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SUMMARY 
Linkers, although a well-established component of language translation, are typically machine- 
dependent, idiosyncratic, and hard for many users to understand. This paper describes a machine- 
independent linker and object language. The linker embodies those linking functions that are machine- 
independent and centralizes them in a single tool, simplifying compilers, assemblers, and loaders. 
Included are descriptions of its operation, implementation, and application. 

KEY WORDS Linkers Loaders Portability Code Generation Object Code 

INTRODUCTION 

For most high-level languages, translating source language programs into executable code 
involves three steps: compiling, linking, and loading. Compilers translate source code to 
object code or to assembly language that is assembled into object code. Linkers search libraries 
and combine separately compiled object modules. Loaders translate object code into 
executable form or simply load object code into memory in a form ready for execution. 

Typical compilers, linkers, and loaders are machine-dependent. Many techniques for 
compiler retargetting have been developed (c.f. References 1 and 2), but linkers, loaders, and 
object languages remain highly machine-dependent and idiosyncratic. Even tutorial treatments 
rely heavily on machine-specific  example^.^-^ The UNIX~’’  and Thoth linking 10aders8’~ have 
been ported to several architectures, but they achieve some of their portability because they are 
ported with complete operating systems. This approach is not always available or even 
desirable. For example, compiler researchers using a large shared computer with existing 
software may be unwilling or unable to port an entire operating system but might benefit by 
replacing just an awkward linker. 

This paper shows one way to make linkers machine-independent by isolating the few 
inherent machine-dependencies of linking and loading in a small loader. The attendant 
generalizations simplify the implementation of typical linking operations. The design has 
resulted in a precise separation of the machine-independent functions that can be performed by 
a linker and the machine-dependent functions that must be performed by a loader. The 
techniques are demonstrated by the machine-independent linker link, a 700-line Y i 0  program 
that is a part of an emerging portable programming environment. Although link is used 
primarily with Y, it can handle more widely known languages such as Fortran and Cobol and 
newer languages such as Ada.” link attempts to distill the fundamentals of linking and 
consequently lacks some of the more exotic capabilities often found in commercial linkers, such 
as overlay management and report generation. 
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LINKING A N D  LOADING 

The terminology of linking and loading varies between systems. Definitions given in this 
section appear to be common and show how link relates to  traditional linkers. 

Object code represents machine code in which addresses may have not been completely 
bound and is typically the output of compilers and assemblers. Examples include ‘.o’ files on 
the PDP-I 1 under U N I X ,  ‘TEXT’ files on the IBM 370 under CMS, ‘REL’files on the DEC-10, 
‘relocatable’ files on the CDC Cyber, and ‘object’ files on the Eclipse under AOS. Many object 
codes specify addresses assuming a starting location of 0 and include information indicating 
which locations must be augmented to  reflect the actual location of the program when loaded. 

Executable code represents machine code ready for loading and execution by the operating 
system. Typically, most or all addresses are bound. Examples include ‘EXE’ files on the DEC- 
10, ‘absolute’ files on the CDC Cyber, and ‘core images’ on the Eclipse under AOS. On some 
systems, executable code has the same format as object code. In other words, an executable file 
is an object file in which most or all addresses have been bound. UNIX uses this convention, for 
example. 

Loading reads executable code into memory in preparation for execution. Because most 
addresses have been bound, loaders need do little more than simple i /o ,  though some details of 
this process may be extremely machine-specific. For example, some loaders must adjust 
hardware paging and segmentation tables, and others must execute their last few instructions 
from fixed memory locations to avoid being overwritten by the incoming program. Since 
loaders are typically short but faced with accommodating hardware idiosyncracies, there is 
little to be gained from trying to  make them portable. 

