
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 12, 351-366 (1982)

A Machine-Independent Linker”

CHRISTOPHER W. FRASER AND DAVID R. HANSON
Department of Computer Science, The University of Arizona, Tucson. Arizona 85721. U.S. A.

SUMMARY
Linkers, although a well-established component of language translation, are typically machine-
dependent, idiosyncratic, and hard for many users to understand. This paper describes a machine-
independent linker and object language. The linker embodies those linking functions that are machine-
independent and centralizes them in a single tool, simplifying compilers, assemblers, and loaders.
Included are descriptions of its operation, implementation, and application.

KEY WORDS Linkers Loaders Portability Code Generation Object Code

INTRODUCTION

For most high-level languages, translating source language programs into executable code
involves three steps: compiling, linking, and loading. Compilers translate source code to
object code or to assembly language that is assembled into object code. Linkers search libraries
and combine separately compiled object modules. Loaders translate object code into
executable form or simply load object code into memory in a form ready for execution.

Typical compilers, linkers, and loaders are machine-dependent. Many techniques for
compiler retargetting have been developed (c.f. References 1 and 2), but linkers, loaders, and
object languages remain highly machine-dependent and idiosyncratic. Even tutorial treatments
rely heavily on machine-specific example^.^-^ The UNIX~’’ and Thoth linking 10aders8’~ have
been ported to several architectures, but they achieve some of their portability because they are
ported with complete operating systems. This approach is not always available or even
desirable. For example, compiler researchers using a large shared computer with existing
software may be unwilling or unable to port an entire operating system but might benefit by
replacing just an awkward linker.

This paper shows one way to make linkers machine-independent by isolating the few
inherent machine-dependencies of linking and loading in a small loader. The attendant
generalizations simplify the implementation of typical linking operations. The design has
resulted in a precise separation of the machine-independent functions that can be performed by
a linker and the machine-dependent functions that must be performed by a loader. The
techniques are demonstrated by the machine-independent linker link, a 700-line Y i 0 program
that is a part of an emerging portable programming environment. Although link is used
primarily with Y, it can handle more widely known languages such as Fortran and Cobol and
newer languages such as Ada.” link attempts to distill the fundamentals of linking and
consequently lacks some of the more exotic capabilities often found in commercial linkers, such
as overlay management and report generation.

*This work was supported by the National Science Foundation under Grant MCS-7802545.

0038-0644/82/04035 1-1 6$01.60
@ 1982 by John Wiley & Sons, Ltd.

Received 9 September 1981
Revised 2 November I981

3 52 CHRISTOPHER W. FRASER AND DAVID R. HANSON

LINKING A N D LOADING

The terminology of linking and loading varies between systems. Definitions given in this
section appear to be common and show how link relates to traditional linkers.

Object code represents machine code in which addresses may have not been completely
bound and is typically the output of compilers and assemblers. Examples include ‘.o’ files on
the PDP-I 1 under U N I X , ‘TEXT’ files on the IBM 370 under CMS, ‘REL’files on the DEC-10,
‘relocatable’ files on the CDC Cyber, and ‘object’ files on the Eclipse under AOS. Many object
codes specify addresses assuming a starting location of 0 and include information indicating
which locations must be augmented to reflect the actual location of the program when loaded.

Executable code represents machine code ready for loading and execution by the operating
system. Typically, most or all addresses are bound. Examples include ‘EXE’ files on the DEC-
10, ‘absolute’ files on the CDC Cyber, and ‘core images’ on the Eclipse under AOS. On some
systems, executable code has the same format as object code. In other words, an executable file
is an object file in which most or all addresses have been bound. UNIX uses this convention, for
example.

Loading reads executable code into memory in preparation for execution. Because most
addresses have been bound, loaders need do little more than simple i /o , though some details of
this process may be extremely machine-specific. For example, some loaders must adjust
hardware paging and segmentation tables, and others must execute their last few instructions
from fixed memory locations to avoid being overwritten by the incoming program. Since
loaders are typically short but faced with accommodating hardware idiosyncracies, there is
little to be gained from trying to make them portable.

