
White Paper

A Pentesters Guide to
Hacking ActiveMQ Based

JMS Applications

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 2

White Paper

This white paper was written by:
Gursev Singh Kalra
Senior Principal Consultant
McAfee Foundstone Professional
Services

Table of Contents
Introduction . 4

Messaging 101 . 4

Anatomy of a JMS Message . 4

Message Broker . 5

Messaging Models . 5

JMS API . 6

Apache ActiveMQ Basics . 7

ActiveMQ Authentication Options . 8

ActiveMQ Authorization Controls . 9

ActiveMQ Administration Console . 9

Pentesting JMS Applications .10

Discovery and Configuration .10

Understanding ActiveMQ Configuration File .10

Review for Weak Configuration and Known Vulnerabilities .11

Data Protection in Storage and Transit .12

Insecure Communication .12

Insecure Password Storage .13

Weak Encryption Password .13

Unencrypted KahaDB . .13

User Management and Authentication .13

No Authentication .13

Simple Authentication Plug-In .13

JAAS Authentication Plug-In .14

Account Lockout Testing .14

Data Validation and Error Handling .14

Injection Attacks .14

Attacking Other Clients .15

Authorization .15

Destination Access .15

Exploitation .16

Reading Queues with QueueBrowser .16

Retrieving Messages from Topics with TopicSubscriber .16

Retrieving Messages from Topics with Durable Subscribers .17

Additional Durable Subscriber Attacks .17

Retrieving Statistics for the Broker and its Destinations .18

Dynamic Destinations .18

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 3

White Paper

JMSDigger―A GUI-Based JMS Assessment Tool .19

Generic JMS Operations .19

ActiveMQ Specific Operations .19

Conclusion .20

Appendix A .21

JMS API Based Anonymous Authentication Check .21

JMS API Based Credential Brute Force Code .22

Example Password and Configuration File Decryption Code .24

About The Author .26

About McAfee Foundstone Professional Services .26

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 4

White Paper

Introduction
Enterprise Messaging Systems (EMS) form the transactional backbone of many large organizations
worldwide. They are highly reliable, flexible, and scalable systems that allow asynchronous message
processing between two or more applications. This paper provides guidance on penetration testing
techniques to assess the security of ActiveMQ1 based EMS Systems written using Java Messaging
Service (JMS) API2,3. Applications that have been written using JMS API are also known as JMS
Applications.

The paper begins with an introduction to JMS concepts that are relevant to the penetration testing
techniques discussed afterwards, and then introduces JMSDigger4, an open source tool to engage
and assess ActiveMQ based JMS Applications.

Please note that this paper does not aim to provide a comprehensive tutorial on JMS concepts or on
writing code based on JMS API. There are many excellent JMS5 and ActiveMQ6 books that you can
refer to if you are interested.

Messaging 101
Sun Microsystems created JSR-9147 as JMS API specification with an aim to provide an abstract
interface to communicate with messaging providers and to write portable messaging clients (in
Java) for JMS compliant message brokers. JMS applications are made up of several JMS clients and
generally one JMS provider. The JMS provider is also known as a messaging server. The JMS clients
create messages and send those messages to the JMS provider, which in turn routes the messages
to the other clients based on its configuration and business rules.

Let us now understand the structure of a message, messaging models, and the JMS API.

Anatomy of a JMS Message
Messages are used to deliver application data and event notifications. A JMS Message is made up of
message headers, message properties, and a message body as shown in the image below. Message
headers contain metadata that describes message attributes like message priority, message ID,
message type, message routing information, and message expiry, among others. Message properties
are the additional headers that can be added to a message by the developer or message broker or can
be JMS defined properties. The message body contains the actual content that is to be delivered.

Headers

Properties

Body

Figure 1. A JMS Message.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 5

White Paper

Messages are delivered between the clients via virtual channels called destinations that are hosted by
the message broker. JMS API supports six primary message types:

1. Message: The Message type has no payload and is typically used for event notifications.

2. TextMessage: The TextMessage type carries plain text or it can be used to carry
specialized data formats like XML, SOAP8 messages, JSON9, and others as its payload.

3. MapMessage: The MapMessage type contains name-value pairs as its payload.

4. BytesMessage: The ByteMessage type contains an array of primitive bytes as its payload.

5. ObjectMessage: The ObjectMessage type contains serialized Java objects as its payload.

6. StreamMessage: The StreamMessage type contains a stream of primitive Java types
like byte, int, char, and others as its payload.

Messages are never addressed to any specific client but to the destinations. The message delivery
mechanism is determined by the messaging model (discussed below) used by a particular application.

