Designing the Computer

Thisisthe most interesting part of the projed. If you are familiar with assembly
language programming, you know that each processor has a characteristic architedure.
The achitedure refersto the fixed charaderistics that are built i nto the hardware.
Elements of procesor architedure include the size and reture of the instruction set, the
size of the memory address pace, the word size, the register structure, and the dock
spedl.

As with any engineering projed, there are trade-offs in the dements that go into
procesor design. A procesr with alarge datawidth is more expensive to make, bu it
can processfaster. The trend toward larger instruction sets and faster clock speals sen
in the 80x86 series is off set somewhat by RISC (reduced instruction set computer)
procesors that have small er instruction sets, but perform each instruction more quickly.
RISC computers may require longer programs, but with computer memory becoming
very cheap thisis not a severe hindrance

The achitedure of a hobbyist computer reflects the goals of the holbyist. In general, a
computer that works isthe primary goal. High performanceis very much secondary. A
simple achitedure reduces cost, and makes troudeshoding simpler. Thisincreasesthe
probabili ty of success Oncethe hohbyist has siccessully built asimple procesor, he
may want to buld ancther with higher performance. However, since buil ding aworking
procesor from scratch is a significant achievement, smaller is better.

| will describe the deasions| madein bulding my processor. In retrosped, | would have
changed some things. However, thisis only after | foundthat my simple processor
worked, and worked well. My initial design was focused onsuccessful completion, and
not performance

The most fun | had was designing the instruction set. Here, the holbyist is completely
freeto make his own assembly language. | knew that the earliest computer, the
Manchester Baby, operated with orly seven instructions. | thought that it was reasonable
to expand this to sixteen instructions. This meant that four bits of an instruction word
would be taken upby the instruction code. The remainder of the instruction could be an
address or an operand for arithmetic or logicd operations.

The aldress pace of aholbyist computer may be incredibly small by PC standards. In
the 8-bit microprocesor systems | had bult, | used oy ahunded or so bytes for
programs and data. | considered atotal address paceof 256 words for my processor,
which can be encoded by 8 hits, but | opted for the more expansive 12-bit space of 4K
words. Thiswould be very ample for a hohoyist processor.

A 4-bit operation code and a 12-bit address pacedictate al6-bit instructionword size.
This suggests an 8 or 16-bit wide memory. A 16-bit wide memory all ows loading of an
instructionin asingle step. In retrospect, these choices of opcode, memory space ad
word size were optimal.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 132

The next dedsion | made was an error. | dedded that the internal data processng
structure of the cmputer needed to be only 12 hitswide. Thiswould be large enough for
processng integers from 0 to 4K in asingle step, and was large enough for address
arithmetic. The program would bein ROM. The program memory would be 16 kts
wide, but the data memory only needed to be 12 htswide. Thiswould save alittlein
complexity and cost. Theinstructions would cause 12-bit datato be fed to 12-bit
registers, through a 12-bit ALU, and the results returned to 12-bit memory (or output on
12 a 8-bit devices.) The mistake, hovever, becane evident toward the end of the
projed. After success £aned asaured, | began to daydream of complex software runnng
onmy new macdine. Then | redized by mistake: there was no provision for loading
instructions from inpu to the RAM.

When the computer showed signs of life, | wanted to test it thoroughly. However, this
meant putting even the numerous test programs in ROM, atedious bit-by-bit process |
then modified my original design, by adding an extra4 hitsto the acumulator register
and making RAM 16 htswide. | eventually wrote aROM program that all owed the
procesor to take serial charader inpu from aterminal, trandate thisinto 16-bit
instructions (using atable for the upper 4 hits), andload the instructionsin RAM. A
character command would then shift exeaution to these instructions. The problem of
"dumping' memory output to the terminal was more difficult, sincethere was no way of
getting the upper 4 hits from the accumulator into the upper 4 bits of an 8-bit charader
output. | built aspedal purpose "byte-switcher" port, which would swap the upper and
lower 8-bits of aword. All this could have been avoided by making the processor 16-bits
wide throughout, which would na have been very difficult...in retrosped.

| wanted a minimal register structure, in part because a4-bit opcode would na alow for
complex register addressng schemes, and would also be eaier to buld. A smple
register structure was also important because the part of the computer that contained the
registers could na be tested fully by itself. It could only be tested when the whole
procesor was put together. | chase an accumulator-memory model, in which amain
register, the accumulator, serves as the link between the processor and memory. The
acawmulator holds one operand of operations such as ADD, and receives the result. The
procesor aso moves data between memory locaions and ketween memory and input
output by way of the accumulator. In addition to the acamulator, the processor would
also nead an instruction register, and a program addressregister (also called an
instruction panter, or program courter).

The minimum instruction set for a cmputer must contain some arithmetic or logicd
instructions, memory load and retrieval instructions, and program flow modifying
instructions (jumps), at least one of which must be condtional. The minimal arithmetic
instructionwould be subtrad, sincethis all ows negation (subtraa from zero) and addition
(negation followed by subtradion). A clever programmer might be &leto use the
NAND logicd operationto derive dl the others, including subtrad, since thisisthe roct
of al the other operations. However, with computer design, problems are solved by a
combination d hardware and software. A full-function ALU is easy to design, and it

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 13¢

seamed that 8 arithmetic/logicd instructions (half of the dl owed instruction set) would
make agood poject. | was confident that | could buld such an ALU, andit could be
tested completely onitsown. The eght arithmetic/logicd instructions | chose were ald,
add with carry, subtrad, subtrad with barow, NOT, AND, OR, and XOR. 1 think this
was agoodchoice

Therest of the instruction set was avail able for memory accessand flow control
instructions. After some ansideration, | decided to have only threememory access
instructions. These were load accumulator immediate (the value is contained in the
instruction itself), load acaumulator from memory, and store accumulator to memory.

| now had five spacesin the instruction set left for program flow control. First, thereis
the simple uncondtional jump. For condtional jumps, | chase jJump oncary, jump on
minus and jJump onzero. Thelast spat in the instruction set was fill ed with an indired
jump instruction, that is, jump to the location stored in memory. Thiswould al ow some
limited subroutine programming, using amemory cell to hdd the return address

In retrospect, it might have been better to have an indexed memory accessinstruction at
the expense of one of the andtiona jumps, or even the jJump to memory instruction.
However, indexing could still be donein aroundabou way by incrementing an
instructionin RAM and jumping to it.