Linking resolves inter- and intra-module references and binds addresses. Almost all linkers 
accept object code as input. Some linkers (e.g., Link-10 on the DEC-10 and the Cyber loader) 
produce executable code, either in memory or in a file that may be loaded directly. Such 
programs may be called ‘linking loaders’, ‘relocating loaders’, or ‘relative loaders’. Other 
linkers (e.g., Linkage Editor on the IBM 370) produce an object file that may be re-linked. Such 
programs may be called ‘link editors’ or ‘linkage editors’. Some linkers can operate in either 
mode. For example, Id on the PDP-I 1 under U N I X  and binder on the Eclipse under AOS can 
produce an unlinkable executable file or a relinkable object file. 

Most linkers provide some form of library searching in order to centralize commonly used 
runtime routines. A library is a collection of ob’ect files in a form that permits identification of 
individual files. An example is an ‘archive’ file whose members are object files. Another, less 
common, example is a directory of object files.’ In this case, the members of the library are the 
files in the directory, and ubiquitous file system tools may be used to manage libraries. Some 
linkers also provide more comprehensive capabilities, such as overlay construction and 
patching of object code. 

link is a linkage editor. It accepts and produces a machine-independent object code. 
Although the compilers, assemblers, and loaders that produce and accept link’s object code 
may be machine-dependent, they can be simplified by having link perform many of the typical 
machine-independent operations that they would otherwise have to  perform themselves. 
Examples of such operations, which are detailed in the following sections, are segment 
coalescing and resolution of forward references. 

11 

THE OBJECT LANGUAGE 

link is best introduced through samples of its input and output. link uses a machine- 
independent object language consisting of lines of text. As described below, a conventional 
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binary format would do almost as well. Object code commands are interleaved with object 
text-symbolic expressions whose values will, eventually, occupy some memory cell.7 The 
following grammar defines the object file format. 

file - line file I line 

line - command I expression 

command - .def identifier expression 
.def -s identifier expression 
.seg identifier 
.org constant 
./en identijiier constant 

expression - expression expression operator 
identifier 
constant 

operator - + I  - 1 < I  > 

Identifiers consist of an arbitrary number of letters, digits, and several special characters, and 
constants may be decimal, octal, hexadecimal, or textual. Expressions are given in postfix, 
which avoids issues of precedence and simplifies processors such as loaders that read and 
evaluate expressions. Since object code is produced only by translators, and since they 
invariably analyze expressions anyway, the production of postfix is no hardship. 

link makes no architectural assumptions about the data it manipulates. It has no concept of 
‘word’ or addressable unit, and it is independent of word size, address size, and addressability 
considerations. link’s shifting operations (< for left shift, > for right) permit relocatable 
addresses to be placed at arbitrary positions within an expression, but translators typically find 
it easiest to generate-and loaders typically find it easiest to load-expressions that denote as 
many bits as are in an address. On the PDP-11, words and addresses are 16 bits, so link 
expressions denote 16 bits. On the DEC-10, each half of a 36-bit DEC-10 word may be 
relocated separately, so link expressions on the DEC-10 denote 18 bits, and loaders take two 
adjacent lines of object text to fill one word. They shift the value of the first left 18 bits and add 
the value of the second. The use of addition allows DEC-10 translators to avoid splitting large 
non-relocatable constants. They generate a zero for the top half and the full 36 bits for the 
bottom, and the loader obtains the proper value when it combines them. This technique is also 
used to pack 15- and 30-bit instructions into the 60-bit words of the large CDC computers. link 
expressions denote 15 bits, and 18-bit addresses correctly overflow from one half of the 
instruction into the other. link expressions also handle encoded addresses. On the IBM 370, 
instructions encode addresses using a 4-bit register index and a 1Zbit offset, so expressions 
denote 16 bits. If the address lab is reached through base register 9, which is loaded with the 
address base9, then it might be encoded as 

lab base9 - #go00 + (,#’ flags a hex constant) 

The ‘lab base9 -’ forms the offset, and the ‘#9000 +’ adds in the register index. Authors of 
translators and loaders are free to assign different meanings to link expressions; those described 

