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CHAPTER 1

Preface

This is the current draft of the second edition of the Computer Networking : Principles, Protocols and Practice.
The document is updated every week.

The first edition of this ebook has been written by Olivier Bonaventure. Laurent Vanbever, Virginie Van den
Schriek, Damien Saucez and Mickael Hoerdt have contributed to exercises. Pierre Reinbold designed the icons
used to represent switches and Nipaul Long has redrawn many figures in the SVG format. Stephane Bortzmeyer
sent many suggestions and corrections to the text. Additional information about the textbook is available at
http://inl.info.ucl.ac.be/CNP3

Note: Computer Networking : Principles, Protocols and Practice, (c) 2011, Olivier Bonaventure, Universite
catholique de Louvain (Belgium) and the collaborators listed above, used under a Creative Commons Attribution
(CC BY) license made possible by funding from The Saylor Foundation’s Open Textbook Challenge in order to
be incorporated into Saylor.org’ collection of open courses available at http://www.saylor.org. Full license terms
may be viewed at : http://creativecommons.org/licenses/by/3.0/

1.1 About the author

Olivier Bonaventure is currently professor at Universite catholique de Louvain (Belgium) where he leads the
IP Networking Lab and is vice-president of the ICTEAM institute. His research has been focused on Internet
protocols for more than twenty years. Together with his Ph.D. students, he has developed traffic engineering
techniques, performed various types of Internet measurements, improved the performance of routing protocols
such as BGP and IS-IS and participated to the development of new Internet protocols including shim6, LISP and
Multipath TCP. He frequently contributes to standardisation within the IETF. He was on the editorial board of
IEEE/ACM Transactions on Networking and is Education Director of ACM SIGCOMM.
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CHAPTER 2

Part 1: Principles

2.1

Connecting two hosts

Warning: This is an unpolished draft of the second edition of this ebook. If you find any error or have sugges-
tions to improve the text, please create an issue via https://github.com/obonaventure/cnp3/issues?milestone=1

The first step when building a network, even a worldwide network such as the Internet, is to connect two hosts
together. This is illustrated in the figure below.

Figure 2.1: Connecting two hosts together

To enable the two hosts to exchange information, they need to be linked together by some kind of physical media.
Computer networks have used various types of physical media to exchange information, notably :

electrical cable. Information can be transmitted over different types of electrical cables. The most common
ones are the twisted pairs (that are used in the telephone network, but also in enterprise networks) and the
coaxial cables (that are still used in cable TV networks, but are no longer used in enterprise networks).
Some networking technologies operate over the classical electrical cable.

optical fiber. Optical fibers are frequently used in public and enterprise networks when the distance be-
tween the communication devices is larger than one kilometer. There are two main types of optical fibers
: multimode and monomode. Multimode is much cheaper than monomode fiber because a LED can be
used to send a signal over a multimode fiber while a monomode fiber must be driven by a laser. Due to the
different modes of propagation of light, monomode fibers are limited to distances of a few kilometers while
multimode fibers can be used over distances greater than several tens of kilometers. In both cases, repeaters
can be used to regenerate the optical signal at one endpoint of a fiber to send it over another fiber.

wireless. In this case, a radio signal is used to encode the information exchanged between the communi-
cating devices. Many types of modulation techniques are used to send information over a wireless channel
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and there is lot of innovation in this field with new techniques appearing every year. While most wireless
networks rely on radio signals, some use a laser that sends light pulses to a remote detector. These optical
techniques allow to create point-to-point links while radio-based techniques, depending on the directionality
of the antennas, can be used to build networks containing devices spread over a small geographical area.

2.1.1 The physical layer

These physical media can be used to exchange information once this information has been converted into a suitable
electrical signal. Entire telecommunication courses and textbooks are devoted to the problem of converting analog
or digital information into an electrical signal so that it can be transmitted over a given physical link. In this book,
we only consider two very simple schemes that allow to transmit information over an electrical cable. This enables
us to highlight the key problems when transmitting information over a physical link. We are only interested in
techniques that allow to transmit digital information through the wire and will focus on the transmission of bits,
i.e. either O or 1.

Note: Bit rate

In computer networks, the bit rate of the physical layer is always expressed in bits per second. One Mbps is one
million bits per second and one Gbps is one billion bits per second. This is in contrast with memory specifica-
tions that are usually expressed in bytes (8 bits), KiloBytes ( 1024 bytes) or MegaBytes (1048576 bytes). Thus
transferring one MByte through a 1 Mbps link lasts 8.39 seconds.

Bit rate Bits per second
1 Kbps 103

1 Mbps 10°

1 Gbps 10°

1 Tbps 10*2

To understand some of the principles behind the physical transmission of information, let us consider the simple
case of an electrical wire that is used to transmit bits. Assume that the two communicating hosts want to transmit
one thousand bits per second. To transmit these bits, the two hosts can agree on the following rules :

* On the sender side :
— set the voltage on the electrical wire at +5V during one millisecond to transmit a bit set to /
— set the voltage on the electrical wire at -5V during one millisecond to transmit a bit set to 0
* On the receiver side :

— every millisecond, record the voltage applied on the electrical wire. If the voltage is set to +5V,
record the reception of bit /. Otherwise, record the reception of bit 0

This transmission scheme has been used in some early networks. We use it as a basis to understand how hosts com-
municate. From a Computer Science viewpoint, dealing with voltages is unusual. Computer scientists frequently
rely on models that enable them to reason about the issues that they face without having to consider all implemen-
tation details. The physical transmission scheme described above can be represented by using a time-sequence
diagram.

A time-sequence diagram describes the interactions between communicating hosts. By convention, the communi-
cating hosts are represented in the left and right parts of the diagram while the electrical link occupies the middle
of the diagram. In such a time-sequence diagram, time flows from the top to the bottom of the diagram. The trans-
mission of one bit of information is represented by three arrows. Starting from the left, the first horizontal arrow
represents the request to transmit one bit of information. This request is represented by using a primitive which can
be considered as a kind of procedure call. This primitive has one parameter (the bit being transmitted) and a name
(DATA.request in this example). By convention, all primitives that are named something.request correspond to a
request to transmit some information. The dashed arrow indicates the transmission of the corresponding electrical
signal on the wire. Electrical and optical signals do not travel instantaneously. The diagonal dashed arrow indi-
cates that it takes some time for the electrical signal to be transmitted from Host A to Host B. Upon reception of the
electrical signal, the electronics on Host B‘s network interface detects the voltage and converts it into a bit. This
bit is delivered as a DATA.indication primitive. All primitives that are named something.indication correspond
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to the reception of some information. The dashed lines also represents the relationship between two (or more)
primitives. Such a time-sequence diagram provides information about the ordering of the different primitives, but
the distance between two primitives does not represent a precise amount of time.

Host A Physical link Host B
DATA.req(0)

--------------------- DATA.in

Time-sequence diagrams are usual when trying to understand the characteristics of a given communication
scheme. When considering the above transmission scheme, is it useful to evaluate whether this scheme allows
the two communicating hosts to reliably exchange information ? A digital transmission will be considered as
reliable when a sequence of bits that is transmitted by a host is received correctly at the other end of the wire. In
practice, achieving perfect reliability when transmitting information using the above scheme is difficult. Several
problems can occur with such a transmission scheme.

The first problem is that electrical transmission can be affected by electromagnetic interferences. These inter-
ferences can have various sources including natural phenomenons like thunderstorms, variations of the magnetic
field, but also can be caused by interference with other electrical signals such as interference from neighboring
cables, interferences from neighboring antennas, ... Due to all these interferences, there is unfortunately no guar-
antee that when a host transmit one bit on a wire, the same bit is received at the other end. This is illustrated in the
figure below where a DATA.request(0) on the left host leads to a Data.indication(1) on the right host.

Host A Physical link Host B
DATA.r

DATA.ind(1

With the above transmission scheme, a bit is transmitted by setting the voltage on the electrical cable to a specific
value during some period of time. We have seen that due to electromagnetic interferences, the voltage measured
by the receiver can differ from the voltage set by the transmitter. This is the main cause of transmission errors.
However, this is not the only type of problem that can occur. Besides defining the voltages for bits 0 and 1, the
above transmission scheme also specifies the duration of each bit. If one million bits are sent every second, then
each bit lasts 1 microsecond. On each host, the transmission (resp. the reception) of each bit is triggered by a local
clock having a 1 MHz frequency. These clocks are the second source of problems when transmitting bits over
a wire. Although the two clocks have the same specification, they run on different hosts, possibly at a different
temperature and with a different source of energy. In practice, it is possible that the two clocks do not operate at
exactly the same frequency. Assume that the clock of the transmitting host operates at exactly 1000000 Hz while
the receiving clock operates at 999999 Hz. This is a very small difference between the two clocks. However,
when using the clock to transmit bits, this difference is important. With its 1000000 Hz clock, the transmitting
host will generate one million bits during a period of one second. During the same period, the receiving host
will sense the wire 999999 times and thus will receive one bit less than the bits originally transmitted. This small
difference in clock frequencies implies that bits can “disappear” during their transmission on an electrical cable.
This is illustrated in the figure below.

Host A Physical link Host B
DATA.req(0) i

DATA.ind(0) >

DATA.reg(0) N

DATA.reg(1) i

DATA.ind(1) >

A similar reasoning applies when the clock of the sending host is slower than the clock of the receiving host. In
this case, the receiver will sense more bits than the bits that have been transmitted by the sender. This is illustrated
in the figure below where the second bit received on the right was not transmitted by the left host.

2.1. Connecting two hosts 7
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DATA.reg(0) >

DATA.ind(0) >

DATA.ind(0) >

DATA.reg(1) N

DATA.ind(1) >

From a Computer Science viewpoint, the physical transmission of information through a wire is often considered
as a black box that allows to transmit bits. This black box is often referred to as the physical layer service
and is represented by using the DATA.request and DATA.indication primitives introduced earlier. This physical
layer service facilitates the sending and receiving of bits. This service abstracts the technological details that are
involved in the actual transmission of the bits as an electromagnetic signal. However, it is important to remember
that the physical layer service is imperfect and has the following characteristics :

e the Physical layer service may change, e.g. due to electromagnetic interferences, the value of a bit being
transmitted

* the Physical layer service may deliver more bits to the receiver than the bits sent by the sender
e the Physical layer service may deliver fewer bits to the receiver than the bits sent by the sender

Many other types of encodings have been defined to transmit information over an electrical cable. All physical
layers are able to send and receive physical symbols that represent values 0 and /. However, for various reasons
that are outside the scope of this chapter, several physical layers exchange other physical symbols as well. For
example, the Manchester encoding used in several physical layers can send four different symbols. The Manch-
ester encoding is a differential encoding scheme in which time is divided into fixed-length periods. Each period is
divided in two halves and two different voltage levels can be applied. To send a symbol, the sender must set one
of these two voltage levels during each half period. To send a 7 (resp. 0), the sender must set a high (resp. low)
voltage during the first half of the period and a low (resp. high) voltage during the second half. This encoding
ensures that there will be a transition at the middle of each period and allows the receiver to synchronise its clock
to the sender’s clock. Apart from the encodings for 0 and /, the Manchester encoding also supports two additional
symbols : InvH and InvB where the same voltage level is used for the two half periods. By definition, these two
symbols cannot appear inside a frame which is only composed of 0 and /. Some technologies use these special
symbols as markers for the beginning or end of frames.

1 0|1 0 0 1 | 0

Lol L] vHIB
|

1 LT
\ J_ B

Figure 2.2: Manchester encoding

01010010100010101001010

Physical layer Physical layer

Physical transmission medium

Figure 2.3: The Physical layer

All the functions related to the physical transmission or information through a wire (or a wireless link) are usually
known as the physical layer. The physical layer allows thus two or more entities that are directly attached to the

8 Chapter 2. Part 1: Principles
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same transmission medium to exchange bits. Being able to exchange bits is important as virtually any information
can be encoded as a sequence of bits. Electrical engineers are used to processing streams of bits, but computer
scientists usually prefer to deal with higher level concepts. A similar issue arises with file storage. Storage devices
such as hard-disks also store streams of bits. There are hardware devices that process the bit stream produced by
a hard-disk, but computer scientists have designed filesystems to allow applications to easily access such storage
devices. These filesystems are typically divided into several layers as well. Hard-disks store sectors of 512 bytes
or more. Unix filesystems group sectors in larger blocks that can contain data or inodes representing the structure
of the filesystem. Finally, applications manipulate files and directories that are translated in blocks, sectors and
eventually bits by the operating system.

