steps}
def timedGradleBuild(tasks) {
def gradleHome = steps.tool 'gradle3.2'
steps.timestamps {

steps.sh "${gradleHome}/bin/gradle S${tasks}"

}

}

Here, the tool step in steps.tool again references the installed version of Gradle
that we have configured in the Global Tool Configuration. It returns the path
associated with the tool of that name. This is a cleaner way to do it than the way
we did it in the preceding example.

Since we are enclosing this in a class, the class must implement Serializable to
support saving the state if the pipeline is stopped or restarted.

Once loaded, libraries defined in this way can be invoked from the main script
via calls like the following:

('bldtools') import org.conf.buildUtils.*
def bldtools = new buildUtils(steps)

node {
git "<gradle project to clone>"
bldtools.timedGradleBuild 'clean build'
}

Other items, like environment variables, can be passed in in the same way as the
steps. In the following code we pass in the env object and utilize it in our code:

// org.demo.buildUtils
package org.demo

class buildUtils implements Serializable {
def env
def steps
buildUtils(env,steps) {
this.env = env
this.steps = steps
}
def timedGradleBuild(tasks) {

196 | Chapter 6: Extending Your Pipeline

def gradleHome = steps.tool 'gradle3.2'
steps.sh "echo Building for ${env.BUILD_TAG}"
steps.timestamps {

steps.sh "${gradleHome}/bin/gradle ${tasks}"
}

}

« For a simpler case, you can just pass in the script object, which already has
access to everything. In this case, we are passing it into a static method:

// org.demo.butildUtils
package org.demo

class buildUtils {
static def timedGradleBuild(script,tasks) {
def gradleHome = script.tool 'gradle3.2'
script.sh "echo Building for ${script.env.BUILD_TAG}"
script.timestamps {
script.sh "${gradleHome}/bin/gradle ${tasks}"
}

This version uses the sh step from the script as well as the env value from the
script to do the same things as the previous version.

This can then be invoked as:

('<library-name>') import static org.demo.buildUtils.*
node {
git "<gradle project to clone>"
timedGradleBuild this, 'clean build'

vars

This area is for hosting scripts that define variables and associated methods that you
want to access in the pipeline. The basename of a script should be a valid Groovy
identifier. You can have a <basename>.txt file that contains help or other documenta-
tion for the variable. This documentation file can be HTML or Markdown.

You can define whatever methods you may want to use for variables in your pipeline
in a Groovy file in the vars area. As an example, let’s use the timed command example
from the beginning of this section. Recall that this code is intended to take a com-
mand, call the DSL function sh on it to execute it as a shell script, capture the output,
and print out timestamps during the operation. Let’s first create a timedCom-
mand.groovy file in the vars area for this with a few basic methods:

Sample Library Routine | 197

// vars/timedCommand.groovy
def setCommand(commandToRun) {
cmd = commandToRun

}

def getCommand() {
cmd

}

def runCommand() {
timestamps {
cmdOut = sh ("${cmd}", true).trim()
}
}

def getOutput() {
cmdOut

}

cmd and cmdOut here are not fields. These are objects created on demand. Now, we
can use the timedCommand object as follows in our pipeline script:

node {
timedCommand.cmd = 'ls -1la'
echo timedCommand.cmd
timedCommand. runCommand()
echo timedCommand.getOutput()

Using a Class with vars

As was done with the code in src, you could create a class to encap-
sulate the vars commands. However, doing so is problematic and
not particularly beneficial.

Automatic documentation references for global variables. As mentioned previously, one
of the types of files that can be in the vars section is a .txt file with the same name as
the .groovy file containing code. This .txt file can be used for documentation on the
operation and can be written in either Markdown or HTML. Figure 6-10 shows an
example timedCommand.txt file. This file has corresponding user-facing documenta-
tion about the functions defined in our timedCommand.groovy file. The file is
optional, but if created, it should be committed and pushed in the vars directory of
the same shared library structure as the corresponding .groovy file.

198 | Chapter 6: Extending Your Pipeline

Open » +

1 timedCommand

11
1) cooc
T oooc

16
17|

File Edit View Search Tools

6 Using this function

timedCommand.txt
~fshared_libraries/vars | < s

Documents Help

4 This is the documentation for **timedCommand**.
5

9 To use this function, supply a command to run.
10 **timedCommand** will then execute the command.

12 To see the output, you can use this call.

14 echo timedCommand.commandOutput

PlainText » TabWidth:8 Ln17, Col 1 s INS

Figure 6-10. Creating a timedCommand.txt file to correspond to our implementation file

After the variable code has been loaded and executed in a successful run of a pipeline
script, an entry for the variable will be added to the list of global variables in the pipe-
line syntax section (accessible via the Pipeline Syntax screen). Figure 6-11 shows how
to get to that area through the interface.

& (O localhostaD:

Back
{4 Snippet Generator
) S=p Acterence

) Giotial Varisbies Reference

mypioe’ Pipeine Syntax

"

Overview

This Snippet Ganerator will help you leam the Pipeine Script code which can be used 1o define varicus steps. Pick 2 step you are intesested in from
the s, configure 1, cick Generate Pipeding Script, and you wil soe 3 Pioeine Script statement that would cal the step wih that ation, You
may copy and paste the whole statzmes our script, of pick up just the opfions you care aboul. (Most parameters are opficnal and can be
omited in your scipt, leaving them a1 defauk values

wBe ¥ & QO =

Steps
i) Onine Documentaton N
& Intelk IDEA GDSL ST S eneAtacs; Arswsthe st El
0
Files 1o archive (7]
Global Variables o
There are —:"y hass am ofien exposed via global vanables, which are not supported by the snippet
peneator. Seo t W
Figure 6-11. Accessing the Global Variable Reference
Sample Library Routine | 199

If youre not familiar with the Global Variable Reference page, its purpose is to pro-
vide documentation on variables and their associated methods (see Figure 6-12).

Overview
Global Variable Reference
Variables

decher

Figure 6-12. The Global Variable Reference

After we have a successful run of a job with our timedCommand variable, the contents
of our timedCommand.txt file will be included in this page (Figure 6-13). This pro-
vides a convenient way of documenting any variables we add in the application.

€ localhost:8080/job/mypipe&/pipeline-syntax/globals E1| C
Jenkins mypiped Pipeline Syntax
timedCommand
timedCommand
This is the d ion for *timedC.

Using this function

To use this function, supply a command to run.
“*timedCommand"* will then execute the command.

To see the output, you can use this call.

echo timedCommand.commandCutput

Figure 6-13. Our timedCommand variable is included now in the Global Variable Refer-
ence

Using global variables like steps. You can create global variable definitions that act like
steps in pipeline scripts. That is, they can be called like regular pipeline steps. The
trick to this is to define the call method in the global variable’s definition. Let’s see
what it would look like to do this for our timedCommand code. Since this is a slightly
different version, we'll refer to it as timedCommandz2:

// vars/timedCommand2

def call (String cmd) {
timestamps {
cmdOutput = echo sh ("${cmd}", true).trim()
}

200 | Chapter6: Extending Your Pipeline

echo cmdOutput
writeFile
}

We can use any valid pipeline DSL code in the body of the call. Let’s suppose that we
decide we want to add code to write our output to a log file as well as printing it out.
For this, we will need the writeFile sDSL statement. If we're not clear on the syntax,
we can use the pipeline syntax generator (aka Snippet Generator) to help us with that.
Figure 6-14 shows using the Snippet Generator to determine the right format of the
command for our purposes. (Notice that we just supply the variable names we intend
to use in the individual fields.)

Jerkins rmypiped Picline Syriax

Back Overview
4% Snippet Generator This Snippet Generator will halp you leam the Pipeine Scrpl cods which can be used lo defing various sleps. Pick a slep yo
) Sicp Reference Pipeine Script statement that would call the step with that configuration. You may copy and paste the whole statemant into vo
g Sl o I your scrpt. leaving them at defaut valuss.|
) Ciobal Varianes Reterence Steps
Cnline Documentation Sample Sler
0 Smple Se8 e File: Write file to workspace
= InteliJ IDEA GDSL

File gl in workspace | gnoctiepein

et o write $iemdOulput)

Character encoding

writeFile fika: ‘$HlogiiaPeth). taxt “$#HemdOutput)'

Figure 6-14. Using the Snippet Generator to get the correct syntax for the writeFile DSL
call

Now we can add the writeFile command to our function and pass in a value for the
location:

// vars/timedCommand2

def call (String cmd, String logFilePath) {
timestamps {

cmdOutput = sh ("${cmd}", true).trim()
}
echo cmdOutput
writeFile "${logFilePath}", "${cmdOutput}"

Sample Library Routine | 201

Here’s an example of using the command this way. Notice the invocation resembles a
pipeline step:

timedCommand2 'ls -la', 'listing.log'

Suppose that we want to pass a block of code to a library “step”. When that happens,
our library step will receive a Groovy closure. To handle this case, we define our step
to accept the closure and then execute it:

// vars/timedCommand3

def call(Closure commands) {
timestamps {
commands ()
}
}
Or suppose we want to time how long it takes to read a file, do some kind of transfor-
mation on it, and then write the transformed data back out to another location. An
example of how this could be called from a script is:

timedCommand3 {

def content = readFile '<path to huge datafile>'

sh "<some processing on content>"

writeFile '<path to transformed file>', content
echo "Done"

}

This becomes even more useful if we want to do something like restrict the routine to
a particular environment, such as a particular node. For example, we could set up two
nodes, one running Windows and one running Linux, and then define two separate
routines in vars, one to run our timing of commands on Windows and one to run the
timing on Linux. Our code in vars might look like this:

// vars/timedCommandWindows.groovy

def call(Closure commands) {
node('windows') {
timestamps {
commands ()

}
}

// vars/timedCommandL inux.groovy

def call(Closure commands) {
node('linux') {
timestamps {
commands ()

}

202 | Chapter6: Extending Your Pipeline

Finally, in this category, we can extend the call mechanism to create a simple frame-
work that makes using the “step” in our scripts very simple and more like standard
DSL calls with multiple values.

This is done by delegating the values passed in to a mapping and then using the map-
ping in additional processing in the step. This is easiest to understand with an exam-

ple:
// vars/timedCommand4.groovy

def call(body) {
// collect assignments passed in into our mapping
def settings = [:]
body.resolveStrategy = Closure.DELEGATE_FIRST
body.delegate = settings
body ()

// now, time the commands
timestamps {

cmdOutput = echo sh ("${settings.cmd}", true).trim()
}
echo cmdOutput
writeFile '${settings.logFilePath}', '${cmdOutput}"’

}

In this form, we declare a Groovy map via the def settings = [:] syntax. Then the
values we pass in get mapped and we can execute whatever other steps we need to.
The references to delegate here have to do with Groovy functionality. A complete
discussion of delegation behavior in Groovy is beyond the scope of this section, but
you can essentially think of it as telling Groovy to allow us to reference any values
passed in utilizing the mapping we're doing in this function.

Note that here, as in other vars steps, you should only use valid pipeline steps. Non-
step Groovy code may not work or may have uncertain behavior.

With this form, we can invoke the code from our pipeline script very simply, as
shown here:

node {
timedCommand4 {
cmd = 'sleep 5'
logfilePath = 'log.out'

}

What this really buys us is the ability to invoke our function with named parameters,
passed in whatever order we choose. This can make our code in the pipeline script
simpler and easier to understand and maintain.

Sample Library Routine | 203

resources

Non-Groovy files can be stored in this directory. They can be loaded via the 1ibraryR
esource step in an external library.

This is intended for allowing your external libraries to load up any additional non-
Groovy files they may need. An example could be a datafile of some kind, such as an
XML or JSON file, or any other file that the library needs to use. The file is loaded as
a string.

The syntax is straightforward. In your library code, you would have something like
the following:

def datafile = libraryResource 'org/conf/data/lib/datafile.ext’

Another Use of libraryResource

While typically used for loading resources from external files for
use in shared libraries, the libraryResource feature can be used to
load up any resource you need to use in your script. Here’s an
example:

def myExternalScript =
libraryResource 'externalCommands.sh'

sh myLatestScript
Of course, this should be used carefully and not in a way that could
lead to masking potentially dangerous code. But it can be useful in
certain cases, such as if you want to separate out nonpipeline code
or need to programmatically specify different files to load based on
conditions.

Mapping library Step Calls to srcand vars

The form of the library step that we saw earlier in the chapter works for global vari-
ables (items made available from the vars structure). This means that any global vari-
ables from the library will be available in the script.

However, if you want to reference classes from the src area using the library step, the
process is not as straightforward. The @Library annotation updates a script’s class-
path before compiling, but since library is a step, compilation has already occurred.
This means you can’t import items from the library.

You can, though, still get to individual classes by referencing their fully qualified paths
based on the return value from the library step. For example:

library('<libname>").com.mypipe.demo.Utilities.myStaticMethod

Here’s a simple script using this type of syntax:

204 | Chapter6: Extending Your Pipeline

node ('worker_nodel') {
stage('Source') { // Get code
// Get code from the source repository
git "http://github.com/brentlaster/greetings.git’,
'demo’
}
stage('Compile') { // Compile and do unit testing
// Run Gradle
library('Utilities').org.demo.BuildUtils3.timedGradleBuild
this, 'clean build'

Using Third-Party Libraries

Shared libraries can also make use of third-party libraries using the @Grab annotation.
The @Grab annotation is provided through the Grape dependency manager that is
built into Groovy. It allows you to pull in any dependency from a Maven repository,
such as Maven Central. This can be done from trusted libraries, but does not work in
the Groovy Sandbox.

Here’s an example function using @Grab to pull in an Apache Commons dependency.
In a similar vein to our other examples, were using a “stopwatch” function here to
time how long execution of a command takes. The routine is written entirely with
Groovy code (as noted earlier, libraries have access to all Groovy constructs):

// vars/timedCommand5

('org.apache.commons:commons-lang3:3.4+")
import org.apache.commons.lang.time.StopWatch

def call(String cmdToRun) {
def sw = new StopWatch()

def proc = "$cmdToRun".execute()
sw.start()

proc.waitFor()

sw.stop()

println("The process took ${(sw.getTime()/1000).toString()} seconds.\n")
}
Assuming this code has been pushed into the shared library area that is being implic-
itly loaded, the code could be invoked like this from a pipeline script:
node {

timedCommand5("sleep 10")
3

Other than the downloads for the libraries, the output would look something like
this:

Using Third-Party Libraries | 205

[Pipeline] node

Running on worker in /home/jenkins2/worker_nodel/workspace/mypipell
[Pipeline] {

[Pipeline] echo

The process took 10.009 seconds.

[Pipeline] }

[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Loading Code Directly

You can also load code directly via the load operation. This is similar to the shared
library code in terms of the syntax. It is different in that it is not pulling it from
source control. In order to use this, you just need to have your function stored in a
location that is accessible. Here’s an example using one of our timedCommand imple-
mentations:

def call(String cmd, String logFilePath) {
timestamps {

cmdOutput = sh ("${cmd}", true).trim()
}
echo cmdOutput
writeFile "${logFilePath}", "${cmdOutput}"

}

return this;
The def here could also be public. Notice that we have made one change to the func-
tion: we added a return this line at the end of the definition. This line is necessary
to make sure the correct scope is returned so the load function works correctly.

Once this is in place, we can load it and invoke it from our pipeline script through the
following:
node {
def myProc = load '/home/diyuser2/timedCommand2.groovy'
myProc 'ls -la', 'command.log'
}
We can utilize the direct myProc(...) syntax here because the function was defined
with call. If we used a formal name instead of call, then we would invoke the func-
tion in the pipeline with myProc.<name>(...) instead. For example, if the first line of
our function definition was:

def timedCommmand(String cmd, String logFilePath) {
then we would need to invoke it in the pipeline script via:

myProc.timedCommand("sleep 5", "command.log")

206 | Chapter6: Extending Your Pipeline

Loading Code from an External SCM

We have seen how to both define an external shared library and load code directly
from a location in our filesystem. There is another process that allows for a sort of
hybrid approach: it allows us to directly load code from an external SCM, without
having to include it as part of a shared library.

To make this work, we first need to install the Pipeline Remote Loader plugin, if it is
not already installed. Figure 6-15 is a screenshot showing how to locate this plugin.

€ & | locahzeczos e ¥ W =

Jenkins Plugin Manager
Filter: |, remote loader
Updates Available
Install | Name Version
Pipeling Remote Loader Flugin
1.3

rsion of the built-in load command)

Allows o

Install without restart Download now and install after restart Update information oblained: 1 day 20 hr ago

ading Pipeline scripts from remote locations (enhanced

Figure 6-15. Installing the Remote Loader plugin

This plugin provides a fileLoader DSL function to load code from Git, GitHub, or
SVN repositories (assuming you have the appropriate plugins installed for Git or
SVN). After installation, you’ll have a Global Variable Reference entry for it that you
can look at for more details. This is shown in Figure 6-16.

Loading Code from an External SC(M | 207

Jenkins mypipel13 Pipeline Syntax

filelLoader
Provides methods for loading Pipeline objects from remote sources. More info about available methods and their parameters: the
plugin's Wiki page
Available methods

The variable provides following methods:
* fromGit{String libPath, String repository, String branch, String d, String labelExp lon) - loading of a
single Groovy file from the specified Git repasitory
+ withGit(String repository, String branch, String credentialsld, String labelExpression) - wrapper closure for multiple
flles loading from a same Git repo

= fromSYN{String libPath, Siring repository, String i Siring labelExpression) - loading of a single Groovy
file from the specified SVN repository
= withSVN(String repository, String credentlalsld, String labelExg lon) - wrapper closure for multiple files loading

from a same SVN repo

* load(String libPath) - loading of an object from a Groovy file specified by the relative path. Also can be used within
“withGit[)" closure to load mulliple objects at once

Parameters:

= libPath - a ralative path to the file, ".groovy” extension will be added automatically

* repository - for Git: string representation of a path to Git repository. Supports all formats supparted by Git Flugin

* repository - for SVN string representation of a path to or Inside the SVN repository.

= pranch - Optional: Branch to be used (it's also possible to specify labels). Default value: master

« credentialsld - Optional: Credentials to be used for the Git repo checkout. Default value: null (unauthorized access)

= labelExpresslon - Optional: labal expression, which specifies a node to be used for chackout. Default value: empty string

fruns nn ane noce)

Figure 6-16. The global variable pipeline syntax reference for the fileLoader command

Lets look at a quick example of this. On one of my GitHub sites, I have the same
timedCommand code as used in the preceding section.

An example of running this from a pipeline script is shown here:

def timestampProc = fileLoader.fromGit('jenkins/pipeline/timedCommand’,
"https://github.com/brentlaster/utilities.git', 'master', null, ''")

timestampProc.timedCommand("1ls -1a","command.log")

Support for the Remote Loader Plugin

Be aware that while this functionality is still available, it is no
longer being supported and updated. It served a more substantial
purpose prior to the development of shared pipeline libraries.

Replaying External Code and Libraries

In Chapter 2, we introduced the Jenkins pipeline Replay functionality. After a success-
ful run of a pipeline item, you can select a run and edit it from the job screen to try
out changes. These changes cause another run to happen, but do not update the origi-
nal job. This provides a powerful way to try out fixes or other changes to your code
without having to go back and change the configuration every time.

208 | Chapter6: Extending Your Pipeline

http://bit.ly/2vz147g

In addition to providing the replay capability for basic jobs, Jenkins also provides it
for code brought in via the load and fileLoader statements discussed in the preced-
ing sections, and for untrusted libraries.

Untrusted Libraries

Recall from our earlier definition in this chapter that an untrusted
library is one that has to run in the Sandbox and doesn’t have
unlimited access to Groovy constructs, Jenkins objects, etc. This

includes libraries that are shared across a Folder, Multibranch Pipe-
line, GitHub Organization, Bitbucket Team/Project.

To see how Replay looks for these cases, let’s take a quick look at a couple of examples.
First, in Figure 6-17, we can see a Replay screen for our direct loading of the code
from GitHub via the fileLoader DSL function that we looked at in the last section.
In this case, we have had a successful run of the job, then gone to the job output

screen for the run and selected Replay.

Jenkins mypipald a2 Replay

Back io Project
,, Slatus . Heplay #2

= Changes scripts they loaded.

B Consale Cutput Main Seript

= Edit Build Infarmatian iR
(& Delete Build

4 Git Buid Data .
a Mo Tags

4 Gil Build Dala
e Mo Tags

4 Git Buikd Data
; Mo Tage

Replay

Seriplt

4
Pipeline Steps

[

48 Previcus Build

e B

Allows you 1o replay & Pipeling bulld with & modified script. it any Load steps were run, you can alse modity the

1 public timedCermand(String crd, String logfilePath} {

Tl

mode {
def timestanpProc = fileLoader.fromGit
b, con/brentla

timestanpProc, timedConvand(” 1s

1

tir

echa crddutpus
writeFile file: '${lcgFilePath}’, text: 'S{crdbutput)

return this;

Figure 6-17. Replay of a pipeline script and script loaded from a GitHub site

This looks similar to the Replay screen for other jobs, except that we have two Replay

areas: one for the main pipeline script

and one for the script we loaded from GitHub.

We can modify either or both and then click the Run button to see the results. Again,
this doesn’t modify the original saved script (either the main one or the one loaded
from GitHub). What it does do is provide a significant time and cost savings, by not
having to modify the scripts in their stored locations just to test changes.

Replaying External Code and Libraries | 209

As another example, consider a case where we have created a Folder project and set
up a shared pipeline library for it (Figure 6-18).