Message Broker
Message brokers form the core of the Enterprise Messaging Systems. Messages are transmitted
between the messaging clients via virtual channels hosted by the message brokers, also called
messaging servers. These virtual channels are also called destinations. The message brokers ensure
that application data is delivered with high reliability, in an efficient manner, and minimizes coupling
between messaging clients.

A large number of message brokers like ActiveMQ, RabbitMQ, SonicMQ, and IBM WebSphereMQ
support JMS API for message exchange.

Messaging Models
Messaging models represent different approaches to messaging. A message broker may support
either one or both the messaging models discussed below. Messaging models are also known as
messaging domains.

Point-to-Point Model
The virtual channel used for communication in the point-to-point messaging model is called
a Queue. In this model, the JMS clients that produce the messages are called the senders and
the clients that consume the messages are called the receivers. In the point-to-point messaging
model, each message can be consumed only once and it gets discarded after it is delivered to
any one receiver. The send-and-receive operations to and from Queues can be performed either
in a synchronous or an asynchronous fashion. The receivers can also acknowledge message
consumption to the sender. The point-to-point messaging model is also referred to as p2p model.

The messages on a Queue behave differently when a QueueBrowser API is used to retrieve
messages without disrupting a Queue’s contents. When a QueueBrowser is used, the querying JMS
client receives an enumeration of all messages on the Queue at a point in time, which the JMS client
can iterate through and analyze Queue contents for any business decisions. This feature is very
useful as it allows one to analyze Queue content without losing any messages.

Sender

Queue

Receiver

Message

Acknowledgement

Message

Figure 2. The image shows a point-to-point messaging model.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 6

White Paper

Publish-and-Subscribe Model
The virtual channel used for communication in the publish-and-subscribe messaging model is called
a Topic. The JMS clients that produce messages are called the publishers and the JMS clients that
consume the messages are called the subscribers. The publishers send messages to the Topic and
the subscribers read the messages off the Topic. However, there is no direct communication between
the JMS publishers and subscribers. The publish-and-subscribe messaging model is also referred to
as pub/sub model. The pub/sub messaging model is subscription based.

There are two types of subscribers in the publish-and-subscribe model―nondurable and durable
subscribers.

The nondurable subscribers receive the messages only when they are connected to and actively
listening on a particular Topic. All messages during the period of inactivity are lost for the
nondurable subscribers. Durable subscribers, however, receive all messages even if the subscriber is
neither active nor connected to the message broker. Durable subscribers retain the messages until
the messages are retrieved, or until the messages expire, whichever occurs first. Durable subscribers
can be either dynamically or statically created by the broker administrators in the configuration files.
Durable subscribers are uniquely identified by a combination of a client identifier (for the JMS client)
and a durable subscriber name.

Subscriber

Subscriber

Publisher

TopicMessage Message

Message
Subscriber

Figure 3. Image shows a publish-and-subscribe messaging model.

JMS API
JMS is an API specification and not a wire-level protocol. It is a vendor-agnostic API that can be used
with any JMS compliant messaging broker. Depending on the message broker, the JMS API can
also be used to communicate with non-Java or non-JMS messaging clients as we will discuss in the
sections below. The JMS API can be classified into three categories:

1. The general API.

2. Point-to-point API.

3. Publish-and-subscribe API.

The API used for writing a JMS application is based on the messaging model used. The April 2002
JMS 1.1 specification, however, allows the general API to send and receive messages to and from
Queues or Topics with some restrictions. Since the JMS API code is portable, it can be used to assess
JMS applications created using different types of message brokers.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 7

White Paper

Apache ActiveMQ Basics
ActiveMQ is an open-source, JMS compliant message broker with a full JMS client. It provides a
number of client libraries in different programming languages like Java, Ruby, Python, C, C++, and
C# and can therefore be used to integrate clients written in different programming languages. For
example, Java based JMS clients can talk to messaging clients written in C/C++. It supports a range
of communication protocols including―but not limited to―AMQP, OpenWire, WebSockets, and
Stomp as shown in the list below.

 ■ AMQP

 ■ RSS

 ■ HTTP

 ■ STOMP

 ■ REST

 ■ WebSockets

 ■ OpenWire

 ■ XMPP

ActiveMQ is highly configurable and most of the configuration information lives as child nodes inside
the broker element of its configuration file. The configuration file can be reviewed to obtain the
information such as:

1. Topic names.

2. Queue names.

3. Transport protocols enabled, assigned ports, and their configuration.

4. Credentials.

5. Authentication and Authorization details, etc.

Figure 4. Image shows a Topic and Queue as seen in ActiveMQ configuration file.

