
1/18

Pure In-Memory (Shell)Code Injection In Linux Userland
blog.sektor7.net

date: 2018-12-14, author: rb

Introduction

Typical post-exploitation activities include reconnaissance, information gathering and

privilege escalation. Sometimes an adversary may need additional functionality, such as

when the target system does not provide the necessary tools by default, or when they need

to speed up one of these post-exploitation actions.

In most cases dedicated tools are uploaded to the target system and ran. The biggest caveat

of this approach is that artifacts left on disk, if detected, may reveal additional information

to the defenders and potentially compromise the whole operation.

A lot of research has been conducted in recent years on performing code injection in the

Windows operating system without touching the disk ([1], [2], [3], [4], [5] to name a few).

The same cannot be said about *NIX (and Linux specifically), but there are some great

works from the past: skape and jt [2], the grugq [6], Z0MBiE [7], Pluf and Ripe [8], Aseem

Jakhar [9], mak [10] or Rory McNamara [11].

Scenario

Imagine yourself sitting in front of a blinking cursor, using a shell on a freshly compromised

Linux server, and you want to move forward without leaving any traces behind. You need to

run additional tools, but you don't want to upload anything to the machine. Or, you simply

cannot run anything because the noexec option is set on mounted partitions. What options

remain?

This paper will show how to bypass execution restrictions and run code on the machine,

using only tools available on the system. It's a bit challenging in an everything-is-a-file OS,

but doable if you think outside the box and use the power this system provides.

The following paper is a direct result of experiments conducted by Sektor7 labs where new

and improved offensive methods are researched and published.

Payload (Shellcode) Delivery

Finding a reliable and stealthy way to deliver a payload/tool to a target machine is always a

challenge for an adversary.

https://blog.sektor7.net/#!res/2018/pure-in-memory-linux.md
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References


2/18

The most common method is to establish a new connection with C2 or a 3rd party server

which hosts the desired tool and download it to the victim. This potentially generates

additional artifacts on the network infrastructure (ie. netflow, proxy logs, etc.).

In many situations, an attacker forgets that there is already an open control channel to the

target machine - the shell session. This session can be used as a data link to upload a

payload to the victim without the need to establish a new TCP connection with external

systems. The downside of this approach is that a network glitch could result in the loss of

both the data transfer and control channel.

In this paper, the two delivery methods will be referred to as out-of-band and in-band,

respectively. The latter option will be used as the primary way of transferring (shell)code.

Demonstration Environment

Our demonstrations and experiments will use the following setup:

Victim machine running recent Kali Linux as a virtual machine

Attacker machine – Arch Linux running as a host system for VMs

SSH connection from the Attacker's machine to the Victim, simulating shell

access

Simple ‘Hello world’ shellcode for x86_64 architecture (see Appendix A)

In-Memory-Only Methods

Tmpfs

The first place an adversary can store files is tmpfs. It puts everything into the kernel

internal caches and grows and shrinks to accommodate the files it contains. Additionally,

starting from glibc 2.2, tmpfs is expected to be mounted at /dev/shm for POSIX shared

memory (shm_open(), shm_unlink()).

Here is an example view on mounted tmpfs virtual filesystems (from Kali):

https://blog.sektor7.net/res/2018/img/in-band.png
https://blog.sektor7.net/res/2018/#Appendix_A


3/18

By default /dev/shm is mounted without the noexec flag set. If a paranoid administrator

turns it on, it effectively kills this method – we can store data but cannot execute (execve()

will fail).

We will come back to /dev/shm later.

GDB

GNU Debugger is a default debugging tool for Linux. It’s not commonly installed on

production servers, but sometimes can be found in development environments and in a few

embedded/dedicated systems. According to the gdb(1) manual:

GDB can do four main kinds of things (plus other things in support of these) to 
help you catch bugs in the act: 
 * Start your program, specifying anything that might affect its behavior. 
 * Make your program stop on specified conditions. 
 * Examine what has happened, when your program has stopped. 
 * Change things in your program, so you can experiment with correcting the effects 
   of one bug and go on to learn about another.