Linking resolves inter- and intra-module references and binds addresses. Almost all linkers
accept object code as input. Some linkers (e.g., Link-10 on the DEC-10 and the Cyber loader)
produce executable code, either in memory or in a file that may be loaded directly. Such
programs may be called ‘linking loaders’, ‘relocating loaders’, or ‘relative loaders’. Other
linkers (e.g., Linkage Editor on the IBM 370) produce an object file that may be re-linked. Such
programs may be called ‘link editors’ or ‘linkage editors’. Some linkers can operate in either
mode. For example, Id on the PDP-I 1 under U N I X and binder on the Eclipse under AOS can
produce an unlinkable executable file or a relinkable object file.

Most linkers provide some form of library searching in order to centralize commonly used
runtime routines. A library is a collection of ob’ect files in a form that permits identification of
individual files. An example is an ‘archive’ file whose members are object files. Another, less
common, example is a directory of object files.’ In this case, the members of the library are the
files in the directory, and ubiquitous file system tools may be used to manage libraries. Some
linkers also provide more comprehensive capabilities, such as overlay construction and
patching of object code.

link is a linkage editor. It accepts and produces a machine-independent object code.
Although the compilers, assemblers, and loaders that produce and accept link’s object code
may be machine-dependent, they can be simplified by having link perform many of the typical
machine-independent operations that they would otherwise have to perform themselves.
Examples of such operations, which are detailed in the following sections, are segment
coalescing and resolution of forward references.

11

THE OBJECT LANGUAGE

link is best introduced through samples of its input and output. link uses a machine-
independent object language consisting of lines of text. As described below, a conventional

A MACHINE-INDEPENDENT LINKER 353

binary format would do almost as well. Object code commands are interleaved with object
text-symbolic expressions whose values will, eventually, occupy some memory cell.7 The
following grammar defines the object file format.

file - line file I line

line - command I expression

command - .def identifier expression
.def -s identifier expression
.seg identifier
.org constant
./en identijiier constant

expression - expression expression operator
identifier
constant

operator - + I - 1 < I >

Identifiers consist of an arbitrary number of letters, digits, and several special characters, and
constants may be decimal, octal, hexadecimal, or textual. Expressions are given in postfix,
which avoids issues of precedence and simplifies processors such as loaders that read and
evaluate expressions. Since object code is produced only by translators, and since they
invariably analyze expressions anyway, the production of postfix is no hardship.

link makes no architectural assumptions about the data it manipulates. It has no concept of
‘word’ or addressable unit, and it is independent of word size, address size, and addressability
considerations. link’s shifting operations (< for left shift, > for right) permit relocatable
addresses to be placed at arbitrary positions within an expression, but translators typically find
it easiest to generate-and loaders typically find it easiest to load-expressions that denote as
many bits as are in an address. On the PDP-11, words and addresses are 16 bits, so link
expressions denote 16 bits. On the DEC-10, each half of a 36-bit DEC-10 word may be
relocated separately, so link expressions on the DEC-10 denote 18 bits, and loaders take two
adjacent lines of object text to fill one word. They shift the value of the first left 18 bits and add
the value of the second. The use of addition allows DEC-10 translators to avoid splitting large
non-relocatable constants. They generate a zero for the top half and the full 36 bits for the
bottom, and the loader obtains the proper value when it combines them. This technique is also
used to pack 15- and 30-bit instructions into the 60-bit words of the large CDC computers. link
expressions denote 15 bits, and 18-bit addresses correctly overflow from one half of the
instruction into the other. link expressions also handle encoded addresses. On the IBM 370,
instructions encode addresses using a 4-bit register index and a 1Zbit offset, so expressions
denote 16 bits. If the address lab is reached through base register 9, which is loaded with the
address base9, then it might be encoded as

lab base9 - #go00 + (,#’ flags a hex constant)

The ‘lab base9 -’ forms the offset, and the ‘#9000 +’ adds in the register index. Authors of
translators and loaders are free to assign different meanings to link expressions; those described

~~ ~

tThe input format resembles input to typical document formatters and other text processors. Indeed, it was first
implemented by extending a conventional macro processor, and it may be viewed as an object code formatter.

3 54 CHRISTOPHER W. FRASER A N D DAVID R. HANSON

above are just convenient for the machines indicated.
link could use a more conventional binary format, which would increase machine-

dependence and decrease processing time and object file size, though not so much as might be
expected. For example, link’s object files tend to be only slightly larger than equivalent files in
DEC-10 binary format. This is partly because the DEC-I0 object code is, like most object
codes, sub-optimal, and partly because text is sometimes shorter than a fixed binary code. For
example, link’s object code takes 14 bits to represent a half-word 1: seven bits for the character
‘1’ and seven bits for the line terminator. The DEC-10 binary format takes 19 bits for the same
datum: 18 bits for the half-word, and 1 bit for relocation flag. The binary code is superior for
longer constants, but the typical preponderance of small constants helps reduce the size of link
code.