Figure 5. Image shows openwire and amqp transport protocols enabled in ActiveMQ configuration file.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 8

White Paper

ActiveMQ Authentication Options
ActiveMQ supports several mechanisms to authenticate JMS clients. ActiveMQ’s authentication
schemes are plug-in based and they can be changed on the broker with almost no impact on the
JMS client code. This offers tremendous flexibility to the programmers. We will now look at the
different authentication schemes supported by ActiveMQ.

The Default (No Authentication)
When no authentication plug-in is enabled, ActiveMQ accepts connection from any JMS client,
with or without any username and password, and allows the client to interact with Queues, Topics,
and perform other actions permitted as per the JMS API specification. This mode is similar to
anonymous authentication mode for FTP and it offers no security.

Simple Authentication Plug-In
ActiveMQ does not allow anonymous authentication when this plug-in is enabled. The simple
authentication plug-in uses hardcoded usernames and passwords in the configuration file. The
simple authentication does not offer any mechanism to enforce account lockouts with failed login
attempts. Additionally, the simple authentication plug-in is not scalable and is insecure because it
requires clear text username and passwords to be hard coded in the configuration files.

Figure 6. Image shows simple authentication plug-in enabled in ActiveMQ configuration file.

JAAS10 Based Authentication
ActiveMQ can also support custom authentication mechanisms with its JAAS plug-in support. Also,
some organizations may want to centrally manage ActiveMQ authentication rather than maintaining
separate credentials for the messaging brokers. They can leverage ActiveMQ’s JAAS plug-in and
write their own authentication routines to query their central LDAP server or their central SQL
databases for authentication.

Figure 7. Image shows JAAS plug-in enabled in ActiveMQ configuration file.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 9

White Paper

ActiveMQ Authorization Controls
ActiveMQ’s authorization engine applies the security policies and enforces the type of access (read,
write, administer, etc.) a JMS client is allowed for different Topics, Queues, and the messages. It
supports two types of authorization controls. The first is at the destination level, and the second is at
the message level.

Destination Level Authorization
Destination level authorization controls require the JMS clients to have a certain minimum level of
privileges before they are allowed to connect to any Topic or Queue. The access control rules can
selectively allow or deny read, write, or administration access to different JMS clients for any Topic or
Queue based on ActiveMQ configuration.

Figure 8. Image shows Queue authorization entry in ActiveMQ configuration file.

Message Level Authorization
This message level authorization allows fine-grained access control where the access checks are
enforced based on the contents of a message. Typically, the access control logic is written as a Java
plug-in, compiled and packaged into a JAR file, and then added to ActiveMQ’s classpath. The plug-in
information is then specified in the ActiveMQ configuration file.

Figure 9. Image shows message level authorization plug-in configuration.

ActiveMQ Administration Console
ActiveMQ provides a powerful web-based administration console which runs on Jetty11. It allows you
to manage several aspects of the message broker as mentioned below:

1. Create, read, update, or delete Topics and Queues.

2. Create and/or delete durable subscribers.

3. View active connections.

4. Send messages to Topics and Queues.

The default web console configuration runs over plain text HTTP protocol and is protected by basic
authentication starting with version 5.8.0.

Now that we have some understanding of ActiveMQ and JMS concepts, we will now look at the
security assessment methodology for JMS applications.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 10

White Paper

Pentesting JMS Applications
The Pentesting methodology discussed below is modeled around McAfee® Foundstone®
Professional Services’ security assessment framework and assumes that the environment under
test is based on ActiveMQ.

Please note that even though the methodology focuses on ActiveMQ, the techniques are generic
and can be applied to assess messaging applications based on other message brokers.

Discovery and Configuration
Understanding ActiveMQ Configuration File
Request the application owners to provide you with the ActiveMQ configuration file and analyze it
to extract the following information:

 ■ Authentication and Authorization mechanisms used.

 ■ Topic and Queue names.

 ■ Communication protocols enabled and used.

 ■ ActiveMQ web console configuration.

 ■ Network interfaces and corresponding listening ports.

Analyze the installed ActiveMQ version for known configuration issues and vulnerabilities. A
summary of common configuration issues and a few vulnerabilities that were identified during my
research is provided below.

1. ActiveMQ versions 5.8.0 onwards protect their web administration console with basic
authentication with default credentials of admin/admin which is seldom changed.

