

Cassandra High
Performance
Cookbook

Over 150 recipes to design and optimize large-scale
Apache Cassandra deployments

Edward Capriolo

BIRMINGHAM - MUMBAI

Cassandra High Performance Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Production Reference: 2070711

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849515-12-2

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

Credits

Author
Edward Capriolo

Reviewers
Vineet Daniel

Matthew Tovbin

Seth Long

Jing Song

Acquisition Editor
Dilip Venkatesh

Development Editor
Roger D'souza

Technical Editors
Prashant Macha

Gauri Iyer

Manasi Poonthottam

Pooja Pande

Project Coordinator
Michelle Quadros

Proofreader
Jonathan Todd

Indexers
Hemangini Bari

Tejal Daruwale

Graphics
Nilesh Mohite

Production Coordinators
Aparna Bhagat

Arvindkumar Gupta

Cover Work
Aparna Bhagat

Arvindkumar Gupta

About the Author

Edward Capriolo is a member of the Apache Software Foundation and a committer
for the Hadoop-Hive project. He has experience as a developer as well Linux and network
administrator and enjoys the rich world of Open Source software.

Edward Capriolo is currently working as a System Administrator at Media6degrees
where he designs and maintains distributed data storage systems for the Internet
advertising industry.

To Stacey, my wife and best friend. To my parents, grandparents, and
family. To friends who have supported me through many endeavors. To my
educators and employers who gave me the tools.

To those who have contributed to Cassandra, including (but not limited
to) Jonathon Ellis, Brandon Williams, Jake Luciani, and others who have
developed an amazing project to learn and write about. Also deserving of
recognition is the amazing community, including (but not limited to) Robert
Coli (my Cassandra sensei) and Jeremy Hanna. Special thanks to Matt
Landolf, Mubarak Seyed, Tyler Hobbs, and Eric Tamme who contributed the
knowledge and free time to add to the content of the book.

To the team at Packt Publishing. They did an excellent job by beautifully
redrafting my crude drawings, fixing my grammatical errors, and reviewing
and suggesting content. The book got better with every new person who
became involved.

About the Reviewers

Vineet Daniel is a Systems Architect and has worked at various startups and managed
high traffic web applications. He has over eight years of experience in Software
development, managing servers/cloud, and team. The experience has made him a
learned individual in technologies like optimization, high-availability, and scalability. He
loves to use Linux commands and has a never ending appetite for penetration testing.
Find him on www.vineetdaniel.me, @vineetdaniel.

This is for my Parents, brother, Annie, and two wonderful kids in my life Ana
and Aman for encouraging me to go ahead with the task. I would like to
thank the team at Packt publishing especially Michelle for guiding me and
providing me with this wonderful opportunity to work with Packt Publishing.

Matthew Tovbin received a BSc degree in computer science from the Hadassah
Academic College, Jerusalem, Israel in 2005. He has been a software engineer in
Intelligence Corps, Israel Defense Force (IDF), 2005-2008, working on a variety of military
IT systems, and later a software engineer and a team leader in web-based startup named
AnyClip, making a dream of "Find any moment from any film, instantly" to come true.

Currently Matthew is an MSc student in the Department of Computer Science, Hadassah
Academic College and a software engineer of data infrastructure at Conduit.

His experience covers aspects of the architecture, design, and development of high
performance distributed web and data analysis systems. His background includes a wide
range of programming languages (including Java and C#), search engines (including
Lucene), databases, and NoSQL distributed data stores.

Matthew's research interests include search engines, distributed computing, image
processing, computer vision, and machine learning.

I would like to thank my beloved girlfriend, Luba, for her thoughtful feedback
and support, during the review process of this book.

http://www.vineetdaniel.me/

Jing Song has been working in the IT industry as an engineer for more than 12 years
after she graduated school. She enjoys solving problems and learning about new
technologies in computer science space. Her interests and experiences lie across
multiple tiers, from web frontend GUI to middleware, from middleware to backend SQL
RDBMS and NoSQL data storage. In the last five years, she has mainly focused on the
enterprise application performance and cloud computing areas.

Jing currently works for Apple as a tech lead with the Enterprise Technology Service
group, leading various Java applications from design, to implementation, to performance
tuning. She was one of the contributors to the internal private cloud application last year.
Her team has POC on most of the NoSQL candidates, for example, Cassandra, CouchDB,
MongoDB, Redis, Voldeomort, MemCache, as well as EC2, EMC atmos, and so on.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy & paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Getting Started	 7

Introduction	 7
A simple single node Cassandra installation	 8
Reading and writing test data using the command-line interface	 10
Running multiple instances on a single machine	 11
Scripting a multiple instance installation	 13
Setting up a build and test environment for tasks in this book	 15
Running in the foreground with full debugging	 19
Calculating ideal Initial Tokens for use with Random Partitioner	 20
Choosing Initial Tokens for use with Partitioners that preserve ordering	 22
Insight into Cassandra with JConsole	 23
Connecting with JConsole over a SOCKS proxy	 26
Connecting to Cassandra with Java and Thrift	 27

Chapter 2: The Command-line Interface	 29
Connecting to Cassandra with the CLI	 30
Creating a keyspace from the CLI	 30
Creating a column family with the CLI	 31
Describing a keyspace	 32
Writing data with the CLI	 33
Reading data with the CLI	 34
Deleting rows and columns from the CLI	 35
Listing and paginating all rows in a column family	 36
Dropping a keyspace or a column family	 37
CLI operations with super columns	 38
Using the assume keyword to decode column names or column values	 39
Supplying time to live information when inserting columns 	 40

ii

Table of Contents

Using built-in CLI functions	 41
Using column metadata and comparators for type enforcement	 42
Changing the consistency level of the CLI	 43
Getting help from the CLI	 44
Loading CLI statements from a file	 45

Chapter 3: Application Programmer Interface	 47
Introduction	 47
Connecting to a Cassandra server	 48
Creating a keyspace and column family from the client	 49
Using MultiGet to limit round trips and overhead	 51
Writing unit tests with an embedded Cassandra server	 53
Cleaning up data directories before unit tests	 56
Generating Thrift bindings for other languages (C++, PHP, and others)	 58
Using the Cassandra Storage Proxy "Fat Client"	 59
Using range scans to find and remove old data	 62
Iterating all the columns of a large key	 66
Slicing columns in reverse	 68
Batch mutations to improve insert performance and code robustness	 69
Using TTL to create columns with self-deletion times	 72
Working with secondary indexes	 74

Chapter 4: Performance Tuning	 77
Introduction	 78
Choosing an operating system and distribution	 78
Choosing a Java Virtual Machine	 79
Using a dedicated Commit Log disk	 80
Choosing a high performing RAID level	 81
File system optimization for hard disk performance	 83
Boosting read performance with the Key Cache	 84
Boosting read performance with the Row Cache	 86
Disabling Swap Memory for predictable performance	 88
Stopping Cassandra from using swap without disabling it system-wide	 89
Enabling Memory Mapped Disk modes	 89
Tuning Memtables for write-heavy workloads	 90
Saving memory on 64 bit architectures with compressed pointers	 92
Tuning concurrent readers and writers for throughput	 92
Setting compaction thresholds	 94
Garbage collection tuning to avoid JVM pauses	 95
Raising the open file limit to deal with many clients	 97
Increasing performance by scaling up	 98

iii

Table of Contents

Chapter 5: Consistency, Availability, and Partition Tolerance with
Cassandra	 101

Introduction	 102
Working with the formula for strong consistency	 102
Supplying the timestamp value with write requests	 105
Disabling the hinted handoff mechanism	 106
Adjusting read repair chance for less intensive data reads	 107
Confirming schema agreement across the cluster	 109
Adjusting replication factor to work with quorum	 111
Using write consistency ONE, read consistency ONE for low
latency operations	 114
Using write consistency QUORUM, read consistency QUORUM for
strong consistency	 118
Mixing levels write consistency QUORUM, read consistency ONE	 119
Choosing consistency over availability consistency ALL	 120
Choosing availability over consistency with write consistency ANY	 121
Demonstrating how consistency is not a lock or a transaction	 122

Chapter 6: Schema Design	 127
Introduction	 127
Saving disk space by using small column names	 128
Serializing data into large columns for smaller index sizes	 130
Storing time series data effectively	 131
Using Super Columns for nested maps	 134
Using a lower Replication Factor for disk space saving and performance
enhancements	 137
Hybrid Random Partitioner using Order Preserving Partitioner	 138
Storing large objects	 142
Using Cassandra for distributed caching	 145
Storing large or infrequently accessed data in a separate column family	 145
Storing and searching edge graph data in Cassandra	 147
Developing secondary data orderings or indexes	 150

Chapter 7: Administration	 155
Defining seed nodes for Gossip Communication	 156
Nodetool Move: Moving a node to a specific ring location	 157
Nodetool Remove: Removing a downed node	 159
Nodetool Decommission: Removing a live node	 160
Joining nodes quickly with auto_bootstrap set to false	 161
Generating SSH keys for password-less interaction	 162
Copying the data directory to new hardware	 164
A node join using external data copy methods	 165

iv

Table of Contents

Nodetool Repair: When to use anti-entropy repair	 167
Nodetool Drain: Stable files on upgrade	 168
Lowering gc_grace for faster tombstone cleanup	 169
Scheduling Major Compaction	 170
Using nodetool snapshot for backups	 171
Clearing snapshots with nodetool clearsnapshot	 173
Restoring from a snapshot	 174
Exporting data to JSON with sstable2json	 175
Nodetool cleanup: Removing excess data	 176
Nodetool Compact: Defragment data and remove deleted data from disk	 177

Chapter 8: Multiple Datacenter Deployments	 179
Changing debugging to determine where read operations are being routed	 180
Using IPTables to simulate complex network scenarios in a local
environment	 181
Choosing IP addresses to work with RackInferringSnitch	 182
Scripting a multiple datacenter installation	 183
Determining natural endpoints, datacenter, and rack for a given key	 185
Manually specifying Rack and Datacenter configuration with a property
file snitch	 187
Troubleshooting dynamic snitch using JConsole	 188
Quorum operations in multi-datacenter environments	 189
Using traceroute to troubleshoot latency between network devices	 190
Ensuring bandwidth between switches in multiple rack environments	 191
Increasing rpc_timeout for dealing with latency across datacenters	 192
Changing consistency level from the CLI to test various consistency
levels with multiple datacenter deployments	 193
Using the consistency levels TWO and THREE	 194
Calculating Ideal Initial Tokens for use with Network Topology Strategy
and Random Partitioner	 196

Chapter 9: Coding and Internals	 199
Introduction	 199
Installing common development tools	 200
Building Cassandra from source	 200
Creating your own type by sub classing abstract type	 201
Using the validation to check data on insertion	 204
Communicating with the Cassandra developers and users through IRC
and e-mail	 206
Generating a diff using subversion's diff feature 	 207
Applying a diff using the patch command	 208

v

Table of Contents

Using strings and od to quickly search through data files	 209
Customizing the sstable2json export utility	 210
Configure index interval ratio for lower memory usage	 212
Increasing phi_convict_threshold for less reliable networks	 213
Using the Cassandra maven plugin	 214

Chapter 10: Libraries and Applications	 217
Introduction	 217
Building the contrib stress tool for benchmarking	 218
Inserting and reading data with the stress tool	 218
Running the Yahoo! Cloud Serving Benchmark	 219
Hector, a high-level client for Cassandra	 221
Doing batch mutations with Hector	 223
Cassandra with Java Persistence Architecture (JPA)	 224
Setting up Solandra for full text indexing with a Cassandra backend	 226
Setting up Zookeeper to support Cages for transactional locking	 227
Using Cages to implement an atomic read and set	 229
Using Groovandra as a CLI alternative	 231
Searchable log storage with Logsandra	 232

Chapter 11: Hadoop and Cassandra	 237
Introduction	 237
A pseudo-distributed Hadoop setup	 238
A Map-only program that reads from Cassandra using the
ColumnFamilyInputFormat	 242
A Map-only program that writes to Cassandra using the
CassandraOutputFormat	 246
Using MapReduce to do grouping and
counting with Cassandra input and output	 248
Setting up Hive with Cassandra Storage Handler support	 250
Defining a Hive table over a Cassandra Column Family	 251
Joining two Column Families with Hive	 253
Grouping and counting column values with Hive	 254
Co-locating Hadoop Task Trackers on Cassandra nodes	 255
Setting up a "Shadow" data center for running only MapReduce jobs	 257
Setting up DataStax Brisk the combined stack of Cassandra, Hadoop,
and Hive	 258

Chapter 12: Collecting and Analyzing Performance Statistics	 261
Finding bottlenecks with nodetool tpstats	 262
Using nodetool cfstats to retrieve column family statistics	 263
Monitoring CPU utilization	 264
Adding read/write graphs to find active column families	 266

vi

Table of Contents

Using Memtable graphs to profile when and why they flush	 267
Graphing SSTable count	 268
Monitoring disk utilization and having a performance baseline	 269
Monitoring compaction by graphing its activity	 271
Using nodetool compaction stats to check the progress of compaction	 272
Graphing column family statistics to track average/max row sizes	 273
Using latency graphs to profile time to seek keys	 274
Tracking the physical disk size of each column family over time	 275
Using nodetool cfhistograms to see the distribution of query latencies	 276
Tracking open networking connections	 277

Chapter 13: Monitoring Cassandra Servers	 279
Introduction	 279
Forwarding Log4j logs to a central sever	 280
Using top to understand overall performance	 282
Using iostat to monitor current disk performance	 284
Using sar to review performance over time	 285
Using JMXTerm to access Cassandra JMX	 286
Monitoring the garbage collection events	 288
Using tpstats to find bottlenecks	 289
Creating a Nagios Check Script for Cassandra	 290
Keep an eye out for large rows with compaction limits	 292
Reviewing network traffic with IPTraf	 293
Keep on the lookout for dropped messages	 294
Inspecting column families for dangerous conditions	 295

Index	 297

Preface
Apache Cassandra is a fault-tolerant, distributed data store which offers linear scalability
allowing it to be a storage platform for large high volume websites.

This book provides detailed recipes that describe how to use the features of Cassandra and
improve its performance. Recipes cover topics ranging from setting up Cassandra for the first
time to complex multiple data center installations. The recipe format presents the information
in a concise actionable form.

The book describes in detail how features of Cassandra can be tuned and what the possible
effects of tuning can be. Recipes include how to access data stored in Cassandra and use
third party tools to help you out. The book also describes how to monitor and do capacity
planning to ensure it is performing at a high level. Towards the end, it takes you through the
use of libraries and third-party applications with Cassandra and Cassandra integration
with Hadoop.

What this book covers
Chapter 1, Getting Started: The recipes in this chapter provide a whirlwind tour of Cassandra.
Setup recipes demonstrate how to download and install Cassandra as a single instance or
simulating multiple instance clusters. Trouble-shooting recipes show how to run Cassandra
with more debugging information and how to use management tools. Also included
are recipes for end users which connect with the command like interface and setup an
environment to build code to access Cassandra.

Chapter 2, Command-line Interface: This chapter provides recipes on using Cassandra's
command line interface. Recipes cover how the CLI is used to make changes to the metadata
such as key spaces, column families, and cache settings. Additionally recipes show how to
use the CLI to set, get and scan data.

Chapter 3, Application Programmer Interface: Cassandra provides an application programmer
interface for programs to insert and access data. The chapter has recipes for doing common
operations like inserting fetching, deleting, and range scanning data. Also covered in this
chapter are recipes for batch mutate and multi-get which are useful in batch programs.

Preface

2

Chapter 4, Performance Tuning: Many configuration knobs and tunable settings exist
for Cassandra. Additionally hardware choices and operating system level tuning effect
performance. The recipes in this chapter show configuration options and how changing
them optimizes performance.

Chapter 5, Consistency, Availability, and Partition Tolerance with Cassandra: Cassandra is
designed from the ground up to store and replicate data across multiple nodes. This chapter
has recipes that utilize tunable consistency levels and configure features like read repair.
These recipes demonstrate how to use features of Cassandra that make available even in
the case of failures or network partitions.

Chapter 6, Schema Design: The Cassandra data model is designed for storing large amounts
of data across many nodes. This chapter has recipes showing how common storage
challenges can be satisfied using Cassandra. Recipes include techniques for serializing data,
storing large objects, time series, normalized, and de-normalized data.

Chapter 7, Administration and Cluster Management: Cassandra allows nodes to be added and
remove from the cluster without downtime. This chapter contains recipes for adding, moving,
and removing nodes as well as administrative techniques for backing up and restoring data.
Also covered administrative techniques such as backing up or restoring data.

Chapter 8, Multiple Datacenter Deployments: Cassandra is designed to work both when
nodes are deployed in a local area network and when nodes are separated by larger
geographical distances such as a wide area network. The recipes in this chapter show how
to configure and use features that control and optimize how Cassandra works in multiple
datacenter environments.

Chapter 9, Coding and Internals: This chapter covers programming recipes that go beyond the
typical application programmer interface, including building Cassandra from source, creating
custom types for use with Cassandra, and modifying tools like the JSON export tools.

Chapter 10, Third-party Libraries and Applications: A variety of libraries and applications exist
for Cassandra. This chapter introduces tools that make coding easier such as the high-level
client Hector, ot the object mapping tool Kundera. Recipes also show how to setup and use
applications built on top of Cassandra such as the full text search engine solandra.

Chapter 11, Hadoop and Cassanda: Hadoop is a distributed file system, HDFS that provides
high throughput and redundant storage and MapReduce, a software framework for distributed
processing of large data sets on compute clusters. This chapter provides recipes with tips on
setting up Hadoop and Cassandra both individually and on shared hardware. Recipes show
how to use Cassandra as the input or output of map reduce jobs, as well as common tasks
like counting or joining data that can be done with Cassandra data inside Hadoop.

Preface

3

Chapter 12, Collecting and Analyzing Statistics: This chapter covers techniques for collecting
performance data from the Cassandra and the operating system. Recipes collect and
display performance data and how to interpret that data and use the information tune
Cassandra servers.

Chapter 13, Monitoring: The monitoring chapter has recipes which show how to install and
use tools to help understand the performance of Cassandra. Recipes include how to forward
log events to a central server for aggregation. Othere recipes show how to monitor logs for
dangerous conditions.

What you need for this book
To run the examples in this book the following software will be required:

ff Java SE Development Kit 1.6.0+, 6u24 recommended

ff Apache Cassandra 0.7.0+, 7.5 recommended

ff Apache Ant 1.6.8+

ff Subversion Client 1.6+

ff Maven 3.0.3+

Additionally the following tools are helpful, but are not strictly required:

ff Apache Thrift, latest stable release recommended

ff Apache Hadoop 0.20.0+,0.20.2 recommended (needed for Hadoop Chapter)

ff Apache Hive 0.7.0+, 0.7.0 recommended (needed for Hadoop Chapter)

ff Apache Zookeeper 3.3.0+, 3.3.3 recommended (needed 1 for locking recipe)

Who this book is for
This book is designed for administrators, developers, and data architects who are interested
in Apache Cassandra for redundant, highly performing, and scalable data storage. Typically
these users should have experience working with a database technology, multiple node
computer clusters, and high availability solutions.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Edit the configuration file conf/cassandra.yaml
to set where commit logs will be stored."

Preface

4

A block of code is set as follows:

package hpcas.c03;
import hpcas.c03.*;
import java.util.List;
import org.apache.cassandra.thrift.*;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<path id="hpcas.test.classpath">
 <pathelement location="${test.build}"/>
 <pathelement location="${test.conf}" />
 <path refid="hpcas.classpath"/>
 </path>

Any command-line input or output is written as follows:

$ ant test
test:
 [junit] Running Test
 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 0.42 sec
 [junit] Running hpcas.c05.EmbeddedCassandraTest
 [junit] All tests complete
 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 3.26 sec

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the attributes and
the Scores information will appear in the right panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

Preface

5

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

In this chapter, you will learn the following recipes:

ff A simple single node Cassandra installation

ff Reading and writing test data using the command-line interface

ff Running multiple instances on a single machine

ff Scripting a multiple instance installation

ff Setting up a build and test environment for tasks in this book

ff Running the server in the foreground with full debugging

ff Calculating ideal Initial Tokens for use with Random Partitioner

ff Choosing Initial Tokens for use with Order Preserving Partitioners

ff Connecting to Cassandra with JConsole

ff Using JConsole to connect over a SOCKS proxy

ff Connecting to Cassandra with Java and Thrift

Introduction
The Apache Cassandra Project develops a highly scalable second-generation distributed
database, bringing together a fully distributed design and a ColumnFamily-based data model.
The chapter contains recipes that allow users to hit the ground running with Cassandra.
We show several recipes to set up Cassandra. These include cursory explanations of the
key configuration files. It also contains recipes for connecting to Cassandra and executing
commands both from the application programmer interface and the command-line interface.
Also described are the Java profiling tools such as JConsole. The recipes in this chapter should
help the user understand the basics of running and working with Cassandra.

Getting Started

8

A simple single node Cassandra installation
Cassandra is a highly scalable distributed database. While it is designed to run on multiple
production class servers, it can be installed on desktop computers for functional testing and
experimentation. This recipe shows how to set up a single instance of Cassandra.

Getting ready
Visit http://cassandra.apache.org in your web browser and find a link to the
latest binary release. New releases happen often. For reference, this recipe will assume
apache-cassandra-0.7.2-bin.tar.gz was the name of the downloaded file.

How to do it...
1.	 Download a binary version of Cassandra:

$ mkdir $home/downloads
$ cd $home/downloads
$ wget <url_from_getting_ready>/apache-cassandra-0.7.2-bin.tar.gz

2.	 Choose a base directory that the user will run as he has read and write access to:

Default Cassandra storage locations

Cassandra defaults to wanting to save data in /var/lib/cassandra
and logs in /var/log/cassandra. These locations will likely not exist
and will require root-level privileges to create. To avoid permission issues,
carry out the installation in user-writable directories.

3.	 Create a cassandra directory in your home directory. Inside the cassandra
directory, create commitlog, log, saved_caches, and data subdirectories:
$ mkdir $HOME/cassandra/

$ mkdir $HOME/cassandra/{commitlog,log,data,saved_caches}

$ cd $HOME/cassandra/

$ cp $HOME/downloads/apache-cassandra-0.7.2-bin.tar.gz .

$ tar -xf apache-cassandra-0.7.2-bin.tar.gz

4.	 Use the echo command to display the path to your home directory. You will need this
when editing the configuration file:
$ echo $HOME

/home/edward

Chapter 1

9

This tar file extracts to apache-cassandra-0.7.2 directory. Open up the
conf/cassandra.yaml file inside in your text editor and make changes to
the following sections:
 data_file_directories:
 - /home/edward/cassandra/data
 commitlog_directory: /home/edward/cassandra/commit
 saved_caches_directory: /home/edward/cassandra/saved_caches

5.	 Edit the $HOME/apache-cassandra-0.7.2/conf/log4j-server.properties
file to change the directory where logs are written:
log4j.appender.R.File=/home/edward/cassandra/log/system.log

6.	 Start the Cassandra instance and confirm it is running by connecting with nodetool:
$ $HOME/apache-cassandra-0.7.2/bin/cassandra

 INFO 17:59:26,699 Binding thrift service to /127.0.0.1:9160
 INFO 17:59:26,702 Using TFramedTransport with a max frame size of
15728640 bytes.

$ $HOME/apache-cassandra-0.7.2/bin/nodetool --host 127.0.0.1 ring

Address Status State Load Token
127.0.0.1 Up Normal 385 bytes 398856952452...

How it works...
Cassandra comes as a compiled Java application in a tar file. By default, it is configured
to store data inside /var. By changing options in the cassandra.yaml configuration file,
Cassandra uses specific directories created.

YAML: YAML Ain't Markup Language

YAML™ (rhymes with "camel") is a human-friendly, cross-language,
Unicode-based data serialization language designed around the common
native data types of agile programming languages. It is broadly useful for
programming needs ranging from configuration files and Internet messaging
to object persistence and data auditing.

See http://www.yaml.org for more information.

After startup, Cassandra detaches from the console and runs as a daemon. It opens several
ports, including the Thrift port 9160 and JMX port on 8080. For versions of Cassandra higher
than 0.8.X, the default port is 7199. The nodetool program communicates with the JMX port
to confirm that the server is alive.

Getting Started

10

There's more...
Due to the distributed design, many of the features require multiple instances of Cassandra
running to utilize. For example, you cannot experiment with Replication Factor, the setting
that controls how many nodes data is stored on, larger than one. Replication Factor dictates
what Consistency Level settings can be used for. With one node the highest Consistency
Level is ONE.

See also...
The next recipe, Reading and writing test data using the command-line interface.

Reading and writing test data using the
command-line interface

The command-line interface (CLI) presents users with an interactive tool to communicate
with the Cassandra server and execute the same operations that can be done from client
server code. This recipe takes you through all the steps required to insert and read data.

How to do it...
1.	 Start the Cassandra CLI and connect to an instance:

$ <cassandra_home>/bin/cassandra-cli

[default@unknown] connect 127.0.0.1/9160;

Connected to: "Test Cluster" on 127.0.0.1/9160

2.	 New clusters do not have any preexisting keyspaces or column families. These need
to be created so data can be stored in them:
[default@unknown] create keyspace testkeyspace

[default@testkeyspace] use testkeyspace;

Authenticated to keyspace: testkeyspace

[default@testkeyspace] create column family testcolumnfamily;

3.	 Insert and read back data using the set and get commands:
[default@testk..] set testcolumnfamily['thekey']
['thecolumn']='avalue';

Value inserted.

[default@testkeyspace] assume testcolumnfamily validator as ascii;

[default@testkeyspace] assume testcolumnfamily comparator as ascii;

[default@testkeyspace] get testcolumnfamily['thekey'];

=> (column=thecolumn, value=avalue, timestamp=1298580528208000)

Chapter 1

11

How it works...
The CLI is a helpful interactive facade on top of the Cassandra API. After connecting, users
can carry out administrative or troubleshooting tasks.

See also...
Chapter 2, Command-line Interface is dedicated to CLI recipes defined in the preceding
statements in greater detail.

Running multiple instances on
a single machine

Cassandra is typically deployed on clusters of multiple servers. While it can be run on a single
node, simulating a production cluster of multiple nodes is best done by running multiple
instances of Cassandra. This recipe is similar to A simple single node Cassandra installation
earlier in this chapter. However in order to run multiple instances on a single machine, we
create different sets of directories and modified configuration files for each node.

How to do it...
1.	 Ensure your system has proper loopback address support. Each system should have

the entire range of 127.0.0.1-127.255.255.255 configured as localhost for loopback.
Confirm this by pinging 127.0.0.1 and 127.0.0.2:
$ ping -c 1 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.051 ms

$ ping -c 1 127.0.0.2

PING 127.0.0.2 (127.0.0.2) 56(84) bytes of data.

64 bytes from 127.0.0.2: icmp_req=1 ttl=64 time=0.083 ms

2.	 Use the echo command to display the path to your home directory. You will need this
when editing the configuration file:
$ echo $HOME

/home/edward

Getting Started

12

3.	 Create a hpcas directory in your home directory. Inside the cassandra directory,
create commitlog, log, saved_caches, and data subdirectories:
$ mkdir $HOME/hpcas/

$ mkdir $HOME/hpcas/{commitlog,log,data,saved_caches}

$ cd $HOME/hpcas/

$ cp $HOME/downloads/apache-cassandra-0.7.2-bin.tar.gz .

$ tar -xf apache-cassandra-0.7.2-bin.tar.gz

4.	 Download and extract a binary distribution of Cassandra. After extracting the
binary, move/rename the directory by appending '1' to the end of the filename.$
mv apache-cassandra-0.7.2 apache-cassandra-0.7.2-1 Open the apache-
cassandra-0.7.2-1/conf/cassandra.yaml in a text editor. Change the default
storage locations and IP addresses to accommodate our multiple instances on the
same machine without clashing with each other:
 data_file_directories:
 - /home/edward/hpcas/data/1
 commitlog_directory: /home/edward/hpcas/commitlog/1
 saved_caches_directory: /home/edward/hpcas/saved_caches/1
 listen_address: 127.0.0.1
 rpc_address: 127.0.0.1

Each instance will have a separate logfile. This will aid in troubleshooting. Edit
conf/log4j-server.properties:
log4j.appender.R.File=/home/edward/hpcas/log/system1.log

Cassandra uses JMX (Java Management Extensions), which allows you to configure
an explicit port but always binds to all interfaces on the system. As a result, each
instance will require its own management port. Edit cassandra-env.sh:
JMX_PORT=8001

5.	 Start this instance:
$ ~/hpcas/apache-cassandra-0.7.2-1/bin/cassandra

 INFO 17:59:26,699 Binding thrift service to /127.0.0.101:9160
 INFO 17:59:26,702 Using TFramedTransport with a max frame size of
15728640 bytes.

$ bin/nodetool --host 127.0.0.1 --port 8001 ring

 Address Status State Load Token
127.0.0.1 Up Normal 385 bytes 398856952452...

Chapter 1

13

At this point your cluster is comprised of single node. To join other nodes to the
cluster, carry out the preceding steps replacing '1' with '2', '3', '4', and so on:
$ mv apache-cassandra-0.7.2 apache-cassandra-0.7.2-2

6.	 Open ~/hpcas/apache-cassandra-0.7.2-2/conf/cassandra.yaml in a
text editor:
 data_file_directories:
 - /home/edward/hpcas/data/2
 commitlog_directory: /home/edward/hpcas/commitlog/2
 saved_caches_directory: /home/edward/hpcas/saved_caches/2
 listen_address: 127.0.0.2
 rpc_address: 127.0.0.2

7.	 Edit ~/hpcas/apache-cassandra-0.7.2-2/conf/log4j-server.
properties:
log4j.appender.R.File=/home/edward/hpcas/log/system2.log

8.	 Edit ~/hpcas/apache-cassandra-0.7.2-2/conf/cassandra-env.sh:
JMX_PORT=8002

9.	 Start this instance:
$ ~/hpcas/apache-cassandra-0.7.2-2/bin/cassandra

How it works...
The Thrift port has to be the same for all instances in a cluster. Thus, it is impossible to run
multiple nodes in the same cluster on one IP address. However, computers have multiple
loopback addresses: 127.0.0.1, 127.0.0.2, and so on. These addresses do not usually
need to be configured explicitly. Each instance also needs its own storage directories.
Following this recipe you can run as many instances on your computer as you wish, or even
multiple distinct clusters. You are only limited by resources such as memory, CPU time, and
hard disk space.

See also...
The next recipe, Scripting a multiple instance installation does this process with a single script.

Scripting a multiple instance installation
Cassandra is an active open source project. Setting up a multiple-node test environment is
not complex, but has several steps and smaller errors happen. Each time you wish to try a
new release, the installation process will have to be repeated. This recipe achieves the same
result of the Running multiple instances on a single machine recipe, but only involves running
a single script.

Getting Started

14

How to do it...
1.	 Create a shell script hpcbuild/scripts/ch1/multiple_instances.sh with

this content:
#!/bin/sh
CASSANDRA_TAR=apache-cassandra-0.7.3-bin.tar.gz
TAR_EXTRACTS_TO=apache-cassandra-0.7.3
HIGH_PERF_CAS=${HOME}/hpcas
mkdir ${HIGH_PERF_CAS}
mkdir ${HIGH_PERF_CAS}/commit/
mkdir ${HIGH_PERF_CAS}/data/
mkdir ${HIGH_PERF_CAS}/saved_caches/

2.	 Copy the tar to the base directory and then use pushd to change to that directory.
The body of this script runs five times:
cp ${CASSANDRA_TAR} ${HIGH_PERF_CAS}
pushd ${HIGH_PERF_CAS}
for i in 1 2 3 4 5 ; do
 tar -xf ${CASSANDRA_TAR}
 mv ${TAR_EXTRACTS_TO} ${TAR_EXTRACTS_TO}-${i}

Cassandra attempts to auto detect your memory settings based on your system
memory. When running multiple instances on a single machine, the memory settings
need to be lower:
 sed -i '1 i MAX_HEAP_SIZE="256M"' ${TAR_EXTRACTS_TO}-${i}/conf/
cassandra-env.sh
 sed -i '1 i HEAP_NEWSIZE="100M"' ${TAR_EXTRACTS_TO}-${i}/conf/
cassandra-env.sh

3.	 Replace listen_address and rpc_address with a specific IP, but do not change
the seed from 127.0.0.1:
 sed -i "/listen_address\|rpc_address/s/localhost/127.0.0.${i}/g"
${TAR_EXTRACTS_TO}-${i}/conf/cassandra.yaml

4.	 Set the data, commit log, and saved_caches directory for this instance:
 sed -i "s|/var/lib/cassandra/data|${HIGH_PERF_CAS}/data/${i}|g"
${TAR_EXTRACTS_TO}-${i}/conf/cassandra.yaml
 sed -i "s|/var/lib/cassandra/commitlog|${HIGH_PERF_CAS}/
commit/${i}|g" ${TAR_EXTRACTS_TO}-${i}/conf/cassandra.yaml
 sed -i "s|/var/lib/cassandra/saved_caches|${HIGH_PERF_CAS}/
saved_caches/${i}|g" ${TAR_EXTRACTS_TO}-${i}/conf/cassandra.yaml

Chapter 1

15

5.	 Change the JMX port for each instance:
 sed -i "s|8080|800${i}|g" ${TAR_EXTRACTS_TO}-${i}/conf/
cassandra-env.sh
done
popd

6.	 Change the mode of the script to executable and run it:
$ chmod a+x multiple_instances.sh

$./multiple_instances.sh

How it works...
This script accomplishes the same tasks as the recipe. This script uses borne shell scripting
to handle tasks such as creating directories and extracting tars, and uses the sed utility to
locate sections of the file that need to be modified to correspond to the directories created.

Setting up a build and test environment for
tasks in this book

Cassandra does not have a standardized data access language such as SQL or XPATH.
Access to Cassandra is done through the Application Programmer Interface (API). Cassandra
has support for Thrift, which generates bindings for a variety of languages. Since Cassandra
is written in Java, these bindings are well established, part of the Cassandra distribution, and
stable. Thus, it makes sense to have a build environment capable of compiling and running
Java applications to access Cassandra. This recipe shows you how to set up this environment.
Other recipes in the book that involve coding will assume you have this environment setup.