Computer networks use a similar approach. Each layer provides a service that is built above the underlying layer
and is closer to the needs of the applications. The datalink layer builds upon the service provided by the physical
layer. We will see that it also contains several functions.

2.1.2 The datalink layer

Computer scientists are usually not interested in exchanging bits between two hosts. They prefer to write software
that deals with larger blocks of data in order to transmit messages or complete files. Thanks to the physical layer
service, it is possible to send a continuous stream of bits between two hosts. This stream of bits can include logical
blocks of data, but we need to be able to extract each block of data from the bit stream despite the imperfections
of the physical layer. In many networks, the basic unit of information exchanged between two directly connected
hosts is often called a frame. A frame can be defined has a sequence of bits that has a particular syntax or structure.
We will see examples of such frames later in this chapter.

To enable the transmission/reception of frames, the first problem to be solved is how to encode a frame as a
sequence of bits, so that the receiver can easily recover the received frame despite the limitations of the physical
layer.

If the physical layer were perfect, the problem would be very simple. We would simply need to define how to
encode each frame as a sequence of consecutive bits. The receiver would then easily be able to extract the frames
from the received bits. Unfortunately, the imperfections of the physical layer make this framing problem slightly
more complex. Several solutions have been proposed and are used in practice in different network technologies.

Framing

The framing problem can be defined as : “How does a sender encode frames so that the receiver can efficiently
extract them from the stream of bits that it receives from the physical layer”.

A first solution to this problem is to require the physical layer to remain idle for some time after the transmission of
each frame. These idle periods can be detected by the receiver and serve as a marker to delineate frame boundaries.
Unfortunately, this solution is not acceptable for two reasons. First, some physical layers cannot remain idle and
always need to transmit bits. Second, inserting an idle period between frames decreases the maximum bit rate that
can be achieved.

Note: Bit rate and bandwidth

Bit rate and bandwidth are often used to characterize the transmission capacity of the physical service. The original
definition of bandwidth, as listed in the Webster dictionary is a range of radio frequencies which is occupied by
a modulated carrier wave, which is assigned to a service, or over which a device can operate. This definition
corresponds to the characteristics of a given transmission medium or receiver. For example, the human ear is able
to decode sounds in roughly the 0-20 KHz frequency range. By extension, bandwidth is also used to represent
the capacity of a communication system in bits per second. For example, a Gigabit Ethernet link is theoretically
capable of transporting one billion bits per second.

Given that multi-symbol encodings cannot be used by all physical layers, a generic solution which can be used
with any physical layer that is able to transmit and receive only bits 0 and / is required. This generic solution is
called stuffing and two variants exist : bit stuffing and character stuffing. To enable a receiver to easily delineate

2.1. Connecting two hosts 9
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the frame boundaries, these two techniques reserve special bit strings as frame boundary markers and encode the
frames so that these special bit strings do not appear inside the frames.

Bit stuffing reserves the 01111110 bit string as the frame boundary marker and ensures that there will never be
six consecutive / symbols transmitted by the physical layer inside a frame. With bit stuffing, a frame is sent as
follows. First, the sender transmits the marker, i.e. 01111110. Then, it sends all the bits of the frame and inserts
an additional bit set to O after each sequence of five consecutive / bits. This ensures that the sent frame never
contains a sequence of six consecutive bits set to /. As a consequence, the marker pattern cannot appear inside the
frame sent. The marker is also sent to mark the end of the frame. The receiver performs the opposite to decode a
received frame. It first detects the beginning of the frame thanks to the 07111110 marker. Then, it processes the
received bits and counts the number of consecutive bits set to /. If a 0 follows five consecutive bits set to /, this bit
is removed since it was inserted by the sender. If a / follows five consecutive bits sets to /, it indicates a marker if
it is followed by a bit set to 0. The table below illustrates the application of bit stuffing to some frames.

Original frame Transmitted frame

0001001001001001001000011 | 01111110000100100100100100100001101111110
0110111111111111111110010 | 01111110011011111011111011111011001001111110
01111110 0111111001111101001111110

For example, consider the transmissionof 0110111111111111111110010. The sender will first send the 01111110
marker followed by 011011111. After these five consecutive bits set to /, it inserts a bit set to 0 followed by 11111.
A new 0 is inserted, followed by /7/711. A new 0 is inserted followed by the end of the frame //0010 and the
01111110 marker.

Bit stuffing increases the number of bits required to transmit each frame. The worst case for bit stuffing is of course
a long sequence of bits set to / inside the frame. If transmission errors occur, stuffed bits or markers can be in
error. In these cases, the frame affected by the error and possibly the next frame will not be correctly decoded by
the receiver, but it will be able to resynchronize itself at the next valid marker.

Bit stuffing can be easily implemented in hardware. However, implementing it in software is difficult given the
complexity of performing bit manipulations in software. Software implementations prefer to process characters
than bits, software-based datalink layers usually use character stuffing. This technique operates on frames that
contain an integer number of characters. In computer networks, characters are usually encoded by relying on
the ASCII table. This table defines the encoding of various alphanumeric characters as a sequence of bits. RFC
20 provides the ASCII table that is used by many protocols on the Internet. For example, the table defines the
following binary representations :

* A:1000011b

* 0:0110000b
z:1111010b

@ : 1000000 b

* space : 0100000 b

In addition, the ASCII table also defines several non-printable or control characters. These characters were de-
signed to allow an application to control a printer or a terminal. These control characters include CR and LF, that
are used to terminate a line, and the BEL character which causes the terminal to emit a sound.

* NUL: 0000000 b
e BEL: 00001111
CR :0001101b

LF : 0001010b

DLE: 0010000 b
STX: 0000010 b
e ETX: 0000011 b

Some characters are used as markers to delineate the frame boundaries. Many character stuffing techniques use
the DLE, STX and ETX characters of the ASCII character set. DLE STX (resp. DLE ETX) is used to mark the

10 Chapter 2. Part 1: Principles
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beginning (end) of a frame. When transmitting a frame, the sender adds a DLE character after each transmitted
DLE character. This ensures that none of the markers can appear inside the transmitted frame. The receiver
detects the frame boundaries and removes the second DLE when it receives two consecutive DLE characters. For
example, to transmit frame / 2 3 DLE STX 4, a sender will first send DLE STX as a marker, followed by / 2 3
DLE. Then, the sender transmits an additional DLE character followed by STX 4 and the DLE ETX marker.

Original frame Transmitted frame

1234 DLE STX 1234 DLE ETX

123 DLE STX 4 DLE STX 123 DLE DLE STX 4 DLE ETX

DLE STX DLE ETX | DLE STX DLE DLE STX DLE DLE ETX** DLE ETX

Character stuffing , like bit stuffing, increases the length of the transmitted frames. For character stuffing, the worst
frame is a frame containing many DLE characters. When transmission errors occur, the receiver may incorrectly
decode one or two frames (e.g. if the errors occur in the markers). However, it will be able to resynchronise itself
with the next correctly received markers.

Bit stuffing and character stuffing allow to recover frames from a stream of bits or bytes. This framing mechanism
provides a richer service than the physical layer. Through the framing service, one can send and receive complete
frames. This framing service can also be represented by using the DATA.request and DATA.indication primitives.
This is illustrated in the figure below, assuming hypothetical frames containing four useful bit and one bit of
framing for graphical reasons.