With the instruction set completed | now had abasic architecture from which | could
draw detailed plans. The architedure described a procesor that had sixteen instructions
and operated on 12bit data. It would have only one programmer-accesshble register, the
acawmulator, and would have a4K word address ace. Instructions would be 16 Lts
wide, consisting of the 4-bit opcode and a 12-bit operand, which in most cases was an
address The exceptions were the load accumulator immediate instruction, in which the
operand was a data value, and the NOT instruction, in which the operand was irrelevant.
| somewhat arbitrarily assgned the foll owing operation codes to the instruction set:

Opcode Mnemo | Operand Description

(binary) nic

0000 ADD Address of operand Adds the operand to the accumulator, stores
the result in the accumulator

0001 ADC Address of operand Adds the operand and the carry bit to the

accumulator, stores the result in the
accumulator

0010 SUB Address of operand Subtracts the operand from the accumulator,
stores the result in the accumulator
0011 SBC Address of operand Subtracts the operand and the complement of

the carry bit from the accumulator, stores the
result in the accumulator

0100 AND Address of operand Bitwise logical AND of the operand with the
accumulator, stores the result in the
accumulator

0101 OR Address of operand Bitwise logical OR of the operand with the
accumulator, stores the result in the
accumulator

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 134

0110 XOR Address of operand Bitwise logical XOR of the operand with the
accumulator, stores the result in the
accumulator

0111 NOT None (ignored) Logical bitwise inversion (complement) of the
accumulator, stores the result in the
accumulator

1000 LDI Data Loads the 12-bit operand from the instruction
word into the accumulator

1001 LDM Address of data to be Loads a 16-bit data word from memory into the

loaded accumulator

1010 STM Address where data is | Stores the 16-bit data word in the accumulator

to be stored into memory

1011 JMP Target address to Transfers program control to the instruction in

jump to the target address

1100 JPI Address containing Transfers program control to the instruction in

the target address the target address

1101 JPz Target address to Transfers program control to the instruction in

jump to the target address, if the 12-bit accumulator
base =0

1110 JPM Target address Transfers program control to the instruction in
the target address, if bit 11 (leftmost bit of the
12-bit base) of the accumulator = 1

1111 JPC Target address Transfers program control to the instruction in
the target address, if the carry bit = 1

The instruction opcodes for the aithmetic-logical instructions are grouped together from
0000to 0111. The lower three bits of these opcodes (000to 111) will serve & athree-bit
ALU opcode. Thiswill simplify the cntrol logic design later on.

The speal of the computer is dictated by the mllective speed of the logic gates that need
to change states with each cycle. The cycle time must be long enough to all ow the
slowest circuits time to finish operations. The registers, multiplexorsand ALU have
pathways of only afew to several dozen gateslong. Asauming a gate time of 10
nancseands, a cycle time of several hunded nanoseands would certainly be long
enough. However, the momputer memory isaso part of the system, andthisis usualy
the slowest comporent. | planned to use EPROM chips that had a 400 ranoseconddelay
between the request for the data and when it appeaed onthe outputs. In arder to
acommodate this delay, with time to spare, | chase a 1000 rs cycle time, which equals 1
MHz. Slow by modern standards, thisis plenty fast enough to give the feel of true

computing.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart

13¢

Building the Data Path

The data path of the cmputer is the ordered colledion d registers that hold the data, the
multi plexors that direa the flow of the data, and the ALU that operates onthe data. The
memory may also be considered part of the data path, although it is physically separated
from the processor.

Recdl the simple machine cycle diagrammed in the previous chapter.

Computer
circuits
perform
operations <

on the data
displayed by
the register

cP of o

Register loads
and displays
results of
previous cycle on
each upward
clock edge

We will start at this point and dagram the processor data path, using as an example the
exeaution d the ADD instruction. Thisinstructionis exeauted by the proces=or in
several steps, eat taking exadly one dock cycle to perform. We assume for now that
the processor isrunning. The mechanism to start the procesor will be discussd later.

The ADD instruction that will be exeauted is part of alarger colledion d instructions
that reside in the computer memory. Thiscolledion d instructionsis the program, and
has been written and gaced in the memory by the programmer. Exadly how thisisdore
will also bediscussed later. The computer memory is symbalized by a parall elogram.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 13¢€

The memory in ou computer will be 16 hitswide, and at present will be shown with
distinct datainputs and ouputs. The memory addressis gecified a12 bt inpu.

12

Address +}

16 16
Data in +} Data out

Memory Write

We will assume for now that the memory acts like alarge olledion d registersin that a
rising clock puse alge & the Memory Write input will cause the data ontheinpusto be
loaded into the memory cdl specified by the address This data will t hen appear onthe
outputs. In the dsenceof aMemory Write pulse, the memory will simply display
whatever datais present in the memory cell spedfied by the addressinpu. The Memory
Write signal will be derived from the processor control logic that will be described later.
It isasingle bit input.

Thefirst step in exeauting the ADD instructionisto get the instruction from memory.
Thisis commonly cdl ed the instruction fetch step. Sincethe procesor isrunnng, it
contains in the Program Courter register the addressof the ADD instruction we want to
fetch and exeaute. To get the ADD instruction ou of memory, we simply send the output
of the Program Courter register to the memory addressinpus.

After afew hundred nanoseconds, still well within the limits of one dock cycle, the
desired instruction will appear on the memory data output lines. However, in order to
exeaute the instruction we need to save it somewhere. We canna simply keep it onthe
memory output lines, sincewe will need to get at least one of the ADD operands from the
memory (the other operandis arealy in the acamulator register, left there by prior
instructions). Wewill store the instructionin the Instruction Register.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 137

Program

Counter Address

Instruction
+’ Register
Program
Counter
Write

Instruction
Register Write

All of theregisters, like the memory, have Write inpus. To complete the instruction
fetch cycle, we need to send an Instruction Register Write pulse to the Instruction
Register. Thispulse, like dl the other register write signals, will come from the control
logic, to be designed later. We now have diagrammed all the parts of that data path
needed to complete the instruction fetch.

After the instruction fetch, the computer will need to prepare itself to get the next
instruction. Unlessajump instruction is being exeauted, the next instructionisin the
memory cdl immediately foll owing the one just fetched. Therefore, we need to increase
the value of the program courter by one. How can we do this?

The aswer is smple. Wewill have an ALU built i nto the proces=or, and it has nothing
to doin thefirst part of the instruction fetch. Why not use it to add 1to the Program
Courter? The ALU can dothis whil e the memory is getting the aurrent instruction. By
the time the aurrent instructionisready to be docked into the instruction register, the
incremented program courter is ready to be docked into the PC register. Remember, we
are using rising clock edge triggered registers, and the increased Program Courter value
will not appea onthe Program Courter Register outputs until the program courter write
pulse arives. Thiswill happen at exadly the same time that the instruction register write
pulse arives at the instruction register. There will not be enough time for the new
program counter value to confuse the system with anather instruction, sincethe
instruction register will be dosed for inputs long before the new instruction appeason
the memory dataoutput. Until we send ancther IR write pulse during the fetch phase of
the following instruction exeaution, the aurrent ADD instruction will abide seaurely in
the Instruction Register.

Hereis adiagram showing hav we can use the ALU to increment the Program Courter.