€] bt T e || wEe 4 & @ =

Jenkins myFakler
Build Queus - Froperiles
Mo tulids in the queue. Plpeline Librares
Sharesle llcrares avalable o any Ppeline jobs nskde this folder. These Ibranes wil be untrusted. meaning thelr code runs Inthe
Build Execulor Status - Groawy sandbo.
Library
E masier P =
Meme Foldar-uiflias (2]
Dedaull versian masbar .‘?,
n @ aaps Io revision:
Saffb04 5753661 450a2207025d20ba5
Load imphzifly F (2]
Allaw default version 1o be averddden *-in

Retrieval method

= Wodarn SCM L]
Source Code Managsment

o aGr

Project Feposhory hameigitrepasitoresisharad liararas gh

Cradentials j

-nona - o= Add

grare an push nalilications

Figure 6-18. Setting up a shared pipeline library for a folder

Since this is a shared pipeline library for a Folder, it is considered untrusted. Untrus-
ted libraries that are loaded are included in Replay operations, so after we create an
item in the folder and successfully run it, we can use the Replay operation. When we
invoke the Replay command, Jenkins presents sections for all of the pieces of the
shared library (Figure 6-19). This way, we have an opportunity to modify any of the
library functions.

210 | Chapter6: Extending Your Pipeline

€ 0| ocahas

Janking myFolder fakder-Ham1 #1

Feplay

& & + & @ =

limedCammand

limedCammand2

ring logFlleFath} {

HimedCammand3

m 4\

Figure 6-19. Replay for untrusted library components

A Closer Look at Trusted Versus Untrusted Code

We previously discussed the distinction between trusted and untrusted code. We can
demonstrate the difference here simply by trying to reference a restricted Jenkins
object. In keeping with our time theme, we'll attempt to use a Jenkins internal object
that allows us to get the elapsed time since the build started—the getTimestamp
String method of the rawBuild object of the currentBuild. Putting this into a
println, it might look like this:

println "ELAPSED TIME: ${currentBuild.rawBuild.getTimestampString()}"

First, we'll try adding the line to our current pipeline script, as seen in Figure 6-20.

A Closer Look at Trusted Versus Untrusted Code | 211

Advanced Project Options

Pipeline

Definition Pipeline script

1= node |
timedCommand.crd = 'Ls -l
echo tinediommand . cnd
4 tinedConmal
5 println
[echo tinedr

Seript

o Use Groovy Sandbox

Pipsline Synlax

Advanced...

)

Figure 6-20. Adding the getTimestampString call to the main script

Notice that were running this in the Groovy Sandbox. If we try to execute this script
we'll get a RejectedAccessException error, as seen in Figure 6-21. Since untrusted
libraries run in the Sandbox, they get the same exception as if they were specifically
limited to an untrusted type, such as a Folder, GitHub Organization, Bitbucket Team/

Project, or Multibranch Pipeline project.

€1 | ocahoscscs

Jenking mypiped #4

81:53:27 |mypipe8] Running shell script
@1:53:28 + 1s .la

ELAPSED TIME: 1.6 sec

at

slist. java: 176]
at

alnterceptor. java: 113}

arg.jenkinsci.plugins. scripteecurity . sandbox . RejectediccessException: &
permitted to use method hu madel. Run getTimestampString

rikinsci.plugins, scriptsecurity. sandbox whitelists. Staticwhitelist. rejectMethod (Stati

org. jenkinsci.plugins, seriptsecurity. sandbox.groovy . SandboxInterceptor, enMethedCalliSandbe

| e + &7 @ =

pts not

Figure 6-21. Access failure trying to use internal method in script

However, if we add the method to a trusted library, such as our global shared library,
and remove it from our pipeline script, it should work. Figure 6-22 shows the edit to

add this to the appropriate runCommand library routine.

212 | Chapter6: Extending Your Pipeline

- timedCommand.groovy _

|Open | w ~fshared_librariesfvars E2ie -

File Edit View Search Tools Documents Help

1// vars/timedCommand.groovy

2 def setCommand(commandToRun) {
cmd = commandToRun

3
4}
5 def getCommand() {
6 cmd

7}

8

9 def runCommand() {
10 timestamps {

11 cmdOut = sh (script:"${cmd}", returnStdout:true).trim()
12
13 println "ELAPSED TIME: ${currentBuild.rawBuild.getTimestampString()}"
14 }
15
16 def getOutput() {
17 cmdOut
Cw TabWidth:8 v Ln 13, Col 73 v INS

Figure 6-22. Adding the getTimestampString command to our trusted pipeline library

And, in fact, when we run the original script now (without the call in it), we can see
that the call gets executed successfully in the trusted library code (Figure 6-23) even
though our main script is still running in the Sandbox.

Jankins mypipes #3
= QLU TCUCH =-1ags --Progress ULy ¢ LOr Uos T anme wore | LW 0%, (UL Fre TS/ eans, " reTs, renoies
= qit rev-parse refs/renctesfarigin/master~{cannit} # tineaut=10
= qit rev.parse refs/remctes/ariginforigin/master™{commit} # tinecut=14
Checking oul Revision 3Zefdblal710aclbd [7260cd732620650518dchh (rels/remoles/origin/masier)
= qit config core sparsecheckaut & tine
= git checkoutr -f 32e6dblaf?ldaefbafTiEeed?3282d65a510dchh
= git rev-list 32e6dblafrleasfbdafribeet’3282d65a518dckh # timeout=18

Aunning on werker in shonef jenkinszsworker nodelfworkspace/mypipes

15 1a

81:37:51 [mypip=d] Running shell script
81:37:51 + 15 -la

ELAPSED TIME: 3 sec
lotal 8

drwstrwer-x 7 jenkini? jenkins? 4096 Feb 12 81:35 .
drwstraer-x 25 jenkins? jenkins? 4896 Feb 12 @1:35 ..

Finished: SUCCESS

Figure 6-23. Successfully executing the command through the trusted library instead of
the restricted pipeline script

A Closer Look at Trusted Versus Untrusted Code | 213

Summary

In this chapter, we explored the many ways you can utilize external library routines in
your Jenkins pipelines. We looked at the different classifications that shared pipeline
libraries can have (trusted, untrusted, internal, external), and we saw how to tell Jen-
kins to load code from its own internal library or from an external library. We also
examined the structure that an external library is expected to have, and what kind of
content is in each section.

We spent time in the vars section to understand how we can create global variables
and functions that can be used in pipelines. We also noted how you can create code
that can be called like a DSL step or with named parameters to make using it simple
in pipelines. We also talked about how to create and automatically get integrated doc-
umentation for global variables that you create.

We noted the newer types of projects that Jenkins supports now and how shared
libraries fit into their structure. These include the Multibranch Pipeline, GitHub
Organization, and Bitbucket Team/Project types.

Finally, we got a feeling for how the Replay functionality can be used for untrusted
libraries, and walked through an example demonstrating trusted versus untrusted
calls.

This information provides examples of how you can create and leverage common
library code for pipelines and how to store and reference that code in external source
management systems, including GitHub projects.

In the next chapter, we'll explore Declarative Pipelines in more detail.

214 | Chapter6: Extending Your Pipeline

CHAPTER 7
Declarative Pipelines

In this part of the book, we’re going to be talking about another evolution in Jenkins
pipelines—Declarative Pipelines. Declarative Pipelines allow users to define a pipe-
line in a way similar to how they would define jobs in the traditional Jenkins web
forms. By this we mean:

o There is a well-defined, enforced structure. (You can think of this like the sec-
tions on the pages of a Jenkins web form.)

o Defining a pipeline section is more about declaring the high-level steps/goals
than defining the logic to accomplish it. (This is similar to filling in the fields in a
Jenkins web form.)

o Familiar Jenkins processing constructs are provided and don’t have to be emula-
ted with programming. (For example, you have a way to do post-build processing
and send notifications, as opposed to having to use try-catch-finally Groovy
programming to handle this.)

o All of the above enable better validation and error checking. (Errors are identi-
fied and presented in the context of the expected structure and keywords, not just
Groovy tracebacks.)

These features distinguish Declarative Pipelines from the alternative way of creating a
pipeline that ties DSL steps and sections together with programming constructs
(assignments, conditionals, etc.)—essentially writing a program. That style of free-
form coding for a pipeline is what we call a “Scripted Pipeline”

Both types of pipelines have their place, with advantages and disadvantages to each.
Broadly speaking, Declarative Pipelines are easiest for someone new to using the
pipeline functionality. This is because they more closely resemble what was done and

215

available in the web forms, and they have clearer, more contextual validation and
error checking.

Scripted Pipelines provide more flexibility and the ability to mix in programming
constructs to execute logical flows, decision handling, assignments, etc. that are not
available in Declarative Pipelines. For more experienced users or advanced applica-
tions, Scripted Pipelines can be the best option.

It is also worth noting that not all plugins that support Scripted Pipelines have inter-
faces and flows that support Declarative Pipelines directly.

One last general note about Declarative Pipelines: you may be wondering how sup-
port for them is integrated with Jenkins. Like nearly every piece of additional func-
tionality in Jenkins, they’re supported via plugins. The set of plugins that support
Declarative Pipelines and the new Blue Ocean interface (described in Chapter 9) are
largely tied together.

Now, let’s start diving into the world of Declarative Pipelines by taking a look at the
motivation behind them.

Motivation

To understand why we can benefit from another way to structure pipelines in Jenkins,
it’s helpful to understand some of the shortcomings specifically associated with the
traditional Scripted Pipeline creation and model.

Not Intuitive

As we've discussed, moving from a web interface (with specific forms, help buttons,
and UI elements that guide you in setting up jobs) to creating scripts, is not intuitive.
One key part of the original Ul job pages was the separation into sections, such as
post-build processing, that guided users through the various phases. When moving to
scripts, the elements for the different phases are available, but it's not clear how to
structure or order them out of the box. Worse, some familiar processes don’t have
corresponding constructs in the nondeclarative DSL.

Getting Groovy

While it’s not a requirement to be able to program in Groovy to create DSL scripts,
sometimes it can feel that way to users. For missing functionality, Groovy constructs
may be the only alternative. Verification such as syntax checking is done at the
Groovy level. Also, errors are surfaced as Groovy errors (tracebacks) and not as DSL-
specific ones.

216 | Chapter7: Dedarative Pipelines

Additional Assembly Required

Building on a point raised earlier, additional code can be required to get the familiar
Jenkins constructs we had in the web forms version. For example, the simple task of
sending email after a failed build has to be handled with something like a try-catch-
finally construct, instead of the familiar built-in post-build functionality.

The following code highlights the contrast between sending emails after a failure in a
Scripted Pipeline versus the way this was typically handled in traditional Jenkins, as
shown in Figure 7-1.

node {
try {
sendEmailStarted()
stage('Source') {...}
stage('Build') {...}

sendEmailSuccess()

} catch (err) {
currentBuild.result = "FAILED"
sendEmailFail()
throw err

Posl-build Actions
Post-build Actions
En

E-mail Notification (7]
Recipiants
Whitespace-separated list of recipient addresses. May reference build parameters like $FARAM. E-mail will be sent when a build
fails, becomes unstable or relurns to stable.
» Send a-mail for every unstable build
Send separate e-mails to individuals who broke the build L2]

Add post-build action ~

Figure 7-1. Post-build action in a Freestyle project in Jenkins

For these and other reasons, the CloudBees staff, as part of the Jenkins community,
created an expanded DSL and simpler environment for programming pipelines. Note
that Declarative Pipelines are still pipelines-as-code. We are still using the same envi-
ronment to code our pipelines; we enter the Declarative Pipeline syntax in the Pipe-
line tab script window or in Jenkinsfiles, just as we would for any other pipeline code.
However, as we've noted, the Declarative Pipeline syntax is more structured and the
environment provides improved DSL-specific validation and error checking. We'll
explore that structure next and discuss script checking and error reporting later in
this chapter.

Motivation | 217

The Structure

A declarative is made up of an outer block that contains directives and sections. Each
section in turn can contain other sections, directives, and steps, and in some cases con-
ditionals. The distinction between blocks, sections, and directives is somewhat arbi-
trary, but since they’re used in the formal documentation, we’ll define those and the
other terms more clearly.

Block

A block here is really just any set of code that has a beginning and end. In Groovy,
this translates to a closure (a section of code where the beginning and end are brack-
eted with { and }).

While many parts of the pipeline are technically blocks, that term is used primarily to
describe the overall pipeline block, which contains all of the code associated with a
Declarative Pipeline.

It looks like this:

pipeline {
// code in declarative syntax

}

Section

Sections in a Declarative Pipeline are a way to collect items that need to be executed
at particular points during the overall flow of the pipeline. The grouped items may
include directives, steps, and conditionals (defined in the following sections). As the
pipeline is executed, it looks for sections to define the various groupings and phases.

Currently, there are three areas we refer to as sections:

stages
This section wraps all of the individual stage definitions (directives) that define
the main body and logic for the pipeline.

steps
This section wraps a set of DSL steps within a stage definition. It serves to sepa-
rate the collection of steps from other items within a stage, such as environment
definitions.

posts
This section wraps around steps and conditions to be done or checked at the end
of a pipeline run or at the end of a stage.

An example layout with sections identified in bold font is shown here:

218 | Chapter7: Dedarative Pipelines

pipeline {
agent any
stages {
stage('namel') {
steps {

}
post {

}

}

stage('name2') {
steps {

Directives

A directive can be thought of as a statement or block of code that does any of the fol-
lowing in a pipeline:

Defines values
An example of this is the agent directive, which allows us to specify a node or
container to run an entire pipeline or a stage in. If we wanted to run our pipeline
on a node named worker, we could use agent ('worker').

Configures behavior
An example of this is the triggers directive that lets us configure how often Jen-
kins checks for source updates or triggers our pipeline. If we wanted it to retrig-
ger our pipeline at 7 a.m. every weekday, we could use triggers { cron ('0 7
0 01-5") }

Specifies actions to be done
An example of this is the stage directive, which is expected to have a steps sec-
tion containing DSL steps to be executed.

Steps

The label steps itself is a section title with in a stage of the pipeline. However, within
the steps section, we can have any valid DSL statement, such as git, sh, echo, etc.
You can think of a step here as corresponding to one of these statements.

The Structure | 219

Conditionals

Conditionals supply a condition or criteria under which an action should occur.
These are optional. There are two cases you may encounter/use:

o When: Strictly speaking, this is a directive. It resides within a stage definition
and defines criteria for whether or not a stage should be executed. For example:
stage ('build') {
when {
branch 'foo'

}

<steps>

}

o Conditions blocks in the post section that define the criteria for doing post-
processing. The criteria (conditions) here refer to the status of the build, such as
success or failure.

Now that we have a basis for the terminology, let’s look at the different building
blocks in more detail.

The Building Blocks

In this section we'll cover specifics on each of the sections and directives available to
you to use in a Declarative Pipeline, including syntax, parameters, and example
usage.

At a high level, the blocks stack up as shown in Figure 7-2. Here, each box represents
the specific section or directive indicated by its text, and their placement indicates
where they can be in the Declarative Pipeline structure. For example, pipeline is the
outermost block, and all of your other sections and directives must be inside of it.

Those with dotted lines around them are optional in that part of the structure. Those
with solid lines are required in that part of the structure. Note that there are some
directives that can occur at both the pipeline and stage level. They may be required in
one area and optional in another.

220 | Chapter7: Dedarative Pipelines

pipeline

} environment
5 :

1 tools

1 options
too=o=
| triggers

by

1 parameters

-
1 libraries

stages

Figure 7-2. Overview of Declarative Pipeline structure

Obviously, there are directives here that we haven't talked about yet. So, let’s dive in
deeper to learn about each of the areas in the structure.

pipeline

The pipeline block is required in a Jenkins Declarative Pipeline. It is the outermost
section and signals that this is a Pipeline project. The syntax is simply pipeline {}
with the rest of the code within the closure:

pipeline {

// pipeline code
}

The Building Blocks | 221

agent

The agent directive specifies where the entire pipeline or a specific stage runs. This is
similar to how the node directive is used in Scripted Pipelines. In fact, you can rea-
sonably think of an agent as a node, except that the master node is not an agent.

An agent directive near the top of the pipeline block is required as a “default” place
for execution. However, individual agent directives can optionally be specified at the
beginning of individual stages to indicate where the code in those stages should be
run.

Label Refresher

As a reminder, a label is an identifier attached to a node. You can
have as many labels as you like, and the same label can be used
across multiple nodes to identify a “class” of nodes. Configuring
labels is done in the node setup under Manage Nodes. An example
is shown in Figure 7-3.

Lakeiz wotker linux "east coast” (7]

Figure 7-3. Specifying labels for a node

What the agent directive actually does is indicate which (if any) nodes to use in the
execution of the pipeline or stage. It does this by mapping the argument supplied to it
to the label(s) specified for the nodes in your Jenkins system. The format of the argu-
ment can be a single predefined type, an indicator with a specific label, or a label
block with additional characteristics, such as for Docker containers. The possible
options are summarized in the following sections.

agent any
This syntax tells Jenkins that the pipeline or stage can run on any agent that is
defined, without regard to what label it has.

agent none
When used at the top level, this indicates that we are not specifying an agent
globally for the pipeline. The implication is that an agent will be specified, if
needed, for individual stages.

agent { label “<label>"}
This indicates that the pipeline or stage can run on any agent that has the label
<label>.

222 | Chapter7: Dedarative Pipelines

More About Labels

Note that <label> here cannot be a regular expression or use wild-
card characters. However, multiple nodes/agents can have the same
label specified. In this way, <label> may match a label specified on
multiple systems, thus allowing multiple options to choose from.

Labels and custom workspaces

A recent addition to the label syntax for agents allows us to specify a custom work-
space for a pipeline or stage. Given an agent definition, we can include the custom
Workspace directive to specify where the workspace that the agent uses should live.
The syntax looks like this:
agent {
label {

label "<labelname>"
customWorkspace "<desired directory>"

}

node and label

It's worth mentioning that you can use node in place of the label
closure here. This is to help disambiguate the way label is used for
the Docker agent, as described in the next section. The alternative
syntax is:

agent {
node {
label "<labelname>"

Agents and Docker

The final agent options well look at are Docker containers. There are two shorthand
ways to get a Docker image—specifying an existing image or creating an image from
a Dockerfile—in the agent declaration. Alternatively, the longer version of the decla-
ration can be used to specify additional elements, such as a node to use for the con-
tainer, and arguments for the container.

First, we'll look at the formats for using an existing Docker image:

agent { docker '<image>' }
This short syntax tells Jenkins to pull the given image from Docker Hub and run
the pipeline or stage in a container based on the image, on a dynamically provi-
sioned node.

The Building Blocks | 223

agent { docker { <elements> } }
This long syntax allows for defining more specifics about the Docker agent.
There are three additional elements that you can add in the declaration (within
the { } block):

image '<image>'
Like the short form, this tells Jenkins to pull the given image and use it to
run the pipeline code.

label '<label>'
If this element is present in the declaration, it tells Jenkins to instantiate the
container and “host” it on a node matching <labels.

args '<string>'.
If this element is present in the declaration, it tells Jenkins to pass these argu-
ments to the Docker container; the syntax here should be the same as you
would normally pass to a Docker container.

Here’s an example declaration using the long form:

agent {
docker {
image "image-name"
label "worker-node"
args "-v /dir:dir"
}
}

The syntax for using a Dockerfile as the basis for the container is similar. Again, there
are short and long forms:

agent { dockerfile true }
This short syntax is intended to be used when you have a source code repository,
that you retrieve, that has a Dockerfile in its root (note that dockerfile here is a
literal). In that case, this will tell Jenkins to build a Docker image using that
Dockerfile, instantiate a container, and then run the pipeline (or the stage’s code
if run in a stage) in that container.

agent { dockerfile { <elements> } }
This long syntax allows for defining more specifics about the Docker agent you
are trying to create from a Dockerfile. There are three additional elements that
you can add in the declaration (within the { } block):

filename '<path to dockerfile>'
This allows for specifying an alternate path to a Dockerfile, including a dif-
ferent name. Jenkins will try to build an image from the Dockerfile, instanti-
ate a container, and use it to run the pipeline code.

224 | Chapter7: Dedarative Pipelines

label '<label>'
If this element is present in the declaration, it tells Jenkins to instantiate the
container and “host” it on a node matching <labels.

args '<string>'
If this element is present in the agent Dockerfile declaration, it tells Jenkins
to pass these arguments to the Docker container; the syntax here should be
the same as you would normally pass to a Docker container.

An example of specifying a Docker agent via a Dockerfile using the long form is
shown here:
agent {
dockerfile {
filename "<subdir/dockerfile name>"
label "<agent labels>"
args "-v /dir:dir"
}
}

Using the same node for Docker and non-Docker stages. There is one other aspect associ-
ated with using Docker agents. Suppose you define a particular non-Docker agent at
the top of your pipeline:
pipeline {
agent {label 'linux'}
Later, in a particular stage, you want to run the code in a Docker container—but you
also want to use the same node and workspace that you defined for the pipeline. To
enable this, the pipeline has a directive you can use with the Docker specification:
reuseNode. It would look something like the following in practice:
stage 'abc' {
agent {
docker {
image 'ubuntu:16.6'
reuseNode true
This tells Jenkins to reuse the same node and workspace that were defined for the
original pipeline agent to “host” the resulting Docker container.

Next, we'll look at how to configure environment values for a pipeline.

environment

This is an optional directive for your Declarative Pipeline. As the name implies, this
directive allows you to specify names and values for environment variables that are
then accessible within the scope of your pipeline. Like agent, you can have an
instance of environment in the main pipeline definition and/or in individual stages.

The Building Blocks | 225

An environment definition in the top-level pipeline block will make the variable
accessible to all steps in the pipeline. An environment definition within a stage will
make the variable accessible to only the scope of the stage.