2. The web admin console runs over plain text HTTP protocol which is insecure.

3. ActiveMQ’s web console prior to 5.8.0 did not require authentication (see CVE-2013-
306012). Random Internet users could connect to ActiveMQ and perform administration
functions like viewing contents of JMS destinations, delete JMS destinations, and create
new JMS destinations and durable subscribers―among other operations. Unauthorized
access to this interface can allow attackers to cause severe damage to the messaging
application and anyone who knows the administrative URL can potentially manage
the ActiveMQ instance. Performing simple Internet searches reveals several open and
exposed production ActiveMQ instances as shown in two images below.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 11

White Paper

Review for Weak Configuration and Known Vulnerabilities

Figure 10. An unprotected ActiveMQ administrative interface available over the Internet shows queue names.

Figure 11. An unprotected ActiveMQ administrative interface available over the Internet shows active client connections.

4. ActiveMQ’s transport connectors and administrative web console application are
configured by default to listen on 0.0.0.0. Because of this, they start listening on all
network interfaces of the machine and end up exposed on the Internet.

 This allows inadequately hardened ActiveMQ instances on perimeter devices to be
susceptible to attacks originating from the Internet. The attackers could potentially
connect to ActiveMQ server, retrieve or send messages, edit or delete JMS destinations,
and perform other actions permitted by the broker’s API.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 12

White Paper

Figure 12. ActiveMQ openwire configuration to listen on 0.0.0.0.

Figure 13. Connection to an open ActiveMQ broker’s openwire interface over the Internet with ‘ActiveMQ’ string in response.

Figure 14. Administrative web console of a production ActiveMQ instance available on the Internet.

5. Make sure to check ActiveMQ version for known vulnerabilities. For example, Multiple XSS
vulnerabilities (CVE-2013-188013, CVE-2013-187914, CVE-2012-609215) were reported in
ActiveMQ web console.

Data Protection in Storage and Transit
Insecure Communication
ActiveMQ optionally offers transport layer security, which can be implemented for the application
layer protocols it supports. However, the default ActiveMQ configuration does not enforce transport
layer security and is vulnerable to man-in-the-middle (MiTM)16 attacks where an attacker can capture,
monitor, and modify all traffic flowing between the JMS clients and the message broker.

This vulnerability can be spotted while reviewing ActiveMQ configuration file, where the absence
of sslContext element gives it away. However, it is important to not rely on the presence of this
header alone but to thoroughly review the configuration17.

If the configuration file is not available, the JMS client and message broker communication must be
reviewed with help of packet sniffers like Wireshark18.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 13

White Paper

Insecure Password Storage
The simpleAuthenticationPlugin allows unencrypted usernames and passwords to be stored
in ActiveMQ configuration files. Also, the jaasAuthenticationPlugin allows for an external file
with plain text credentials to be used for authentication users.

It is important to review the ActiveMQ configuration files and the jaasAuthenticationPlugin
configuration details to ensure that credentials are not stored in clear on the machine. Also, if the
jaasAuthenticationPlugin uses and external database to store credentials, it must be reviewed
for unencrypted storage.

Weak Encryption Password
ActiveMQ optionally uses password-based encryption (jascrpyt19 library’s
StandardPBEStringEncryptor class) to encrypt and store login credentials in its configuration
files. Using weak passwords to encrypt login credentials can potentially expose these credentials to
anyone who has access to these configuration files. System administrators often rely on password
cracking tools like John the Ripper20 to audit password strength. The JMSDigger tool which we will
briefly discuss in this white paper can also assist with ActiveMQ password audits.

Figure 15. The image shows encrypted strings in the default credentials-enc.properties file that is shipped with
ActiveMQ.

Please see Appendix A for sample source code to decrypt ActiveMQ’s encrypted records by brute force.

Unencrypted KahaDB
KahaDB is the default high-performance, data-persistence database used by ActiveMQ. This
database is neither encrypted by default nor has the capability to perform encryption. Make sure
KahaDB instance is stored on an encrypted file system partition for better security.

User Management and Authentication
No Authentication
The default ActiveMQ configuration does not offer any authentication and hence there are
no user credentials. This can be tested by reviewing the configuration file for absence of
simpleAuthenticationPlugin and jaasAuthenticationPlugin plug-ins.

During a black box penetration test, you can use the code snipped from Appendix A to check for
anonymous authentication or you can also consider using JMSDigger to check for the same.

Simple Authentication Plug-In
The simple authentication plug-in uses hardcoded username and passwords in the configuration
file and is confirmed by the presence of simpleAuthenticationPlugin child element in the
configuration along with the user credentials.

This plug-in must not be used since it cannot enforce account lockouts on repeated failed login
attempts and hence offers no protection against password brute force attacks.

