
 

  
 

Demonsaw is a new type of message and data transfer application that’s secure, anonymous, free, and everywhere.  It’s 

designed to protect our anonymity and hide what we’re sharing.  Unlike traditional P2P networks, our IP addresses are 

never revealed to the world.  Demonsaw is wrapped in multiple layers of user-derived cryptographic algorithms based 

on a new and modern security model called, Social Encryption.  We can share whatever we want, with whomever we 

want, without fear or consequences.  Safeguarding our privacy and protecting our Right to Share are the primary goals 

of demonsaw. 

A History of Data Sharing 
Every data sharing application in the past 45+ years has had 3 common elements: the ability to share data, the ability to 

control program flow, and the ability to transfer data.  Demonsaw is different from other data sharing applications 

because it breaks up these different abilities into separate network components that act independently.  By doing this, 

demonsaw creates secure layers of abstraction that completely secures our data sharing. 

How Does It Work? 
Demonsaw encrypts all messages in multiple layers of crypto.  All encryption keys used within demonsaw are generated 

at runtime and never sent over the network.  This means that clients on a demonsaw network only have to trust 

themselves – there are no network nodes with “authority” that can be compromised by corporate or government 

agencies. 

 

A demonsaw network is defined by multiple clients and router(s).  A client can belong to 1:N groups, each of which has a 

unique cryptographic signature that all members of the group must possess.  Social Encryption is “the art of hiding our 

secrets within the fabric of social interaction”, and allows clients of a given group to derive the same encryption keys by 

shared and contextual knowledge.  In demonsaw all clients of a given group will derive the same encryption keys 

because they all reference the same image on their computer.  In demonsaw 2.0 this security model is extended to any 

number of locally or online accessible URI’s.  

Routers on a demonsaw network can either route messages, data, or both.  Message routers perform very light-weight 

client synchronization duties and are responsible for grouping clients and managing their session lifetimes.  Message 

routers know nothing about what data is being shared, transferred, etc.  Data routers provide the conduits through 

which clients will upload or download data packets in real-time.  Data routers never cache data chunks nor even know 

what the chunks of data contain – like message routers, data routers are completely oblivious to the underlying contents 

of the data being transferred. 



This model of message/data separation within demonsaw is very intentional and results in a layered security model that 

prevents any node in the network from being able to discern what a client is transferring.  By physically and logically 

separating the message and data routing components we achieve a heightened level of security not found in other 

secure message and data transfer networks.  In fact, not even clients within the same group are able to know who is 

sharing what. 

 

Controlling Program Flow 
Message routers are the initial contact points for all clients who want to participate in a given group (a.k.a. demonsaw 

network).  Message routers group clients, manage sessions, and control program flow.  Message routers have no 

visibility into what the clients in the network are doing, including data transfers.  Even if the message router were to be 

compromised by a rogue agency, it would still be blind to the client-to-client communications unless it also 

compromised one of the clients as well.  By using HTTPS, instead of HTTP as our message conduit, we can even prevent 

Deep Packet Inspection (DPI) attacks.  Note that HTTPS support is one of the many features on the demonsaw roadmap. 

 

Message routers can be hosted on homes or offices to help minimize the chance of compromise by rogue agencies.  By 

design, message routers can run on very low-power devices, like the Raspberry Pi.  Being able to host an entire secure 

message and data transfer network on a $35 computer is very appealing to lot of people. 

 

In demonsaw 2.0 (available in 3 months) message routers will be able to trust each other, meaning that groups can be 

aggregated cross-routers to create very large universal groups.  This will provide a fault-tolerant network in the event 

that some of the message routers are shutdown.  Imagine what appears to be a demonsaw network of 10 million clients 

that’s aggregated across 10,000 Raspberry Pi devices spread throughout the world.  The potential for such a secure 

message and data transfer scenario is unbounded. 

HTTP

Message

Data

· Session
· Method (‘POST’)
· Version (‘HTTP/1.1’)
· Resource (‘/’)
· Header Parameters

Security
· Passphrase/Session Key

JSON
· Header
· Message
· Data

JSON Header
· Version
· Nonce
· Session

JSON Message
· Id
· Type
· Action
· Delay

JSON Data
· Encrypted Blob (Group Key)

Security
· Group Key

JSON
· Objects
· Raw Data

e.g. Search
· Keyword
· Filter(s)

e.g. Transfer Request
· Id
· Size
· Chunk



Data Transfer 
Message routers can be configured to route clients to 1:N data routers.   

 

Data routers receive data from uploading clients and hand these out to downloading clients.  There is no direct 

interaction between the uploaders and downloaders.  By separating the physical devices that perform message and data 

routing, we achieve a heightened degree of security not found in any other secure message and data transfer network.  

This architectural separation also allows us to scale horizontally to meet the emerging performance needs of the 

network.  We can independently add new data routers irrespective of the total number of clients attached to the 

network.  Like message routers, data routers can be added or removed from the network without compromising the 

integrity or availability of the network.  This gives us flexibility and natural fault tolerance to resist attack from rogue 

agencies. 