Getting ready
You will need:

ff The apache-ant build tool (http://ant.apache.org)

ff Java SDK (http://www.oracle.com/technetwork/java/index.html)

ff JUnit jar (http://www.junit.org/)

How to do it...
1.	 Create a top-level folder and several sub folders for this project:

$ mkdir ~/hpcbuild
$ cd ~/hpcbuild
$ mkdir src/{java,test}
$ mkdir lib

Getting Started

16

2.	 Copy JAR files from your Cassandra distribution into the lib directory:
$ cp <cassandra-home>/lib/*.jar ~/hpcbuild/lib

From the JUnit installation, copy the junit.jar into your library path. Java
applications can use JUnit tests for better code coverage:
$ cp <junit-home>/junit*.jar ~/hpcbuild/lib

3.	 Create a build.xml file for use with Ant. A build.xml file is similar to a Makefile.
By convention, properties that represent critical paths to the build are typically
specified at the top of the file:
<project name="hpcas" default="dist" basedir=".">
 <property name="src" location="src/java"/>
 <property name="test.src" location="src/test"/>
 <property name="build" location="build"/>
 <property name="build.classes" location="build/classes"/>
 <property name="test.build" location="build/test"/>
 <property name="dist" location="dist"/>
 <property name="lib" location="lib"/>

Ant has tags that help build paths. This is useful for a project that requires multiple
JAR files in its classpath to run:
 <path id="hpcas.classpath">
 <pathelement location="${build.classes}"/>
 <fileset dir="${lib}" includes="*.jar"/>
 </path>

We want to exclude test cases classes from the final JAR we produce. Create a
separate source and build path for the test cases:
 <path id="hpcas.test.classpath">
 <pathelement location="${test.build}"/>
 <path refid="hpcas.classpath"/>
 </path>

An Ant target does a unit of work such as compile or run. The init target creates
directories that are used in other parts of the build:
 <target name="init">
 <mkdir dir="${build}"/>
 <mkdir dir="${build.classes}"/>
 <mkdir dir="${test.build}"/>
 </target>

Chapter 1

17

The compile target builds your code using the javac compiler. If you have any
syntax errors, they will be reported at this stage:
 <target name="compile" depends="init">
 <javac srcdir="${src}" destdir="${build.classes}">
 <classpath refid="hpcas.classpath"/>
 </javac>
 </target>
 <target name="compile-test" depends="init">
 <javac srcdir="${test.src}" destdir="${test.build}">
 <classpath refid="hpcas.test.classpath"/>
 </javac>
 </target>

The test target looks for filenames that match certain naming conventions and
executes them as a batch of JUnit tests. In this case, the convention is any file that
starts with Test and ends in .class:
 <target name="test" depends="compile-test,compile" >
 <junit printsummary="yes" showoutput="true" >
 <classpath refid="hpcas.test.classpath" />
 <batchtest>
 <fileset dir="${test.build}" includes="**/Test*.class" />
 </batchtest>
 </junit>
 </target>

If the build step succeeds, the dist target creates a final JAR hpcas.jar:
 <target name="dist" depends="compile" >
 <mkdir dir="${dist}/lib"/>
 <jar jarfile="${dist}/lib/hpcas.jar" basedir="${build.
classes}"/>
 </target>

The run target will allow us to execute classes we build:
 <target name="run" depends="dist">
 <java classname="${classToRun}" >
 <classpath refid="hpcas.classpath"/>
 </java>
 </target>

The clean target is used to remove files left behind from older builds:
 <target name="clean" >
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 </target>
</project>

Getting Started

18

Now that the build.xml file is constructed, we must verify it works as expected.
Create small Java applications in both the build and test source paths. The first is a
JUnit test in src/test/Test.java:
import junit.framework.*;
public class Test extends TestCase {
 public void test() {
 assertEquals("Equality Test", 0, 0);
 }
}

4.	 Next, write a simple "yo cassandra" program hpcbuild/src/java/A.java:
public class A {
 public static void main(String [] args){
 System.out.println("yo cassandra");
 }
}

5.	 Call the test target:
$ ant test

Buildfile: /home/edward/hpcbuild/build.xml
...
 [junit] Running Test
 [junit] Tests run: 1, Failures: 0, Errors: 0,
Time elapsed: 0.012 sec
BUILD SUCCESSFUL
Total time: 5 seconds

6.	 Call the dist target. This will compile source code and build a JAR file:
$ ant dist

compile:
dist:
 [jar] Building jar: /home/edward/hpcbuild/dist/lib/hpcas.
jar
BUILD SUCCESSFUL
Total time: 3 seconds

The jar command will build empty JAR files with no indication that you had specified
the wrong path. You can use the -tf arguments to verify that the JAR file holds the
content you believe it should:
$ jar -tf /home/edward/hpcbuild/dist/lib/hpcas.jar

META-INF/
META-INF/MANIFEST.MF
A.class

Chapter 1

19

7.	 Use the run target to run the A class:
$ ant -DclassToRun=A run

run:
 [java] yo cassandra
BUILD SUCCESSFUL
Total time: 2 seconds

How it works...
Ant is a build system popular with Java projects. An Ant script has one or more targets. A
target can be a task such as compiling code, testing code, or producing a final JAR. Targets
can depend on other targets. As a result, you do not have to run a list of targets sequentially;
the dist target will run its dependents such as compile and init and their dependencies
in proper order.

There's more...
If you want to work with an IDE, the NetBeans IDE has a type of project called Free-Form
project. You can use the preceding build.xml with the Free-Form project type.

Running in the foreground with
full debugging

When working with new software or troubleshooting an issue, every piece of information
can be valuable. Cassandra has the capability to both run in the foreground and to run with
specific debugging levels. This recipe will show you how to run in the foreground with the
highest possible debugging level.

How to do it...
1.	 Edit conf/log4j-server.properties:

log4j.rootLogger=DEBUG,stdout,R

2.	 Start the instance in the foreground using –f:
$ bin/cassandra -f

Getting Started

20

How it works...
Without the -f option, Cassandra disassociates itself from the starting console and runs like
a system daemon. With the -f option, Cassandra runs as a standard Java application.

Log4J has a concept of log levels DEBUG, INFO, WARN, ERROR, and FATAL. Cassandra
normally runs at the INFO level.

There's more...
Setting a global DEBUG level is only appropriate for testing and troubleshooting because of
the overhead incurred by writing many events to a single file. If you have to enable debug in
production, try to do it for the smallest set of classes possible, not all org.apache.cassandra
classes.

Calculating ideal Initial Tokens for use with
Random Partitioner

Cassandra uses a Consistent Hashing to divide data across the ring. Each node has an
Initial Token which represents the node's logical position in the ring. Initial Tokens should
divide the Keyspace evenly. Using the row key of data, the partitioner calculates a token. The
node whose Initial Token is closest without being larger than the data's token is where the
data is stored along with the other replicas.

Chapter 1

21

Initial Tokens decide who is "responsible for" data.

The formula to calculate the ideal Initial Tokens is:

Initial_Token= Zero_Indexed_Node_Number * ((2^127) / Number_Of_Nodes)

For a five node cluster, the initial token for the 3rd node would be:

initial token=2 * ((2^127) / 5)
initial token=68056473384187692692674921486353642290

Initial Tokens can be very large numbers. For larger clusters of 20 or more nodes, determining
the ideal Initial Token for each node in a cluster is a time consuming process. The following
Java program calculates the Initial Tokens for each node in the cluster.

Getting ready
You can easily build and run this example following Setting up a build and test environment
earlier in this chapter.

How to do it...
1.	 Create a file src/hpcas/c01/InitialTokes.java:

package hpcas.c01;
import java.math.*;
public class InitialTokens {
 public static void main (String [] args){
 if (System.getenv("tokens")==null){
 System.err.println("Usage: tokens=5 ant
-DclassToRun=InitialTokens run");
 System.exit(0);
 }
 int nodes = Integer.parseInt(System.getenv("tokens"));
 for (int i = 0 ;i <nodes;i++){
 BigInteger hs = new BigInteger("2");
 BigInteger res = hs.pow(127);
 BigInteger div = res.divide(new BigInteger(nodes+""));
 BigInteger fin = div.multiply(new BigInteger(i+""));
 System.out.println(fin);
 }
 }
}

Getting Started

22

2.	 Set the environment variable tokens to the number of nodes in the cluster. Then,
call the run target, passing the full class name hpcas.c01.InitialTokens as a
Java property:
$ tokens=5 ant -DclassToRun=hpcas.c01.InitialTokens run

run:
 [java] 0
 [java] 34028236692093846346337460743176821145
 [java] 68056473384187692692674921486353642290
 [java] 102084710076281539039012382229530463435
 [java] 136112946768375385385349842972707284580

How it works
Generating numbers equidistant from each other helps keep the amount of data on each
node in the cluster balanced. This also keeps the requests per nodes balanced. When
initializing systems running the server for the first time, use these numbers in the
initial_tokens field of the conf/cassandra.yaml file.

There's more...
This technique for calculating Initial Tokens is ideal for the Random Partitioner, which is
the default partitioner. When using the Order Preserving Partitioner, imbalances in key
distribution may require adjustments to the Initial Tokens to balance out the load.

See also...
If a Cassandra node has already joined the cluster, see in Chapter 7, Administration, the
recipe Nodetool Move: Move a node to a specific ring location to see how to move a node to
an initial token.

Choosing Initial Tokens for use with
Partitioners that preserve ordering

Some partitioners in Cassandra preserve the ordering of keys. Examples of these
partitioners include ByteOrderedPartitioner and OrderPreservingPartitioner.
If the distribution of keys is uneven, some nodes will have more data than others. This
recipe shows how to choose initial_tokens for a phonebook dataset while using
OrderPreservingPartitioner.

Chapter 1

23

How to do it...
In the conf/cassandra.yaml file, set the partitioner attribute.

org.apache.cassandra.dht.OrderPreservingPartitioner

Determine the approximate distribution of your keys. For names from a phonebook, some
letters may be more common than others. Names such as Smith are very common while
names such as Capriolo are very rare. For a cluster of eight nodes, choose initial tokens
that will divide the list roughly evenly.

A, Ek, J, Mf, Nh, Sf, Su, Tf

Calculating Distributions

Information on calculating distributions using spreadsheets can be found
online: http://www.wisc-online.com/objects/ViewObject.
aspx?ID=TMH4604.

How it works...
Partitioners that preserve order can range scan across keys and return data in a natural
order. The trade off is that users and administrators have to plan for and track the distribution
of data.

There's more...
If a Cassandra node has already joined the cluster, see the recipe in Chapter 7, Administration,
the recipe Nodetool Move: Move a node to a specific ring location to see how to move a node to
an initial token.

Insight into Cassandra with JConsole
The Java Virtual Machine has an integrated system to do interactive monitoring of JVM
internals called JVM (Java Management Extensions). In addition to JVM internals,
applications can maintain their own counters and provide operations that the user can trigger
remotely. Cassandra has numerous counters and the ability to trigger operations such as
clearing the Key Cache or disabling compaction over JMX. This recipe shows how to connect
to Cassandra instances using JConsole.

Getting Started

24

Getting ready
JConsole comes with the Java Runtime Environment. It requires a windowing system such as
X11 to run on the system you start JConsole from, not on the server it will connect to.

How to do it...
1.	 Start JConsole:

$ /usr/java/latest/bin/jconsole

2.	 In the Remote Process box, enter the host and port of your instance:

Chapter 1

25

3.	 Click on the Memory tab to view information about the virtual memory being used by
the JVM:

How it works...
JConsole can connect to local processes running as your user without host and port
information by selecting the process in the Local Process list. Connecting to processes on
other machines requires you to enter host and port information in the Remote Process.

Getting Started

26

See also...
The recipe Connecting with JConsole over a SOCKS Proxy shows how to use JConsole with
a host only reachable by SSH.

Chapter 12, Collecting and Analyzing Performance Statistics covers Java and Cassandra
counters in great detail.

Connecting with JConsole over a SOCKS
proxy

Often, you would like to run JConsole on your desktop and connect to a server on a remote
network. JMX uses Remote Method Invocation (RMI) to communicate between systems.
RMI has an initial connection port. However, the server allocates dynamic ports for further
communication. Applications that use RMI typically have trouble running on more secure
networks. This recipe shows how to create a dynamic proxy over SSH and how to have
JConsole use the proxy instead of direct connections.

Getting ready
On your management system you will need an SSH client from OpenSSH. This comes
standard with almost any Unix/Linux system. Windows users can try Cygwin to get an
OpenSSH client.

How to do it...
1.	 Start an SSH tunnel to your login server, for example login.domain.com. The -D

option allocates the SOCKS proxy:
$ ssh -f -D9998 edward@login.domain.com 'while true; do sleep 1;
done'

2.	 Start up JConsole by passing it command-line instructions to use the proxy you
created in the last step:
$ jconsole -J-DsocksProxyHost=localhost -J-DsocksProxyPort=9998 \
service:jmx:rmi:///jndi/rmi://cas1.domain.com:8080/jmxrmi

How it works...
A dynamic SOCKS proxy is opened up on the target server and tunneled to a local port on your
workstation. JConsole is started up and configured to use this proxy. When JConsole attempts
to open connections, they will happen through the proxy. Destination hosts will see the source
of the traffic as your proxy system and not as your local desktop.

Chapter 1

27

Connecting to Cassandra with Java and Thrift
Cassandra clients communicate with servers through API classes generated by Thrift. The API
allows clients to perform data manipulation operations as well as gain information about the
cluster. This recipe shows how to connect from client to server and call methods that return
cluster information.

Getting ready
This recipe is designed to work with the build environment from the recipe Setting up a
build and test environment. You also need to have a system running Cassandra, as in the
Simulating multiple node clusters recipe.

How to do it...
1.	 Create a file src/hpcas/c01/ShowKeyspaces.java:

package hpcas.c01;
import org.apache.cassandra.thrift.*;
import org.apache.thrift.protocol.*;
import org.apache.thrift.transport.*;
public class ShowKeyspaces {
 public static void main(String[] args) throws Exception {
 String host = System.getenv("host");
 int port = Integer.parseInt(System.getenv("port"));

The objective is to create a Cassandra.Client instance that can communicate
with Cassandra. The Thrift framework requires several steps to instantiate:
 TSocket socket = new TSocket(host, port);
 TTransport transport = new TFramedTransport(socket);
 TProtocol proto = new TBinaryProtocol(transport);
 transport.open();
 Cassandra.Client client = new Cassandra.Client(proto);

We call methods from the Cassandra.Client that allow the user to inspect the
server, such as describing the cluster name and the version:
 System.out.println("version "+client.describe_version());
 System.out.println("partitioner"
 +client.describe_partitioner());
 System.out.println("cluster name "

Getting Started

28

 +client.describe_cluster_name());
 for (String keyspace: client.describe_keyspaces()){
 System.out.println("keyspace " +keyspace);
 }
 transport.close();
 }
}

2.	 Run this application by providing host and port environment variables:
host=127.0.0.1 port=9160 ant -DclassToRun=hpcas.c01.
ShowKeyspaces run

run:
 [java] version 10.0.0
 �[java] partitioner org.apache.cassandra.dht.

RandomPartitioner
 [java] cluster name Test Cluster
 [java] keyspace Keyspace1
 [java] keyspace system

How it works...
Cassandra clusters are symmetric in that you can connect to any node in the cluster and
perform operations. Thrift has a multi-step connection process. After choosing the correct
transports and other connection settings, users can instantiate a Cassandra.Client
instance. With an instance of the Cassandra.Client, users can call multiple methods
without having to reconnect. We called some methods such as describe_cluster_name()
that show some information about the cluster and then disconnect.

See also...
In Chapter 5, Consistency, Availability, and Partition Tolerance with Cassandra, the recipe
Working with the formula for strong consistency shows how to create a simple wrapper that
reduces the repeated code when connecting to Cassandra.

2
The Command-line

Interface

In this chapter, you will learn:

ff Connecting to Cassandra with the CLI

ff Creating a keyspace from the CLI

ff Creating a column family with the CLI

ff Describing keyspaces

ff Writing data with the CLI

ff Reading data with the CLI

ff Deleting rows and columns from the CLI

ff Listing and paginating all rows in a column family

ff Dropping a keyspace or a column family

ff Using assume to decode column names or column values

ff Supplying time to live information when inserting columns

ff Changing the consistency level of the CLI

ff Getting help from the CLI

ff Loading CLI statements from a file

The Command-line Interface

30

Connecting to Cassandra with the CLI
Users can connect to any node in the cluster and issue requests. This recipe shows how
to connect to a node in the cluster.

How to do it...
1.	 Execute the cassandra-cli script to start an interactive session:

$ <cassandra_home>/bin/cassandra-cli

2.	 Use the connect statement and specify a host and port to connect to. Connect to
the Thrift port, which defaults to 9160, not the JMX or Storage Port:
[default@unknown] connect 127.0.0.2/9160;

Connected to: "Test Cluster" on 127.0.0.2/9160

3.	 Once connected, client/server commands can be issued:
[default@testks] show api version;
19.4.0
[default@testks] describe cluster;
Cluster Information:
 Snitch: org.apache.cassandra.locator.SimpleSnitch
 Partitioner: org.apache.cassandra.dht.RandomPartitioner
 Schema versions:
	 b2046e4c-8cc7-11e0-ae9c-e700f669bcfc: [127.0.0.1]

How it works...
The CLI presents an interactive interface to execute operations with Cassandra. The
underlying communication between the CLI and Cassandra uses the same Thrift interface
that client applications use.

Creating a keyspace from the CLI
A keyspace is a top-level organizational unit that can hold one or more column families.
An important setting for creating a keyspace is replication factor, which controls how many
replicas of data will be in the cluster.

Replication factor can not exceed the number of nodes in the cluster.

Chapter 2

31

How to do it...
Create a keyspace named testkeyspace with a replication factor of 3.

[default@unknown] create keyspace testkeyspace with replication_factor=3;

How it works...
A keyspace does not store data directly. However, all the column families inside it inherit
configuration from it. This is important because two column families inside the same keyspace
must use the same replication factor and replication strategy. It is suggested to create a
keyspace for each column family since there are no benefits in sharing one.

There's more...
The syntax in Cassandra 0.8.0 and higher will move the replication factor to a property of the
strategy_options.

[default@unknown] CREATE KEYSPACE testkeyspace WITH strategy_class =
SimpleStrategy AND strategy_options:replication_factor = 1;

See also...
Other options that can be supplied when creating a keyspace are placement_strategy
and strategy_options. These options are described in the multiple data center chapter.

Creating a column family with the CLI
A column family is a container for columns. To insert and read data, you first need to create
a column family.

Getting ready
Columns families need to be created inside a keyspace. See the previous recipe, Creating
a keyspace from the CLI.

How to do it...
1.	 Authenticate to an existing keyspace with the use command:

[default@testkeyspace] use testkeyspace;
Authenticated to keyspace: testkeyspace

The Command-line Interface

32

2.	 Create a column family named testcolumnfamily:
[default@testkeyspace] create column family testcolumnfamily;
5ec1d928-3ee5-11e0-b34a-e700f669bcfc
Waiting for schema agreement...
... schemas agree across the cluster

3.	 Column families have several configurable parameters that are specified in a with
clause and separated by and:

[default@testkeyspace] create column family testcolumnfamily with
rows_cached=200000 and read_repair_chance=0.4;

See also...
There are many parameters for a column family that significantly change how it operates.

Chapter 4, Performance Tuning discusses Tuning Memtables for write-heavy workloads,
Boosting read performance with the Key Cache, and Boosting read performance with
the Row Cache.

Chapter 7, Administration the recipe Lowering gc_grace for faster deletes.

Describing a keyspace
The describe keyspace command shows all the properties of a keyspace, including the
information of each column family inside it.

How to do it...
1.	 Use the describe keyspace command and specify the name of a keyspace:

[default@unknown] describe keyspace testkeyspace;
Keyspace: testkeyspace:
 Replication Strategy: org.apache.cassandra.locator.
SimpleStrategy
 Replication Factor: 1
 Column Families:
 ColumnFamily: testcolumnfamily
 Columns sorted by: org.apache.cassandra.db.marshal.BytesType
 Row cache size / save period: 0.0/0
 Key cache size / save period: 200000.0/3600
 Memtable thresholds: 0.0703125/15/60
 GC grace seconds: 864000
 Compaction min/max thresholds: 4/32
 Read repair chance: 1.0

Chapter 2

33

How it works...
The information about keyspaces and column families is meta-information that is stored
and replicated across all nodes in the cluster. The describe keyspace command displays
this information.

Writing data with the CLI
The command-line interface has a set command that is used for inserting data.

Getting ready
To insert data, a target keyspace and column family must already exist. An insert also requires
a row key, a column name, and a column value information.

How to do it...
1.	 Authenticate to a keyspace:

[default@unknown] use testkeyspace;
Authenticated to keyspace: testkeyspace

2.	 For the row identified by 'server01', set the 'os' (operating system) to 'linux' using
the set command:
[default@testkeyspace] set testcolumnfamily['server01']
['os']='linux';
Value inserted.

3.	 For the row identified by 'server01', set the 'distribution' to 'CentOS_5' using
the set command:
[default@testkeyspace] set testcolumnfamily['server01']
['distribution']='CentOS_5';
Value inserted.

How it works...
Set command will create the column if it does not already exist. If the column does exist, the
old value will be overwritten with the new value. Cassandra automatically writes the key to the
proper node regardless of which node the CLI connects to.

The Command-line Interface

34

There's more...
The CLI uses microseconds since epoch time as the value of timestamp when setting
columns. This is a Cassandra convention.

Reading data with the CLI
The get operation allows users to retrieve data through the CLI.

Getting ready
To retrieve data using the get operation, a row key is required and a column name is optional.

How to do it...
1.	 Connect to an existing keyspace:

[default@unknown] use testkeyspace;
Authenticated to keyspace: testkeyspace

2.	 Issue the get command for a specific row key and column:
[default@testkeyspace] get testcf['server01']['distribution'];
=> (column=646973747269627574696f6e, value=43656e744f535f35,
timestamp=1298461364486000)

3.	 Remove the column hash to fetch all the columns for a row key:
[default@testkeyspace] get testcf['server01'];
=> (column=646973747269627574696f6e, value=43656e744f535f35,
timestamp=1298461364486000)
=> (column=6f73, value=6c696e7578, timestamp=1298461314264000)
Returned 2 results.

4.	 Fetch some data that does not exist:

[default@testks] get testcf['doesnotexist'];
Returned 0 results.
[default@testks] get testcf['doesnotexist']['nope'];
Value was not found

Chapter 2

35

How it works...
Cassandra uses the row key to locate and fetch the requested data from the proper node. The
client does not need to specifically connect to the node with the data.

See also...
In this chapter, the recipe Using the assume keyword to decode column names or column
values demonstrates how to force the CLI to display column names and values in more
human-readable formats.

In this chapter, the recipe Using column metadata and comparators for schema enforcement
stores meta-information inside the schema so it displays properly.

Deleting rows and columns from the CLI
Known rows and columns can be deleted by specifying the row key and/or the column name
with the del (delete) command.

How to do it...
1.	 Connect to a Cassandra keyspace:

[default@unknown] use testkeyspace;
Authenticated to keyspace: testkeyspace

2.	 Issue a delete for the row key server01 and the column distribution:
[default@testkeyspace] del testcf['server01']['distribution'];
column removed.

Caution

Supplying only a row key with no column will result in all
the columns for that row being deleted.

3.	 Issue a delete for all the columns of the row key server01:

[default@testkeyspace] del testcolumnfamily['server01'];
row removed.

The Command-line Interface

36

How it works...
Deletes in Cassandra are implemented as special writes known as tombstones. The data is
not removed from disk until a time in the future, but reads done after the delete will not find
this data.

See also...
Chapter 7, Administration, recipe, Lowering GCGraceSeconds for faster deletes.

Chapter 4, Performance Tuning, Setting compaction thresholds recipe.

Listing and paginating all rows
in a column family

The list command pages through data.

Getting ready
Insert some sample data into a column family.

[default@testks] set testcf['a']['thing']='5';

[default@testks] set testcf['g']['thing']='5';

[default@testks] set testcf['h']['thing']='5';

How to do it...
1.	 Use the list keyword to show the first entries in the column family:

[default@testks] list testcf;
Using default limit of 100
RowKey: a
=> (column=7468696e67, value=35, timestamp=1306981...)
RowKey: h
=> (column=7468696e67, value=35, timestamp=1306981...)
RowKey: g
=> (column=7468696e67, value=35, timestamp=1306981...)

Chapter 2

37

2.	 List using a specific start key 'h' and a limit of 2:
[default@testks] list testcf['h':] limit 2;
RowKey: h
=> (column=7468696e67, value=35, timestamp=1306981...)
RowKey: g
=> (column=7468696e67, value=35, timestamp=1306981...)

3.	 Run list using a start key of 'a' and an end key of 'h':

[default@testks] list testcf['a':'h'] limit 5;
RowKey: a
=> (column=7468696e67, value=35, timestamp=1306981...)
RowKey: h
=> (column=7468696e67, value=35, timestamp=1306981...)

How it works...
List uses range scanning to display data in a column family. If using RandomParitioner,
the data will not be in a lexicographical order, but it will be in a constant order. The list moves
through the data and provides commands to limit results, start at a specific key, and stop
scanning at a specific key.

Dropping a keyspace or a column family
The drop statement can be used to drop a column family or a keyspace.

Warning

Dropping a column family or a keyspace will remove all data in it for
all nodes in the cluster. It cannot be undone.

How to do it...
Use drop column family to remove the column family:

[default@testkeyspace] use testkeyspace;

Authenticated to keyspace: testkeyspace

[default@testkeyspace] drop column family testcolumnfamily;

Use the drop keyspace statement on 'testkeyspace',

[default@testkeyspace] drop keyspace testkeyspace;

The Command-line Interface

38

How it works...
The drop command removes a keyspace or a column family across the cluster. After
executing this statement, writes and reads to the entity will not be possible.

See also...
ff In Chapter 7, Administration, the recipe Using nodetool snapshot for backups

ff In Chapter 7, Administration, the recipe Exporting data to JSON with sstable2json

CLI operations with super columns
Super columns add another level of nesting over standard columns. The CLI allows inserts
to super columns much like inserts of normal columns. They can be read with get, written
with set, and deleted with del. The super column version of these commands uses an extra
['xxx'] to represent the extra level of the map called the sub-column.

How to do it...
1.	 Create a column family named supertest using the clause 'with

column_type=super':
[default@testkeyspace] create column family supertest with column_
type='Super';

2.	 Now, insert data. Notice super columns have an extra level of the map ['XXX']:
[default@test..] set supertest['mynewcar']['parts']
['engine']='v8';
[default@test..] set supertest['mynewcar']['parts']
['wheelsize']='20"';
[default@test..] set supertest['mynewcar']['options']['cruise
control']='yes';
[default@test..] set supertest['mynewcar']['options']['heated
seats']='yes';

3.	 Use assume so CLI formats the columns as ASCII text, and then fetch all the columns
of the 'mynewcar' row:

[default@testkeyspace] assume supertest comparator as ascii;
[default@testkeyspace] assume supertest sub_comparator as ascii;
[default@testkeyspace] assume supertest validator as ascii;
[default@testkeyspace] get supertest['mynewcar'];
=> (super_column=options,

Chapter 2

39

 (column=cruise control, value=yes,
timestamp=1298581426267000)
 (column=heated seats, value=yes, timestamp=1298581436937000))
=> (super_column=parts,
 (column=engine, value=v8, timestamp=1298581276849000)
 (column=wheelsize, value=20", timestamp=1298581365393000))

How it works...
Super columns bring an extra level of nesting to the data model. When working with super
columns from the CLI, an extra '[]' specifies the sub-index level.

There's more...
Internally, super columns must be completely serialized and de-serialized to be accessed.
This makes them inefficient for super columns with a large number of columns. While super
columns look like an attractive option, it is almost always better to append the column and the
super column together with a deliminator between them. The extra serialization involved in
using super columns and extra space used makes them less efficient.

Using the assume keyword to decode
column names or column values

The assume keyword does not modify data or column family metadata. Instead, it decodes
and helps display results of get and list requests inside the command-line interface.

How to do it...
1.	 Use the assume statement to set the comparator, validator, and keys to ASCII type a

subcomparator also exists for super columns:
[default@testkeyspace] assume testcf comparator as ascii;
Assumption for column family 'testcf' added successfully.
[default@testkeyspace] assume testcf validator as ascii;
Assumption for column family 'testcf' added successfully.
[default@testkeyspace] assume testcf keys as ascii;
Assumption for column family 'testcf' added successfully.

2.	 Read a row key. The column and value will be displayed rather than the hex code:
[default@testkeyspace] get testcf ['server01'];
=> (column=distribution, value=CentOS_5,
timestamp=1298496656140000)
Returned 1 results.

The Command-line Interface

40

How it works...
By default, columns with no metadata are displayed in a hex format. This is done because
row keys, column names, and column values are byte arrays. These could have non-printable
characters inside them such as a tab or newline that would affect the CLI output. assume
converts and displays these values in specific formats.

There's more...
Cassandra has built-in types that can be used with assume. These are bytes, integer, long,
lexicaluuid, timeuuid, utf8, and ASCII.

Supplying time to live information when
inserting columns

Time To Live (TTL) is a setting that makes a column self-delete a specified number of seconds
after the insertion time.

How to do it...
1.	 Append with ttl clause to a set statement that will expire a row after ten seconds:

[default@testkeyspace] set testcf['3']['acolumn']='avalue' with
ttl = 10;
Value inserted.
[default@testkeyspace] get testcf['3'];
=> (column=61636f6c756d6e, value=6176616c7565,
timestamp=1298507877951000, ttl=10)
Returned 1 results.

2.	 Wait ten seconds or longer before reading again and the column will be deleted:

[default@testkeyspace] get testcf['3'];
Returned 0 results.

See also...
In Chapter 3, The Application Programmer Interface, the recipe Using TTL to create columns
with self-deletion times.

Chapter 2

41

Using built-in CLI functions
By default, Cassandra treats data as byte arrays. However, support is offered for types
such as Long, which is a serialized 64 bit integer. The CLI provides built-in functions that
convert the user-supplied data from the CLI into other types such as a conversion from a
string to a long. Other functions create values of timeuuid(), which are normally generated
by a program.

How to do it...
1.	 Use the help command to determine which functions are available:

[default@unknown] help set;
set <cf>['<key>']['<col>'] = <value>;
set <cf>['<key>']['<super>']['<col>'] = <value>;
set <cf>['<key>']['<col>'] = <function>(<argument>);
set <cf>['<key>']['<super>']['<col>'] = <function>(<argument>);
set <cf>[<key>][<function>(<col>)] = <value> || <function>;
set <cf>[<key>][<function>(<col>) || <col>] = <value> ||
<function> with ttl = <secs>;
Available functions: bytes, integer, long, lexicaluuid, timeuuid,
utf8, ascii.
examples:
set bar['testkey']['my super']['test col']='this is a test';
set baz['testkey']['test col']='this is also a test';
set diz[testkey][testcol] = utf8('this is utf8 string.');
set bar[testkey][timeuuid()] = utf('hello world');

set bar[testkey][timeuuid()] = utf('hello world') with ttl = 30;
set diz[testkey][testcol] = 'this is utf8 string.' with ttl = 150;

2.	 Insert a column that uses the timeuuid() method as a column name and uses the
long() method to turn the literal string '7' into an encoded long:

[default@testkeyspace] set testcf['atest'][timeuuid()] = long(7);
Value inserted.

How it works...
Functions are useful for converting strings into the other types from the CLI.

The Command-line Interface

42

Using column metadata and comparators for
type enforcement

Cassandra is designed to store and retrieve simple byte arrays. It is normally up to the user
to encode and decode their data. Cassandra does have support for built-in types such as
timeuuid, ASCII, long, and a few others. When creating or updating a column family, the user
can supply column metadata that instructs the CLI on how to display data and help the server
enforce types during insertion operations.

How to do it...
1.	 Create a column family named cars specifying the comparator as LongType:

[default@testkeyspace] create column family cars with comparator=L
ongType;
46e82939-400c-11e0-b34a-e700f669bcfc

2.	 Try to insert a row with a column name that is not a number:
[default@testkeyspace] set cars ['3']['343zzz42']='this should
fail';
'343zzz42' could not be translated into a LongType.

3.	 Supply an integer and use the built-in long () method to encode it:
[default@testkeyspace] set cars ['3'][long('3442')]='this should
pass';
Value inserted.

4.	 Cassandra can enforce that the values of columns with specific names are of specific
types. Create a column family cars2 and fill out the column metadata as shown:
create column family cars2 with column_metadata=[{column_
name:'weight', validation_class:IntegerType},{column_name:'make',
validation_class:AsciiType}];

5.	 Attempt to write to the 'weight' column. This should fail if the value is not an integer:
[default@testkeyspace] set cars2['mynewcar']['weight']='200fd0';
'200fd0' could not be translated into an IntegerType.

6.	 Write two entries with values of proper types:
[default@testkeyspace] set cars2['mynewcar']
['weight']=Integer('2000');
Value inserted.
[default@testkeyspace] set cars2['mynewcar']['make']='ford';
Value inserted.

Chapter 2

43

7.	 Fetch the results:

[default@testkeyspace] assume cars2 comparator as ascii;
Assumption for column family 'cars2' added successfully.
[default@testkeyspace] get cars2['mynewcar'];
=> (column=make, value=ford, timestamp=1298580528208000)
=> (column=weight, value=2000, timestamp=1298580306095000)
Returned 2 results.

How it works...
Cassandra defaults to not enforcing types and accepts arbitrary byte data. Column metadata
as well as comparators allow users to ensure the integrity of data during write operations. It
also serves as meta information for users reading the data so it can be decoded properly.

See also...
in Chapter 9, Coding and Internals, the recipe Creating your own type by sub classing
abstract type.

Changing the consistency level of the CLI
The Cassandra data mode stores data across many nodes and data centers. When
operating on data, users choose the consistency level of the operation per requests.
The default consistency level used by the CLI is ONE. This recipe shows how to use the
consistencylevel keyword to change consistency level.

How to do it...
1.	 Use the consistencylevel statement to change the consistency level:

[default@ks33] consistencylevel as QUORUM;
Consistency level is set to 'QUORUM'.

2.	 After changing the level, do set, get, and list operations as normal:

[default@testkeyspace] get cars2['mynewcar'];
=> (column=make, value=ford, timestamp=1298580528208000)
=> (column=weight, value=2000, timestamp=1298580306095000)
Returned 2 results.

The Command-line Interface

44

How it works...
Changing the consistency level only affects the current CLI session. Doing this is helpful when
trying to troubleshoot errors that users may be reporting. Consistency level ONE is forgiving in
that write or read operations will succeed with multiple node failures, while other levels such
as ALL are less forgiving. This feature is also useful when working in multiple data center
environments with levels such as LOCAL_QUORUM.

See also...
In Chapter 5, Consistency, Availability, and Partition Tolerance with Cassandra, the recipe The
formula for strong consistency.

In Chapter 8, Multiple Data Center Deployments, the recipe Changing consistency level from
the CLI to test various consistency levels with multiple data center deployments.

Getting help from the CLI
The CLI has built-in documentation that is accessed using the help statement. This recipe
shows how to get help from the CLI.

How to do it...
1.	 Issue the help statement:

[default@testks] help;
List of all CLI commands:
help;
Display this help.
help <command>; Display detailed, command-specific help.

connect <hostname>/<port> (<username> '<password>')?; Connect to
thrift service.

use <keyspace> [<username> 'password']; Switch
to a keyspace.

...
del <cf>['<key>'];
Delete record.

Chapter 2

45

del <cf>['<key>']['<col>'];
Delete column.

del <cf>['<key>']['<super>']['<col>'];
Delete sub column
...

2.	 Run the command 'help del' for help on the delete command:

[default@testks] help del;
del <cf>['<key>'];
del <cf>['<key>']['<col>'];
del <cf>['<key>']['<super>']['<col>'];

Deletes a record, a column, or a subcolumn.

example:
del bar['testkey']['my super']['test col'];
del baz['testkey']['test col'];
del baz['testkey'];

How it works...
The default help statement displays information about all the other statements available.
When following help with the name of another statement such as del or list, the
statement issues more details on that specific command.

Loading CLI statements from a file
The Cassandra CLI has a batch utility that processes commands from a file.