Also, the only mechanism to change user passwords or disabling accounts is by directly editing the
configuration files.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 14

White Paper

JAAS Authentication Plug-In
jaasAuthenticationPlugin relies on user written JAAS plug-in to perform authentication
decisions. An insecurely written plug-in can expose ActiveMQ authentication to typical injection
vulnerabilities like SQL injection and LDAP injection among others as we will see in the data-
validation section below.

Account Lockout Testing
Please note that there is no mechanism to differentiate between simpleAuthenticationPlugin
and jaasAuthenticationPlugin from a black box perspective unless
jaasAuthenticationPlugin enforces account lockout on numerous failed login attempts. It is
recommended that account lockout testing be performed using the custom code in Appendix A or
by using JMSDigger.

Data Validation and Error Handling
Injection Attacks
ActiveMQ based applications may often rely on custom code to implement JAAS plug-in for
authentication, custom authorization code to perform message level authorization decisions, etc.

Insecurely written code can expose ActiveMQ authentication to typical injection vulnerabilities like
SQL injection and LDAP injection among others. The vulnerable implementations can be exploited to
bypass authentication and gain access to critical resources. You can also leverage JMSDigger to test
and fuzz custom authentication implementation to discover potential injection flaws.

The following image shows a SQL injection error in a JAAS module that uses MySQL for backend
database.

Figure 16. In the image, box 1 shows a regular authentication failure, box 2 shows SQL error indicating SQL injection vulnerability.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 15

White Paper

Attacking Other Clients
Messaging applications often have their clients written in different programming languages and
technologies. Insecurely written clients can be targeted to gain unauthorized access to other
organization systems or infrastructure. For example, buffer overflow vulnerability in a C/C++ based
messaging client can lead to remote command execution as depicted in the image below.

Client B (C/C++)Client A

Message
Broker

/bin/sh

Message Message

Figure 17. Command execution on a remote client via a message.

As discussed, messaging clients that consume messages from other clients can be exposed to
malicious attacks. One such example is when TextMessage is used to exchange XML data between
the clients.

When XML data is exchanged, failure to sanitize the XML and insecure XML parsing configuration
can lead to cross client attacks like XML Entity Expansion21 or XML External Entity Injection22 attacks.
Testers must keep an open eye for such scenarios.

Authorization
Destination Access
ActiveMQ does not allow JMS clients to connect to a Queue or Topic that they’re not authorized to
access. For each attempt to connect to Queues or Topics, the tester must ensure that connection
attempts are denied by the message broker.

A successful connection is indicative of missing or weak access controls. The configuration file must
also be reviewed for potentially weak authorization controls.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 16

White Paper

Exploitation
Once you have assessed Authorization controls and identified the vulnerabilities, the next step
will be to perform active exploitation where you will retrieve messages from Topic and/or Queues.
The availability of the JMS API with so many different messaging products allows developers to
quickly port their applications between different messaging providers, and this flexibility can also
be leveraged to write code for offensive purpose and target several messaging providers and
messaging applications. Let us now look at some of the exploitation techniques using JMS API.

Reading Queues with QueueBrowser
A JMS Queue removes a message once it is read by any of the queue receivers. A QueueBrowser can
be used to read messages from a Queue without removing them from the Queue and avoid being
detected. It also offers a consistent behavior across different types of JMS providers.

Steps to retrieve messages from a Queue with QueueBrowser:

1. Initialize the environment as per the JMS provider.

2. Create an InitialContext.

3. Obtain a ConnectionFactory via JNDI lookup.

4. Obtain the Queue object via JNDI lookup.

5. Use ConnectionFactory from step 3 to create a new Connection.

6. Use the Connection created in step 5 to create a new Session.

7. Use the Session from step 6 to create a QueueBrowser.

8. Start the Connection.

9. Obtain an enumeration from the QueueBrowser’s getEnumeration method.

10. Iterate over the enumeration and write all the messages to a local storage.

You can also use JMSDigger to achieve the same.

Retrieving Messages from Topics with TopicSubscriber
Reading messages off the JMS Topics is easier than retrieving them undetected from a QueueBrowser.
A JMS client can subscribe to a Topic and it will receive all messages addressed to the specific Topic
whenever it is connected to the message broker.