Remember the diagram of the ALU from previous chapters. Our ALU will process12
bits and have athreebit opcode.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 13€

Opcode Carry-in
3

A input E,Lb
> %‘—P Output
B input %Zl—b

Carry-Out

Program Counter

ADD Opcode

12
.
7>

12
12

1

We do nd usethe cary in when the program courter isincremented. All we haveto do
is endthe arrent Program Courter value to ore inpu of the ALU, the 12-bit number 1
to the seoond(that is, binary 0000 0000 00D), and put the three bit ADD opcode onthe
ALU opcodeinpus. After ashort delay, the incremented Program Courter will appear at
the ALU output and will be sent to the Program Counter inpus. It will wait there urtil
the Program Courter Write pulse arives, at which pant the incremented program
courter value will beloaded into the register, ready to fetch the next instruction.

We have finished puiting together the pathway for the instruction fetch and the program
courter incrementation step. | will addto the diagram as we go through the rest of the
ADD instruction exeaution. In order to make room in the diagram, | will not show the
number of bitsin ead conredion, na the register write inputs from now onto reduce
clutter.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 13¢

Add

PC Memory IR

Opcode (bits 12-15)

Address in boeeoeo

out

Operand (bits 0-11) '

Data in

ALU

"

At the end d the instruction fetch/program courter incrementation cycle, the Program
Counter Write and Instruction Register Write inpus recave dock puses. Therising
edge of these dock puseslocks the results of this cycleinto these registers at the same
instant, and then the next cycle begins. In the diagram, | show that the upper four bits of
the IR halds the instruction opcode, and the lower 12 hitsthe instruction ogerand. These
two parts of the IR are sent on dfferent paths, as | will show soon.

The next clock cycleis Instruction Interpretation. During this cycle, nahing happensin
the data path. Theinstruction gocode (the upper 4 bits of the instruction register) is snt
to the control logic. This opcode, along with the zero, minus, and carry condtionflags,
direds the control logic to set the cntrol li nes of the data path in such away asto carry
out the operation desired. In order to perform the ADD operation, the control logic will
cause the data path to perform the foll owing two steps, each taking one dock cycle.
First, an operand stored in the memory will be fetched and daced in the Dataregister.
Seoond,the Accumulator and Data register values will be sent to the ALU datainpus,
and the three-bit ALU opcode for ADD will be sent to the ALU opcode inpu. At the end
of this £mndstep, onthe rising edge of the next clock puse, the ALU output will be
stored in the Accumulator and the carry-out will be stored in a one-bit carry flip-flop.
When the ADD operation is complete, the control logic will i nstruct the data path to
begin ancther instruction fetch/program courter incrementation cycle, and exeaute the
next instruction foundin the computer memory.

We nedl to expand ou drawing of the data path to show the other registers and pathways

involved in the ADD operation. First, we will add the comporents needed for the Data
Register fetch step.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 14C

Add

Op-
PC 0 code
peoeee
’ Oper-
1 and _>
Data in ALU
Address
source
multiplexor

a 1P

PC = Program Counter

IR = Instruction Register Data register

Noticethat | added the AddressSource Multi plexor to seled the source of the memory
addressfor the operand fetch. During the instruction fetch, the Program Courter held the
addressof the instruction. Now, the Instruction Register holds the aldressof the datato
be placel in the Data Register for addition. Of course, the multi plexor input is ®leded
by asigna from the control logic. At the end d this data fetch cycle, aregister write
pulseis snt by the control logic to the Data Register, but nowrite pulseis nt to the
Instruction Register. This ensures that the Instruction Register will continue to hdd the
ADD instruction that was fetched ealier.

During the final cycle of the ADD instruction, the mntents of the Accumulator and Data
registers are directed to the ALU inpus, along with the ADD opcode contained inthe IR
bits 12-14. After ashort delay, the result of the additionwill appea onthe ALU output.
Thisresult will be docked into the accumulator register by awrite pulse & the end d the
cycle. The arry-out bit will also be stored in aflip-flop. We will now add the
Accumulator register and afew more dements to the data path dagram.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 141

ALU Op
source
multiplexor

Add

IR Accumulator

Op- [
PC code
Peoeeoe
> Oper- >
and
Address
source
multiplexor ALU_source
multiplexors
B
0
PC = Program Counter 1 ! I"
IR = Instruction Register Data register

Carry FF

We nead ALU source multi plexors to send the proper inpus to the ALU. In the Program
Courter Incrementation step we sent the Program courter to the ALU A inpu, and the
12-bit value 1 to the ALU B inpu. Inall thetwo-inpu arithmetic andlogical
instructions, such as ADD and OR, we will send the Accumulator to the ALU A inpu,
and the Data Register to the ALU B inpu. We dso neal to add a multi plexor to seled
the ALU operation, either the stand-alone ADD operation for the PC incrementation step,
or the ALU opcode mntained in bits12to 14 d the Instruction Register.

Noticehow the ALU output is conreded to bah the Accumulator and Program Courter
inpus. At the end d thelast cycle of exeaution o the ADD instruction, the control logic
sends awrite pulse to the Accumulator and carry flip-flop. No write pulseis snt to the
Program Courter, so it remains unchanged. After thisfinal write pulse, the Accumulator
will contain the result of the aldition, and the Carry flip-flop will contain the cary-out
bit.

The data path dagrammed above is adequate for the instruction fetch/program courter
incrementation cycle, and for all the arithmetic-logicd operations except thaose using a
cary-in (or borrow). To finish the data path for the arithmetic instructions that need a
cary inpu, we ald a path from the output of the Carry flip-flopto the ALU carry-in.
Whether the carry-inisused or not depends onthe ALU opcode, so there is no control
linefor thisoutside the ALU.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 14z

ALU Op
source
multiplexor

Add

Memory IR Accumulator

PC

code
poee

Oper- >

and

Data in

Address

source

multiplexor ALU source
multiplexors
B
0
PC = Program Counter 1 1
IR = Instruction Register Data register Carry FF

We now have adata path that will perform all eight of the arithmetic-logic instructionsin
our instruction set. A few more modificaionswill alow the other eight instructionsto be
performed.

To perform the load/store instructions, connections between the accumulator and the
memory are needed. Thereisonly onetype of store instruction, that is, store accumulator
to memory (STM). However, there ae two types of load instructions: load acaumulator
from memory (LDM), and load accumulator immediate (LDI). Inthe LDM (memory)
load, the accumulator getsitsinpu from the memory; the memory addressisin the lower
12 [btsof theinstructionregister. Inthe LDI (immediate) load, the value itself isin the
instruction register. Therefore, we need an Accumulator Source Multi plexor to seled the
appropriate accumulator inpu: the ALU (from the aithmetic-logic instructions), the
memory (LDM) or the instruction register (LDI).