Here is an example of defining an environment variable in this way:

environment {
TIMEZONE = "eastern"

}
Environment variable definitions can also incorporate variables that are already
defined. The syntax for this is just to include the existing variable in the definition
string in ${<variable>}:
environment {
TIMEZONE = "eastern"

TIMEZONE_DS = "${TIMEZONE}_daylight_savings"
}

Credentials and environment variables

We talked in Chapter 5 about the different kinds of credentials that can be used with
pipelines. Each of those methods required the identifier of a set of credentials that
had been defined in Jenkins. In the environment block, you can assign a global vari-
able to a particular credentials ID. Then you can use that variable throughout your
pipeline in place of the ID. This can simplify things if you need to specify the ID in
multiple places. The syntax is to assign the variable name to the string
credentials('<credentials-id>"). For example:

environment {
ADMIN_USER = credentials('admin-user')

}
In this case, we would have admin-user previously defined as the specified ID for
some set of credentials. If you hadn’t explicitly specified a named string (admin-user)
as the ID, you would use the identifying string that Jenkins automatically generates
during the creation of the credentials.

While we can define environment variables for anything we want, Jenkins provides a
specific directive to access globally defined tools: the tools directive.

tools

Jenkins users are familiar with using the Global Tool Configuration screen to config-
ure versions, paths, and installers for tools. Once configured there, the tools direc-
tive allows us to specify which of these we want to have autoinstalled and made
available in the path on the agent we've chosen.

226 | Chapter7: Dedarative Pipelines

tools Without an Agent

If an agent is not specified, such as when only agent none is used
at the top of the pipeline, the tools directive does not have any

~effect. This is because there is no node/agent to make the tool avail-
able on.

For example, suppose we had the configuration shown in Figure 7-4.

Gradie

gradied, 2 [

automatically L

Dolote Gradie

Figure 7-4. Global configuration for a Gradle version

Then, in our tools block, we could refer to Gradle via:

tools {
gradle "gradle3.2"
}

The lefthand part of this declaration is a specific string defined in the pipeline model.
As of this writing, the valid tool types you can specify in declarative syntax are:

e ant

e git

e gradle

o jdk

e jgit

« jgitapache (JGit with Apache HTTP client)

« maven

Attempts to use other types that are not yet valid will result in an “Invalid tool type”
error when running your pipeline.

Extended Tool Types for Scripted Pipelines

The tool DSL step (not the declarative section) can take an additional parameter of
type. Some of the supported types correspond to the types you can specify in the

The Building Blocks | 227

declarative tools section, but some are only specifiable as class names currently and
don't fit in the tools section.

Jenkins currently lists the full range of supported types as:

e ant, hudson.tasks.AntSAntInstallation

e org.jenkinsci.plugins.docker.commons.tools.DockerTool

e git

e hudson.plugins.git.GitTool

e gradle

e hudson.plugins.gradle.GradleInstallation

e hudson.plugins.groovy.GroovyInstallation

o jdk

e hudson.model. JDK

» jgit

e org.jenkinsci.plugins.gitclient.JGitTool

¢ jgitapache

e org.jenkinsci.plugins.gitclient.JGitApacheTool

e maven

o hudson.tasks.Maven$MavenInstallation

e hudson.plugins.mercurial.MercurialInstallation

e hudson.plugins.sonar.SonarRunnerInstallation

e hudson.plugins.sonar.MsBuildSQRunnerInstallation
If you use the Snippet Generator, you'll see the more user-friendly versions of the
names listed in the drop-down for the Tool Type parameter. Then, if needed, the class
name is inserted when you select the type. For example, if you select SonarQube

Scanner for the Tool Type and you have a scanner named sq-scanner configured in
the global configuration, the generated step is:

tool 'sq-scanner’,
"hudson.plugins.sonar.SonarRunnerInstallation’

In most cases, you don’t need to specify the type when using the tool step. The cur-
rent exception would be if you had two different types of tools configured with the
same name in the global configuration. Then the type value could be used as a differ-
entiator.

The righthand part should map to the Name field in the Global Tool Configuration.

228 | Chapter7: Dedarative Pipelines

Once this is set up, the tool is autoinstalled and put on the path. We can then simply
use the string gradle in place of the GRADLE_HOME path in our pipeline steps and Jen-
kins will map it back to this Gradle installation on our system. For example:

steps {

sh 'gradle clean compile'

}

Also, it’s worth noting that the tools directive can use the value of a parameter if you
need to input a particular version to use. Here’s an example:

pipeline {
agent any
parameters {
string('gradleTool’, 'gradle3’,
'Gradle Version')
}
tools {

gradle "${params.gradleTool}"
}
Just keep in mind that there is currently a limitation with the declarative syntax such
that Jenkins doesn't recognize that a build requires a parameter the first time the
pipeline is run.

tools is another directive that can be used either in the pipeline block or separately
in a stage.
Docker and the tools Directive

The tools directive does not work on Docker or Dockerfile agents.
The recommended practice is to use an image with the tools
* already installed.

In addition to the tools directive to allow us to access the globally defined tools, we
also have the options directive to allow us to set project-level options.

options

This directive can be used to specify properties and values for predefined options that
should apply across the pipeline. These would be the type of things that we would set
on the General tab of a project in the Jenkins web forms (other than parameters,
which have their own section). You can think of it as a place to set Jenkins-defined
job options.

A simple example is the option to discard builds. Assume we had the setup in
Figure 7-5 in our Jenkins job.

The Building Blocks | 229

Ceneral

Pipeline name | myproject

Descrption

[PRin tead] Preview
~ Discard oid bulkds L
Strategy Loa Rotation
Days to keep busds =
f not empty, buikl records are only kept up to this number of days
Max # of buikis 1o keep | 3 =
1 not amply, only up 1o this number of bulkd reconds A kept

Advanced. .

Figure 7-5. Example job build discarder configuration

We could use the following code to achieve the same behavior in our Declarative
Pipeline:

options {

buildDiscarder(logRotator(’3%))

}
As well, there can be specific options for the declarative structure. Here’s an example
of one:

options {

skipDefaultCheckout()
}

About skipDefaultCheckout()

Since we use this option as an example, it's worth saying a word about what it does. If
you specify an agent in a Declarative Pipeline, Jenkins allocates a node for it, and
then, if in a Jenkinsfile, it does a global checkout scm. The checkout scm syntax is a
shorthand way to pull down a set of source code. It can work with this shorthand
notation because the Jenkinsfile should be stored with the source and so it can use the
location and branch from the repository.

However, there might be instances where you don't want this global source checkout
to happen. In such cases, you can use this option to prevent that. Note that if you do
use this option, you are responsible for doing the checkout scm later in your script if
needed.

Options summary

The following list below enumerates the available options and, briefly, their meaning
and usage:

230 | Chapter7: Dedarative Pipelines

buildDiscarder
Keep the console output and artifacts for the specified number of executions of
the pipeline.

logRotator

If youre wondering what the logRotator element does here, it
doesn’t imply any particular functionality. It’s there mainly for his-
torical reasons.

options { buildDiscarder(logRotator('10')) }

disableConcurrentBuilds
Prevent Jenkins from starting concurrent executions of the same pipeline. The
use case could be for preventing simultaneous access to shared resources or pre-
venting a faster concurrent execution from overtaking a slower one. (This option
is also discussed in Chapter 3.)

options { disableConcurrentBuilds() }

retry
If the pipeline execution fails, retry the entire pipeline the specified number of
times.

options { retry(2) }

skipDefaultCheckout
As just explained in the ““About skipDefaultCheckout()” on page 230” sidebar,
this removes an implied checkout scm statement, thus skipping the automatic
source code checkout from a pipeline defined in a Jenkinsfile.

skipStagesAfterUnstable
If a stage of the pipeline renders the pipeline unstable, don’t process the remain-
ing stages.

options { skipStagesAfterUnstable()}

timeout
Sets a timeout value for an execution of the pipeline. If this timeout value is
passed, Jenkins will abort the pipeline.

options { timeout(15, "MINUTES') }

The Building Blocks | 231

Scripted Versus Declarative Example

The timeout option here highlights another useful difference of
declarative syntax versus scripted syntax. In a Scripted Pipeline
(where we don’t have a global options area), to get this same func-

tionality we would have to wrap all of our code in a timeout block:

timeout(2, "MINUTES") {
// pipeline processing

}

timestamps
Add timestamps to the console output. This option requires the Timestamper
plugin. Note that this option applies globally to the whole pipeline execution.

options { timestamps() }

triggers

This directive allows you to specify what kinds of triggers should initiate builds in
your pipeline. Note that these do not apply to Multibranch Pipeline or GitHub orga-
nization or Bitbucket team/project jobs that are marked by Jenkinsfiles and triggered
otherwise—such as by a webhook that notifies Jenkins when a change is made.

There are four different (SCM-neutral) triggers currently available: cron, poll1SCM,
upstream, and githubPush.

cron
Refers to executing the pipeline at a specified regular interval, and pol1SCM is for
checking for source code updates (polling the source control management sys-
tem) at a specified regular interval. If a source change is detected, the pipeline
will be executed.

upstream
Takes a comma-separated string of Jenkins jobs and a condition to check. When
a job in the string finishes and the result matches the treshold, the current pipe-
line will be retriggered. For example:

triggers {
upstream('jobA, jobB',
hudson.model.Result.SUCCESS)
}
githubPush

Refers to the same kind of behavior as the “GitHub hook trigger for GitSCM poll-
ing” setting in the Build Triggers section of a project in the Jenkins application.
That is, if a webhook is set up on the GitHub side for events related to the GitHub

232 | Chapter7: Dedarative Pipelines

repository, then when the payload is sent to Jenkins, it will trigger SCM polling
for that repo from the Jenkins job to pick up any changes. The syntax should be
simply:

triggers { githubPush() }

Bitbucket Project Triggers

According to some sources, there should also be a bitbucketPush
trigger type available that should behave like the githubPush trig-
ger. However, this doesn’t seem to show up as a valid option with
the versions of the plugins at the time of this writing. If you need
this functionality, check the plugin pages and try adding it to your
pipeline to see if it is available.

Both pol1SCM and cron can use the cron syntax, a summary of which was given in an
earlier chapter and which is repeated here for convenience.

Cron syntax

The cron syntax used in Jenkins is a specification of when and/or how often to do
something based on five fields, separated by spaces. Each of the fields represents a dif-
ferent unit of time. The five fields are:

MINUTES
The desired minutes value within the hour (0-59).

HOURS
The desired hours value within the day (0-23).

DAYMONTH
The desired day of the month (1-31).

MONTH
The desired month of the year (1-12).

DAYWEEK
The desired day of the week (0-7). Here, 0 and 7 both represent Sunday.

Also, the */<value> syntax can be used in a field to mean “every <value>” (as in */5
meaning “every 5 minutes”).

Additionally, the symbol H can be used in any of the fields. This symbol has a special
meaning to Jenkins. It tells Jenkins to, within a range, use the hash of the project
name to come up with a unique offset value. This value is then added to the lowest

The Building Blocks | 233

value of the range to define when the activity actually starts, within the range of val-
ues.

The idea here is not to have all projects that have the same cron values specified,
starting at the same time. The offset from the hash serves to “stagger” the execution
of projects that have the same cron timing.

Use of the H symbol is encouraged to avoid having projects start executing at the same
time. Note that since the value is a hash of the project name, each value will be differ-
ent from all others, but will remain the same for that project over time.

The H symbol can also have a range attached to it to specify limits on the interval it
can pick. The syntax is H(<start range>, <end range>).

To solidify this a bit more, let’s look at some examples:

// Start a pipeline execution at 10 minutes past the hour
triggers { cron(10 * * * *) }

// Scan for SCM changes at 10-minute intervals
triggers { pollSCM(*/10 * * * *) }

// Start a pipeline session at some point between 0 and 30 minutes after
// the hour
triggers { cron(H(0,30) * * * *) }

// Start a pipeline execution at 8 a.m. Monday through Friday

triggers { cron(® 8 * * * 1-5) }
Next, we'll take a look at how we can supply input to a Declarative Pipeline via the
parameters directive.

parameters

This directive allows us to specify project parameters for a Declarative Pipeline. The
input values for these parameters can come from a user or an API call. You can think
of these parameters as being the same sort that you would specify in the web form
with the “This build is parameterized” option.

You can get an idea of the syntax for these from the Snippet Generator by selecting
the input step and then selecting the parameters and values you want to use.

The valid parameter types, with a description and example of each, are listed here
(these are the same kinds of parameters we discussed in conjunction with the input
step in Chapter 3):

booleanParam
This is the basic true/false parameter. The subparameters for a booleanParam
are name, defaultValue, and description.

234 | Chapter7: Dedarative Pipelines

parameters { booleanParam(false,
"test run?', 'testRun')}

choice
This parameter allows selection from a list of choices. The subparameters for a
choice are name, choices, and description. Here, choices refers to a list of
choices you enter, separated by newlines, to present to the user. The first one in
the list will be the default.

parameters{ choice('Windows-1\nLinux-2",
'Which platform?', 'platform')}

file
This parameter allows for choosing a file to use with the pipeline. The subpara-
meters include fileLocation and description.

The selected file location specifies where to put the file that is selected and uploa-
ded. The location will be relative to the workspace.

parameters{ file('y 'Select the file to
upload')}

text
This parameter allows the user to input multiple lines of text. The subparameters
include name, defaultValue, and description.

parameters{ text('No message',
'"Enter your message', 'userMsg')

password
This parameter allows the user to enter a password. For passwords, the text
entered is hidden. The available subparameters are name, defaultvalue, and
description.

parameters{ password("userpassi1",
'User password?', 'userPW')}

run
This parameter allows the user to select a particular run from a job. This might
be used, for example, in a testing environment. The subparameters available
include name, project, description, and filter.

The project subparameter is the job that you want to allow the user to select a
run from. The default run will be the last one. You also have access to certain
environment variables in the script from whichever project you select. These
include:

o PARAMETER_NAME=<jenkins_url>/job/<job_name>/<run_numbers>/
e PARAMETER_NAME_JOBNAME=<job_name>

The Building Blocks | 235

o PARAMETER_NAME_NUMBER=<run_number>
« PARAMETER_NAME_NAME=<display_name>
o PARAMETER_NAME_RESULT=<run_result>

The filter subparameter allows you to filter the type of runs to offer based on
the overall build status. Choices include:

o All Builds—including “in-progress” ones

e Completed Builds

o« Successful Builds—this includes stable and unstable ones
e Stable Builds Only

parameters{ run("Last success",
'Last successful project', 'projectl’,
'Successful Builds')}

string
This parameter allows for entering a string. (This is not hidden like a password
parameter is.) The subparameters include description, defaultvalue, and
name.

parameters{ string("Linux",
'"What platform?', 'platform')}

Using parameters in a pipeline

Once you define a parameter in the parameters block, you can reference it in your
pipeline via the params namespace, as in params.<parameter_name>. Here’s a simple
example using a string parameter in a Declarative Pipeline:

pipeline {

agent any
parameters{

string("maintainer"”,

"Enter user role:', 'userRole')

}
stages {

stage('listvals') {

steps {
echo "User's role = ${params.userRole}"

}

236 | Chapter7: Dedarative Pipelines

Issues with Parameters on First Execution

As of this writing, the first time that you run a pipeline script, you
won't be prompted for the parameter values. From the second time
" on, you will.

This is due to a type of catch-22. The parameters are defined in the
pipeline script, so they are not known by Jenkins until the script is
run. But it's when the script is first run that you would expect to
have the parameters available. As of this writing, there isn’t a work-
around, although it is being considered by the Jenkins project.

As a suggested best practice, use the params.<parameter_name>
syntax. Then you can at least get the default values (assuming they
are set) for the parameters on the first run.

libraries

One of the newer directives introduced in Jenkins for Declarative Pipelines is the
libraries directive. This directive allows Declarative Pipelines to import shared
libraries so that code contained in them can then be called and used. As discussed in
Chapter 6, a shared library is just a collection of code built to work with Jenkins pipe-
lines, and stored and accessed from a source control system outside of your pipeline.

In addition to providing a way to share and include common code, shared libraries
can also be valuable for Declarative Pipeline use by encapsulating code that is not
declarative, and couldn’t normally be directly used in a pipeline. (This is discussed
more near the end of the chapter.)

The syntax here is pretty straightforward, as shown in the following example. Note
that the @ sign here provides a way of specifying (after it) which version of a shared
library we want. In the first 1ib statement here, we are asking for the latest version
from the master branch for this library:
pipeline {
agent any
libraries {
1ib("mylib@master™)
lib("alib")
3
stages {

Shared libraries are covered in much more detail in Chapter 6.

Now that we've covered the directives available for us to use in Declarative Pipelines,
it’s time to look at how to structure the code that will use those directives and DSL
statements to do our pipeline actions. We start with the stages section.

The Building Blocks | 237

stages

Whether in a Scripted Pipeline or a Declarative Pipeline, Jenkins wants our code steps
to be contained in one or more stages. In a Declarative Pipeline, the collection of
individual stages is wrapped by the stages section. This makes our Declarative Pipe-
line more structured and tells Jenkins where the stages begin and end, as opposed to
the pipeline-level directives that we've been looking at. stages is a required section,
and you must have at least one stage within it. A section of a pipeline demonstrating
this syntax is shown here:
pipeline {
agent any
stages {

stage('namel') {
steps {

}

stage

Within the stages section are the individual stages. Each stage has at least a name
and one or more DSL steps. Within a stage, you may also have local environment,
tools, and agent directives. If there are also corresponding global directives that
define values with the same names, then the value defined in the directive in the stage
will override the global one.

An example of this situation could be having the same environment variable defined
in both an environment directive at the pipeline level and an environment directive
in a stage.

If additional values (with different names) are defined in a directive at the pipeline
level and the same directive in a stage, the additional settings in the stage are just
added to the set already defined globally for the pipeline.

Other than the stage closure itself, the only required element in a stage (for a Declar-
ative Pipeline) is the steps section.

steps

The steps block is required and indicates the actual work that will happen in the
stage. It has the form:
steps {
<individual steps - i.e., DSL statements>
}
The individual steps can be any valid DSL statements, such as echo, archiveArti
facts, git, mail, etc. The syntax at this level is the same for Scripted or Declarative

238 | (Chapter7: Dedarative Pipelines

Pipelines in terms of using DSL statements. You cannot, however, use Groovy non-
DSL statements or constructs, such as i1f-then or assignments.

Snippet Generator

Remember that if you need more information about the syntax for
a particular DSL statement, you can look that up in the Jenkins
Snippet Generator, available through the Pipeline Syntax links in
Jenkins.

Execution of the steps section can also be done conditionally in a pipeline, based on
a set of conditions defined at the start of the stage. Let’s take a look at how that works.

Conditional execution of a stage. In any stage, you can have conditional execution. That
is, you can have Jenkins decide whether or not to execute the steps in the stage based
on one or more conditions evaluating to true. This is an optional construct that is
not available at the top level of the script.

There are several different conditions that you can work with. The choices are:

branch "<name>"
Only proceed if the branch name is <name> or matches the (Ant-style) pattern.
stage('debug_build') {
when {
branch 'test'

}
}

environment name: <name>, value: <value>
Only proceed if the specified environment variable <name> has the specified envi-
ronment variable <value>.

stage('debug_build') {
when {
environment "BUILD_CONFIG", "DEBUG"
}

}

expression <valid Groovy expression>
Only proceed if the specified Groovy expression evaluates to true (meaning not
false and not null).
stage('debug_build") {

when {
expression {

The Building Blocks | 239

echo "Checking for debug build parameter..."
expression { return params.DEBUG_BUILD }

}

Conditional execution with and, or, not. In addition to using these conditions one at a
time only when they are true, we can also use logical operators to check multiple
conditions, or the inverse of one. The Declarative Pipeline syntax provides keywords
that allow us to use the equivalent of “and,” “or;” and “not” logical operations with the
three types of conditions we just discussed. The keywords for the three logical opera-

tors are:

allof
When used in a when statement for conditional stage execution, the all0f key-
word functions like an “and” In order for the stage to proceed with its process-
ing, “all of” the conditions included must be true.

when {
allof {
environment "BUILD_CONFIG", "DEBUG"
branch 'test'

anyOf
When used in a when statement for conditional stage execution, the any0f key-
word functions like an “or” In order for the stage to proceed with its processing,
“any of” the conditions included must be true.

when {
anyOof {
environment "BUILD_CONFIG", "DEBUG"
branch 'test'

not
When used in a when statement for conditional stage execution, the not keyword
functions just as the name implies. In order for the stage to proceed with its pro-
cessing, the specified conditions must not be true.

when {
not {
branch 'prod'

}

240 | Chapter7: Dedarative Pipelines

There is one additional part of a stage that can also execute based on conditionals:
post, for processing at the end of a stage. This is a powerful way to emulate the tradi-
tional post-build processing type of behavior within a stage.

post Subsection

Stages can also have a subsection called post defined in them. For
more information, see the following section. We share the detail
there since this is most commonly used at the pipeline level.

post

post is another section available for use in the pipeline or in a stage. It is optional in
both places. If present, it gets executed at the end of a pipeline or stage if the condi-
tions are met. You can think of it like post-build actions for a traditional Jenkins Free-
style job or set of jobs.

The conditions in the post block are based on the build status. The syntax is as fol-
lows:

post {
<condition name> {
<valid DSL statements>

}

<condition name> {
<valid DSL statements

}
The available conditions are:

always
Always execute the steps in the block.

changed
If the current build’s status is different from the previous build’s status, then exe-
cute the steps in the block.

success
If the current build was successful, then execute the steps in the block.

failure
If the current build failed, then execute the steps in the block.

unstable
If the current build’s status was unstable, then execute the steps in the block.

The Building Blocks | 241

The Weird Status

There is also an “aborted” build status, but that one is described as
“weird” (by a certain CloudBees employee) and not recommended
to be used.