A textual object code is also convenient for systems programmers. Many systems provide
special tools to display object files, to determine the size of the program in an object file, to
display or delete symbol tables, etc. With link code, compiler writers can view object code
directly, and many of the functions above can be performed by existing editors and text
processors. In addition, link’s object code has little impact on loader complexity, which is
dictated largely by the form of machine-dependent executable code. For example, the loader
for the DEC-I0 is about 150 lines of Y and 30 lines of assembly language.

Segments
seg commands divide the object text into segments. A segment is a block of object text to be

loaded into a contiguous block of memory. The command seg identifier causes link to start, or
resume, placing text in segment identuier. Intra- and inter-segment references are made by
referring to the base location for that segment, which is simply the name of the segment. link
accepts text for any number of segments, interleaved in any way. It outputs each segment as a
contiguous block of text. The ultimate location of each segment and the meanings of their
names may be machine-dependent and must be coordinated among the translators that
produce input for link and the loaders that read its output. For example, compilers might use
link to separate code from data on machines that support code sharing.

len commands specify segment lengths. link uses the len commands to adjust segment base
locations so that references are relocated to reflect the final location of the segment. For
example, consider two object files that contribute to segment code. If the first contributes 100
words, in processing the second link replaces code with code 100 +, to reflect the fact that the
contribution of the second comes after that of the first. link cannot determine lengths by
counting expressions because the width of each expression is not known. The len commands
are needed to convey this machine-dependent data.

org commands eventually cause the loader to place subsequent text at different locations in
the current segment, relative to the beginning of the object file in which the command appears.
They are typically used to skip over large, uninitialized blocks of data.

S y m bo Is

corresponding values, and then evaluates the expressions. For example,
def commands define symbols. link replaces defined symbols in expressions with their

.def stack data 75 +

defines ‘stack’to be cell 75 in the data segment. A subsequent line of object text

stack 1 +

A MACHINE-INDEPENDENT LINKER 355

will become

data 76 +

More precisely, link is driven by three sets of symbols: R is the set of symbols referenced in
the object code; D is the set of symbols whose values are defined in the object code; and S is the
set of symbols that identify segments. The set D is constructed by executing def commands,
references to symbols in expressions form R, and seg commands form S.

An object file for which R C D U S is said to be resolved. Given the locations of the
segments-the values of the symbols in S-a resolved file can be loaded and executed. An
unresolved object file references undefined symbols, sometimes called ‘external references’. link
combines unresolved object files into a single resolved object file, if possible. Note that linking
is an iterative process-an unresolved output file is a valid output from link. An object file for
which R U S C D is said to be absolute. It contains no undefined symbols, including segment
base locations. As a result, it must be loaded at a location compatible with the sets D and S
that resulted in its absolute status.

link also resolves references by searching libraries. It typically receives several file names
from the command that invoked it. Most object files are included in their entirety, modifying
the sets R, D and S accordingly. Specification of a library causes selective linking. A library
member is linked if and only if it contains a definition for any of the symbols in R - D - S, that
is, the current set of symbols that are referenced but not defined (and not a segment name). For
example, the UNIX-Style command

link a.o b.o -I fortran.lib

is a typical invocation of link specifying two object files and the Fortran runtime library.
Another example is

link c.0 d.o -I y.lib e.o -I fortran.lib

which links c.0 and d.0, searches the Y library, links e.0, and finally searches the Fortran
library.

Including a library member may modify the sets R, D and S. For archive-style libraries read
in one pass, the object files must appear in topological order according to inter-file references.
This restriction can be avoided by constructing an index or directory for the library as it is read.

output
link commands may appear in any order within input object files, although there must be at

least one len command for each segment. link arranges the input commands so that the output
object file has the following form.

.len commands

.def commands

.seg segment
(text for segment)

.seg segment
(text for segment)

I
I ...

k
k

This form permits the output to be loaded in one pass. len commands are placed at the
beginning of the output file because typically the length of all segments must be known before
any but the first can be loaded. def commands appear next so that all symbols can be defined

356 CHRISTOPHER W. FRASER AND DAVID R. HANSON

before they are used. def commands that included the -s option are suppressed; the next section
describes applications of this feature. The segments themselves appear last, sorted so that there
is no switching between segments, though there may be org commands skipping about inside
segments. Note that the output consists solely of object code, which may be used as an input to
a subsequent invocation of link.