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 145

ALU Op
source
multiplexor

Accumulator Add
source

Memory multiplexor Accumulator

PC

Data in

Address
source
multiplexor ALU source
multiplexors
B
0
PC = Program Counter 1 1
IR = Instruction Register Data register Carry FF

This data path is able to exeaute the instruction fetch/program courter step, the aithmetic
logicd instruction steps, and the memory load/store instruction steps. The remaining
instructions are the program flow, or jump instructions. These instructions operate by
pladng into the program courter anew value, either from the memory (indirect jump) or
from the instruction register (dired jumps). Therefore, we need conrections between the
instruction register and the program courter, and the memory and the program courter.
This means we need a PC source multi plexor to seled the proper PC input. The
condtional jumpsin ou limited instruction set are direct jumps, and whether they are
exeauted or not depends the value of the cary flip-flop (jump oncarry) or the value of
the acamulator (jump onzero, a jump onminus). No extra @nnedions are needed
beyondthose for the uncondtional jumps. If the cndtionis met, the cntrol logic will
cause the (dired) jump to occur, and if not it will simply cause the data path to fetch the
next instruction in memory, skipping the jump step.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 144

ALU Op
source
multiplexor

Accumulator Add
source

Memory multiplexor Accumulator

0 PC
1
2 .
Data in
PC source Address
multiplexor source
multiplexor ALU source
multiplexors
B
0
® >
PC = Program Counter 1 !
IR = Instruction Register Data register Carry FF

This completes the data path for the computer. There are some detail s that need to be
added. Extralogicisneeded in arder to work with red computer memory that doesn't
write like aregister. Thistopic deservesits own sedion, which will follow. Also, some
simplelogic (11 two-input OR gates) is needed to derive the acamulator zero signal (the
acawmulator minus sgnal is smply the uppermost bit in the register). If youcan
understand the diagram abowve, you are well on your way to understanding areal
computer at its most fundamental level.

This data path can be built with standard 1C comporents of the 74LS00 series.
Spedficdly, thereisan IC that has an 8-bit register in a 20-pin padkage, and two of these
will dofor theinstructionregister. Similarly, three6-bit register IC's will make al2-bit
register. The 12-bit 4 input multi plexors can ead be built of 6 dual one-bit multi plexor
IC's, and the one-of-two multi plexors can be built from IC's that have four single-bit one-
of-four multi plexors per chip. To make the zero logic, a 12-inpu OR gate can be used,
made from 11 2inpu OR gates on 3IC's. One chip with the carry flip-flopisaso
needed. The total number of IC's neaded for this data path is 34, and would cost abou
$17.00. Of course, the sockets and bard increase the st up to abou $50.00.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 14k

Red Computer Memory

As mentioned in the previous fdion, red computer memory does not operate like alarge
colledion d dataregisters. There aetwo main dfferences. First, the memory write
processis more complicated, invaving several signalsthat haveto be aeated by the
computer logic. Second, memory uses a bi-diredional data path, cdled a data bus.

The semiconduwctor RAM memory circuit | used in this computer is 4-bit by 1K static
randam accessmemory (SRAM), spedfically the 21141C. Static RAM does not require
refreshing every milli seaond o so like the cheaper, faster dynamic randam access
memory (DRAM). It isimportant to buld your hobbyist computer with SRAM, because
in the trouldeshoaing phase of construction youwill need to runit very slowly, ore cycle
at atime, in order to find ou why it isnot working. DRAM will not functionin asingle
step cycle, unessit hasitsown clock circuit. An additional benefit of using SRAM is
that you dan't have to create the arcuitry to perform the refresh cycles during namal
operations. Now, ore can buy DRAM with the refresh circuitry built in, cdled SDRAM.
However, ou computer uses D little RAM, that it makes snse just to use the old-
fashioned 1K 2114circuit. Itisall the RAM youwill ever need.

The memory iswritten with the help of two inpus. Thefirst isthe dhip selea (CS) inpu,
which must be made low (0 V) in order for the chip to function, either for input or output.
The other input isthe write inpu (WR). Thisinpu must be made low, and held low for a
spedfied minimum time. During thistime, the addressand data on the memory inpus
must be held steady. At the end d the required time span, the write inpu is made high
(5V), andthe datais locked into the memory.

The key fador in the timing is that the memory write inpu must go high before the
addressor datainpus change, in order to ensure that the datais sfely written. This
presents a problem for the computer designer. He (or she) would like to write to the
memory in asingle cycle. However, at the end such acycle, the aldress data and
memory write signalswould all change & approximately the same time, puting the data
in some peril. You might try to chanceit, but there is a better way.

The answer isto spread the memory write over two clock cycles. This givesus ssme
additional clock edges with which to work. We can now ensure that the memory write
goes high well before the data or addressinpus have achanceto change.

Hereisthekind d timing we would like for a solid memory write:

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 14¢€

Data for
memory Not ready Ready Not ready

write

Address for
memory write Not readyX Ready X Not ready

Chip Select —\ /
Memory Write \ ,

System Clock
Voltage ‘_/‘_/ \ [\ / \ /
L A —>‘<— B —>‘<— 0 —>‘
Time

Eadh figure éove represents the voltage level onthe indicaed memory inpus, or the
clock. The memory write processproceals thisway. At the start of the first memory
write dock cycle, A in the diagram, the processor puts the addressof the memory
locaionto bewritten onthe addressinpus of the memory. Simultaneously, the dip
seled memory input is made active (low) since this memory control input is derived
diredly from the address One-half cycle later, onthe downward edge of the clock in
cycle A, the Memory Write (WR) is made adive (low). At the beginning of the B cycle,
the datais placal onthe memory inpus, and onthe downward edge of the dock in the B
cycle, the WR inpu beaomes inadive (high). At thispoint, the datais locked into the
memory. At the end d the B cycle, onthe upward clock edge of the next machine cycle,
the aldressused during the memory write, and the derived CSinpu, areinadivated. The
address CS, data and WR are dl adive during thefirst half of the B cycle, which lasts
500 renosemndsfor al MHz clock. This easily meets the minimum time requirement
for writing the 2114memory chip, which is abou 200 rs.

It isnot hard to make a ¢reuit that will provide the proper timing of the memory write
inpu (WR). Hereitis:

Memory Write

L — D |
(from control logic) Q —>°_> WR to memory
System Clock —Do— CP

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 147

Thisis smply an edge-triggered flip-flop whaose dock puseinpu is the inverted system
clock. The antrol logic Memory Write signal comes on (becomes one) at the beginning
of the A madhine cycle, in resporse to the program instruction STM. However, sincethe
flip-flop hes an inverted clock signal, it is not written into the flip-flop urtil the midd e of
the A cycle. That is, when the dock has afalling edgein the A cycle, the inverted clock
inpu to the flip-flop will have arising edge, and the Memory Write signal will be written
into the flip-flop. It then appears onthe output, andisinverted. Thisoutput is connected
to the WR inpu on the memory chip (the WR signal to the memory chip is adive when
low.) When the WR memory inpu goes low, the memory begins to store the data that
the processor has placed onitsinpus. The Memory Write signal from the antrol logic
goesto zero at the end d the machine cycle A, but since the fli p-flop has an inverted
clock inpu;, the WR output is held low for another half-cycle, giving the memory the
time it neadsto finish storing the data. 1n the midde of the B cycle, the flip-flop sees a
rising clock edge from the inverted clock inpu, and stores the Memory Write zero. The
WR now goesto 1,andthe memory writeis finished.