How to do it...
1.	 Create a file with a list of commands for the Cassandra CLI:

$ echo "create keyspace abc;" >> bfile
$ echo "use abc;" >> bfile
$ echo "create column family def;" >> bfile
$ echo "describe keyspace abc;" >> bfile

The Command-line Interface

46

2.	 Start the Cassandra CLI using the -b argument to specify the batch file:

$ <cassandra_home>/bin/cassandra-cli --host localhost -p 9160 -f
bfile;
Connected to: "Test Cluster" on localhost/9160
Authenticated to keyspace: abc
Keyspace: abc:
 Replication Strategy: org.apache.cassandra.locator.
SimpleStrategy
 Replication Factor: 1

...

How it works...
The batch mode has access to the same commands as the CLI. This mode can be used for
light scripting tasks. However, it is good practice to create a batch file for all meta operations
done to the cluster for change management.

There's more...
The -B,--batch switch enables batch mode, which suppresses output and stops processing
on any error.

3
Application

Programmer Interface

In this chapter, you will learn the following recipes:

ff Connecting to a Cassandra server
ff Creating a keyspace and column family from the client
ff Using MultiGet to limit round trips and overhead
ff Writing unit tests with an embedded Cassandra server
ff Cleaning up data directories before unit tests
ff Generating Thrift bindings for other languages (C++, PHP, and others)
ff Using the Cassandra Store Proxy "Fat Client"
ff Using range scans to find and remove old data
ff Iterating all the columns of a (large) key
ff Slicing columns in reverse
ff Batch mutations to improve insert performance and code robustness
ff Using TTL to create columns with self-deletion times
ff Working with secondary indexes

Introduction
Programmatic access to a cluster of Cassandra servers is done though the Application
Programmer Interface. This client API is built using Apache Thrift. With Thrift, structures,
exception, services, and methods are specified in a language-neutral file called an interface
file. Thrift's code generation takes the interface file as input and generates network RPC
clients in many languages. The multiple language code generation allows programs written in
C++ or Perl to call the same methods as a Java client. The Java client is generated and comes
packaged with Cassandra.

Application Programmer Interface

48

The Application Programmer Interface provided by Cassandra provides methods for users
to create, modify, and remove the meta structures for storing data, keyspaces, and column
families, as well as methods for inserting, removing, and fetching data from column families.

The clients' Thrift generates are more generic because they have to work with many
languages. High-level clients usually exist for a given language. For example, Java has Hector
and Pelops and Python has Pycassa. These high-level clients are typically suggested because
they insulate users from the details of the generated Thrift code. This chapter uses the Thrift
API as this is the most language-neutral way to present the material.

Connecting to a Cassandra server
The first step is connecting to a node in the Cassandra cluster. The process of opening
and closing connections involves a few lines of code that are repeated often. This recipe
demonstrates the connection opening and closing code and abstracts that code into
a class for reuse.

How to do it...
Create text file <hpc_build>/src/java/hpcas/c03/FramedConnWrapper.java:

package hpcas.c03;

import org.apache.cassandra.thrift.Cassandra;
import org.apache.thrift.protocol.*;
import org.apache.thrift.transport.*;
public class FramedConnWrapper {

 /* Declare the private properties used for client server
communication. */
 private TTransport transport;

 private TProtocol proto;

 private TSocket socket;

 /* Create a constructor that takes a host and port supplied by the
user. */
 public FramedConnWrapper(String host, int port) {
 socket = new TSocket(host, port);
 transport = new TFramedTransport(socket);
 proto = new TBinaryProtocol(transport);
 }

Chapter 3

49

 public void open() throws Exception {
 transport.open();
 }

 public void close() throws Exception {
 transport.close();
 socket.close();
 }

 public Cassandra.Client getClient() {
 Cassandra.Client client = new Cassandra.Client(proto);
 return client;
 }
}

How it works...
Thrift-generated classes have a slightly complex connection process. This is due to
different options and transports available to Thrift. The final product of the connection steps
are an instance of type TProtocol. The TProtocol instance is used in the constructor
of the Cassandra.Client class. Cassandra. Client has the methods users interact to
Cassandra with.

There's more
Initializing connections in this manner does not account for server fail-over or retries. This is
one of the reasons higher level clients are preferred. Betweeen Cassandra 0.7.X and 0.8.X,
the replication factor was moved from a property of a KsDef object to a name value pair in
the StrategyOptions.

Creating a keyspace and column family
from the client

The top level element in the storage element is a keyspace; the column family is the structure
that holds data. It is common to have an application detect if the proper metadata is created
and, if they are not, to create them. This recipe adds a method to hpcas.c03.Util.java,
which creates a keyspace and column family from three arguments.

Application Programmer Interface

50

How to do it...
Create the file <hpcbuild>/src/hpcas/c03/Util.java:

package hpcas.c03;
import java.io.UnsupportedEncodingException;
import java.util.*;
import org.apache.cassandra.thrift.*;
public class Util {

 /* Returns a list of keyspaces, useful for quickly detecting if a
keyspace exists */
 public static List<String> listKeyspaces(Cassandra.Client c) throws
Exception{
 List<String> results = new ArrayList<String>();
 for (KsDef k : c.describe_keyspaces()) {
 results.add(k.getName());
 }
 return results;
 }
 /* creates a KsDef CfDef ready for use with system_add_keyspaces()
*/

 public static KsDef createSimpleKSandCF(String ksname, String
cfname,
int replication) {

 KsDef newKs = new KsDef();

 newKs.setStrategy_class("org.apache.cassandra.locator.
SimpleStrategy");

 newKs.setName(ksname);

 newKs.setReplication_factor(replication);

 CfDef cfdef = new CfDef();

 cfdef.setKeyspace(ksname);

 cfdef.setName(cfname);

 newKs.addToCf_defs(cfdef);

 return newKs;
 }

 /*Method that is used retrieve environment or -D options passed from
the user */

 public static String envOrProp(String name) {
 if (System.getenv(name) != null) {
 return System.getenv(name);
 } else if (System.getProperty(name) != null) {

Chapter 3

51

 return System.getProperty(name);
 } else {
 return null;
 }
 }

}

How it works...
The createSimpleKSandCF method takes three arguments: a keyspace name, a column
family name, and a replication factor. It produces a KsDef instance with an initialized CfDef
instance inside it. The result can be used by methods such as system_add_keyspace or
system_add_column_family to create a keyspace or column family across the cluster.

See also...
ff Chapter 2, Command-line Interface, Creating a Keyspace from the CLI

ff Chapter 2, Command-line Interface, Creating a Column Family with the CLI

Using MultiGet to limit round trips and
overhead
MultiGet should be used as an alternative to multiple get operations when each get
operation uses the same SlicePredicate. By using MultiGet, the number of requests
and network round trips are reduced versus doing one get operation per row key.

How to do it...
1.	 Create a program <hpc_build>/src/java/hpcas/c03/GetVMultiGet.java:

package hpcas.c05;
import hpcas.c03.*;
import java.util.*;
import org.apache.cassandra.thrift.*;

public class GetVMultiGet {
 public static void main (String [] args) throws Exception {
 /* The user will specify host,port,keyspace,columnfamily, and
insert count */
 int inserts = Integer.parseInt(Util.envOrProp("inserts"));
 String ks = Util.envOrProp("ks");
 String cf = Util.envOrProp("cf");

Application Programmer Interface

52

 FramedConnWrapper fcw = new FramedConnWrapper
		 (Util.envOrProp("host"), Integer.parseInt(Util.
envOrProp("port")));
 fcw.open();
 /* a ColumnParent is used to insert data */
 ColumnParent parent = new ColumnParent();
 parent.setColumn_family(cf);
 /* A ColumnPath is used to get data */
 ColumnPath path = new ColumnPath();
 path.setColumn_family(cf);
 path.setColumn("acol".getBytes("UTF-8"));

The number of keys written are user specified. A counter is created and the value of
the counter is used as the row key and the value.
 Column c = new Column();
 fcw.getClient().set_keyspace(ks);
 c.setName("acol".getBytes());
 for (int j = 0; j < inserts; j++) {
 byte [] key = (j+"").getBytes();
 c.setValue(key);
 fcw.getClient().insert(key, parent, c, ConsistencyLevel.
ALL);
 fcw.getClient().get(key, path, ConsistencyLevel.ALL);
 }

2.	 Create a timer and then read the data one key at a time using the get method:
 long getNanos = System.nanoTime();
 for (int j = 0; j < inserts; j++) {
 byte [] key = (j+"").getBytes();
 c.setValue(key);
 fcw.getClient().get(key, path, ConsistencyLevel.ONE);
 }
 long endGetNanos = System.nanoTime()-getNanos;

3.	 The MultiGet operation requires a SlicePredicate. This can either be a list of
columns or a slice range:
 SlicePredicate pred = new SlicePredicate();
 pred.addToColumn_names("acol".getBytes());
 long startMgetNanos = System.nanoTime();

4.	 Use looping to batch requests into groups of five. Then, call the MultiGet method,
which fetches the group:
 for (int j = 0; j < inserts; j=j+5) {
 List<byte[]> wantedKeys = new ArrayList<byte[]>();
 for (int k=j;k<j+5;k++){

Chapter 3

53

 wantedKeys.add((j+"").getBytes());
 }
 fcw.getClient().multiget_slice(wantedKeys, parent, pred,
 ConsistencyLevel.ONE);
 }
 long endMGetNanos = System.nanoTime()-startMgetNanos;
 System.out.println("get time "+endGetNanos);
 System.out.println("mget time "+endMGetNanos);
 }
}

5.	 Run the application supplying host, port, number of inserts, keyspace, and column
family name:
$ host=127.0.0.1 port=9160 inserts=4000 ks=ks33 cf=cf33 ant
-DclassToRun=hpcas.c05.GetVMultiGet run

run:

 [java] get time 2632434394

 [java] mget time 1754092111

How it works...
The time savings from MultiGet is mostly attributed to saving network round trip time
between the application and the server. This is significant when reading small rows in a linear
manner. It is important to note that using MultiGet does not change how the data is located
in caches or a disk; that time is the same when using both methods.

Writing unit tests with an embedded
Cassandra server

The ability to bring up a fully functioning instance inside user code is a clear advantage to
having to manage the code base and Cassandra service separately. This approach is ideal
when a large number of developers are sharing a project, or with continuous integration tools
such as Hudson that build and test code in a completely automated and unattended manner.
This recipe shows how to use the EmbeddedCassandraService with JUnit test classes.

How to do it...
1.	 Ensure that hpcbuild/build.xml contains a property for the location

of test.conf:
 <property name="dist" location="dist"/>
 <property name="lib" location="lib"/>
 <property name="test.conf" location="test_conf"/>

Application Programmer Interface

54

Also, ensure that the test.classpath is included in the test target.

<path id="hpcas.test.classpath">
 <pathelement location="${test.build}"/>
 <pathelement location="${test.conf}" />
 <path refid="hpcas.classpath"/>
</path>

2.	 Inside the hpcbuild directory, create a directory for test configuration files and copy
a stock configuration directory to it:
$ mkdir hpcbuild/test_conf

$ cp <cassandra_home>/conf/ <home>/hpcbuild/test_conf/

3.	 Modify the cassandra.yaml so the test configuration does not overlap with other
Cassandra instances:
data_file_directories:
 - /tmp/test_data
commitlog_directory: /tmp/test_commit
storage_port: 7009
rpc_port: 9169

4.	 Create a file <hpcbuild>/src/test/hpcas/c05/ EmbeddedCassandraTest.
java:
package hpcas.c05;

/* Import org.junit.*. For the assertEquals method using a static
import. */
import org.junit.*;
import static org.junit.Assert.assertEquals;
import org.apache.cassandra.service.*;
import org.apache.cassandra.thrift.*;
import hpcas.c03.FramedConnWrapper;

public class EmbeddedCassandraTest {

5.	 Declare an EmbeddedCassandraService instance as static. Many Cassandra
internals not re-entrant and can only be used with the static modifier (one per JVM).
It is currently not possible to start more than a single instance inside a JVM:
 private static EmbeddedCassandraService cassandra;

Chapter 3

55

6.	 @BeforeClass is a JUnit annotation that instructs JUnit to call this method before
test cases inside this class. Inside setup() method, the Cassandra instance
is initialized:
 @BeforeClass
 public static void setup() throws Exception {
 cassandra = new EmbeddedCassandraService();
 cassandra.init();
 Thread t = new Thread(cassandra);
 t.setDaemon(true);
 t.start();
 }

7.	 The @Test annotation instructs JUnit to run a method as a test case. Ensure that the
Cassandra instance is up and running by connecting to it and asserting the cluster
name is what it is expected to be:
 @Test
 public void testInProcessCassandraServer()
 throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper
 ("127.0.0.1", 9169);
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 assertEquals("Test Cluster", client.describe_cluster_name());
 fcw.close();
 System.out.println("All tests complete");
 }
}

8.	 Run the unit test using the ant test target:

$ ant test

test:

 [junit] Running Test

 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed:
0.42 sec

 [junit] Running hpcas.c05.EmbeddedCassandraTest

 [junit] All tests complete

 [junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed:
3.26 sec

Application Programmer Interface

56

How it works...
The Cassandra threads have their daemon status set to true. When only daemon threads
are running, the JVM will close. Running Cassandra in an embedded manner makes it fast
and easy to develop applications that store their data inside Cassandra such as a custom
middle-ware layer.

See also...
ff The next recipe, Cleaning up data directories before unit tests

ff Chapter 9, Coding and Internals, the recipe Using the Cassandra maven plugin

Cleaning up data directories before
unit tests

It is possible to drop individual keys, column families, and keyspaces, as well as truncating
column families through the Thrift API. In some cases, it may be easier to remove all the data
directories at the beginning of a unit test. A tool to handle this is inside a contrib sub project.
This recipe shows how to build the contrib that contains the data cleaner and then uses it
inside a test case.

Getting ready
If the cassandra-javautills.jar is not included in the release, the Cassandra source
code is needed for this recipe. Follow the steps in Chapter 9, Coding and Internals, Building
Cassandra from source recipe. This recipe builds on the previous recipe, Writing unit tests
with an embedded Cassandra server, and enhances it.

How to do it...
1.	 Build the Cassandra source. Then, change to the contrib/javautils directory

and run the JAR target:
$ cd <cassandra_src>

$ ant

$ cd contrib/javautils

$ ant jar

jar:

 [mkdir] Created dir: /home/edward/cas-trunk/contrib/javautils/
build/classes/META-INF

 [jar] Building jar: /home/edward/cas-trunk/contrib/
javautils/build/cassandra-javautils.jar

Chapter 3

57

2.	 Copy the resulting JAR to the classpath:
$ cp <cassandra_src>/contrib/javautils/build/cassandra-javautils.
jar /home/edward/hpcbuild/lib/

3.	 Edit src/test/hpcas/c03/EmbeddedCassandraTest.java and include the
CassandraServiceDataCleaner:
 @BeforeClass
 public static void setup() throws Exception {
 CassandraServiceDataCleaner cleaner = new
 CassandraServiceDataCleaner();
 cleaner.prepare();
 cassandra = new EmbeddedCassandraService();

 cassandra.init();
 Thread t = new Thread(cassandra);
 t.setDaemon(true);
 t.start();
 }

4.	 Touch a file inside the data directory to test if the cleaner is working:
$ touch /tmp/test_data/a

$ ls /tmp/test_data/

a system

5.	 Run the unit test. The extra file created should be removed:
$ ant test

 [junit] Tests run: 1, Failures: 0, Errors: 0

$ ls /tmp/test_data/

system

How it works...
Cassandra has several contrib sub projects. The contrib projects are not currently built into
the binary distributions. The class needed is part of the javautils contrib project. By
building the contrib using ant and then adding the resulting JAR to the classpath, unit
tests have a simple way to ensure they always run with a clean state.

Application Programmer Interface

58

Generating Thrift bindings for other
languages (C++, PHP, and others)

The low level client for Cassandra is generated using Thrift. The Thrift interface descriptor file,
found in <cassandra_home>/interface/cassandra.thrift, is used to generate code
for a long list of programming languages, including .NET, C, Perl, PHP, Ruby, and more. This
recipe shows how to download and install Thrift to generate bindings for multiple languages.

Getting ready
A compiler such as GCC and several other development tools are needed to build Thrift.

$ yum group install "Development Tools"

Generating bindings for languages require additional components installed. For example,
generating Ruby binding may require ruby and ruby-devel packages to be installed.
Consult the Thrift documentation for more details.

How to do it...
1.	 Determine what version of Thrift your Cassandra servers are using and match

that version:
$ ls <cassandra_home>/lib | grep thrift

libthrift-0.5.jar

2.	 Download a matching version of Thrift and compile it:
$ wget http://apache.imghat.com/

/incubator/thrift/0.5.0-incubating/thrift-0.5.0.tar.gz

$ tar -xf thrift*.tar.gz

$ cd thrift*

$./configure

$ make

$ sudo make install

3.	 Navigate to the directory with the cassandra.thrift file. This can be found in
either the source or the binary distribution inside the interface folder:
$ cd <cassandra_home>/interface

$ thrift –gen java:hashcode –gen py -o $HOME/thrift-out cassandra.
thrift

Chapter 3

59

How it works...
Thrift uses the cassandra.thrift file to generate bindings for each language specified
using -gen arguments. Clients from a variety of different languages can interact with
Cassandra. Each of them have access to the same Remote Procedure Call (RPC) methods
provided by the Thrift interface. This allows a PHP web application, a Python batch program,
as well as Java applications to access the same functionality!

Using the Cassandra Storage Proxy
"Fat Client"

The higher level clients such as Thrift have a more stable API as well as slightly more
overhead. These. or even higher level clients such as Hector or Pelops are strongly suggested
for most users. Still, a user who requires more access to the Cassandra internals can use the
Storage Proxy API directory. The Storage Proxy API is not guaranteed to stay consistent even
between minor versions. This recipe shows how to use the Storage Proxy API.

How to do it...
1.	 Copy the configuration directory into a sub folder. Then, edit the listen address and

RPC address to an unused IP address:
$ cp -r $home/hpcas/apache-cassandra-0.7.0-beta2-1/conf conf-5node

vi conf-5node/cassandra.yaml

listen_address: 127.0.0.10

rpc_address: 127.0.0.10

2.	 Create a file <hpc_build>/src/java/hpcas/c05/StorageServiceExample.
java:
package hpcas.c05;

import java.util.*;
import org.apache.cassandra.db.*;
import org.apache.cassandra.db.filter.QueryPath;
import org.apache.cassandra.db.TimeStampClock;
import org.apache.cassandra.service.StorageProxy;
import org.apache.cassandra.service.StorageService;
import org.apache.cassandra.thrift.ColumnPath;
import org.apache.cassandra.thrift.ConsistencyLevel;

public class StorageServiceExample {

Application Programmer Interface

60

3.	 The StorageService is a static (JVM-wide) class that needs to be initialized. After
initialization, we sleep for ten seconds to allow the Gossip protocol to transmit
information about the client to other nodes:
 private static void doInit() throws Exception {
 StorageService.instance.initClient();
 System.out.println("Wait 10 seconds for gossip
initialization");
 Thread.sleep(10000L);
 }

4.	 Create a static method that inserts five items. It uses RowMutation objects and
inserts them using the StorageProxy.mutate method:
 private static void testWriting() throws Exception {
 for (int i = 0; i < 2; i++) {
 RowMutation change = new RowMutation("ks33",
 ("key" + i).getBytes());
 ColumnPath cp = new ColumnPath("cf33")
 .setColumn(("colb").getBytes());
 IClock ic = new TimestampClock(System.currentTimeMillis());
 change.add(new QueryPath(cp), ("value" + i)
 .getBytes("UTF-8"), ic, 0);
 StorageProxy.mutate(Arrays.asList(change),
 ConsistencyLevel.ONE);
 System.out.println("wrote key" + i);
 }
 }

 /*The testReading() method attempts to read the entries inserted
by the
 testWriting() method. */
 private static void testReading() throws Exception {
 Collection<byte[]> cols = new ArrayList<byte[]>() ;
 cols.add("colb".getBytes("UTF-8"));
 for (int i = 0; i < 2; i++) {
 List<ReadCommand> commands = new ArrayList<ReadCommand>();
 SliceByNamesReadCommand readCommand =
 new SliceByNamesReadCommand(
 "ks33",
 ("key"+i).getBytes("UTF-8") ,
 new QueryPath("cf33", null, null),
 cols);
 readCommand.setDigestQuery(false);
 commands.add(readCommand);
 List<Row> rows = StorageProxy.readProtocol(commands,

Chapter 3

61

 ConsistencyLevel.ONE);
 Row row = rows.get(0);
 ColumnFamily cf = row.cf;
 if (cf != null) {
 for (IColumn col : cf.getSortedColumns()) {
 System.out.println(new String(col.name()) + ", "
 + new String(col.value()));
 }
 }
 }
 }

5.	 The main() method is the entry point for the application:
 public static void main(String args[]) throws Exception {
 doInit();
 for (String member : StorageService.instance.getLiveNodes()){
 System.out.println("live node "+member);
 }
 testWriting();
 testReading();
 StorageService.instance.stopClient();
 System.exit(0);
 }
}

6.	 Make a small driver script run.sh with the following content. Change the paths
where necessary:
CP=dist/lib/hpcas.jar
for i in lib/*.jar ; do
 CP=$CP:$i
done
conf=/home/edward/hpcbuild/conf-5node
java -cp $CP -Dcassandra.config=file://${conf}/cassandra.yaml \
-Dstorage-config=$conf hpcas.c05.StorageServiceExample

7.	 Run the application:
$ sh run.sh

Will sleep for 10 seconds for gossip initialization

live node 127.0.0.10

live node 127.0.0.5

live node 127.0.0.3

live node 127.0.0.4

live node 127.0.0.2

Application Programmer Interface

62

live node 127.0.0.1

wrote key0

wrote key1

colb, value0

colb, value1

How it works...
Using StorageProxy and StorageService not intended for the average user, using them
is closer to running an Embedded Cassandra server than connecting with a client. When a
node using StorageService joins the cluster, it will not store any data, but it does open up
Thrift and storage ports on a particular IP address. Once connected, this API gives you access
to more Cassandra internals.

There's more...
A StorageProxy instance cannot be open from the same IP as a node in the cluster.
Network-wise, the StorageProxy has to be able to reach the other nodes as if it were part
of the cluster. Also, code in Cassandra is static and not re-entrant. The StorageService
can be initialized once in the life of the JVM.

Using range scans to find and remove
old data

The primary operations used in Cassandra are get and insert operations. In many
applications, data can become stale and is no longer needed. In these type of application,
a process can be used to iterate all the data on the node using range scans. This recipe
shows how to use range scans to iterate all the data in a cluster and remove data older
than a user-supplied number of seconds.

How to do it...
1.	 Create a file <hpcbuild>/src/hpcas/c03/Ranger.java.

package hpcas.c03;

import hpcas.c03.FramedConnWrapper;
import hpcas.c03.Util;
import java.math.BigInteger;
import java.util.*;
import org.apache.cassandra.thrift.*;
import org.apache.cassandra.utils.FBUtilities;

Chapter 3

63

public class Ranger {
 int size = 0;
 Cassandra.Client client = null;
 FramedConnWrapper fcw = null;

 /*The maximum token in a Cassandra is 2^127. Range scans should
not go past
 this number.*/
 java.math.BigInteger max = new java.math.BigInteger("2").
pow(127);
 java.math.BigInteger start = new java.math.BigInteger("0");
 java.math.BigInteger current = new java.math.BigInteger("0");
 GregorianCalendar cutoff = new GregorianCalendar();

 public void doConnect() throws Exception {
 fcw = new FramedConnWrapper(
 Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 client = fcw.getClient();
 }

 public void runRepair() {
 start = new BigInteger("0");
 current = new BigInteger(start.toString());
 do {
 try {
 doConnect();
 doRange();
 Thread.sleep(1000);
 } catch (Exception e) {
 System.out.println(e);
 }
 } while (size != 0);
 }
 public void doRange() throws Exception {

2.	 One of the parameters needed for get_range_slices is a SlicePredicate.
Set the SlicePredicate so that it has a large size and it includes any column by
specifying an empty byte array as the start and finish:
 SlicePredicate pred = new SlicePredicate();
 SliceRange sr = new SliceRange();
 sr.setStart(new byte[0]);
 sr.setFinish(new byte[0]);

Application Programmer Interface

64

 sr.setCount(9000);
 pred.setSlice_range(sr);
 ColumnParent parent = new ColumnParent();
 parent.setColumn_family(Util.envOrProp("cf"));

A KeyRange is used to select keys for the operation. It can be
specified using byte arrays (the keys themselves) or using tokens.
This example uses tokens. Like the SlicePredicate, a KeyRange
also has a setting for size.
 KeyRange kr = new KeyRange();
 kr.setStart_token(this.current.toString());
 kr.setEnd_token(this.max.toString());
 kr.setCount(100);

3.	 Call get_range_slices and pass the results to the handleResults() method:
 client.set_keyspace(Util.envOrProp("ks"));
 List<KeySlice> results = client.get_range_slices(
 parent, pred, kr, ConsistencyLevel.ONE);
 this.handleResults(results);
 size = results.size();
 }

4.	 This method iterates through a list of KeySlice objects. For each KeySlice, iterate
the columns for that key. If the column is older then the cutoff time removes it:
 public void handleResults(List<KeySlice> results) {
 for (KeySlice ks : results) {
 for (ColumnOrSuperColumn columnOrSuper : ks.getColumns()) {
 if (columnOrSuper.isSetColumn() == true) {
 Column c = columnOrSuper.column;
 if (c.getTimestamp() < cutoff.getTimeInMillis() * 1000L)
{
 ColumnPath cp = new ColumnPath();
 cp.setColumn_family(Util.envOrProp("cf"));
 cp.setColumn(c.name);
 try {
 client.remove(ks.getKey(), cp,
 System.currentTimeMillis(), ConsistencyLevel.
ONE);
 System.out.println("Removed " + new String(ks.key)
 + " " + new String(c.name));
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }
 }
 }

Chapter 3

65

5.	 Reset the current variable with the hash of the last key in the KeySlice. This causes
the next call of get_range_slices to iterate into the next set of keys:
 this.current = FBUtilities.md5hash(ks.key);
 }
 }
 public static void main(String[] args) throws Exception {
 Ranger ranger = new Ranger();
 int retentionDays = Integer.parseInt
 (Util.envOrProp("retentionDays"));
 ranger.cutoff.add(GregorianCalendar.DAY_OF_YEAR, -
 retentionDays);
 ranger.runRepair();
 }
}

6.	 Run the program:
$cf=cf33 ks=ks33 host=127.0.0.1 port=9160 retentionDays=1 ant run
-DclassToRun=hpcas.c05.Ranger

Run:

 [java] Removed key30 colb

 [java] Removed key16 colb

 [java] Removed key55 colb

 [java] Removed key51 colb

How it works...
Whether the cluster is using RandomPartitioner or OrderPreservingPartitioner,
the entire data set has an ordering. Range scans allow you to move through the data set by
using the last token or key from the first range scan as the start token for the next range scan.

There's more...
Range scanning can take a long time and be processor intensive. This depends on the
settings chosen. Choosing a larger key range size or slice range size causes each operation
to read through more data.

There are several ways to reduce the intensity of the program. One is by adding sleep
operations in the code. For large clusters, it may be more effective to run several scanning
programs on smaller sections of the ring instead of one program. Also, the program can be
written to work during low traffic hours.

Application Programmer Interface

66

See also...
ff Using TTL to create columns with self-deletion times shows how to automatically

clean up old data.

ff Iterating all the columns of a large key if the columns for a key are larger than the
slice range size.

Iterating all the columns of a large key
In some designs, a particular row key may have a large number of associated columns. It may be
impractical or impossible to retrieve all the columns in a single operation. This recipe shows how
to iterate the columns of a key a few columns at a time using a slice predicate.

How to do it...
1.	 Create <hpc_build>/src/java/hpcas/c03/IterateLargeKey.java:

package hpcas.c03;
import hpcas.c03.*;
import java.util.List;
import org.apache.cassandra.thrift.*;

public class IterateLargeKey {
 public static void main (String [] args) throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper
 (Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 fcw.getClient().set_keyspace(Util.envOrProp("ks"));
 ColumnParent parent = new ColumnParent();

 /*Simulate a large list of names under a key "friends" with an
array of names.*/

 byte [] key = "friends".getBytes("UTF-8");
 String [] names = new String [] {"sandy","albert","anthony",
 "bob","chuck"};
 parent.setColumn_family(Util.envOrProp("cf"));

 /*Insert all names as columns.*/

Chapter 3

67

 for (String name : names) {
 Column c = new Column();
 c.setName(name.getBytes());
 c.setTimestamp(System.currentTimeMillis()*1000L);
 c.setValue("".getBytes("UTF-8"));
 fcw.getClient().insert(key, parent, c,
 ConsistencyLevel.QUORUM);
 }

2.	 Construct a SlicePredicate with count set to 3. The start is set at an empty byte
array, which will start the slice at the beginning. Each column family has a column
sort order. The default sorting is by byte ordering:
 SlicePredicate pred = new SlicePredicate();
 SliceRange range = new SliceRange();
 range.setCount(3);
 range.setStart(new byte[0]);
 range.setFinish(new byte[0]);
 pred.setSlice_range(range);
 List<ColumnOrSuperColumn> cols = fcw.getClient().get_slice
 (key, parent, pred, ConsistencyLevel.QUORUM);
 while (cols.size()>1 || cols.size()==0){
 for (int i=0;i<cols.size();++i){
 System.out.println(new String(cols.get(i).getColumn()
.getName()));

 /*Start of the SliceRange to the last column in the result
list. */
 range.setStart(cols.get(i).getColumn().getName());
 }
 cols = fcw.getClient().get_slice
 (key, parent, pred, ConsistencyLevel.QUORUM);
 System.out.println("----");
 }
 }
}

3.	 Run the application:
$ cf=cf33 ks=ks33 host=127.0.0.1 port=9160 ant
-DclassToRun=hpcas.c05.IterateLargeKey

run:

 [java] albert

 [java] anthony

 [java] bob

Application Programmer Interface

68

 [java] ----

 [java] bob

 [java] chuck

 [java] sandy

 [java] ----

How it works...
The get_slice method uses a SlicePredicate with SliceRange to select columns of
a key. The columns of a key are sorted, thus it is possible to move through the list several
elements at a time in order. Moving through the list of columns is done by taking the last
column seen and using it as the start of the next slice. The last element of the previous
slice is the first element of the next slice.

Slicing columns in reverse
The columns of a key are ordered in a Sorted Map structure. When using the get_slice to
select columns of a row key, the natural ordering of the columns can be leveraged. This recipe
shows how to reverse the ordering of the slice results.

Getting ready
This recipe requires the code from the previous recipe, Iterating all the columns of a large key.

How to do it...
1.	 Modify the program written in <hpc_build>/src/java/hpcas/c03/

IterateLargeKey.java by appending range.setReversed(true) to the code:
 SliceRange range = new SliceRange();
 range.setCount(3);
 range.setStart(new byte[0]);
 range.setFinish(new byte[0]);
 range.setReversed(true);

2.	 Run the application:
$ cf=cf33 ks=ks33 host=127.0.0.1 port=9160 ant
-DclassToRun=hpcas.c05.IterateLargeKey run

run:

 [java] sandy

 [java] chuck

 [java] bob

Chapter 3

69

 [java] ----

 [java] bob

 [java] anthony

 [java] albert

 [java] ----

How it works...
Reversing the order of result columns is useful in several instances. One such instance is
when it is desired to fetch the largest column. If the column is a number, it would be the
largest number. If the column was a text string, it would be the value that is alphabetically
last. If the column was a time stamp, it would be the newest data.

Batch mutations to improve insert
performance and code robustness

Batch mutations have several advantages over doing multiple insert operations. Larger
messages will result in less network overhead transmitting data between the client and
Cassandra. Code is cleaner as well. For example, if code is doing a series of operations,
multiple try-catch blocks with retry logic at every step will cause clutter. Instead, with batch
mutations a larger list of operations can be built up and submitted. If the mutations fail, it
is safe to submit the entire list again as mutations are idempotent due to the time stamp
associated with them.

How to do it...
1.	 Create <hpc_build>/src/hpcas/c05/BatchMutate.java:

package hpcas.c05;

import hpcas.c03.FramedConnWrapper;
import hpcas.c03.Util;
import java.util.*;
import org.apache.cassandra.thrift.*;

public class BatchMutate {
 public static void main(String[] args) throws Exception {

Application Programmer Interface

70

2.	 The batch mutation is a large, nested object. The top level map contains the key
(byte[]) to a map. The inner map uses a key (string) to represent the column family.
The value of the inner map is a list of mutations. An individual mutation can be a list
of columns to insert or delete:
 Map<byte[],Map<String,List<Mutation>>> mutations = new
 HashMap<byte[],Map<String,List<Mutation>>>();
 for (String key : new String[]{"ekey", "fkey", "gkey"}) {
 List<Mutation> mutationList = new ArrayList<Mutation>();
 for (int i = 0; i < 2; i++) {

3.	 One mutation is a column with a simple integer in the value side:
 Mutation xMut = new Mutation();
 Column x = new Column();
 x.setName(("x"+i).getBytes("UTF-8"));
 x.setTimestamp(System.currentTimeMillis() * 1000L);
 x.setValue(("" + i).getBytes("UTF-8"));
 ColumnOrSuperColumn xcol = new ColumnOrSuperColumn();
 xcol.setColumn(x);
 xMut.setColumn_or_supercolumn(xcol);

4.	 A second mutation is like the first, except the value is squared:
 Mutation yMut = new Mutation();
 Column y = new Column();
 y.setName(("y"+i).getBytes("UTF-8"));
 y.setTimestamp(System.currentTimeMillis() * 1000L);
 y.setValue(("" + (i * i)).getBytes("UTF-8"));
 ColumnOrSuperColumn ycol = new ColumnOrSuperColumn();
 ycol.setColumn(y);
 yMut.setColumn_or_supercolumn(ycol);

5.	 Add both mutations to the list of mutations:
 mutationList.add(yMut);
 mutationList.add(xMut);
 HashMap<String,List<Mutation>> mutationMap =
 new HashMap<String,List<Mutation>>();

6.	 Create a map with the column family name and the mutation list from the
previous step:
 mutationMap.put("cf33", mutationList);

7.	 Put the complete mutation map into the top level mutation object:
 mutations.put(key.getBytes("UTF-8"), mutationMap);
 }
 }

Chapter 3

71

 FramedConnWrapper fcw = new FramedConnWrapper
 (Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 fcw.getClient().set_keyspace(Util.envOrProp("ks"));
 long start = System.nanoTime();

8.	 Call the batch_mutate method to apply all the changes at once:
 fcw.getClient().batch_mutate
 (mutations, ConsistencyLevel.QUORUM);
 System.out.println("Time taken " +(System.nanoTime() -
start));
 fcw.close();
 }
}

9.	 Run the application:
$ cf=cf33 ks=ks33 host=127.0.0.1 port=9160 ant run
-DclassToRun=hpcas.c05.BatchMutate

run:

 [java] Time taken 59809657

10.	 Use the Cassandra cli to confirm the results:
$ ${HOME}/hpcas/apache-cassandra-0.7.0-beta2-1/bin/cassandra-cli

[default@unknown] connect localhost/9160

[default@unknown] use ks33

11.	 Authenticated to keyspace ks33:
[default@ks33] get cf33['ekey']

=> (column=7931, value=1, timestamp=1291477677622000)
=> (column=7930, value=0, timestamp=1291477677622000)
=> (column=7831, value=1, timestamp=1291477677622000)
=> (column=7830, value=0, timestamp=1291477677551000)
Returned 4 results.