~~ ~ 

tThe input format resembles input to typical document formatters and other text processors. Indeed, it was first 
implemented by extending a conventional macro processor, and it may be viewed as an object code formatter. 
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above are just convenient for the machines indicated. 
link could use a more conventional binary format, which would increase machine- 

dependence and decrease processing time and object file size, though not so much as might be 
expected. For example, link’s object files tend to be only slightly larger than equivalent files in 
DEC-10 binary format. This is partly because the DEC-I0 object code is, like most object 
codes, sub-optimal, and partly because text is sometimes shorter than a fixed binary code. For 
example, link’s object code takes 14 bits to represent a half-word 1: seven bits for the character 
‘1’ and seven bits for the line terminator. The DEC-10 binary format takes 19 bits for the same 
datum: 18 bits for the half-word, and 1 bit for relocation flag. The binary code is superior for 
longer constants, but the typical preponderance of small constants helps reduce the size of link 
code. 

A textual object code is also convenient for systems programmers. Many systems provide 
special tools to display object files, to determine the size of the program in an object file, to 
display or delete symbol tables, etc. With link code, compiler writers can view object code 
directly, and many of the functions above can be performed by existing editors and text 
processors. In addition, link’s object code has little impact on loader complexity, which is 
dictated largely by the form of machine-dependent executable code. For example, the loader 
for the DEC-I0 is about 150 lines of Y and 30 lines of assembly language. 

Segments 
seg commands divide the object text into segments. A segment is a block of object text to be 

loaded into a contiguous block of memory. The command seg identifier causes link to start, or 
resume, placing text in segment identuier. Intra- and inter-segment references are made by 
referring to the base location for that segment, which is simply the name of the segment. link 
accepts text for any number of segments, interleaved in any way. It outputs each segment as a 
contiguous block of text. The ultimate location of each segment and the meanings of their 
names may be machine-dependent and must be coordinated among the translators that 
produce input for link and the loaders that read its output. For example, compilers might use 
link to separate code from data on machines that support code sharing. 

len commands specify segment lengths. link uses the len commands to adjust segment base 
locations so that references are relocated to reflect the final location of the segment. For 
example, consider two object files that contribute to segment code. If the first contributes 100 
words, in processing the second link replaces code with code 100 +, to reflect the fact that the 
contribution of the second comes after that of the first. link cannot determine lengths by 
counting expressions because the width of each expression is not known. The len commands 
are needed to convey this machine-dependent data. 

org commands eventually cause the loader to place subsequent text at  different locations in 
the current segment, relative to the beginning of the object file in which the command appears. 
They are typically used to skip over large, uninitialized blocks of data. 

S y m bo Is 

corresponding values, and then evaluates the expressions. For example, 
def commands define symbols. link replaces defined symbols in expressions with their 

.def stack data 75 + 

defines ‘stack’to be cell 75 in the data segment. A subsequent line of object text 

stack 1 + 
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will become 

data 76 + 

More precisely, link is driven by three sets of symbols: R is the set of symbols referenced in 
the object code; D is the set of symbols whose values are defined in the object code; and S is the 
set of symbols that identify segments. The set D is constructed by executing def commands, 
references to symbols in expressions form R, and seg commands form S. 

An object file for which R C D U S is said to be resolved. Given the locations of the 
segments-the values of the symbols in S-a resolved file can be loaded and executed. An 
unresolved object file references undefined symbols, sometimes called ‘external references’. link 
combines unresolved object files into a single resolved object file, if possible. Note that linking 
is an iterative process-an unresolved output file is a valid output from link. An object file for 
which R U S C D is said to be absolute. It contains no undefined symbols, including segment 
base locations. As a result, it must be loaded at a location compatible with the sets D and S 
that resulted in its absolute status. 

link also resolves references by searching libraries. It typically receives several file names 
from the command that invoked it. Most object files are included in their entirety, modifying 
the sets R, D and S accordingly. Specification of a library causes selective linking. A library 
member is linked if and only if it contains a definition for any of the symbols in R - D - S, that 
is, the current set of symbols that are referenced but not defined (and not a segment name). For 
example, the UNIX-Style command 

link a.o b.o -I fortran.lib 

is a typical invocation of link specifying two object files and the Fortran runtime library. 
Another example is 

link c.0 d.o -I y.lib e.o -I fortran.lib 

which links c.0 and d.0, searches the Y library, links e.0, and finally searches the Fortran 
library. 