Linking is not always necessary. Occasionally one encounters a program so simple that a
compiler directly produces a resolved file in which the segments appear as above. Such object
files can be loaded without processing by link.

APPLICATIONS

Some applications of link may not be immediately apparent, particularly those that simplify the
machine-independent and multiple-pass aspects of translation and loading. Compilers,
assemblers, and loaders that use link may focus on the machine-dependent aspects of
translation and can often avoid a 'last' pass. For instance, the emerging programming
environment of which link is a part has only one-pass compilers and no assembler.

Assembly
A popular approach to compiler implementation is to generate assembly language and let an

assembler produce the desired object code,I3 since generating assembly language is typically
much easier than generating object code. This organization is used in the C ~ompiler ," '~and in
several versions of the Y compiler. link's handling of symbols obviates the need for an
assembler without complicating the code generation process. Opcode mnemonics may be
defined as link symbols so that the output looks very much like assembly language, or is at least
as easy to generate. For example, the DEC-I0 assembly language for they expression

f(a + b, c)

where a, b, and c are integers and f is a procedure is

push 17,c ; push c onto argument stack
move 2,a ; load a
add 2,b ; compute a + b
push 17,2 ; push a + b
pushj 17,f ; call f
adjsp 17,-2 : remove arguments

The Fortran compiler generates similar code. The link code for the first instruction, which is
generated as 18-bit expressions, is

push 0740 + ; push c onto argument stack (0 flags an octal constant)
C

The position of the register specification on the DEC-10, while easy to generate, is difficult to
read. Symbolic names for the registers can be used to improve readability. In addition, opcode
definitions need not correspond to actual opcodes. For instance, the stack register (17 in the
above example) can be defined as a part of the various stack instructions. Assuming such

A MACHINE-INDEPENDENT LINKER 357

definitions, the link code becomes
push

move r2 +
a
add r2 +
b
push
02
pushj ; call f
f
adjsp ; remove arguments
0777776

; push c onto argument stack

; load a

; compute a + b

; push a + b

C

The use of definitions and link expressions to effect assembly is even more attractive on
computers with complex addressing modes for which instruction assembly is tedious. For
example, the PDP-I 1 assembly code for example above includes

mov @#c,-(sp)
mov @#a,r2 ; load a

jsr pc,@#f ; call f

; push c onto argument stack

...

The corresponding link code is

mov .A+ M+ sp+ ; push c onto argument stack
b

mov .A+ r2+
a

jsr .pc+ A+
f

; load a

...
; call f

...
The symbols A and M denote absolute and auto-decrement addressing modes, respectively, and
r2, sp, and pc denote registers. These symbols are defined for use in destination addresses, and
the corresponding symbols preceded by a period are for use in source addresses. Note that
these symbols may appear in any order. As for the DEC-10, opcodes that include addressing
modes can be defined. For example, on the PDP-I 1 if push is defined by the command

.def -s push mov M+ sp+

then

push .A+
b

can be generated for the first instruction in the example above.
Experience with the various Y compilers indicates that link code is as easy to generate as

assembly language and much easier than typical binary formats. On the DEC-10, for example,
the module for generating link code is 15 percent shorter than that for the assembly language
generator and 54 percent shorter than that for the DEC-10 binary object code generator.

3 58 CHRISTOPHER W. FRASER AND DAVID R. H A N S O N

Local Symbol Resolution
Typical linkers do not resolve local symbols because local symbols from separately compiled

modules may collide. Assemblers and compilers that use such linkers typically make an extra
pass to resolve local symbo1s.t Since link permits long symbol names, translators can get it to
resolve local symbols by adding codes to make their names unique.$ For example, the
following Y declarations

module stack
import print from “lib”
export push, pop to “lib”

integer sp
integer stacuMAXSTACK]

push(x)

end
POP0

...

...
end

end

identify symbols print, push, and pop as global and symbols sp and stack as local to the stack
module. The compiler leaves print, push, and pop alone, but prefixes the module name and an
underscore to every use of sp and stack in the object code, ensuring that they will not collide
with local symbols from other modules. For example, it translates the code above into

.seg data

.def -s stacksp data

.def -s stackstack data 01 +

.seg code

.def push code

.clef pop code 021 +

.len data 025

.len code 043

...