How it works...
Batch mutations are more efficient then doing inserts individually. There are less network
round trips and less total data to transfer. Remember that each column has a time stamp.
Time stamps are what allow inserts in Cassandra to be idempotent; the update entry with
the largest time stamp is the final value of the column. Thus, if a batch insert fails partially,
it is safe to replay the entire mutation without the fear of reverting any data that may have
changed outside the mutation.

Application Programmer Interface

72

See also...
In Chapter 10, Libraries and Applications, the recipe Doing batch mutations with Hector
shows how the Hector high-level library makes mutations easier.

Using TTL to create columns with
self-deletion times

This process of range scanning with get_range_slices through data just to find data to
remove is intensive. It can lower your cache hit rate, and adds more load to the cluster. An
alternative to this is setting the time-to-live (TTL) property for a column. Once the time-to-live
has passed, the column will automatically be removed. This recipe shows how to use the
time-to-live property with a mock messaging application to automatically clear old messages.

How to do it...
1.	 Create <hpc_build>/src/hpcas/c03/TTLColumns.java with the

following content:
package hpcas.c03;

import hpcas.c03.FramedConnWrapper;
import hpcas.c03.Util;
import java.util.List;
import org.apache.cassandra.thrift.*;

public class TTLColumns {
 public static void main(String[] args) throws Exception {

2.	 The user will supply several parameters: who the message is to (message_to), the
name of the message (message_name), the message content (message_content),
and the time before the message expires (expire_seconds):
 Column x = new Column();
 x.setName((Util.envOrProp("message_name")).getBytes("UTF-8"));
 x.setTimestamp(System.currentTimeMillis() * 1000L);
 x.setValue(Util.envOrProp("message_content").
getBytes("UTF-8"));
 /*set the time-to-live in seconds before the message expires
and is deleted. */
 x.setTtl(Integer.parseInt(Util.envOrProp("expire_seconds")));
 FramedConnWrapper fcw = new FramedConnWrapper
 (Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));

Chapter 3

73

 fcw.open();
 fcw.getClient().set_keyspace("ks33");
 ColumnParent parent = new ColumnParent();
 parent.setColumn_family("cf33");
 fcw.getClient().insert(
 Util.envOrProp("message_to").getBytes("UTF-8")
 , parent, x, ConsistencyLevel.QUORUM);

 /* Use get_slice to return 30 columns for a specific key. This
will return all the
 messages for the key accept those that are past their ttl or
deleted. */

 SlicePredicate predicate = new SlicePredicate();
 SliceRange range = new SliceRange();
 range.setCount(30);
 range.setStart(new byte[0]);
 range.setFinish(new byte[0]);
 predicate.setSlice_range(range);
 List <ColumnOrSuperColumn> results = fcw.getClient().get_
slice(
 Util.envOrProp("message_to").getBytes("UTF-8")
 , parent, predicate, ConsistencyLevel.QUORUM);
 for (ColumnOrSuperColumn result: results){
 System.out.println
 ("Message name: "+new String(result.column.name));
 System.out.println
 ("Message value: "+new String(result.column.value));
 }
 fcw.close();
 }
}

3.	 Run the program several times. Each time, set a different message_name and
message_content. Each message is set with a 30 second TTL:
$ message_to=edward message_name=1st message_content="first
message" \

 expire_seconds=30 host=127.0.0.1 port=9160 ant run \

 -DclassToRun=hpcas.c05.TTLColumns

run:

 [java] Message name: 1st

 [java] Message value: first message

Application Programmer Interface

74

$ message_to=edward message_name=2nd message_content="second
message" \ expire_seconds=30 host=127.0.0.1 port=9160 ant run
-DclassToRun=hpcas.c05.TTLColumns

run:

 [java] Message name: 1st

 [java] Message value: first message

 [java] Message name: 2nd

 [java] Message value: second message

4.	 Use sleep or just wait before running the command a third time. By then, the first
message will have expired:
$ sleep 20

$ message_to=edward message_name=3rd \

 message_content="third message" expire_seconds=30 \

host=127.0.0.1 port=9160 ant run -DclassToRun=hpcas.c05.
TTLColumns

run:

 [java] Message name: 2nd

 [java] Message value: second message

 [java] Message name: 3rd

 [java] Message value: third message

How it works...
Once a TTL is set, a column past the expiration time will not show up in the results of any
get or get_slice request. TTLs use less space then storing the column twice and are more
efficient then having to range scan through data to find old entries. TTLs are commonly used
in caching use cases.

See also...
ff Using range scans to find and remove old data

ff Chapter 6, Schema Design, the recipe Using Cassandra for distributed caching

Working with secondary indexes
The primary ordering and sharding is done by the row key. This makes searching on the
value of a key very fast. Columns associated with a row key are sorted by their column name.
Secondary indexes allow searching on the values of the columns. This recipe shows how to
create and use secondary indexes.

Chapter 3

75

Getting ready
This recipe demonstrates secondary indexes with a limited CRM application. For a given entry,
the names of the customers, the states they live in, and their phone numbers will be stored.
We create an index on the state column.

[default@ks33] create keyspace ks33 with replication_factor=3;

[default@ks33] create column family customers with comparator=UTF8Type
and column_metadata=[

{column_name: customer_name, validation_class:UTF8Type}

,{column_name:state, validation_class:UTF8Type ,index_type:KEYS}];

How to do it...
1.	 Insert sample data into the customers column family. Notice two of the users live in

the state of New York:
[default@ks33] set customers['bobsmith']['state']='New York';

[default@ks33] set customers['bobsmith']['phone']='914-555-
5555';[default@ks33] set customers['peterjones']['state']='Texas';

[default@ks33] set customers['peterjones']['phone']='917-555-
5555';[default@ks33] set customers['saraarmstrong']['state']='New
York'; [default@ks33] set customers['saraarmstrong']
['phone']='914-555-5555';

2.	 The state column is using an equality index. Searches for an exact match state can
be done. Ask which users live in 'New York':
[default@ks33] get customers where state = 'New York';

RowKey: saraarmstrong

=> (column=phone, value=3931342d3535352d35353535,
timestamp=1291575939033000)

=> (column=state, value=New York, timestamp=1291575892195000)

RowKey: bobsmith

=> (column=phone, value=3931342d3535352d35353535,
timestamp=1291575717285000)

=> (column=state, value=New York, timestamp=1291575686951000)

2 Rows Returned.

Application Programmer Interface

76

How it works...
Secondary indexes allow for optimized searches on column values. Secondary indexes require
more disk space as they have to maintain another ordering for data. Cassandra also uses
more processing time managing and updating indexes. Secondary indexes are not atomic;
they are built and managed in the background.

See also...
Chapter 6, Schema Design, the recipe Developing secondary data orderings or indexes.

4
Performance Tuning

In this chapter, you will learn:

ff Choosing an operating system and distribution

ff Choosing a Java Virtual Machine

ff Using a dedicated commit log disk

ff Choosing a high performing RAID level

ff Boosting read performance with the Key Cache

ff Boosting read performance with the Row Cache

ff File system optimization for hard disk performance

ff Tuning concurrent readers and writers for throughput

ff Enabling memory-mapped disk modes

ff Tuning Memtables for write-heavy workloads

ff Setting compaction thresholds

ff Saving memory on 64 bit architectures with compressed pointers

ff Disabling Swap Memory for predictable performance

ff Stopping Cassandra from using SWAP without disabling it system-wide

ff Raising the open file limit to deal with many clients

ff Increasing performance by scaling up

ff Garbage collection tuning to avoid JVM pauses

ff Enabling Network Time Protocol on servers and clients

Performance Tuning

78

Introduction
Performance tuning involves optimizing configurations and finding bottlenecks. In this chapter,
we present recipes for Cassandra, Java, and system-level tuning.

Choosing an operating system and
distribution

The operating system affects software performance greatly. There are some practical
points that should affect your decision. This recipe shows the important topics to consider
before choosing.

How to do it...
Find an operating system and distribution that has:

ff A supported Java Virtual Machine

ff Java native architecture support

ff File system hard links

ff Package support for Cassandra

ff A large community of users and developers

How it works...
Cassandra runs on Java. Oracle's JVM supports Linux, Solaris, and Windows. Other JVM
implementations and ports exist for other operating systems. However, the licensing and
maturity of these other JVMs vary.

The Java Native Architecture is a component that allows an application to directly interact
with system libraries. Several features of Cassandra use this to avoid using swap, create
snapshot files, and optimize performance.

Cassandra has support for RPM and DEB package formats. These packages make it easy
to install and run Cassandra.

Chapter 4

79

There's more...
The de facto standard deployment of Cassandra is on 2.6 Linux Kernels. Popular distributions
include RedHat Enterprise Linux, CentOS, and Ubuntu. Other operating systems such as
Solaris, FreeBSD, or Windows do work, but are less often deployed in production. If you
employ a non-typical choice, you may encounter rare bugs or edge cases and are difficult
for others to reproduce.

Other performance recipes in this book assume CentOS 5,
a Linux 2.6 Operating systems distribution that is based on
Redhat Enterprise Linux.

Choosing a Java Virtual Machine
Cassandra is built using Java. Thus, choosing a version of Java is important to performance.
There are several different virtual machines that are compatible with the Java standard. This
recipe shows the important factors you should consider when choosing which version of Java
to install.

How to do it...
Select a JVM that has:

ff Java 1.6 compatibility

ff Low pause garbage collection

ff Operating system support

ff Hardware architecture support

ff Large user and developer community

There's more...
Cassandra requires at minimum a 1.6 compatible JVM. It should support your hardware
platform. 64 bit hardware is common and necessary to memory map data files. It should
have support for Java Native Architecture and low pause garbage collection.

The Java SE JVM is used for recipes throughout the book. Cassandra has specific code to
gather and log garbage collection statistics from the Oracle Java SE JVM. You can download
and install the Java SE JDK from http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

Performance Tuning

80

Licensing issues prevents distribution of the Oracle JVM in
most RPM repositories. As a result, Oracle offers OpenJDK:
http://openjdk.java.net/, which is GPLv2 licensed.

See also...
ff In this chapter, the recipe Saving memory on 64 bit architectures with

compressed pointers.

ff In this chapter, the recipe Garbage collection tuning to avoid JVM pauses.

Using a dedicated Commit Log disk
Write operations are done sequentially to a commit log on disk and modify a sorted structure
in memory called a Memtable. When thresholds are reached, a Memtable is flushed to disk
in a sorted format called an SSTable. After the flush, the Commit Log is no longer needed and
is deleted. The Commit Log is only read on startup to recover write operations that were never
flushed to disk.

Getting ready
For this recipe, your system would need a separate physical disk from your data disk. This disk
should be formatted as you would format a normal disk.

How to do it...
1.	 Use the df command to list mounted partitions on your system:

$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda2 130G 19G 105G 16% /
tmpfs 2.0G 18M 1.9G 1% /dev/shm
/dev/sda3 194M 74M 111M 40% /boot
/dev/sdb1 130G 2M 124G 1% /mnt/commitlog

2.	 Ensure the cassandra user has ownership of this directory and the directory has
appropriate file access permissions:
$ chown cassandra:cassandra /mnt/commitlog

$ chmod 755 /mnt/commitlog

Chapter 4

81

3.	 Edit the configuration file conf/cassandra.yaml to set where commit logs will
be stored:
CommitLogDirectory: /mnt/commitlog

4.	 Restart for this change to take effect.

When moving the commit log directory, make sure to
copy the files from the old directory to the new directory
before restarting.

How it works...
Having a separate Commit Log improves performance for applications with high levels of write
activity. It does this by isolating the disk traffic for Commit Log activity from the traffic used for
reads as well as flush Memtables and compact SSTables.

The Commit Log disk does not need to be large. It only needs to be large enough to hold the
Memtable data that is unflushed.

Commit logs have sync intervals and this does not block writes. The Commit Log directory and
underlying disk need to be fast enough to keep up with write traffic. The speed of this disk is
not an issue because the sequential write speed of even a single disk is normally sufficient.

See also...
ff In this chapter, the recipe Tuning Memtables for write-heavy workloads

ff In this chapter, the recipe Setting compaction thresholds

Choosing a high performing RAID level
Cassandra handles replication of data internally. Each Keyspace has a user configurable
Replication Factor. A Replication Factor of two will ensure data is written to two separate
nodes. Because Cassandra handles replication, disk systems can be optimized for more
performance versus redundancy. This recipe shows which RAID levels are commonly used
with Cassandra.

Getting ready
The fastest option for reads and writes is RAID-0, calling striping. A single disk failure in a
RAID-0 results in complete data loss for that node. This configuration allows 100 percent
of the storage capacity of the disks in the array.

Performance Tuning

82

RAID-1 typically uses two disks and mirrors data to both disks. This option does not speed up
writing, but reads can normally be striped. Because data is copied to both disks, the storage
capacity is 50 percent the total capacity of the disk.

RAID-5 requires at least three disks. It can survive a single disk failure However, a failed disk
will result in degraded performance. The parity information in this configuration reduces your
overall storage.

RAID-10 requires at least four disks. RAID-10 is a stripe and a mirror. It typically performs
better then RAID-5 in reads and writes and can survive multiple disk failures. You get 50
percent of the storage capacity of your disks using this RAID level.

Just a Bunch Of Disks (JBOD) can be used because Cassandra allows multiple data
directories. This configuration allows for 100 percent of disk utilization. However, it is
hard to balance out hotspots across the disks and is rarely deployed.

How to do it...
1.	 Have spare hardware available.

2.	 Consider the risk of disk failure and the downtime associated with one.

3.	 Consider the disk space lost to RAID redundancy.

How it works...
In a large enough cluster, failures are the norm not the exception. Having spare hardware is
always a good idea. In a hardware failure, the performance of a node may be degraded or it
might be entirely offline. For small clusters, the performance lost can be significant.

There's more...
While RAID cards offload processing, RAID can be done with software as well. With
the multiple options of RAID types, levels, and disks, having tools to determine which
configurations work the best are available.

Software v/s hardware RAID
Modern Linux distributions provide support for software RAID levels 0, 1, 5, and more.
Hardware RAID is provided by cards that offload CPU processing and perform better than
software RAID. RAID cards vary in cost, performance, and feature set. Read specifications
carefully because not all RAID cards support all RAID levels.

Chapter 4

83

Disk performance testing
Disk performance tools such as Bonnie++: http://www.coker.com.au/bonnie++/,
or IOZone: http://www.iozone.org/ can be used to test the performance of your
disk system.

See also...
In Chapter 12, Collecting and Analyzing Performance Statistics, the recipe Monitoring disk
utilization and having a performance baseline.

File system optimization for hard disk
performance

The file system for a device as well as the mount options chosen affect performance. Several
file system options exist, including (but not limited to) EXT, JFS, and XFS. The most commonly
deployed is EXT. Most modern distributions of Linux have support for EXT4, which has
impressive performance numbers and stability. This recipe will show how to format and
mount an EXT4 file system.

Getting ready
Make sure your system supports EXT4. Most modern Linux distributions do. A quick check is
to look for /sbin/mkfs.ext4 on your system.

How to do it...
1.	 Format a device, in this example /dev/sda1 as an ext4 file system:

$ mke2fs -t ext4 /dev/sda1

2.	 To configure your ext4 file system for the highest performance, with a small risk
to data integrity in the event of a failure, edit /etc/fstab enabling the following
mount options:
noatime,barriers=0,data=writeback,nobh

3.	 To configure your ext4 file system for strong performance, while making less data
integrity sacrifices, enable the following mount options:
noatime,barriers=1,data=journal,commit=30

4.	 You can apply mount options without having to unmount by using the remount
option. However, some changes might require a complete unmount and remount:
$ mount -o remount /var

Performance Tuning

84

How it works...
Noatime does not update inode information each time it is read. Since access time
information is not used by Cassandra and reads are frequent, this option should be used.

Barriers=0 disables write barriers. Write barriers enforce proper on-disk ordering of
journal commits, making volatile disk write caches safe to use, with some performance
penalty. If your disks are battery-backed in one way or another, disabling barriers may safely
improve performance.

The commit=x option syncs all data and metadata every 'X' seconds. The default commit
time is five seconds. Making this longer can increase performance. This option only applies
to journal mode.

With data=writeback, unlike the default ordered mode, the ordering of metadata and file
data writes are not preserved. In the event of a crash, old data can appear in files. Cassandra
data files are typically write once and written in a linear fashion. Thus, writeback may not
be as large of a problem as would be an application that edits files in place. This mode is
considered to have the best raw performance.

Boosting read performance with
the Key Cache

The Key Cache stores keys and their locations in each SStable in heap memory. Since keys
are typically small, you can store a large cache without using much RAM. This recipe shows
how to enable the Key Cache for a Column Family.

Using fixed size settings versus percentage

Key cache size can be set as an absolute value or a percentage
between 0 and 1. In most cases, you want to use an absolute size as
percentages grow with your data and change your memory profile.

Getting ready
Ensure the Cassandra service is not close to the memory limit by using nodetool info. This
value should be sampled over time because JVM garbage collection is a background process
on a separate thread.

$ bin/nodetool --host 127.0.0.1 --port 8080 info | grep Heap

Heap Memory (MB) : 5302.99 / 12261.00

Chapter 4

85

How to do it...
1.	 Set the Key Cache size for "Keyspace1 Standard1" to 200001 entries

per SSTable:
$ bin/nodetool --host 127.0.0.1 --port 8080 setcachecapacity
Keyspace1 Standard1 200001 0

Specifying cache size as an absolute value

The value can either be an absolute value or a double between 0
and 1 (inclusive on both ends) denoting what fraction should be
cached. Using a percentage is generally not suggested because
table growth results are increasing memory used. Use nodetool
cfstats to see the effectiveness of the Key Cache. Remember, the
cache hit rate may not be high right away. The larger the cache, the
longer it will take to warm up. Once the Key cache size reaches the
Key cache capacity, you should have a good idea of the hit rate.

$ bin/nodetool --host 127.0.0.1 --port 8080 cfstats

 Column Family: Standard1
 ...
 Key cache capacity: 200001
 Key cache size: 200001
 Key cache hit rate: 0.625

2.	 Make the changes permanent by updating the column family metadata with
the CLI:

$ <cassandra_home>/bin/cassandra-cli -h 127.0.0.1 -p 9160

Connected to: "Test Cluster" on 127.0.0.1/9160

[default@unknown] use Keyspace1;

Authenticated to keyspace: Keyspace1;

[default@football] update column family Standard1 with keys_
cached=200001;

91861a85-5e0f-11e0-a61f-e700f669bcfc

Waiting for schema agreement...

... schemas agree across the cluster

How it works
Each cache hit results in less disk activity. A high key cache hit ratio makes searches less
intensive, freeing resources for other operations.

Performance Tuning

86

There's more...
When using the Key Cache, set aside enough RAM to be used for the OS Virtual File System
cache. Heap memory controlled with the Xmx JVM option should only be a portion of your total
system memory. A ratio of half JVM to free memory is suggested as a good starting point. This
is suggested because key cache works well in tandem with the VFS cache, and for the VFS
cache to be effective, memory must be free for the Operating System to use.

Cassandra 0.8.X and a higher version has a setting
compaction_preheat_key_cache which defaults to true.
This setting migrates caches so that after compaction, the key
cache is not cold. Set this to false when using large key caches.

See also...
The next recipe, Boosting Read Performance with the Row Cache shows how to enable the
row cache that stores key and all associated columns.

In this chapter, the recipe for JVM tuning to avoid system pauses describes how Xmx memory
should typically be used with Key Cache.

In Chapter 12, the recipe Profiling the effectiveness of caches with cache graphs.

Boosting read performance with the
Row Cache

The Row Cache stores a key and all its associated columns in memory. Using the Row Cache
can save two or more seeks per request. The benefit of the Row Cache is that a request can
be served entirely from memory without accessing the disk. This can allow for a high rate of
low latency reads. This recipe shows how to enable the Row Cache.

How to do it...
1.	 Ensure the Cassandra service is not close to the memory limit by using nodetool

info. This value should be sampled over time because JVM garbage collection is a
background process on a separate thread:
$ bin/nodetool --host 127.0.0.1 --port 8080 info | grep Heap
Heap Memory (MB) : 5302.99 / 12261.00

2.	 Set the Row Cache size for Keyspace1 Standard1 to 200005 entries:
$ bin/nodetool -h 127.0.0.1 -p 8080 setcachecapacity Keyspace1
Standard1 0 200005

Chapter 4

87

This change only takes effect on the server you have specified. You
will have to run this command for each server.

3.	 Use nodetool cfstats to see the effectiveness of the Row Cache. Remember,
the cache hit rate will not be high right away. The larger the cache, the longer it will
take to 'warm' up. Once the Row Cache Size reaches the Row Cache Capacity, you
should have a good idea of the hit rate. Recent hit rate shows the value since the last
time the information was polled:
$ bin/nodetool --host 127.0.0.1 --port 8080 cfstats
 Column Family: Standard1
 ...
 Row cache capacity: 200005
 Row cache size: 200005
 Row cache hit rate: 0.6973947895791583

4.	 Make the change permanent on each node in the cluster by updating the Colum
Family. Meta Data using the command-line interface: $ <cassandra_home>/bin/
cassandra-cli -h 127.0.0.1 -p 9160:
Connected to: "Test Cluster" on 127.0.0.1/9160
[default@unknown] use Keyspace1;
Authenticated to keyspace: Keyspace1;
[default@football] update column family Standard1 with rows_
cached=200005;
91861a85-5e0f-11e0-a61f-e700f669bcfc
Waiting for schema agreement...
... schemas agree across the cluster

How it works...
The nodetool setcachecapacity command reconfigures the cache size on a single node
for testing. The nodetool cfstats is used to determine how effective the cache is. Once
the cache settings are optimal, the cassandra-cli can be used to change the column
metadata definitions across all nodes in the cluster.

There's more...
Row Cache requires more memory than the equivalent sized key cache. However, accessing
memory is significantly faster than accessing the hard disk even if the disk read is completely
from the VFS cache.

Performance Tuning

88

There are times where it can be problematic to use the Row Cache. One such situation is
when keys have a large number of associated columns. Another instance is when the values
inside columns are very large. Columns with a high write-to-read ratio are also not good
candidates for the Row Cache. These scenarios move a lot of data into and out of the heap
causing memory pressure. Also, sizing the cache can be difficult since the cache is based
on the number of items, not the size of the items.

Disabling Swap Memory for predictable
performance

Many users of Cassandra choose it for low latency read-and-write performance. Swap
Memory and Swapping presents a challenge to Java and Cassandra. Even if the operative
system is not low on memory, it may decide to swap parts of memory, called pages, to disk.
When these pages need to be accessed, they will have to be read in from a disk, which takes
significantly longer than if they were still in main memory. Swapping leads to unpredictable
performance. This recipe shows how to disable Swap Memory entirely.

How to do it...
1.	 Run the swapoff command as the root user:

$ swapoff -a

2.	 Edit the /etc/fstab file. Find any lines with swap in column two or three and place
a # character in the first column to comment them out:

#/dev/sda2 swap swap defaults 0 0

How it works...
The swapoff command disables all swap memory that may be currently in use. Editing the
/etc/fstab file ensures swap will not be reactivated on operating system startup.

See also...
The next recipe, Stopping Cassandra from using swap without disabling it system-wide to see
an alternative to turning off all swap memory.

Chapter 4

89

Stopping Cassandra from using swap
without disabling it system-wide

Disabling Swap Memory system-wide may not always be desirable. For example, if the system
is not dedicated to running Cassandra, other processes on the system may benefit from Swap
Memory. This recipe shows how to install the Java Native Architecture, which allows Java
to lock itself in memory making it inevitable.

Getting ready
You will need to have the Java Native Access (JNA) JAR found at https://jna.dev.java.
net/. For this recipe, Cassandra must run as the root user.

How to do it...
1.	 Place the jna.jar and platform.jar in the <cassandra_home>/lib directory:

$cp jna.jar platform.jar /tmp/hpcas/apache-cassandra-0.7.0-
beta1-10/lib

2.	 Enable memory_locking_policy in cassandra.yaml:
memory_locking_policy: required

3.	 Restart your Cassandra instance.

4.	 Confirm this configuration has taken effect by checking to see if a large portion
of memory is Unevictable:

$ grep Unevictable /proc/meminfo

Unevictable: 1024 Kb

Enabling Memory Mapped Disk modes
Cassandra has the capability to use Memory Mapped File IO. Memory mapped file IO is more
efficient for reading and writing than Standard IO.

Getting ready
Disable Swap before enabling Memory Mapped IO. Do this by following either the Disabling
Swap Memory for predictable performance or the Stopping Cassandra from using Swap
without disabling it system-wide recipes in this chapter.

Performance Tuning

90

How to do it...
1.	 Check if the operating system is 64 bit using the uname command:

$ uname -m

x86_64

2.	 Edit the <cassandra_home>/cassandra.yaml file and turn disk access mode
to mmap:

disk_access_mode: mmap

If the operating system is not 64 bit it cannot efficiently memory map large files.
However, it can memory map the smaller index files.
disk_access_mode: mmap_index_only

How it works...
Memory mapping makes disk access more efficient. However, the larger the data, index,
and bloom filter file, the more heap memory is required. The alternative to mmap and
mmap_index_only is standard, which uses direct IO.

Tuning Memtables for write-heavy workloads
Cassandra is designed so that all disk write operations are serial. Write operations are written
to a sorted structure in memory called a Memtable (and to a Commit Log only used to replay
writes on startup). When a Memtable reaches threshold criteria it is flushed to disk. The
criteria for flushing is listed below:

Variable Description
memtable_flush_after_mins The maximum time to leave a dirty memtable

unflushed (Default 60)
memtable_throughput_in_mb Size of the Memtable in memory before it is

flushed (Default 64)
memtable_operations_in_millions Number of objects in millions in the Memtable

before it is flushed (Default 0.3)

A flush writes the Memtable to its on-disk representation: a Sorted String Table (SSTable). A
background process called Compaction merges smaller SSTables together. This recipe shows
how to modify the Memtable settings so they will flush less often.

Chapter 4

91

How to do it...
Change the Memtable settings using the cassandra command-line interface:

$ <cassandra_home>/bin/cassandra-cli -h 127.0.0.1 -p 9160
Connected to: "Test Cluster" on 127.0.0.1/9160
[default@unknown] use Keyspace1;
Authenticated to keyspace: Keyspace1;
[default@football] update column family Standard1 with memtable_
operations=.5 and memtable_throughput=128 and memtable_flush_after=45;
91861a85-5e0f-11e0-a61f-e700f669bcfc
Waiting for schema agreement...
... schemas agree across the cluster

How it works...
Each column family has individual Memtable settings. Setting the flush settings larger causes
Memtables to flush less often. For workloads where the same column is repeatedly modified,
large Memtables will absorb multiple writes, thus saving writes to disk. Less flushing and
therefore less compacting should make the VFS Cache (Virtual File System Cache)
more effective.

There's more...
Larger Memtable settings result in more Heap Memory dedicated to Memtables. Consider
your settings carefully if you have many Column Families as each Column Family has its
own Memtable. When Cassandra is storing many column families, managing Memtables
settings on a per column family basis can be difficult. Cassandra 0.8.X has the knob
memtable_total_space_in_mb. When all memtables use more memory than this, value
with the largest memtable will be flushed.

See also...
In Chapter 12, Collecting and Analysing Performance Statistics, the recipe Using Memtable
graphs to profile when and why they flush.

Performance Tuning

92

Saving memory on 64 bit architectures with
compressed pointers

In the Java Virtual Machine, an Ordinary Object Pointer (OOP) is a managed pointer to
an object. An OOP is normally the same size as the machine pointer. When modern CPU
architectures moved from 32 bit to 64 bit, the result was a larger Java Heap Size due to
growth of pointer size. Compressed OOPs replaces some of the OOPs with managed pointers.
These compressed pointers result in smaller heap sizes. This recipe shows how to enable
compressed OOPs.

More detail on compressed pointers can be found at http://
download-llnw.oracle.com/javase/7/docs/
technotes/guides/vm/compressedOops.html.

Getting ready
This option may not be available on all JVMs. The Oracle JVM has supported this option since
version 1.6.0_14.

How to do it...
1.	 Edit the conf/cassandra-env.sh file by adding this line:

JVM_OPTS="$JVM_OPTS -XX:+UseCompressedOops"

2.	 Restart the Cassandra instance.

How it works...
Using less memory benefits the system overall as the system bus has less data to shuffle.
Less memory usage means more memory is available for use as Key Cache, Row Cache, and
Memtables. Each request allocates temporary objects, so better memory usage equates
to a higher theoretical maximum request rate.

Tuning concurrent readers and writers for
throughput

Cassandra is coded using staged event-driven architecture (SEDA). SEDA architectures address
the challenges of concurrent, multi-threaded applications by breaking the application into
stages. Each stage is an event queue. Messages enter a stage and an event handler is called.
This recipe will show you how to tune the Concurrent Reader and Concurrent Writer stages.

Chapter 4

93

How to do it...
1.	 Determine the number of CPU cores on your system:

$ cat /proc/cpu
...
processor : 15
siblings : 8
core id : 3
cpu cores : 4

Processors are numbered 0 to (X-1). In the example, we have 16 cores. It is common
to calculate the number of Concurrent Readers by taking the number of cores and
multiplying it by two. This can be set in cassandra.yaml:
ConcurrentReaders: 32

Concurrent Writers should be set equal to or higher then Concurrent Readers:
ConcurrentWriters: 48

You can change these values at runtime through JMX. Navigate to the org.apache.cassadra.
concurrent heading in the left pane. Locate ROW-READ-STAGE and select Attributes, and
change the CorePoolSize by entering in the textbox on the right.

Performance Tuning

94

How it works...
The Concurrent Readers and Concurrent Writers control the maximum number of threads
allocated to a particular stage. Reads are typically IO intensive. In cases where data size
exceeds main memory, this normally makes the disk the bottleneck for reads rather than
number of read threads. Writes or Row Mutations update a Memtable and a Commit Log.
Writes do not have to make in-place changes to data files. Thus, Cassandra supports high
write concurrency. Raising these values beyond the limits of your hardware causes more
contention and decreases performance.

Setting compaction thresholds
Cassandra does not do in-place writes or updates. Rather, it uses a log structured format.
Writes are done to Memtables, which are periodically flushed to disk as SSTables. As
a result of this approach, the number of SSTables grows over time.

Having multiple SSTables causes read operations to be less efficient as columns for an
associated key may be spread over multiple SSTables. Cassandra uses Compaction to merge
multiple SSTables into a single larger one. This recipe shows how to adjust two compaction
settings: MinCompactionThreshold and MaxCompactionThreshold.

How to do it...
1.	 Use nodetool to list the current compaction thresholds:

$ bin/nodetool -h 127.0.0.1 -p 8080 getcompactionthreshold

2.	 Current compaction threshold: Min=4, Max=32
3.	 Next, change the min compaction threshold to 5 and the max compaction threshold

to 30:
$ bin/nodetool -h 127.0.0.1 -p 8080 setcompactionthreshold 5 30

$ bin/nodetool -h 127.0.0.1 -p 8080 getcompactionthreshold

4.	 Current compaction threshold: Min=5, Max=30.

5.	 Update the column family metadata to make this change permanent across
the cluster:

$ <cassandra_home>/bin/cassandra-cli -h 127.0.0.1 -p 9160
[default@unknown] use Keyspace1;
Authenticated to keyspace: Keyspace1

update column family Standard1 with min_compaction_threshold=5 and
max_compaction_threshold=30;

a83a1706-5e18-11e0-a61f-e700f669bcfc

Waiting for schema agreement...

... schemas agree across the cluster

Chapter 4

95

How it works...
MinCompactionThreshold is the minimum number of like-sized SSTables that will be
compacted at a time. Raising MinCompactionThreshold causes compaction to happen
less often, but when it does, more tables are compacted.

MaxCompactionThreshold controls the maximum number of SSTables that exist before
a minor compaction is forced.

There's more...
Compaction thresholds are closely related to Memtable thresholds. Memtable settings affect
the size quantity of SSTables. Ensure the two are configured with respect to each other.
Cassandra 0.8.X and up has a setting compaction_throughput_mb_per_sec which
throttles the rate of compaction. The setting concurrent_compactors controls how many
compaction threads can run at once.

See also...
ff Disabling Compaction for bulk loads

ff In this chapter, the recipe Tuning Memtables for write-heavy workloads

Garbage collection tuning to avoid JVM
pauses

The JVM has a variety of options that drastically affect how it operates. For applications such
as SWING Graphical User Interface applications, periodic application Garbage Collections are
not a large issue. Server applications use large quantities of memory, perform rapid object
allocation/deallocation, and are very sensitive to JVM pauses. This recipe shows how to tune
JVM settings to limit (and hopefully remove) JVM pauses.

How to do it...
1.	 Ensure you have set MAX_HEAP_SIZE (-Xmx) in conf/cassandra-env.sh.

2.	 Determine how much physical memory your system has by searching through the
/proc/meminfo file:
$ grep MemTotal /proc/meminfo

MemTotal: 4012320 kB

Performance Tuning

96

A good starting point is to use half your free memory. Do not include swap in this
calculation since it is suggested to disable swap anyway.
MAX_HEAP_SIZE="2G"

3.	 Ensure these options are set in <cassandra_home>/conf/cassandra.env vs.
cassandra-env.sh:
JVM_OPTS="$JVM_OPTS -Xss128k"
JVM_OPTS="$JVM_OPTS -XX:+UseParNewGC"
JVM_OPTS="$JVM_OPTS -XX:+UseConcMarkSweepGC"
JVM_OPTS="$JVM_OPTS -XX:+CMSParallelRemarkEnabled"
JVM_OPTS="$JVM_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JVM_OPTS="$JVM_OPTS -XX:+UseCMSInitiatingOccupancyOnly"

4.	 Restart for these changes to take effect.

How it works...
The ConcurrentMarkSweep is a garbage collector designed to avoid stop-the-world pauses
in the JVM. It does this by using multiple threads to mark objects to be garbage collected in
parallel. CMSParallelRemarkEnabled lowers remarking pauses.

Concurrent Mark Sweep uses heuristics to decide when to start a concurrent collection.
The heuristics are not aggressive enough, especially under heavy load. Using the
UseCMSInitiatingOccupancyOnly option will result in CMS running concurrently as
soon as the Old Geneneration is CMSInitiatingOccupancyFraction percent full.

ParNewGC (or the parallel young generation collector) is important to Cassandra. Cassandra
allocates temporary objects during operation, and being able to process the young generation
quickly stops these objects from being promoted to the older generations.

There's more...
The JVM options in this recipe are a suggested starting point. Each workload may require
additional tuning.

Large memory systems
One situation where the standard advice does not apply is systems with large amounts of
memory. Because Java actively manages memory and garbage collections, large heaps
represent a challenge for the JVM. Heaps around 20 GB start to show diminishing returns.
In these situations you have some options:

ff Set a ceiling on Xmx around 16 GB and let the operating system VFS cache the rest

ff Run multiple instances of Cassandra per machine, but be sure to carefully assign
token ranges so that a range and its replicas are not served all from a single node.

Chapter 4

97

See also...
In Chapter 1, Getting Started the recipe Insight into Cassandra with JConsole shows how to
use JConsole to view Java memory usage.

There's more
The Garbage-First garbage collector (G1) is a next generation collector designed to work for
medium-to-large machines with large heaps. More information on the G1 garbage collector is
available at http://research.sun.com/jtech/pubs/04-g1-paper-ismm.pdf.