Including a library member may modify the sets R, D and S. For archive-style libraries read 
in one pass, the object files must appear in topological order according to inter-file references. 
This restriction can be avoided by constructing an index or directory for the library as it is read. 

output 
link commands may appear in any order within input object files, although there must be at 

least one len command for each segment. link arranges the input commands so that the output 
object file has the following form. 

.len commands 

.def commands 

.seg segment 
(text for segment ) 

.seg segment 
(text for segment ) 

I 
I ... 

k 
k 

This form permits the output to be loaded in one pass. len commands are placed at  the 
beginning of the output file because typically the length of all segments must be known before 
any but the first can be loaded. def commands appear next so that all symbols can be defined 
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before they are used. def commands that included the -s option are suppressed; the next section 
describes applications of this feature. The segments themselves appear last, sorted so that there 
is no switching between segments, though there may be org commands skipping about inside 
segments. Note that the output consists solely of object code, which may be used as an input to 
a subsequent invocation of link. 

Linking is not always necessary. Occasionally one encounters a program so simple that a 
compiler directly produces a resolved file in which the segments appear as above. Such object 
files can be loaded without processing by link. 

APPLICATIONS 

Some applications of link may not be immediately apparent, particularly those that simplify the 
machine-independent and multiple-pass aspects of translation and loading. Compilers, 
assemblers, and loaders that use link may focus on the machine-dependent aspects of 
translation and can often avoid a 'last' pass. For instance, the emerging programming 
environment of which link is a part has only one-pass compilers and no assembler. 

Assembly 
A popular approach to compiler implementation is to generate assembly language and let an 

assembler produce the desired object code,I3 since generating assembly language is typically 
much easier than generating object code. This organization is used in the C ~ompiler ," '~and in 
several versions of the Y compiler. link's handling of symbols obviates the need for an 
assembler without complicating the code generation process. Opcode mnemonics may be 
defined as link symbols so that the output looks very much like assembly language, or is at least 
as easy to generate. For example, the DEC-I0 assembly language for they expression 

f(a + b, c )  

where a, b, and c are integers and f is a procedure is 

push 17,c ; push c onto argument stack 
move 2,a ; load a 
add 2,b ; compute a + b 
push 17,2 ; push a + b 
pushj 17,f ; call f 
adjsp 17,-2 : remove arguments 

The Fortran compiler generates similar code. The link code for the first instruction, which is 
generated as 18-bit expressions, is 

push 0740 + ; push c onto argument stack (0 flags an octal constant) 
C 

The position of the register specification on the DEC-10, while easy to generate, is difficult to 
read. Symbolic names for the registers can be used to improve readability. In addition, opcode 
definitions need not correspond to actual opcodes. For instance, the stack register (17 in the 
above example) can be defined as a part of the various stack instructions. Assuming such 
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definitions, the link code becomes 
push 

move r2 + 
a 
add r2 + 
b 
push 
02 
pushj ; call f 
f 
adjsp ; remove arguments 
0777776 

; push c onto argument stack 

; load a 

; compute a + b 

; push a + b 

C 

The use of definitions and link expressions to effect assembly is even more attractive on 
computers with complex addressing modes for which instruction assembly is tedious. For 
example, the PDP-I 1 assembly code for example above includes 

mov @#c,-(sp) 
mov @#a,r2 ; load a 

jsr pc,@#f ; call f 

; push c onto argument stack 

... 