The timing diagram shows the requirements for writing areal semicondictor memory
with the various control inpus. The other feaure of memory, that makes it diff erent
from aregister, isthat it has bi-diredional datainpu/output lines. Theselines are
controlled by adevice call ed a three-state buffer, which | will now describe.

Recdl that a computer consists of large networks of automatic switches, each of whichis
either on (logicd 1, a 5V) or off (logical 0, a OV). But remember, that in order to be
either 5 or 0 vdts, an ouput hasto be cnneded, through the logic gate drcuit, to either
the 5V or OV (ground power suppy leads of the gate. What would be the state of an
output that was conreded to neither? That is, pretend you cut the output wire, andit is
hanging in the ar.

Remember that the output voltage of alogic drcuit isonly part of an ouput. The other is
the ability to passcurrent. So, if an ouput is5V, it also nealsto be @leto pass ®me
current to drive inpus of other gatesto which it isconneded. Similarly, if an ouput is
0V, it needsto be aleto "sink" current, in order to operate the drcuitsit istied to. The
"cut wire" stateisathird state, neither 1 na 0, that is very useful in computer system
design. Thethird state is also caled "high impedance”, because aurrent will not be ale
to flow either into or out of an ouput that isin this gate. The high impedance state can
also bethought of as having avery high resistance It is ortened to "Hi Z". Hereisa
simple switch dagram that shows atwo-state and athree state device.

Two-state output

1000 ohms

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 14¢

— Three-state output

\ S 4

Switch contact swings both ways

In the upper diagram, the switch can be open o closed. Thistype of switchiscdled a
single-throw switch. If open, the output is conreded through the resistor to ground,and
will have avoltage of 0 with abili ty to sink some incoming current to groundthrough the
resistor. When the switch is closed, the output will be 5V, with the &bili ty to pass
significant current to ouside devices. The lower diagram shows a switch that can have
threepasitions; closed to the 5V contact, open in the midde, or closed to the grounded
contad. Such aswitch iscalled adoule-throw switch. Note that the drcuit output is
conreded to the central pde of the switch. The midde positionisthethird state. It is
just like a @it wire. The output, conneded to the ceantral pole of the switch, will nat be
ableto conduct any current anywhere with the switch in the midde position andits
voltage will be undefined. Thisis characteristic of the third, a high-impedance state.

Having athree-state logic device output all ows us to take ahuge short cut when we
asemble atrue mmputer system. It allowsusto use acolledion o wiresto passdatain
two dfferent diredions. A collection o parallel wiresis cdled abus, andwhen it can
passdatain two dredionsit iscdled abi-dirediona bus.

The bi-diredional bus all ows us to conned many separate devices that have three state
outputs to the same set of wires, and then use logic to select which devices will
communicae to each ather. The other unseleded devices will remain in the third state,
andwill beinvisibleto the adive drcuits. They will not interfere with the data
communicaions between the adive devices. We ae bringing thisup here, because
computer memory is such adevice with threestate data outputs. When the memory
write signal is given to a seleded memory chip, the outputs behave & datainpus, in
order to write datain the memory. When the memory write signal isinadive, the outputs
behave & outputs, sending data onto the bus. When the dhip is not seleded, the outputs
arein the third, high-impedance state, andthe dhip isinvisible to ather devices onthe
bus, such asinpu or output ports. It is convenient to think of the memory data lines as
inpu/output lines, becaise they can change diredion.

It isasimple matter to make abi-diredional bus using three-state logica devices. The
two most commonly used are the three-state buff er, and three-state inverting buffer.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 14¢

Control input

In | Control | Out
0 0 Hi Z
nout 1 0 Hi Z
npu
p 1L Output 0 1 0
1 1 1
Control input
In | Control | Out
0 0 Hi Z
Input Output 1 0 Hi Z
0 1 1
1 1 0

The control inpu isasignal that enables the gate to passdatawhenitison(1). The
control input is osmetimes cdled an enable inpu. Hereis how to make abi-diredional
buffer out of two three-state buffers and an inverter.

Control

A <« l L

When control is 1, the dataflows from A to B, andwhen it isO, from B to A. In ather
words, when control is 1, A istheinpu and B is the output, and when control is0, B is
theinpu and A isthe output. Thus A and B are inpu/outputs.

Inclusion d another control can all ow the bi-directional buffer to go to the Hi Z state.

Select Control | Direction
1 0 Bto A

Control P 1 1 AtoB
Select 0 0 Hi Z
] 0 1 Hi Z

A <]{}

Thistype of circuit is used inside memory circuitsto control the input/output lines

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 15C

In the data path defined in the previous sdion, we ae faced with the problem of how to
conred aregister, with separate inpus and ouputs, to amemory chip with hi-diredional
threestate inpu/outputs. First of al, the problem really only occurs during the memory
write cycle, because otherwise the memory is either putting out data (if selected) or isin
the high impedance state (if not seleded). If the memory inpu/outputs are directly
conreded to register inpus, bah o these condtions aretolerable. However, the register
outputs canna be conrected directly to the memory inpu/outputs, because when the
memory isin the output condtion, youwill have memory outputs connected to register
outputs, which is nat tolerable. We will use athreestate buffer to prevent the register
outputs from being conrected to the memory inpu/outputs as long as the memory isin
the output condtion. The darcuit is sSmple:

Memory
Data out to memory
Register

D Q «

Three-state buffer

Bi-directional data bus

Register write
pulse

CP

The three-state buffer proteds the memory outputs from colli ding with the register
outputs when the memory isin the output mode. When the memory goes into the input
mode, and the memory input/outputs become inpus, then the Data out control signal
comes on, and the three state buffer becomes an ouput. In the timing diagram shown
ealier, thistakes place &the beginning of the B madchine cycle. Note that using athree-
state buffer to make abi-diredional data bus doesn't bother the register at all; itsinpus
are dways conneded to ouputs, regardlessof whether the memory isin inpu or output
mode.

Hereis adiagram of the data path with the three state data out buffer included. Now, the
memory input/outputs are mnreded to a bi-directional databus.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 151

ALU Op
source
multiplexor

Accumulator Add
source
IR multiplexor Accumulator

Memorv

0 PC
1
2
PC source Address
multiplexor source
multiplexor
Three-State Data out buffer

Bidirectional Data Bus —>1
>

PC = Program Counter

IR = Instruction Register Data register Carry FF

The only devices capable of putting an ouput on the data bus are the acemulator (during
amemory write) and the memory (most of the rest of thetime). The other devices
(multi plexors and registers) are dwaysinpus. Inpusdon't interfere with bus traffic.

We can pu other devices onthe bus, such asinpu/output ports. Any device that places
data onto the bus, like an inpu port when adive, will need to have three-state outputs.
Then, we can read from or write to pats as if they were memory locations, using memory
load o storeinstructions. The only differenceis that the numbers we write will aff ect the
devices attached to the port. Thisishow we will conned our computer to the outside
world. It isthe addressin the instruction that will adivate ather the memory, or the
ports. Aslong asthe devicesthat placedata onto the bus have three-state outputs, and as
long as we avoid colli ding outputs by proper logic, thereis nolimit to the number of
devicesthat can use the bus.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 152

The Machine within the Madine--Control Logic

The data path described in the previous chapter isthe tod kit of the cmputer. The
registers and multi plexors, together with the ALU and the memory, have the power to
perform all the operations of the instruction set we designed ealier. However, it isthe
control logic that redly runs the computer. It coordinates and controls all the data path
elements. The control logic takes asitsinpu the instruction ogeration code, and
generates a sequence of outputs that causes the data path to manipulate data or alter the
flow of the computer program.