Raising the open file limit to deal with
many clients

Each client connection, as well as the connections between servers in the cluster, uses socket
resources. Each socket requires a file descriptor. Serving requests requires reading and
writing multiple files. The defaults for a Unix/Linux system limit the number of open files. This
recipe shows how to raise the open file limit to serve multiple connections under high load.

How to do it...
1.	 Edit /etc/security/limits.conf. The default limit for the number of files is

typically 1024. You can raise this to any power of 2:
* soft nofile 16384
* hard nofile 32768

2.	 Start a new shell and run the ulimit command:

$$ ulimit -a

core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 147456
max locked memory (kbytes, -l) 32
max memory size (kbytes, -m) unlimited
open files (-n) 16384
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 10240

Performance Tuning

98

cpu time (seconds, -t) unlimited
max user processes (-u) 147456
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

How it works...
The soft limit is a warning threshold. When the hard limit is reached, the system will deny the
process the ability to open more files. This results in exceptions that usually shutdown the
Cassandra process.

There's more...
You should raise your open files above the default. However, there are other ways to keep the
number of sockets low. Client should not be opening a socket per request. They should issue
multiple requests over the same connection or they should be using a Connection Pooling
implementation such as Hector.

Increasing performance by scaling up
Cassandra is designed to be scaled out by adding more nodes to the cluster. Scaling up is
done by enhancing each node.

How to do it...
Scale up by:

ff Adding more RAM

ff Bonding networking cards

ff Upgrading hard disks to SCSI or SSD

ff Growing the disk array

How it works...
Adding RAM is a simple way to scale out. RAM can be allocated to the Java heap to be
used for caches or Memtables. RAM not directly allocated to a process can be used by
the disk cache. VFS cache is very effective at speeding up disk access. Keep in mind that
motherboards have a limited number of slots, but higher density DIMMs are more expensive.

Network capacity can be upgraded. If your system has multiple network cards, they can be
bonded together to double their performance. Larger servers may even be able to utilize 10
gigabit Ethernet.

Chapter 4

99

Disk performance is an important factor for Cassandra. Faster seeking disks give better write
performance. SCSI systems will perform better than SATA. Solid State Drives (SSD) do not
have physical parts and can seek extremely quickly. However, they are still new and more
costly then spinning disks.

Enabling Network Time Protocol on servers
and clients

Network Time Protocol (NTP) is a distributed hierarchical system used to keep system clocks
in sync. Clients to Cassandra require NTP because clients need to set the timestamp filed
of an insert themselves. Servers running Cassandra require the correct time as well as they
need to correctly evaluate if the lifetime of a tombstone or time-to-live column has passed.
This recipe shows how to set up Network Time Protocol.

Getting ready
It is ideal to have one or two NTP servers locally (on the same subnet or in the same LAN
network) synchronizing to NTP server pools on the Internet. This is preferred over having
each server sync to the NTP server pools individually.

How to do it...
1.	 Install NTP using the system package manager:

$ yum install ntp

2.	 Review the configurations in /etc/ntp.conf. Remove the public servers and
replace with internal servers where appropriate:
server ntp1.mynetwork.pvt
server ntp2.mynetwork.pvt

The NTP service will not sync a clock that is drastically out of sync with the contacted
server. Use run ntpdate to initially synchronize.

$ ntpdate ntp1.mynetwork.pvt

3.	 Enable ntpd and ensure it starts on bootup:

$ /etc/init.d/ntpd start
$ chckconfig ntpd on

Performance Tuning

100

How it works...
The NTP Daemon runs continuously and sends messages to its configured NTP servers. It
uses the reply information as well as the calculated latency involved in transmitting that
data to adjust or "groom" the clock. Running NTP helps to stop clocks from drifting. This is
especially useful under high load where CPUs tend to drift more.

5
Consistency,

Availability, and
Partition Tolerance

with Cassandra

In this chapter, you will learn:

ff Working with the formula for strong consistency

ff Supplying the timestamp value with write requests

ff Disabling the hinted handoff mechanism

ff Adjusting read repair chance for less intensive data reads

ff Confirming schema agreement across a cluster

ff Adjusting replication factor to work with quorum

ff Using write consistency ONE, read consistency ONE for low latency operations

ff Using write consistency QUORUM, read consistency QUORUM for strong consistency

ff Mixing levels write consistency QUORUM, read consistency ONE

ff Choosing consistency over availability consistency ALL

ff Choosing availability over consistency with write consistency ANY

ff Demonstrating how consistency is not a lock or a transaction

Consistency, Availability, and Partition Tolerance with Cassandra

102

Introduction
Distributed systems such as Cassandra face challenges that single-system data stores do
not have to face. The CAP theorem describes distributed systems with respect to consistency,
availability, and partition tolerance. Achieving all three features simultaneously is impossible.
Distributed systems can at best achieve two out of three. Cassandra has a versatile data
model that allows the user to choose the aspects of CAP enforced per request.

Go to http://www.cs.berkeley.edu/~brewer/cs262b-2004/
PODC-keynote.pdf to learn more about the CAP theorem.

The recipes in this chapter require multiple Cassandra nodes to execute. In Chapter 1,
Getting Started, the recipe Scripting a multiple instance installation will quickly set up
the prerequisites.

Working with the formula for strong
consistency

Cassandra provides consistency when the read replica count (R) plus write replica count (W) is
greater than the replication factor (N).

R + W > N

Based on the replication factor and the number of live nodes, some consistency levels may
not be achievable. Cassandra allows users to submit consistency level per request, allowing
the user to trade-off between consistency, performance, and failed node tolerance.

Getting ready
The table describes the strength of consistency based on the levels chosen for read and
write operations.

Read.ONE Read.QUORUM Read.ALL
Write.ZERO* Weak Weak Weak
Write.ANY Weak Weak Weak
Write.ONE Weak Weak Strong
Write.QUORUM Weak Strong Strong
Write.ALL Strong Strong Strong

* Write.ZERO has been removed from Cassandra 0.7.X and up.

Chapter 5

103

How to do it...
1.	 Create a file <hpc_build>/src/hpcas/c05/StrongConsistency.java:

package hpcas.c05;
import org.apache.cassandra.thrift.*;

public class StrongConsistency {

 public static void main (String [] args) throws Exception{
 long start=System.currentTimeMillis();

Users of this application will specify a host and port to connect to Cassandra with.
The program also requires a value from the user that will be written to a column.

 String host = Util.envOrProp("host") ;
 String sport = Util.envOrProp("port");
 String colValue = Util.envOrProp("columnValue");
 if (host==null || sport==null ||colValue == null){
 System.out.println("Cassandra Fail: specify host port
columnValue");
 System.exit(1);
 }
 int port = Integer.parseInt(sport);
 FramedConnWrapper fcw = new FramedConnWrapper(host,port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();

2.	 Check if a keyspace named newKeyspace exists. If not, create it, and a column
family inside it named newCf. Set the replication factor to 5:
 if (!Util.listKeyspaces(client).contains("newKeyspace")) {

 KsDef newKs = Util.createSimpleKSandCF("newKeyspace",
 "newCf", 5);
 client.system_add_keyspace(newKs);
 Thread.sleep(2000); //wait for schema agreement
 }

 /*Setup a column to be inserted.*/

 client.set_keyspace("newKeyspace");
 ColumnParent cp= new ColumnParent();
 cp.setColumn_family("newCf");
 Column c = new Column();

Consistency, Availability, and Partition Tolerance with Cassandra

104

 c.setName("mycolumn".getBytes("UTF-8"));
 c.setValue(colValue.getBytes("UTF-8"));
 c.setTimestamp(System.currentTimeMillis()*1000L);
 try {

3.	 Insert at ConstistencyLevel.ALL. With the replication factor defined
previously as 5, all five nodes in the cluster must be up for this write to succeed
without exception:
 client.insert ("test".getBytes(), cp, c,
ConsistencyLevel.ALL);
 } catch (UnavailableException ex){
 System.err.println("Ensure all nodes are up");
 ex.printStackTrace();
 } try {
 fcw.close();
 }
 long end=System.currentTimeMillis();
 System.out.println("Time taken " + (end-start));
 }
}

Down a node in our cluster by killing it, and use nodetool to confirm its status.
$ bin/nodetool -h 127.0.0.1 -p 8080 ring | grep Down
127.0.0.17 Down Normal 25.81 KB

4.	 Run the application:
$ host=127.0.0.1 port=9160 columnValue=testme ant
-DclassToRun=hpcas.c03.StrongConsistency run
run:
 [java] Ensure all nodes are up
 [java] UnavailableException()
 [java] Time taken 305

5.	 Start up the down node and run the application again:

$ host=127.0.0.1 port=9160 columnValue=insertmeto ant
-DclassToRun=hpcas.c03.StrongConsistency run
run:

 [java] Time taken 274

Chapter 5

105

How it works...
First, the program detects if the required keyspace and column family exists. If they do not
exist they will be created. The replication factor of this keyspace is set to five, so the write
must succeed on five nodes, otherwise an exception will be returned to the user.

All of the needed parameters except for the colVal are specified by the users at the start
of the program. The write operation will either succeed and continue to the next line in the
program or take the exception branch if a problem arises.

See also...
ff In Chapter 8, Multiple Datacenter Deployment, several recipes focus on other

consistency levels.

ff Consistency is not a substitute for transaction processing. In Chapter 3, Application
Programmer Interface we should know how to use transactional style locking
using Cages.

Supplying the timestamp value with write
requests

Each column has a user-supplied timestamp. When two columns for a row key have the same
name, the timestamps of the columns are compared and the value of the column with the
highest timestamp is the final value. This recipe shows how to set the timestamp of a column.

How to do it...
Create a column, calculate the current time, multiply by 1,000, and then pass the result to the
setTimestamp method.

Column c = new Column();
c.setName("mycolumn".getBytes("UTF-8"));
c.setValue(colValue.getBytes("UTF-8"));
c.setTimestamp(System.currentTimeMillis()*1000L);

How it works...
The timestamp is used to enforce the idempotent behavior of a column. The column with the
highest timestamp is the final value. This is useful in situations where a write operation may
be received out of order. A column with a smaller timestamp will not overwrite a column with
a larger timestamp.

Consistency, Availability, and Partition Tolerance with Cassandra

106

There's more...
The timestamp column does not have to be a numeric representation of a date and time. It is
a 64 bit integer that is used to resolve conflicts, and the user is free to choose any value. Using
microsecond precision is suggested. Other options are incrementing the previous value or use
an auto-increment value from another source. Remember that a delete operation creates a
tombstone that will need to have a higher timestamp than the current data to remove it.

Disabling the hinted handoff mechanism
Cassandra determines which nodes data should be written to using the row key (and the
replication factor, partition, strategy, and options). If a node that should receive a write is
down, a hint is written to another node. When the downed node comes back online, the
hints are redelivered to it. Hinted handoff is designed for dealing with temporary outages.
Long-term outages can be a problem as storing hints on other nodes can begin to negatively
impact their performance. This recipe shows how to disable hinted handoff.

Hinted handoff writes do not count towards the strong consistency
calculation discussed in the section Working with the formula for
strong consistency.

How to do it...
Open <cassandra_home>/conf/cassandra.yaml in a text editor and set the
hinted_handoff_enabled variable to false:

hinted_handoff_enabled: false

How it works...
With hinted handoff disabled, hints will not be stored. If there are failures, data could remain
out of sync until it is repaired either with anti-entropy repair or read repair. This could result in
stale reads depending on the read consistency level chosen, especially when using Read.ONE.

There's more...
When hinted handoff is enabled, two variables fine-tune how it operates:

ff max_hint_window_in_ms

The option max_hint_window_in_ms describes how long a downed node should
have hints accumulated for it. This is used to ensure that a node that is down for
extended periods of time will not cause other nodes to store hints indefinitely.

Chapter 5

107

ff hinted_handoff_throttle_delay_in_ms

This option adds small delays in between each hinted handoff row that is delivered.
This is helpful in two ways: first, the revived node is not overloaded with a burst of
hinted handoff messages. Secondly, the sending node does not consume a large
amount of resources trying to deliver the hinted messages.

Adjusting read repair chance for less
intensive data reads

Read consistency levels QUORUM and ALL are always synchronized before data is
returned to the client. Data read at consistency level ONE uses a different code path. As
soon as a natural endpoint finds data, it is returned to the client. In the background, a read
repair can be initiated. Read repair keeps data consistent by comparing and updating the
data across all the replicas. Each column family has a read_repair_chance property
that controls the chance of a read repair being triggered. This recipe shows how to adjust
read_repair_chance for better performance.

Getting ready
A quick way to set read repair chance is by using the CLI.

update column family XXX with read_repair_chance=.5

The following recipe manipulates the value using a program to demonstrate the functionality
in the API.

How to do it...
1.	 Create a Java program in the project directory <hpc_build>/src/hpcas/c05/

ChangeReadRepairChance.java:
package hpcas.c05;

import org.apache.cassandra.thrift.*;

public class ChangeReadRepairChance {

 public static void main(String[] args) throws Exception {
 String host = Util.envOrProp("host");
 String sport = Util.envOrProp("port");
 String ksname = Util.envOrProp("ks");
 String cfname = Util.envOrProp("cf");

Consistency, Availability, and Partition Tolerance with Cassandra

108

 String chance = Util.envOrProp("chance");

 /*Ensure that read repair chance is between 0 and 1
inclusive.*/
 double chan = Double.parseDouble(chance);
 if (chan >1.0D || chan <0.0D){
 System.out.println("Chance must be >= 0 and <= 1");
 System.exit(2);
 }
 int port = Integer.parseInt(sport);
 FramedConnWrapper fcw = new FramedConnWrapper(host, port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();

2.	 Use the describe_keyspace method to find a keyspace by the user-specified
name. Each keyspace has a list of CfDef, or column family definition, objects.
Iterate the list looking for the user-specified column family:

 KsDef ks = client.describe_keyspace(ksname);
 for (CfDef cf: ks.cf_defs){
 if (cf.getName().equals(cfname)){
 System.out.println("Current Read repair chance"
 + cf.getRead_repair_chance());

3.	 Set the client to the keyspace in which the column family is a part of. Update
the CfDef and use the system_update_column_family method to modify
the schema:
 if (chan!=cf.getRead_repair_chance()){
 cf.setRead_repair_chance(chan);
 client.set_keyspace(ksname);
 client.system_update_column_family(cf);
 System.out.println("set Read repair chance to "+chan);
 }
 }
 }
 fcw.close();
 }

}

4.	 Start the application passing it the required environment variables, including the
keyspace, column family, and the chance:

$ host=127.0.0.1 port=9160 ks=ks33 cf=cf33 chance=0.5 \
ant -DclassToRun=hpcas.c03.ChangeReadRepairChance run
run:
 [java] Current Read repair chance 0.4
 [java] set Read repair chance to 0.5

Chapter 5

109

How it works...
Lowering read_repair_chance will result in less read traffic across the cluster. Setting
it to 0.0 and using read consistency level ONE will reduce the reads across the cluster by
1/replication factor. If data is requested multiple times, the savings are cumulative.

There's more...
Setting read_repair_chance to 0.0 can be problematic as data will stay out of sync
until it is written again or anti-entropy repair is run. Disabling read_repair_chance and
hinted handoff greatly increases the risk of data being out of sync. Use a percentage that
is appropriate for your requirements.

See also...
In this chapter, the recipe Disabling hinted handoff.

Confirming schema agreement across
the cluster

Cassandra is a peer-to-peer distributed system and schema changes will propagate quickly,
but not instantly, to all nodes. This recipe shows how to check that all nodes are at the same
schema level. This is helpful for applications that need to create keyspaces and column
families and write to them once they are available on all nodes.

How to do it...
1.	 Create a file <hpc_build>hpcas/c05/ConfirmSchemaAgreement.java:

package hpcas.c05;
import java.util.*;
import org.apache.cassandra.thrift.Cassandra;

public class ConfirmSchemaAgreement {

 public static void main(String[] args) throws Exception {
 String host = Util.envOrProp("host");
 String sport = Util.envOrProp("port");
 if (host == null || sport == null) {
 System.out.println("Cassandra Fail: specify host port");
 System.exit(1);
 }

Consistency, Availability, and Partition Tolerance with Cassandra

110

 int port = Integer.parseInt(sport);
 FramedConnWrapper fcw = new FramedConnWrapper(host, port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();

2.	 Call describe_schema_versions() and save the returned map. This map is a list
of the schema ID, and a list of all nodes that are using that ID. Two nested loops are
used to display all the information inside this structure:
 Map<String,List<String>> sv =client.describe_schema_
versions();
 for (Map.Entry<String,List<String>> mapEntry: sv.entrySet()){
 System.out.println("key:"+mapEntry.getKey());
 for (String listForKey : mapEntry.getValue()){
 System.out.println("\t"+listForKey);
 }

 }

If the numbers of keys in the map is greater than one, two versions of the schema are
currently present in the cluster and the changes are not completely propagated.

 if (sv.size()>1) {
 System.out.println("Schemas are not in agreement on all
nodes.");
 } else {
 System.out.println("Schemas are in agreement for all
nodes");
 }
 fcw.close();
 }

}

3.	 Run the application:

$ host=127.0.0.1 port=9160 ant -DclassToRun=hpcas.c03.
ConfirmSchemaAgreement run
run:
 [java] key:c3f38ebc-e1c5-11df-95a0-e700f669bcfc
 [java] 127.0.0.2
 [java] 127.0.0.3
 [java] 127.0.0.4
 [java] 127.0.0.5
 [java] 127.0.0.1
 [java] Schema is in agreement for all nodes

Chapter 5

111

How it works...
Each time a schema changing operation is issued, an ID is calculated. The describe_
schema_versions method returns the schema ID for each cluster node. If only one key in
the schema map exists, all nodes in the cluster are at the same schema version.

There's more...
A schema change has to propagate to every node in the cluster. To avoid issues, it is best
not to make too many rapid schema changes or make changes when nodes in the cluster
are down.

Adjusting replication factor to work with
quorum

A quorum is the number of nodes that need to be in agreement to reach a consensus. The
formula to determine the nodes needed for a quorum is:

NodesNeededForQuorum = ReplicationFactor / 2 + 1

When using a replication factor of one, data only exists on a single node and it is always
consistent, but not redundant. When using a replication factor of two or higher, operations at
level quorum are used to achieve consistency. This recipe shows how to create keyspaces at
different replication levels and how quorum operations work at different replication levels.

How to do it...
Writing an application that inserts ten columns using quorum.

1.	 Create a file <hpc_build>/src/hpcas/c05/ShowQuorum.java:
package hpcas.c05;
import org.apache.cassandra.thrift.*;

public class ShowQuorum {
 public static void main(String[] args) throws Exception {

2.	 Collect five mandatory values from the user. Host and port are required to connect
to the cluster. ksname, cfname, and replication allows the user to specify the
column family that will be created and written to:
 String host = Util.envOrProp("host");
 String sport = Util.envOrProp("port");
 String ksname = Util.envOrProp("ks");
 String cfname = Util.envOrProp("cf");

Consistency, Availability, and Partition Tolerance with Cassandra

112

 String replication = Util.envOrProp("replication");
 if (host == null || sport == null || ksname == null
 || cfname == null || replication == null) {
 System.out.println("Cassandra Fail: specify host port ksname
cfname");
 System.exit(1);
 }
 int rep = Integer.parseInt(replication);
 int port = Integer.parseInt(sport);
 FramedConnWrapper fcw = new FramedConnWrapper(host, port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();

 /*Use the listKeyspaces() to determine if the column family
already exists. If the
 target does not exist create it. */
 if (!Util.listKeyspaces(client).contains(ksname)) {
 KsDef newKs = Util.createSimpleKSandCF(ksname, cfname, rep);
 client.system_add_keyspace(newKs);
 Thread.sleep(3000);
 }

 /*Set up the object to be inserted. */
 ColumnParent cp = new ColumnParent();
 client.set_keyspace(ksname);
 cp.setColumn_family(cfname);
 Column c = new Column();
 c.setTimestamp(System.currentTimeMillis());

 /* Declare two accumulators to record how many inserts pass
and fail. */
 int k2pass = 0;
 int k2fail = 0;
 for (int i = 0; i < 10; ++i) {
 byte[] data = (i + "").getBytes("UTF-8");
 c.setName(data);
 c.setValue(data);
 try {
 client.insert(data, cp, c, ConsistencyLevel.QUORUM);
 k2pass++;
 /* Trap likely exceptions and increment the failure counter
if they happen */
 } catch (TimedOutException ex) {
 System.out.println(ex);
 k2fail++;
 } catch (UnavailableException ex) {
 System.out.println(ex); k2fail++;
 }

Chapter 5

113

 }
 System.out.println("inserts ok:" + k2pass);
 System.out.println("inserts fail:" + k2fail);
 }

}

3.	 Assure all nodes in the cluster are UP. Run the application supplying a keyspace
name of ks22, a column family named cf22, and a replication factor of two:
$ host=127.0.0.1 port=9160 ks=ks22 cf=cf22 replication=2 ant
-DclassToRun=hpcas.c03.ShowQuorum run:
run:
 [java] inserts ok:10

 [java] inserts fail:0

4.	 Again, run the application with a keyspace name of ks33 and a column family name
of cf33 with a replication factor of 3:
$ host=127.0.0.1 port=9160 ks=ks33 cf=cf33 replication=3 \
ant -DclassToRun=hpcas.c03.ShowQuorum run
run:
 [java] inserts ok:10

 [java] inserts fail:0

5.	 Stop one of the nodes and confirm it is down using nodetool:
$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring | grep
Down

127.0.0.5 Down Normal

6.	 Run the programs again:

$ host=127.0.0.1 port=9160 ks=ks22 cf=cf22 replication=2 \
ant -DclassToRun=hpcas.c03.ShowQuorum run
run:
 [java] inserts ok:9
 [java] inserts fail:1

$ host=127.0.0.1 port=9160 ks=ks33 cf=cf33 replication=3 \
ant -DclassToRun=hpcas.c03.ShowQuorum run
run:
 [java] inserts ok:10

 [java] inserts fail:0

Consistency, Availability, and Partition Tolerance with Cassandra

114

How it works...
With a replication factor of three, consistency level QUORUM requires two of its three natural
endpoints UP for an operation not to throw an UnavailableException. Additionally, the
operation can throw a TimedOutException if the nodes are UP according to cluster gossip,
but do not respond in a timely fashion.

When replication factor is two, QUORUM is equal to ALL. This is because QUORUM requires a
majority. This majority is only possible with replication factor of two when both nodes are UP.

See also...
Using write consistency QUORUM, read consistency QUROUM for strong consistency recipe in
this chapter to see the performance characteristics with using QUORUM.

Using write consistency ONE, read
consistency ONE for low latency operations

Consistency level ONE is the lowest latency consistency level available for clients to read and
write with. It is low latency because the operation is acknowledgment to the client by only one
of the natural endpoints for the data. This recipe shows how to use consistency level ONE, and
what the CAP trade-offs are for using this level.

How to do it...
1.	 Refer to the getLevel(String) method of <hpc_build>/src/hpcas/c03/

Util.java. This will be used to map user-supplied strings to their associated
Java enum:
 public static ConsistencyLevel getLevel(String read) {
 return ConsistencyLevel.valueOf(read);

 }

2.	 Create <hpc_build>src/hpcas/c05/ConsistencyPerformanceTester.java:
package hpcas.c03;

import java.util.*;
import org.apache.cassandra.thrift.*;

public class ConsistencyPerformanceTester {

 public static void main(String[] args) throws Exception {
 String readLevel = Util.envOrProp("readLevel");

Chapter 5

115

 String writeLevel = Util.envOrProp("writeLevel");
 String hostList = Util.envOrProp("hostList");
 String sport = Util.envOrProp("port");
 int inserts = Integer.parseInt(Util.envOrProp("inserts"));
 boolean retryRead = (Util.envOrProp("retryRead") != null) ;
 if (readLevel == null || writeLevel == null || hostList ==
null
 || sport == null) {
 System.out.println("Params: readLevel writeLevel hostList
port inserts ");
 System.exit(1);

 }

This application connects to multiple cluster nodes. Users will supply a host list and
internally the application will open a connection to each.

 List<String> nodes = Arrays.asList(hostList.split(","));
 List<FramedConnWrapper> clients = new
ArrayList<FramedConnWrapper>();
 for (String node : nodes) {
 FramedConnWrapper fcw = new FramedConnWrapper(node,
 Integer.parseInt(sport));
 fcw.open();
 fcw.getClient().set_keyspace(Util.envOrProp("ks"));
 clients.add(fcw);
 }
 ColumnParent parent = new ColumnParent();
 parent.setColumn_family(Util.envOrProp("cf"));
 ColumnPath path = new ColumnPath();
 path.setColumn_family(Util.envOrProp("cf"));
 path.setColumn("acol".getBytes("UTF-8"));

 /*Declare two accumulators to keep track get requests that
return no data.*/
 int notFoundCount = 0;
 int notFoundCount2 = 0;
 Random generator = new Random();
 long startTime = System.nanoTime();
 for (int j = 0; j < inserts; j++) {
 byte[] key = (generator.nextInt() + "").getBytes("UTF-8");
 Column dat = new Column();
 dat.setTimestamp(System.currentTimeMillis());
 dat.setName("acol".getBytes("UTF-8"));
 dat.setValue(key);

Consistency, Availability, and Partition Tolerance with Cassandra

116

3.	 Connect to the first node to insert the data. Inserts can be done to any node in
the cluster as the request will be proxied to its proper destinations. Then, use a
random number generator to select a random node from the pool and attempt to
read the key that was just written. If the column has not reached the node yet, a
NotFoundException is thrown:
 clients.get(0).getClient().insert(key, parent, dat, Util.
getLevel(writeLevel));
 try {
 clients.get(generator.nextInt(nodes.size() - 1) + 1)
 .getClient().get(key, path, Util.
getLevel(readLevel));
 } catch (NotFoundException nfe) {
 notFoundCount++;
 if (retryRead){
 try {
 clients.get(generator.nextInt(nodes.size() - 1)+1)
 .getClient().get(key, path, Util.
getLevel(readLevel));
 } catch (NotFoundException nfe2) {
 Thread.sleep(10);
 notFoundCount2++;
 }
 }
 }

 }

4.	 Calculate the time of the program run using the System.nanoTime() method.
Then, display the counters collected during the run of the program:
 long end = System.nanoTime()-startTime;
 System.out.println("insertCount:" + inserts + "
NotFoundCount:"
 + notFoundCount+" NotFoundCount2: "+notFoundCount2
 + " nanos:"+end);

 /*Close up all connections to the cluster by iterating the
list of connections .*/

 for (FramedConnWrapper client : clients) {
 client.close();
 }
 }
}

Chapter 5

117

5.	 Run the application doing 10,000 inserts at write consistency ONE and read
consistency ONE:
$ hostList=127.0.0.1,127.0.0.2,127.0.0.3,127.0.0.4,127.0.0.5
port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=ONE writeLevel=ONE \
ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:117 NotFoundCount2: 0
nanos:18638128979

6.	 Retry the application, this time specifying the retryRead environment variable:

$ hostList=127.0.0.1,127.0.0.2,127.0.0.3,127.0.0.4,127.0.0.5
port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=one writeLevel=ONE
retryRead=yes \
ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:86 NotFoundCount2: 3
nanos:20087524941

How it works...
This application shows that using consistency level ONE for write and read operations results
in eventual consistency. Because ONE has the lowest consistency guarantee, in the first run
of the application, 117 of the inserts had not propagated to the other replicas before a get
request for that data was issued. In the next run with the retryRead option enabled, only
three keys were not found. The data would eventually arrive at the destination, but there is
no guarantee how long it will take.

The following diagram illustrates a client reading from a node before a write has propagated
to it:

Consistency, Availability, and Partition Tolerance with Cassandra

118

There's more...
Historically, there have been several misconceptions around eventual consistency. It is
important to understand that "eventual" can be small deltas in time. From the output above,
using Cassandra at the weakest level only caused a stale read 117/100000 times in a
contrived scenario designed to detect it. The term tunable consistency is often used to
describe Cassandra as the consistency is chosen on a per request basis.

Using write consistency QUORUM, read
consistency QUORUM for strong consistency

Writing and reading at QUORUM level allows strong consistency. When combined with a
replication factor of three or higher, QUORUM operations still succeed even when some of the
nodes are down. Using quorum is favored in many cases because it brings consistency, good
performance, and failure tolerance. This recipe demonstrates the features of QUORUM.

Getting ready
This recipe requires the application from the last recipe: Using write consistency ONE, read
consistency ONE for low latency operations. This requires a keyspace and a column family
to work with.

How to do it...
1.	 Create a list of all hosts in the cluster. Set readLevel and writeLevel to QUORUM

and run the ConsistencyPerformanceTester application:
$ hostList=127.0.0.1,127.0.0.2,127.0.0.3,127.0.0.4,127.0.0.5
port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=QUORUM writeLevel=QUORUM \
ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:0 NotFoundCount2: 0
nanos:24894699808

2.	 Down a node and confirm it is down using nodetool:
$ <casandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 ring | grep
Down
127.0.0.3 Down Normal 69.83 KB

3.	 Take the downed host out of the hostList and run the application again:
$ hostList=127.0.0.1,127.0.0.2,127.0.0.4,127.0.0.5 port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=QUORUM writeLevel=QUORUM \

Chapter 5

119

ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:0 NotFoundCount2: 0
nanos:25773869616

How it works...
When reading and writing at QUORUM data, consistency is strong. Using this combination,
the NotFoundCount counter should always be 0 unless enough nodes in your cluster are
down that a quorum cannot be achieved. While reading at QUORUM, clients are blocked until
a majority confirms the data is consistent. This means the read time is longer than that of
reading at ONE.

The following diagram illustrates how reading and writing at QUORUM ensures clients always
have a consistent view of data:

Mixing levels write consistency QUORUM,
read consistency ONE

Since the read operations are typically more intensive than write operations, read-heavy
applications try to optimize reads in any way possible. This recipe shows performance
advantages and the consistency trade-off for this combination of quorum levels.

Trading off consistency for performance may not be an acceptable solution. Consider other
techniques for enhancing performance before giving up on consistency.

Consistency, Availability, and Partition Tolerance with Cassandra

120

Getting ready
Complete the code in the recipe Using write consistency ONE, read consistency ONE for low
latency operations.

How to do it...
Run the ConsistencyPerformanceTester application, using a readLevel of ONE and
a writeLevel of QUORUM:

$ hostList=127.0.0.1,127.0.0.2,127.0.0.4,127.0.0.5,127.0.0.3 port=9160 \

ks=ks33 cf=cf33 inserts=10000 readLevel=ONE writeLevel=QUORUM \

ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run

run:

 [java] insertCount:10000 NotFoundCount:64 NotFoundCount2: 0
nanos:21594606710

How it works...
Read operations are more intensive than write operations especially as the data per node
increases. The run of the program shows the performance of this combination is strong.
However, due to eventual consistency, this combination can result in stale reads if data is
read from a natural endpoint quickly before the write was replicated to it. Since QUORUM
acknowledges the write on two nodes, the NotFoundCount would be lower than if the
data was written at ONE.

Choosing consistency over availability
consistency ALL

Using the consistency level ALL always has strong consistency regardless of what other level it
is paired with, with one important exception: writing at ANY and reading at ALL is not strongly
consistent. This recipe uses the ALL level and demonstrates trade-offs.

How to do it...
1.	 Run the ConstistencyPerformanceTester with the writeLevel of ALL and

the readLevel of ONE:
$ hostList=127.0.0.1,127.0.0.2,127.0.0.4,127.0.0.5,127.0.0.3
port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=ONE writeLevel=ALL \

Chapter 5

121

ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:0 NotFoundCount2: 0
nanos:20558351612

2.	 Remove the downed node from the host list and run the application again:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 ring | grep
Down
 127.0.0.3 Down Normal 10.25 MB
$ hostList=127.0.0.1,127.0.0.2,127.0.0.4,127.0.0.5 port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=ONE writeLevel=ALL \
ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:8727 NotFoundCount2: 0
nanos:10301708949 exceptions 8727

How it works...
The drawback of using ALL is any node failure will cause operations involving that node to
fail. Failures will return an UnavailableException or TimedOutException to the client.
From the example, the high exceptions count shows many writes fail when even a single node
is down. This example shows how rigid ALL is. Normal operation cannot continue even with a
single node being down.

Choosing availability over consistency with
write consistency ANY

Some use cases may wish for Cassandra to accept writes even if all the natural endpoint
nodes are down. Cassandra has a consistency level that can be only used for write operations
called ANY. When using ANY, the write is delivered to any node in the cluster to be redelivered
later via the hinted handoff mechanism. This recipe shows how to use the ANY level.

How to do it...
1.	 Ensure one or more cluster nodes are down:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 ring | grep
Down
127.0.0.3 Down Normal 10.25 MB
127.0.0.5 Down Normal 487.03 KB

Consistency, Availability, and Partition Tolerance with Cassandra

122

2.	 Take the downed host out of the host list and set the writeLevel to ANY and run
the ConsistencyPerformanceTester:
$ hostList=127.0.0.1,127.0.0.2,127.0.0.4 port=9160 \
ks=ks33 cf=cf33 inserts=10000 readLevel=ONE writeLevel=ANY \
ant -DclassToRun=hpcas.c03.ConsistencyPerformanceTester run
run:
 [java] insertCount:10000 NotFoundCount:271 NotFoundCount2: 0
nanos:12797227510 exceptions:0

3.	 Using nodetool, look for a node with Active or Pending tasks in the
HINTED_POOL stage:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 tpstats |
grep HINTED
 Active Pending Total

HINTED_POOL 1 3 9

How it works...
The ANY consistency level will always accept write operations. The number of
NotFoundCount events shows that the consistency is unpredictable when using this level for
writing regardless of the level used for reading. This level is best used for applications that do
not want to miss write operations, do not care about the consistency of data, and do not care
about delivery delays.

Demonstrating how consistency is not a
lock or a transaction

Consistency is not equivalent to a transaction or locking. The classic way to illustrate this
functionality is with a counter that needs to be manipulated by multiple threads at once.
This recipe demonstrates how Cassandra works in these scenarios.