The last aspect of GDB can be used to run shellcode in memory only, without touching disk.

First we convert our shellcode into a byte string:

https://blog.sektor7.net/res/2018/img/tmpfs1.png
https://blog.sektor7.net/res/2018/img/tmpfs2.png


4/18

Then, run /bin/bash under the control of gdb, set a breakpoint at main(), inject the

shellcode and continue. Below is a one-liner:

Python

Python is a very popular interpreted programming language and, unlike GDB, is

commonly found in many default Linux deployments.

Its functionality can be extended with many modules including ctypes , which provides C

compatible data types and allows calling functions in DLLs or shared libraries. In other

words, ctypes enables the construction of a C-like script, combining the power of external

libraries and direct access to kernel syscalls.

To run our shellcode in memory with Python, our script has to:

load the libc library into the Python process

mmap() a new W+X memory region for the shellcode

copy the shellcode into a newly allocated buffer

make the buffer 'callable' (casting)

and call the buffer

Below is the complete script (Python 2):

https://blog.sektor7.net/res/2018/img/gdb1.png
https://blog.sektor7.net/res/2018/img/gdb2.png


5/18

The whole script is converted into a Base64-encoded string:

https://blog.sektor7.net/res/2018/img/py1.png
https://blog.sektor7.net/res/2018/img/py2.png


6/18

And delivered to a target machine with a one-liner:

Self-modifying dd

On rare occasions, when none of the above methods are possible, there's one more tool

installed by default on many Linux systems (part of the coreutils package) that may be used.

The tool is called dd and is commonly used to convert and copy files. If we combine it with a

procfs filesystem and the /proc/self/mem special file - exposing the process’s own memory

- there is, potentially, a small window in which to run shellcode in-memory only. To do that,

we need to force dd to modify itself on the fly (aka to shinji-nize itself ).

The default dd runtime behavior is depicted below:

https://blog.sektor7.net/res/2018/img/py3.png
https://blog.sektor7.net/res/2018/img/dd1.png


7/18

And this is how a self-modifying dd runtime should look like:

The first thing needed is a place to copy shellcode inside the dd process. The entire

procedure must be stable and reliable across runs since it's a running process overwriting its

own memory.

A good candidate is the code that’s called after the copy/overwrite is successful. It directly

translates to process exit. Shellcode injection can be done either in the PLT (Procedure

Linkage Table) or somewhere inside the main code segment at exit() call, or just before the

exit().

Overwriting the PLT is highly unstable, because if our shellcode is too long it can overwrite

some critical parts that are used before the exit() call is invoked.

After some investigation, it appears the fclose(3) function is called just before the exit():

https://blog.sektor7.net/res/2018/img/dd2.png


8/18

fclose() is called only from 2 places:

Further tests show that the code at 0x9c2b ( jmp 1cb0 ) is the one used at runtime and it’s

followed by a large chunk of code which, potentially, can be overwritten without crashing

the process.

There are two additional obstacles we have to address to make this technique to work:

1. stdin, stdout and stderr file descriptors are being closed by dd after the copy:

 

2. Address Space Layout Randomization

The first problem can be solved by creating stdin and stdout duplicate file descriptors

with the help of bash (see bash(1)):

https://blog.sektor7.net/res/2018/img/dd3.png
https://blog.sektor7.net/res/2018/img/dd4.png
https://blog.sektor7.net/res/2018/img/dd5.png


9/18

Duplicating File Descriptors 
       The redirection operator 
 
              [n]<&word 
 
       is used to duplicate input file descriptors. If word expands to one or 
       more digits, the file descriptor denoted by n is made to be a copy of 
       that file descriptor.

and prefixing our shellcode with dup() syscalls:

The second problem is more serious. Nowadays, in most

Linux distributions, binaries are compiled as PIE

(Position Independent Executable) objects:

and ASLR is turned on by default:

https://blog.sektor7.net/res/2018/img/dd6.png
https://blog.sektor7.net/res/2018/img/dd7.png


10/18

Fortunately, Linux supports different execution domains (aka personalities ) for each

process. Among other things, execution domains tell Linux how to map signal numbers into

signal actions. The execution domain system allows Linux to provide limited support for

binaries compiled under other UNIX-like operating systems. Since Linux 2.6.12, the

ADDR_NO_RANDOMIZE  flag is available which disables ASLR in a running process.