Steps to retrieve messages from a Topic using TopicSubscriber:

Part A

1. Initialize the environment as per the JMS provider (similar to brute force example above).

2. Create an InitialContext.

3. Obtain a ConnectionFactory via JNDI lookup.

4. Obtain the Topic object using JNDI lookup.

5. Use ConnectionFactory from step 3 to create a new Connection.

6. Use the Connection created in step 5 to create a new Session.

7. Use the Session from step 6 to create a TopicSubscriber.

8. Set the MessageListener for the TopicSubscriber.

9. Start the Connection.

Part B

10. Implement the MessageListener interface (onMessage method).

11. Code inside the onMessage method should write each method to a local storage.

You can use JMSDigger to achieve the same effect.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 17

White Paper

The example above was of a non-durable subscription that retrieves messages for as long
as its session is alive. Since you need to be connected to the message broker when you use
TopicSubscribers to read Topic contents, any active and live connections from unknown IP addresses
may be detected. Another approach of retrieving messages from JMS Topics is by using durable
subscriptions.

Retrieving Messages from Topics with Durable Subscribers
There is no need to have a live connection when using durable subscribers for message retrieval.
This helps us avoid detection.

Steps to retrieve messages from a Topic using durable subscribers:

1. Initialize the environment as per the JMS provider.

2. Create an InitialContext.

3. Obtain a ConnectionFactory object via JNDI lookup.

4. Obtain the Topic object via JNDI lookup.

5. Use ConnectionFactory from step 3 to create a new Connection.

6. Assign a client name to the Connection.

7. Use the Connection created from step 5 to create a new Session.

8. Use the Session from step 7 to create a “named” durable subscriber in context of a Topic
obtained in step 4.

9. Start the connection.

10. Perform synchronous reads for one message at a time and write them to local storage.

Steps 1 through 8 will create a new durable subscriber if the client ID and durable subscriber name
combination is not unique or else connect to an existing one. Steps 9 to 10 retrieve messages and
write them to local storage.

JMS does not enforce any restrictions on client ID usage or durable subscriber name, so it is possible
that ‘client A’ creates a durable subscriber and ‘client B’ (potentially malicious) reads data out of it.

Additional Durable Subscriber Attacks
You can cause a resource starvation Denial of Service by creating durable subscribers on message
broker with very high transactional loads and disconnecting from the message broker. The message
broker will then start accumulating messages until the durable subscriber is erased, messages expire,
or messages are read from it.

Additionally, it is possible to erase durable subscribers by spoofing the client ID and providing a
durable subscriber name to cause data loss for legitimate clients.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 18

White Paper

Retrieving Statistics for the Broker and its Destinations
ActiveMQ supports a statistics plug-in23 that can be used to retrieve metadata about the broker and
its destinations. This plug-in also supports wildcard characters that can retrieve information about
all the destinations in one go. Critical information obtained can then be leveraged to launch further
attacks on the broker and its destination. For example, broker statistics typically include system
name and ActiveMQ path as shown in the images below.

Figure 18. ActiveMQ broker statistics from a test instance using JMSDigger code.

Figure 19. Image shows TestQueue statistics retrieved using JMSDigger.

Dynamic Destinations
The JSR 914 specification suggests that JMS destinations are administered objects that can only
be created by system administrators and retrieved by the JMS clients with JNDI24 before use.
However, ActiveMQ deviates from the specification and allows dynamic destinations, which can be
programmatically created and then used by the JMS clients.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 19

White Paper

Such behavior can be leveraged to compromise the security of the message broker. For example:

1. A large number of destinations could be created to consume ActiveMQ resources and
potentially cause integrity and availability (resource consumption and Denial of Service)
issues.

2. Malicious destinations can be created on insecure brokers and then used for unauthorized
messaging, botnet C&C, and towards other end results.

JMSDigger―A GUI-Based JMS Assessment Tool
JMSDigger is a new GUI-based tool that can help security professionals engage and assess ActiveMQ
based JMS applications. It has the following features.

Generic JMS Operations
1. Anonymous authentication check.

2. Manual authentication check.

3. Automated credential brute force and fuzzing.

4. Retrieve messages from Topics, Queues, and durable subscribers.

5. Create new durable subscribers.

6. Erase existing durable subscribers.

ActiveMQ Specific Operations
1. Retrieve ActiveMQ broker and destination statistics.

2. Create new destinations (Topics or Queues).

3. ActiveMQ password decryption.

The two images below show a JMSDigger screenshot and example message retrieval from the test
application.

Figure 20. Image shows JMSDigger configuration check.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 20

White Paper

Figure 21. JMS destination’s StreamMessage dump with JMSDigger.

Conclusion
JMS Applications have been deployed far and wide and support several large organizations
worldwide. However, they have not been extensively explored for security issues. Penetration testers
are encouraged to review JMS API, familiarize themselves with message brokers of their choice, and
gain a deeper understanding of the technologies so they can help secure their applications.