The corresponding link code is 

mov .A+ M+ sp+ ; push c onto argument stack 
b 

mov .A+ r2+ 
a 

jsr .pc+ A+ 
f 

; load a 

... 
; call f 

... 
The symbols A and M denote absolute and auto-decrement addressing modes, respectively, and 
r2, sp, and pc denote registers. These symbols are defined for use in destination addresses, and 
the corresponding symbols preceded by a period are for use in source addresses. Note that 
these symbols may appear in any order. As for the DEC-10, opcodes that include addressing 
modes can be defined. For example, on the PDP-I 1 if push is defined by the command 

.def -s push mov M+ sp+ 

then 

push .A+ 
b 

can be generated for the first instruction in the example above. 
Experience with the various Y compilers indicates that link code is as easy to generate as 

assembly language and much easier than typical binary formats. On the DEC-10, for example, 
the module for generating link code is 15 percent shorter than that for the assembly language 
generator and 54 percent shorter than that for the DEC-10 binary object code generator. 
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Local Symbol Resolution 
Typical linkers do not resolve local symbols because local symbols from separately compiled 

modules may collide. Assemblers and compilers that use such linkers typically make an extra 
pass to resolve local symbo1s.t Since link permits long symbol names, translators can get it to 
resolve local symbols by adding codes to make their names unique.$ For example, the 
following Y declarations 

module stack 
import print from “lib” 
export push, pop to “lib” 

integer sp 
integer stacuMAXSTACK] 

push(x) 

end 
POP0 

... 

... 
end 

end 

identify symbols print, push, and pop as global and symbols sp and stack as local to the stack 
module. The compiler leaves print, push, and pop alone, but prefixes the module name and an 
underscore to every use of sp and stack in the object code, ensuring that they will not collide 
with local symbols from other modules. For example, it translates the code above into 

.seg data 

.def -s stacksp data 

.def -s stackstack data 01 + 

.seg code 

.def push code 

.clef pop code 021 + 

.len data 025 

.len code 043 

... 

... 

Another use of local symbols is for forward references. For example, typical code for 

while ( expression ) statement 

has the form 

L1 jump to L2 if expression is false 
statement 
jump to L1 

L2 

t o n  a few machines, a second assembly pass may be needed, but not to resolve locals. For example, on the IBM 
one is needed to assemble basedisplacement addresses. 
:A similar technique can be used to perform some limited type-checking.” 
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As an example, the loop 

while (a < 0) 
a = f(a, b) 

in a module named stack results in the following DEC-I0 link code. 

.def -s stackLl  code 011 + 
move r2 + 
a 
cail r2 + 
0 
jrst ; jump to L2 
stackL2 

j rst 
stackLl 
.def -s stackL2 code 022 + 

; load a 

; skip if a c 0 

... code for a = f(a, b) ... 
; jump to L1 

In both of these examples, all references to local symbols are resolved by link, and since the 
local symbols are defined using the -s option, definitions for them do  not appear in the output 
from link. 

Another way to handle local symbols, typically used in machine-dependent linkers, is 
‘backpatching’. The compiler inserts linker directives in the object code that instruct the linker 
how to backpatch forward references. Directives typically specify address modifications to 
various locations. While backpatching is not needed because of link’s handling of symbols, it 
can be accomplished via the org command, permitting translators to generate link code that is 
ready for loading. 

Normally, expressions completely specify the contents of a location, e.g. 

data 3 + 

specifies that the value of the expression be placed in the current location. More precisely, after 
evaluation the value at  the top of the evaluation stack is placed in the current location. 
However, link implicitly assumes that the current value of the current location is pushed onto 
the evaluation stack prior to evaluation. Thus, an expression such as 

code + 

specifies that the value of code is to be added to the value in the current location. Backpatching 
is accomplished by using an org command to get back to the desired location and an expression 
that makes the desired modification. For example, consider the while statement given above. 
Using backpatching, the link code is as follows. The numbers on the left represent locations in 
the code segment. 

location link code 

01 1 move r2 + ; load a 

01 2 cail r2 + 

a 

0 
; skip if a c 0 
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013 jrst ; jump to L2 
0 
... code for a = f(a, b) ... 

021 jrst ; jump to L1 
code 011 + 

.org 013 

... 

01 3 code 022 + + ; patch forward reference to L2 
... 