How to do it...
1.	 Create <hpc_build>src/java/hpcas/c05/ShowConcurrency.java:

package hpcas.c05;
import hpcas.c03.*;
import java.util.*;
import org.apache.cassandra.thrift.*;
public class ShowConcurrency implements Runnable {
 String host;
 int port;
 int inserts;

Chapter 5

123

 public ShowConcurrency(String host, int port, int inserts) {
 this.host = host;
 this.port = port;
 this.inserts = inserts;
 }

 /*getValue() reads a number from a specific key and column. */
 public static int getValue(Cassandra.Client client) throws
Exception {
 client.set_keyspace("ks33");
 ColumnPath cp = new ColumnPath();
 cp.setColumn_family("cf33");
 cp.setColumn("count_col".getBytes("UTF-8"));
 ColumnOrSuperColumn col = client.get("count_key".
getBytes("UTF-8"), cp, ConsistencyLevel.QUORUM);
 int x = Integer.parseInt(new String(col.column.getValue()));
 System.out.println("read " + x);
 return x;
 }

 /*setValue() sets a specific key and column to the specified
integer value. */
 public static void setValue(Cassandra.Client client, int x)
throws Exception {
 client.set_keyspace("ks33");
 ColumnParent parent = new ColumnParent();
 parent.setColumn_family("cf33");
 Column c = new Column();
 c.setName("count_col".getBytes("UTF-8"));
 c.setValue((x + "").getBytes("UTF-8"));
 c.setTimestamp(System.nanoTime());
 client.insert("count_key".getBytes("UTF-8"), parent, c,
 ConsistencyLevel.QUORUM);
 System.out.println("wrote " + x);
 }

 /*Threading in Java requires overriding the run method. The
thread attempts to
 read a value, increment it locally, and then write it back
several times. */
 public void run() {
 try {
 FramedConnWrapper fcw = new FramedConnWrapper(host, port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace("ks33");

Consistency, Availability, and Partition Tolerance with Cassandra

124

 for (int i = 0; i < inserts; i++) {
 int x = getValue(client);
 x++;
 setValue(client, x);
 }
 fcw.close();
 } catch (Exception ex) {
 System.out.println(ex);
 }

 }

 /*Along with connection information of host and port, users must
supply the
 number of threads and the number of inserts per thread */

 public static void main(String[] args) throws Exception {
 String host = Util.envOrProp("host");
 int port = Integer.parseInt(Util.envOrProp("port"));
 int inserts = Integer.parseInt(Util.envOrProp("inserts"));
 int threads = Integer.parseInt(Util.envOrProp("threads"));
 FramedConnWrapper fcw = new FramedConnWrapper(host, port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();

 /*truncate the column family and set the initial value of the
counter to 0 */

 client.set_keyspace("ks33");
 client.truncate("cf33");
 Thread.sleep(1000);
 setValue(client, 0);
 int start = getValue(client);
 System.out.println("The start value is " + start);
 /*Create a thread group to manage all the
 application threads as a single entity */

 ThreadGroup group = new ThreadGroup("readWrite");
 for (int i = 0; i < threads; ++i) {
 ShowConcurrency sc = new ShowConcurrency(host, port,
inserts);
 Thread t = new Thread(group, sc);
 t.start();
 }

Chapter 5

125

 /* sleep until the activeCount() method of thread group is 0
*/

 while (group.activeCount() > 0) {
 Thread.sleep(1000);
 }

 /* print out the final value of the counter.*/
 int x = getValue(client);
 System.out.println("The final value is " + x);
 }

}

2.	 Run the application doing 70 inserts from one thread:
$ host=127.0.0.1 port=9160 inserts=70 threads=1 ant
-DclassToRun=hpcas.c04.ShowConcurrency run
 [java] read 68
 [java] wrote 69
 [java] read 69
 [java] wrote 70
 [java] read 70
 [java] The final value is 70

3.	 Run the program again specifying 70 inserts from three threads:
$host=127.0.0.1 port=9160 inserts=70 threads=3 ant
-DclassToRun=hpcas.c04.ShowConcurrency run
 [java] read 97
 [java] read 97
 [java] wrote 98
 [java] wrote 98
 [java] read 98
 [java] wrote 99
 [java] read 99
 [java] wrote 100
 [java] read 100
 [java] The final value is 100

Consistency, Availability, and Partition Tolerance with Cassandra

126

How it works...
For the first run of the program, one thread does 70 inserts. As expected, the final value of
the counter is 70. The second run uses three threads doing 70 inserts. The expected final
value of the counter would be 210. However, in our example run, the final value was 100. On
examination of the output, multiple threads read the value as 97 and updated it to 98. This
happened because multiple clients are operating on the column simultaneously and have
no way to lock the value so it cannot be read or changed by others.

See also...
In Chapter 10, Third-party Libraries and Applications, the recipes Setting up Zookeeper
to support Cages for transactional locking and Using Cages to implement an atomic read
and set.

6
Schema Design

In this chapter, you will learn the following recipes:

ff Saving disk space by using small column names

ff Serializing data into large columns for smaller index sizes

ff Storing time series data effectively

ff Using different replication factors per keyspace

ff Hybrid Random Partitioner using Order Preserving Partitioner

ff Using Super Columns for nested maps

ff Storing large objects

ff Using Cassandra for distributed caching

ff Storing large or infrequently accessed data in a separate column family

ff Storing and searching edge graph data in Cassandra

ff Developing secondary data orderings or indexes

Introduction
A critical component of performance understands how to utilize the data model that
Cassandra provides. The recipes in this chapter show ways by which data can be modeled
to be stored and accessed efficiently when using Cassandra.

Schema Design

128

Saving disk space by using small
column names

The columns associated with a key are stored in a sorted map data structure. This is different
than data stores that use column separators or fixed width rows. One advantage of this is that
all entries can have differing columns. However, due to this design the column names and
values need to be stored on disk for each key. This recipe demonstrates the advantages of
using smaller column names.

How to do it...
1.	 Create a file src/hpcas/c06/ColumnSize.java:

package hpcas.c06;
import hpcas.c03.*;
import java.nio.ByteBuffer;
import org.apache.cassandra.thrift.*;

public class ColumnSize {
 public static void main(String[] args) throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper(
 Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace(Util.envOrProp("ks"));
 ColumnParent parent = new ColumnParent();
 parent.setColumn_family(Util.envOrProp("cf"));
 Column column = new Column();

2.	 The name of the column comes from the user. This allows us to demonstrate how the
column name affects the overall size of data files:
 column.setName(Util.envOrProp("colname").getBytes("UTF-8"));
 column.setValue("1".getBytes("UTF-8"));
 for (int i=0;i<20000;i++){
 �client.insert(ByteBuffer.wrap((i+"").getBytes("UTF-8")),

parent, column,
 ConsistencyLevel.QUORUM);
 }
 fcw.close();
 }
}

Chapter 6

129

3.	 Run the ColSize application specifying a colname that is a large string:

$ cf=cf33 ks=ks33 colname=thisisabigcolumnnameandlookout
host=127.0.0.2 port=9160 ant -DclassToRun=hpcas.c06.ColumnSize run

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 flush ks33

$ cd $HOME/hpcas/data/1/ks33 ls -lah

total 2.4M

-rw-rw-r--. 1 edward edward 2.2M Jan 3 05:10 cf33-e-1-Data.db

-rw-rw-r--. 1 edward edward 25K Jan 3 05:10 cf33-e-1-Filter.db

-rw-rw-r--. 1 edward edward 186K Jan 3 05:10 cf33-e-1-Index.db

-rw-rw-r--. 1 edward edward 4.8K Jan 3 05:10 cf33-e-1-Statistics.
db

4.	 Run the ColumnSize application again, this time specifying a column name of just
a single character s:

$ cf=cf33 ks=ks33 colname=s host=127.0.0.2 port=9160 ant
-DclassToRun=hpcas.c06.ColumnSize run

5.	 Flush the data to the disk and use the ls command to display file size information:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 flush ks33

$ ls -lah $HOME/edward/hpcas/data/1/ks33/

total 916K

-rw-rw-r--. 1 edward edward 804K Jan 3 05:19 cf33-e-1-Data.db

-rw-rw-r--. 1 edward edward 11K Jan 3 05:19 cf33-e-1-Filter.db

-rw-rw-r--. 1 edward edward 83K Jan 3 05:19 cf33-e-1-Index.db

-rw-rw-r--. 1 edward edward 4.8K Jan 3 05:19 cf33-e-1-Statistics.
db

How it works...
A column is stored as a tuple of name, value, and timestamp. Larger column names require
more disk space to store. These larger columns also use more memory inside key caches, row
caches, and Memtables. The savings using smaller column names can be significant when
the size of a column name is a large portion of the column size.

Schema Design

130

Serializing data into large columns for
smaller index sizes

If all or most of the data for a key will be read with each request, it may be better to serialize
all the columns of a key into a single column. This recipe will use delimited text as an
alternative to storing multiple columns under the same key.

How to do it...
1.	 Create src/hpcas/c06/LargeColumns.java:

package hpcas.c06;
import hpcas.c03.*;
import java.nio.ByteBuffer;
import org.apache.cassandra.thrift.*;

public class LargeColumns {
 static class Car {
 String make, model; int year;
 public Car(String make, String model, int year) {
 this.make = make;this.model = model; this.year = year;
 }

2.	 Serialize this object into three pipe delimited fields. The first column represents a
serialization version:
 public String toString() {
 return "v1|" + make + "|" + model + "|" + year;
 }
 }

 public static void main(String[] args) throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper
 (Util.envOrProp("host"),
 Integer.parseInt
 (Util.envOrProp("port")));
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace("parking");
 Car myCar = new Car("lincoln", "towncar", 99);
 ByteBuffer ownerName = ByteBuffer.wrap
 ("Stacey".getBytes("UTF-8"));

Chapter 6

131

3.	 Inserting this object calling the toString() method and store the result directly:
 client.insert(ownerName, Util.simpleColumnParent("parking"),
 Util.simpleColumn("car", myCar.toString()),
ConsistencyLevel.ONE);
 fcw.close();
 }
}

4.	 Use the CLI to see that the data is stored in a single column:
[default@parking] assume parking validator as ascii;

[default@parking] assume parking comparator as ascii;

[default@parking] list parking;

RowKey: Stacey

=> (column=car, value=v1|lincoln|towncar|99,
timestamp=120959663165400)

How it works...
Each column is a tuple consisting of a column name, a column value, and a timestamp. When
column sizes are very small, the overhead of the tuple can be significant. Beyond the data
size of the column, index overhead exists as well. This method reduces overhead in some
cases, but can use more storage in others. This can happen if this data is updated often as
each update will be the entire row rather than a small column.

There's more...
Other popular serialization solutions are JSON, Protocol Buffers, and YAML. For complex
objects, it is also possible to use java.beans.XMLBeanEncoder or Java serialization
using the java.io.Serializable interface.

Storing time series data effectively
Modeling time series information has wide appeal. Typically, Network Management Systems
(NMS) use time series data to store system performance information. This type of storage
is useful for trending statistics over time such as the weather or stock market prices. This
recipe shows how to take advantage of the distributed nature of Cassandra while using a
Comparator to organize numeric data inside a column.

Schema Design

132

How to do it...
1.	 Create the file <hpc_build>/src/java/hpcas/c06/TimeSeries.java:

package hpcas.c06;

import java.nio.ByteBuffer;
import hpcas.c03.*;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.text.SimpleDateFormat;
import java.util.GregorianCalendar;
import org.apache.cassandra.thrift.*;

public class TimeSeries {

The DateFormat classes allow calendar information to be displayed in a
user-defined format. The date format is used to group data into the same key.
 public static SimpleDateFormat format = new
SimpleDateFormat("yyyy.MM.dd");

The Counter class stores generic descriptor information as well as numeric data
about the state of the counter.
 public static class Counter {
 String host,object,instance,value;
 long time;
 public Counter(String host, String object, String instance,
 String value, long time){
 this.host=host; this.object = object; this.
instance=instance;
 this.value=value; this.time=time;
 }

Many of the fields of the counter will be formed into a Composite Key. Building a
composite key results in Counter objects that are distinct from each other without
having to generate ids.
 public ByteBuffer keyName() throws Exception {
 GregorianCalendar gc = new GregorianCalendar();
 gc.setTimeInMillis(time);
 ByteBuffer name = ByteBuffer.wrap(
 (host+"/"+object+"/"+instance+"/"
 +format.format(gc.getTime()))
 .getBytes("UTF-8"));
 return name;
 }

Chapter 6

133

To work with the Long Comparator and have it sort data by time inside a column
properly, write Long values directly out to the byte outputs.
 public Column getColumn() throws Exception {
 Column c = new Column();
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream(bos);
 dos.writeLong(time);
 dos.flush();
 c.setName(bos.toByteArray());
 c.setValue((value+"").getBytes("UTF-8"));
 return c;
 }
 }
 public static void main(String [] args) throws Exception{
 FramedConnWrapper fcw = new
 FramedConnWrapper(Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace("perfdata");

2.	 Use System.getCurrentlTimeMillis() to retrieve clock information from the
system. Create a second time five minutes in the future:
 long now = System.currentTimeMillis();
 long future = now + (60L*1000L*5L);
 ColumnParent parent = Util.simpleColumnParent("perfdata");

3.	 Use the Counter class and its utility methods to write two counters. These counters
represent the CPU usage of a fictitious processor core:
 Counter s1t1 = new Counter("server1", "cpu","core1","20",now
);
 client.insert(s1t1.keyName(), parent, s1t1.getColumn(),
ConsistencyLevel.ONE);
 Counter s1t2 = new Counter("server1",
"cpu","core1","25",future);
 client.insert(s1t2.keyName(), parent, s1t2.getColumn(),
ConsistencyLevel.ONE);
 fcw.close();
 }
}

Schema Design

134

4.	 Create the required keyspace and column family. Make sure to set the comparator
to LongType:
[default@unknown] create keyspace perfdata;

[default@unknown] use perfdata;

[default@perfdata] create column family perfdata with
comparator='LongType';

5.	 List the perfdata column:

[default@perfdata] assume perfdata validator as ascii;

[default@perfdata] list perfdata;

RowKey: server1/cpu/core1/2011.01.03

=> (column=1294109019835, value=20, timestamp=0)

=> (column=1294109319835, value=25, timestamp=0)

1 Row Returned.

How it works...
The ability to construct long composite keys combined with the sharding capabilities of
the data model provides a horizontally scalable storage system for performance counters.
Comparators allow the column data to be ordered in a user-defined manner since data in
Cassandra is a byte [].

Using Super Columns for nested maps
Super Columns are columns where the value is a sorted map of keys and values. This
is different than a standard column where the value is a byte array. Super Columns add
another level of nesting, allowing storage of more complex objects without encoding data into
composite columns. For this recipe, we use a Super Column to store information about movies
and reviews of the movie.

How to do it...
1.	 Create a keyspace and column family named moviereview:

[default@unknown] create keyspace moviereview;

[default@unknown] use moviereview;

Chapter 6

135

Authenticated to keyspace: moviereview
[default@moviereview] create column family moviereview with column_
type='Super';

2.	 Create a file src/hpcas/c06/MovieReview.java:
package hpcas.c06;
import hpcas.c03.*;
import java.nio.ByteBuffer;
import org.apache.cassandra.thrift.*;

public class MovieReview {
 public static void main (String [] args) throws Exception {
 FramedConnWrapper fcw = new
 FramedConnWrapper(Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace("moviereview");
 ByteBuffer movieName = ByteBuffer.wrap(
 "Cassandra to the Future".getBytes("UTF-8"));

3.	 Create a ColumnParent instance and set the super column property to reviews.
Then, use the parent to insert two columns that represent two reviews of the movie:
 ColumnParent review = new ColumnParent();
 review.setColumn_family("moviereview");
 review.setSuper_column("reviews".getBytes("UTF-8"));
 client.insert(movieName, review,
 �Util.simpleColumn("bob", "Great movie!"), ConsistencyLevel.

ONE);
 client.insert(movieName, review,
 �Util.simpleColumn("suzy", "I'm speechless."),

ConsistencyLevel.ONE);
 ColumnParent movieInfo = new ColumnParent();
 movieInfo.setColumn_family("moviereview");

4.	 Insert two columns into the cast super column:
 movieInfo.setSuper_column("cast".getBytes("UTF-8"));
 client.insert(movieName, movieInfo,
 Util.simpleColumn("written in", "java"),
ConsistencyLevel.ONE);
 client.insert(movieName, movieInfo,
 Util.simpleColumn("RPC by", "thrift"),
ConsistencyLevel.ONE);
 System.out.println("Reviews for: "+new String(movieName.
array(),"UTF-8"));

Schema Design

136

5.	 Set the super column property of a ColumnPath to cast and use it to extract all the
data from that super column:
 ColumnPath cp = new ColumnPath();
 cp.setColumn_family("moviereview");
 cp.setSuper_column("cast".getBytes("UTF-8"));
 System.out.println("--Starring--");
 ColumnOrSuperColumn sc = client.get(movieName, cp,
ConsistencyLevel.ONE);
 for (Column member : sc.super_column.columns){
 System.out.println(new String (member.getName(),"UTF-8")
 +" : "
 + new String(member.getValue(),"UTF-8"));
 }
 System.out.println("--what people are saying--");
 cp.setSuper_column("reviews".getBytes("UTF-8"));
 ColumnOrSuperColumn reviews = client.get(movieName, cp,
ConsistencyLevel.ONE);
 for (Column member : reviews.super_column.columns){
 System.out.println(new String (member.getName(),"UTF-8")
 +" : "
 +new String(member.getValue(),"UTF-8"));
 }
 fcw.close();
 }
}

6.	 Run the application:

$ host=127.0.0.1 port=9160 ant -DclassToRun=hpcas.c06.MovieReview
run

run:
 [java] Reviews for: Cassandra to the Future
 [java] --Staring--
 [java] RPC by : thrift
 [java] written in : java
 [java] --what people are saying--
 [java] bob : Great movie!
 [java] suzy : I'm speechless.

Chapter 6

137

How it works...
Super Columns provide another level of associated arrays in the value of the column. This can
be used as an alternative to generating composite column keys. This recipe uses two Super
Columns: cast to store actors in the movie, and reviews to store comments on what the
users thought of the movie. Super Columns allow us to store this information without using
multiple Standard Column Families or composite keys.

There's more...
Operations on Super Columns involve de-serializing the entire Super Column. Because of the
de-serialization overhead, avoid storing a large number of sub columns in a Super Column
family column.

Using a lower Replication Factor for disk
space saving and performance enhancements

The Replication Factor can be set on keyspace (not per column family). The chosen
Replication Factor has several implications. The higher the Replication Factor, the more nodes
data is stored on and the more fault tolerant your cluster is. A larger Replication Factor means
the storage capacity of the cluster is diminished. A higher Replication Factor also means write
and read operations take more resources on more hardware.

How to do it...
Create a keyspace named bulkload with a replication factor of 2.

[default@unknown] connect localhost/9160;

Connected to: "Test Cluster" on localhost/9160

[default@unknown] create keyspace bulkload with strategy_options =
[{replication_factor:1}];

Between versions 0.7.X and 0.8.X the replication factor moved from a property of KsDef to a
parameter of the stratefy_options. The 0.7.X syntax is:

[default@unknown] create keyspace bulkload with replication_factor=2;

How it works...
Using a Replication Factor of 2 for the bulkload keyspace uses less disk space and uses
less resources, creating less overall utilization. This results in a performance gain at the cost
of some redundancy.

Schema Design

138

There's more...
At a Replication Factor of 2, Consistency Level Quorum is the same as Consistency Level All.
This is because Quorum requires a majority that cannot be achieved with one of two replicas.

See also...
ff See the Using nodetool cleanup recipe in Chapter 7, Administration when lowering

the replication of an existing keyspace.

ff The Running nodetool repair in Chapter 7, Administration when raising the replication
factor of an existing keyspace.

ff In the multi-datacenter deployment chapter we visit larger Replication Factors
needed for multiple datacenter deployments.

Hybrid Random Partitioner using Order
Preserving Partitioner

An important decision when setting up your cluster is choosing a Partitioner. Two common
choices are the Random Partitioner (RP) and the Order Preserving Partitioner (OPP).

The Random Partitioner hashes the user supplied key and uses the result to place this data
on nodes in the cluster. The hash function distributes the data roughly evenly across the
cluster in a pseudo random order.

The Order Preserving Partitioner uses the key itself to determine which nodes on the cluster
the data should be stored on. This stores the keys in order, which allows ordered Range
Scans on keys. If the keys do not have an even distribution, nodes can become unbalanced
and some will have more data than others.

This recipe shows how to use an Order Preserving Partitioner and hash the values on the
client side, achieving a similar effect to the Random Partitioner.

Getting ready
The partitioner used is a global setting that can only be set when the cluster is first initialized.
To change the partitioner, you must remove all data in your cluster and start again.

Chapter 6

139

How to do it...
In conf/cassandra.yaml

partitioner: org.apache.cassandra.dht.OrderPreservingPartitioner:

1.	 Create src/hpcas/c06/HybridDemo.java:
package hpcas.c06;
import hpcas.c03.*;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import org.apache.cassandra.thrift.*;
import org.apache.cassandra.utils.FBUtilities;public class
HybridDemo {
 public static void main(String[] args) throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper(Util.
envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 Cassandra.Client client = fcw.getClient();

2.	 Use the describe_keyspace method and compare the result to the expected
class name for the OrderPreservingPartitioner and exit if the result does
not match:
 if (! client.describe_partitioner().equals(
 "org.apache.cassandra.dht.
OrderPreservingPartitioner")){
 System.out.println("You are not using
OrderPreservingPartitioner." +
 "You are using "
+client.describe_partitioner());
 System.exit(1);
 }

3.	 Check for the existence of the phonebook keyspace. If it does not exist, create a
keyspace and a column family for phonebook and user:
 if (! Util.listKeyspaces(client).contains("phonebook")) {
 client.system_add_keyspace(
 Util.createSimpleKSandCF("phonebook", "phonebook",
3));
 client.system_add_keyspace(
 Util.createSimpleKSandCF("user", "user", 3));
 Thread.sleep(1000);
 }

Schema Design

140

4.	 Next, insert entries into the phonebook column family. Notice the key used for the
insert is the name unaltered:
 String [] names = new String [] {"al", "bob", "cindy"};
 for (String name : names){
 client.set_keyspace("phonebook");
 client.insert(ByteBuffer.wrap(name.getBytes("UTF-8")),
 Util.simpleColumnParent("phonebook"),
 Util.simpleColumn("phone", "555-555-555"),
ConsistencyLevel.ONE);

5.	 Use the FButilities.md5hash method to generate an md5 checksum. Left pad
the name with two characters from the hash:

 client.set_keyspace("user");
 BigInteger i = FBUtilities.md5hash(ByteBuffer.wrap
 (name.getBytes("UTF-8")));
 StringBuilder sb = new
 StringBuilder(i.toString().substring(0,2));
 sb.append(name);
 client.insert(ByteBuffer.wrap(sb.toString().
getBytes("UTF-8")),
 Util.simpleColumnParent("user"),
 Util.simpleColumn("password", "secret"),
ConsistencyLevel.ONE);
 }
 fcw.close();
 }
}

6.	 Connect to Cassandra using the cassandra-cli. Change to the phonebook
keyspace with the use command, and then use the list command to range scan
through the phonebook column family:
$<cassandra_home>/bin/cassandra-cli

[default] use phonebook;

[default@phonebook] list phonebook;

Using default limit of 100

RowKey: al

=> (column=70686f6e65, value=3535352d3535352d353535,
timestamp=12307009989944)

RowKey: bob

Chapter 6

141

=> (column=70686f6e65, value=3535352d3535352d353535,
timestamp=12307242917168)

RowKey: cindy

=> (column=70686f6e65, value=3535352d3535352d353535,
timestamp=12307245916538)

3 Rows Returned.

7.	 Change to the user keyspace and list the user column family:

[default] use user;

[default@user] list user;

Using default limit of 100

RowKey: 12bob

=> (column=70617373776f7264, value=736563726574,
timestamp=12556213919473)

RowKey: 13al

=> (column=70617373776f7264, value=736563726574,
timestamp=12556210336153)

RowKey: 68cindy

=> (column=70617373776f7264, value=736563726574,
timestamp=12556258382038)

3 Rows Returned.

How it works...
By generating an MD5 check-sum from the key, we randomize which node the data for that
key will be stored on. This achieves a similar effect to that of using RandomPartitioner.
Range scans performed on the phonebook column family return results in alphabetical order.
Range scans performed on the user column family return data in a pseudo random order,
which should balance data across the cluster as the RandomPartitioner would.

Schema Design

142

There's more...
Choosing a partitioner is an important decision that cannot be changed. To experiment with
this option, using a multiple node cluster in your test environment can help determine the
distribution of your row keys.

Scripting a multiple instance installation with OOP
Modify the recipe in Chapter 1, Scripting a multiple instance installation to create a test
cluster using the OrderPreservingPartitioner by adding the highlighted text below.

Copy the file scripts/ch1/multiple_instances.sh to scripts/ch6/multiple_
instances_ordered.sh and make the highlighted changes.

 sed -i "s|8080|800${i}|g" ${TAR_EXTRACTS_TO}-${i}/conf/cassandra-
env.sh
 RP= org.apache.cassandra.dht.RandomPartitioner

 OPP= org.apache.cassandra.dht. OrderPreservingPartitioner

 sed -i "s|${RP}|${OPP}|g" \
 ${TAR_EXTRACTS_TO}-${i}/conf/cassandra.yaml
done
popd

Using different hash algorithms
This recipe used the md5hash() method used internally by Cassandra. Different algorithms
can be used that may be less computationally expensive while still achieving good entropy.

Storing large objects
The row data stored in Cassandra is typically smaller in size, between a few bytes to a few
thousand bytes. Some use cases may wish to store entire file or binary data that could be
megabytes or gigabytes in size. Storing large files with a single set operation is difficult. This
is because the underlying transport layer does not have streaming capability and is designed
around smaller objects. This recipe demonstrates how to store large objects or files by
breaking them up into small parts and storing the parts across multiple columns of a
single key.

How to do it...
1.	 Create a file src/hpcas/c06/LargeFile.java.

package hpcas.c06;
import hpcas.c03.*;
import java.io.*;

Chapter 6

143

import java.nio.ByteBuffer;
import java.text.DecimalFormat;
import org.apache.cassandra.thrift.*;

public class LargeFile {

2.	 By default, we use a block size of 128 bytes. This can be much larger, but the request
cannot be larger than the frame size, which default to 16 MB:
 private static final int block_size = 128;
 public static void main(String[] args) throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper(
 Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));

3.	 Open an input stream to this file to the user specified file:
 File f = new File(Util.envOrProp("thefile"));
 ByteBuffer fileName =ByteBuffer.wrap(f.toString()
 .getBytes("UTF-8"));
 BufferedInputStream inputStream =
 new BufferedInputStream(new FileInputStream(f));
 byte buffer[] = new byte[block_size];
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace("filedata");
 int read = 0; int blockCount=0;
 DecimalFormat format = new DecimalFormat("00000");
 ColumnParent cp = new ColumnParent();
 cp.setColumn_family("filedata");

4.	 Begin reading data from the file one buffer at a time. For each buffer being read,
increment the blockCount variable. Use the blockCount as the name of the
column and fill the value with the buffer:
 do {
 read = inputStream.read(buffer);
 if(read != -1) {
 Column block = new Column();
 block.setValue(buffer);
 block.setName(format.format(blockCount++)
 .getBytes("UTF-8"));
 client.insert(fileName, cp, block, ConsistencyLevel.ONE);
 }
 } while (read != -1);
 inputStream.close();
 fcw.close();
 }
}

Schema Design

144

5.	 Create the filedata keyspace and column family:
[default@moviereview] create keyspace filedata;

[default@moviereview] use filedata;

Authenticated to keyspace: filedata

[default@filedata] create column family filedata;

6.	 Run the application (it produces no output):
$ thefile=/home/edward/encrypt/hpcbuild/run.sh host=127.0.0.1
port=9160 ant -DclassToRun=hpcas.c06.LargeFile run

7.	 As long as the file loaded was not a binary file, the CLI can be configured to display
the data as ascii:
[default@filedata] assume filedata comparator as ascii;

[default@filedata] assume filedata validator as ascii;

8.	 List the column family to display the contents of the file:
[default@filedata] list filedata;

Using default limit of 100

RowKey: /home/edward/encrypt/hpcbuild/run.sh

=> (column=00000, value=CP=dist/lib/hpcas.jar

for i in lib/*.jar ; do

 CP=$CP:$i

done

#conf=/home/edward/hpcas/apache-cassandra-0.7.0-beta2-1/conf
...

How it works...
Rather than attempting to store a file under a single key and column, the file is broken up
into smaller pieces and stored across multiple columns. This is done because the transport
protocol has to buffer objects completely in memory to transmit them, and because the frame
size for that transport is smaller than some files.

There's more...
This approach stores all the blocks of a file under a single row key and thus on a single set of
nodes. Another possible design may be to store the blocks of the file in different row keys. This
will spread the blocks of a single file across multiple nodes.

Chapter 6

145

Using Cassandra for distributed caching
Cassandra has several variables that can be configured for each keyspace and column family
that drastically change the profile of how it operates. In typical caching use cases, the amount
of write and update traffic is low compared to the amount of read traffic. Additionally, the size
of the data may be relatively small. This recipe shows how to set up a keyspace and column
family for this type of workload.

How to do it...
1.	 Create a keyspace with a high replication factor (assume this is a 10-node cluster):

$ <cassandra_home>/bin/cassandra-cli

[default] create keyspace cache with replication_factor=10;

[default] use cache;

2.	 Create a column family with a low read_repair_chance and settings
rows_cached to 100000:

[default@cache] create column family cache with read_repair_
chance=.05 and rows_cached=100000;

Clients should read at consistency level ONE.

How it works...
With a replication factor of 10, each write uses resources on each node. This does not scale
writes because each node must maintain a copy of all the data in the keyspace. Because
read_repair_chance is set to a low value, read repairs will rarely be triggered as long as
clients use consistency level ONE on read operations. By increasing replication factor and
reading at ONE, more nodes can be used to serve the same data set. This is useful when
common data is read intensely.

Storing large or infrequently accessed data
in a separate column family

In many cases it is suggested to store all data related to a key in a single column family. This
allows applications to fetch data by having to seek only a single key. This is not always the
best option, however, and this recipe demonstrates a case where storing the data in two
separate column families is preferred.

Schema Design

146

For this recipe, assume the source data to be inserted as the following table:

id height age weight quote (infrequently accessed)

bsmith 71" 32 160 Always bear in mind that your own resolution to
succeed is more important than any other. -Abraham
Lincoln

tjones 66" 17 140 All mankind is divided into three classes: those that
are immovable, those that are movable, and those that
move.
-Benjamin Franklin

How to do it...
Write the data across two column families.

[default@unknown] create keyspace user_info with strategy_options =
[{replication_factor:3}];

[default@unknown] create column family user_info with rows_cached=5000;

[default@unknown] use user_info;

[default@user_info] set user_info['bsmith']['height']='71';
[default@user_info] set user_info['bsmith']['age']='32';

[default@user_info] set user_info['bsmith']['weight']='160';

[default@unknown] create keyspace extra_info with strategy_options =
[{replication_factor:2}]

[default@user_info] use extra_info;

[default@user_info] create columnfamily extra_info with keys_cached=5000;

[default@user_info] set extra_info['bsmith']['quote']='Always bear in
mind....';

How it works...
For the example data, of the five columns that need to be stored, the quote data is many
times larger than all the other columns combined. Since this data is not accessed as
frequently as the other columns, it is stored in the extra_info column family.

This design has several advantages. Each keyspace has a different replication factor. The
extra_info family uses a lower replication factor, which saves disk space. For the other
user_info keyspace, the standard replication factor of 3 was chosen.

Each keyspace is a folder

Each keyspace corresponds to a folder under the data directory.
These folders can be separate physical disks.

Chapter 6

147

Also, by separating the data into two column families, two separate caching policies are
utilized. The user_info has a small and predictable row size and a row cache was used.
The extra_info data can have an unpredictable size, thus the key cache was used.

Storing and searching edge graph data in
Cassandra

Graph databases are used to store structures based on data from graph theory. Graph
databases have a concept of nodes that are entries and edges that connect one node to
another. Typically, graph databases are used to determine data that is closely related, as in
the following image:

This recipe shows how to use, store, and traverse a simple graph database.

Getting ready
Create a keyspace and column family to store the graph data and insert some sample data
into it.

[default@unknown] connect localhost/9160;

[default@unknown] create keyspace graph;

[default@unknown] use graph;

[default@graph] create column family graph;

[default@graph] set graph['a']['b']='';

[default@graph] set graph['a']['c']='';

[default@graph] set graph['c']['d']='';

[default@graph] set graph['d']['a']='';

[default@graph] set graph['c']['e']='';

Schema Design

148

How to do it...
1.	 Create <hpc_build>/src/hpcas/c06/Graph.java:

package hpcas.c06;

import hpcas.c03.FramedConnWrapper;
import hpcas.c03.Util;
import java.nio.ByteBuffer;
import java.util.*;

import org.apache.cassandra.thrift.*;

public class Graph {
 FramedConnWrapper fcw;
 Cassandra.Client client;

 public Graph(String host,int port) throws Exception {
 fcw = new FramedConnWrapper(host, port);
 fcw.open();
 client = fcw.getClient();
 client.set_keyspace("graph");
 }

Graph traversal is done with a recursive method. Recursive methods commonly have
a long signature because they need to pass data between calls. Creating a kickoff
method with a smaller signature is suggested.
 public void traverse(int depth, byte[] start) {
 Set<String> seen = new HashSet<String>();
 traverse(depth, start, seen, 0);
 }

To traverse a graph, a few pieces of information are needed: the first is a starting
point, the next a stopping condition, and the third a list of already seen nodes to
prevent cycles, and a depth counter to control how many recursions. Notice that this
method is declared private. The only way to call it is through the kickoff method
defined previously.
 private void traverse(int depth, byte[] start,
 Set<String> seen, int currentLevel) {
 if (currentLevel>depth)
 return;
 for (int j=0;j<currentLevel;j++)
 System.out.print("\t");
 System.out.println(new String (start));
 if (seen.contains(new String(start))){

Chapter 6

149

 for (int j=0;j<currentLevel;j++)
 System.out.print("\t");
 System.out.println("loop detected");
 return;
 }
 seen.add(new String(start));
 ColumnParent cp = new ColumnParent();
 cp.setColumn_family("graph");
 SlicePredicate predicate = new SlicePredicate();
 SliceRange sr = new SliceRange();
 sr.setStart(new byte[0]);
 sr.setFinish(new byte[0]);
 sr.setCount(10000);
 predicate.setSlice_range(sr);
 try {
 List<ColumnOrSuperColumn> results = client.get_slice
 (ByteBuffer.wrap(start), cp, predicate, ConsistencyLevel.
ONE);
 for (ColumnOrSuperColumn c : results) {
 traverse(depth, c.column.getName(),seen,currentLevel+1);
 }
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }

 public static void main(String[] args) throws Exception {
 Graph g = new Graph(Util.envOrProp("host")
 , Integer.parseInt(Util.envOrProp("port")));
 g.traverse(Integer.parseInt(Util.envOrProp("depth"))
 ,Util.envOrProp("startAt").getBytes());
 }
}

2.	 Run the application, supplying a node to start at using the startAt parameter and a
depth for recursion into the graph:

$ startAt=a depth=5 host=127.0.0.1 port=9160 ant
-DclassToRun=hpcas.c06.Graph run

run:

 [java] a

 [java] b

 [java] c

Schema Design

150

 [java] d

 [java] a

 [java] loop detected

 [java] e

How it works...
The edge data between elements is one dimensional—A -> B does not mean B->A. Each node
is a single column, the row key is the name of the node, each column is the name of a node
this node is related to, and the value is unneeded and left empty.

Inside the recursive traverse method, getSlice is called against the start node. It returns
the key, if it exists, and the columns returned are the related nodes. If the related node does
not exist in the set of already seen nodes, and the max depth has not been exceeded, a
recursive called will be done using the related node.

Developing secondary data orderings or
indexes

The row key determines which nodes the data is stored on. The row key is also used to locate
the data on disk in the underlying data files. These factors make searching by row key optimal.
The columns of a row key are sorted by the column name, making searching for specific
columns inside a specific key optimal. At times, one or more ordering of data may be required.
Storing data multiple times in different ways can be done to support different requests. This
recipe shows how to create two orderings of a mailbox—the first being efficient to search
messages by time, and another to search messages by user.

Getting ready
Create the required keyspace and column families for this recipe.