Framing-A Phys-A Phys-B Framing-B
DATA.req(1...1
DATA.req(0) Bl
S 0
""""" » DATA.ind(0) >
DATA.req(1) pl..
__________ 1
> DATA.ind(1)
|_DATAreq(1) ).
__________ 1
~~~~~~ p|DATA.ind(1)
DATA.req(0) Bl
SR 0
i DATA.ind(0) >
DATA.ind(1...11’

We can now build upon the framing mechanism to allow the hosts to exchange frames containing an integer
number of bits or bytes. Once the framing problem has been solved, we can focus on designing a technique that
allows to reliably exchange frames.

Recovering from transmission errors

In this section, we develop a reliable datalink protocol running above the physical layer service. To design this
protocol, we first assume that the physical layer provides a perfect service. We will then develop solutions to
recover from the transmission errors.

The datalink layer is designed to send and receive frames on behalf of a user. We model these interactions by using
the DATA.req and DATA.ind primitives. However, to simplify the presentation and to avoid confusion between a
DATA.req primitive issued by the user of the datalink layer entity, and a DATA.req issued by the datalink layer
entity itself, we will use the following terminology :

* the interactions between the user and the datalink layer entity are represented by using the classical
DATA.req and the DATA.ind primitives

2.1. Connecting two hosts 11
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* the interactions between the datalink layer entity and the framing sublayer are represented by using send
instead of DATA.req and recvd instead of DATA.ind

When running on top of a perfect framing sublayer, a datalink entity can simply issue a send(SDU) upon arrival of
a DATA.req(SDU) ' .Similarly, the receiver issues a DATA.ind(SDU) upon receipt of a recvd(SDU). Such a simple
protocol is sufficient when a single SDU is sent. This is illustrated in the figure below.

Host A Host B
DATA.r D

""""""""""""""" DATA.ind(SDU

Unfortunately, this is not always sufficient to ensure a reliable delivery of the SDUs. Consider the case where a
client sends tens of SDUs to a server. If the server is faster that the client, it will be able to receive and process all
the segments sent by the client and deliver their content to its user. However, if the server is slower than the client,
problems may arise. The datalink entity contains buffers to store SDUs that have been received as a Data.request
but have not yet been sent. If the application is faster than the physical link, the buffer may become full. At this
point, the operating system suspends the application to let the datalink entity empty its transmission queue. The
datalink entity also uses a buffer to store the received frames that have not yet been processed by the application.
If the application is slow to process the data, this buffer may overflow and the datalink entity will not able to
accept any additional frame. The buffers of the datalink entity have a limited size and if they overflow, the arriving
frames will be discarded, even if they are correct.

To solve this problem, a reliable protocol must include a feedback mechanism that allows the receiver to inform
the sender that it has processed a frame and that another one can be sent. This feedback is required even though
there are no transmission errors. To include such a feedback, our reliable protocol must process two types of
frames :

e data frames carrying a SDU

* control frames carrying an acknowledgment indicating that the previous frames was processed correctly
These two types of frames can be distinguished by dividing the frame in two parts :

* the header that contains one bit set to 0 in data frames and set to / in control frames

¢ the payload that contains the SDU supplied by the application

The datalink entity can then be modelled as a finite state machine, containing two states for the receiver and two
states for the sender. The figure below provides a graphical representation of this state machine with the sender
above and the receiver below.

The above FSM shows that the sender has to wait for an acknowledgement from the receiver before being able to
transmit the next SDU. The figure below illustrates the exchange of a few frames between two hosts.

N Host B
DATA.reg(a) ...
---------------- D(a)...
DATA.ind(a) >
BT (o B
€
DATA.reg(b) Mo
"""""""""""""" D).
DATA.ind(b) >
BT (o R
€

Note: Services and protocols

An important aspect to understand before studying computer networks is the difference between a service and a
protocol. In order to understand the difference between the two, it is useful to start with real world examples. The
traditional Post provides a service where a postman delivers letters to recipients. The Post defines precisely which
types of letters (size, weight, etc) can be delivered by using the Standard Mail service. Furthermore, the format

1 SDU is the acronym of Service Data Unit. We use it as a generic term to represent the data that is transported by a protocol.
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Data.req(SDU)
send (D (SDU) )

—

‘--_._._,_‘____—____.___._._—’
Recvd (C (CK) )

Recvd (D (SDU) )
Data.ind(SDU)

Send (C (OK) )

Figure 2.4: Finite state machine of the simplest reliable protocol

of the envelope is specified (position of the sender and recipient addresses, position of the stamp). Someone who
wants to send a letter must either place the letter at a Post Office or inside one of the dedicated mailboxes. The
letter will then be collected and delivered to its final recipient. Note that for the regular service the Post usually
does not guarantee the delivery of each particular letter, some letters may be lost, and some letters are delivered to
the wrong mailbox. If a letter is important, then the sender can use the registered service to ensure that the letter
will be delivered to its recipient. Some Post services also provide an acknowledged service or an express mail
service that is faster than the regular service.

Reliable data transfer on top of an imperfect link
The datalink layer must deal with the transmission errors. In practice, we mainly have to deal with two types of
errors in the datalink layer :

* Frames can be corrupted by transmission errors

» Frames can be lost or unexpected frames can appear

A first glance, loosing frames might seem strange on single link. However, if we take framing into account,
transmission errors can affect the frame delineation mechanism and make the frame unreadable. For the same
reason, a receiver could receive two (likely invalid) frames after a sender has transmitted a single frame.

To deal with these types of imperfections, reliable protocols rely on different types of mechanisms. The first
problem is transmission errors. Data transmission on a physical link can be affected by the following errors :

 random isolated errors where the value of a single bit has been modified due to a transmission error
» random burst errors where the values of n consecutive bits have been changed due to transmission errors

e random bit creations and random bit removals where bits have been added or removed due to transmission
errors

The only solution to protect against transmission errors is to add redundancy to the frames that are sent. Informa-
tion Theory defines two mechanisms that can be used to transmit information over a transmission channel affected
by random errors. These two mechanisms add redundancy to the transmitted information, to allow the receiver to
detect or sometimes even correct transmission errors. A detailed discussion of these mechanisms is outside the
scope of this chapter, but it is useful to consider a simple mechanism to understand its operation and its limitations.
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Besides framing, datalink layers also include mechanisms to detect and sometimes even recover from transmission
errors. To allow a receiver to detect transmission errors, a sender must add some redundant information as an error
detection code to the frame sent. This error detection code is computed by the sender on the frame that it transmits.
When the receiver receives a frame with an error detection code, it recomputes it and verifies whether the received
error detection code matches the computer error detection code. If they match, the frame is considered to be valid.
Many error detection schemes exist and entire books have been written on the subject. A detailed discussion of
these techniques is outside the scope of this book, and we will only discuss some examples to illustrate the key
principles.

To understand error detection codes, let us consider two devices that exchange bit strings containing N bits. To
allow the receiver to detect a transmission error, the sender converts each string of N bits into a string of N+r
bits. Usually, the r redundant bits are added at the beginning or the end of the transmitted bit string, but some
techniques interleave redundant bits with the original bits. An error detection code can be defined as a function
that computes the r redundant bits corresponding to each string of N bits. The simplest error detection code is the
parity bit. There are two types of parity schemes : even and odd parity. With the even (resp. odd) parity scheme,
the redundant bit is chosen so that an even (resp. odd) number of bits are set to / in the transmitted bit string of
N+r bits. The receiver can easily recompute the parity of each received bit string and discard the strings with an
invalid parity. The parity scheme is often used when 7-bit characters are exchanged. In this case, the eighth bit is
often a parity bit. The table below shows the parity bits that are computed for bit strings containing three bits.

3 bits string Odd parity | Even parity
000 1 0
001 0 1
010 0 1
100 0 1
111 0 1
110 1 0
101 1 0
011 1 0

The parity bit allows a receiver to detect transmission errors that have affected a single bit among the transmitted
N+r bits. If there are two or more bits in error, the receiver may not necessarily be able to detect the transmission
error. More powerful error detection schemes have been defined. The Cyclical Redundancy Checks (CRC) are
widely used in datalink layer protocols. An N-bits CRC can detect all transmission errors affecting a burst of
less than N bits in the transmitted frame and all transmission errors that affect an odd number of bits. Additional
details about CRCs may be found in [Williams1993].

It is also possible to design a code that allows the receiver to correct transmission errors. The simplest error
correction code is the triple modular redundancy (TMR). To transmit a bit set to / (resp. 0), the sender transmits
111 (resp. 000). When there are no transmission errors, the receiver can decode /71 as I. If transmission errors
have affected a single bit, the receiver performs majority voting as shown in the table below. This scheme allows
the receiver to correct all transmission errors that affect a single bit.

Received bits Decoded bit
000 0
001 0
010 0
100 0
111 1
110 1
101 1
011 1

Other more powerful error correction codes have been proposed and are used in some applications. The Hamming
Code is a clever combination of parity bits that provides error detection and correction capabilities.

Reliable protocols use error detection schemes, but none of the widely used reliable protocols rely on error cor-
rection schemes. To detect errors, a frame is usually divided into two parts :

* a header that contains the fields used by the reliable protocol to ensure reliable delivery. The header contains
a checksum or Cyclical Redundancy Check (CRC) [Williams1993] that is used to detect transmission errors
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* a payload that contains the user data
Some headers also include a length field, which indicates the total length of the frame or the length of the payload.

The simplest error detection scheme is the checksum. A checksum is basically an arithmetic sum of all the bytes
that a frame is composed of. There are different types of checksums. For example, an eight bit checksum can be
computed as the arithmetic sum of all the bytes of (both the header and trailer of) the frame. The checksum is
computed by the sender before sending the frame and the receiver verifies the checksum upon frame reception. The
receiver discards frames received with an invalid checksum. Checksums can be easily implemented in software,
but their error detection capabilities are limited. Cyclical Redundancy Checks (CRC) have better error detection
capabilities [SGP98], but require more CPU when implemented in software.

Note: Checksums, CRCs, ...

Most of the protocols in the TCP/IP protocol suite rely on the simple Internet checksum in order to verify that a
received packet has not been affected by transmission errors. Despite its popularity and ease of implementation,
the Internet checksum is not the only available checksum mechanism. Cyclical Redundancy Checks (CRC) are
very powerful error detection schemes that are used notably on disks, by many datalink layer protocols and file
formats such as zip or png. They can easily be implemented efficiently in hardware and have better error-detection
capabilities than the Internet checksum [SGP98] . However, CRCs are sometimes considered to be too CPU-
intensive for software implementations and other checksum mechanisms are preferred. The TCP/IP community
chose the Internet checksum, the OSI community chose the Fletcher checksum [Sklower89] . Nowadays there are
efficient techniques to quickly compute CRCs in software [Feldmeier95]

Since the receiver sends an acknowledgement after having received each data frame, the simplest solution to deal
with losses is to use a retransmission timer. When the sender sends a frame, it starts a retransmission timer. The
value of this retransmission timer should be larger than the round-trip-time, i.e. the delay between the transmis-
sion of a data frame and the reception of the corresponding acknowledgement. When the retransmission timer
expires, the sender assumes that the data segment has been lost and retransmits it. This is illustrated in the figure

- Host B
DATA.req(a) p...
Starttimer  P| T | D(a)
........................ | 4 DATA.ind(a
GO enremr e
Cancel timer < -------------------

DATA.req(b) >
start timer D(b)
timer expires

......................... pl DATA.ind(b) §,

below.
Unfortunately, retransmission timers alone are not sufficient to recover from losses. Let us consider, as
an example, the situation depicted below where an acknowledgement is lost. In this case, the sender re-
transmits the data segment that has not been acknowledged. Unfortunately, as illustrated in the figure be-
low, the receiver considers the retransmission as a new segment whose payload must be delivered to its

2.1. Connecting two hosts 15


http://en.wikipedia.org/wiki/Cyclic_redundancy_check

Computer Networking : Principles, Protocols and Practice, Release

Host A Host B
DATA.reg(a)_}
starttimer " Ttz D(a)..
-------------------- > DATA.ind(a
- G(OK) e T
cancel timer €T
DATAreqb) 1
starttimer ™| TTTTueeeee D(b) .
-------------------- > DATA.in
C(OK
timer expires [
------------------- D).
------------------- DATA.ind(b) ! >
o C(OK) e
user. Nl

To solve this problem, datalink protocols associate a sequence number to each data frame. This sequence number
is one of the fields found in the header of data frames. We use the notation D(x,...) to indicate a data frame whose
sequence number field is set to value x. The acknowledgements also contain a sequence number indicating the data
frames that it is acknowledging. We use OKx to indicate an acknowledgement frame that confirms the reception
of D(x,...). The sequence number is encoded as a bit string of fixed length. The simplest reliable protocol is the
Alternating Bit Protocol (ABP).

The Alternating Bit Protocol uses a single bit to encode the sequence number. It can be implemented easily. The
sender and the receiver only require a four-state Finite State Machine.

Recvd(C(NAK?)) OR

Data.req(SOU) C i
v S;Eff:! SULJ,.H.” . Recwd(C(OK1)) or timer expires
N | - y o T
N s, Simer) ) sendiDI0SDUCRCH)
Wait A wait restart_timer()
or -~ for
\ D ) | OKOMNAK |
. / AN /
Recvd|C{OK1)) Recvd(C(OKD))
cancel_timar() cancel_fimer(]
Data.req(SDU)
send| SDU.CRC))
start_timer() / \
fowait /o Walt All corrupted
Loxtonax ) Lo ) sogmenisare
\ORINAK / \ D)/ discarded in all states
I y
(. )
Recvd{C(NAK?)) or recvd(C(OKD)) or timer expires