Here’s an example of using these notifications in a stage:

stage('Build") {
steps {
gradle 'clean build'

}
post {
always {
echo "Build stage complete"
}
failure{
echo "Build failed"
mail <some text>, 'Build failed!',
'devops@mycompany.com'
}
success {
echo "Build succeeded"
archiveArtifacts '#**/*'
}
}
}

Dealing with Nondeclarative Code

The Declarative Pipeline syntax is great for simplifying the way we define pipelines.
However, if you need to do something that can’t be expressed declaratively, it can be
challenging to figure out how to accomplish that within the declarative structure.

Let’s take, for example, cases where you may need to do a simple assignment opera-
tion, or multiple ones. Here are some sample assignments needed to use Artifactory
with Gradle in Scripted Pipeline code:

def server = Artifactory.server 'my-server-id'
def rtGradle = Artifactory.newGradleBuild()
rtGradle.tool = 'gradle tool name'

Attempting to put these in a steps section in a stage and run them yields a failed
build with error messages like these:

org.codehaus.groovy.control.MultipleCompilationErrorsException:
startup failed:
WorkflowScript: 15: Expected a step @ line 15, column 16.

def server = Artifactory.server 'my-server-id'
N

242 | Chapter7: Dedarative Pipelines

WorkflowScript: 17: Expected a step @ line 17, column 1.
def rtGradle = Artifactory.newGradleBuild()

A

WorkflowScript: 19: Expected a step @ line 19, column 1.
rtGradle.tool = 'gradle3'

A

3 errors

The problem here is that these assignment statements are trying to directly modify
values via the DSL and are not declarative. While these statements are legal to use in
Scripted Pipelines, they are not in Declarative Pipelines.

So how do we handle such cases? There are a couple of options, each with their
advantages and disadvantages, as we discuss next.

Check Your Plugins

If you are trying to port scripted code that works with a plugin, check to see if there is
an updated version of the plugin that supports the declarative syntax. There may not
be currently, but it may be in the works, so its worth checking periodically for
updates.

Create a Shared Library

Earlier in this chapter, we discussed the libraries directive for importing shared
libraries into Declarative Pipelines. Rather than having to try to embed the code
directly in the pipeline, you can put it in a shared library, then load the shared library
and call the function declaratively through that. This requires some knowledge of
how to create a shared library—and how to create it such that its methods will be call-
able with declarative syntax—but this is the preferred way to make this work. Chap-
ter 6 discusses shared libraries and using them to extend your pipeline in detail.

Place Code Outside of the Pipeline Block

Another alternative is to put your code outside of the entire pipeline block. For
example, you could place it above the pipeline { statement. Any code that works in
a Scripted Pipeline can be placed in the same file/script area as a Declarative Pipeline,
as long as it is not within the pipeline block.

Dealing with Nondedlarative Code | 243

Problems with Putting Code Outside the Pipeline Block

While this is a valid alternative currently, it is not ideal. This can
make the pipeline code difficult to read and manage since youre
" mixing the two styles, and it may also confuse the parser in certain
cases. Worse, if you ever want to use the Blue Ocean pipeline editor
(discussed in Chapter 10) with this code, it will get rid of the code
outside of the pipeline block. The editor only understands things
within the pipeline block.

The script Statement

The script DSL statement is a special statement intended just for use in Declarative
Pipelines; it allows you to define a block/closure that can house any nondeclarative
code. As you may have guessed, the name is a reference to “Scripted” Pipelines.

The statement is put inside your Declarative Pipeline wherever you have to have non-
declarative code. This method is likely the best way to handle this sort of situation, if
you must use nondeclarative code and don't want to create a shared library.

Turning back to our example assignment statements, wrapping them in a script
statement would look like this:

stage('stagel') {
<declarative code>
script {
def server = Artifactory.server 'my-server-id'
def rtGradle = Artifactory.newGradleBuild()
rtGradle.tool = 'gradle tool name'

}

<declarative code>

This will execute fine (assuming we have the requisite Artifactory integration set up).

Using parallel in a Stage

We covered the parallel syntax for declarative syntax in Chapter 3. With regard to
using parallel in Declarative Pipelines, you can use it in a stage if it’s the only step in
that stage. Note that the parallel definition itself can be of the traditional style
(using a mapping to define the different parallel “branches”) or a newer style (as of
Declarative Pipelines 1.2) that allows for the branches to be defined by stages. Code
snippets of both are shown here (refer to Chapter 3 for more details and complete
examples):

stage ('Unit Test') {
steps {
parallel(
setl : {

244 | Chapter7: Dedarative Pipelines

stage('Unit Test') {
parallel{
stage ('setl') {
agent { label 'worker_node2' }
steps {

Script Checking and Error Reporting

As mentioned at the beginning of the chapter, one of the other nice features of
Declarative Pipelines is that the formal structure allows for better script checking and
more precise error reporting. That is, the checking and reporting are expressed in
terms of the DSL and not just Groovy code with stacktraces.

The verification is done at the start, in the editor, and errors are clearly identified,
including line numbers. Argument types are also validated, and the environment is
checked to make sure the necessary tools are available. If a required tool or tool ver-
sion isn’t installed, the script will stop with an error.

The following code shows a Scripted Pipeline listing with a syntax error (stae instead
of stage). Figure 7-6 shows the resulting Groovy stacktrace that serves as error iden-
tification.

('Utilities') import org.foo.Utilitles.*
node ('worker_nodel') {
stae('Source') { // for display purposes
// Get some code from our Git repository
git 'git@diyvb:repos/gradle-greetings.git'
}
stage('Build') {

Script Checking and Error Reporting | 245

First time build. Skipping changelog.

[Pipeline] node

Running on worker nodel in /home/jenkins/worker nodel/workspace/simple
[Pipeline] {

[Pipeline] }

[:"I:'If‘]'l"p"‘] // node

[Pipeline] End of Pipeline

java.lang.NoSuchMethodError: Mo such DSL method ‘stae' found among stej
artifactoryUpload, bat, build, catchError, checkout, collectEnv, delet:
fileExists, findFiles, getArtifactoryServer, git, input, isunix, libra
properties, publishBuildInfo, pwd, readFile, readManifest, readMavenPor
unarchive, unstash, unzip, waitUntil, withDockerContainer, withDockerRi
architecture, archiveArtifacts, artifactManager, batchFile, booleanPar:
choiceParam, clock, cloud, command, commentAdded, commentAddedContains
draftPublished, dumb, enwvvars, file, fileParam, filePath, fingerprint,
jnlp, jobName, lastDuration, lastFailure, lastGrantedAuthorities, last
maven3Mojos, mavenErrors, mavenMojos, mavenWarnings, myView, nodePrope
pipelineTriggers, plainText, plugin, pollSCM, projectNamingStrategy, p
slave, stackTrace, standard, status, string, stringParam, swapSpace, tt
currentBuild, docker, env, mailStatus, mailUser, manager, params, pipe’
at org.jenkinsci.plugins.workflow.cps.D5SL.invokeMethod(DSL. javi
at org.jenkinsci.plugins.workflow.cps.CpsScript.invokeMethod(Cj
at groovy.lang.MetaClassImpl.invokeMethodOnGroovyObject(MetaCli
at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java:l
at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java: 1t
at org.codehaus.groovy.runtime.callsite.PogoMetaClassSite.call
at org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultC
at org.codehaus.groovy.runtime.callsite.AbstractCallSite.call(s
at com.cloudbees.groovy.cps.sandbox.DefaultInvoker.methodCall(
at WorkflowScript.run(WorkflowScript:3)
at _ cps.transform__ (Native Method)
at com.cloudbees.groovy.cps.impl.ContinuationGroup.methodCall (¢
at com.cloudbees.groovy.cps.impl.FunctionCallBlock$Continuatio
at com.cloudbees.groovy.cps.impl.FunctionCallBlock$Continuation
at sun.reflect.GeneratedMethodAccessor721.invoke (Unknown Sourci

Figure 7-6. Error reporting for Scripted Pipeline syntax error

The following code shows a corresponding Declarative Pipeline listing. Figure 7-7
shows the clearer error checking that surfaces from using it.

pipeline {
// ensure we have the needed tools

// run on worker node 1
agent label:''

stages {

stae('Source') {
git branch: 'test', url: 'git@diyvb:repos/gradle-greetings.git'
stash name: 'test-sources', includes: 'build.gradle,src/test/'
}
stage('Build')

246 | Chapter7: Dedlarative Pipelines

Checking out Revision bdcb5a@23d11c812c6b6f533e48632edfa3l6bee (origin/master)
> git config core.sparsecheckout # timeout=10
> git checkout -f bdcb5a023d11c812c6b6f533e48632edfa3l6bee
> git rev-list bdcb5a023d11c812c6b6T533e48632edfa3lbbee # timeout=10
org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed:
WorkflowScript: 9: Expected a stage @ line 9, column 7.
stae('Source') {

-~

WorkflowScript: 9: Stage does not have a name @ line 9, column 7.
stae('Source') {

~

workflowScript: 9: Nothing to execute within stage 'null' @ line 9, column 7.
stae('Source') {

-~

3 errors

at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollectc
at org.codehaus.groovy.control.CompilationuUnit.applyToPrimaryClassNodes(
at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(Compilat
at org.codehaus.groovy.control.CompilationUnit.processPhase0Operations(Cc
at org.codehaus.groovy.control.Compilationunit.compile(Compilationunit.j
at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader. java: 298
at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader. java:268)
at groovy.lang.GroovyShell.parseClass(GroovyShell. java:688)
at groovy.lang.GroovyShell.parse(GroovyShell.java:760)
at org.jenkinsci.plugins.workflow.cps.CpsGroovyShell. reparse(CpsGroovySk
at org.jenkinsci.plugins.workflow.cps.CpsFlowExecution.parseScript(CpsFl
at org.jenkinsci.plugins.workflow.cps.CpsFlowExecution.start(CpsFlowExec
at org.jenkinsci.plugins.workflow.job.WorkflowRun. run(WorkflowRun.java:2
at hudson.model.ResourceController.execute(ResourceController.java:98)
at hudson.model.Executor.run(Executor.java:404)

Finished: FAILURE

Figure 7-7. Error reporting for declarative syntax error

Notice how much clearer and more precise the error message is, in terms of the Jen-

kins pipeline DSL, in the second example.

You may also recall the error messages we saw in the section “Dealing with Nonde-
clarative Code” on page 242 when we looked at trying to put nondeclarative code into

a Declarative Pipeline:

org.codehaus.groovy.control.MultipleCompilationErrorsException:
startup failed:
WorkflowScript: 15: Expected a step @ line 15, column 16.
def server = Artifactory.server 'my-server-id'
N
WorkflowScript: 17: Expected a step @ line 17, column 1.
def rtGradle = Artifactory.newGradleBuild()
A
WorkflowScript: 19: Expected a step @ line 19, column 1.
rtGradle.tool = 'gradle3'

Script Checking and Error Reporting |

A

3 errors

Notice again the DSL-oriented error message (“Expected a step”) with the exact line
number and column references.

Declarative Pipelines and the Blue Ocean Interface

Before we leave our detailed discussion of Declarative Pipelines, we should note one
other aspect of them—they are uniquely suited for working with the new Jenkins
Blue Ocean interface and the associated visual pipeline editor that it provides. This
visual interface is regularly being enhanced and updated by CloudBees and the Jen-
kins community, and it presents an interesting new way to work with and create pipe-
lines.

Blue Ocean plugins and Declarative Pipeline plugins go hand in hand. The well-
defined structure of a Declarative Pipeline lends itself well to being parsed for presen-
tation in a visual form. The limited structure also makes it easier to do the reverse:
create a simple visual interface with specific selections that can be transformed into a
pipeline.

That’s not to say that Scripted Pipelines can't be used with the Blue Ocean interface—
they will have a visual representation of separate stages, and point-and-click inter-
faces to view logs and errors. However, trying to dive deeper into the code in the vis-
ual interface will result in an error message, because Scripted Pipelines do not have
“step” sections that contain the DSL statements. Likewise, Scripted Pipelines cannot
be created or edited through the editor, since it expects to have a pipeline block (clo-
sure) encompassing all of the pipeline code.

Chapter 9 is devoted to the Blue Ocean interface, and the interactive features such as
the editor.

Summary

In this chapter, we've looked at an alternative syntax and structure for creating a
pipeline-as-code in Jenkins. We call this new type “Declarative” because it is more
oriented around declaring what we want to instantiate and have occur.

»
>

In the other kind of pipelines we typically do more “programming,;” using Groovy
constructs such as assignments, decision statements, exception handling, etc. Fre-
quently, this is to compensate for some of the built-in Jenkins constructs we tradi-
tionally had available in Freestyle jobs. That kind of pipeline (which more closely
resembles a Groovy program) is called “Scripted”

Declarative Pipelines have a well-defined structure, with code blocks, sections, and
directives that are similar to the sections traditionally found on the page for a Free-

248 | Chapter7: Dedarative Pipelines

style job in the web interface. They also more clearly identify errors in the expected
pipeline syntax, in comparison to the Groovy tracebacks that happen with errors in
Scripted Pipelines.

Because of factors like the well-defined structure, similar “feel” to the traditional
setup of a Freestyle job, and better error checking, Declarative Pipelines offer a sim-
pler and clearer path for moving from Freestyle jobs and the web interface to crafting
pipelines-as-code.

However, certain types of operations, such as assignments, do not fit in the declara-
tive model, and so can present challenges when they are needed in a Declarative Pipe-
line. Ways to work around some of these issues are discussed in Chapter 16. If none
of these are viable, or if they present significant challenges, that may be an indicator
that a Scripted Pipeline would be a better option.

In the next chapter, we'll look at the different types of projects available in Jenkins,
including several that are new with Jenkins 2.

Summary | 249

CHAPTER 8
Understanding Project Types

In the Jenkins 2 environment, several new project types have been added to provide
extended functionality. Many of them leverage Jenkinsfiles, as markers, to automati-
cally create jobs for the user. In this chapter, we'll look at the most common project
types in Jenkins, including these newer ones as well as traditional ones (like Freestyle
and Maven projects).

For most of the project types, there are certain common options present on the con-
figuration page. These are in sections such as General, Build, Source Code Manage-
ment, etc. In the first part of this chapter, we'll cover those common options. Also,
since we are focused on getting up and running with Jenkins 2, we’ll cover the corre-
sponding pipeline functionality where we have an equivalent.

Common Project Options

A number of the project types in Jenkins have configuration pages that are divided
into specific sections. These sections can be scrolled to, or selected via tabs at the top
of the page. We'll look at each of the major sections, explain what the options mean,
and also look at ways to implement corresponding functionality in pipelines. We'll
break these down based on the tab positions in a Freestyle project. Other types of
projects may have some options on different tabs.

General

The General section is where we configure the unique identifying information about
the project, such as the description. (The project name will have already been set
when the type of project was selected from the project selection dialog.) Figure 8-1
shows this section.

251

General

Froject name freestylel

Description

[Flain text] Preview

Discard old bullds L2
GitHub project

This project is parameterized (7]
Throttie bullds L 23
Disabie this project L 23
Execule concurrent builds if necessary L 22
Restrict where this project can be run L2

Advanced...

Figure 8-1. General configuration section for a Freestyle project

This is also where we can set some global options for the project, including ones that
control job-level aspects. A survey of these follows.

Discard old builds

This option allows you to set up a strategy for Jenkins to follow in discarding previ-
ous builds of your project. While not required, it is helpful for aspects such as manag-
ing disk space (since each run of a project allocates a workspace area).

As shown in Figure 8-2, once you check the box, you can select the strategy to use for
how many builds to keep. Although there is a Strategy drop-down, Log Rotation is
currently the only choice; it is really the options underneath that dictate the strategy.
Essentially, you can choose to keep each run’s work items and artifacts for a particular
number of days or a particular number of builds.

~" Discard old builds &
Strategy Loa Rotation j
Days to keep bullds =

it not empty, build records are only kept up to this number of days

Max # of builds to keep =
if not empty. only up to this number of bulld records are kept

Advanced...

Figure 8-2. Options for deleting old builds

Clicking the Advanced button provides you with the further option to limit the delete
operation to just artifacts (Figure 8-3).

252 | Chapter8: Understanding Project Types

Days to keep artifacts =

It not empty. artifacts from bullds older than this number of
days will be deleted, but the logs, history, reports, etc for the
bulld will be kept

Max # of builds to keep with artifacts =

if not empty. only up to this number of builds have their
artitacts retained

Figure 8-3. Advanced options for deleting just artifacts

Discarding builds in pipeline projects. For pipeline projects, there is a buildDiscarder
option that can be configured. In a Scripted Pipeline, this is done via the properties
step. Here’s an example constructed from the Snippet Generator:

properties([buildDiscarder(logRotator(s
ll, |3l’ l5|)>’
pipelineTriggers([])])

In a Declarative Pipeline, a similar entry can be made in the options section:

options {
buildDiscarder(logRotator('5'))
}

GitHub project

If you have the GitHub plugin installed, this option allows you to specify a GitHub
URL for integration. With this integration, you can have links to your GitHub project
in Jenkins (such as on the Changes page), and you can do integration builds based on
changes to GitHub repositories. (Note that to be notified of changes from GitHub,
there is additional setup required. See “GitHub hook trigger for Git polling” on page
261.)

The project URL is the main parameter to set here. There is also an Advanced button,
but it simply allows you to specify a simple name for information sent back to Git-
Hub.

Note that using this functionality requires having a Jenkins URL reachable from the
internet and some specific setup. See the GitHub plugin page for more information.

Specifying the GitHub project property in pipeline projects. For Scripted Pipelines, you can
set the GithubProjectProperty values in the properties step. For example:

properties([[$class: 'GithubProjectProperty',

"http://github.com/brentlaster/sampleproject/'],
pipelineTriggers([])]

Common Project Options | 253

https://plugins.jenkins.io/github

This project is parameterized

This option allows you to add various kinds of input parameters to your job. Clicking
the Add Parameter button brings up additional fields that you can fill in for the name
of your parameter, default values, etc.

The different types of parameters and how to use them in pipeline projects are cov-
ered extensively in Chapter 3.

Throttle builds

This option allows you to specify the number of builds to be allowed within a given
time period. One field is for the number of builds and one is for the time period
(hour, day, etc.).

Throttling builds in pipelines. The properties step does have a way to call the throttle
builds functionality, but as of this writing, that functionality seems to be broken. It is
also currently missing for the Declarative Pipeline options section. Here is an exam-
ple of what the Snippet Generator creates for this:

properties([[$class: 'JobPropertyImpl',
[1, "hour']], pipelineTriggers([])])

Disable this project

As the name implies, clicking this box will disable the project (keep it from being exe-
cuted). When this is unset, it will reenable the project.

Disabling Pipeline projects. For Pipeline projects within the Jenkins interface, there is
an option in the Build Triggers tab to disable projects. See Figure 8-4.

Bulld Triggers

Build Triggers

Build after other projects are built L 2]

Bulld perodically 7]
GitHub hook trigger for GITScm poiling &
Foll SCM &5
~ Disabie this project 7]

Figure 8-4. Disabling Pipeline projects

Execute concurrent builds if necessary

By default, concurrent builds for the same project are not allowed. If this option is
checked, and enough executors are available, then parallel builds are allowed. This
can be useful for large or long-running project builds, and also for ones that are para-

254 | Chapter8: Understanding Project Types

meterized and can benefit from running with different parameters (such as for testing
scenarios).

When concurrent builds happen, workspace names are appended with @# (where # is
a number) to separate the workspaces. However, if a custom workspace is used, all of
the concurrent builds run there.

Concurrent builds in pipelines. In the context of pipelines, the sense of this option is
reversed. That is, we set an option to disable concurrent builds if desired. The syntax
looks like this:

properties([disableConcurrentBuilds()])

or:

options { disableConcurrentBuilds() }

Restrict where this project can be run

This option allows you to enter one or more “labels” identifying which nodes can be
used to run the project. Labels are identifiers you put on nodes to make them selecta-
ble.

Selecting this option displays an additional entry box to enter the label(s).

Pipelines and nodes. The node block and agent step (in Scripted and Declarative Pipe-
lines, respectively) allow for deciding where all or part of a pipeline should run. This
and related steps are covered in Chapter 2 for Scripted Pipelines and Chapter 7 for
Declarative Pipelines.

A set of additional options can also be set on the General tab by clicking on the
Advanced button below the “Restrict where this project can be run” option. We cover
those next.

Quiet period

Clicking on this option gives you a field where you can enter a number of seconds for
Jenkins to wait before starting a build of this project. If builds are triggered, they will
be added to the queue, waiting for this time period. If this is not set, the system will
default to the global quiet period if one is configured in the Configure System settings
(shown in Figure 8-5).

Common Project Options | 255

http://bit.ly/2HXNZH5

U this nesde as much s possitie -| &

Figure 8-5. Global options including the default quiet period

This option is mainly a vestige from the early days of using systems like CVS where
you might need to wait until all files were committed before initiating builds, rather
than acting when the system saw the first one. It can still have similar applications
today.

Pipelines and the quiet period. Pipelines have a build step where you can initiate the
build of another project. From within that step, you can specify a quiet period for the
intended job. The syntax is as follows:

build 'myJob', 5

Retry count

This setting is for retrying SCM checkouts. Clicking on the option pops up a field
where you can enter the number of attempts to make to check code out. There is a
10-second delay between attempts. If this value is not set, then the system will default
to the global retry value, if set, in the Configure System settings (the “SCM checkout
retry count” setting in Figure 8-5). Note that it is up to each SCM plugin provider to
define what constitutes a failure that warrants a retry.

Pipelines and retry count. Currently, pipelines should honor the global (Configure Sys-
tem) retry count, if set. Pipelines also include a general retry step that can be used to
retry any operation. This is discussed in detail in Chapter 3.

Block build when upstream project is building

When this option is checked, the project won’t be allowed to build if one of its depen-
dencies (direct or transitive) is building or in the queue.