Note that backpatching for backward references (e.g. to L1) is unnecessary. While link permits 
the specification of backpatching, it is the loader that ultimately implements it because only the 
loader has the actual value and location. 

Finally, another way to handle local symbols is to process the compiler output with link as 
soon as it is generated. As a result, all local symbols are replaced by their values before further 
linking with other modules, avoiding local name collision. The disadvantage of this approach 
is, of course, the overhead of always using link for the last pass of the compiler. 

Segment Switching 
link’s ability to switch between segments also simplifies translators. A compiler can use 

different segments for code, uninitialized static data, initialized data, and literals. Text can be 
emitted into any segment at any time. It is easier to generate such code than it is to collect 
literals and dump them at the end of the translation. link allows translators to interleave code, 
data, and literals; it sorts the interleaved information. Indeed, link code is easier to generate 
than assembly language for assemblers that lack such features, such as the uNIX assembler. For 
instance, the typical DEC-10 translation of 

print(“? stack full”) 

is 

.seg code 
movei r2 + 
stackL4 
.seg lit 
.def -s stackL4 lit 01 + 

.seg code 
push 
02 
pushj ; call print 
print 
adjsp ; remove argument 
0777777 

; load address of literal 

; switch to literal segment 

... code for the string ”? stack full” ... 
; resume code segment 
; push address of literal 

and link produces 

.seg code 
movei r2 + 
lit 01 + 

; load address of literal 



push 
02 
pushj 
print 
adjsp 
0777777 

.seg lit 
... 

... code for the string ”? stack full” ... 

... 
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; push address of literal 

; call print 

; remove argument 

361 

By placing literals in a separate segment the actual area into which they are loaded can be 
deferred until loading and need not be known by the compiler. For example, the Y compilers 
generate code for three segments, code, data, and literals, even though on the DEC-10 the 
literals are placed at the end of the code area, and on the PDP-11 they must be placed in the 
data area. 

Link-Time Binding 
Symbol suppression and iterative linking can be used to obtain some unusual, but useful, 

effects. An example is the reduction of so-called ‘name space congestion’-the proliferation of 
global names-that often plagues large software systems, especially those fabricated from 
numerous independent modules. This is accomplished by linking several modules together and 
suppressing the definition of those global symbols that are no longer needed. The result is a 
‘package’ that can be linked without fear of name collisions with those global symbols that were 
used in its construction. 

One example is the construction of a debugger. In this case, it is important that the global 
symbols used within the debugger do not collide with those of the program with which it is 
being used. When the debugger is linked, such symbols are simply suppressed, permitting it to 
be linked with any program. 

Another example is the construction of abstract data type packages. For instance, consider 
the following four object files. istack.0 contains object code that implements an integer stack 
abstraction, rstack.0 contains object code for a real stack abstraction, parse.0 contains an 
expression parser that uses the integer stack, and eva1.o contains an expression evaluator that 
uses the real stack. Both stacks are accessed via the three global functions init, push, and pop. 
The apparent problem is that the use of two different kinds of stacks results in multiple 
definitions for each operation. The solution is to view the program as only two abstractions-a 
parser and an evaluator. This can be accomplished without modification of either stack 
module by using symbol suppression and two iterations through link. An object file for the 
parser abstraction is constructed by the command 

link parser.0 istack.0 -s push -s init -s pop -0 parser.a 

The -0 option specifies the output file. The -s options operate exactly like the -s option on def 
commands and prevents definitions for the named symbols from appearing in the output file. 
Since all references to the integer stack functions are within parser.0, the -s options result in the 
omission of the operation names from parser.a. Similarly, 

link eva1.o rstack.0 -s push -s init -s pop -0 eva1.a 
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constructs the evaluator. Linking parsera and eva1.a yields the final program: 
link eva1.a parser.a -0 program 

Since neither input file contains definitions or references to init, push, and pop, no name 
collision can occur. 