send(D{1,8DU,CRC))

restart-timex()

Figure 2.5: Alternating bit protocol : Sender FSM

The initial state of the sender is Wait for D(0,...). In this state, the sender waits for a Data.request. The first
data frame that it sends uses sequence number 0. After having sent this frame, the sender waits for an OKO
acknowledgement. A frame is retransmitted upon expiration of the retransmission timer or if an acknowledgement
with an incorrect sequence number has been received.

The receiver first waits for D(0,...). If the frame contains a correct CRC, it passes the SDU to its user and sends
OKO. If the frame contains an invalid CRC, it is immediately discarded. Then, the receiver waits for D(1,...). In
this state, it may receive a duplicate D(0,...) or a data frame with an invalid CRC. In both cases, it returns an OK0O
frame to allow the sender to recover from the possible loss of the previous OKO frame.

Note: Dealing with corrupted frames

The receiver FSM of the Alternating bit protocol discards all frames that contain an invalid CRC. This is the safest
approach since the received frame can be completely different from the frame sent by the remote host. A receiver
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Recwd({D(1,SDU,CRC))
_AND IsOK(CRC,5DU)

Recvd(D(0,SDU,CAC))
AND IsOK(CRC,SDU)

SE"U\C[OK‘H\ Recvd(D(0,5DU,GRG)) Send(CIOKD))
7N AND IsOK{CRC,5DU) —— — vy )
( Daind500] Send(CIOKD)} »~
\ / Wan\.‘ . Aroceh '// Wait \,
" IR { v
| tor ~ s G
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Recvd(D{1,SDU,CRC))
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Send(G(OK1 J) AND IsOK(CRC.SDU)
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Figure 2.6: Alternating bit protocol : Receiver FSM

should not attempt at extracting information from a corrupted frame because it cannot know which portion of the
frame has been affected by the error.

The figure below illustrates the operation of the alternating bit protocol.
Host A Host B
DATA.req(a) p-...
starttimer 7| TTTTTteeeeel D(0,a)
------------------- DATA.ind(a) y,
_CQKO) cenereee e
cancel timer T
DATA.req(b) >
start timer
[ R D(1.b)
................ DATA.ind(b) >
CQK ) remereee e
cancel timer T
DATA.req(c) p-...
starttimer 7| TTTreeeeel D(0,5)
-------------------- p DATAind(c) ,
G(QKO)-eerereeere T
cancel timer P
The Alternating Bit Protocol can recover from the losses of data or control frames. This is

illustrated in the two figures below.

The first figure shows the loss of one data segment.
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Host A Host B
DATAreq(a) 3l
starttimer T T D(0.a)
----------------------- > DATA.in
_C(QKO)omeee e
cancel timer T
DATA. reg(b) >
start timer D(1,b)
timer expires |
e D(1.b) .
--------------------- > DATA.in
_________ CQK) creesremremerse 7T
< ----- And
Host A Host B
DATAreq(a) )l .
starttimer 7| TTTTTeeeeee D.a) . :
............ > DATA.in
_G(QKO) ereme
cancel timer &
DATA.req(b) pl-....
starttimer 7| T e D(1.b) .
--------------------- > DATA.in
C(OK1
timer expires |
-------------------- D(Lb)
_____________ > Duplicate frame
________ CQK) oremmremree 77T
the loss of one control frame. <«

The Alternating Bit Protocol can recover from transmission errors and frame losses. However, it has one im-
portant drawback. Consider two hosts that are directly connected by a 50 Kbits/sec satellite link that has a 250
milliseconds propagation delay. If these hosts send 1000 bits frames, then the maximum throughput that can be
achieved by the alternating bit protocol is one frame every 20 + 250 + 250 = 520 milliseconds if we ignore the
transmission time of the acknowledgement. This is less than 2 Kbits/sec !

Go-back-n and selective repeat

To overcome the performance limitations of the alternating bit protocol, reliable protocols rely on pipelining. This
technique allows a sender to transmit several consecutive frames without being forced to wait for an acknowledge-
ment after each frame. Each data frame contains a sequence number encoded in an 7 bits field.

Pipelining allows the sender to transmit frames at a higher rate. However this higher transmission rate may
overload the receiver. In this case, the frames sent by the sender will not be correctly received by their final
destination. The reliable protocols that rely on pipelining allow the sender to transmit W unacknowledged frames
before being forced to wait for an acknowledgement from the receiving entity.

This is implemented by using a sliding window. The sliding window is the set of consecutive sequence numbers
that the sender can use when transmitting frames without being forced to wait for an acknowledgement. The figure
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A B
Datarregla) ———
Data.req(b)

Data.req(e) . Dat?:lnd(a)
e
D St

Figure 2.7: Pipelining improves the performance of reliable protocols

below shows a sliding window containing five segments (6,7,8,9 and 10). Two of these sequence numbers (6 and
7) have been used to send frames and only three sequence numbers (8, 9 and /0) remain in the sliding window.
The sliding window is said to be closed once all sequence numbers contained in the sliding window have been
used.

The figure below illustrates the operation of the sliding window. It uses a sliding window of three frames. The
sender can thus transmit three frames before being forced to wait for an acknowledgement. The sliding window
moves to the higher sequence numbers upon the reception of each acknowledgement. When the first acknowl-
edgement (OKO) is received, it allows the sender to move its sliding window to the right and sequence number 3
becomes available. This sequence number is used later to transmit the frame containing d.

In practice, as the frame header includes an r bits field to encode the sequence number, only the sequence numbers
between 0 and 2 — 1 can be used. This implies that, during a long transfer, the same sequence number will be
used for different frames and the sliding window will wrap. This is illustrated in the figure below assuming that
2 bits are used to encode the sequence number in the frame header. Note that upon reception of OK/, the sender
slides its window and can use sequence number 0 again.

Unfortunately, frame losses do not disappear because a reliable protocol uses a sliding window. To recover from
losses, a sliding window protocol must define :

* a heuristic to detect frame losses
* aretransmission strategy to retransmit the lost frames

The simplest sliding window protocol uses the go-back-n recovery. Intuitively, go-back-n operates as follows.
A go-back-n receiver is as simple as possible. It only accepts the frames that arrive in-sequence. A go-back-n
receiver discards any out-of-sequence frame that it receives. When go-back-n receives a data frame, it always re-
turns an acknowledgement containing the sequence number of the last in-sequence frame that it has received. This
acknowledgement is said to be cumulative. When a go-back-n receiver sends an acknowledgement for sequence
number x, it implicitly acknowledges the reception of all frames whose sequence number is earlier than x. A key
advantage of these cumulative acknowledgements is that it is easy to recover from the loss of an acknowledge-
ment. Consider for example a go-back-n receiver that received frames /, 2 and 3. It sent OKI, OK2 and OK3.
Unfortunately, OKI and OK2 were lost. Thanks to the cumulative acknowledgements, when the receiver receives
OK3, it knows that all three frames have been correctly received.

The figure below shows the FSM of a simple go-back-n receiver. This receiver uses two variables : lastack and
next. next is the next expected sequence number and lastack the sequence number of the last data frame that has
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Acked Forbidden seq. num.
\ /
..012345678910 |1 121314 15....
T ™ Available seq. nums

Unacknowledged

Figure 2.8: The sliding window

A B
Sending window
012|345678 pata.req(a)
012345678 .
3 45678 Datareq(b) D(0,a)
012345678
E— Data.reqg(c)
Data.ind(a)
| Data.ind(b
012345678 ¢ Data.ind{(c))
012345678 patg req(d)| -
0issde678 q(d) - C(OK2)
012(345/678 Datareqg(e)|-—"
012345678 Data.ind(d)

Figure 2.9: Sliding window example
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Figure 2.10: Utilisation of the sliding window with modulo arithmetic

been acknowledged. The receiver only accepts the frame that are received in sequence. maxseq is the number of
different sequence numbers (27).

A go-back-n sender is also very simple. It uses a sending buffer that can store an entire sliding window of
frames > . The frames are sent with increasing sequence numbers (modulo maxseq). The sender must wait for
an acknowledgement once its sending buffer is full. When a go-back-n sender receives an acknowledgement, it
removes from the sending buffer all the acknowledged frames and uses a retransmission timer to detect frame
losses. A simple go-back-n sender maintains one retransmission timer per connection. This timer is started when
the first frame is sent. When the go-back-n sender receives an acknowledgement, it restarts the retransmission
timer only if there are still unacknowledged frames in its sending buffer. When the retransmission timer expires,
the go-back-n sender assumes that all the unacknowledged frames currently stored in its sending buffer have been
lost. It thus retransmits all the unacknowledged frames in the buffer and restarts its retransmission timer.

The operation of go-back-n is illustrated in the figure below. In this figure, note that upon reception of the out-
of-sequence frame D(2,c), the receiver returns a cumulative acknowledgement C(OK,0) that acknowledges all the
frames that have been received in sequence. The lost frame is retransmitted upon the expiration of the retransmis-
sion timer.

The main advantage of go-back-n is that it can be easily implemented, and it can also provide good performance
when only a few frames are lost. However, when there are many losses, the performance of go-back-n quickly
drops for two reasons :

¢ the go-back-n receiver does not accept out-of-sequence frames
* the go-back-n sender retransmits all unacknowledged frames once it has detected a loss

Selective repeat is a better strategy to recover from losses. Intuitively, selective repeat allows the receiver to accept
out-of-sequence frames. Furthermore, when a selective repeat sender detects losses, it only retransmits the frames
that have been lost and not the frames that have already been correctly received.

A selective repeat receiver maintains a sliding window of W frames and stores in a buffer the out-of-sequence
frames that it receives. The figure below shows a five-frame receive window on a receiver that has already received
frames 7 and 9.

2 The size of the sliding window can be either fixed for a given protocol or negotiated during the connection establishment phase. Some
protocols allow to change the maximum window size during the data transfert. We will explain these techniques with real protocols later.

2.1. Connecting two hosts 21



Computer Networking : Principles, Protocols and Practice, Release

All corrupted
frames are
discarded in all states

Recvd (D (t<>next, 5DU, CRC))

AND IsOK (CRC,SDU)
discard (sSDU) ;7
send (C (OK, lastack ,CRC)

Figure 2.11: Go-back-n : receiver FSM
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Figure 2.13: Go-back-n : example
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Figure 2.14: The receiving window with selective repeat
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A selective repeat receiver discards all frames having an invalid CRC, and maintains the variable lastack as
the sequence number of the last in-sequence frame that it has received. The receiver always includes the value
of lastack in the acknowledgements that it sends. Some protocols also allow the selective repeat receiver to
acknowledge the out-of-sequence frames that it has received. This can be done for example by placing the list of
the correctly received, but out-of-sequence frames in the acknowledgements together with the lastack value.

When a selective repeat receiver receives a data frame, it first verifies whether the frame is inside its receiving
window. If yes, the frame is placed in the receive buffer. If not, the received frame is discarded and an acknowl-
edgement containing lastack is sent to the sender. The receiver then removes all consecutive frames starting at
lastack (if any) from the receive buffer. The payloads of these frames are delivered to the user, lastack and the

receiving window are updated, and an acknowledgement acknowledging the last frame received in sequence is
sent.

The selective repeat sender maintains a sending buffer that can store up to W unacknowledged frames. These
frames are sent as long as the sending buffer is not full. Several implementations of a selective repeat sender
are possible. A simple implementation associates one retransmission timer to each frame. The timer is started
when the frame is sent and cancelled upon reception of an acknowledgement that covers this frame. When a
retransmission timer expires, the corresponding frame is retransmitted and this retransmission timer is restarted.
When an acknowledgement is received, all the frames that are covered by this acknowledgement are removed
from the sending buffer and the sliding window is updated.

The figure below illustrates the operation of selective repeat when frames are lost. In this figure, C(OK,x) is used
to indicate that all frames, up to and including sequence number x have been received correctly.

A B
Sending window Rec. window
9123 Data.req(a) 012)3
0123 _ N
01723 Data.req(b) \D(O,a} Lost
o128 Data.req(c) w,b)
Data.ind(a)
D(2,c) y = o[123
0[123] . coKOo)™
Retransmission |- '
0123 timer expires o OK‘G,['é']j. Stored 0123
0123 Data.req(d) o .
o123 e
| Dataind(b) 0[723
)\ Data.ind(c) (0122
cOK2 | Damindd)
©_C(OK3) —_— 012]3

Figure 2.15: Selective repeat : example

Pure cumulative acknowledgements work well with the go-back-n strategy. However, with only cumulative ac-
knowledgements a selective repeat sender cannot easily determine which frames have been correctly received after
a data frame has been lost. For example, in the figure above, the second C(OK,0) does not inform explicitly the
sender of the reception of D(2,c) and the sender could retransmit this frame although it has already been received.
A possible solution to improve the performance of selective repeat is to provide additional information about the
received frames in the acknowledgements that are returned by the receiver. For example, the receiver could add
in the returned acknowledgement the list of the sequence numbers of all frames that have already been received.
Such acknowledgements are sometimes called selective acknowledgements. This is illustrated in the figure above.

In the figure above, when the sender receives C(OK,0,[2]), it knows that all frames up to and including D(0,...)
have been correctly received. It also knows that frame D(2,...) has been received and can cancel the retransmission
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timer associated to this frame. However, this frame should not be removed from the sending buffer before the
reception of a cumulative acknowledgement (C(OK,2) in the figure above) that covers this frame.

Note: Maximum window size with go-back-n and selective repeat

A reliable protocol that uses 7 bits to encode its sequence number can send up to 2" successive frames. However, to
ensure a reliable delivery of the frames, go-back-n and selective repeat cannot use a sending window of 2" frames.
Consider first go-back-n and assume that a sender sends 2" frames. These frames are received in-sequence by the
destination, but all the returned acknowledgements are lost. The sender will retransmit all frames. These frames
will all be accepted by the receiver and delivered a second time to the user. It is easy to see that this problem
can be avoided if the maximum size of the sending window is 2" — 1 frames. A similar problem occurs with
selective repeat. However, as the receiver accepts out-of-sequence frames, a sending window of 2™ — 1 frames
is not sufficient to ensure a reliable delivery. It can be easily shown that to avoid this problem, a selective repeat
sender cannot use a window that is larger than % frames.