Block build when downstream project is building

When this option is checked, the project won't be allowed to build if one of its chil-
dren (direct or transitive) is building or in the queue.

Waiting for downstream in pipelines. For pipelines, the build step has an option that
defaults to true to wait for downstream builds. If you do not want to wait, then you
need to explicitly set that value to false as shown here:

256 | Chapter8: Understanding Project Types

build 'declar2’, false

Note that if you use the default value of true, then the return value from the step is
an object that you can examine for the build result and other attributes. More details
can be found in the Snippet Generator help.

Use custom workspace

As the name implies, selecting this option allows you to specify a particular directory
as your workspace. (The location is entered in a separate field that opens up when
this option is checked.) The location can be an absolute path or a relative path. If it is
a relative path, it is relative to the node’s root directory.

Normally, it’s best (and easiest) to just let Jenkins manage the workspace. However, if
the job requires builds or source downloads to be done in a specific location, this is a
way you can accommodate that need.

Custom workspaces and pipelines. For Declarative Pipelines, there is a customWork
space option to the label definition for an agent that can be used (see Chapter 7).
Pipelines also include dir and ws steps to set custom areas. These steps are discussed
in detail in Chapter 11.

Display name

The value put in this field is displayed in the Jenkins web interface as the name of the
project. Duplicate names are allowed since this is just for display purposes. You could
use this, for example, to display additional information about the project that is worth
being easily seen.

Display name and pipelines. To set a display name and description in a pipeline, you
can use code like the following:

currentBuild.displayName = <project name>
currentBuild.description = <project description>

Keep the build logs of dependencies

This option overrides log rotation policies for dependencies connected to your
project. It is useful for ensuring those logs are still available to coincide with your
project’s logs.

Next is the Source Code Management section.

Common Project Options | 257

Source Code Management

Depending on which source code management plugins you have installed, you'll have
options here to select one and configure it appropriately. The specific options will
vary depending on the system selected, but there are certain common features.

Repository URL
This setting specifies the location of the repository you want to access for the project.
Note that different protocols can be used, such as HTTPS or SSH.

Credentials

These are simply the credentials you've defined in Jenkins to access the SCM.

Revision

Specifying a revision is a way to specify a particular version of the code that you want
to use (typically this might be a branch, but it could also be something like a tag or
whatever the SCM uses to indicate a specific version).

Figure 8-6 shows a setup for accessing a Git repository.

Source Code Management
None
= Git

Repositories &

Repository URL | git@diyvb2 home/gitrepositones/shared_libranies s

Eredentials N — - - Add
Name LZ)
Fefspec &

Add Repository

]
i
g

Branch Specifier (blank for ‘any - /master Lo

Add Branch

Figure 8-6. Typical Git configuration

Source code management in a pipeline

The pipeline includes a corresponding checkout step that you can use in place of the
source code management forms in this section. The easiest way to fill this in is via the
Pipeline Syntax/Snippet Generator form. Figure 8-7 shows an example of using the
Snippet Generator to duplicate the setup in the previous section.

258 | Chapter 8: Understanding Project Types

Stops

Sampile Step

checkout: General SCM j
sCM | o . |

Repositonss ——
Repositony URL | m giywbe home/gitrepositonea/shared_libranes (7

Crodentials

- Add ~
@
Advanced..

Add Repository

Branches 1o bulld ranch Specifier (biank for By .
Branch Specifier (blank for 'm e e &

Add Branch Delete Branch
Repository browser e “|l&

Adicditional Behaviours - =

» Include in polling?

~" Incluge In changelog?

Figure 8-7. Configuring the checkout pipeline step for a GitSCM operation

This in turn would generate the following code:

checkout([$class: 'GitSCM', [r '* /master']],
false, [1,
[1, L

'localUser"',
'git@diyvb2: /home/git/repositories/shared_libraries']]])

Depending on the SCM, the pipeline may also have a dedicated step to use for that
SCM. For example, for Git, there is a git step. The syntax for that is:

git '"localUser',

'git@diyvb2:/home/git/repositories/shared_libraries'

Notice that the syntax for the dedicated step is somewhat simpler (although not all
options are shown). For this reason, it is usually preferable to use a dedicated step if

one exists for the SCM. However, if there is no dedicated step, then the checkout step
is a fallback.

With the source management aspects defined, we can move on to what events or pro-
cesses will cause the build to run. These are referred to as Build Triggers.

Build Triggers

In this section of the project configuration, we define the events and/or processes that
will start a build of our project running. The basic options are described in the fol-
lowing sections.

Common Project Options | 259

Trigger builds remotely

If you select this option, then Jenkins will provide you with a special URL that you
can use to trigger a build (see Figure 8-8). Jenkins also asks you to provide a string
that can be used as an authorization token in the URL. This is an additional security
step since anyone or anything trying to trigger the build needs to also know the
token.

Build Triggers

~ Trigger bulids remotely (e.g.. from sonpts) L23

Authentication Token MY_TRIGGER_TOKEN
Use the following URL to trigger bulld remotoly: JENKINS _URL/job/frocstyle2/bulid7token= TOKEN_NAME
of /oulldWithParameters Floken=-TOKEN NAME
Optionally append &cause=Cause+Text to provide text that will be included in the recorded bulld
cause.

Figure 8-8. Setting up remote trigger

With this URL, you can then use tools like wget or curl or a custom web page to
trigger the build. For example:

curl //localhost:8080/job/freestyle2/build?token
=MY_TRIGGER_TOKEN

The localhost:8080 in this case is the Jenkins URL.

When you execute this, the target job will start doing a build. In the log it will say
“Started by remote host..”

Tokens and Access

Assuming that you have Jenkins secured such that anonymous
users lack read permissions, then you will need some kind of
~ authentication to be able to trigger the build—especially since Jen-
kins checks the URL hierarchically down the path. If you do not
have other access set up, then there is a Build Token Root plugin
that offers an alternate URL that is accessible to anonymous users
to trigger such builds.

Remotely triggering pipeline builds. You can use an sh call to curl, wget, etc. in your
pipeline. to remotely trigger a build if it is set up as described. Or, if the build is on
the same Jenkins instance, you can just use the build pipeline step and tell it which
project to build.

Building after other projects are built

This option allows you to trigger a build of the current project based on completion
of another project’s build. There are options for building only if the build of the other
project is stable (successful), is unstable, or failed.

260 | Chapter8: Understanding Project Types

Build after other projectsin a pipeline. Getting this same functionality through the pipe-
line is a function of the properties step. The parameter for the upstream project to
trigger from is upstreamProjects, and the result we look for is set by the threshold
parameter. Here is a code sample:

properties([pipelineTriggers([upstream
('SUCCESS',
"upstream-project')1)])

Build periodically

When you click this option, it brings up a Schedule text box where you can specity
how often to build using standard cron syntax (five space-separated fields in which
you indicate values for the minute, hour, day of the month, month, and day of the
week). For more details on cron syntax, see “Build Periodically” on page 61, or the
online help for this option.

Building periodically in a pipeline. As with the previous option, the properties step
can be used to set a periodic build schedule for a Pipeline project. The syntax follows
the same format as discussed for other uses of the cron syntax.

For example, to build every 15 minutes, the step would look like this:

properties([pipelineTriggers([cron('H/15 * * * *')])])

GitHub hook trigger for Git polling

This method of triggering builds allows you to set up a GitHub service to send notifi-
cations to Jenkins when an event happens in your repository on GitHub. So, rather
than polling for changes in the repository, Jenkins is notified of updates by GitHub.

To use this, first you'll need to have the GitHub Integration plugin installed. Then you
need to do some global configuration for GitHub access.

On the Configure System screen, you will have a GitHub setup area (Figure 8-9). Ini-
tially there are two fields that need setup: the URL and credentials. If you just need to
use the public GitHub, you can leave the API URL field as the default: https://
api.github.com. If you had an enterprise GitHub system, you would put the URL for
that in here instead. Likewise, the Name field can be left blank unless you have multi-
ple GitHub enterprise systems, and need to easily differentiate one from the others.

Common Project Options | 261

GitHub

GitHub Servers

GitHub Server [7]

Namna]

APIURL Hitps-ifagt gthub. camm)

Credentials GilHu: (hiips:fapi github, coem) aute generatad token credentia —Add> i

Test cannection L]

Figure 8-9. Basic GitHub setup in Configure System

For credentials, you need some kind of token to use with GitHub. One common
choice is a personal access token. This can be set up in your personal settings area on
GitHub, then added as a credential in Jenkins and selected here.

Alternatively, if you have a user ID and password that you use already with GitHub,
you can let Jenkins automatically create a token for you. To do this, look for an the
Advanced button further down in the GitHub section on this screen. Click that, then
click Manage Additional GitHub Actions and “Convert login and password to token.”
From here, you can convert an existing user ID and password credential to a token (if

you already have that set up in Jenkins) or just a standard user ID and password. See
Figure 8-10.

Convert login and password to token (2]
GItHUD APTURL s s rapi github.com
® From credentials
Credentials brentlaster*** (Credentials for GitHub organization) o= Add v
Created credentials with id 369962a7-aa29-4dal-
9eb0-a204a715b334 (can use it for GitHub Server
Config)

; ®©
Create token credentials L.

From login and password
Delete

Manage additional GitHub actions

Figure 8-10. Creating a GitHub token from existing credentials

This will then show up in your list of credentials in Jenkins and can be selected to use
with GitHub (Figure 8-11).

262 |

Chapter 8: Understanding Project Types

,Q Credentials

T P Store | Domain (v} MName
ab?29b36-2c84697-8b5 bre (Credentials for GitHub
ey o s (ooRa) 16331026045 erganization)
. I . JGRLE2aT-aaZ-ddall Oebll GitHub (hitps:ifepl github com) suto gensraied tolen
® 4 emkins BOLAMUDLOM oy gyany credentials f
leon Sl

Figure 8-11. Credential token for GitHub

Now you want to tell Jenkins how to manage the notifications from GitHub. The
notifications are sent as webhooks. There are two modes, referred to as “automatic”

and “manual’”

With the automatic mode, Jenkins automatically creates and sets up the webhook on
the GitHub side. To use this mode, you need to have created an access token on the
GitHub side that has (at least) the admin:repo_hook scope. If you don't already have
such a token, log in to GitHub, go to your personal settings, and create it. Figure 8-12

shows a screenshot of a token with the appropriate scope.

Personal settings

Frofile

Aczount

Lrmails

Motifcatizng

Billing

S5- and SR keys
Secarity

Elocked usars
Recasitorizs
drganizatiors

Sewed replizs
Authorzed Cauth Aops
Authorized GitHus Acps

Instelled SitHub Apps

Developer settings
Diaath Apcs
5L HUb Apps

| Perzanal access tnkens

Edit personal access token

Faou've lost ar Fargatien this token, youw csn recenerste i, but be aware that any
seripls o oppicalons using Sis Loken wil need Lo

Taken description

Jerkirs itHal @lugie token

be vpdaled,

wihat's s teken far?

Select scopes

Regenerate tolen

Szopes defire T access for perscnal tokens Aeac more about Céuth sooces

epo
repeastatus

leslepmen:

1 adrnin:org

W
D rzadiorg

O adminzpublic_key
D wr repLalic ey
D rzadipubdic_key

B adeninzrepo_hook
T terepa_hock
readirepe ook

Full conral of private repositarizz

Ful conmral of orgs and teams

Fsarl aned write o sl team membsership

Fizad g sred zeamn memlaerzhip

Ful contral of use pablic keys
rite Lzar public keys

Pizad uszr puilic keys

Ful coniral ef repesitorg bosks
Write repocizony nooks

Fzad remositcry hooks

Figure 8-12. Scopes for access token on GitHub to allow Jenkins to do automatic set up of

webhook

Common Project Options

263

Create a credential in Jenkins with this token, then, in the GitHub section of the Con-
figure System screen, click the “Manage hooks” checkbox and supply the token as a
credential (Figure 8-13).

GitHub
GitHub Servers
GitHub Server ©
rame :}j}
A =l[={ . =
ARIURL hitps:fapi github.com (7]
Credentials GitHub (hitps:ifapi github. com]) auto generated wken crec ¥ o= Add ~ (7]

Test connection

Manage hools # (7]

Figure 8-13. Configuration for GitHub token and managing hooks

As previously mentioned, using webhooks in this way assumes that your Jenkins
instance is accessible to the outside world—at least on the particular URL used by the
webhook. Jenkins can tell you what this URL is, but it does it in an indirect way.

To find the URL that the webhook will use, click the blue question mark help icon
next to the “Test connection” button, to the right of the “Manage hooks” checkbox
item. A new help text box will open up. This help box will have within it a URL on
the local Jenkins system. This is the URL that the webhook will send information to.
Figure 8-14 shows this part of the screen, with the help button to click and the web-
hook URL in the resulting dialog highlighted.

Agd GilHub Server -

By default

7L s sl waths B CEHut AR uriess you sod o conligursen wilh sredertiss, 5o 11 you don| we 1 e ey sonfigurstion, you s sl hoeoka for i Jerkin

1 1o el guring projeets wilh "B wher @ g i gt f CUISUET. o newed D ermore et Jerkine gets s POST ki DTT00//1ocalhost | BREH
ooks

Figure 8-14. Locating the URL for the webhook

With all of this done, you then just need to update some settings in the project itself:

264 | Chapter8: Understanding Project Types

o Select the option to indicate that this is a GitHub project, and specify the GitHub
URL in the Project URL field in the General section.

o In the Build Triggers section, select the “GitHub hook trigger for GitSCM poll-
ing” option.

Then when you save your changes, if everything is set up correctly, Jenkins will talk to
your GitHub project and create a new webhook there. When a change is made to the
project, that will send the webhook notification. Jenkins will respond accordingly.
Most commonly, this would be a push to the project on GitHub that then causes a
build of the project to start up (Figure 8-15).

QConsole Output

Started by GitEub push by brentlaster
Started by GitEub push b

Building e fva

Cloning the pen
Cloning reposltory
> git init /

hitp://github.con/bolasteraorg/greatings. git

v/ lib/jenkina works

c/freestylel # timsout=10

Fetching upstream changez from htts: /Sgithub.comdsbolastercrgs/greetings.oit

»ogit version # bimeout=10

» git feteh taos progrezg htto: /fgithub.condbolastercrg/greetings. it trefo/heads/?

Figure 8-15. Build started by push to GitHub project and subsequent webhook from Git-
Hub to Jenkins

For the manual mode, the main change is that you need to go to GitHub, then to the
project, and then to “Integrations and Services” and create a webhook manually. This
isn’t hard. Figure 8-16 shows the setup screen.

) D @ o github.zom c T BE PR D =
Code Pull requasts @ Projects @ Wiki £ Sattings nsights -
Installed GitHub Apps

GitHub Apps augment and extend your workflows on GitHub with commercial, open source, and homegrown tools.

Services Add sarvics -

Webhooks

Avalable Bervices

Integrations & services Services are pre-buill integrations thal perform certain actions when

Deploy keys

Secunly Skl Help o [

Figure 8-16. Manually adding a service on GitHub to create the webhook and send noti-
fications

Once the webhook is set up, you'll see it listed on the GitHub page for your project
(Figure 8-17).

Common Project Options | 265

€ D @ GitHub, inc (US) httpsgithub.com belasterong fgreetings/settings/hocksnew?service = jenkins I] 2 Coarch & e
Uptens SEMVICES | MO0 JENKINS (QITHUD pragin)

Collaborators & teams

leriking is @ popular continueus mtegration server
Eranches

Using the Jenkins GitHub Plugin you can automatically trigger build jobs when
Wehhooks pushes are made to GitHub.

Integrations & services
9 Install Notes

Deploy keys

1 “Jenibeins Heok Url® g the UEL of your Jenking sereerts woebhoal codpoinl. For

enxpmprher Blbps /oL, jenking-o Lo gi tub-webbook?

For more infonmation see hitps:/ fwikijenkins -clorg fdisplay JEMKING /GitHub + phgin

lenkins hook url

it/ fmyjenkins.deme.orgfgithub-webhook

b Active

W will run this service when an event is triggered

Figure 8-17. After manual webhook setup

Now, you just configure the GitHub section of the Configure System screen as
described before, selecting the “Manage hooks” checkbox and using a credential that
Jenkins knows about, and that supplies the appropriate accesses.

Then, again as noted in the automatic mode discussion, you just need to configure
the project in the same way. That is, you select “GitHub project” in the General sec-
tion of the project setup and put in the URL (Figure 8-18), and then select the “Git-
Hub hook trigger for GitSCM polling” option in the Build Triggers section.
Afterwards, a push made to the project on GitHub should trigger a new build of the
project.

~ GitHub project

Project url http://github_com/bclasterorg/greetings .git

Figure 8-18. Configuring the project’s general setup area for GitHub

GitHub triggering in a pipeline. Like the other build triggers, the properties step is
used here again for specifying this option:

properties([pipelineTriggers([githubPush()])])

Here’s an example set of code. This assumes we have set up the global configuration
(via the Configure System screen) and also set up a webhook in GitHub for this
project:

266 | Chapter8: Understanding Project Types

properties([[Sclass: 'GithubProjectProperty',

[
B

"http://github.com/bclasterorg/greetings.git/'],
pipelineTriggers([githubPush()])])
git "https://github.com/bclasterorg/greetings.git’,
'master’

Note that you may need to manually run this once before the automatic notices take
effect.

Bitbucket Project Triggers

According to some sources, there should also be a bitbucketPush
trigger that behaves similarly to the githubPush trigger. However,
at the time of this writing, this doesn’t seem to be supported. If you
need this functionality, you may want to try it in your pipeline to
see if it is valid, and/or consult the latest documentation for the Bit-
bucket Source plugin.

Poll SCM

This option is like the “Build periodically” option discussed earlier. In fact, it uses the
same cron-like syntax as that option. The difference is that instead of telling Jenkins
when to start a build, we are telling it when to check the repository for changes. See
“Cron syntax” on page 233 for details on the syntax.

This choice has an additional option to “Ignore post-commit hooks.” Basically, this
tells Jenkins to not start activities based on signals from hooks after changes are
made, but only to respond to changes in the SCM. This prevents double-triggering
operations.

Polling in the pipeline. Once more, we use the properties step and cron specification
for this option. Here’s the syntax for telling the pipeline to check every 15 minutes for
changes in the repository, along with the option to ignore the post-commit hooks:

properties([pipelineTriggers
([pollscm(true,
"H/15 * = = *HT)])

Up next is the Build Environment section.

Build Environment

This section allows you to specify certain global actions and integration settings for
the project. There can be many of these, depending on which plugins you have
installed. (For example, if you have the Artifactory plugin installed, you’ll have Arti-
factory integration items.) We'll cover some common ones here.

Common Project Options | 267

Delete workspace before build starts

This one is pretty self-explanatory. The workspace is removed before the build
begins.

Deleting workspaces in a pipeline. The Jenkins pipeline DSL provides the deleteDir
step to clean a directory out of the workspace and also the cleanls (clean workspace)
step to delete a workspace. These steps are covered in more detail in Chapter 11.

Provide configuration files

This option allows you to select files of a certain type and copy them to all your
nodes, as well as providing a way to edit them through the Jenkins Ul Some global
setup is required first.

Web Examples

For whatever reasons, at least at the time of this writing, many of
the examples and some of the documentation provided online for

~ the Config File Provider plugin (for use in both Freestyle and Pipe-
line jobs) is incorrect and/or out of date. Be aware that you may not
be able to completely rely on these resources.

Under Manage Jenkins, there is a “Managed files” menu item to select to start the
process (Figure 8-19).

‘ Manage Users

Figure 8-19. The global “Managed files” item

From there, you can select the type of file you want to include and also get an ID to
work with it (Figure 8-20).

Config File IDs

Jenkins will automatically generate a default ID for your config file
when you create it. However, it is a long hexadecimal string. If you
prefer to have a more user-friendly ID, you can edit it when you are
setting up your file on the Type screen and type in whatever name
you want. You cannot edit it later.

268 | Chapter8: Understanding Project Types

#. Manage Jorkms

Add new Config

Maven bock hains xmi

Semple XML fie
ooy fle

Custom file

Fxbended Frmadl Publisher Selty Tempists

By configumtion

Figure 8-20. Choosing the managed file type (note that the ID is automatically filled in
at the bottom)

After you click Submit here, you move on to filling in the file’s actual content
(Figure 8-21).

Jenkins

oo

W Contig Fia &+« Edit Configuration File

Thee comnfiguration

471 882 ab3-A63c andd UabOme1BED

Figure 8-21. Supplying content for the managed file

Once you are done with that, you'll have a screen where you can edit or delete your
new file (Figure 8-22). Note that there is also a menu item to add additional config
files in the menu on the left.

Common Project Options | 269

. cfg | Config File Management

Figure 8-22. Options for working with the config file

Now that you've completed the global setup for this, you can use the file in your
project. After selecting the “Provide Configuration files” option in the project, youre
presented with a dialog like the one in Figure 8-23.

' Provide Configuration Ses

MY _CUSTOM _FILE

Fepiace Tokens [i

Add fike

Figure 8-23. Selecting config files in the project

The File field allows you to select a file that you have previously configured globally
as we just described.

The Target field allows you to specify where the file should be created on a node. If
this is left blank, then the file will be created in a temporary location.

The Variable field allows you to define an environment variable name to reference the
file in job steps. This also gives you a handle to get to the file in the temporary loca-
tion if the Target field was left blank.

Finally, the Replace Tokens option replaces environment variables set by Jenkins and
specified in your configuration file with their values. (This relies on the Token Macro
plugin.) The syntax to use in your config files for token replacement is:

S${ENV, var="<variable-name>"}

where <variable-name> is replaced with the name of the variable you want to get the
value of (such as JOB_NAME).