This kind of ‘information hiding’ capability is provided by several recent languages, e.g. 
CLUI6 and Ada. Linking parser.0 and istack.0 to form parser.a is very similar to  the 
production of ‘packages’ in Ada, for example. link provides a mechanism for implementing 
such capabilities in a machine-independent and, perhaps more importantly, a language- 
independent fashion. Centralizing these kinds of features in tools like link makes these features 
more widely available and simplifies the implementation of compilers for languages that must 
provide them since they can simply run link to achieve the desired results. 

Machine-Independent Cross Assembly and Linking 
Since link is insensitive to the meaning of expressions within its object code, it can be used as 

a cross assembler and linker. It can serve, for instance, as a linker for several targets other than 
its host system, especially microprocessors that have poor linkers or lack them altogether. 

As an example, link has been used to assemble and link code for the Motorola 6502 
microprocessor. A Y code generator was written that ran on the PDP-11/70 and produced 
assembly code for the 6502 in a form similar to that described at the beginning of this section. 
link, also running on the PDP-11/70, was used to assemble and combine independently 
compiled Y modules. Its output was then down-loaded to the 6502 and executed or saved. 
Because link code for the 6502 is as easy to read as the regular assembly language, the runtime 
support routines were hand-written in link code. This approach permitted link to output 
resolved files, which required only a very simple loader running on the 6502. The end result 
was the ability to produce relatively complex Y programs for a system that formerly offered 
only assembly language and BASIC. 

The ultimate target of link’s output need not be a real machine. link can, for example, link 
object code for an abstract machine. Operations in the abstract machine language must be 
represented as text expressions, which differ only syntactically from conventional abstract 
machine languages. This capability is a step towards reconciling the conflicts between 
modularity and portability. Because of the wide variations in linkers among system?, 
modularity tends to complicate the installation of portable s o f t ~ a r e . ’ ~ ’ ’ ~  Indeed, installation of 
a heavily modular system can be thwarted completely if the system was developed in an 
environment with linking concepts that poorly match those in the target environment. Most 
successful portability projects address this problem. BCPL, for example, has a mechanism for 
runtime linking of separately compiled modules:’ and the entire macro implementation of 
SNOBOL4 is distributed as a single monolithic m o d ~ l e . ’ ~ ’ ~ ’  

Using link, a portable system can be developed in a modular fashion and distributed in a 
monolithic fashion. For example, the portable version of the Y compiler, which generates code 
for an abstract machine, consists of about 20 modules. Each of these modules can be compiled 
separately producing object files of abstract machine code. link can combine these to produce a 
single object file for the compiler. Instead of loading this file, it is translated to, say, assembly 
language for the target system using typical abstract machine modelling techniques. Once 
running, the compiler can be tuned to the target environment. Such tuning can be done with 
the compiler in its modular form rather than in its distributed monolithic form. Similar 
comments apply to other portable systems based on abstract machine modelling techniques, 
such as the ‘P-code’ implementations of Pascal. 

17 
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IMPLEMENTATION 

link makes two passes over its input. The first pass reads the input object files and produces 
several temporary files. The second pass reads the temporary files and produces the output 
object file. The following two object files are used to illustrate the operation of each pass. 

a.o b.o 

.seg code 

.def start code 
0263 f + 
.seg data 
.def -s a l  data 
data 01 + 

.org 06 
code 
.len code 01 
.len data 07 

.seg code 

.def f code 
0201 b-l + 
.seg data 
.def -s b-l data 
start 
.len code 01 
.len data 01 

File a.o defines global symbol start and local symbol al, and refers to  external symbol f; b.o 
defines global symbol f and local symbol b-I, and refers to external symbol start. Both files 
contain text for two segments, code and data. In a.0, note the references within expressions in 
the data segment to the base locations of the two segments. Subsequent discussion assumes 
that these files are linked by the command 

link b.o a.o -0 ba.0 

The first pass distributes text into segment temporary files and builds the sets R, D, and S. 
Figure I outlines the general operation of pass one. The temporary files aret 

code .temp file data temp file 

.seg code 
0201 b-l + 
.len code 01 
.len data 01 
0263 f + 
Sen code 01 
.len data 07 

.seg data 
start 
.len code 01 
.len data 01 
data 01 + 
.org 06 
code 
.len code 01 
.len data 07 

Note that len commands are not ‘executed’ until after an object file is processed. This permits 
them to appear in any order, even before the segments as in link’s output. In addition, len 
commands for all segments appear in each temporary file in order to correctly relocate inter- 
segment references during the second pass. Finally, org commands specify offsets relative to 
the base locations for the file in which they appear. 