...

Another use of local symbols is for forward references. For example, typical code for

while (expression) statement

has the form

L1 jump to L2 if expression is false
statement
jump to L1

L2

t o n a few machines, a second assembly pass may be needed, but not to resolve locals. For example, on the IBM
one is needed to assemble basedisplacement addresses.
:A similar technique can be used to perform some limited type-checking.”

A MACHINE-INDEPENDENT LINKER 359

As an example, the loop

while (a < 0)
a = f(a, b)

in a module named stack results in the following DEC-I0 link code.

.def -s stackLl code 011 +
move r2 +
a
cail r2 +
0
jrst ; jump to L2
stackL2

j rst
stackLl
.def -s stackL2 code 022 +

; load a

; skip if a c 0

... code for a = f(a, b) ...
; jump to L1

In both of these examples, all references to local symbols are resolved by link, and since the
local symbols are defined using the -s option, definitions for them do not appear in the output
from link.

Another way to handle local symbols, typically used in machine-dependent linkers, is
‘backpatching’. The compiler inserts linker directives in the object code that instruct the linker
how to backpatch forward references. Directives typically specify address modifications to
various locations. While backpatching is not needed because of link’s handling of symbols, it
can be accomplished via the org command, permitting translators to generate link code that is
ready for loading.

Normally, expressions completely specify the contents of a location, e.g.

data 3 +

specifies that the value of the expression be placed in the current location. More precisely, after
evaluation the value at the top of the evaluation stack is placed in the current location.
However, link implicitly assumes that the current value of the current location is pushed onto
the evaluation stack prior to evaluation. Thus, an expression such as

code +

specifies that the value of code is to be added to the value in the current location. Backpatching
is accomplished by using an org command to get back to the desired location and an expression
that makes the desired modification. For example, consider the while statement given above.
Using backpatching, the link code is as follows. The numbers on the left represent locations in
the code segment.

location link code

01 1 move r2 + ; load a

01 2 cail r2 +

a

0
; skip if a c 0

360 CHRISTOPHER W. FRASER AND DAVID R. WANSON

013 jrst ; jump to L2
0
... code for a = f(a, b) ...

021 jrst ; jump to L1
code 011 +

.org 013

...

01 3 code 022 + + ; patch forward reference to L2
...

Note that backpatching for backward references (e.g. to L1) is unnecessary. While link permits
the specification of backpatching, it is the loader that ultimately implements it because only the
loader has the actual value and location.

Finally, another way to handle local symbols is to process the compiler output with link as
soon as it is generated. As a result, all local symbols are replaced by their values before further
linking with other modules, avoiding local name collision. The disadvantage of this approach
is, of course, the overhead of always using link for the last pass of the compiler.

Segment Switching
link’s ability to switch between segments also simplifies translators. A compiler can use

different segments for code, uninitialized static data, initialized data, and literals. Text can be
emitted into any segment at any time. It is easier to generate such code than it is to collect
literals and dump them at the end of the translation. link allows translators to interleave code,
data, and literals; it sorts the interleaved information. Indeed, link code is easier to generate
than assembly language for assemblers that lack such features, such as the uNIX assembler. For
instance, the typical DEC-10 translation of

print(“? stack full”)

is

.seg code
movei r2 +
stackL4
.seg lit
.def -s stackL4 lit 01 +

.seg code
push
02
pushj ; call print
print
adjsp ; remove argument
0777777

; load address of literal

; switch to literal segment

... code for the string ”? stack full” ...
; resume code segment
; push address of literal

and link produces

.seg code
movei r2 +
lit 01 +

; load address of literal

push
02
pushj
print
adjsp
0777777

.seg lit
...

... code for the string ”? stack full” ...

...

A MACHINE-INDEPENDENT LINKER

; push address of literal

; call print

; remove argument

361

By placing literals in a separate segment the actual area into which they are loaded can be
deferred until loading and need not be known by the compiler. For example, the Y compilers
generate code for three segments, code, data, and literals, even though on the DEC-10 the
literals are placed at the end of the code area, and on the PDP-11 they must be placed in the
data area.