270 | Chapter8: Understanding Project Types

Config Files and Credentials

Using some types of config files, such as ones associated with
Maven, may require additional credential setup. See the Config File
Provider plugin page for more details.

Managing configuration filesin a pipeline. There is a configFileProvider step that you
can use in your pipeline code. This is another block step, meaning that you invoke the
step with some context, and it provides a closure in which you execute other code. So,
for example, if you were using this functionality to access a properties file or custom
XML file, you would first configure the file globally (as described previously). Then,
in your pipeline code, you would invoke the step, passing in the file ID and related
information. Then, within the step block, you could invoke other pipeline commands
that use the properties file, the XML file, or their data.

For example, suppose we have a config file set up as shown in Figure 8-24.

Jenkins Managed tiles
#. Manage Jenkins

s Config Files | ‘ﬁ Edit Configuration File

Add a new Config
The configuration

e my-groovy-script

Mams Groovy Config|
Comment

Content
println ${ENV, var="J0B_NAME"}

Figure 8-24. Example Groovy config file

We could then add a step in our pipeline like the following to use it:

configFileProvider(
[configFile('my-groovy-script',
"MY_GROOVY_SCRIPT',

true)]) {
sh "cat ${MY_GROOVY_SCRIPT}"

3

Notice the syntax here. We first have the configFile parameter, which takes argu-
ments that correspond to our Freestyle ones:

Common Project Options | 271

https://plugins.jenkins.io/config-file-provider
https://plugins.jenkins.io/config-file-provider

fileld
This is the file ID that was set up when you globally configured the file.

Meaningful File Identifiers

As mentioned previously, you can change the default hex
string ID that Jenkins generates for your config file at the time
you create it (on the Type screen). It is recommended that you
do this for files that will be used in pipeline projects, since the
configFileProvider step requires the files ID string be
passed in to the fileId parameter to identify the file.

variable
This is a variable you can use to access the file itself on the node.

replaceTokens
If set to true, this tells Jenkins to replace known environment variables with their
actual values in the configuration file. (See the preceding section on Freestyle
usage for syntax.)

Running this step in the pipeline would yield results like the following:

[Pipeline] node
Running on worker_node2 in
/home/ jenkins2/worker_node2/workspace/config-filel
[Pipeline] {
[Pipeline] configFileProvider
provisioning config files...
copy managed file [GroovyConfig] to
file:/home/jenkins2/worker_node2/workspace/
config-file1@tmp/confi1g2453863098810806031tmp
[Pipeline] {
[Pipeline] sh
[config-filel] Running shell script
+ cat /home/jenkins2/worker_node2/workspace/
config-filel@tmp/confi1g2453863098810806031tmp
println config-filel
[Pipeline] }
Deleting 1 temporary files
[Pipeline] // configFileProvider
[Pipeline] }
[Pipeline] // node
[Pipeline] End of Pipeline
Finished: SUCCESS

Note that when we ran the shell cat command in the block, we used the variable we
defined in the step’s invocation. And when the contents of the file were printed out,
because we have the replaceTokens value set to true, the environment variable

272 | Chapter8: Understanding Project Types

string inside the configuration file was replaced with the value of the environment
variable in the output—in this case, the job name.

One other point about this step is that multiple config files can be specified in the step
using an array syntax, as shown in the following example:

configFileProvider(
[configFile('my-custom-file',
'MY_CUSTOM_FILE',
true),
configFile('my-groovy-script',
'MY_GROOVY_SCRIPT',

true)]) {
sh "cat ${MY_GROOVY_SCRIPT}"

3

Abort the build if it's stuck

This setting allows you to specify a timeout strategy and related values to stop the
build if it appears to be taking too long. The main parameters are a timeout value in
minutes and the choice of strategy to use for determining when a build is stuck.

As defined in the help for the setting, the following strategies are available:

Absolute
Abort the build based on a fixed timeout.

Deadline
Abort the build based on a deadline time specified in HH:MM:SS or HH:MM
(24-hour time) format.

Elastic
Define the time to wait before killing the build as a percentage of the mean of the
duration of the last #n successful builds.

Likely stuck
Abort the build when the job has taken many times longer than previous runs.

No Activity
Trigger a timeout when the specified number of seconds have passed since the
last log output.

Additionally, we can define an environment variable that is automatically filled in
with the timeout value (in milliseconds) and can be referenced in our jobs. And
finally, we can define what actions Jenkins should take when the timeout is hit.
Options include failing the build, aborting the build, and writing information to the
run’s description. For the information that goes in the description, the special value
“{0}” will be filled in with the timeout in minutes.

Common Project Options | 273

As an example, suppose we have a job where the properties are configured like in
Figure 8-25.

' Abort the buikd # it's stuck

Time-out strategy Ansokite i ©

Timeout mnutes 3| =

Time-out vanabie MY_TIMEOQUT

Time-out actions En -«

Writing the bulld description L

Description | Siopping the buid after {0} minutes L

[Plain texd] Preview

Fail the bulld Lo

Add sction ¥

Figure 8-25. Configuring timeout information for a job

Here we are telling Jenkins to do an absolute timeout after the job has been running
for three minutes. We've defined an environment variable named MY_TIMEOUT that we
can reference in our job, and we've added some actions to happen after the timeout
occurs. We will be writing the string “Stopping the build after {0} minutes” (using the
special variable) and then failing the build.

An extremely simple job to test this could be a shell command that executes some-
thing like:

echo $MY_TIMEOUT
sleep 4m

When this runs, and the timeout occurs, the last part of the console log will be:

+ echo 180000

180000

+ sleep 4m

Build timed out (after 3 minutes). Marking the build as failed.
Build was aborted

Finished: FAILURE

And the latest run will have the description we set in it (Figure 8-26).

274 | Chapter 8: Understanding Project Types

&% Build History trend —

LB B

)

)

|
|
0
U

Figure 8-26. Custom timeout message written to description

Timing out builds in a pipeline. The pipeline DSL has a simple timeout step that pro-
vides similar functionality. This step is a block step, meaning it wraps around a set of
code. It takes a default parameter of a number of minutes to wait for the code in the
block to time out. If you want to use a different unit than minutes, you need to spec-
ify that as an additional parameter. A simple example is shown here (see Chapter 3
for more explanation and related examples):

timeout(1, 'HOURS ") {
// block of code

Add timestamps to console output

As the name implies, this setting will print timestamps in the console log as parts of
your job are executed. An example of the default output is shown in Figure 8-27.

— Changes

:39 Started by user Jenkins 2 user

39 Building remotely on worker node? (east coast
space/freestyle2

39 = git rev-parse --is-inside-work-tree # time
:39 Fetching changes from the remote Git reposito
:38 = git config remote.origin.url git@diyvb2:/h
39 Fetching upstream changes from git@diyvb2:/ho
39 = git --wversion # timeout=18

39 using GIT_ASKPASS to set credentials

B console Output

View as plain text
= Edit Buikd Information
(& Delete Buiks

) Open Blue Ocean

Q}GnBuch:l.:\ fi.‘—i:;:?- = git fetch --tags --progress git@diyvb2:/ho
D Mo Tags 22:24:39 > git rev-parse refs/remotes/origin/master™{

22:24:39 > git rev-parse refs/remotes/origin/origin/m
48 Previous Build 22:24:39 Checking out Revision fef356a842cB8a98212cB88c92

39 Commit message: "fix syntax”®

39 = git config core.sparsecheckout # timeout=1
Timestamps View as plain text : 39 = git checkout -T Tef356a42cBa98212cBBc92d3d
48 > git rev-list fef356a42cB8a98212c88c92d3d3ca
48 [freestyle2] $ /bin/sh -xe /tmp/jenkins267115
» Use browser timezone 22: 49 + echo 1886880

22:24:40 180000

22:24:40 + sleep 4m

None 22:27:40 Bulld timed out (after 3 minutes). Marking th

®! System clock time

Elapsed time

Figure 8-27. Console output with timestamps

Note that this option also adds a dialog on the console log screen with controls that
allow you to modify the timestamps to show elapsed time (instead of clock time) or
even turn off displaying the timestamps.

Common Project Options | 275

Adding timestamps to a pipeline. The timestamps step in the pipeline provides similar
functionality. This is another block step that wraps around a block of code and gen-
eres timestamps in the console output for that block. The syntax is straightforward:

timestamps {
// block of code
}

Use secret text(s) or files(s)

This option will be present if you have installed the Credentials Binding plugin. Acti-
vating this option allows you to add bindings in your Jenkins jobs between creden-
tials defined in Jenkins and environment variables. Basically, you select the credential
(one that is already defined in Jenkins) and then specify an environment variable
name for it. Then you can use that environment variable in your job in place of the
sensitive information from the credentials. When you execute the build, the environ-
ment variable(s) will be instantiated with the actual values of the credentials.

Checking the box brings up another control that allows you to select the type of cre-
dential to add, the actual credential to use, and the environment variable that will be
used in the job in place of it. See Figure 8-28 for an example.

» Use secret text(s) or file (s)
Bindings

Username and password (conjoined)

Variable MY_ACCESS_CREDS
Credentials (e Specific credentials Parameter expression
admin/*=="** iUsemame and password credentials to access mysgl) e o Add~
Add ¥

With Ant

Figure 8-28. Setting up credential bindings

The With Ant option is for working with Apache Ant (doing setup, annotating Ant
output, etc.).

Using credentials in a pipeline. A corresponding withCredentials block step exists for
pipeline use. The matching step for the preceding setup in a pipeline would be:

withCredentials([usernameColonPassword(
'mysql-access', '"MY_ACCESS_CREDS") 1) {
// block of code in which you can use the variable

276 | Chapter 8: Understanding Project Types

https://jenkins.io/doc/pipeline/steps/credentials-binding/

There is also a withAnt block step that corresponds to that option. See Chapter 5 for
more details on using credentials in Jenkins and in pipelines.

Other build environment options

Depending on what other plugins you have installed in Jenkins and what other appli-
cations you are running on your system, you may have more environment options
here. For example, if you are using the Artifactory plugin, you may have an option
here to configure Artifactory integration with Ant, Gradle, or Maven.

Because of the number of possibilities we won't try to cover all of them here, but you
can generally find out the details you need by clicking on the help buttons next to the
options and/or going to the plugin’s web page.

As far as corresponding pipeline steps, many are covered in related chapters of this
book.

Build

The Build section of the configuration is where the main logic for your job goes. For
many of the traditional job types that Jenkins supports, this is where the projects
most extensively differentiate from one another—from the wide-open Freestyle
project to the more specialized ones like Maven and Ivy. Depending on the type of
project and the set of plugins and other applications you are using, you may have
many different choices on this page; rather than attempting to detail all of them here,
we will cover the most significant parts of each respective project type in later sec-
tions. For remaining items not covered in the project-specific sections in the chapter,
refer to the help associated with each step (available via the blue help buttons as well
as the plugins’ web pages).

For corresponding pipeline functionality, see the other chapters of this book.

Post-Build Actions

The final configuration section allows us to select specific post-build actions for a job.
These are actions that are always run after the build finishes—in some cases whether
successfully or not.

Again, there are too many options based on plugins and integrations to cover here.
See the help for a particular option or the plugin’s web page to find out more about a
particular available action.

Common Project Options | 277

Post-build actions in a pipeline

Post-build actions are not built in for Scripted Pipelines. Chapter 3 describes how you
can use the try-catch Java/Groovy construct to create a workflow with similar
actions.

For Declarative Pipelines, there is a specific post section that can be put in the pipe-
line to provide this functionality. See Chapter 7 for more information.

Types of Projects

Now that we have a basic understanding of the sections and options that are common
to many of the Jenkins projects, we'll look at how those projects differ from one
another.

The differentiation between project types can be based on one or multiple criteria,
including:

 Open configuration to do any task: Freestyle, Pipeline projects
o Specialization for an application: Maven, Ivy projects

o Specialization for an advanced or challenging use case: Multiconfiguration,
External Job projects

« Organizational purposes: Folder, Multibranch Pipeline, GitHub Organization,
Bitbucket Team/Project projects

 Automated configuration and building: Multibranch Pipeline, GitHub Organiza-
tion, Bitbucket Team/Project projects

In the following sections, we'll briefly cover the intent and main points for each of the
basic set of Jenkins project types. Keep in mind that there are more aspects and
details than we can cover here. Also, for many, the previous discussion of common
options accounts for a substantial amount of the project’s configuration.

Freestyle Projects

Freestyle projects are the traditional working base for most Jenkins jobs. The name
“Freestyle” refers to the relatively open way that these projects can be constructed to
do many different tasks. Prior to Pipeline projects, Freestyle projects were considered
the most flexible. They were also considered the easiest to set up, at least for individ-
ual projects.

As pointed out at the start of the chapter, for the traditional Jenkins project types,
what differentiated them mostly was the Build section. For Freestyle projects, proba-
bly the most common item in the Build section is a call to the shell. The Build section
provides options to execute a shell call as well as a Windows batch command.

278 | Chapter 8: Understanding Project Types

These steps are pretty straightforward; just type the command into the dialog box
after selecting the type of shell step you want.

Pipeline Steps Like Freestyle

The pipeline DSL provides similar steps—one for Unix-style shells
(sh) and one for Windows-style shells (bat). The sh and bat steps
are described in detail in Chapter 11.

The Maven Project Type

In addition to the Freestyle project type, Jenkins also offers some project types cus-
tomized for different applications. Probably the best-known legacy one is the Maven

project type.

The Maven project type is intended to simplify some common tasks, such as trigger-
ing downstream dependency jobs, deploying artifacts to a Maven repo, optionally
rebuilding only changed modules, and breaking out test results by module.

This type of project has a few additional options, such as a build trigger that you can
set up to have the project build if dependencies are built on the same system
(Figure 8-29).

Build Triggers

" Build whenever a SNAPSHOT dependency is built

Schedule build when some upstream has no successful builds

Figure 8-29. Maven project build trigger based on dependencies

Some traditional non-Maven build steps are moved to sections named Pre Steps
(Figure 8-30) and Post Steps. (The same set of steps appears in both.)

Types of Projects | 279

Pre Steps

Add pre-build step ~

Conditional step (single)

Condtonal steps (multiple)
Execute SonarQube Scanner
Execute Windows batch command
Execute shell
File Operations
GitHub PR: sat ‘panding’ status
Irvoke Ant
| Irvokue Gradle script
Invoke top-level Maven targets
JIRA: Add rel =R t 1o busild)

JIRA: Create new version
JIRA: Issue custom field updater
JIRA: Mark a version as Released

= |

Figure 8-30. Pre-build steps defined for a Maven project

As seen in Figure 8-31, these Pre and Post Steps sections “sandwich” the main build
area, where you can enter the root POM filename (if different from “pom.xml”), the
Maven goals to build, and any Maven options (via the Advanced button).

Pre Steps

Build
Root FOM pom.xmi Lz
Goals and options compile package Ll
Adwanced
Post Steps
Run only if build succeeds Run only if build succeeds or is unstable (=) Run regardiess of buid result

Should e past buikd stees run anky ke successhl uikds. et

Add post build step *

Figure 8-31. Maven project primary options

Clicking the Advanced button reveals a number of other options you can set for your
build (Figure 8-32).

280 | Chapter8: Understanding Project Types

Build
Root POM pomml

Goals and oplons compsle package
MAVEN_OPTS .|

L incremental buil - only build changed modules

|| Dimabde automasc arfiact archiving

L Disabie ste arftact

[Drsaie ' and arttacss

(W Enabie mggenng of sownsream proecs
I Bioch downsaam ygger when buidng

Build modules in paraliel

st ® o000 8 28

Use private Maven reposion

L Rescive D during F

®

Run Headless
Process Plugens durng Pom parsng
[Use custom workspace
Maven Vakidaton Level | DEFALLT B

Setings fie Use cotaull Mawen semnas H ®

m ’—IM = claag it s kel et ;I e
Figure 8-32. Maven project advanced options

After a successful build, Jenkins can do the archiving of your Maven artifacts for you
(Figure 8-33).

[INFO] Downloaded: : -
/2.8.1/plexus-archiver-2.8.1.jar (140 KB at 139.5 KB/sec)

[INFO] Downloaded: https://repo.maven.apache.org/maven?/com/google/guava/guava/18,.8/guava-
18.0.jar (2204 KB at 2057.3 KB/sec)

[INFO]

[INFO] --- maven-source-plugin:3.08.1:jar-no-fork (default) @ MavenTestApp ---

[INFO] Building jar: /home/jenkins2/worker node2/workspace/mavenl/target/MavenTestApp-
sources.jar

507175

[INFO] BUILD SUCCESS

B L R e e

[INFO] Total time: 27.346 s

[INFO] Finished at: 2017-89-25T19:34:53-05:00

[INFO] Final Memory: 43M/177M

(L] R T e R

[JENKINS] Archiving /home/jenkins2/worker node2/workspace/mavenl/pom.xml to
org.demo.mavenapp/MavenTestApp/1.0-SNAPSHOT /MavenTestApp-1.0-SNAPSHOT . pom

[JENKINS] Archiving /home/jenkins2/worker_node2/workspace/mavenl/target/MavenTestApp.jar to
org.demo.mavenapp/MavenTestApp/1.08-SNAPSHOT/MavenTestApp-1.0-SNAPSHOT. jar

[JENKINS] Archiving /home/jenkins2/worker node2/workspace/mavenl/target/MavenTestApp-sources.jar
to org.demo.mavenapp/MavenTestApp/1.0-SNAPSHOT/MavenTestApp-1.0-SNAPSHOT-sources. jar
channel stopped

Finished: SUCCESS

Figure 8-33. Automatically archiving artifacts from a Maven build

Types of Projects | 281

And within the job output, you can easily get to the artifacts and even redeploy them
if needed: simply click on the “modules” item in the lefthand menu on the build sta-
tus page and drill down to get to the various artifacts/modules (Figure 8-34).

Module MavenTestApp

Full project name: maven1./org demo mavenapp Maven TestApp

B -

ule — L

s
6

1
£

£

£

pen Blue Ocean = & { Chano
- " Beceni Changes

Buasikd History trend — Permalinks

. « Last stabie b [#4)_5 men 46 sec Ao

Figure 8-34. Looking at modules after a build

The Pipeline Project Type

Pipeline projects are the main focus of this book, so we won't go into too much detail
on them here. The simple way to define a Pipeline project is as a Jenkins project type
where the steps and logic are specified in a structured Groovy script instead of in a
web form. That script can be structured in a declarative or scripted form. It can also

be entered as part of a Jenkins Pipeline project or stored externally in a file named
Jenkinsfile.

Since our focus here is on the configuration aspects of the various project types, it is
worth briefly calling out some of the ways that the Pipeline project configuration
overlaps with the actual pipeline scripts themselves.

On the Pipeline project configuration page, the area where you can type in the pipe-
line script is located in a dedicated tab/section named Pipeline (just like the General,
Build Triggers, and other tabs/sections).

At the top of this section, there is a configurable option—the Definition field. The
choices here are either “Pipeline script” or “Pipeline script from SCM” (Figure 8-35).

Pipeline

Figure 8-35. Pipeline definition option

282 | (Chapter8: Understanding Project Types

The “Pipeline script” option represents the default: defining the script in the text
entry box below the Definition field. The option that appears underneath the text
entry box—“Use Groovy Sandbox”—is explained in Chapter 3.

If you instead choose the “Pipeline script from SCM” option, this will allow you to
specify the location in a source management system of a Jenkinsfile to use with this
job instead of entering the script in the text entry area.

Once you have selected the “Pipeline script from SCM” option, you'll be presented
with additional fields to indicate where to get the script from. These fields are the typ-
ical SCM type of fields for a location, revision, etc. (see Figure 8-36).

v

Pipeline

Advanced

Add Repositary

Add Branch

Figure 8-36. Completing the specification to use a pipeline script from an SCM instead
of entering it directly

While the Script Path field is editable here, unless you have a particular reason to use
something else, the recommended approach is to stay with the Jenkinsfile in the root
of the project.

The “Lightweight checkout” option refers to telling the SCM plugin to try to check
out only the Jenkinsfile initially instead of the entire project. This is an efficiency to
avoid checking out the entire project twice—once to get the Jenkinsfile and once
when the Jenkinsfile executes the checkout scm statement. Note that this option may
not be supported by all SCM plugins and so may not appear in all cases.

Types of Projects | 283

Read-Only Pipeline Definition Options

There is at least one other value you may see in the Definition field:
“Pipeline from multibranch configuration” (Figure 8-37). This
selection applies for the Multibranch Pipeline, GitHub Organiza-
tion, and Bitbucket Team/Project types of projects, discussed later
in this chapter.

While this field appears to be selectable when drilling into the con-
figuration for those types of projects, it is automatically set and
there is, by design, no way to save changes to it.

Pipeline

Figure 8-37. Pipeline definition field for element in a multibranch type of
project

One other interaction to be aware of between the Jenkins Pipeline project configura-
tion page and the script that defines your Jenkins pipeline has to do with setting
options on the Jenkins configuration screen. In many cases, the options can be set in
the configuration web interface and will define behavior for your script even though
there are no lines explicitly defining or setting those options in your script.

As an example, you can select the “This project is parameterized” option on the con-
figuration web page and define parameters through that interface. Those parameters
will then be accessible in the pipeline script you define in the Pipeline section.

This behavior is both convenient and inconvenient. It is convenient while you are
running your script within the context of a Pipeline project in the Jenkins application
itself; you don't have to add the code in your pipeline to define those parameters. It is
inconvenient if you want to use your pipeline script as a Jenkinsfile, separate from the
Jenkins application itself. Then you need to go back and update the code in the script
to explicitly define the parameters.