Libraries are searched when they are encountered in the command invoking link. Linking a 
library member is exactly like linking an input object file, except that the selection of a member 
is based on the current value of the set R. 

~ 

tThe characters comprising a symbol do not actually appear in the temporary files; a pointer into the symbol table 
is used. The symbol is used here for clarity. 
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for each input object file do { 
for each segment id do set length;,/ to  0 
for each line in the object file do 

if line is .seg id then { 
if id refers to a new segment then ( 

create temporary file for id 
output ‘.seg id’ to  the temporary file 
set baseid and lengthid to 0 
1 

establish id as the current segment 
1 

else if line is .def id expr then 

else if line is .def -S id expr then 

else if line is .len id n then { 

establish value of expr as definition of id 

establish value of expr as ‘suppressed’ definition of id 

if id refers to a new segment then { 
create temporary file for id 
output ‘.seg id’ to  the temporary file 
set baseid and lengthid to  0 
1 

increment lengthid by n 
1 

else if line is .org n then 

else ( 
output ‘.org n’ to the current temp file 

add symbols appearing in line to R 
output line to  the current temp file 
I 

for each segment id do 

for each segment id1 do 
increment baseid by lengthid 

for each segment id2 do 
output ‘.len id2 1ength;dI’ t o  idl’s temp file‘ 

Figure 1. Operation of Pass One. 

1 

The second pass combines the text in the temporary files into the output file. One product of 
the first pass is the final value of the set D. As the second pass reads the temporary files, it 
evaluates expressions, and replaces symbols with their values. The operation of pass two is 
sketched in Figure 2. The final result of linking b.o and a.o is ba.0: 

.len code 02 

.len data 010 

.def start code 01 + 

.def f code 

.seg code 
0201 data + 
0263 code + 
.seg data 
code 01 + 
data 02 + 
.org 7 
code 01 + 
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for each segment id do 

for each symbol do 
output ‘.len id base;,,’ 

if symbol is not ‘suppressed’ then 
output def command for the symbol 

for each segment id do { 
for each segment id do 

reset baseid to 0 
for each line in ids  temp file do 

if line is .seg id then 
output ‘.seg id’ 

else if line is .len id n then 
increment baseid by n 

else if line is .org n then 
output ‘.org baseid + n’ 

else 
output value of expression 

1 
Figure 2. Operation of Pass Two. 

In the input to  the second pass, org commands are processed so that their effect is relative to  
the file in which they originally appeared. In the final output file, however, they are adjusted to  
be relative to  that file-the one in which they now appear. 

link processes object text at approximately 200 lines per second on the DEC-10 and at 185 
lines per second on a PDP-11/70 running UNIX. The implemention of link is straightforward, 
although some care was taken in the symbol table and expression routines. Symbols are kept in 
a hash table, and expressions are compiled into an intermediate form that avoids subsequent 
table lookups and reduces space requirements. The first pass writes expressions to the 
temporary files in this form. As a result of these techniques, the speeds mentioned above are 
nearly independent of the number of symbol definitions and references. 

CONCLUSIONS 

link demonstrates the feasibility of a machine-independent object language and linker. While it 
may be unlikely that the detailed aspects of object languages and linkers will ever be 
standardized, functional standardization would be of significant benefit. Experience with link 
suggests that functional standardization of linkers would simplify translators and loaders by 
centralizing many of their machine-independent capabilities. Such standardization would 
make these capabilities more useful, more widely available, and better understood. 
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