To turn off ASLR in userland at runtime, setarch tool can be used to set different

personality flags:

Now all the necessary pieces are in place to run the self-modifying dd:

https://blog.sektor7.net/res/2018/img/dd8.png
https://blog.sektor7.net/res/2018/img/dd9.png


11/18

System Calls

All of the above methods have one huge downside (except tmpfs) – they allow execution of

shellcode, but not an executable object (ELF file). Pure assembly shellcode has limited

usage and is not scalable if we need more sophisticated functionality.

Once again, kernel developers came to the rescue – starting from Linux 3.17 a new

system call was introduced called memfd_create() . It creates an anonymous file and

returns a file descriptor that refers to it. The file behaves like a regular file. However, it lives

in RAM and is automatically released when all references to it are dropped.

In other words, the Linux kernel provides a way to create a memory-only file

which looks and feels like a regular file and can be mmap()’ed/execve()’ed.

The following plan covers creating a memfd-based file in a virtual memory and, eventually,

uploading our tools of choice to the victim machine without storing them on a disk:

generate a shellcode which will create a memfd file in a memory

inject the shellcode into a dd process (see Self-modifying dd section)

'suspend' the dd process (also done by the shellcode)

prepare a tool of choice to be uploaded (statically linked uname is used as an example)

transfer base64-encoded tool into the victim machine via an in-band data link (over a

shell session) directly into memfd file

finally, run the tool

The first thing is to create a new shellcode (see Appendix B). The new shellcode reopens

closed stdin and stdout file descriptors, calls memfd_create() creating a memory-only file

(named AAAA ), and invokes the pause() syscall to 'suspend' the calling process (dd).

Suspending is necessary because we want to prevent dd process from exiting and, instead,

make its memfd file accessible to other processes (via procfs). The exit() syscall in the

shellcode should never be reached.

Then we shinjinize dd, suspend it and check if memfd file is exposed in the memory:

https://blog.sektor7.net/res/2018/img/dd10.png
https://blog.sektor7.net/res/2018/#Self-modifying_dd
https://blog.sektor7.net/res/2018/#Appendix_B


12/18

The next step is to prepare our tool for uploading. Please note that attackers’ tools have to

be either statically linked or use the same dynamic libs as on a target machine.

Now just ‘echo’ the Base64-encoded tool into memfd-file and run it:

Note that the memfd file can be 'reused'; the same file descriptor can 'store' the next tool if

necessary (overwriting the previous one):

https://blog.sektor7.net/res/2018/img/sc1.png
https://blog.sektor7.net/res/2018/img/sc2.png
https://blog.sektor7.net/res/2018/img/sc3.png


13/18

What if a victim machine runs a kernel older than 3.17?

There is a C library function called shm_open(3). It creates a new POSIX shared object in

memory. A POSIX shared memory object is, in effect, a handle which can be used by

unrelated processes to mmap() the same region of shared memory.

Let’s look into Glibc source code. shm_open() calls open() on some shm_name:

 
(from glibc/sysdeps/posix/shm_open.c)

Which, in turn, is dynamically allocated with shm_dir:

 
(from glibc/sysdeps/posix/shm-directory.h)

https://blog.sektor7.net/res/2018/img/sc4.png
https://code.woboq.org/userspace/glibc/sysdeps/posix/shm_open.c.html
https://blog.sektor7.net/res/2018/img/sc5.png
https://code.woboq.org/userspace/glibc/sysdeps/posix/shm-directory.h.html


14/18

shm_dir is a concatenation of _PATH_DEV  with "shm/":

 
(from glibc/sysdeps/posix/shm_open.c)

https://blog.sektor7.net/res/2018/img/sc6.png
https://code.woboq.org/userspace/glibc/sysdeps/posix/shm_open.c.html
https://blog.sektor7.net/res/2018/img/sc7.png


15/18

and _PATH_DEV  is defined as /dev/.