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 21

White Paper

Appendix A
JMS API Based Anonymous Authentication Check

package com.mcafee;

import javax.jms.JMSSecurityException;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.naming.InitialContext;

import javax.jms.JMSException;

import java.util.Properties;

public class Bruteforce {

 public static void main(String... args) throws Exception{

 InitialContext ctx;

 String cfName = “ConnectionFactory”;

 Connection conn = null;

 ConnectionFactory cFact = null;

 // Prepare the environment

 Properties env = new Properties();

 // Edit the environment properties for different brokers

 env.setProperty(“java.naming.factory.initial”, “org.apache.activemq.
jndi.ActiveMQInitialContextFactory”);

 env.setProperty(“java.naming.provider.url”, “tcp://localhost:61616”);

 env.setProperty(“connectionFactoryNames”, cfName);

 // Create Initial Context

 ctx = new InitialContext(env);

 cFact = (ConnectionFactory) (ctx.lookup(cfName));

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 22

White Paper

 try {

 conn = cFact.createConnection(); // Attempts anonymous connection

 conn.start();

 //Control reaches here only if the connection is successful

 System.out.println(“Anonymous authentication supported”);

 System.exit(0);

 }

 catch(JMSException ex) {

 System.out.println(ex.getMessage());

 }

 br.close();

 }

}

JMS API Based Credential Brute Force Code
package com.mcafee;

import java.io.BufferedReader;

import java.io.FileReader;

import javax.jms.JMSSecurityException;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.naming.InitialContext;

import javax.jms.JMSException;

import java.util.Properties;

public class Bruteforce {

 public static void main(String... args) throws Exception{

 InitialContext ctx;

 // File with 1000 different passwords (each password in a new line)

 String filename = “1000Passwords.txt”;

 String password;

 String cfName = “ConnectionFactory”;

 Connection conn = null;

 ConnectionFactory cFact = null;

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 23

White Paper

 BufferedReader br = new BufferedReader(new FileReader(filename));

 // Prepare the environment

 Properties env = new Properties();

 // Edit the environment properties for different brokers

 env.setProperty(“java.naming.factory.initial”, “org.apache.activemq.
jndi.ActiveMQInitialContextFactory”);

 env.setProperty(“java.naming.provider.url”, “tcp://localhost:61616”);

 env.setProperty(“connectionFactoryNames”, cfName);

 // Create Initial Context

 ctx = new InitialContext(env);

 cFact = (ConnectionFactory) (ctx.lookup(cfName));

 while((password = br.readLine()) != null) {

 System.out.println(“Trying password => “ + password);

 try {

 conn = cFact.createConnection(“system”, password);

 // conn = cFact.createConnection(); Attempts anonymous
connection

 conn.start();

 //Control reaches here only if the connection is successful

 System.out.println(“Password found => “ + line);

 System.exit(0);

 }

 catch(JMSException ex) {

 System.out.println(ex.getMessage());

 }

 }

 br.close();

 }

}

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 24

White Paper

Example Password and Configuration File Decryption Code
The example Java class below accepts a list of passwords and one encrypted string from the
configuration file. It then tries to decrypt the encrypted string until it identifies the correct password
and returns it. Otherwise null is returned. All credentials can be extracted from the configuration file
once a correct password is guessed.

package com.mcafee;

import java.util.ArrayList;

import org.jasypt.encryption.pbe.StandardPBEStringEncryptor;

import org.jasypt.exceptions.EncryptionOperationNotPossibleException;

public class JmsPasswordOps {

 private ArrayList<String> passwords = new ArrayList<String>();

 private StandardPBEStringEncryptor encryptor = new
StandardPBEStringEncryptor();

 public void addPassword(String password) {

 if(password == null)

 throw new IllegalArgumentException(“Password cannot be null”);

 this.passwords.add(password);

 }

 public void addPasswordList(ArrayList<String> passwords) {

 if(passwords == null || passwords.size() == 0)

 throw new IllegalArgumentException(“Password ArrayList cannot be null or
of zero length”);

 for(String pass: passwords) {

 if(pass != null)

 this.passwords.add(pass);

 }

 }

A Pentesters Guide to Hacking ActiveMQ Based JMS Applications 25

White Paper

 public void clearPasswords() {

 passwords.clear();

 }

 public String decrypt(String encryptedText) throws JmsDiggerException {

 String result = null;

 if(encryptedText == null)

 throw new IllegalArgumentException(“Encrypted text cannot be null”);

 if(passwords.size() == 0)

 throw new IllegalArgumentException(“No password provided”);

 String pass;

 for(pass : passwords) {

 //New object is required for each decryption attempt

 encryptor = new StandardPBEStringEncryptor();

 try {

 encryptor.setPassword(pass);

 result = encryptor.decrypt(encryptedText);