Link-Time Binding
Symbol suppression and iterative linking can be used to obtain some unusual, but useful,

effects. An example is the reduction of so-called ‘name space congestion’-the proliferation of
global names-that often plagues large software systems, especially those fabricated from
numerous independent modules. This is accomplished by linking several modules together and
suppressing the definition of those global symbols that are no longer needed. The result is a
‘package’ that can be linked without fear of name collisions with those global symbols that were
used in its construction.

One example is the construction of a debugger. In this case, it is important that the global
symbols used within the debugger do not collide with those of the program with which it is
being used. When the debugger is linked, such symbols are simply suppressed, permitting it to
be linked with any program.

Another example is the construction of abstract data type packages. For instance, consider
the following four object files. istack.0 contains object code that implements an integer stack
abstraction, rstack.0 contains object code for a real stack abstraction, parse.0 contains an
expression parser that uses the integer stack, and eva1.o contains an expression evaluator that
uses the real stack. Both stacks are accessed via the three global functions init, push, and pop.
The apparent problem is that the use of two different kinds of stacks results in multiple
definitions for each operation. The solution is to view the program as only two abstractions-a
parser and an evaluator. This can be accomplished without modification of either stack
module by using symbol suppression and two iterations through link. An object file for the
parser abstraction is constructed by the command

link parser.0 istack.0 -s push -s init -s pop -0 parser.a

The -0 option specifies the output file. The -s options operate exactly like the -s option on def
commands and prevents definitions for the named symbols from appearing in the output file.
Since all references to the integer stack functions are within parser.0, the -s options result in the
omission of the operation names from parser.a. Similarly,

link eva1.o rstack.0 -s push -s init -s pop -0 eva1.a

362 CHRISTOPHER W. FRASER AND DAVID R. HANSON

constructs the evaluator. Linking parsera and eva1.a yields the final program:
link eva1.a parser.a -0 program

Since neither input file contains definitions or references to init, push, and pop, no name
collision can occur.

This kind of ‘information hiding’ capability is provided by several recent languages, e.g.
CLUI6 and Ada. Linking parser.0 and istack.0 to form parser.a is very similar to the
production of ‘packages’ in Ada, for example. link provides a mechanism for implementing
such capabilities in a machine-independent and, perhaps more importantly, a language-
independent fashion. Centralizing these kinds of features in tools like link makes these features
more widely available and simplifies the implementation of compilers for languages that must
provide them since they can simply run link to achieve the desired results.

Machine-Independent Cross Assembly and Linking
Since link is insensitive to the meaning of expressions within its object code, it can be used as

a cross assembler and linker. It can serve, for instance, as a linker for several targets other than
its host system, especially microprocessors that have poor linkers or lack them altogether.

As an example, link has been used to assemble and link code for the Motorola 6502
microprocessor. A Y code generator was written that ran on the PDP-11/70 and produced
assembly code for the 6502 in a form similar to that described at the beginning of this section.
link, also running on the PDP-11/70, was used to assemble and combine independently
compiled Y modules. Its output was then down-loaded to the 6502 and executed or saved.
Because link code for the 6502 is as easy to read as the regular assembly language, the runtime
support routines were hand-written in link code. This approach permitted link to output
resolved files, which required only a very simple loader running on the 6502. The end result
was the ability to produce relatively complex Y programs for a system that formerly offered
only assembly language and BASIC.

The ultimate target of link’s output need not be a real machine. link can, for example, link
object code for an abstract machine. Operations in the abstract machine language must be
represented as text expressions, which differ only syntactically from conventional abstract
machine languages. This capability is a step towards reconciling the conflicts between
modularity and portability. Because of the wide variations in linkers among system?,
modularity tends to complicate the installation of portable s o f t ~ a r e . ’ ~ ’ ’ ~ Indeed, installation of
a heavily modular system can be thwarted completely if the system was developed in an
environment with linking concepts that poorly match those in the target environment. Most
successful portability projects address this problem. BCPL, for example, has a mechanism for
runtime linking of separately compiled modules:’ and the entire macro implementation of
SNOBOL4 is distributed as a single monolithic m o d ~ l e . ’ ~ ’ ~ ’

Using link, a portable system can be developed in a modular fashion and distributed in a
monolithic fashion. For example, the portable version of the Y compiler, which generates code
for an abstract machine, consists of about 20 modules. Each of these modules can be compiled
separately producing object files of abstract machine code. link can combine these to produce a
single object file for the compiler. Instead of loading this file, it is translated to, say, assembly
language for the target system using typical abstract machine modelling techniques. Once
running, the compiler can be tuned to the target environment. Such tuning can be done with
the compiler in its modular form rather than in its distributed monolithic form. Similar
comments apply to other portable systems based on abstract machine modelling techniques,
such as the ‘P-code’ implementations of Pascal.