[default@unknown] create keyspace mail;

[default@unknown] use mail;

[default@mail] create column family subject with comparator='LongType';

[default@mail] create column family fromIndex with comparator='LongType';

Chapter 6

151

How to do it...
1.	 Create scr/hpcas/c06/SecondaryIndex.java:

package hpcas.c06;

import hpcas.c03.*;
import java.io.*;
import java.nio.ByteBuffer;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.cassandra.thrift.*;

public class SecondaryIndex {

 private FramedConnWrapper fcw;
 private Cassandra.Client client;

 private static ColumnParent subjectParent =new ColumnParent();
 private static ColumnParent fromParent = new ColumnParent();
 private static AtomicInteger ai = new AtomicInteger();

 static {
 subjectParent.setColumn_family("subject");
 fromParent.setColumn_family("fromIndex");
 }

 public SecondaryIndex(String host, int port) {
 fcw = new FramedConnWrapper(host, port);
 try {
 fcw.open();
 } catch (Exception ex) {
 System.out.println(ex);
 }
 client = fcw.getClient();
 }

A message is inserted into two separate column families. The subject column
family uses the mailbox name as a row key and orders the columns by a message
ID. The fromIndex column family is also ordered by the message ID, but uses a
composite key of the sender and the receiver as the row key.
 public void sendMessage(String to,String subject, String body,
String from) {
 Column message = new Column();
 byte [] messageId = getId();

Schema Design

152

 message.setName(messageId);
 message.setValue(subject.getBytes());

 Column index = new Column();
 index.setName(messageId);
 index.setValue(subject.getBytes());
 try {
 client.set_keyspace("mail");
 client.insert(ByteBuffer.wrap(to.getBytes()), subjectParent,
message, ConsistencyLevel.ONE);
 client.insert(ByteBuffer.wrap((to +"/"+ from).getBytes()),
fromParent, index, ConsistencyLevel.ONE);
 } catch (Exception ex) {
 System.err.println(ex);
 }
 }

The searchFrom method is used to quickly locate messages to and from some
specific users.
 public void searchFrom(String mailbox, String from){
 SlicePredicate predicate = new SlicePredicate();
 SliceRange sr = new SliceRange();
 sr.setCount(1000);
 sr.setReversed(true);
 sr.setStart(new byte[0]);
 sr.setFinish(new byte[0]);
 predicate.setSlice_range(sr);
 try {
 client.set_keyspace("mail");
 List<ColumnOrSuperColumn> results=client.get_slice(
 ByteBuffer.wrap((mailbox + "/" + from).getBytes()),
 fromParent, predicate, ConsistencyLevel.ONE);
 for (ColumnOrSuperColumn c : results){
 System.out.println(new String(c.column.getValue()));
 }
 } catch (Exception ex) {
 System.err.println(ex);
 }
 }

This method generates message IDs.
 public byte [] getId() {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 DataOutputStream dos = new DataOutputStream(bos);
 try {

Chapter 6

153

 dos.writeLong((long) ai.getAndAdd(1));
 dos.flush();
 } catch (IOException ex){ System.out.println(ex);}
 return bos.toByteArray() ;
 }

 public static void main(String[] args) throws Exception {
 SecondaryIndex si = new SecondaryIndex(
 Util.envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 si.sendMessage("bob@site.pvt","Have you seen my tennis
racket?",
 "Let me know if you find it.","kelly@example.pvt");
 si.sendMessage("bob@site.pvt","Check out my new book!",
 "It is called High Performance Cassandra."
 ,"edward@example.pvt");
 si.sendMessage("bob@site.pvt","Nevermind about the racket",
 "I found it in the car","kelly@example.pvt");
 si.searchFrom(Util.envOrProp("to"),Util.envOrProp("from"));
 }
}

2.	 Run the program from the command line searching for messages to and from
specific users:

$ host=127.0.0.1 port=9160 to=bob@site.pvt from=edward@example.pvt
ant -DclassToRun=hpcas.c06.SecondaryIndex run

run:

 [java] Check out my new book!

How it works...
This recipe stores data from messages in two separate columns families. Storing data in
multiple times increases the overall disk usage. However, the cost can be justified because
the data can be stored in a way that is optimal for specific requests. The subject column
family is useful for looking up messages for a user by time. The fromIndex column family is
designed to help find messages from a specific user.

See also...
In Chapter 3, Application Programmer Interface the recipe Working with secondary indexes.

7
Administration

In this chapter, you will learn the following recipes:

ff Defining seed nodes for Gossip Communication

ff Nodetool Move: Moving a node to a specific ring location

ff Nodetool Remove: Removing a downed node

ff Nodetool Decomission: Removing a live node

ff Joining nodes quickly with auto_bootstrap set to false

ff Copying SSTables as an auto_bootstrap alternative

ff Nodetool Repair: When to use anti-entropy repair

ff Nodetool Drain: Stable files on upgrade

ff Lowering gc_grace for faster tombstone cleanup

ff Scheduling Major Compaction

ff Using nodetool snapshot for backups

ff Clearing snapshots with nodetool clearsnapshot

ff Restoring from a snapshot

ff Exporting data to JSON with sstable2json

ff Nodetool cleanup: Removing excess data

ff Nodetool Compact: Defragment data and remove deleted data from disk

Administration

156

Defining seed nodes for Gossip
Communication

Cassandra has no single point of failure or master nodes. Instead, it uses an internal process
called Gossip to communicate changes about the topology of the Ring between nodes. Seeds
are a list that a node attempts to contact on startup to begin gossiping. This recipe shows how
to define seed nodes.

Getting ready
The technique for defining Seeds can vary based on the type and size of your deployment.
This recipe describes the process for simple deployments using org.apache.Cassandra.
locator.SimpleStrategy. For multiple datacenter deployments, place one or more seed
in each datacenter, refer to Chapter 8, Multiple Datacenter Deployments.

How to do it...
For the cluster of ten nodes: cassandra01.domain.pvt (10.0.0.1) - cassandra10.
domain.pvt (10.0.0.10)

1.	 Open <cassandra_home>/conf/cassandra.yaml and locate the seeds section.
seeds:
 - 10.0.0.1
 - 10.0.0.2

2.	 Make this change to each node in the cluster. Restart Cassandra for this change
to take effect.

There's more
Seeds are easy to configure. However, there are a few subtle things to keep in mind when
configuring them.

IP vs Hostname
It is suggested to use an IP address instead of a hostname in the seed list. This should allow
the cluster to continue functioning even with DNS issues since Cassandra communicates
exclusively by IP address.

Chapter 7

157

Keep the seed list synchronized
The seed list should be the same for every node in your deployment. This is not a strict
requirement for the gossip protocol to work, but there are cases during failures where using
different nodes can cause strange results. Consider using a configuration management tool
such as Puppet to keep configuration files in sync.

Seed nodes do not auto bootstrap
At least one seed node needs to be specified during initial deployment. Seed nodes will
not auto bootstrap. For a joining node to receive data from other nodes, do not include its
hostname or IP in its seed list. After it has bootstrapped and joined the cluster, it can be
put in any seed list for any node, including itself.

Choosing the correct number of seed nodes
The number of seed nodes should be some factor of the cluster size. Nodes starting up will
attempt to contact all configured seed nodes to learn about the topology of the cluster. Ensure
at least one seed is running at all times. For deployments of less than ten, two or three seed
nodes are sufficient. For larger clusters, more may be needed.

Nodetool Move: Moving a node to a specific
ring location

Cassandra uses a Consistent Hashing to divide the data in a cluster between nodes. Each
node has an Initial Token that represents its logical position on the ring and what data it
should hold. There are many situations where a node is not placed at an optimal position in the
ring. This may be because of the addition or removal of other nodes. It also may be because
while using OrderPreservingPartitioner, hotspots can naturally develop due to uneven
key distribution. This recipe shows how to use nodetool move to adjust a node's position.

Getting ready
Use the recipe Calculating Correct Initial Tokens from Chapter 1 to determine what the ideal
tokens should be.

How to do it...
1.	 Run nodetool ring and determine how unbalanced the cluster is:

$ <cassandra_home>/bin/nodetool -h localhost -p 8001 ring
Address Load Owns Token

127.0.0.3 Up Normal 10.43 KB 29.84% 48084680596
544909506915368523509938144

Administration

158

127.0.0.4 Up Normal 10.43 KB 34.04% 10599911091
7480363354745863590854172046
127.0.0.5 Up Normal 10.43 KB 9.82% 12270622935
7212558233871901439120138764
127.0.0.1 Up Normal 10.43 KB 5.90% 13275039505
5464041221778744207874723292
127.0.0.2 Up Normal 10.43 KB 20.40% 16745517058
8521173062172773965470038351

2.	 Notice that in the Owns column, some nodes own larger portions of the ring
than others. Run the InitialTokens application and see what the ideal tokens
should be:
$ tokens=5 ant -DclassToRun=hpcas.c01.InitialTokens run
run:
 [java] 0
 [java] 34028236692093846346337460743176821145
 [java] 68056473384187692692674921486353642290
 [java] 102084710076281539039012382229530463435
 [java] 136112946768375385385349842972707284580

Consider a token carefully

Unless the number of nodes in the cluster is growing by exactly double,
not specifying the InitialToken will likely result in a non-optimal
number being picked. The node on top of the list should have a token of
0. Instead, it has 48084680596544909506915368523509938144.
Use the move command to move two nodes.

Moving large amounts of data can take a long time

The more data a node has on it, the longer an operation such as move
will take. Also, these operations are intensive and are best done at times
of low traffic.

$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 move 0
$<cassandra_home>/bin/nodetool -h 127.0.0.2 -p 8002 move 340282366
92093846346337460743176821145

3.	 Run nodetool ring after the nodetool move operations have completed:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring
Address Status State Load Owns Token
127.0.0.1 Up Normal 17.58 KB 27.88% 0
127.0.0.2 Up Normal 12.57 KB 20.00% 34028236692
093846346337460743176821145
...

Chapter 7

159

How it works...
Nodetool Move is a one-step way to accomplish the two-part process of removing and adding
a node. It combines a Nodetool Decomission with an AutoBootstrap startup.

Behind the scenes, nodetool move causes the node to move data to other nodes before
leaving the cluster. The node then re-joins at the location specified by the user. Other nodes
compute data that belongs on the rejoined node and transmit that data back to it.

In the example, using nodetool move corrects imbalances of data across the cluster. Before
the move, the first two nodes owned 29 percent and 34 percent. After the move, they owned
27 percent and 20 percent. Once all the proper move operations are complete, the owned
percentage would be 20 percent across all nodes. It is important to keep clusters as close to
balanced as possible.

Nodetool Remove: Removing a downed node
If a node fails, it is not assumed lost forever. The other nodes in the cluster become aware
that it is down through gossip. If enabled, the other nodes will store Hinted Handoff
messages, which are writes destined to downed system. They will attempt to re-deliver the
hinted messages when they detect the destination node is up again. If a node is lost forever,
either because of hardware failure or because it is no longer needed, the administrator must
actively acknowledge the failure using nodetool removetoken.

How to do it...
1.	 Determine the token of the node to be removed. The node must be in the Down state:

$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring
Address Status State Load Owns Token
 12270622935721255823
3871901439120138764
127.0.0.1 Up Normal 17.58 KB 27.88% 0
127.0.0.2 Up Normal 12.57 KB 20.00% 34028236692
093846346337460743176821145
127.0.0.3 Up Normal 20.51 KB 8.26% 48084680596
544909506915368523509938144
127.0.0.4 Up Normal 20.51 KB 34.04% 10599911091
7480363354745863590854172046
127.0.0.5 Down Normal 20.51 KB 9.82% 12270622935
7212558233871901439120138764

2.	 Use the nodetool removetoken command to remove the node in the Down state
127.0.0.5:
$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 removetoken 12
2706229357212558233871901439120138764

Administration

160

The nodetool removetoken operation can take some
time. You can run the command again with the optional
status argument at that end to see the progress.

3.	 Run nodetool ring again. When the removal is complete, the list should be one
element shorter:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring
Address Status State Load Owns Token
 1059991109174803633547458
63590854172046
127.0.0.1 Up Normal 17.58 KB 37.70% 0
127.0.0.2 Up Normal 12.57 KB 20.00% 340...
127.0.0.3 Up Normal 20.51 KB 8.26% 480...
127.0.0.4 Up Normal 20.51 KB 34.04% 105...

How it works...
Each keyspace has a configurable Replication Factor. When a node is removed, Cassandra
begins actively replicating the missing data until it is all stored on the number of nodes
specified by the replication factor.

See also...
The nodetool removetoken command can only be run on a node in the Down state. The
next recipe, Nodetool Decommission: Removing a live node shows how to remove a node in
the Up state.

Nodetool Decommission: Removing a live
node

Decommission is the process for which a node in the UP state is removed. This recipe shows
how to use nodetool decommission.

How to do it...
1.	 Use nodetool ring and find the Address of a node to remove:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring
Address Status State Load Owns Token
127.0.0.1 Up Normal 17.58 KB 37.70% 0

Chapter 7

161

127.0.0.2 Up Normal 12.57 KB 20.00% 340...
127.0.0.3 Up Normal 20.51 KB 8.26% 480...
127.0.0.4 Up Normal 20.51 KB 34.04% 105...

2.	 Select node 127.0.0.3 for decommission and remove it with nodetool
decomission.

Be careful not to confuse decommission with removetoken.
The host nodetool connects to with nodetool decommission
will be the one removed. With removetoken, the node with the
specified token will be removed.

$<cassandra_home>/bin/nodetool -h 127.0.0.3 -p 8003 decommission

Depending on the amount of data in your cluster, this operation can take a long time. The
machine first anti-compacts the data it has and then streams the data to the node that will
now be responsible for that data. Use nodetool ring over time and the decommissioned
host will eventually vanish from your list. Review the logs of the nodes to see how the
compaction and streaming are progressing. You can also use nodetool compactionstats
and nodetool streams to view the progress.

$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring

Address Status State Load Owns Token

127.0.0.1 Up Normal 22.56 KB 37.70% 0

127.0.0.2 Up Normal 17.55 KB 20.00% 340...

127.0.0.4 Up Normal 12.53 KB 42.30% 105...

How it works...
Nodetool decommission has the same effect as Nodetool remove, but is more efficient
because the node leaving the cluster helps calculate and transmit the data that will need to
be moved to other nodes before leaving.

Joining nodes quickly with auto_bootstrap
set to false

By default, the nodes of a cluster have auto_bootstrap set to false. With this setting when
a node starts up, it does not begin migrating data to itself from other nodes. This recipe shows
how to use this setting and explains the caveats that come with it.

Administration

162

Generating SSH keys for password-less
interaction

Several recipes in this chapter will use password-less access to the OpenSSL tools such as
ssh, scp, and rsync. This recipe shows how to generate a public private SSH key pair.

How to do it...
1.	 On a clean node that has not bootstraped, edit <cassandra_home>/conf/

cassandra.yaml:
auto_bootstrap: false

2.	 Start the instance.

How it works...
With auto_bootstrap set to false, the node joins the cluster immediately and starts
serving requests. Setting auto_bootstrap to true means other nodes in the cluster
recompute and transfer data for the new node before it comes online.

There's more...
The data of a node that did not auto_bootstrap can be populated in several ways:

Normal write traffic
After the node is joined, it is responsible for a part of the Token Ring. Write operations will be
delivered to this node as normal. This keeps newly written data in sync, but does nothing for
already existing data that this node is now responsible for.

Read Repair
Read operations trigger the Read Repair process. The Natural Endpoints for the data are
compared and the most recent timestamp is the final value. Out of sync copies are updated.
For read repair to deliver the consistent data, applications must be reading at consistency
level Quorum or higher. Reading at One causes the first read to return an empty or stale result
and the data is repaired after the result is returned to the client.

Anti-Entropy Repair
Anti-Entropy Repair is an intensive process that calculates the differences between data on
nodes and then streams the differing data between nodes. The anti-entropy repair ends up
being more computational work on the cluster than joining a node using auto-bootstrap. Thus,
auto-bootstrap is preferred.

Chapter 7

163

How to do it...
1.	 Generate an SSH public private key pair. When prompted for a passphrase, leave

it empty:
$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX user@host

2.	 Use rsync to transfer the key to the destination server:
$ rsync ~/.ssh/id_rsa.pub root@cassandra05-new:~/

3.	 Append the public key to the authorized_keys file and ensure the permissions
are strong. SSH typically denies access if the ownership of its configuration files are
too weak:

$ ssh root@cassandra05-new
root@cassandra05-new password:
$ cat id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 700 ~/.ssh
$ chmod 600 .ssh/authorized_keys
$ exit

If done correctly, connecting to the destination server with ssh, rsync, and scp should not
require a password.

How it works...
SSH key pairs allow an alternative to password-based authentication. This ability to run
commands on remote machines makes it a fast and simple solution for ad-hoc distributed
computing. It is commonly used to run commands on remote computers typically from
non-interactive jobs such as rsync-based backups through cron.

These is more
Even though SSH keys are cryptographically secure, they do represent a security risk as they
can be used to move from one server to the next or execute remote commands. If a machine
is compromised, a key with no passphrase would allow a user to spring to another server. It
is highly advised to limit commands an SSH key can execute. See the SSH manual pages for
information on restricting these keys.

Administration

164

Copying the data directory to new hardware
The Bootstrap and Anti Entropy Repair processes are generally the best ways to move data
to new nodes. In some cases, it is more efficient to move data around with a file copy tool
such as rsync. This method is efficient when doing a one-to-one move from old hardware to
new hardware.

Getting ready
For this example, assume the node cassandra05 is being replaced by cassandra05-new
and the Cassandra data directory is /var/lib/cassandra. This recipe requires an SSH
Server and SSH Client, but any method of transferring binary data such as FTP is sufficient.

How to do it...
1.	 Create an executable script /root/sync.sh that uses the rsync command:

nohup rsync -av --delete --progress /v
ar/lib/cassandra/data \ root@cassandra05-new:/var/lib/cassandra/
2> /tmp/sync.err \
1> /tmp/sync.out &

$ chmod a+x /root/sync.sh
$ sh /root/sync.sh

2.	 On the source server, cassandra05, stop the Cassandra process and run the sync
again. It will take much less time than the first run because rsync only transfers
changes in the files. Disable Cassandra so it will not be accidentally started again:
$ /etc/init.d/cassandra stop
$ sh /root/sync.sh
$ chkconfig cassandra off

3.	 Switch the host names and IP addresses of the machines. On the new machine, start
Cassandra. Use nodetool ring to ensure the cluster is up:

How it works...
The rsync command is an intelligent copy tool that calculates rolling check sums and only
transfers new or changed parts of files. One of the advantages of rsync is that runs after
the first one only need to transfer changes. This is ideal for the structured log format of
Cassandra's SSTable. The second and third sync may take only seconds!

Chapter 7

165

This technique requires less computation and data movement compared to the process of
nodetool decommission, new node bootstrap, and then subsequent nodetool cleanup.
However, it is slightly more intensive on the administrative side. This method is best used
when the volume of data per node is very large. As far as the other nodes in the cluster know,
the node was offline for a few minutes and is now restarted. They are unaware that the data,
IP, and host name moved to new hardware.

There's more
rsync has a myriad of options that can change how it works. One option is the ability
to exclude data that does not need to be copied with expressions.

--exclude='*snapshot*' --exclude='*CommitLog*'

The bwlimit knob throttles the network usage and, in effect, the disk usage. This can be
used so that the added disk activity will not diminish the serving capabilities of the node.

--bwlimit=4000

A node join using external data copy
methods

Cassandra uses Consistent Hashing to decide which nodes data should be stored on.
When a new node joins the cluster, it becomes responsible for a section of data. That data is
calculated and transferred to that node during the bootstrap process. That transferred data is
always a subset of data on the node logicall right in the ring. One way to achieve a node
join is to transfer the data yourself and then run cleanup on both nodes.

Getting ready
Review the Generating SSH Keys for password-less interaction recipe for moving data
between different physical nodes.

How to do it...
1.	 Use the nodetool ring tool to locate a section of the ring with the most data:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring

Address Status State Load Owns Token

 10599911091748036335
4745863590854172046

Administration

166

127.0.0.1 Up Normal 79.42 KB 37.70% 0

127.0.0.2 Up Normal 77.55 KB 20.00% 34028236692
093846346337460743176821145

127.0.0.4 Up Normal 72.53 KB 42.30% 10599911091
7480363354745863590854172046

The node 127.0.0.4 owns 42 percent of the ring. To relieve this imbalance, the
joining node should be inserted between 127.0.0.2 and 127.0.0.4.

2.	 Insert 127.0.0.5 at 70000000000000000000000000000000000000, which will
divide that range roughly in half. Edit the <cassandra_home>/conf/cassandra.
yaml for the 127.0.0.5, the destination node:
initial_token: 70000000000000000000000000000000000000

auto_bootstrap: false

3.	 Use rsync to copy data from 127.0.0.4 to 127.0.0.5 and either exclude the
system keyspace or remove it from the destination after the copy:
$ rsync -av --delete --progress --exclude='*system*' \
/v
ar/lib/cassandra/data \ root@127.0.0.5:/var/lib/cassandra/

4.	 Start the node and confirm it has correctly joined the cluster using nodetool ring:

$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 ring

Address Status State Load Owns Token

127.0.0.1 Up Normal 79.42 KB 37.70%
127.0.0.2 Up Normal 77.55 KB 20.00%
127.0.0.5 Up Normal 51.9 KB 33.18%
127.0.0.4 Up Normal 72.53 KB 9.12%

Just as with auto-bootstrap, some nodes in the cluster are now carrying extra data
that they are no longer responsible for. Use nodetool cleanup to remove
data that is no longer served by other nodes.
$<cassandra_home>/bin/nodetool -h 127.0.0.4 -p 8004 cleanup

Chapter 7

167

How it works...
This technique uses rsync to carry out roughly the same process of an auto-bootstrap. The
built-in Cassandra bootstrap is the ideal solution in most situations. This solution can be
faster particularly if the node is under heavy usage as normally Cassandra would have to use
resources to anti-compact and stream the data. Unlike the bootstrap process, rsync can be
stopped and restarted.

Nodetool Repair: When to use anti-entropy
repair

Anti-Entropy Repair, also called Anti-Entropy Service or AES, is a process where nodes
compare their data and ensure data is replicated properly and up-to-date. This recipe explains
how to do an anti-entropy repair and the conditions for which it should be ran.

How to do it...
Use nodetool repair against a node to be repaired.

$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 repair

How it works...
Anti-entropy repair is intensive for disk, CPU, and network resources. It is optimal to run this at
times of low traffic. It can create excess copies of data on your nodes. If the storage on nodes
grows significantly as a result of AES, use nodetool compact. Major compaction should
remove duplicate data that resulted from the repair.

There's more...
Anti-entropy-repair should be run on a schedule that matches equal to or lower than the
setting for gc_grace_seconds. There are also other situations when this operation should
be run.

Raising the Replication Factor
If the Replication Factor of a Column Family is raised from two to three, data previously
stored on two nodes should now be stored on three nodes. Read repair fixes this over time
but AES should be run to ensure the node has the proper data as quickly as possible.

Joining nodes without auto-bootstrap
If a node without auto-bootstrap starts with no data, AES will ensure this node gets populated
with the correct data.

Administration

168

Loss of corrupted files
If data files such as SSTables, Indexes, Commit Logs, or Bloom Filters are lost or corrupt,
AES fixes this by re-synchronizing with other nodes. This is more effective than removing
and rejoining the node again.

Nodetool Drain: Stable files on upgrade
Cassandra is designed to be fail-fast. It is designed without elaborate shutdown procedures
to be resilient and start up properly even after an unplanned shutdown. Sending the daemon
process a standard kill should shut the node down properly. A special Nodetool operation
called Drain exists as an alternative to the standard kill. This recipe shows how to use drain
and under what circumstances it should be used.

How to do it...
1.	 Use the nodetool drain command to shut down a selected node:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 drain

Drain can be almost instantaneous or can take a long time depending on the Commit
Log and Memtable settings. Check for the presence of the final message to ensure
the drain is complete.
$ tail -5 /var/log/cassandra

2.	 Use kill to terminate the process:

$ kill <cassandra_pid>

Future versions of drain may self-terminate and remove the
need to run kill.

How it works...
The drain operation stops the nodes from accepting requests. It flushes the Commit Logs to
Memtables and then flushes Memtables to SSTables on disk. The next time a node starts
up it will not need to re-read its commit logs since those will be empty. This option was
originally added to the 0.6.X series in preparation for 0.7.X, which has incompatible Commit
Log formats. Users who are paranoid about losing a write should use drain as the log actively
acknowledges a clean shutdown.

Chapter 7

169

Lowering gc_grace for faster tombstone
cleanup

The SSTable format does not do in-place deletes. Instead, a delete is another write entry
known as a tombstone. During the compaction process, old versions of columns as well
as their tombstones older then GCGraceSeconds can finally be removed. Changing the
GCGracePeriod has implications. This recipe shows how to lower GCGraceSeconds and
what this change implies.

How to do it...
From the CLI, issue the update column family operation and change the grace
seconds time.

[default@ks1] update column family cf1 with gc_grace=4000000;

How it works...
The default for gc_grace is ten days. Lowering this value is important for data sets that are
completely rewritten often. The worst case scenario would be a data set that is completely
rewritten every day as the disk would hold many tombstones or old data with newer versions
in other SSTables. Lowering this setting to three days allows compactions to reclaim the disk
space sooner. Also, it allows some lead time; if an outage happens on a Friday night, you
will hopefully be able to enjoy your weekend before dealing with the troubled node.

There's more...
One of the drawbacks of lowering gc_grace deals with data resurrection. Cassandra is a
distributed system, and distributed deletes have a complex lifecycle of their own.

Data resurrection
Envision a three-node cluster with nodes A, B, C, a Replication Factor of three, and gc_grace
set to one day. On Friday night, node A suffers a power supply failure. The cluster continues
on without it. On Saturday, a key X is deleted and Tombstones are written to node B and node
C. On Sunday, node B and node C compactions remove all data and Tombstones for key X.
Monday morning: node A is repaired and turned on. A read comes into node A for key X. Key X
does exist on node A and it happily returns it to the client and Read Repair (if enabled) would
recreate the key on nodes B and C!

Administration

170

If a node is shutdown longer than gc_grace, you
must rebootstrap it to avoid resurrecting deleted data
like previously described!

Scheduling Major Compaction
Because SSTables are written once and not modified, delete operations are implemented as a
special write called a Tombstone. A Tombstone is a marker that signifies a column is deleted.
Compaction is a process that merges multiple SSTables together, rows Tombstoned are
removed, while other rows are moved to the same location on disk for more efficiency. After
the compaction is done, the source tables are deleted.

Normal Compaction can remove all traces of a key if the Tombstone is older than the
gc_grace and if the Bloom Filters confirm that the key exists in no other SSTables. During
Major Compaction, all SSTables are merged. Data that is marked as deleted and older than
GCGracePeriod will not be present in the new SSTable.

SSTables normally compact only when there are a few like-sized tables. This means that
data can still be resident on disk long after it is deleted, waiting for compaction to finally
remove it. This recipe shows how to run Major Compaction on a schedule forcing the
removal of Tombstones.

How to do it...
1.	 Create a file scripts/ch7/ major_compaction_launcher.sh:

#!/bin/sh
DELAY_SECONDS=86400
NODE_TOOL=/usr/local/cassandra/bin/nodetool
JMX_PORT=8080
for i in server1 server2 server3 server4 ; do
 ${NODE_TOOL} --host ${i} --port ${JMX_PORT} compact
 echo "compacting ${i}"
 sleep $DELAY_SECONDS
done

2.	 Set the script to be executable, then use the nohup command to run the script
detached from the console:

$ chmod a+x major_compaction_launcher.sh
$ nohup major_compaction_launcher.sh &

Chapter 7

171

How it works...
Compaction is a disk, memory, and CPU-intensive process. The more data to be compacted,
the longer this process takes. In a cluster of many nodes, the compaction of a few nodes at
a time is absorbed. This script uses a list supplied by the user. It compacts a node, then it
sleeps, and then it compacts the next in the list. The nohup command detached the process
from this way as the user closing that terminal does not stop the script from running.

There's more...
Normally, users will have access to an enterprise-wide task scheduler or configuration
management system. For those using Puppet for configuration management, it can handle
randomizing when compaction runs.

$aminute = fqdn_rand(60)
$ahour = fqdn_rand(24)
$awday = fqdn_rand(7)

 cron { "compact":
 command => "/usr/local/cassandra/bin/nodetool -h localhost -p 8585
compact",
 user => root,
 hour => $ahour,
 minute => $aminute,
 weekday => $awday
 }

Using nodetool snapshot for backups
One of the benefits of the write-once data file format of Cassandra is that a point in time
snapshot backup of data is easy to achieve. Snapshot makes hard-links of files in the data
directory to a subfolder. These files are not removed until the snapshot is cleared. This recipe
shows how to create snapshots.

Getting ready
List the directory responsible for your keyspaces.

$ ls -lh /home/edward/hpcas/data/1/football/

total 48K

-rw-rw-r--. 1 edward edward 111 Mar 25 17:23 teams-f-1-Data.db

-rw-rw-r--. 1 edward edward 16 Mar 25 17:23 teams-f-1-Filter.db

-rw-rw-r--. 1 edward edward 16 Mar 25 17:23 teams-f-1-Index.db

-rw-rw-r--. 1 edward edward 4.2K Mar 25 17:23 teams-f-1-Statistics.db

Administration

172

How to do it...
1.	 Run the snapshot command:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 snapshot

2.	 Confirm the snapshot worked. Inside the data directory, a snapshot/<timestamp>
folder should exist. The files inside the directory are hard-linked from the data
directory at the time of a snapshot .$ ls -lhR /home/edward/hpcas/data/1/
football:

/home/edward/hpcas/data/1/football/:
total 44K
drwxrwxr-x. 3 edward edward 4.0K Apr 24 12:01 snapshots
-rw-rw-r--. 2 edward edward 111 Mar 25 17:23 teams-f-1-Data.db
-rw-rw-r--. 2 edward edward 16 Mar 25 17:23 teams-f-1-Filter.db
-rw-rw-r--. 2 edward edward 16 Mar 25 17:23 teams-f-1-Index.db
-rw-rw-r--. 2 edward edward 4.2K Mar 25 17:23 teams-f-1-
Statistics.db

/home/edward/hpcas/data/1/football/snapshots:
total 4.0K
drwxrwxr-x. 2 edward edward 4.0K Apr 24 12:01 1303660885180

/home/edward/hpcas/data/1/football/snapshots/1303660885180:
total 40K
-rw-rw-r--. 2 edward edward 111 Mar 25 17:23 teams-f-1-Data.db
-rw-rw-r--. 2 edward edward 16 Mar 25 17:23 teams-f-1-Filter.db
-rw-rw-r--. 2 edward edward 16 Mar 25 17:23 teams-f-1-Index.db
-rw-rw-r--. 2 edward edward 4.2K Mar 25 17:23 teams-f-1-
Statistics.db

How it works...
Cassandra uses a structured log format for data. SSTables are written once and never edited
until they are compacted into other tables and removed. Snapshots maintain a folder with
hard links to the original SSTables at the time of the snapshot. These files will not be removed
until the snapshots are cleared. Multiple snapshots can be taken.

There's more...
Many common backup tools do incremental or differential backup. This can easily be used
to back up Cassandra's data files to a remote system.

Chapter 7

173

See also...
The next recipe, Clearing snapshots with nodetool clearsnapshot.

Clearing snapshots with nodetool
clearsnapshot

Snapshots are used to make point in time backups of data on a specific node. Each time a
snapshot is taken, a folder with hard links to data files are made. When multiple data files are
compacted, the old files are no longer needed. However, if snapshots still exist with references
to the files, they can now be removed. This recipe shows how to clear all snapshots.

Getting ready
Check for existing snapshots in your Cassandra data directory. If you need to create one, refer
to the previous recipe, Using nodetool snapshot for backups.

$ ls -lh /home/edward/hpcas/data/1/football/snapshots/

total 8.0K

drwxrwxr-x. 2 edward edward 4.0K Apr 24 12:01 1303660885180

drwxrwxr-x. 2 edward edward 4.0K Apr 24 22:50 1303699830608

How to do it...
1.	 Use the nodetool clearsnapshot command to remove all existing snapshots:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 clearsnapshot

2.	 Check to make sure the snapshot directory has been removed:

$ ls -lh /home/edward/hpcas/data/1/football/snapshots/
ls: cannot access /home/edward/hpcas/data/1/football/snapshots/:
No such file or directory

How it works...
The nodetool clearsnapshot feature removes all existing snapshot directories and
unlinks all the files in them. This allows the data files to be removed and the space to
be freed for new data.

Administration

174

Restoring from a snapshot
A snapshot is a copy of the Cassandra data files at a point in time. These files can be the
results of a snapshot command or another backup method. This recipe shows how to restore
a snapshot.

How to do it...
1.	 List the Cassandra data directory:

$ ls -lh /home/edward/hpcas/data/1/football/
total 40K
drwxrwxr-x. 3 edward edward 4.0K Apr 24 23:20 snapshots
-rw-rw-r--. 1 edward edward 111 Mar 25 20:05 teams-f-2-Data.db
-rw-rw-r--. 1 edward edward 16 Mar 25 20:05 teams-f-2-Filter.db
-rw-rw-r--. 1 edward edward 16 Mar 25 20:05 teams-f-2-Index.db
-rw-rw-r--. 1 edward edward 4.2K Mar 25 20:05 teams-f-2-
Statistics.db

2.	 Stop Cassandra and remove the files from that directory:
$ rm /home/edward/hpcas/data/1/football/*.db

3.	 Copy the data from the snapshot directory into the data directory:
$ cp snapshots/1303701623423/* /home/edward/hpcas/data/1/football/
$ ls -lh /home/edward/hpcas/data/1/football/
total 44K
drwxrwxr-x. 3 edward edward 4.0K Apr 24 23:20 snapshots
-rw-rw-r--. 1 edward edward 111 Apr 24 23:29 teams-f-1-Data.db
-rw-rw-r--. 1 edward edward 16 Apr 24 23:29 teams-f-1-Filter.db
-rw-rw-r--. 1 edward edward 16 Apr 24 23:29 teams-f-1-Index.db
-rw-rw-r--. 1 edward edward 4.2K Apr 24 23:29 teams-f-1-
Statistics.db

4.	 Start Cassandra.

How it works...
On startup, Cassandra scans its data directories for data files and loads them for serving. By
stopping the server and changing the files in the directory, restarting Cassandra will begin
serving the data from those files.

There's more...
Data is typically stored on more than a single node. Read operations will read repair and
update data. Multiple nodes will have to be restored at once so that updates are not reapplied.

Chapter 7

175

Exporting data to JSON with sstable2json
Exporting data can be used as a backup or to move data to another system. This recipe shows
how to use the sstable2json tool for exporting data.

How to do it...
Use the sstable2json tool to display the data in an SSTable.

$ <cassandra_home>/bin/sstable2json /home/edward/hpcas/data/1/football/
teams-f-1-Data.db

{

"4769616e7473": [["41686d6164204272616473686177",
"52427c41686d61642042726164736861777c313233357c343133", 0, false]]

}

How it works...
This tool exports the binary data of an sstable to a JSON format that can be read by
other tools.

There's more...
Sstable2json has several options that can help it be used for troubleshooting as well as
exporting data.