So, it turns out that shm_open() just creates/opens a file on the tmpfs file system, but that

was already covered in the tmpfs section.

OPSEC Considerations

Any offensive activity on the target machine requires thinking about side-effects. Even if we

try not to touch the disk with any code, our actions might still leave some 'residue'.

These include (but are not limited to):

 
1. Logs (ie. shell history). In this case adversary has to make sure logs are either removed or

overwritten (sometimes not possible due to lack of privileges).

 
2. Process list – occasionally another user viewing processes running on the victim

machine might spot weird process names (ie. /proc/< num >/fd/3). This can be

circumvented by changing the argv[0] string in the target process.

 
3. Swappiness – even if our artifacts live in virtual memory, in most cases they can be

swapped out to disk (analysis of swap space is a separate topic). It potentially can be dodged

with:

mlock(), mlockall(), mmap() - requires root  or at least CAP_IPC_LOCK  capability

sysctl vm.swappiness or /proc/sys/vm/swappiness – requires root  privileges

cgroups (memory.swappiness) – requires root  or privilege to modify cgroup

The last one does not guarantee that under heavy load the memory manager will not swap

the process to disk anyway (ie. root cgroup allows swapping and needs memory).

Acknowledgements

Hasherezade for unintended inspiration

 
mak for interesting discussions and content review

 
hardkor for content review

References

1. In-Memory PE EXE Execution by Z0MBiE/29A

 
https://github.com/fdiskyou/Zines/blob/master/29a/29a-6.zip

2. Remote Library Injection by skape & jt

 
http://www.hick.org/code/skape/papers/remote-library-injection.pdf

3. Reflective DLL Injection by Stephen Fewer

 
https://www.dc414.org/wp-content/uploads/2011/01/242.pdf

4. Loading a DLL from memory by Joachim Bauch

 
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

https://blog.sektor7.net/res/2018/#Tmpfs
https://github.com/fdiskyou/Zines/blob/master/29a/29a-6.zip
http://www.hick.org/code/skape/papers/remote-library-injection.pdf
https://www.dc414.org/wp-content/uploads/2011/01/242.pdf
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/


16/18

5. Reflective DLL Injection with PowerShell by clymb3r

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-

powershell/

6. The Design and Implementation of Userland Exec by the grugq

https://grugq.github.io/docs/ul_exec.txt

7. Injected Evil by Z0MBiE/29A

http://z0mbie.daemonlab.org/infelf.html

8. Advanced Antiforensics : SELF by Pluf & Ripe

http://phrack.org/issues/63/11.html

9. Run-time Thread Injection The Jugaad way by Aseem Jakhar

http://www.securitybyte.org/resources/2011/presentations/runtime-thread-

injection-and-execution-in-linux-processes.pdf

10. Implementation of SELF in python by mak

https://github.com/mak/pyself

11. Linux based inter-process code injection without ptrace(2) by Rory McNamara

https://blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-

injection-without-ptrace2.html

Appendix A

Example 'Hello world' shellcode used in the experiments:

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/
https://grugq.github.io/docs/ul_exec.txt
http://z0mbie.daemonlab.org/infelf.html
http://phrack.org/issues/63/11.html
http://www.securitybyte.org/resources/2011/presentations/runtime-thread-injection-and-execution-in-linux-processes.pdf
https://github.com/mak/pyself
https://blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-injection-without-ptrace2.html


17/18

Appendix B

Memfd-create() shellcode:

https://blog.sektor7.net/res/2018/img/app1.png


18/18

 

 

https://blog.sektor7.net/res/2018/img/app2.png