Reliable protocols often need to send data in both directions. To reduce the overhead caused by the acknowl-
edgements, most reliable protocols use piggybacking. Thanks to this technique, a datalink entity can place the
acknowledgements and the receive window that it advertises for the opposite direction of the data flow inside the
header of the data frames that it sends. The main advantage of piggybacking is that it reduces the overhead as it is
not necessary to send a complete frame to carry an acknowledgement. This is illustrated in the figure below where
the acknowledgement number is underlined in the data frames. Piggybacking is only used when data flows in both
directions. A receiver will generate a pure acknowledgement when it does not send data in the opposite direction
as shown in the bottom of the figure.

A B
Data.req(a)
Data.req(b) \D(O,Q,a) Error
>~ Data.req(w)
Data.req(c D(1.2.0)
Data.ind(a)
D(2,0,c] —
Data.ind(w) D(5,0,w) Discarded
D(5,0,w) acks D(0,0,a) 5 ~ Data.req(x)
Retransmission (6.0.%) -> buffer
Data.req(d) (126)
Data.ind(x) \D - | Dataind(p)
( _ ) e Data.ind(c)
_C(OK.2) Data.ind(d)

T cloKa)

Figure 2.16: Piggybacking example

2.2 Building a network

Warning: This is an unpolished draft of the second edition of this ebook. If you find any error or have sugges-
tions to improve the text, please create an issue via https://github.com/obonaventure/cnp3/issues?milestone=2

In the previous section, we have explained how reliable protocols allow hosts to exchange data reliably even if the
underlying physical layer is imperfect and thus unreliable. Connecting two hosts together through a wire is the
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first step to build a network. However, this is not sufficient. Hosts usually need to interact with remote hosts that
are not directly connected through a direct physical layer link. This can be achieved by adding one layer above
the datalink layer : the network layer.

The main objective of the network layer is to allow endsystems, connected to different networks, to exchange
information through intermediate systems called router. The unit of information in the network layer is called a

packet.
o
(DT 2

Before explaining the network layer in detail, it is useful to remember the characteristics of the service provided
by the datalink layer. There are many variants of the datalink layer. Some provide a reliable service while others
do not provide any guarantee of delivery. The reliable datalink layer services are popular in environments such
as wireless networks were transmission errors are frequent. On the other hand, unreliable services are usually
used when the physical layer provides an almost reliable service (i.e. only a negligible fraction of the frames are
affected by transmission errors). Such almost reliable services are frequently in wired and optical networks. In
this chapter, we will assume that the datalink layer service provides an almost reliable service since this is both
the most general one and also the most widely deployed one.

Network etwo
Datalink +«—Frames — Datalink

Physical Physical
I |

Figure 2.17: The point-to-point datalink layer

There are two main types of datalink layers. The simplest datalink layer is when there are only two communicating
systems that are directly connected through the physical layer. Such a datalink layer is used when there is a point-
to-point link between the two communicating systems. The two systems can be endsystems or routers. PPP
(Point-to-Point Protocol), defined in RFC 1661, is an example of such a point-to-point datalink layer. Datalink
layers exchange frames and a datalink frame sent by a datalink layer entity on the left is transmitted through the
physical layer, so that it can reach the datalink layer entity on the right. Point-to-point datalink layers can either
provide an unreliable service (frames can be corrupted or lost) or a reliable service (in this case, the datalink layer
includes retransmission mechanisms). .. The unreliable service is frequently used above physical layers (e.g.
optical fiber, twisted pairs) having a low bit error ratio while reliability mechanisms are often used in wireless
networks to recover locally from transmission errors.

The second type of datalink layer is the one used in Local Area Networks (LAN). Conceptually, a LAN is a set of
communicating devices such that any two devices can directly exchange frames through the datalink layer. Both
endsystems and routers can be connected to a LAN. Some LANs only connect a few devices, but there are LANs
that can connect hundreds or even thousands of devices. In this chapter, we focus on the utilization of point-to-
point datalink layers. We will describe later the organisation and the operation of Local Area Networks and their
impact on the network layer.

Even if we only consider the point-to-point datalink layers, there is an important characteristics of these layers that
we cannot ignore. No datalink layer is able to send frames of unlimited size. Each datalink layer is characterized
by a maximum frame size. There are more than a dozen different datalink layers and unfortunately most of them
use a different maximum frame size. This heterogeneity in the maximum frame sizes will cause problems when
we will need to exchange data between hosts attached to different types of datalink layers.

As a first step, let us assume that we only need to exchange small amount of data. In this case, there is no issue
with the maximum length of the frames. However, there are other more interesting problems that we need to
tackle. To understand these problems, let us consider the network represented in the figure below.
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R2 R4

This network contains two types of devices. The end hosts, represented as a small workstation and the routers,
represented as boxes with three arrows. An endhost is a device which is able to send and receive data for its own
usage in contrast with routers that most of the time forward data towards their final destination. Routers have
multiple links to neighboring routers or endhosts. Endhosts are usually attached via a single link to the network.
Nowadays, with the growth of wireless networks, more and more endhosts are equipped with several physical
interfaces. These endhosts are often called multihomed. Still, using several interfaces at the same time often leads
to practical issues that are beyond the scope of this document. For this reason, we will only consider single-homed
hosts in this ebook.

To understand the key principles behind the operation of a network, let us analyse all the operations that need to
be performed to allow host A in the above network to send one byte to host B. Thanks to the datalink layer used
above the A-R] link, host A can easily send a byte to router R/ inside a frame. However, upon reception of this
frame, router R/ needs to understand that the byte is destined to host B and not to itself. This is the objective of
the network layer.

The network layer enables the transmission of information between hosts that are not directly connected through
intermediate routers. This transmission is carried out by putting the information to be transmitted inside a data
structure which is called a packet. Like a frame that contains useful data and control information, a packet also
contains useful data and control information. An important issue in the network layer is the ability to identify a
node (host or router) inside the network. This identification is performed by associating an address to each node.
An address is usually represented as a sequence of bits. Most networks use fixed-length addresses. At this stage,
let us simply assume that each of the nodes in the above network has an address which corresponds to the binary
representation on its name on the figure.

To send one byte of information to host B, host A needs to place this information inside a packet. In addition to the
data being transmitted, the packet must also contain either the addresses of the source and the destination nodes
or information that indicates the path that needs to be followed to reach the destination.

There are two possible organisations for the network layer :
* datagram

e virtual circuits

2.2.1 The datagram organisation

The first and most popular organisation of the network layer is the datagram organisation. This organisation is
inspired by the organisation of the postal service. Each host is identified by a network layer address. To send
information to a remote host, a host creates a packet that contains :

* the network layer address of the destination host
* its own network layer address
* the information to be sent

To understand the datagram organisation, let us consider the figure below. A network layer address, represented
by a letter, has been assigned to each host and router. To send some information to host J, host A creates a packet
containing its own address, the destination address and the information to be exchanged.

With the datagram organisation, routers use hop-by-hop forwarding. This means that when a router receives a
packet that is not destined to itself, it looks up the destination address of the packet in its forwarding table. A
forwarding table is a data structure that maps each destination address (or set of destination addresses) to the
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Figure 2.18: A simple internetwork

outgoing interface over which a packet destined to this address must be forwarded to reach its final destination.
The router consults its forwarding table for each packet that it handles.

The figure illustrates some possible forwarding tables in this network. By inspecting the forwarding tables of the
different routers, one can find the path followed by packets sent from a source to a particular destination. In the
example above, host A sends its packet to router R/. RI consults its routing table and forwards the packet towards
R2. Based on its own routing table, R2 decides to forward the packet to R5 that can deliver it to its destination.
Thus, the path fromAtoJisA -> Rl -> R2-> R5 -> J.

The computation of the forwarding tables of all the routers inside a network is a key element for the correct
operation of the network. This computation can be carried out in different ways and it is possible to use both
distributed and centralized algorithms. These algorithms provide different performance, may lead to different
types of paths, but their composition must lead to valid path.

In a network, a path can be defined as the list of all intermediate routers for a given source destination pair. For a
given source/destination pair, the path can be derived by first consulting the forwarding table of the router attached
to the source to determine the next router on the path towards the chosen destination. Then, the forwarding table
of this router is queried for the same destination... The queries continue until the destination is reached. In a
network that has valid forwarding tables, all the paths between all source/destination pairs contain a finite number
of intermediate routers. However, if forwarding tables have not been correctly computed, two types of invalid path
can occur.

A path may lead to a black hole. In a network, a black hole is a router that receives packets for at least one given
source/destination pair but does not have any entry inside its forwarding table for this destination. Since it does
not know how to reach the destination, the router cannot forward the received packets and must discard them. Any
centralized or distributed algorithm that computes forwarding tables must ensure that there are not black holes
inside the network.

A second type of problem may exist in networks using the datagram organisation. Consider a path that contains
a cycle. For example, router R/ sends all packets towards destination D via router R2, router R2 forwards these
packets to router R3 and finally router R3‘s forwarding table uses router R/ as its nexthop to reach destination D.
In this case, if a packet destined to D is received by router R/, it will loop on the RI -> R2 -> R3 -> RI cycle and
will never reach its final destination. As in the black hole case, the destination is not reachable from all sources in
the network. However, in practice the loop problem is worse than the black hole problem because when a packet is
caught in a forwarding loop, it unnecessarily consumes bandwidth. In the black hole case, the problematic packet
is quickly discarded. We will see later that network layer protocols include techniques to minimize the impact of
such forwarding loops.

Any solution which is used to compute the forwarding tables of a network must ensure that all destinations are
reachable from any source. This implies that it must guarantee the absence of black holes and forwarding loops.
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The forwarding tables and the precise format of the packets that are exchanged inside the network are part of
the data plane of the network. This data plane contains all the protocols and algorithms that are used by hosts
and routers to create and process the packets that contain user data. On high-end routers, the data plane is often
implemented in hardware for performance reasons.

Besides the data plane, a network is also characterized by its control plane. The control plane includes all the
protocols and algorithms (often distributed) that are used to compute the forwarding tables that are installed on
all routers inside the network. While there is only one possible data plane for a given networking technology,
different networks using the same technology may use different control planes. The simplest control plane for
a network is always to compute manually the forwarding tables of all routers inside the network. This simple
control plane is sufficient when the network is (very) small, usually up to a few routers.

In most networks, manual forwarding tables are not a solution for two reasons. First, most networks are too large
to enable a manual computation of the forwarding tables. Second, with manually computed forwarding tables,
it is very difficult to deal with link and router failures. Networks need to operate 24h a day, 365 days per year.
During the lifetime of a network, many events can affect the routers and links that it contains. Link failures are
regular events in deployed networks. Links can fail for various reasons, including electromagnetic interference,
fiber cuts, hardware or software problems on the terminating routers, ... Some links also need to be added to the
network or removed because their utilisation is too low or their cost is too high. Similarly, routers also fail. There
are two types of failures that affect routers. A router may stop forwarding packets due to hardware or software
problem (e.g. due to a crash of its operating system). A router may also need to be halted from time to time (e.g.
to upgrade its operating system to fix some bugs). These planned and unplanned events affect the set of links and
routers that can be used to forward packets in the network. Still, most network users expect that their network will
continue to correctly forward packets despite all these events. With manually computed forwarding tables, it is
usually impossible to precompute the forwarding tables while taking into account all possible failure scenarios.

An alternative to manually computed forwarding tables is to use a network management platform that tracks the
network status and can push new forwarding tables on the routers when it detects any modification to the network
topology. This solution gives some flexibility to the network managers in computing the paths inside their network.
However, this solution only works if the network management platform is always capable of reaching all routers
even when the network topology changes. This may require a dedicated network that allows the management
platform to push information on the forwarding tables.

Another interesting point that is worth being discussed is when the forwarding tables are computed. A widely
used solution is to compute the entries of the forwarding tables for all destinations on all routers. This ensures that
each router has a valid route towards each destination. These entries can be updated when an event occurs and the
network topology changes. A drawback of this approach is that the forwarding tables can become large in large