Chapter 3 discusses this particular interaction with parameters in more detail, but it
is good to be aware of the interdependence between options defined only in the Jen-
kins application for a Pipeline project’s configuration, and how those options are ref-
erenced in the pipeline script itself. A best-practice approach is to define all such
options and functionality in the script.

The External Job Project Type

This type of job is intended to allow you to easily monitor an external job run via a
Jenkins process. Unfortunately, the way to go about this is not clearly documented
and certainly not obvious. We'll walk through the basic steps here.

284 | Chapter8: Understanding Project Types

When you create an External Job project, youre presented with a very simple job
configuration—basically all it needs is a name (Figure 8-38).

Goneral

[

Figure 8-38. External Job config

The idea here is that the name will map to an external job run in a process outside of
the Jenkins GUI. Of course, this assumes that you have an external job you want to
monitor. For an extremely simple example, suppose we have a small file called list.sh
that just does a directory listing (with the s -latr command).

To use Jenkins to monitor this, you'll need a set of JARs in place to support the exter-
nal monitoring process.

On some Debian systems, you may be able to issue standard commands like:

sudo apt-get install jenkins-external-tool-monitor

But if that doesn’'t work, then you’ll need to extract out individual JARs from the Jen-
kins WAR file. To do this, go to the system where you want to run the external job,
get the jenkins.war file, and extract the following JARs from the WEB-INF\Lib folder
into a directory:

o jenkins-core-* jar
o remoting-*.jar
o ant-*jar
o commons-io-*.jar
o commons-lang-* jar
o jna-posix-*.jar
o xstream-*.jar
With this part of the setup done, you can create a simple wrapper file to run your

command. Basically, you just need two lines. The first is to set the location of your
JENKINS_HOME variable (if not already set in the environment).

Types of Projects | 285

The second line is the line that calls java using the WAR to run your command. It
has the following syntax:

java -jar jenkins-core-<version-#>.jar <jenkins project names\
<shell executable> <command or file to monitor>

So, our command to run the external job and sync the results back to Jenkins could
look like this:

export JENKINS_HOME=http://localhost:8080

java -jar jenkins-core-2.46.2.jar externl sh list.sh
Here, extern1 is the job name we created in Jenkins and list.sh is our command to
run. The setting of JENKINS_HOME and the matching job name are what make the con-
nection with Jenkins. sh is just our system shell executable. You could use cmd and
a.bat file on Windows.

Assume we put these lines into an executable file named demo.sh. If we then execute
demo.sh, it will run list.sh and send the results back to the Jenkins external job. The
job runs then show up in the output of our external monitoring job (as shown in Fig-
ures 8-39 and 8-40).

External Job extern1i

Status

Permalinks

e

|#
W]
(0
(i}
M
17
T
(0
(i}
i
1
It

Figure 8-39. External monitoring job output

286 | Chapter8: Understanding Project Types

) Console Output

Figure 8-40. External monitor console output

Java Issues Running External Jobs

With recent versions of the external job functionality, you may get
\ an error like this when you try to invoke java to run your external
job:

Exception in thread "main"
java.lang.NoClassDefFoundError:
javax/servlet/ServletContextListener
at java.lang.ClassLoader.defineClass1(Native Method)
at java.lang.ClassLoader.defineClass
(ClassLoader.java:763)
at java.security.SecureClassLoader.defineClass
(SecureClassLoader.java:142)
If you hit this, there is a kludge you can use to get around it: find
the javax.servlet-api-<version number>.jar file, and copy it into
your JRE’s lib/ext subdirectory. This is not elegant, but it seems to
work.

The Multiconfiguration Project Type

This type of project is designed to simplify running a set of project builds that only
differ in terms of parameters. For example, suppose you needed to run a test build
against a set of five different browsers (IE, Firefox, Safari, etc.) and across a set of five
different operating systems (Debian, Centos, Windows, etc.).

Without the Multiconfiguration project type, you would need 25 jobs (5 browsers tes-
ted against each of 5 operating systems) to accomplish this. With the Multiconfigura-
tion type, you only need one job that does the work of executing the various possible
combinations for you.

The way this works is that you define your base job to do whatever you need to do
based on parameters that represent each of the different “axes” you are using. For the

Types of Projects | 287

example just mentioned, one axis would be the set of browsers and the second would
be the set of operating systems.

Like the other project types we've discussed, the Multiconfiguration project has the
common setup, environment, build, post-processing, and other configuration. sec-
tions. But it also includes a separate new Configuration Matrix section. This is where
you define the axes that you want to include in the job. There are three types of axes
that you can create. Each one takes a name that will become an environment variable
(which you can use in the build step) and a definition. The types of axes that can be
added to the Configuration Matrix are:

Slaves
This type of axis definition allows you to specify either a node’s name or a label
on a node to include in the set of nodes to iterate over. (As discussed elsewhere in
the book, a label is simply a tag or identifying name that we can attach to one or
more nodes. Then we can select one or multiple nodes by specifying a label that
they have.)

Label expression
This type of axis definition allows you to use advanced syntax to choose which
set of nodes to include. For example, you can combine node labels and operators,
as in label1&&label2, to indicate that only a node having both labels is eligible
to be included.

User-defined axis
This type allows you to specify a set of items as values to iterate over in building
the set of jobs.

Multiconfiguration example

Let’s consider a use case for this type of project. We have some jobs to build to create
web pages for a set of company job families in each of several different regions (where
each region has a dedicated node).

In our setup, we have three worker nodes available, with various labels, defined like as
in Table 8-1.

Table 8-1. Available worker nodes

Name Labels

worker_nodel northwest open regionil
worker_node2 northeast open region2

worker_node3 southwest restricted region3

The regions (and thus the one-to-one mapping to the nodes) make up one of the axes
our job will use. For the other, we will use a set of company job families defined as

288 | Chapter 8: Understanding Project Types

development, infrastructure, management, and testing. We can now define the
two axes in our Multiconfiguration project’s configuration as shown in Figure 8-41.

Configuration Matrix

User-defined Axia
Name job_tamity

L]

Slaves &5

Node/Label | = abels L7

~ norhwest (null)

Add axin +

Figure 8-41. Defining the axes in the project’s configuration

Note that within the Slaves list, we can select systems based on Labels or Individual
Nodes. The latter term just means selecting them by their name (e.g., worker_node1).

With our axes configured, we can set up our build step to use them. The name sup-
plied when configuring each axis becomes an environment variable we can reference
in our build step. For example, if we wanted to print out a message for each combina-
tion when the build ran, we could use a simple echo statement like the one in
Figure 8-42 in our build step.

Build

Execute shell

Command echo * ---- °
echo "Executing configuration $job family for Sregion region
echo ™ ---- °

Figure 8-42. Build step using names of axes via environment variables

We can then run our build and Jenkins will automatically create the appropriate
matrix of jobs to run based on the allowed combinations of our axes (Figure 8-43).

Types of Projects | 289

€) @ | localhost:8080/jot 80%

Jenkins

Jenkins multil

Back to Das i i
ack to Dashboard Project multi1

. Status
== Changes

BE workspace
Configuration Matrix northeast northwest southwest

) Buiki Now development = <& e
@ Delete Multi-configuration project infrastructure - - -
% Cor Tigure management - - -
‘7 Favorite —— — <@ <@
Move

Permalinks
- COpcn Bluc Occan

28 min ago
6 hr 31 min ago

Build History

H
2

»

@ s Con D6 2017 12-07 PM =

Figure 8-43. Job matrix based on axes

We can drill into any of the combinations by clicking on the blue ball in the matrix
for the appropriate row and column. Figure 8-44 shows one example.

& uUp - =
- Configuration management,northwest

. Status

= Changes
BR workspace G Wiorksnace
- Open Blue Ocean —

Bulld History rend Permalinks
@
>
£ BSS for ail £) BSS for faiures

Figure 8-44. Drilling into results for a particular job

From there, we can also drill into the console output for a particular run of a job in
the matrix, as shown in Figure 8-45.

290 | Chapter8: Understanding Project Types

§ Back to Project _
& Console Output

Started by upstream project “multil® build number 5
Console Output originally caused by:

View as

piain text

el {regionl northwest) in workspace /h
orthwest
mp/jenkins 10SE84038A333431365 sh

= Edit Buiki Infor anages T/
/bingsh -

(S Delete Buik

mp OPcn Biue Ocean o Executing configuration management for northwest region
ng configuration management Tor northwest region.
& Provious Buiki . 4

Figure 8-45. Console output for a particular job in the multiconfiguration matrix

Note that you can have more than two axes, though at some point, having more axes
may get prohibitive in terms of trying to navigate through the output.

The Matrix Configuration section also includes a few additional options that may be
helpful:

Combination filter
The default for a Multiconfiguration project is for Jenkins to build all combina-
tions of values in the defined axes. If this is too many, or you need to limit which
ones it builds, you can use this area to define filters to limit which combinations
are built. An example might be:

1(job_family=="management" && region=="northwest")

to prevent running the job for management in the Northwest region. Note the
use of the double equals sign here to check for equality. See the help for the step
for more examples.

Run each configuration sequentially
This option tells Jenkins to build each possible combination one at a time (not in
parallel). This might be needed to limit multiple jobs stepping on each other if
using a shared resource, for example.

Execute touchstone builds first
This option allows you to specify a set of builds to run first as a sort of “sanity
check” Enabling this option brings up two additional fields. The first is for a
combination filter (as discussed previously) to define which builds to run first.
The second is to select the condition that those builds must match in order for
the rest of the processing to continue (see Figure 8-46). Your choices for the sec-
ond field are Stable or Unstable.

Types of Projects | 291

1 Execute touchstone builds Tirst
Faer job_tamBy——testing’ A& reglon=="nomhwest|
Requind maur Stabke -

Exgoute e rest of e combinatons anly # e uchsione builds has (a1 lsast) e selooied rosul.

Figure 8-46. Configuring touchstone builds

With the touchstone builds in place, the overall console output for the job would look
something like Figure 8-47.

) Console Output

Started by user Jenkins Admin

Building remotely on worker nodel (regionl northwest open) in worksg
Triggering multil = testing.northwest

multil » testing.northwest completed with result SUCCESS
Triggering multil = management,northeast

Triggering multil = infrastructure,northeast

Triggering multil = testing, southwest

Triggering multil = management, southwest

Triggering multil = development,northeast

Triggering multil = development,northwest

Triggering multil = infrastructure northwest

Triggering multil = development, southwest

Triggering multil = management,northwest

Triggering multil infrastructure, southwest

Trlggellng multil = testing,northeast

multil management, northeast completed with result SUCCESS
multil » infrastructure,northeast completed with result SUCCESS
multil testing, southwest completed with result SUCCESS

multil management , southwest completed with result SUCCESS
multil =» development.northeast completed with result SUCCESS
multil » development,northwest completed with result SUCCESS
multil » infrastructure,northwest completed with result SUCCESS
multil = development,southwest completed with result SUCCESS
multil » management. northwest completed with result SUCCESS
multil = infrastructure, southwest completed with result SUCCESS
multil = testing.northeast completed with result SUCCESS
Finished: SUCCESS

Figure 8-47. Overall console output for a Multiconfiguration job (with touchstone
builds)

Notice the various links in the console output that allow you to drill down to the out-
put for various combination builds.

Pipeline compatibility

There is no direct correlation to the Multiconfiguration project encapsulated into a
single pipeline step. However, if you are working in a Scripted Pipeline, you can use
Groovy looping constructs to iterate across defined “axes” and create tasks that can
then be executed in parallel. Based on of a CloudBees example, here’s corresponding
pipeline code for the example in the previous section:

def axisRegions = ["northwest","northeast","southwest"]
def axisJobFamilies = ["developers","infrastructure",

292 | Chapter8: Understanding Project Types

"management","testing"]
def myTasks = [:]

for(int 1=0; i< axisRegions.size(); i++) {
def axisRegionSetting = axisRegions[i]
for(int j=0; j< axisJobFamilies.size(); j++) {
def axisJobFamilySetting = axisJobFamilies[j]
myTasks["${axisRegionSetting}/${axisJobFamilySetting}"] = {
node(axisRegionSetting) {
println "Running task on job family ${axisJobFamilySetting}
for region ${axisRegionSetting}"

}

stage ("BuildMatrix") {
parallel myTasks
}

For more detail on how the parallel step works, see Chapter 3.

lvy Projects

In an Ivy project, Jenkins uses Ivy-related files to provide simplified build operations
and additional functionality. If youre familiar with Ivy, the setup is pretty straightfor-
ward. You have the usual common options and sections we covered at the start of the
chapter, and then you have an “Ivy Module Configuration” section where you can
base your Ivy build off of the ivy.xml, build.xml, and other files (Figure 8-48).

Ivy Module Configuration

vy =i files pory. 3l

Advarveed. ..
Relative path 1o descnptor from module oot | ky.mi L
vy branch
Ivy settings [2]
vy settings property tiles L)
Settings file please select -
Bl with Ant Buider -

Targets | jar publish

Advmnced .

Achemnced

Figure 8-48. Basic configuration options

For fields that need locations, these are relative to the workspace youre using. For
most of these fields, if you have a standard structure and straightforward build, you
can just take the defaults. Of course, you'll need to fill in the actual targets.

Types of Projects | 293

Note that there are two Advanced buttons right below the Targets field. The first (top)

one expands to advanced options for the “Build with”

ify an alternatively named build file.

section, such as a place to spec-

The second (bottom) Advanced button expands into more options for the Ivy Mod-
ule Configuration section in general, including one to build modules as separate jobs.

Figure 8-49 shows both sets of expanded options.

Build with Ant Bullder
Targets jar pubiish

Buikd File

Properties

Java Options

Incremental buikd - only build changed modules
~ Buss modules as sepamte jobs
) Use pammeters from upstream Dulkds

Use custom workspace

=

Figure 8-49. Advanced configuration options

When you run a build, Jenkins will execute the targets and produce the appropriate
artifacts, as shown by the console output in Figure 8-50.

Jenkins = iyl 26
Back 1o Project

L St &) Console Output

"= Changes
Started by user Jenkins Admin
B conscle Output Building on master

Wiew s plain text

Fetching ¢

(& Delete Buia

version # timecut=16
) OpEN Blue Ocean
4> Gt Buiki Data
= Mo Tags

4 Previous Buid

"

i Mext Buid Building project with Ant Builder

[ivyl] % ant jar publish

Jivysettings . xml

[ivy:resolve]l confs: [default]

compile:

rhspace /var/Lib/jenkins/workspace/ivyl
> git rev-parse --is-inside.work-tree # timeout=10
anges Trom the resote GIT repository
= Edit Build Information = git config remote.origin.url fopt/git/IvyDemcApp.git # timecut=18
Fetching upstream changes from /fopt/git/IvyDemoApp.git

--tags --progress fopt/git/IvyDemoApp.git +refs/heads/*:refs/remotes/or
refs/remotes/origin/master-{commit} # timeout=10

config core.sparsecheckout # timecut-18
- checkout - c677dcTe2aBoB2bo3el fababa3824n65e6ea6d5d
> git rev.list c677dcTeZaBcB2bodelfabibd3B2dbbSeteatdSd # timecut=10

Execited Ant Tarets Buildfile: /var/Llib/jenkins/workspace/ivyl/build.sml

of muote reselve

=| comgile [ivy:resolve] :: Apache Ivy 2.4.0 - 20141213170938 :: htto://on b fiwes i3
- [ivy:resolve] :: loading settings :: url = jar:Tile:/usr/share/ant/lib/ivy-2.4.8. Jar

[ivy:resolve] :: resolving dependencies :: org/democ/ivysppfhelloworld:workingddiyvb2

[ivy:resolve] found commons-langFcommons-lang;2
[ivy:resolve] :: resolution report ::

I
| conf | number| search|dwnlded|evicted|| number |dwnlded|

[javac] Svar/lib/jenkins/workspace/ivyl/build.xml:15: warning: ‘includeantruntim
build.sysclasspath=last: set to Talse for repeatable builds
[ijavac] Compiling 1 source file to /var/lib/jenkins/workspace/ivyl/build/classes
localhostE8080

srigin/masters{commit) # timeout=18
b93el Tabiba3824b65e6ea645d | raTs/ remotes /origin/
hing™

in public
resolve 312ms :: artifacts di 1ims

artifacts |

Figure 8-50. Ivy build console output

Note the list and links to executed Ant targets on the left side.

294 | Chapter8: Understanding Project Types

When building modules as separate jobs, you can use the Modules menu item on the
left of the Ivy job’s output page to go to the build information for each module. An
example is shown in Figure 8-51.

vy

& Back to Dashboard

. Modules
Status
— Changes s w Name .
Bl workspace vyl - helloworid
__,_) Build Now lcon: SML
() Delete Project
- Configure

T. Modules

Favorite
Move
- viove

- Open Blue Ocean

Build Queue —

No builds in the queue.
Build History trend =
& #10
< 0
- #8 Sep 26, 2017 10:35 PM

Figure 8-51. Accessing builds of individual modules in an Ivy project

Folders

One of the newer types of items you can create in Jenkins 2 is a folder. As the name
implies, this is an organizing structure rather than a job or project. Traditionally,
views have been used in Jenkins to filter lists of items on the dashboard. Views offered
the ability to create limited lists of jobs via configuration (by clicking on the “+” tab at
the top of the main project list). Figure 8-52 shows the configuration screen for a typ-
ical list view.

Types of Projects | 295

Hamo My List View

Description
[Plain text] Preview
Fitter build queue
Filter build executors
Job Filters

Status Filter Al astactad j

Recurse in sublolders

Jobs abc
bclasterong
Brent Laster
demoall
explore-jenkins
falder
freestyks1
w1 7-declarative-libs2

Use a regular expression to include jobs into the view

Add Job Filter -

Figure 8-52. Configuring a typical Jenkins list view

Unlike views, folders actually add the ability to group items together into a common
namespace, structure, and environment. Specifically, a folder allows a set of jobs to
share:

A container
Creating a folder creates a container to hold a set of jobs. As noted previously,
this is different from a traditional Jenkins view, which only allowed filtering a list
of jobs to restrict which jobs were visible.

A namespace
This namespace also becomes part of the path to the job.

Shared libraries
A folder can have its own set of shared libraries just for the projects in the folder.

Separate permissions
These are available provided the Role-Based Authorization Strategy plugin is
installed and role-based permissions are configured. More details on this are
included later in this section.

All of these elements allow for new ways in Jenkins to organize jobs and restrict the
environment in which they run. This could be used, for example, to separate or group
the projects for a department or larger effort.

296 | Chapter8: Understanding Project Types

We'll explore some of the properties and uses of a Jenkins folder in the next section.

Creating a folder

To create a folder, select the folder item from the Jenkins dashboard (Figure 8-53) and
enter a name for the folder.

- Folder
E Creates a container that stores nested items in it. Useful for grouping things together. Unlike view,
which is just a filter, a folder creates a separate namespace, so you can have multiple things of the
same name as long as they are in different folders.

Figure 8-53. Folder item

This will take you to the configuration page for the folder, an example of which is
shown in Figure 8-54.

Despiday Name o o § =
Descrpton
[Plain text] Praview
Health metrics

Chiild tem with worst health
M Rocursve

Add metric =
Propertics
JIRA
JIRA sz Add
Pipeline Librares
Sharabie ibraries availabile to any Pipeline jobs inside this folder. These braries will be untrusted, meaning their code runs in the Groovy sandbox.
Add

Pipoling Modo! Detiniton

Figure 8-54. Folder configuration page

At the top, you can enter user-facing details such as a separate display name to show
for the folder and a description.

Below that is a section for adding “health metrics”—that is, identifying properties of
items in the folder that should contribute to an overall health indication (how suc-
cessful or not builds for items in the folder have been). As of the time of this writing,

Types of Projects | 297

the only available health metric is “Child item with worst health” There is also a
Recursive option to indicate whether items in subfolders should contribute to this
metric.

Next is a Properties section. You may or may not have anything in this section,
depending on what plugins you have installed. The idea is to provide a place to define
tools or setups specific to items in this folder or its subfolders (if it has any). An
example here might be a JIRA project configuration for items in the folder.

Further down on the page is the section where you can configure a shared library to
be available to all jobs in the folder structure (this folder and any subfolders). The
same configuration fields and settings are available as for global shared libraries (see
Chapter 6 for details and examples); the only differences are that these libraries are
not trusted (so they cannot make unapproved calls or method invocations, as global
shared libraries can), and they are only available to the items in the folder structure.

Finally, we have the Pipeline Model Definitions section. This one requires some addi-
tional explanation. (Like for shared libraries, there is also a section for this in the
global Jenkins Configure System screen, so this can be configured at different granu-
larities.)

By default, Jenkins pipelines make the assumption that all agents are able to run
Docker pipelines. (See Chapter 14 for information on using Docker and Docker-
based agents in your pipelines.) However, in some cases, such as if you're running on
Windows, where you traditionally can’t run the Docker daemon directly, this assump-
tion can be incorrect. So, if you don't explicitly specify an agent that can run Docker
in your pipeline, and you get one of the agents that cant, your pipeline won't work.

Assuming you have a label that identifies one or more of your agents as being capable
of running Docker, you can specify that label here. This tells Jenkins to use one of
those agents for any folder items that need Docker, but don't directly specify an agent
that can run it.

Likewise, you can specify a Docker registry to use here that is scoped to just the items
in the folder.

Creating items in a folder

Once you've created a new folder in Jenkins 2, you can create new items in it just like
you've always done. When you switch to a Folder project, you have a link in the cen-
ter of the page to “create new jobs” as well as the New Item link in the lefthand menu
(Figure 8-55). (Note that there is also a Delete Folder item in the lefthand menu.)

298 | Chapter8: Understanding Project Types

Jenkins myFolder

& Up

O, status Ey myFolder

P Configure

= New ltem = N

@ Delete Folder

& People Welcome to Jenkins!

= Build Histor
/ Please create new jobs to get started.