For each instruction, the antrol logic defines a series of steps. With ead step, the
control logic generates gecific outputs. These outputs are fed to the data path

multi plexor and register write inpus. Each step of the sequenceis designed to be
performed in asingle dock cycle. If wewant to perform atask that does nat fit into ore
clock cycle, we nedl to break it up into sub-steps. The @ntrol logic keeps track of these
steps by assgning a unique number to each ore, cdled the state. The stateis kept ina
register in the control logic drcuitry.

A devicethat uses afinite number of statesin spedfied sequences to control a processis
cdled afinite state machine. The machine works as follows. The cycle starts at some
initial entry state, which we will assgn the number 0. Thisvaueisplace into the state
register. The antrol logic then looks at the state register and the arrent instruction
opcode. Using standard AND/OR logic gates, it then creates two ouputs. One output is
the pattern of 1'sand O's that is $nt to the data path elements (multi plexors and registers)
to perform data and program flow manipulations. The other output is the next state. At
the end d the dock cycle, the next state is written into the state register. At this paint,
the next state beaomes the aurrent state for the next cycle.

Instruction Opcode — ——Jp- Control output to Data
input from instruction Control Path

register Logic

Current State input —P> Next State output
from state register to state register

State register

—

Clock U t

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 155

The state register is written every clock cycle, and therefore the computer clock is
diredly conrected to its write inpu.

Different instructions can use the same states. For example, all i nstructions will start
with state 0, which is the instruction fetch/program courter incrementation step. This
will aways be foll owed by state 1, which isthe instruction interpretation step. If the
procesor is exeauting an arithmetic/logic instruction that has two gperands, it will use a
datafetch step. All arithmetic/logic instructions can use the same state for the data fetch
step. The aithmetic/logicd instructions that write the cary flip-flop can al use the same
state, and the ones that do nd can all use the same state. When the final state of a
sequenceis finished, the next state logic will give a0 asits output, and a new sequence
will start. Oncethe sequence of statesis built i nto the wntrol logic, the cycle operates
endesdy.

How many states are required? Our instruction set has 16 operations, and ead operation
will need from 2 to 4 steps (or states) to operate. However, many states are shared by
several operations, and this reduces the total number of statesrequired. In fact, our
computer can be built with a cntrol logic that uses only 11 states (O to 10. Modern
complex instruction set processors, such as the Pentium, need hurdreds of states.

By looking at the data path dagram, and thinking abou what needs to happen in arder
for aninstructionto be arried out, we can make alist of the states that will do everything
our instruction set needs to do. Here are the states for this processor. The numbers we
assgn are somewhat arbitrary, although it isimportant to make state O thefirst step. This
allows usto use asimple drcuit to start the computer.

State | Action

Instruction fetch/program courter incrementation

Instruction interpretation

Datafetch

Arithmetic instruction, includes carry write

Logic instruction, nocarry write

Load accumulator immediate (value in current instruction)

Load accumulator from memory

Store acumulator to memory, first step

Store acumulator to memory, seand step

Jump immediate

PO NO ORI WINIEFLO

0 Jump indired

By referring to these states, we can now asociate each instructionin ou instruction set
with the sequence of states needed to carry it out. We have dready shown how the
sequenceof states0,1,2,3will perform the ADD operation. Hereisthe complete
instruction set with the @rrespondng state sequences.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 154

Instruction Opcode | Condtion Opcode Mnemonic State sequence
0000 ADD 0,1,2,3
0001 ADC 0,1,2,3
0010 SUB 0,1,2,3
0011 SBC 0,1,2,3
0100 AND 0,1,2,4
0101 OR 0,1,2,4
0110 XOR 0,1,2,4
0111 NOT 0,1,4
1000 LDI 0,1,5
1001 LDM 0,1,6
1010 STM 0,1,7,8
1011 JMP 0,1,9
1100 JPI 0,1,10
1101 Z =0 (not zero) JPZ 0,1
1101 Z =1 (zero) JPZ 0,1,9
1110 M = 0 (nat minus) JPM 0,1
1110 M = 1 (minus) JPM 0,1,9
1111 C=0(nat cary) JPC 0,1
1111 C =1 (cary) JPC 0,1,9

Noticethat the aithmetic operations al use the same sequence of states. The difference
between addition and subtradion, and the use of the carry-in, depends on the three-bit
ALU opcode that isimbedded in the instruction opcode, so we do nd need separate states
for each. Similarly, the logical operations share the same sequence, the difference being
that state 5 daes nat write the carry-out to the arry flip-flop. The NOT operation, which
does not have asecond operand, skips the data fetch state. The cnditional jump
instructions use the same state sequence as the uncondtional direct jump when the
correspondng condtionis met. If the condtionisnot met, the dired jump state is
simply omitted and the instruction performs no operation at al. Since eab stateisone
clock cycle long, we can tell how longeach instruction will t ake to exeaute. If we
asuume a tock rate of one megahertz, then the processor shoud be &leto exeaute an
addition (or any other 4-state instruction) in 4 microseconds.

We will creaethe control logic so that the control output depends only onthe arrent
state. There ae other waysto dothis, such as making the control output for the
condtional jumps depend onthe @ndtion, bu | think thisway is smpler. | will now
show atable of the ntrol outputs that correspondto ead state. There is one control
output for eat data path control input. Note that athree-input multi plexor needs two
control inpus, for the low order and high order bits (bits 0 and 1). Refer to the data path
diagram for the dements that use wntrol inpus.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 15k

Control input State

O|11|2 (3|4 |5 |6 |7 |8 |9 |10
Program Counter Multiplexor L ow 1 X [X [X [X [X X X X [0]0
Program Counter Multiplexor High 0 | X | X [X [X [X [X X X |0 |1
Program Counter Write 1 /0|0 |0]0O|]O0O|0O0] 0] 0| 1] 1
Memory Address Multiplexor 1 [X |0 | X | X [X |0]O0O]O |X |0
Memory Write 0 |]0j0j0o|j0O0|0Oj0OJ1]0, 0] 0
Memory Data Out O|0Of0O|]O0O]O|O0O]O0O]O0O| 1] 0| O
Instruction Register Write 1 /0|00 |0O]0O0O|0] 0] O] O] O
Accumulator Multiplexor Low X[X X]0 |0 |1]0|X X |X |X
Accumulator Multiplexor High X |X X]0]0 |0 |1 |X X |X |X
Accumulator Write oOo|0oj0oj1(1|1(12,0] 0] 0|0
Data Register Write O|]0|1]0]0|0]0]0] 0] O] O
ALU A Multiplexor 1 [X [X |0 |0 | X [X [X |[X |[X |X
ALU B Multiplexor 1 [X [X |0 |0 | X [X [X |[X [X [X
AL U Operation Multiplexor 1 [X [X |0 |0 | X | X |[X |[X |[X [X
Carry flip-flop Write O|0jO0O|]1]0|0]0]0] 0] O] O