networks since each router must maintain one entry for each destination at all times inside its forwarding table.

Some networks use the arrival of packets as the trigger to compute the corresponding entries in the forwarding
tables. Several technologies have been built upon this principle. When a packet arrives, the router consults its
forwarding table to find a path towards the destination. If the destination is present in the forwarding table, the
packet is forwarded. Otherwise, the router needs to find a way to forward the packet and update its forwarding
table.

Computing forwarding tables

Several techniques to update the forwarding tables upon the arrival of a packet have been used in deployed net-
works. In this section, we briefly present the principles that underly three of these techniques.

The first technique assumes that the underlying network topology is a tree. A tree is the simplest network to be
considered when forwarding packets. The main advantage of using a tree is that there is only one path between
any pair of nodes inside the network. Since a tree does not contain any cycle, it is impossible to have forwarding
loops in a tree-shaped network.

In a tree-shaped network, it is relatively simple for each node to automatically compute its forwarding table by
inspecting the packets that it receives. For this, each node uses the source and destination addresses present inside
each packet. The source address allows to learn the location of the different sources inside the network. Each
source has a unique address. When a node receives a packet over a given interface, it learns that the source
(address) of this packet is reachable via this interface. The node maintains a data structure that maps each known
source address to an incoming interface. This data structure is often called the port-address table since it indicates
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the interface (or port) to reach a given address. Learning the location of the sources is not sufficient, nodes also
need to forward packets towards their destination. When a node receives a packet whose destination address is
already present inside its port-address table, it simply forwards the packet on the interface listed in the port-address
table. In this case, the packet will follow the port-address table entries in the downstream nodes and will reach
the destination. If the destination address is not included in the port-address table, the node simply forwards the
packet on all its interfaces, except the interface from which the packet was received. Forwarding a packet over
all interfaces is usually called broadcasting in the terminology of computer networks. Sending the packet over all
interfaces except one is a costly operation since the packet will be sent over links that do not reach the destination.
Given the tree-shape of the network, the packet will explore all downstream branches of the tree and will thus
finally reach its destination. In practice, the broadcasting operation does not occur too often and its cost is limited.

To understand the operation of the port-address table, let us consider the example network shown in the figure
below. This network contains three hosts : A, B and C and five nodes, R/ to R5. When the network boots, all the
forwarding tables of the nodes are empty.
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R2

Host A sends a packet towards B. When receiving this packet, R/ learns that A is reachable via its North interface.
Since it does not have an entry for destination B in its port-address table, it forwards the packet to both R2 and
R3. When R2 receives the packet, it updates its own forwarding table and forward the packet to C. Since C is not
the intended recipient, it simply discards the received packet. Node R3 also received the packet. It learns that A is
reachable via its North interface and broadcasts the packet to R4 and RS5. RS also updates its forwarding table and
finally forwards it to destination B.‘Let us now consider what happens when B sends a reply to A. R5 first learns
that B is attached to its South port. It then consults its port-address table and finds that A is reachable via its North
interface. The packet is then forwarded hop-by-hop to A without any broadcasting. If C sends a packet to B, this
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packet will reach R/ that contains a valid forwarding entry in its forwarding table.

By inspecting the source and destination addresses of packets, network nodes can automatically derive their for-
warding tables. As we will discuss later, this technique is used in Ethernet networks. Despite being widely used,
it has two important drawbacks. First, packets sent to unknown destinations are broadcasted in the network even
if the destination is not attached to the network. Consider the transmission of ten packets destined to Z in the
network above. When a node receives a packet towards this destination, it can only broadcast the packet. Since
Z is not attached to the network, no node will ever receive a packet whose source is Z to update its forwarding
table. The second and more important problem is that few networks have a tree-shaped topology. It is interesting
to analyze what happens when a port-address table is used in a network that contains a cycle. Consider the simple
network shown below with a single host.
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R2

R3

Assume that the network has started and all port-station and forwarding tables are empty. Host A sends a packet
towards B. Upon reception of this packet, R/ updates its port-address table. Since B is not present in the port-
address table, the packet is broadcasted. Both R2 and R3 receive a copy of the packet sent by A. They both update
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their port-address table. Unfortunately, they also both broadcast the received packet. B receives a first copy of the
packet, but R3 and R2 receive it again. R3 will then broadcast this copy of the packet to B and RI while R2 will
broadcast its copy to RI. Although B has already received two copies of the packet, it is still inside the network
and will continue to loop. Due to the presence of the cycle, a single packet towards an unknown destination
generates copies of this packet that loop and will saturate the network bandwidth. Network operators who are
using port-address tables to automatically compute the forwarding tables also use distributed algorithms to ensure
that the network topology is always a tree.

Another technique can be used to automatically compute forwarding tables. It has been used in interconnecting
Token Ring networks and in some wireless networks. Intuitively, Source routing enables a destination to auto-
matically discover the paths from a given source towards itself. This technique requires nodes to change some
information inside some packets. For simplicity, let us assume that the data plane supports two types of packets :

e the data packets
e the control packets

Data packets are used to exchange data while control packets are used to discover the paths between endhosts.
With Source routing, network nodes can be kept as simple as possible and all the complexity is placed on the
endhosts. This is in contrast with the previous technique where the nodes had to maintain a port-address and
a forwarding table while the hosts simply sent and received packets. Each node is configured with one unique
address and there is one identifier per outgoing link. For simplicity and to avoid cluttering the figures with those
identifiers, we will assume that each node uses as link identifiers north, west, south, ... In practice, a node would
associate one integer to each outgoing link.
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In the network above, node R2 is attached to two outgoing links. R2 is connected to both R/ and R3. R2 can
easily determine that it is connected to these two nodes by exchanging packets with them or observing the packets
that it receives over each interface. Assume for example that when a host or node starts, it sends a special control
packet over each of its interfaces to advertise its own address to its neighbors. When a host or node receives such a
packet, it automatically replies with its own address. This exchange can also be used to verify whether a neighbor,
either node or host, is still alive. With source routing, the data plane packets include a list of identifiers. This list
is called a source route and indicates the path to be followed by the packet as a sequence of link identifiers. When
a node receives such a data plane packet, it first checks whether the packet’s destination is direct neighbor. In this
case, the packet is forwarded to the destination. Otherwise, the node extracts the next address from the list and
forwards it to the neighbor. This allows the source to specify the explicit path to be followed for each packet. For
example, in the figure above there are two possible paths between A and B. To use the path via R2, A would send a
packet that contains R/,R2,R3 as source route. To avoid going via R2, A would place R1,R3 as the source route in
its transmitted packet. If A knows the complete network topology and all link identifiers, it can easily compute the
source route towards each destination. If needed, it could even use different paths, e.g. for redundancy, to reach a
given destination. However, in a real network hosts do not usually have a map of the entire network topology.

In networks that rely on source routing, hosts use control packets to automatically discover the best path(s). In
addition to the source and destination addresses, control packets contain a list that records the intermediate nodes.
This list is often called the record route because it allows to record the route followed by a given packet. When a
node receives a control packet, it first checks whether its address is included in the record route. If yes, the control
packet is silently discarded. Otherwise, it adds its own address to the record route and forwards the packet to all
its interfaces, except the interface over which the packet has been received. Thanks to this, the control packet will
be able to explore all paths between a source and a given destination.

For example, consider again the network topology above. A sends a control packet towards B. The initial record
route is empty. When R1 receives the packet, it adds its own address to the record route and forwards a copy to R2
and another to R3. R2 receives the packet, adds itself to the record route and forwards it to R3. R3 receives two
copies of the packet. The first contains the [R1,R2] record route and the second [RI]. In the end, B will receive
two control packets containing [R1,R2,R3,R4] and [R1,R3,R4] as record routes. B can keep these two paths or
select the best one and discard the second. A popular heuristic is to select the record route of the first received
packet as being the best one since this likely corresponds to the shortest delay path.

With the received record route, B can send a data packet to A. For this, it simply reverses the chosen record route.
However, we still need to communicate the chosen path to A. This can be done by putting the record route inside
a control packet which is sent back to A over the reverse path. An alternative is to simply send a data packet back
to A. This packet will travel back to A. To allow A to inspect the entire path followed by the data packet, its source
route must contain all intermediate routers when it is received by A. This can be achieved by encoding the source
route using a data structure that contains an index and the ordered list of node addresses. The index always points
to the next address in the source route. It is initialized at O when a packet is created and incremented by each
intermediate node.

Flat or hierarchical addresses

The last, but important, point to discuss about the data plane of the networks that rely on the datagram mode is
their addressing scheme. In the examples above, we have used letters to represent the addresses of the hosts and
network nodes. In practice, all addresses are encoded as a bit string. Most network technologies use a fixed size
bit string to represent source and destination address. These addresses can be organized in two different ways.

The first organisation, which is the one that we have implicitly assumed until now, is the flat addressing scheme.
Under this scheme, each host and network node has a unique address. The unicity of the addresses is important for
the operation of the network. If two hosts have the same address, it can become difficult for the network to forward
packets towards this destination. Flat addresses are typically used in situations where network nodes and hosts
need to be able to communicate immediately with unique addresses. These flat addresses are often embedded
inside the hardware of network interface cards. The network card manufacturer creates one unique address for
each interface and this address is stored in the read-only memory of the interface. An advantage of this addressing
scheme is that it easily supports ad-hoc and mobile networks. When a host moves, it can attach to another network
and remain confident that its address is unique and enables it to communicate inside the new network.

With flat addressing the lookup operation in the forwarding table can be implemented as an exact match. The
forwarding table contains the (sorted) list of all known destination addresses. When a packet arrives, a network
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node only needs to check whether this address is part of the forwarding table or not. In software, this is an
O(log(n)) operation if the list is sorted. In hardware, Content Addressable Memories can perform this lookup
operation efficiently, but their size is usually limited.

A drawback of the flat addressing scheme is that the forwarding tables grow linearly with the number of hosts and
nodes in the network. With this addressing scheme, each forwarding table must contain an entry that points to
every address reachable inside the network. Since large networks can contain tens of millions or more of hosts,
this is a major problem on network nodes that need to be able to quickly forward packets. As an illustration, it is
interesting to consider the case of an interface running at 10 Gbps. Such interfaces are found on high-end servers
and in various network nodes today. Assuming a packet size of 1000 bits, a pretty large and conservative number,
such interface must forward ten million packets every second. This implies that a network node that receives
packets over such a link must forward one 1000 bits packet every 100 nanoseconds. This is the same order of
magnitude as the memory access times of old DRAMs.

A widely used alternative to the flat addressing scheme is the hierarchical addressing scheme. This addressing
scheme builds upon the fact that networks usually contain much more hosts than network nodes. In this case, a
first solution to reduce the size of the forwarding tables is to create a hierarchy of addresses. This is the solution
chosen by the post office were addresses contain a country, sometimes a state or province, a city, a street and
finally a street number. When an enveloppe is forwarded by a postoffice in a remote country, it only looks at
the destination country, while a post office in the same province will look at the city information. Only the post
office responsible for a given city will look at the street name and only the postman will use the street number.
Hierarchical addresses provide a similar solution for network addresses. For example, the address of an Internet
host attached to a campus network could contain in the high-order bits an identification of the Internet Service
Provider (ISP) that serves the campus network. Then, a subsequent block of bits identifies the campus network
which is one of the customers from the ISP. Finally, the low order bits of the address identify the host in the
campus network.

This hierarchical allocation of addresses can be applied in any type of network. In practice, the allocation of
the addresses must follow the network topology. Usually, this is achieved by dividing the addressing space in
consecutive blocks and then allocating these blocks to different parts of the network. In a small network, the