L Project Relationship

47| Check File Fingerprint

Figure 8-55. Folder links

Views Within Folders

On the main folder page, you'll also see two small tabs—one that
says All and one that has a + sign in it. These are tabs for working
with view of jobs in this folder. Just like in the dashboard view, the
All tab shows all jobs in the folder. The + tab takes you to a screen
where you can configure custom list views of the jobs in the folder.

Clicking on either of these item creation options takes you to the same screen you
always use for this. The only difference is that any items you create at this point are
organized under the folder’s namespace, and the full name of the new item will
include that namespace.

This is just like creating a file within a directory on the operating system, and just as
you can create directories within directories, you can also create folders within fold-
ers in Jenkins.

Moving existing items into a folder

In addition to being able to create new items in a folder, you can also move existing
items into a folder. The key is the “move” icon in the lefthand menu of the main page
of an item. This is the icon that looks like a hand truck. (You can also just add “move”
at the end of the URL for a job.) Once you select that icon, you will have a drop-down
list to select the folder to move the item to (Figure 8-56). You simply select the desti-
nation and then click the Move button.

Types of Projects | 299

Move

S

Where do you want to move the Organization “bclasterorg’ to?

| Jenkins - myFolder

Figure 8-56. Moving an item to a folder

You can also move an item from a folder back up to the top level in Jenkins by select-
ing “Jenkins” in the list of destinations.

Managing permissions for folders

If you need to manage permissions separately for items in a folder, take a look at the
Role-based Authorization Strategy plugin. This plugin allows you to define roles and
groups around items in Jenkins. This is especially useful if you have multiple teams
sharing a Jenkins instance.

An administrator can create groups in a folder around each defined role that a user
can have. A team leader can then be authorized to manage group membership for the
groups in a folder.

The Role-based Authorization Strategy plugin is covered in more detail in Chapter 5.

Multibranch Pipeline Projects

One of the other new project types in Jenkins 2 is the Multibranch Pipeline project.
The primary feature of this type of project is that Jenkins can automatically manage
and build branches of projects managed in a source control management system if it
recognizes them as Jenkins projects. It can also create new Pipeline projects for each
branch it detects in the source control repository.

You can effectively think of this type of project as a Folder project with different jobs
in the folder for each branch of a source project. Creating and automatically building
these jobs is possible by using the presence of a Jenkinsfile as a marker and utilizing a
scanning process known as branch indexing.

Configuration

When you create a new Multibranch Pipeline project, you will typically point the job
to an SCM repository instead of to a specific branch of a project. Figure 8-57 shows
an example of the configuration screen for this type of project.

300 | Chapter8: Understanding Project Types

Dincowar Beanchan

Figure 8-57. Example Multibranch Pipeline project config screen

The first few settings here are pretty standard. However, notice that in the Behaviors
section under Branch Sources, there is a default behavior of “Discover branches.” This
is one of the key elements of a Multibranch Pipeline project: the ability to look into
the SCM repository, figure out what branches are there, and set up jobs for them.
Other typical behaviors (as provided by the particular SCM plugin) can be added
with the Add button. For Git, these might include, for example, ignoring branches
based on patterns, specifying options when cloning, and cleaning out workspaces.

Underneath that is the “Property strategy” section. For Multibranch Pipeline projects,
this is either “All branches get the same properties” or “Named branches get different
properties.” Selecting the latter allows you to specify one or more named branches (in
a “Branch name” field) and choose a property to apply. Currently the only available
property is “Suppress SCM triggering,” which suppresses the normal commit trigger
for Jenkins in that branch.

In the Build Configuration section, we have only one option currently: “by Jenkins-
file” This is the functionality we've already talked about where Jenkins will look for a
file named Jenkinsfile in the root of the checked-out project to see if it can automati-
cally build the branch of a project. While you could change the path for the Jenkins-
file in the Script Path field underneath, it’s best to just leave it as the default for
standardization.

Next on that page is a Scan Multibranch Pipeline Triggers setting. This can be set to
“Periodically if not otherwise run” if desired. Basically, if set, this is a fallback in case
one of the standard notification mechanisms (commit trigger, etc.) doesn’t work. The
idea is that you can set a time interval here that specifies the longest period you're
willing to wait to check for changes if an event doesn’t automatically trigger Jenkins.

Types of Projects | 301

The remaining sections on the configuration page are the same as the standard ones
for a Folder project, such as “Health metrics,” Pipeline Libraries, and Pipeline Model
Definition. These are discussed in “Folders” on page 295.

Branch indexing

After initial configuration, Jenkins will run a “branch indexing” function to look for
the presence of a Jenkinsfile in the branches of the project. If it finds a Jenkinsfile in
any of the branches, it will automatically create a job for those branches and build
them. Figure 8-58 shows what this looks like in the console output for the overall job.
Notice the places in the log where Jenkins is checking to see if the branch meets the
criterion of having a Jenkinsfile and, if so, kicking off a build for it. You can see the
builds running in the lower-left build section.

Scan Multibranch Pipeline Log
- Contigure

Bl Scan Multibranch Pipsline Log

Figure 8-58. Automatic branch scanning after initial configuration

After the branch indexing completes, you'll have individual jobs for each of the
matching branches within your Multibranch Pipeline project (Figure 8-59).

302 | Chapter8: Understanding Project Types

demoall
Branches (8)

MName Last Success Last Failure Last Duration

’d"
i
!

100000000
3333
EE I
|
[

Figure 8-59. Multibranch Pipeline jobs corresponding to branches with Jenkinsfiles

Individual job output and configuration

You can drill into each of the individual jobs created automatically for the project and
see the output/build results page in the Stage View form.

There is also a View Configuration link on that page. If you click that link, it will take
you to a configuration page for the individual job. On that page you will see some of
the common sections we have talked about previously, such as General and Build
Triggers. You can check boxes in these sections, type things in, etc. However, this is a
bit misleading as there is no Save or Apply button at the bottom of the page. As the
menu item implies, you can view the configuration (which isn’t particularly useful in
this case), but you can’t modify it. It is generated by the branch indexing functionality
of the higher-level Multibranch Pipeline project.

Not being able to configure the individual jobs here might seem like a disadvantage,
but remember that you can manage your pipeline through the Jenkinsfile instead of
through the job’s configuration.

Incorporating new branches

Once you have a Multibranch Pipeline project set up, Jenkins can automatically
detect new branches and create corresponding jobs for them as well. Let’s look at an
example.

Suppose that you have a Multibranch Pipeline project set up in Jenkins for a local Git
location. In your repository, you have a master branch that does not have a Jenkins-
file, and a branch named test that has a Jenkinsfile in it. Since you have set up a Mul-
tibranch Pipeline project, you have a job for test in Jenkins that was created
automatically. There isn’t a job for master, because it did not have a Jenkinsfile.

Types of Projects | 303

Now suppose you clone that repository down and create a new branch called new

branch from test. newbranch inherits all of the files from test, including the Jen-
kinsfile.

Next, you push the changes back to the remote Git repository. At this point, if you go
back into Jenkins and tell it to run the branch indexing, it will go out to the reposi-
tory and check each branch. Figure 8-60 shows the branch indexing running.

@) Branch Indexing Log

Started by user DIY User
> git rev-parse --is-inside-work-tree # timeout=10
Setting origin to git@diyvb:repos/gradle-greetings
> git config remote.origin.url git@diyvb:repos/gradle-greetings # timeout=10
Fetching & pruning origin...
Fetching upstream changes from origin
> git --version # timeout=10
= git fetch --tags --progress origin +refs/heads/*:refs/remotes/origin/* --prune
Getting remote branches...
Seen branch in repository origin/master
Seen branch in repository origin/newbranch
Seen branch in repository origin/test
Seen 3 remote branches
Checking branch master
Does not meet criteria
Checking branch newbranch
Met criteria
Scheduled build for branch: newbranch
Checking branch test
Met criteria
No changes detected in test (still at c515c4307caee23035a6ec2e8blfccf79d7c5421)
Done.
Finished: SUCCESS

Figure 8-60. Branch indexing after newbranch is created

Jenkins identifies that the new branch “Met criteria.” This means that it has a Jenkins-
file. So, Jenkins creates a new job for it (Figure 8-61) and starts up a build for it
(Figure 8-62).

304

Chapter 8: Understanding Project Types

Build Executor Status =

= master
1 ldle
2 Ildle
greetings-all » newbranch #1

= worker_node1

1 Idle

Figure 8-61. Kicking off a build for newbranch

E greetings-all

All
] w Name | Last Success Last Failure
'»J newbranch 5 min 39 sec - #1 NIA
J test 48 min - #27 Jdays 1 hr- 217

leon: SML

Figure 8-62. The new job for newbranch in the Multibranch Pipeline project

The nice thing about this setup is that it allows you to create branches in Git as you
need them (for experimentation, for example) and automatically have corresponding
Jenkins jobs created to execute the pipeline on those branches.

Branch Indexing Versus Build Now

One final note here regarding branch indexing and jobs in a Multi-
branch Pipeline project. You have two ways to manually kick off
builds for the jobs. First, you can initiate the branch indexing func-
tionality by clicking the Scan Multibranch Pipeline Now entry in
the lefthand menu.

Second, for each individual job, you can go to the job’s page and tell
it to Build Now, just as for any other job. However, be aware that
even if you have already built the new changes via Build Now, when
you run branch indexing again it will still rebuild the project a sec-
ond time for the same changes.

GitHub Organization Projects

GitHub is a popular hosting site for open-source projects developed with Git. A Git-
Hub Organization is a collection of such projects, with infrastructure that provides

Types of Projects | 305

for setting up groups (called teams), that can have different access to sets of projects.
A typical use for a GitHub Organization would be to group together, under a single
umbrella, a company’s collection of projects. To make it easy for an entire GitHub
organization to work with Jenkins, Jenkins provides the GitHub Organization project

type.

Types of Organization Projects

While we are using GitHub here as our detailed example of an
organization project, it should be noted that Bitbucket repositories
can also have “organization” projects (and other types may be
added later). We'll cover accessing a Bitbucket Team/Project
project as far as setting it up. From there, the general ideas and
overall mechanics we outline here for GitHub Organization
projects should apply to the other types as well.

In terms of structure, it is probably easiest to think of a GitHub Organization project
as a collection of Multibranch Pipeline projects, with each multibranch area corre-
sponding to one repository in the GitHub organization.

And, like in a Multibranch Pipeline project, Jenkins relies on there being a Jenkinsfile
in each branch of each repository in the GitHub organization that you want to work
with. For each repository in the organization, Jenkins will create a corresponding
Multibranch Pipeline project with corresponding jobs for each branch (assuming
they have Jenkinsfiles).

Creating a GitHub Organization project

Before creating a GitHub Organization project, you'll need to make sure that you
have the GitHub plugin installed and a GitHub server configured in the Configure
System settings. The setup for that is pretty straightforward (see “GitHub project” on
page 253).

Assuming that is in place, to create a GitHub Organization project, you simply supply
a project name and select the entry for it from the new item screen, as shown in
Figure 8-63.

- GitHub Organization
\ @__:' Scans a GitHub organization (or user account) for all repositories matching some defined markers.

Figure 8-63. Item to create a GitHub Organization project

306 | Chapter8: Understanding Project Types

In order for Jenkins to be able to locate and work with the GitHub organization, you
first have to tell it the name of the organization and supply any needed credentials to
access it (Figure 8-64).

Project Sources

Repository Sources
GitHub Organization

Owner belasterorg

Scan credentials - none - j o= Add ~

Repository name pattern .

Figure 8-64. Pointing Jenkins to the GitHub organization

Credentials for GitHub

Note that Jenkins can generate a token type of credential based on
your GitHub username and password. We discussed this in more
detail in “GitHub hook trigger for Git polling” on page 261.

In addition to the basic source configuration, you can also add additional advanced
behaviors. Many of these are geared around automatic discovery or inclusion/exclu-
sion of branches, projects, and pull requests. There are help buttons available for
most of these next to the fields themselves. If your intent is just to have Jenkins work
with every project and branch that has a Jenkinsfile, then you probably don’t need to
change these.

The rest of the options for a GitHub Organization project are the same ones we've
already covered in earlier sections of this chapter; they include configuring shared
libraries local to the project, health metrics, and a pipeline model definition (for
Docker agents). See the other sections for relevant details.

The last option on the configuration page deserves a little bit of explanation. Under
the heading “Automatic branch project triggering” is a field for “Branch names to
build automatically” This field takes a regular expression specifying which branches
to actually build when triggered. This doesn't keep Jenkins from creating jobs auto-
matically, just from building if changes are indicated. By default, the regular expres-
sion is set to have all branches build.

Webhooks

The other significant aspect of a GitHub organization project is that it can leverage
webhooks sent by the GitHub organization. Webhooks allow applications to “sub-
scribe” to events that happen on GitHub. When one of those events happens, an

Types of Projects | 307

HTTP POST is made to a specified external URL to notify it of the event. GitHub also
sends any additional configured information as the webhooK’s payload.

With appropriate permissions, Jenkins can even set up the webhook automatically.
Note that in order for all of this to work, Jenkins must have access to the GitHub
organization to set up the webhook, and Jenkins must be accessible for GitHub to
complete the POST. This means, for example, that the Jenkins URL can’t be behind a
firewall.

An example of the GitHub setup is shown in Figure 8-65, and an example of a web-
hook payload is shown in Figure 8-66.

O Thiz crganiztion Pull requests ksues Gist A +- -~

-
1.2 bclasterorg

Repositories People 1 Teams o Projects o {3 Settings
Organization setlings Webhooks / Manage webhook
Profile We'll send a posT request to the URL belows with details of any subscribed events, You can also specifiywhich data

forrmat you'd like to receive (J30N, swsmm-fernurlencoded, etc). More information can be found in our develope
Merber privileges
Member privileges acurmentation.

Team settings

Payload URL =
Bil
na hittp/fmyjenking work shop. org:8080/github-webhook/
Secunty
Content type
Ludit log

applicationfe-wanee-form-udencoded =
Blocked uzsers
Secret
Webhooks [ETTYYTTYYrrTrY, — Edit

Third-party access

Which events would you like to trigger this webhook?
[nstalled integrations

€ Just the push ewvent,

Developer setlings " Send me everything
Olusth applications o Let me select indradual events,
Integrations ™ Cormenit cormmment ™ Creste
Caommit o d i commentsd on Emnch or g crmsd
[Delete [T Deployment
B@nch or g deketed Reposhony depioyed.

Figure 8-65. Example GitHub webhook setup

308 | Chapter8: Understanding Project Types

Payload

{
"ref": “refs/heads/master"”,
"before": "cceS32c6b3815eea3iTO7d6at00dabc5c4@3955%h",
"after”: "923fS6aeel@eSe@dlcolifhb7aedzofefceobab?™,
“created™: false,
“deleted™: false,
“forced": false,
"base_ref”: null,
“compare™: “https://github. com/bclasterorg/greetings/compare/cce532c6b381. . . 923f56aeeloe™,
“commits™: [

"id": "923f56aeeleSedM1col3fbTaeo89f6fcElbaAbT",
“tree_id": "35d84621385fdbS99ed5fl@c3d71f2bas2eacsn2”™,
“distinct™: true,
"message”: “update for testing”,
“timestamp™: "2017-10-21T@8:47:17-04:00",
"url®: “https://github.com/bclasterorg/greetings/commit/923f56aeel 2e5e@341c913Th7ae289f6fcoaba
“author™: {
“name”: “Brent Laster”,
"email"™: "bclinclasters.org"
T
"committer®: {
“name”: “Brent Laster™,
"“email"™: "bclinclasters.org"
ts
“added”: [

1,

"removed": [

1.
"modified": [
"hellolWorkshop. java™

1,
"head_commit™: {
"id": "923fSEaeel@eSe@M1cl3fb7aed8ofafca@bab?",
“tree id": "35d8462f385fdb599edSf1@c3d712ba32eacian”,
“distinct™: true,
"message™: "update for testing",
"timestamp™: “2017-12-01T@8:47:17-04:00",
“url®: “https://fgithub.com/bclasterorg/grestings/commit/923756aeel@e5e0941c213ThFaed89fofcaabab 7
“author™: {

"name™: "Brent Laster",

Figure 8-66. Part of an example webhook payload

In addition to the webhook push technology, the GitHub Organization project
includes a way to “scan” the organization to check for any pull requests or updates.
This is done by selecting the “Scan Organization” menu item in the upper-left menu.
You can think of this as rerunning branch indexing for each project in the organiza-
tion. Figure 8-67 shows an example of running this.

Types of Projects | 309

OScan Organization Log

Started by user Jenkins Admin

[Mon Apr 16 11:02:36 PDT 2018] Starting organization scan...

[Mon Apr 16 11:02:36 PDT 2018] Updating actions...

Looking up details of explore-jenkins...

Organization URL: https://github.com/explore-jenkins

[Mon Apr 16 11:82:36 PDT 2018] Consulting GitHub Organization

11 o https://api.github.com] € .

Proposing greetings
Examining explore-jenkins/greetings

Checking branches...
Getting remote branches...
Checking branch master
‘Jenkinsfile’ found
Met criteria
1 branches were processed (query completed)
1 branches were processed

Finished examining explore-jenkins/greetings

Proposing declarative-multibranch-demo
Examining explore-jenkins/declarative-multibranch-demo

Checking branches...
Getting remote branches. ..
Checking branch labl

*Jenkinsfile’ found
Met criteria

1 branches were processed (query completed)
1 branches were processed

Finished examining explore-jenkins/declarative-multibranch-demo

Figure 8-67. Re-scanning the GitHub organization to check for changes

Bitbucket Team/Project Projects

This is another type of “organization” project. “Bitbucket Team” here refers to a
grouping of projects associated with a team on the public Bitbucket site. “Bitbucket
Project” refers to a Bitbucket Server instance installed at an enterprise. The example
we'll use here is with a team setup.

The functionality is supplied by the Bitbucket Branch Source plugin. To set up a new
Bitbucket Team/Project project, you simply select that type from the list of projects
(Figure 8-68).

310 | Chapter8: Understanding Project Types

https://plugins.jenkins.io/cloudbees-bitbucket-branch-source

Bitbucket Team/Project

| =] Scans a Bitbucket Cloud Team (or Bitbucket Server Project) for all repositories matching some defined markers.

Figure 8-68. Bitbucket Team/Project type selection

Configuration for a Bitbucket Team/Project project is almost the same as for a Git-
Hub Organization project (Figure 8-69). The prerequisite is to have a username/pass-
word credential already set up in Jenkins, with the email address and password that
you use to log in to Bitbucket. The only other trick is that the Owner field needs to be
a team name (not a username) that you have already set up on Bitbucket, and should
not have any special characters such as hyphens or spaces in it. (That is the way that
Bitbucket stores it, though it may display it differently.)

Mame
bbdemo

Dioptey Hamo Bithucket Demo []

sacription
Descriptic Simple project to demanstrate Bitbucket Team functionality
[Plain text] Preview
Projects
Bitbucket Team/Project Credentials

I - (Bitucket emall and g |~ - Add - @

explorejenkins L]

Figure 8-69. Bitbucket Team/Project project configuration

From here on, the workflow is pretty much the same as for the GitHub Organization
project type discussed in the previous section. Bitbucket connects via the supplied
credentials, scans the projects associated with the team specified in the Owner field,
and creates Multibranch Pipeline projects for each acceptable repository it finds
(Figure 8-70).

Types of Projects | 311

Jenkins Bitbucket Demo
* uvp
3, status H Bitbucket Demo

- Configure
Folder name: bbdemo

@ Scan Organization Folder Now Simple project 1o demaonstrate Bitbucket Team functionality
B3 Scan Organization Folder Log Repositories (3)
Organization Folder Events bl w Name
{8 Delete Organization Folder @ Q declarative-multibranch-demo
& reopie] BN R

== Build History @ Q —

%, Project Relationship
lcon: SML

4= | Check File Fingerprint Legend EJBRSSH
%W Move
;} Open Blue Ocean
B sitbucket
kefg | Config Files
) Fipeline Syntax

#§. Credentials

Figure 8-70. Bitbucket Team/Project project created via organization scan in Jenkins

Then, within each repository, for branches that have Jenkinsfiles, it initiates builds
(Figure 8-71).

@ declarative-multibranch-demo

Branches (7)
s w MName Last Success Last Fallure Last Duration
0 lab1 1 day 15 hr - 21 A a5 sec
0 «‘ lab2 MA 1day 1S hr - #1 18 sec
0 * lab3 NA 1day 1Shr - #1 18 sec
0 a Laba MA 1day 15hr - #1 26 sec
‘_J 1abs A A A
“ labE A A A
0 Y master ra 1 day 15 hr - #1 38 sec
lcon: S ML

Legend EJ BSSioral E) BSS for failures B BSS for just latest builds

Figure 8-71. Builds within a repository of a Bitbucket team

312 | Chapter8: Understanding Project Types

Project Icons

To help you visually distinguish the different types of projects (jobs) in the list view,
Jenkins 2 introduces some additional icons. A sampling of these is shown in
Figure 8-72 (in the “S” column).

Name .
archive-demo
Bitbucket Demo

blue-ocean-demo

nffe "’
AR RN

GitHub Organization Demo

Qithub-org-demo-new

My Bitbucket Project

FQyeg

myFolder

3

pipeline-no-initigl-ienkinsfile
Figure 8-72. Example icons for different project types

The first icon at the top is the traditional one for common Jenkins jobs.

The second and fourth ones are organizational projects (Bitbucket and GitHub,
respectively) that have been fully configured and so get the icons of the configured
organizations from those sites.

The third icon is an example of a simple project from GitHub.

The fifth icon is a new GitHub Organization project that has not been fully config-
ured.

The sixth icon is a new Bitbucket Team/Project project that has not been fully config-
ured.

The seventh icon