X =don't care

Noticethat we don't care what the multi plexor control inpus areif we ae not going to
write the registers (or memory) whose inpu is suppied by that multiplexor. The "dorit
caes' dlow usto design the logic more efficiently. Also, nde that some of the @ntrol
lines behave identically acossall states. It iseasy to seethat the ALU A and B

multi plexor control lines, and the ALU operation multi plexor control line wuld al be
replaced by asingle antrol line. Other control lines might also be consolidated, such as
the program courter multi plexor low and the instruction register write. However, | felt
that extensive ansolidation d control li nes might be confusing when it came to
troudeshoaing the processor, so | only consoli dated the ALU multiplexor lines. It is
more important to minimize the number of states needed. In the control design above, no
two states can be consolidated.

In order to make a ercuit that will "map" one state to ore control output we have two
main ogtions. The option used by most processor manufacturersisto use microcode.
The microcode tecdhnique uses aread-only memory to hdd the cntrol output
configurations, in the form of binary numbers. The control output for ead state in the
abowvetable could be mnsidered as a 15-bit binary number. We can store the control
output configuration for each state in such away that Carry Flip-Flop Writeisin the
rightmost (low) bit, and the Program Courter Multi plexor Low isin the leftmost (high)
bit. If wereplacethe don't cares with 0,then the cntrol line output for state O would be
the binary number 101 1001 0000 1110The control li ne output simply becomes a 15-bit
wide memory with 11locations, ore for each state.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 15¢

For the holbyist, this arrangement is attractive because the wntrol output function can be
changed withou rewiring circuits. However, it requires the programming of ROM, and
thisrequires extra equipment. But it islikely that you will need a PROM programmer
anyway, so it isreasonable to consider this.

The other way to make acircuit that "maps"' a state onto a cntrol output isto use a
deaoder, together with AND-OR logic. Inthismethod,the @ntrol output for eat state is
hard-wired into the board. If youlike to wire things up, thisisthe way to go,andthisis
theway | did it.

Withou showing the whole arcuit, hereis an example of how the states might be
deaded into the wrrespondng control outputs

4-bit State input
(from state register)

b4y

Four-to-sixteen state decoder

0 1. 2 3 4 5 6 7 8 9 10

» Program Counter Multiplexor Low
¢——» Program Counter Multiplexor High

T

» Program Counter Write

» Memory Address Multiplexor
» Memory Write
» Memory Data Out
P Instruction Register Write
» Accumulator Multiplexor Low
» Accumulator Multiplexor High

Accumulator Write

» Data Register Write
» ALU A Multiplexor
» ALU B Multiplexor
» ALU Operation Multiplexor
» Carry flip-flop Write

The 4-bit state value is placed onthe decoder inpus, and the @rrespondng output
bemmes 1. The other outputs are 0. The Program Courter Write and Accumulator Write
control linesare onin several different states, so multiple inpu OR gates are required to
provide these outputs. The other control lines are mwnrected dredly to oy one state
output. If you compare this circuit with the table on the previous page, replaang the X

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 157

donit cares with zeros, you can see that this sSmple arcuit faithfully provides the
appropriate cntrol outputs. This circuit can be built with ore 4-to-16 decoder and 6two-
inpu OR gates, atotal of 31C's. The wntrol logicis half done.

The other function d the antrol logic isto provide the sequence of states for each
instruction. We cdl thisthe next-state function. The next-state function circuitry takes
asitsinpusthe arrent state, the arrent instruction, and the cndtions (zero, minus and
cary). From theseinpus, the next state is determined.

The next-state function circuit is more difficult to design than the control output circuit.
Thisisbecaiseit has amuch more ommplex inpu. If we court ead hit of the current
state, current instruction and condtions, there ae4 + 4 + 3= 11 htsof inpu, instead of
the 4 bits of inpu to the cntrol output circuit. Eleven hits can encode over 2,000
different combinations instead of the 16 handled by the simple deder-based circuit we
used for the control outputs.

Of course, na al these cmbinations are used, and athough there ae 16 instructions
thereareonly 11 states. Also, some instructions use the same sequence of states, and
most dorit care @ou the andtionflags. Nevertheless the next state function design
requires ome thought.

Aswith the @ntrol outputs, a microcode mntained in a programmable ROM could aso
provide the next state function. The aurrent instruction, current state and condtion flags
could be used to form an address and the output would be the next state. In fad, the
control output and rext state function could be cmbined into asingle PROM, with an
11-bit addressand 19-bit output (4 bitsfor the next state, 15 bits for the @ntrol outputs).

A more degant way to encode the next state functionisto use the technique of AND-OR
arrayed logic. Thistype of logic is able to encode any function that maps an inpu to a
unique output. With theinclusion d inverters, arrayed logic has the power to perform all
the functions of the digital computer. In fad, programmable aray logic IC's can be used
to crede entire microprocessors. We dready saw an example of AND-OR array logicin
the chapter abou building the ALU.

In our case, we will first diagram the next state function as an AND-OR array, and then
show how to buldit. Kegpin mindthat the AND-OR array diagram isnat a drcuit
diagram, but only aplan that will allow usto buld the adua array.

The diagram consists of two parts. The upper part shows how the inpus are cnrected to
multiple input AND gates. The lower part shows how the outputs of these AND gates are
conreded to multiple inpu OR gates. The OR gate outputs are the outputs of the arcuit,
the next state value.

Thefirst step in creaing the next state operationisto map it out in atable. Thiswill

show us what we need to dowhen it comesto bulding the darcuit. We will li st all
possble combinations of current state, current operation and condtion flags, and the

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 15¢

correspondng next state. First, we will make the table with deamal values for the states,
using the mnemonics for the operations.

Current state | Operations Condtion Next state
0 Don't care Don't care 1
1 ADD, ADC, SUB, SBC, AND, OR, XOR Don't care 2
1 NOT Don't care 4
1 LDI Don't care 5
1 LDM Don't care 6
1 STM Don't care 7
1 JMP Don't care 9
1 Conditional jumps Condition met 9
1 Conditional jumps Condition not met 0
1 JPI Don't care 10
2 ADD, ADC, SUB, SBC Don't care 3
2 AND, OR, XOR Don't care 4
3 Don't care Don't care 0
4 Don't care Don't care 0
5 Don't care Don't care 0
6 Don't care Don't care 0
7 Don't care Don't care 8
8 Don't care Don't care 0
9 Don't care Don't care 0
10 Don't care Don't care 0

The"don't care” entries how which states are dways followed by the rrespondng next
state, regardlessof the operation a condtion.