simplest solution is to allocate one block of addresses to each network node and assign the host addresses from
the attached node.
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In the above figure, assume that the network uses 16 bits addresses and that the prefix 01001010 has been assigned
to the entire network. Since the network contains four routers, the network operator could assign one block
of sixty-four addresses to each router. RI would use address 0100101000000000 while A could use address
0100101000000001. R2 could be assigned all adresses from 0100101001000000 to 0100101001111111. R4
could then use 0/00101011000000 and assign 0100101011000001 to B. Other allocation schemes are possible.
For example, R3 could be allocated a larger block of addresses than R2 and R4 could use a sub-block from R3 ‘s
address block.

The main advantage of hierarchical addresses is that it is possible to significantly reduce the size of the forwarding
tables. In many networks, the number of nodes can be several orders of magnitude smaller than the number of
hosts. A campus network may contain a few dozen of network nodes for thousands of hosts. The largest Internet
Services Providers typically contain no more than a few tens of thousands of network nodes but still serve tens or
hundreds of millions of hosts.

Despite their popularity, hierarchical addresses have some drawbacks. Their first drawback is that a lookup in
the forwarding table is more complex than when using flat addresses. For example, on the Internet, network
nodes have to perform a longest-match to forward each packet. This is partially compensated by the reduction in
the size of the forwarding tables, but the additional complexity of the lookup operation has been a difficulty to
implement hardware support for packet forwarding. A second drawback of the utilisation of hierarchical addresses
is that when a host connects for the first time to a network, it must contact one network node to determine its own
address. This requires some packet exchanges between the host and some network nodes. Furthermore, if a host
moves and is attached to another network node, its network address will change. This can be an issue with some
mobile hosts.

Dealing with heterogeneous datalink layers

Sometimes, the network layer needs to deal with heterogenous datalink layers. For example, two hosts connected
to different datalink layers exchange packets via routers that are using other types of datalink layers. Thanks to
the network layer, this exchange of packets is possible provided that each packet can be placed inside a datalink
layer frame before being transmitted. If all datalink layers support the same frame size, this is simple. When a
node receives a frame, it decapsulate the packet that it contains, checks the header and forwards it, encapsulated
inside another frame, to the outgoing interface. Unfortunately, the encapsulation operation is not always possible.
Each datalink layer is characterized by the maximum frame size that it supports. Datalink layers typically support
frames containing up to a few hundreds or a few thousands of bytes. The maximum frame size that a given datalink
layer supports depends on its underlying technology and unfortunately, most datalink layers support a different
maximum frame size. This implies that when a host sends a large packet inside a frame to its nexthop router, there
is a risk that this packet will have to traverse a link that is not capable of forwarding the packet inside a single
frame. In principle, there are three possibilities to solve this problem. We will discuss them by considering a
simpler scenario with two hosts connected to a router as shown in the figure below.

Max. Max. Max.
..... K 1000 bytes @ 500 bytes [@ 1000 bytes bl
- Rl R2 -
A B

Considering in the network above that host A wants to send a 900 bytes packet (870 bytes of payload and 30 bytes
of header) to host B via router R1. Host A encapsulates this packet inside a single frame. The frame is received by
router R/ which extracts the packet. Router R/ has three possible options to process this packet.

1. The packet is too large and router R/ cannot forward it to router R2. It rejects the packet and
sends a control packet back to the source (host A) to indicate that it cannot forward packets
longer than 500 bytes (minus the packet header). The source will have to react to this control
packet by retransmitting the information in smaller packets.

2. The network layer is able to fragment a packet. In our example, the router could fragment the
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packet in two parts. The first part contains the beginning of the payload and the second the end.
There are two possible ways to achieve this fragmentation.

1. Router RI fragments the packet in two fragments before transmitting them to router R2. Router
R2 reassembles the two packet fragments in a larger packet before transmitting them on the link
towards host B.

2. Each of the packet fragments is a valid packet that contains a header with the source (host A)
and destination (host B) addresses. When router R2 receives a packet fragment, it treats this
packet as a regular packet and forwards it to its final destination (host B). Host B reassembles
the received fragments.

These three solutions have advantages and drawbacks. With the first solution, routers remain simple and do
not need to perform any fragmentation operation. This is important when routers are implemented mainly in
hardware. However, hosts are more complex since they need to store the packets that they produce if they need
to pass through a link that does not support large packets. This increases the buffering required on the end hosts.
Furthermore, a single large packet may potentially need to be retransmitted several times. Consider for example a
network similar to the one shown above but with four routers. Assume that the link R/->R2 supports 1000 bytes
packets, link R2->R3 800 bytes packets and link R3->R4 600 bytes packets. A host attached to R/ that sends large
packet will have to first try 1000 bytes, then 800 bytes and finally 600 bytes. Fortunately, this scenario does not
occur very often in practice and this is the reason why this solution is used in real networks.

Fragmenting packets on a per-link basis, as presented for the second solution, can minimize the transmission
overhead since a packet is only fragmented on the links where fragmentation is required. Large packets can
continue to be used downstream of a link that only accepts small packets. However, this reduction of the overhead
comes with two drawbacks. First, fragmenting packets, potentially on all links, increases the processing time
and the buffer requirements on the routers. Second, this solution leads to a longer end-to-end delay since the
downstream router has to reassemble all the packet fragments before forwarding the packet.

The last solution is a compromise between the two others. Routers need to perform fragmentation but they do not
need to reassemble packet fragments. Only the hosts need to have buffers to reassemble the received fragments.
This solution has a lower end-to-end delay and requires fewer processing time and memory on the routers.

The first solution to the fragmentation problem presented above suggests the utilization of control packets to
inform the source about the reception of a too long packet. This is only one of the functions that are performed by
the control protocol in the network layer. Other functions include :

 sending a control packet back to the source if a packet is received by a router that does not have a valid entry
in its forwarding table

* sending a control packet back to the source if a router detects that a packet is looping inside the network
* verifying that packets can reach a given destination

We will discuss these functions in more details when we will describe the protocols that are used in the network
layer of the TCP/IP protocol suite.

2.2.2 Virtual circuit organisation

The second organisation of the network layer, called virtual circuits, has been inspired by the organisation of
telephone networks. Telephone networks have been designed to carry phone calls that usually last a few minutes.
Each phone is identified by a telephone number and is attached to a telephone switch. To initiate a phone call, a
telephone first needs to send the destination’s phone number to its local switch. The switch cooperates with the
other switches in the network to create a bi-directional channel between the two telephones through the network.
This channel will be used by the two telephones during the lifetime of the call and will be released at the end of
the call. Until the 1960s, most of these channels were created manually, by telephone operators, upon request of
the caller. Today’s telephone networks use automated switches and allow several channels to be carried over the
same physical link, but the principles remain roughly the same.

In a network using virtual circuits, all hosts are also identified with a network layer address. However, packet
forwarding is not performed by looking at the destination address of each packet. With the virtual circuit organ-
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isation, each data packet contains one label *. A label is an integer which is part of the packet header. Network
nodes implement label switching to forward labelled data packet. Upon reception of a packet, a network nodes
consults its label forwarding table to find the outgoing interface for this packet. In contrast with the datagram
mode, this lookup is very simple. The label forwarding table is an array stored in memory and the label of the
incoming packet is the index to access this array. This implies that the lookup operation has an O(/) complexity
in contrast with other packet forwarding techniques. To ensure that on each node the packet label is an index in
the label forwarding table, each network node that forwards a packet replaces the label of the forwarded packet
with the label found in the label forwarding table. Each entry of the label forwarding table contains two pieces of
information :

* the outgoing interface for the packet
* the label for the outgoing packet

For example, consider the label forwarding table of a network node below.

index | outgoing interface | label
0 South 7
1 none none
2 West 2
3 East 2

If this node receives a packet with label=2, it forwards the packet on its West interface and sets the label of the
outgoing packet to 2. If the received packet’s label is set to 3, then the packet is forwarded over the East interface
and the label of the outgoing packet is set to 2. If a packet is received with a label field set to /, the packet is
discarded since the corresponding label forwarding table entry is invalid.

Label switching enables a full control over the path followed by packets inside the network. Consider the network
below and assume that we want to use two virtual circuits : R/->R3->R4->R2->R5 and R2->RI->R3->R4->R5.

R1

R3 R2

R4

RS

To create these virtual circuits, we need to configure the label forwarding tables‘ of all network nodes. For
simplicity, assume that a label forwarding table only contains two entries. Assume that R5 wants to receive the
packets from the virtual circuit created by R (resp. R2) with label=1 (label=0). R4 could use the following label
forwarding table:

index | outgoing interface | label

0 ->R2 1

1 ->R5 0
Since a packet received with label=1 must be forwarded to R5 with label=1, R2*s label forwarding table could
contain :

index | outgoing interface | label

0 none none

1 ->R5 1

3 We will see later a more detailed description of Multiprotocol Label Switching, a networking technology that is capable of using one or
more labels.
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Two virtual circuits pass through R3. They both need to be forwarded to R4, but R4 expects label=1 for packets
belonging to the virtual circuit originated by R2 and label=0 for packets belonging to the other virtual circuit. R3
could choose to leave the labels unchanged.

index | outgoing interface | label
0 ->R4 0
1 ->R4 1

With the above label forwarding table, R1 needs to originate the packets that belong to the R/->R3->R4->R2->R5
with label=1. The packets received from R2 and belonging to the R2->R[->R3->R4->R5 would then use label=0
on the RI-R3 link. R ‘s label forwarding table could be built as follows :

index | outgoing interface | label
0 ->R3 0
1 none 1

The figure below shows the path followed by the packets on the R/->R3->R4->R2->R5 path in red with on each
arrow the label used in the packets.

R1
1 .
R3 R2
0 (U
\‘ ’ Il
R4 1
v
RS

Multi-Protocol Label Switching (MPLS) is the example of a deployed networking technology that relies on label
switching. MPLS is more complex than the above description because it has been designed to be easily integrated
with datagram technologies. However, the principles remain. Asynchronous Transfer Mode (ATM) and Frame
Relay are other examples of technologies that rely on label switching.

Nowadays, most deployed networks rely on distributed algorithms, called routing protocols, to compute the for-
warding tables that are installed on the network nodes. These distributed algorithms are part of the control plane.
They are usually implemented in software and are executed on the main CPU of the network nodes. There are two
main families of routing protocols : distance vector routing and link state routing. Both are capable of discovering
autonomously the network and react dynamically to topology changes.

2.2.3 The control plane

One of the objectives of the control plane in the network layer is to maintain the routing tables that are used on all
routers. As indicated earlier, a routing table is a data structure that contains, for each destination address (or block
of addresses) known by the router, the outgoing interface over which the router must forward a packet destined to
this address. The routing table may also contain additional information such as the address of the next router on
the path towards the destination or an estimation of the cost of this path.

In this section, we discuss the main techniques that can be used to maintain the forwarding tables in a network.
Distance vector routing

Distance vector routing is a simple distributed routing protocol. Distance vector routing allows routers to auto-
matically discover the destinations reachable inside the network as well as the shortest path to reach each of these
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destinations. The shortest path is computed based on metrics or costs that are associated to each link. We use
l.cost to represent the metric that has been configured for link / on a router.

Each router maintains a routing table. The routing table R can be modelled as a data structure that stores, for each
known destination address d, the following attributes :

* R[d].link is the outgoing link that the router uses to forward packets towards destination d
* R[d].cost is the sum of the metrics of the links that compose the shortest path to reach destination d
* R/d].time is the timestamp of the last distance vector containing destination d

A router that uses distance vector routing regularly sends its distance vector over all its interfaces. The distance
vector is a summary of the router’s routing table that indicates the distance towards each known destination. This
distance vector can be computed from the routing table by using the pseudo-code below.

Every N seconds:
v=Vector ()
for d in R[]:
# add destination d to vector
v.add (Pair (d,R[d] .cost))
for i in interfaces
# send vector v on this interface
send (v, interface)

When a router boots, it does not know any destination in the network and its routing table only contains itself. It
thus sends to all its neighbours a distance vector that contains only its address at a distance of 0. When a router
receives a distance vector on link /, it processes it as follows.

# V : received Vector
# 1 : link over which vector 1s received
def received(V,1):
# received vector from 1link 1
for d in V/[]
if not (d in RI[])
# new route
R[d] .cost=V[d].cost+1l.cost
R[d].link=1
R[d] .time=now
else
# existing route, 1s the new better ?
if ( ((V[d].cost+l.cost) < R[d].cost) or ( R[d].link == 1) )