17

22

A MACHINE-INDEPENDENT LINKER 363

IMPLEMENTATION

link makes two passes over its input. The first pass reads the input object files and produces
several temporary files. The second pass reads the temporary files and produces the output
object file. The following two object files are used to illustrate the operation of each pass.

a.o b.o

.seg code

.def start code
0263 f +
.seg data
.def -s a l data
data 01 +

.org 06
code
.len code 01
.len data 07

.seg code

.def f code
0201 b-l +
.seg data
.def -s b-l data
start
.len code 01
.len data 01

File a.o defines global symbol start and local symbol al, and refers to external symbol f; b.o
defines global symbol f and local symbol b-I, and refers to external symbol start. Both files
contain text for two segments, code and data. In a.0, note the references within expressions in
the data segment to the base locations of the two segments. Subsequent discussion assumes
that these files are linked by the command

link b.o a.o -0 ba.0

The first pass distributes text into segment temporary files and builds the sets R, D, and S.
Figure I outlines the general operation of pass one. The temporary files aret

code .temp file data temp file

.seg code
0201 b-l +
.len code 01
.len data 01
0263 f +
Sen code 01
.len data 07

.seg data
start
.len code 01
.len data 01
data 01 +
.org 06
code
.len code 01
.len data 07

Note that len commands are not ‘executed’ until after an object file is processed. This permits
them to appear in any order, even before the segments as in link’s output. In addition, len
commands for all segments appear in each temporary file in order to correctly relocate inter-
segment references during the second pass. Finally, org commands specify offsets relative to
the base locations for the file in which they appear.

Libraries are searched when they are encountered in the command invoking link. Linking a
library member is exactly like linking an input object file, except that the selection of a member
is based on the current value of the set R.

~

tThe characters comprising a symbol do not actually appear in the temporary files; a pointer into the symbol table
is used. The symbol is used here for clarity.

3 64 CHRISTOPHER W. FRASER AND DAVID R. HANSON

for each input object file do {
for each segment id do set length;,/ to 0
for each line in the object file do

if line is .seg id then {
if id refers to a new segment then (

create temporary file for id
output ‘.seg id’ to the temporary file
set baseid and lengthid to 0
1

establish id as the current segment
1

else if line is .def id expr then

else if line is .def -S id expr then

else if line is .len id n then {

establish value of expr as definition of id

establish value of expr as ‘suppressed’ definition of id

if id refers to a new segment then {
create temporary file for id
output ‘.seg id’ to the temporary file
set baseid and lengthid to 0
1

increment lengthid by n
1

else if line is .org n then

else (
output ‘.org n’ to the current temp file

add symbols appearing in line to R
output line to the current temp file
I

for each segment id do

for each segment id1 do
increment baseid by lengthid

for each segment id2 do
output ‘.len id2 1ength;dI’ t o idl’s temp file‘

Figure 1. Operation of Pass One.

1

The second pass combines the text in the temporary files into the output file. One product of
the first pass is the final value of the set D. As the second pass reads the temporary files, it
evaluates expressions, and replaces symbols with their values. The operation of pass two is
sketched in Figure 2. The final result of linking b.o and a.o is ba.0:

.len code 02

.len data 010

.def start code 01 +

.def f code

.seg code
0201 data +
0263 code +
.seg data
code 01 +
data 02 +
.org 7
code 01 +

A MACHINE-INDEPENDENT LINKER 365

for each segment id do

for each symbol do
output ‘.len id base;,,’

if symbol is not ‘suppressed’ then
output def command for the symbol

for each segment id do {
for each segment id do

reset baseid to 0
for each line in ids temp file do

if line is .seg id then
output ‘.seg id’

else if line is .len id n then
increment baseid by n

else if line is .org n then
output ‘.org baseid + n’

else
output value of expression

1
Figure 2. Operation of Pass Two.

In the input to the second pass, org commands are processed so that their effect is relative to
the file in which they originally appeared. In the final output file, however, they are adjusted to
be relative to that file-the one in which they now appear.

link processes object text at approximately 200 lines per second on the DEC-10 and at 185
lines per second on a PDP-11/70 running UNIX. The implemention of link is straightforward,
although some care was taken in the symbol table and expression routines. Symbols are kept in
a hash table, and expressions are compiled into an intermediate form that avoids subsequent
table lookups and reduces space requirements. The first pass writes expressions to the
temporary files in this form. As a result of these techniques, the speeds mentioned above are
nearly independent of the number of symbol definitions and references.