The aowve table must be made into a drcuit. In order to dothis, we will neal to look at
the binary representations of the arrent state, operation and condtion, and figure out
how combine them to make abinary representation d the next state using AND-OR array
logic.

It is convenient to think badkward in making the AND-OR array. In ather words, we
look at ead hit of the next state, and ask what kind & AND-OR operationis nealed to
get it from the correspondng current state, operation and condtion as listed in the table
above. Let uslabel the next state bits NSO to NS3, (from low bit to high hit.) We will
creae operations that will cause the next state bit in questionto become 1 when the inpu
cdlsforit. Wedo nd haveto intentionally create an operation that will make the bit 0,
because by default the bit will be O if it isnot 1 (such isthe deganceof the binary
computer).

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 15¢

Let's gart with NSO. It will be 1 when the next stateis 1, 3, 5, 7, 09. If welook at the
table @owve, we can seethat NSO will be 1 when:

Current state | Operations Condtion
0 Don't care Don't care
1 LDI Don't care
1 STM Don't care
1 JMP Don't care
1 Conditional jumps Condition met
2 ADD, ADC, SUB, SBC Don't care

Now let's re-write this table using the binary equiva ents, including the cndtions.

Current state | Operation |Z |M | C
0000 X X X X X | X |X
0001 1000 X | X |X
0001 1001 X [X |X
0001 1011 X | X |X
0001 1101 1 [x [Xx
0001 1110 X |1 |X
0001 1111 X |Xx |1
0010 0000 X [X |X
0010 0001 X [X |X
0010 0010 X [X |X
0010 0011 X | X |X

The X's gandfor "don't care”. Thistable can be simplified alittle. Some of the bits can
be replaced with "don't care” (X) if the two rows are otherwise identical, and the bit in
guestionisalin orerow, andaO in the other. For example, rows 2 and 3can be
replaced by a single row in which the low order bit of the operationisa"don't care”.
Similarly, the last four rows can be combined into a single row with two dorit caresin the
lower 2 opcode bits. Hereisthe simplified table:

Current state | Operation |[Z |M | C
0000 X X X X X | X |X
0001 100X X [X |X
0001 1011 X | X |X
0001 1101 1 [x [Xx
0001 1110 X |1 |X
0001 1111 X |x |1
0010 00 XX X | X |X

Thisisthe minimal table for the next state zero hit (NS0). Now, we aerealy to draw the
AND-OR array diagram for thistable. All the 11inpu bits (4 current state, 4 qoeration
bits, and the 3 condtion Lts) are used in at least one row, so we will have 11 haizontal
linesin the aray diagram. Wewill i nclude 11 inverted inpusto be used when an input
bit is0. There ae 7 rowsin the dove table, eat representing one multi ple-input AND
operation, so there will be 7 verticd linesin the aray diagram. The 7 vertical li nes will
be wnrected in the lower part of the diagram by a horizontal li ne that represents the

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 16C

ORing together of the AND operation ouputs. The output of this OR operationisthe
NSO hit.

Current state 3

Current state 2

Current state 1

Current state 0

Operation 3

Operation 2

Operation 1

Operation 0

z

M

viv vl ele eyl vl v]

p Next State 0

The diagram looks complicaed, bu the drcuit that it represents can be made with
surprisingly few comporents. Thisis because several of the AND combinations (vertical
lines) share patterns. For example, all 7 AND combinations use ((NOT Current State 3)
AND (NOT Current State 2)). This can be handed by one two-inpu AND gate.
Depending on haw carefully you look for combinations to re-use, this circuit can be built
with abou 24 two-input AND gates, 8inverters, and 6two-inpu OR gates (the inverters
onthe mndtionlines are shown, bu not used). Thisrepresents 10 14pin IC's, whichis
not adifficult job. However, a dever reader may note that the AND patterns of the states
and operations are the same as that for adecoder. If we use the outputs from the state
deaoder used previously in the mntrol output circuit we can save some AND gates. Here
isthe same AND-OR array diagram using the decoded state lines. | only show the state
lines acually used in the aray; the others will have no connedionin the next-state bit O
array diagram.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 161

State =0
State =1
State = 2
Operation 3

Operation 2

Operation 1

Operation 0

z

M

Vvl elele]v]

P Next State 0

Thisversion wisesonly 18 AND gates, 4 inverters and 6 OR gates. Sincethe state
deder isarealy part of thelogic drcuitry, thisis areasonable way to proceed.

Here aethe binary tables for the other next state output bits.

NS1: (when rext state =2,3,6,7,10

Current state | Operation |[Z |M | C
0001 00XX X | X |X
0001 010X X | X |X
0010 00XX X | X |X
0001 1001 X [X |X
0001 1010 X | X |X
0001 1100 X | X |X

NS2: (when rext state =4,5,6,7

Current state | Operation |[Z |M | C
0010 010X X | X |X
0010 0110 X | X |X
0001 0111 X | X |X
0001 100X X | X |X

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 162

NS3 (when next state =8,9,10

Current state | Operation |[Z |M | C
0111 X X X X X | X |X
0001 1011 X | X |X
0001 1101 1 [x [X
0001 1110 X |1 |X
0001 1111 X |[X |1
0001 1100 X | X |X

Hereisthe AND-OR array diagram for the entire next-state operation.

State =0
State =1

State = 2

State =7

Operation 3

Operation 2

Operation 1

Operation O

4

M

vielv Ty vlvlyl

p Next State 0

p Next State 1

p» Next State 2
p Next State 3

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart

16¢&

The diagram suggests alot of AND gates will be needed. But wait--more simplification
ispossble. First, we can eliminate the unused inverted condtionflag lines. More
importantly, we naotice that some of the verticd li nes have exadly the same patterns of
dots. Thismeans one or more can be diminated, and the output of asingle AND
operation sent to the OR gates that received the output of the AND operations we
eliminate. You can aso seethisif youlook carefully at the next state bit tables. For
example, the seoondrow in the NSO table is exadly the same & the fourth row in the
NS2 table. We can use asingle verticd line representing this particular AND operation,
and conrect the output to the OR gate inpus for the NSO and NS2 hits. In al, there ae7
AND operations that can be shared by different NS output bits. Hereisthefinal,
simplified next state AND-OR array diagram.

State =0
State =1
State = 2
State =7
Operation 3

Operation 2

Operation 1

Operation 0

vIv[v Y]

4
M
C

» Next State 0
P Next State 1
» Next State 2
P Next State 3

The drcuit described by this diagram can be built with 34two-input AND gates, four
inverters, and 202-input OR gates. These gates can be purchased in 14-pin IC's with 4
logic gates or 6 inverters each. Fewer IC's can be used if one purchases the avail able
threeor four inpu AND and OR gates. The entire ntrol logic described in this chapter
can be built of 15 rext-state IC's, plusthreelC's for the wntrol logic, plus one 4-bit
register IC, or 191C'stotal. The st would be @bou $8.00for these chips, bu again you
have to buy the board and sockets for alot more money.

from The Complete Computer Hobbyist, ©2005,DonnM. Stewart 164