# Better route or change to current route
R[d] .cost=V[d] .cost+1l.cost
R[d].link=1
R[d] .time=now

The router iterates over all addresses included in the distance vector. If the distance vector contains an address
that the router does not know, it inserts the destination inside its routing table via link / and at a distance which is
the sum between the distance indicated in the distance vector and the cost associated to link /. If the destination
was already known by the router, it only updates the corresponding entry in its routing table if either :

* the cost of the new route is smaller than the cost of the already known route ( (V[d].cost+l.cost) < R[d].cost)

¢ the new route was learned over the same link as the current best route towards this destination ( R/d].link
== l)

The first condition ensures that the router discovers the shortest path towards each destination. The second condi-
tion is used to take into account the changes of routes that may occur after a link failure or a change of the metric
associated to a link.

To understand the operation of a distance vector protocol, let us consider the network of five routers shown below.

Assume that A is the first to send its distance vector [A=0].

* Band D process the received distance vector and update their routing table with a route towards A.
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Routing table Routing table
Rauting table B : O [Local] €0 [Local]
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D : 0 [Local]

Routing table
E: 0 [Local]

Figure 2.19: Operation of distance vector routing in a simple network

¢ D sends its distance vector [D=0,A=1]to A and E. E can now reach A and D.
¢ (C sends its distance vector [C=0] to B and E
e F sends its distance vector [E=0,D=1,A=2,C=1]to D, B and C. B can now reach A, C, D and E

e B sends its distance vector [B=0,A=1,C=1,D=2,E=1] to A, C and E. A, B, C and E can now reach all
destinations.

¢ A sends its distance vector [A=0,B=1,C=2,D=1,E=2] to B and D.

At this point, all routers can reach all other routers in the network thanks to the routing tables shown in the figure
below.

Routing table Routing table
B:O :I.uc:al: € : 0 [Local]

r A : 1 [West] E : 1 [South-West]
g"_“‘r;'ﬁ;;"i €: 1 [East] D : 2 [South-West]
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D: 2 [South] B : 1 [West]

B 1[East]
€ 2|East]
E:2[East] \ /

Routing table
D : 0 [Local]

A: 1 [North]
E: 1[East] \/
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Routing table
+ 0 [Lacal]
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+ 2 [West]
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Figure 2.20: Routing tables computed by distance vector in a simple network

To deal with link and router failures, routers use the timestamp stored in their routing table. As all routers send
their distance vector every N seconds, the timestamp of each route should be regularly refreshed. Thus no route
should have a timestamp older than N seconds, unless the route is not reachable anymore. In practice, to cope
with the possible loss of a distance vector due to transmission errors, routers check the timestamp of the routes
stored in their routing table every N seconds and remove the routes that are older than 3 x NN seconds. When a
router notices that a route towards a destination has expired, it must first associate an oo cost to this route and send
its distance vector to its neighbours to inform them. The route can then be removed from the routing table after
some time (e.g. 3 X N seconds), to ensure that the neighbouring routers have received the bad news, even if some
distance vectors do not reach them due to transmission errors.

Consider the example above and assume that the link between routers A and B fails. Before the failure, A used B
to reach destinations B, C and E while B only used the A-B link to reach A. The affected entries timeout on routers
A and B and they both send their distance vector.

* A sends its distance vector [A = 0,B = 00,C = 00,D = 1, E = o0]. D knows that it cannot reach B
anymore via A

* D sends its distance vector [D = 0,B = 00, A = 1,C = 2, F = 1] to A and E. A recovers routes towards
C and E via D.

* B sends its distance vector [B = 0,4 = 00,C' = 1,D = 2, E = 1] to E and C. D learns that there is no
route anymore to reach A via B.
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* E sends its distance vector [E = 0,A=2,C =1,D =1,B = 1] to D, B and C. D learns a route towards
B. C and B learn a route towards A.

At this point, all routers have a routing table allowing them to reach all another routers, except router A, which
cannot yet reach router B. A recovers the route towards B once router D sends its updated distance vector [A =
1,B=2,C =2,D =1,F = 1]. This last step is illustrated in figure Routing tables computed by distance vector
after a failure, which shows the routing tables on all routers.

Routing table " Routing table
B:0 [LW‘H] C: 0 [Local]

- Aid [Sout E : 1 [South-West]
:’f“(;'l ? ;?:’I"]‘ C: 1 [East] D : 2 [South-West]
D 1 [South] E: 1 [South] A3 [Sguth-West]

i D 2 [Seuth] B: 1 [West]

B:=
C: 3 [South)
E: 2 [South]

/

Routing table
D : 0 [Local]
A 1 [North]
E: 1 [East]
C: 2 [East]

B: 2 [East] Routing table

E : 0 [Local]

D: 1 [West]

A2 [West]

€1 1 [North-East]
B i 1 [Nerth]

Figure 2.21: Routing tables computed by distance vector after a failure

Consider now that the link between D and E fails. The network is now partitioned into two disjoint parts : (A , D)
and (B, E, C). The routes towards B, C and E expire first on router D. At this time, router D updates its routing
table.

If Dsends [D = 0,4 =1,B = 00,C = 00, F = ), A learns that B, C and E are unreachable and updates its
routing table.

Unfortunately, if the distance vector sent to A is lost or if A sends its own distance vector ([A =0,D =1,B =
3,C = 3,FE = 2] ) at the same time as D sends its distance vector, D updates its routing table to use the
shorter routes advertised by A towards B, C and E. After some time D sends a new distance vector : [D =
0,A=1,FE =3,C = 4,B = 4]. A updates its routing table and after some time sends its own distance vector
[A=0,D=1,B=05,C =5,FE = 4], etc. This problem is known as the count to infinity problem in networking
literature. Routers A and D exchange distance vectors with increasing costs until these costs reach co. This
problem may occur in other scenarios than the one depicted in the above figure. In fact, distance vector routing
may suffer from count to infinity problems as soon as there is a cycle in the network. Cycles are necessary to
have enough redundancy to deal with link and router failures. To mitigate the impact of counting to infinity, some
distance vector protocols consider that 16 = co. Unfortunately, this limits the metrics that network operators can
use and the diameter of the networks using distance vectors.

This count to infinity problem occurs because router A advertises to router D a route that it has learned via router
D. A possible solution to avoid this problem could be to change how a router creates its distance vector. Instead
of computing one distance vector and sending it to all its neighbors, a router could create a distance vector that is
specific to each neighbour and only contains the routes that have not been learned via this neighbour. This could
be implemented by the following pseudocode.

Every N seconds:
# one vector for each interface
for 1 in interfaces:
v=Vector ()
for d in R[]:
if (R[d].link != 1)
v=v+Pair (d,R[d.cost])
send (v)
# end for d in R[]
#end for 1 in interfaces

This technique is called split-horizon. With this technique, the count to infinity problem would not have happened
in the above scenario, as router A would have advertised [A = 0], since it learned all its other routes via router
D. Another variant called split-horizon with poison reverse is also possible. Routers using this variant advertise a
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cost of oo for the destinations that they reach via the router to which they send the distance vector. This can be
implemented by using the pseudo-code below.

Every N seconds:
for 1 in interfaces:
# one vector for each interface
v=Vector ()
for d in R[]:
if (R[d].link != 1)
v=v+Pair (d,R[d.cost])
else:
v=v+Pair (d,infinity);
send (v)
# end for d in R[]
#end for 1 in interfaces

Unfortunately, split-horizon, is not sufficient to avoid all count to infinity problems with distance vector routing.
Consider the failure of link A-B in the network of four routers below.

Routing table
€ : 0 [Local]
E: 1 [South-West]
A 2 [West]

B : 1 [West]

Routing table Routing table
A0 Local ) B : 0 [Locall

: 1 [West]

: 1 [East]

i 1 [South]

o
4
8
mAp

A=w;B=0; C=1;E== 1

Routing table . >,

E : 0 [Local]
A : 2 [North]
€ : 1 [North-East]
B : 1 [North]

/:z;s:u; C=1;E==

Figure 2.22: Count to infinity problem

After having detected the failure, router B sends its distance vectors :

* [A=00,B=0,C =00, FE = 1] to router C

* [A=00,B=0,C =1,F = 0] to router E
If, unfortunately, the distance vector sent to router C is lost due to a transmission error or because router C is
overloaded, a new count to infinity problem can occur. If router C sends its distance vector [A =2, B =1,C =
0, E = oo] to router E, this router installs a route of distance 3 to reach A via C. Router E sends its distance vectors

[A=3,B=00,C =1,F = 1] torouter Band [A = c0,B =1,C = 00, E = 0] to router C. This distance
vector allows B to recover a route of distance 4 to reach A.

Note: Forwarding tables versus routing tables

Routers usually maintain at least two data structures that contain information the reachable destinations. The first
data structure is the routing table. The routing table is a data structure that associates a destination to an outgoing
interface or a nexthop router and a set of additional attributes. Different routing protocols can associate different
attributes for each destination. Distance vector routing protocols will store the cost to reach the destination along
the shortest path. Other routing protocols may store information about the number of hops of the best path, its
lifetime or the number of sub paths. A routing table may store multipath paths towards a given destination and
flag one of them as the best one. The routing table is a software data structure which is updated by (one or more)
routing protocols. The routing table is usually not directly used when forwarding packets. Packet forwarding
relies on a more compact data structure which is the forwarding table. On high-end routers, the forwarding table
is implemented directly in hardware while lower performance routers will use a software implementation. A
forwarding table contains a subset of the information found in the routing table. It only contains the paths that
are used to forward packets and no attributes. A forwarding table will typically associate each destination to an
outgoing interface or nexthop router.
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Link state routing

Link state routing is the second family of routing protocols. While distance vector routers use a distributed
algorithm to compute their routing tables, link-state routers exchange messages to allow each router to learn the
entire network topology. Based on this learned topology, each router is then able to compute its routing table by
using a shortest path computation [Dijkstral959].

For link-state routing, a network is modelled as a directed weighted graph. Each router is a node, and the links
between routers are the edges in the graph. A positive weight is associated to each directed edge and routers use
the shortest path to reach each destination. In practice, different types of weight can be associated to each directed
edge :

 unit weight. If all links have a unit weight, shortest path routing prefers the paths with the least number of
intermediate routers.

* weight proportional to the propagation delay on the link. If all link weights are configured this way, shortest
path routing uses the paths with the smallest propagation delay.

* weight = W where C is a constant larger than the highest link bandwidth in the network. If all link
weights are configured this way, shortest path routing prefers higher bandwidth paths over lower bandwidth
paths

Usually, the same weight is associated to the two directed edges that correspond to a physical link (i.e. R1 — R2
and R2 — R1). However, nothing in the link state protocols requires this. For example, if the weight is set in
function of the link bandwidth, then an asymmetric ADSL link could have a different weight for the upstream and
downstream directions. Other variants are possible. Some networks use optimisation algorithms to find the best
set of weights to minimize congestion inside the network for a given traffic demand [FRT2002].

When a link-state router boots, it first needs to discover to which routers it is directly connected. For this, each
router sends a HELLO message every N seconds on all of its interfaces. This message contains the router’s
address. Each router has a unique address. As its neighbouring routers also send HELLO messages, the router
automatically discovers to which neighbours it is connected. These HELLO messages are only sent to neighbours
who are directly connected to a router, and a router never forwards the HELLO messages that they receive. HELLO
messages are also used to detect link and router failures. A link is considered to have failed if no HELLO message
has been received from the neighbouring router for a period of k£ x N seconds.

A: HELLO

BE: HELLO E: HELLO

Figure 2.23: The exchange of HELLO messages

Once a router has discovered its neighbours, it must reliably distribute its local links to all routers in the network
to allow them to compute their local view of the network topology. For this, each router builds a link-state packet
(LSP) containing the following information :

¢ LSP.Router : identification (address) of the sender of the LSP
» LSP.age : age or remaining lifetime of the LSP
e LSP:seq : sequence number of the LSP

e LSP.Links[] : links advertised in the LSP. Each directed link is represented with the following information
: - LSP.Links[i].Id : identification of the neighbour - LSP.Links[i].cost : cost of the link
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These LSPs must be reliably distributed inside the network without using the router’s routing table since these
tables can only be computed once the LSPs have been received. The Flooding algorithm is used to efficiently
distribute the LSPs of all routers. Each router that implements flooding maintains a link state database (LSDB)
containing the most recent LSP sent by each router. When a router receives an LSP, it first verifies whether this
LSP is already stored inside its LSDB. If so, the router has already distributed the LSP earlier and it does not need
to forward it. Otherwise, the router forwards the LSP on all links except the link over which the LSP was received.
Flooding can be implemented by using the following pseudo-code.

# links 1is the set of all links on the router
# Router R’s LSP arrival on link 1
if newer (LSP, LSDB(LSP.Router))

LSDB.add (LSP)

for i in links
if il=1 :
send (LSP, 1)

else:

# LSP has already been flooded

In this pseudo-code, LSDB(r) returns the most recent LSP originating from router r that is stored in the LSDB.
newer(lspl,lsp2) returns true if Ispl is more recent than Isp2. See the note below for a discussion on how newer
can be implemented.

Note: Which is the most recent LSP ?

A router that implements flooding must be able to detect whether a received LSP is newer than the stored LSP.
This requires a comparison between the sequence number of the received LSP and the sequence number of the
LSP stored in the link state database. The ARPANET routing protocol [MRR1979] used a 6 bits sequence number
and implemented the comparison as follows RFC 789

def newer ( lspl, lsp2 ):
return ( ( ( lspl.seqg > lsp2.seq) and ( (lspl.seg-lsp2.seq)<=32) ) or
( ( lspl.seq < lsp2.seq) and ( (lsp2.seg-lspl.seq)> 32) ) )

This comparison takes into account the modulo 2° arithmetic used to increment the sequence numbers. Intuitively,
the comparison divides the circle of all sequence numbers into two halves. Usually, the sequence number of the
received LSP is equal to the sequence number of the stored LSP incremented by one, but sometimes the sequen