 } catch (EncryptionOperationNotPossibleException ex) {

 //Absorb this to be able to run through a large number of passwords

 }

 }

 if(result == null)

 return null;

 return pass; // returns null if password could not be decrypted

 }

}

White Paper

McAfee. Part of Intel Security.
2821 Mission College Boulevard
Santa Clara, CA 95054
888 847 8766
www .intelsecurity .com

About The Author
Gursev Singh Kalra serves as a Senior Principal with McAfee Foundstone Professional Services, a
division of McAfee. Gursev has authored several security-related white papers and his research has
been voted among the top ten web hacking techniques of 2011 and 2012. He loves to code and has
authored several free security tools like JMSDigger, TesserCap, Oyedata, SSLSmart, and clipcaptcha. He
has spoken at conferences such as BlackHat, ToorCon, OWASP, NullCon, Infosec Southwest, and more.

About McAfee Foundstone Professional Services
McAfee Foundstone Professional Services, a division of McAfee, offers expert services and education
to help organizations continuously and measurably protect their most important assets from
the most critical threats. Through a strategic approach to security, McAfee Foundstone identifies
and implements the right balance of technology, people, and process to manage digital risk and
leverage security investments more effectively. The company’s professional services team consists
of recognized security experts and authors with broad security experience with multinational
corporations, the public sector, and the US military. http://www.mcafee.com/us/services/mcafee-
foundstone-practice.aspx

About McAfee
McAfee is now part of Intel® Security. With its Security Connected strategy, innovative approach
to hardware-enhanced security, and unique Global Threat Intelligence, Intel Security is intensely
focused on developing proactive, proven security solutions and services that protect systems,
networks, and mobile devices for business and personal use around the world. Intel Security
combines the experience and expertise of McAfee with the innovation and proven performance of
Intel to make security an essential ingredient in every architecture and on every computing platform.
Intel Security’s mission is to give everyone the confidence to live and work safely and securely in the
digital world. www.intelsecurity.com.

1. http://activemq.apache.org/
2. http://en.wikipedia.org/wiki/Java_Message_Service
3. http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
4. https://github.com/OpenSecurityResearch/jmsdigger
5. Java Messaging Service, O’Reilly Media
6. http://www.manning.com/snyder/
7. https://www.jcp.org/en/jsr/detail?id=914
8. http://en.wikipedia.org/wiki/SOAP
9. http://en.wikipedia.org/wiki/JSON
10. http://en.wikipedia.org/wiki/Java_Authentication_and_Authorization_Service
11. http://www.eclipse.org/jetty/
12. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-3060
13. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1880
14. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1879
15. http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-6092
16. http://en.wikipedia.org/wiki/Man-in-the-middle_attack
17. http://activemq.apache.org/how-do-i-use-ssl.html
18. http://www.wireshark.org/
19. http://www.jasypt.org/
20. http://www.openwall.com/john/
21. https://www.owasp.org/index.php/Testing_for_XML_Injection_(OWASP-DV-008)
22. http://projects.webappsec.org/w/page/13247003/XML External Entities
23. http://activemq.apache.org/statisticsplugin.html
24. http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

Intel and the Intel logo are registered trademarks of the Intel Corporation in the US and/or other countries. McAfee, the McAfee logo, and Foundstone
are registered trademarks or trademarks of McAfee, Inc. or its subsidiaries in the US and other countries. Other marks and brands may be claimed as the
property of others. The product plans, specifications and descriptions herein are provided for information only and subject to change without notice,
and are provided without warranty of any kind, express or implied. Copyright © 2014 McAfee, Inc. 61343wp_hacking-activeMQ_1014_fnl_ETMG

http://www.intelsecurity.com
http://www.mcafee.com/us/services/mcafee-foundstone-practice.aspx
http://www.mcafee.com/us/services/mcafee-foundstone-practice.aspx
http://www.intelsecurity.com
http://activemq.apache.org/
http://en.wikipedia.org/wiki/Java_Message_Service
http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html
https://github.com/OpenSecurityResearch/jmsdigger
http://www.manning.com/snyder/
https://www.jcp.org/en/jsr/detail?id=914
http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Java_Authentication_and_Authorization_Service
http://www.eclipse.org/jetty/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-3060
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1880
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1879
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-6092
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://activemq.apache.org/how-do-i-use-ssl.html
http://www.wireshark.org/
http://www.jasypt.org/
http://www.openwall.com/john/
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OWASP-DV-008)
http://projects.webappsec.org/w/page/13247003/XML External Entities
http://activemq.apache.org/statisticsplugin.html
http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