Sharing Data 
There is no P2P in demonsaw, nor is there any client-server interaction.  P2P interaction is very dangerous, and is a 

primary reason for the degradation of privacy and lack of protection in programs like uTorrent.  And client-server 

architectures are problematic with respect to logging, hacking, backdoors, and 3rd parties unwillingly abusing our data.   

 

When we share data in demonsaw, we’re actually not sharing data with anybody.  Instead, we’re uploading or 

downloading data through 1:N data routers that can be spread all over the world.  Since data routers are separate from 

message routers, it’s impossible to compromise a message or data router and be able to discern the content of the data 

being transferred.  The multiple layers of encryption in demonsaw also aids in this effort.  Data routers can be hosted in 

at traditional web hosting sites for $3-4/month.  This is exactly what I do.  Last month I sent ~50GB of data through a 

hosting account that costs me $3 per month.  This is one of the key benefits of the demonsaw architecture. 

Program Flow Example 
In the following example, there are 2 groups (“demonsaw networks”), 0xEFF and 0x0FF.  R0 and R1 are message routers 

that are hosted privately on someone’s home network. 

 

Clients C0, C1, C2, C3, C4, and C5 are members of 0xEFF, meaning that they share the same encryption keys derived from a 

common image.  It is assumed that previous contextual knowledge existed thereby enabled these 6 clients to know 

which image was to be used for the creation of the encryption keys that allowed them to join the same group. 

 

Clients C6 and C7 are members of the group 0x0FF. 

 

Only clients in the same group can search, browse, and transfer data.  This is due to the nature of the cryptography and 

the fact that all client-level data is encrypted with the AES key derived from the shared group image.  In fact, a 

demonsaw group is defined by the unique set of bytes that make up a specific image.  To change the image is to change 

the group. 

 

R2, R3, R4, R5, R6, R7, R8, and R9 are routers that are configured to only route data (not messages).  The message router, 

R0, is configured to route client uploads/downloads to R2, R3, R4, R5, and R9, while R1 is configured to route client 

uploads/downloads to R6, R7, R8, and R9. 

 

Let’s assume that C2 searches the network for “ACDC”.  Since C2 is a member of group 0xEFF it will only search clients 

within 0xEFF and not any other groups.  When C2 submits its search it encrypts the search details (i.e. keywords and 

filters) and sends this request to R1.  R1 doesn’t know what C2 is searching for – all it knows is that a search request in 



0xEFF has been issued.  R1 then forwards the search request to the other members of 0xEFF, who each in turn decrypt 

the underlying search request and responds with an HTTP OK or NOT_FOUND, indicating whether they have any results 

or not.  If they have search results they will encrypt them with the group key and forward these back to R1 with the HTTP 

OK response.  Note that this is all an asynchronous process and fairly instantaneous.  For the sake of this example, let’s 

assume that C0 has the file “ACDC – Highway to Hell”. 

 

C2 receives the search results back from R1 and decrypts them to learn that somewhere on the network a client has 

“ACDC – Highway to Hell”.  C2 encrypts the request to download this file and sends this to R1.  R1 doesn’t know what C2 is 

downloading – all it knows is that a download request in 0xEFF has been issued.  R1 then forwards the download 

request, along with which data router to go to (R9 in this example), to the other members of 0xEFF, who each in turn 

decrypt the underlying download request and responds with an HTTP OK or NOT_FOUND, indicating whether they have 

any results or not. 

 

When C0 receives the transfer request it connects to R9 and begins to upload “ACDC – Highway to Hell”.  C0 encrypts all 

chunks of the file with the group key, ensuring that the R9 won’t be able to discern what the data is.  C5 then connects to 

R9 and starts downloading and decrypting the chunks of data.  Once all of the chunks of “ACDC – Highway to Hell” are 

downloaded, the operation is complete. 

 

 

  

C1C0 C6 C7

Session Propagation

R2

R3

R4

R6

R7

R8

0xEFF

0xEFF 0x0FF

C2 C3 C4 C5
R5

R1R0

R9



Demonsaw 2.0 
I just released version 1.5 on May 16th, 2015.  This version was a huge step forward, involving a port from C# to C++ code 

as well as a release on Linux and Raspberry Pi.  In three months I will be releasing version 2.0, which will hopefully 

include all of the following features: 

  

· Secure message (chat) 

· Auto-sync files/folders (like Dropbox) 

· Session Propagation (aggregate, cross-router groups) 

· Windows, Linux, OSX, Raspberry Pi, Android router/client GUI and command-line interfaces 

· Instantaneous downloads and multi-threaded transfers 

· Streaming 

· HTTPS 

 

Summary 
Demonsaw provides clear and concise lines of separation between the sharing of data, the controlling of program flow, 

and the transferring of data.  This is the key ingredient that gives demonsaw the ability to secure and anonymize our 

secure message and data transfers.  By privatizing the message routers and abstracting the data routers, demonsaw 

gives clients a naturally fault tolerant and scalable architecture in which to transfer message and data securely and 

anonymously. 

 

It is my hope that demonsaw gives us an advantage in our fight against oppressive governments and corporations who 

continue to support legislation and illegal practices designed to infringe upon our most basic and fundamental rights to 

privacy, secrecy, and personal beliefs.  Thank you. 

 

 

Eijah 

eijah@demonsaw.com 

 

mailto:eijah@demonsaw.com