CONCLUSIONS

link demonstrates the feasibility of a machine-independent object language and linker. While it
may be unlikely that the detailed aspects of object languages and linkers will ever be
standardized, functional standardization would be of significant benefit. Experience with link
suggests that functional standardization of linkers would simplify translators and loaders by
centralizing many of their machine-independent capabilities. Such standardization would
make these capabilities more useful, more widely available, and better understood.

ACKNOWLEDGEMENTS

The Y code generators for the PDP-11/70 and the Motorola 6502 were written by David
Weatherford and Bruce Conrad, respectively. The comments of Ralph Griswold and of the
referees were very helpful in presenting this work.

REFERENCES
1. S. C. Johnson, ‘A portable compiler: theory and practice’, Conference Record of the Fifih Annual

ACM Symposium on Principles of Programming Languages, 97-104 (I 978).
2. P. C. Poole, ‘Portable and adaptable compilers’, in Compiler Construction: An Advanced Course,

F. L. Bauer and J . Eickel (eds.), Springer-Verlag, New York, 1976,427-497.

366 CHRISTOPHER W. FRASER A N D DAVID R. HANSON

3. D. W. Barron, Assemblers and Loaders, 3rd edn., Elsevier North-Holland, New York, 1978.
4. R. M. Graham, Principles of Systems Programming, John Wileyand Sons, New York, 1975.
5. L. Presser and J. R. White, ‘Linkers and loaders’, Computing Surveys, 4, 149-167 (1972).
6. D. M. Ritchie and K. Thompson, ‘The U N I X timesharing system’, Communications of the ACM. 17,

7. S. C. Johnson and D. M. Ritchie, ‘Portability of C programs and the u N ~ X system’, Bell Swtem Tech.

8. D. R. Cheriton, M. A. Malcolm, L. S. Melen and G. R. Sager, ‘Thoth, a portable real-time operating
system’, Communications of the A C M , 22, 105-1 15 (1979).

9. G. R. Sager, The Thoth Linking Loader, Tech. Rep. CS-77-15, Dept. of Computer Science, Univ. of
Waterloo, Waterloo, 1977.

10. D. R. Hanson, ‘They programming language’, SIGPLA N Notices, 16,59-68 (1981).
1 1 . J. G. P. Barnes, ‘An overview of Ada’, Software-Practice and Experience, 10,85 1-887 (1980).
12. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, Reading, Mass., 1976.
13. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, Mass., 1977.
14. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice Hall, Englewood

Cliffs, New Jersey, 1978.
15. R. G. Hamlet, ‘High-level binding with low-level linkers’, Communications of’the A CM, 19,642-644

(1976).
16. B. H . Liskov, A. Snyder, R. Atkinson and C. Schaffert, ‘Abstraction mechanisms in CLU’,

Communications of the ACM, 20,564-576 (1977).
17. M. C. Newey, P. C. Poole and W. M. Waite, ‘Abstract machine modelling to produce portable

software-a review and evaluation’, Software-Practice and Experience, 2, 107-136 (1972).
18. F. C. Druseikis, ‘Influence of modularity on program portability’, Proceedings of the Europeun

Conference on Software Systems Engineering. London, 1976.
19. R. E. Griswold, ‘The macro implementation of SNOBOL4’, in Software Portability, An Advanced

Course, P. J. Brown (ed.), Cambridge University Press, London, 1977.
20. M. Richards, ‘The implementation of BCPL’, in Software Portability. An Advanced Course, P. J.

Brown (ed.), Cambridge University Press, London, 1977.
21. R. E. Griswold, The Macro Implementation of SNOBOL4; A Case Studv in Machine-Independent

Software Development, W. H. Freeman, San Francisco, 1972.
22. P. A. Nelson, ‘A comparison of PASCAL intermediate languages’, Proceedings of the SIGPLAN

Symposium on Compiler Construction, 208-2 13 (1979).

365-375 (1974).

J., 57, 202 1-2048 (1 978).