Extracting specific keys
Sstable2json can extract one or more specific keys using -k arguments.

$ <cassandra_home>/bin/sstable2json /home/edward/hpcas/data/1/football/
teams-f-1-Data.db -k 4769616e7473

Excluding specific keys
Sstable2json can exclude certain rows using -x arguments.

$ <cassandra_home>/bin/sstable2json /home/edward/hpcas/data/1/football/
teams-f-1-Data.db -x 4769616e7473

Saving the exported JSON to a file
Send the output to standard out to save the results.

$ <cassandra_home>/bin/sstable2json /home/edward/hpcas/data/1/football/
teams-f-1-Data.db > /tmp/json.txt

Administration

176

Using the xxd command to decode hex values
When a column is row stored only as bytes with no comparator or validator, it is displayed
as hex. If the system has the xxd tool, you can decode these.

$ echo 4769616e7473 | xxd -r -p

Giants

$ echo 41686d6164204272616473686177 | xxd -r -p

Ahmad Bradshaw

Nodetool cleanup: Removing excess data
When a node is added to a Cassandra cluster or an existing node is moved to a new position
on the token ring, other systems still retain copies of data they are not responsible for.
Nodetool cleanup removes data that does not belong on this node.

How to do it...
Use the IP and JMX port as arguments to nodetool cleanup.

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 cleanup

Keyspace and Column Family are optional arguments

If called with no arguments, cleanup is run on all keyspaces and
column families. The keyspace and column family can be
specified at the end of the command to limit the data cleaned up.

How it works...
Cleanup is a special type of compaction that removes data that does not belong on the node.
Cleanup is intensive because it has to examine large portions of the data on disk.

There's more...
There are two reasons where running cleanup is required. They are as follows:

Topology changes
The first and most common reason cleanup is needed is a node being added or moved from
the token ring. These changes cause the nodes that some data in the cluster belong to
shift. Cassandra was designed not to automatically remove data from the old location. The
reasoning behind this logic is that if a node has faulty hardware, it will likely fail quickly and
keeping the data in the old place for some protects against this.

Chapter 7

177

Hinted handoff and write consistency ANY
The second reason where cleanup is needed is when using hinted handoff and write
consistency ANY. During a write, if all the nodes data belongs on are down, a write can be
delivered to any node in the cluster. This write will be re-delivered later to the node in which
it belongs. No process is in place to remove the hinted handoff data automatically.

See also...
ff In this chapter, Nodetool Compact: Defragment data and remove deleted data

from disk

ff In Chapter 5, Consistency, Availability, and Partition Tolerance with Cassandra, the
recipe Choosing availability over consistency write consistency ANY

Nodetool Compact: Defragment data and
remove deleted data from disk

The data files in Cassandra are stored in a structured log format. This design choice has
many consequences. Row keys with columns written over time can be spread across many
data files. Frequently updated columns may be stored multiple times on disk. The process
that merges these tables over time is called compaction. Compaction happens normally as
new data files are created. This recipe shows how to force a major compaction that combines
multiple data files into a single one.

How to do it...
Use the IP and JMX port as arguments to nodetool compact.

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8001 compact

Keyspace and Column Family are optional arguments

If called with no arguments, compact is run for all keyspaces and column
families. The keyspace and column family can be specified at the
end of the command to limit the data compacted.

Administration

178

How it works...
Major compaction joins multiple data files into a single one. If a row was fragmented across
multiple physical data files, it will now be in a single file, which should make reading more
efficient. Delete records called tombstones that are past. The gc_grace are removed along
with their data they mark as deleted, which shrinks the size of the data files.

See also...
In this chapter, Lowering gc_grace for faster tombstone cleanup.

8
Multiple Datacenter

Deployments

In this chapter, you will learn the following recipes:

ff Changing debugging to determine where read operations are being routed

ff Using IPTables to simulate complex network scenarios in a local environment

ff Choosing IP addresses to work with RackInferringSnitch

ff Scripting a multiple datacenter installation

ff Specifying Rack and Datacenter configuration with a property file snitch

ff Troubleshooting dynamic snitch using JConsole

ff Quorum operations in multi-datacenter environments

ff Using traceroute to troubleshoot latency between datacenters

ff Ensuring bandwidth between switches in multiple rack environments

ff Increasing rpc_timeout for dealing with latency across datacenters

ff Changing consistency level from the CLI to test various consistency levels with
multiple datacenter deployments

ff Using the consistency levels TWO and THREE

ff Calculating Ideal Initial Tokens for use with Network Topology Strategy and
Random Partitioner

The tunable consistency model of Cassandra extends beyond a single datacenter to complex
multiple datacenter scenarios. This chapter discusses the features inside Cassandra that are
designed for this type of deployment.

Multiple Datacenter Deployments

180

Changing debugging to determine where
read operations are being routed

Cassandra replicates data to multiple nodes; because of this, a read operation can be served
by multiple nodes. If a read at QUORUM or higher is submitted, a Read Repair is executed, and
the read operation will involve more than a single server. In a simple flat network which nodes
have chosen for digest reads, are not of much consequence. However, in multiple datacenter
or multiple switch environments, having a read cross a switch or a slower WAN link between
datacenters can add milliseconds of latency. This recipe shows how to debug the read path to
see if reads are being routed as expected.

How to do it...
1.	 Edit <cassandra_home>/conf/log4j-server.properties and set the logger

to debug, then restart the Cassandra process:
log4j.rootLogger=DEBUG,stdout,R

2.	 On one display, use the tail -f <cassandra_log_dir>/system.log to follow the
Cassandra log:
DEBUG 06:07:35,060 insert writing local
RowMutation(keyspace='ks1', key='65', modifications=[cf1])
DEBUG 06:07:35,062 applying mutation of row 65

3.	 In another display, open an instance of the Cassandra CLI and use it to insert data.
Remember, when using RandomPartitioner, try different keys until log events
display on the node you are monitoring:
[default@ks1] set cf1[‘e'][‘mycolumn']='value';
Value inserted.

4.	 Fetch the column using the CLI:

[default@ks1] get cf1[‘e'][‘mycolumn'];

Debugging messages should be displayed in the log.

DEBUG 06:08:35,917 weakread reading SliceByNamesReadComman
d(table='ks1', key=65, columnParent='QueryPath(columnFami
lyName='cf1', superColumnName='null', columnName='null')',
columns=[6d79636f6c756d6e,]) locally
...
DEBUG 06:08:35,919 weakreadlocal reading SliceByNamesReadCo
mmand(table='ks1', key=65, columnParent='QueryPath(columnFa
milyName='cf1', superColumnName='null', columnName='null')',
columns=[6d79636f6c756d6e,])

Chapter 8

181

How it works...
Changing the logging property level to DEBUG causes Cassandra to print information as it is
handling reads internally. This is helpful when troubleshooting a snitch or when using the
consistency levels such as LOCAL_QUORUM or EACH_QUORUM, which route requests based
on network topologies.

See also...
Later in this chapter, the recipe Quorum operations in multiple datacenter environments
describes a scenario where being able to troubleshoot the read path is critical to performance.

Using IPTables to simulate complex network
scenarios in a local environment

While it is possible to simulate network failures by shutting down Cassandra instances,
another failure you may wish to simulate is a failure that partitions your network. A failure in
which multiple systems are UP but cannot communicate with each other is commonly referred
to as a split brain scenario. This state could happen if the uplink between switches fails or the
connectivity between two datacenters is lost.

Getting ready
When editing any firewall, it is important to have a backup copy. Testing on a remote machine
is risky as an incorrect configuration could render your system unreachable.

How to do it...
1.	 Review your iptables configuration found in /etc/sysconfig/iptables.

Typically, an IPTables configuration accepts loopback traffic:
:RH-Firewall-1-INPUT - [0:0]
-A INPUT -j RH-Firewall-1-INPUT
-A FORWARD -j RH-Firewall-1-INPUT
-A RH-Firewall-1-INPUT -i lo -j ACCEPT

2.	 Remove the highlighted rule and restart IPTables. This should prevent instances of
Cassandra on your machine from communicating with each other:
#/etc/init.d/iptables restart

Multiple Datacenter Deployments

182

3.	 Add a rule to allow a Cassandra instance running on 10.0.1.1 communicate to
10.0.1.2:

-A RH-Firewall-1-INPUT -m state --state NEW -s 10.0.1.1 -d
10.0.1.2 -j ACCEPT

How it works...
IPTables is a complete firewall that is a standard part of current Linux kernel. It has extensible
rules that can permit or deny traffic based on many attributes, including, but not limited
to, source IP, destination IP, source port, and destination port. This recipe uses the traffic
blocking features to simulate network failures, which can be used to test how Cassandra
will operate with network failures.

Choosing IP addresses to work with
RackInferringSnitch

A snitch is Cassandra's way of mapping a node to a physical location in the network. It helps
determine the location of a node relative to another node in order to ensure efficient request
routing. The RackInferringSnitch can only be used if your network IP allocation is divided
along octets in your IP address.

Getting ready
The following network diagram demonstrates a network layout that would be ideal for
RackInferringSnitch.

Chapter 8

183

How to do it...
1.	 In the <cassandra_home>/conf/cassandra.yaml file:

endpoint_snitch: org.apache.cassandra.locator.RackInferringSnitch

2.	 Restart the Cassandra instance for this change to take effect.

How it works...
The RackInferringSnitch requires no extra configuration as long as your network
adheres to a specific network subnetting scheme. In this scheme, the first octet, Y.X.X.X,
is the private network number 10. The second octet, X.Y.X.X, represents the datacenter.
The third octet, X.X.Y.X, represents the rack. The final octet represents the host, X.X.X.Y.
Cassandra uses this information to determine which hosts are ‘closest'. It is assumed that
‘closer' nodes will have more bandwidth and less latency between them. Cassandra uses this
information to send Digest Reads to the closest nodes and route requests efficiently.

There's more...
While it is ideal if the network conforms to what is required for RackInferringSnitch, it is
not always practical or possible. It is also rigid in that if a single machine does not adhere to
the convention, the snitch will fail to work properly.

See also...
The next recipe, Manually specifying Rack and Datacenter configuration with property file
snitch to see how to use a configuration file to set the topology information.

Scripting a multiple datacenter installation
Testing out some multiple datacenter capabilities of Cassandra can sometimes require a large
number of instances. This recipe installs and creates all the configuration files required to run
a multiple datacenter simulation of Cassandra locally.

Getting ready
This recipe is an enhanced version of the recipe Scripting a multiple instance installation in
Chapter 1, Getting Started.

It creates many instances of Cassandra, and each instance uses a minimum of 256 MB RAM.
A Cassandra release in tar.gz format needs to be in the same directory as the script.

Multiple Datacenter Deployments

184

How to do it...
1.	 Open <hpcbuild>scripts/multiple_instances_dc.sh and add this content:

#!/bin/sh
#wget http://www.bizdirusa.com/mirrors/apache//cassandra/0.7.0/
apache-cassandra-0.7.0-beta1-bin.tar.gz
HIGH_PERF_CAS=${HOME}/hpcas
CASSANDRA_TAR=apache-cassandra-0.7.5-bin.tar.gz
TAR_EXTRACTS_TO=apache-cassandra-0.7.5
mkdir ${HIGH_PERF_CAS}
mkdir ${HIGH_PERF_CAS}/commit/
mkdir ${HIGH_PERF_CAS}/data/
mkdir ${HIGH_PERF_CAS}/saved_caches/
cp ${CASSANDRA_TAR} ${HIGH_PERF_CAS}
pushd ${HIGH_PERF_CAS}

This script will take a list of arguments such as ‘dc1-3 dc2-3'. The string before the
first dash is the name of the datacenter, and the string after the dash is the number
of instances in that datacenter.dcnum=0

while [$# -gt 0]; do
 arg=$1
 shift
 dcname=`echo $arg | cut -f1 -d ‘-'`
 nodecount=`echo $arg | cut -f2 -d ‘-'`
 #rf=`echo $arg | cut -f2 -d ‘-'`
 for ((i=1; i<=nodecount; i++)) ; do
 tar -xf ${CASSANDRA_TAR}
 mv ${TAR_EXTRACTS_TO} ${TAR_EXTRACTS_TO}-${dcnum}-${i}
 sed -i ‘1 i MAX_HEAP_SIZE="256M"' ${TAR_EXTRACTS_TO}-${dcnum}-
${i}/conf/cassandra-env.sh

2.	 Use the datacenter number as the value of the second octet, and the node number in
the fourth octet:
 sed -i ‘1 i HEAP_NEWSIZE="100M"' ${TAR_EXTRACTS_TO}-${dcnum}-
${i}/conf/cassandra-env.sh
 sed -i "/listen_address\|rpc_address/s/localhost/127.${dcnum}.
0.${i}/g" ${TAR_EXTRACTS_TO}-${dcnum}-${i}/conf/cassandra.yaml
 sed -i "s|/var/lib/cassandra/data|${HIGH_PERF_CAS}/
data/${dcnum}-${i}|g" ${TAR_EXTRACTS_TO}-${dcnum}-${i}/conf/
cassandra.yaml
 sed -i "s|/var/lib/cassandra/commitlog|${HIGH_PERF_CAS}/
commit/${dcnum}-${i}|g" ${TAR_EXTRACTS_TO}-${dcnum}-${i}/conf/
cassandra.yaml

Chapter 8

185

 sed -i "s|/var/lib/cassandra/saved_caches|${HIGH_PERF_CAS}/
saved_caches/${dcnum}-${i}|g" ${TAR_EXTRACTS_TO}-${dcnum}-${i}/
conf/cassandra.yaml
 sed -i "s|8080|8${dcnum}0${i}|g" ${TAR_EXTRACTS_TO}-${dcnum}-
${i}/conf/cassandra-env.sh

3.	 Change the snitch from SimpleSnitch to RackInferringSnitch. This will use
the listen address of the Cassandra machine to locate it in the datacenter and rack:
 sed -i "s|org.apache.cassandra.locator.SimpleSnitch|org.
apache.cassandra.locator.RackInferringSnitch|g" ${TAR_EXTRACTS_
TO}-${dcnum}-${i}/conf/cassandra.yaml
 done
 dcnum=`expr $dcnum + 1`
done
popd

4.	 Run this script passing arguments to create two datacenters with each having
three nodes:
$ sh scripts/multiple_instances_dc.sh dc1-3 dc2-3

5.	 Start up each node in the cluster. Then, connect to a node with the
cassandra-cli. Create a keyspace. Ensure the placement_strategy is the
NetworkTopologyStrategy and supply it strategy_options to configure
how many replicas to place in each datacenter:

[default@unknown] create keyspace ks33 placement_strategy = 'org.
apache.cassandra.locator.
NetworkTopologyStrategy' and strategy_options=[{0:2,1:2}];

How it works...
This script takes command-line arguments and uses those to set up multiple
Cassandra instances using specific IP addresses. The IP addresses are chosen to
work with the RackInferringSnitch. After starting the cluster, a keyspace using
NetworkTopologyStrategy with a replication factor of 6 is created. The strategy_
options specify three replicas in datacenter 0 and three in datacenter 1.

Determining natural endpoints, datacenter,
and rack for a given key

When troubleshooting, it is valuable to know which rack and datacenter your snitch believes a
node belongs to. Also, knowing which machines would store a specific key is important when
troubleshooting specific failures or determining how your strategy is spreading data across the
cluster. This recipe shows how to use JConsole to find this information.

Multiple Datacenter Deployments

186

How to do it...
Inside JConsole, select the Mbeans tab, expand the org.apache.cassandra.db tree, expand
the EndPointSnitch Mbean, then select Operations. In the right pane, find the button labeled
getRack. Enter the IP address of a node to find rack information in the text box next
to the button. Enter 127.0.1.0, then click the getRack button.

In the operations list, another method getDatacenter is defined. Supply the IP address of
a node in the text box next to the button and then click OK.

Chapter 8

187

How it works...
This operation is used internally to intelligently route requests. Calling this operation is a way
to check that the PropertyFileSnitch or RackInferringSnitch is working correctly.

See also...
Manually specifying Rack and Datacenter configuration with a property file snitch in
this chapter.

Manually specifying Rack and Datacenter
configuration with a property file snitch

The job of the Snitch is to determine which nodes are in the same Rack or Datacenter. This
information is vital for multiple datacenter Cassandra deployments. The property file snitch
allows the administrator to define a property file that Cassandra uses to determine what
datacenter and rack nodes are a part of. This recipe shows how to configure the property
file snitch.

Getting ready
Review the diagram in the Choosing IP Addresses to work with RackInferringSnitch recipe. We
will be using the same theoretical network for this recipe.

How to do it...
1.	 Open <cassandra_home>conf/cassandra-topology.properties in your text

editor. Create an entry for each host:
10.1.2.5=ny:rack2
10.1.2.6=ny:rack2
10.1.3.7=ny:rack3
10.2.5.9=tx:rack5
10.2.3.4=tx:rack3
10.2.3.9=tx:rack3

2.	 Edit <cassandra_home>/conf/cassandra.yaml in your text editor:
endpoint_snitch: org.apache.cassandra.locator.PropertyFileSnitch

3.	 Replicate this file to all hosts in your cluster and restart the Cassandra process.

Multiple Datacenter Deployments

188

How it works...
The cassandra-topology.properties file is a simple Java properties file. Each line is
an entry in the form of <ip>=<data center>:<rack>. The property file snitch reads this
information on startup and uses it to route requests. This optimization attempts to handle
digest reads to a host on the same switch or datacenter.

There's more...
See the previous recipe, Determining natural endpoints, datacenter, and rack for a given key
to see how to test if you have performed this setup correctly.

Troubleshooting dynamic snitch using
JConsole

The Dynamic Snitch is a special snitch that wraps another snitch such as the
PropertyFileSnitch. Internally, Cassandra measures latency of read traffic on each
host and attempts to avoid sending requests to nodes that are performing slowly. This recipe
shows how to use JConsole to find and display the scores that the snitch has recorded.

Getting ready
The recipe in Chapter 1, Connecting to Cassandra with JConsole shows you how to connect.

How to do it...
In the left pane, expand the view for org.apache.cassandra.db and expand the
DynamicEndpointSnitch item below it. An Mbean with a randomly chosen number will be
below, which you need to expand again. Click on the attributes and the Scores information
will appear in the right panel.

Chapter 8

189

How it works...
When Cassandra nodes are under CPU or IO load due to a heavy number of requests,
compaction, or an external factor such as a degraded RAID volume, that node should have a
higher score. With dynamic snitch enabled nodes coordinating read operations will send fewer
requests to slow servers. This should help balance requests across the server farm.

Quorum operations in multi-datacenter
environments

Most applications use Cassandra for its capability to perform low-latency read and write
operations. When a cluster is all located in a single physical location, the network latency is
low and bandwidth does not (typically) have a cost. However, when a cluster is spread across
different geographical locations, latency and bandwidth costs are factors that need to be
considered. Cassandra offers two consistency levels: LOCAL_QUORUM and EACH_QUROUM.
This recipe shows how to use these consistency levels.

Getting ready
The consistency levels LOCAL_QUORUM and EACH_QUORUM only work when using a
datacenter-aware strategy such as the NetworkTopologyStrategy. See the recipe
Scripting a multiple datacenter installation for information on setting up that environment.

Multiple Datacenter Deployments

190

READ.LOCAL_QUORUM returns the record with the most recent timestamp
once a majority of replicas within the local datacenter have replied.

READ.EACH_QUORUM returns the record with the most recent timestamp
once a majority of replicas within each datacenter have replied.

WRITE.LOCAL_QUORUM ensures that the write has been written to
<ReplicationFactor> / 2 + 1 nodes within the local datacenter (requires
network topology strategy).

WRITE.EACH_QUORUM ensures that the write has been written to
<ReplicationFactor> / 2 + 1 nodes in each datacenter (requires network
topology strategy).

How it works...
Each datacenter-aware level offers tradeoffs versus non-datacenter-aware levels. For example,
reading at QUORUM in a multi-datacenter configuration would have to wait for a quorum of
nodes across several datacenters to respond before returning a result to the client. Since
requests across a WAN link could have high latency (40ms and higher), this might not be
acceptable for an application that returns results to the clients quickly. Those clients can
use LOCAL_QUORUM for a stronger read then ONE while not causing excess delay. The same
can be said for write operations at LOCAL_QUORUM, although it is important to point out that
writes are generally faster than reads.

It is also important to note how these modes react in the face of network failures. EACH_
QUORUM will only succeed if each datacenter is reachable and QUORUM can be established
in each. LOCAL_QUORUM can continue serving requests even with the complete failure
of a datacenter.

Using traceroute to troubleshoot latency
between network devices

Internet communication over long distances has inherent latency due to the speed of light;
however, some areas of the world have more robust network links and better peering. A
common tool used to check for network latency is traceroute.

Chapter 8

191

How to do it...
1.	 Use traceroute to test the path to an Internet-based host.

$ traceroute -n www.google.com

traceroute to www.google.com (74.125.226.113), 30 hops max, 60
byte packets

 1 192.168.1.1 2.473 ms 6.997 ms 7.603 ms
 2 10.240.181.29 14.890 ms 15.394 ms 15.590 ms
 3 67.83.224.34 15.970 ms 16.573 ms 16.947 ms
 4 67.83.224.9 22.606 ms 22.969 ms 23.324 ms
 5 64.15.8.1 23.841 ms 24.710 ms 24.283 ms
 6 64.15.0.41 30.699 ms 29.384 ms 24.861 ms
 7 * * *
 8 72.14.238.232 15.931 ms 16.388 ms 16.810 ms
 9 216.239.48.24 19.833 ms 16.504 ms 16.732 ms
10 74.125.226.113 19.616 ms 19.158 ms 19.021 ms

How it works...
Traceroute tracks the route packets taken from an IP network on their way to a given
host. It utilizes the IP protocol's time to live (TTL) field and attempts to elicit an ICMP
TIME_EXCEEDED response from each gateway along the path to the host.

By analyzing the response time of each device, hops that are taking a long time can be
identified as the source of problems. Depending on where the slowness occurs, you can
take appropriate action. That may be contacting your network administrator or your ISP.

Ensuring bandwidth between switches in
multiple rack environments

For clusters with a few nodes, it is generally advisable to place these nodes on a single
switch for simplicity. Multiple rack deployments are suggested when the number of nodes is
more than the ports on a typical switch or for redundancy. Cassandra does a high amount of
intra-cluster communication. Thus, when nodes are divided across switches, ensure that the
links between switches DO not become choke points. This recipe describes how to monitor
network interface traffic.

Multiple Datacenter Deployments

192

How to do it...
Monitor the traffic on all interfaces, especially on the uplink interfaces between switches
using a NMS such as mrtg or cacti. Know the maximum capacity of your network gear and
plan for growth.

There's more...
If the uplinks between switches are network contention points, there are several solutions.
One option is to spread your nodes out over more switches. Another option is to upgrade the
uplink between your switches, for example if your switches supports 10 GB uplinks, these would
give more bandwidth than the standard 1 GB uplinks. Enterprise-level switches often support
Link Aggregation Groups (LAG), which bundle multiple interfaces together in an active/active
fashion to make a single logical interface that is as fast as the sum of the links aggregated.

Increasing rpc_timeout for dealing with
latency across datacenters

Cassandra servers in a cluster have a maximum timeout that they will use when
communicating with each other. This is different than the socket timeout used for Thrift
clients talking to Cassandra. Operations will have more latency with nodes communicating
across large distances.This recipe shows how to adjust this timeout.

How to do it...
1.	 Open <cassandra_home>/conf/cassandra.yaml in a text editor. Increase the

timeout value:
rpc_timeout_in_ms: 20000

2.	 Restart Cassandra for this change to take effect:

Chapter 8

193

How it works...
When clusters are spread out over large geographical distances, intermittent outages have a
greater chance of making requests exceed the timeout value. Remember, if a client is using
a consistency level such as ONE, they may receive a result quickly, but the cluster may still
be working to write that data to replicas in other datacenters. Raising the timeout gives the
cluster more time to complete the process in the background.

Changing consistency level from the CLI
to test various consistency levels with
multiple datacenter deployments

By default, the command-line interface reads and writes data at consistency level ONE. When
using Cassandra with multiple node and multiple datacenter environments, being able to
execute operations at other consistency levels is essential to testing and troubleshooting
problems. This recipe shows to change the consistency level while using the CLI.

Getting ready
This recipe assumes a multiple data setup such as the one created in the recipe Scripting a
multiple datacenter installation.

How to do it...
1.	 Use the consistencylevel statement to change the level the CLI will execute

operations at:
[default@unknown] connect 127.0.0.1/9160;
Connected to: "Test Cluster" on 127.0.0.1/9160

[default@unknown] create keyspace ks33 with placement_strategy =
'org.apache.cassandra.locator.
NetworkTopologyStrategy' and strategy_
options=[{0:3,1:3}];
[default@unknown] use ks33;
Authenticated to keyspace: ks33
[default@ks33] create column family cf33;

Down all the nodes that are in one of the datacenters.

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 9001 ring

Address Status State Load Owns Token

Multiple Datacenter Deployments

194

127.1.0.3 Down Normal 42.62 KB 42.18%
127.0.0.1 Up Normal 42.62 KB 6.74%
127.0.0.2 Up Normal 42.62 KB 11.78%
127.0.0.3 Up Normal 42.62 KB 22.79%
127.1.0.2 Down Normal 42.62 KB 4.62%
127.1.0.1 Down Normal 42.62 KB 11.90%

2.	 Insert a row at the default consistency level of ONE:
[default@ks33] set cf33[‘a'][‘1']=1;
Value inserted.

3.	 Change the consistency level to EACH_QUORUM:

[default@ks33] consistencylevel as EACH_QUORUM;
Consistency level is set to ‘EACH_QUORUM'.
[default@ks33] set cf33[‘a'][‘1']=1;
null
[default@ks33] get cf33[‘a'][‘1'];
null

4.	 Change the consistency level to LOCAL_QUORUM:	
[default@ks33] consistencylevel as LOCAL_QUORUM;
Consistency level is set to ‘LOCAL_QUORUM'.
[default@ks33] set cf33[‘a'][‘1']=1;
Value inserted.
[default@ks33] get cf33[‘a'][‘1'];
=> (column=31, value=31, timestamp=1304897159103000)

How it works...
The consistencylevel statement in the command-line interface changes the level
operations run at. The default level of ONE will succeed as long as a single natural endpoint
for the data acknowledges the operation. For LOCAL_QUORUM, a quorum of nodes in the local
datacenters must acknowledge the operation for it to succeed. With EACH_QUROUM, a quorum
of nodes in all datacenters much acknowledge the operation for it to succeed. If the CLI
displays null after a set or get, the operation failed.

Using the consistency levels TWO and
THREE

In multiple datacenter scenarios, replication factors higher than three are common. In some
of these cases, users want durability of writing to multiple nodes, but do not want to use ONE
or QUORUM. The Thrift code generation file, <cassandra_home>/interface/cassandra.
thrift, has inline comments that describe the different consistency levels available.

Chapter 8

195

 * Write consistency levels make the following guarantees before
reporting success to the client:
...
 * TWO Ensure that the write has been written to at least 2
nodes' commit log and memory table
 * THREE Ensure that the write has been written to at least 3
nodes' commit log and memory table
...
* Read consistency levels make the following guarantees before
returning successful results to the client:
...
 * TWO Returns the record with the most recent timestamp
once two replicas have replied.
 * THREE Returns the record with the most recent timestamp
once three replicas have replied.

Getting ready
This recipe requires a multiple datacenter installation as described in the recipe Scripting a
multiple datacenter installation.

How to do it...
1.	 Create a two-datacenter cluster with two nodes in each datacenter:

$ sh multiple_instances_dc.sh dc1-3 dc2-3

2.	 Create a keyspace with a replication factor of 4 and two replicas in each datacenter:
[default@unknown] create keyspace ks4 with placement_strategy =
'org.apache.cassandra.locator.
NetworkTopologyStrategy' and strategy_
options=[{0:2,1:2}];

[default@unknown] use ks4;
[default@ks4] create column family cf4;

3.	 Down multiple nodes in the cluster inside the same datacenter:
$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 9001 ring
Address Status State Load Owns Token
127.0.0.3 Down Normal 42.61 KB 39.37%
127.1.0.1 Up Normal 42.61 KB 2.43%
127.0.0.2 Down Normal 42.61 KB 10.85%
127.1.0.2 Up Normal 42.61 KB 17.50%
127.0.0.1 Up Normal 42.61 KB 5.40%
127.1.0.3 Up Normal 42.61 KB 24.44%

Multiple Datacenter Deployments

196

4.	 Set the consistency level to TWO and then insert and read a row:

[default@ks4] connect 127.0.0.1/9160;
[default@unknown] consistencylevel as two;
Consistency level is set to ‘TWO'.

[default@unknown] use ks4;
[default@ks4] set cf4[‘a'][‘b']='1';
Value inserted.
[default@ks4] get cf4[‘a'];
=> (column=62, value=31, timestamp=1304911553817000)
Returned 1 results.

How it works...
Replication factors such as TWO and THREE can be helpful. An example of this is a
two-datacenter deployment with a replication factor of four. QUORUM would require three
natural endpoints, and since each datacenter has two replicas, this would mean that the
operation depends on the system in a remote datacenter. If the remote datacenter is
down—EACH_QUORUM would fail, and if a local replica was down—LOCAL_QUORUM would
fail. Consistency level TWO would allow the first two acknowledgments, local or remote, to
successfully complete the operation.

Calculating Ideal Initial Tokens for use with
Network Topology Strategy and
Random Partitioner
NetworkTopologyStrategy works in conjunction with an EndpointSnitch to determine
a relative proximity of each of your Cassandra nodes and distribute replica data in an explicit
user specified manner. The replica insertion behavior of NetworkTopologyStrategy requires
that the "standard" ring concept of even token distribution between all nodes that span multiple
datacenters is not used, but instead create mirrored logical rings between datacenters.

Chapter 8

197

Getting ready
For NetworkTopologyStrategy to work, you must have a correctly configured Endpoint
Snitch. For absolute control, use PropertyFileSnitch to specify which Cassandra nodes
are in which datacenter and rack.

How to do it...
For this example, assume two datacenters each with two nodes. Calculate the tokens for the
nodes in a datacenter as if they were the entire ring.

1.	 The formula to calculate the ideal Initial Tokens is:
Initial_Token = Zero_Indexed_Node_Number * ((2^127) / Number_Of_
Nodes)

2.	 For the first node in the first datacenter (N0DC0):
initial token = 0 * ((2^127) / 2)
initial token = 0

3.	 For the second node in the first datacenter (N1DC0):
initial token = 1 * ((2^127) / 2)
initial token = 85070591730234615865843651857942052864

Now, for the second datacenter, do the exact same process, but no two nodes can
have the same token, so offset the tokens by adding 1 to the token value.

4.	 For the first node in the second datacenter (N0DC1):
initial token = 1

5.	 For the second node in the second datacenter (N1DC1):
initial token = 85070591730234615865843651857942052865

How it works...
Continuing with our two-datacenter example, a replica for token 3 is set to go from DC0 to
DC1. Cassandra determines which node will get the write in the remote datacenter the same
way it would do for primary insertion. Cassandra will write to the node whose Initial Token is
closest without being larger than the data's token. When using Network Topology strategy,
Cassandra only has nodes in the remote datacenter to choose from when placing the replica,
not the entire ring. Thus, the replica will write to DC1N0.

Multiple Datacenter Deployments

198

There's more...
NetworkToplogySnitch is versatile as it can be used with more than two datacenters and
even when datacenters have differing numbers of nodes. However, it must be set up properly.

More than two datacenters
If there are more than two datacenters, follow the same steps but keep incrementing
the offset so that no nodes have the same Initial Token. For example, add 2 in the
third datacenter.

Datacenters with differing numbers of nodes
NetworkTopologyStrategy also works with multiple datacenters that each have
different numbers of nodes. Follow the recipe of computing the tokens for that datacenter
independently, and then check to make sure there are no token collisions on any other node
in any datacenter. If the numbers collide, increment the token on one of those nodes.

Endpoint Snitch
Furthermore, using a different, or improperly configured Endpoint Snitch, will not guarantee
you even replication.

See also...
In this chapter, the recipe Specifying Rack and Datacenter configuration with a property
file snitch.

For a reference on how Cassandra uses tokens to select nodes to write to, see the recipe
in Chapter 1, Getting Started, Calculating Ideal Initial Tokens for use with Random Partitioner.

9
Coding and Internals

In this chapter, you will learn the following recipes:

ff Installing common development tools

ff Building Cassandra from source

ff Creating your own type by sub classing abstract type

ff Using the validation to check data on insertion

ff Communicating with the Cassandra developers and users through IRC and e-mail

ff Generating a diff using subversion's diff feature

ff Applying a diff using the patch command

ff Customizing the sstable2json export utility

ff Using strings and od to quickly search through data files

ff Configure index interval ratio for lower memory usage

ff Increasing phi_convict_threshold for less reliable networks

ff Using the Cassandra maven plugin

Introduction
Cassandra has a simple and powerful API and data model. There are some components
that are designed for user extensibility such as custom types and practitioners. Working with
these components requires writing code that builds against the Cassandra code. Also, like
many open source projects, users often become developers by searching for bugs or adding
new features.

Coding and Internals

200

Installing common development tools
Several common tools are used to develop Java applications. These tools help fetch, build,
and test code.

How to do it...
Use yum to install the following components:

$ yum install maven

$ yum install ant

$ yum install subversion

$ yum install git

$ yum install junit

How it works...
They can be downloaded and installed individually, but installing with the yum tool is faster.

Building Cassandra from source
The Cassandra code base is active and typically has multiple branches. It is a good practice
to run official releases, but at times it may be necessary to use a feature or a bug fix that has
not yet been released. Building and running Cassandra from source allows for a greater level
of control of the environment. Having the source code, it is also possible to trace down and
understand the context or warning or error messages you may encounter. This recipe shows
how to checkout Cassandra code from Subversion (SVN) and build it.

How to do it...
1.	 Visit http://svn.apache.org/repos/asf/cassandra/branches with a web

browser. Multiple sub folders will be listed:
/cassandra-0.5/
/cassandra-0.6/

Each folder represents a branch. To check out the 0.6 branch:

$ svn co http://svn.apache.org/repos/asf/cassandra/branches/
cassandra-0.6/

Chapter 9

201

2.	 Trunk is where most new development happens. To check out trunk:
$ svn co http://svn.apache.org/repos/asf/cassandra/trunk/

3.	 To build the release tar, move into the folder created and run:

$ ant release

This creates a release tar in build/apache-cassandra-0.6.5-bin.tar.gz,
a release jar, and an unzipped version in build/dist.

How it works...
Subversion (SVN) is a revision control system commonly used to manage software projects.
Subversion repositories are commonly accessed via the HTTP protocol. This allows for simple
browsing. This recipe is using the command-line client to checkout code from the repository.

See also...
In this chapter, the recipe Generating a diff using subversion's diff feature

Creating your own type by sub classing
abstract type

Cassandra stores columns as byte arrays and does not enforce any restrictions on them
by default. This design principal allows users to quickly serialize and store data, but there
are some drawbacks to this approach. For the high-level user using the CLI, raw byte arrays
display as hex strings. Those working on the backend may be used to a storage system
providing data integrity checks such as length or type of data. This recipe shows how to
write a custom type in Cassandra by extending AbstractType.

How to do it...
1.	 Create <hpc_build>/java/hpcas/c09/USFootballPlayerType.java in a

text editor:
package hpcas.c09;

import org.apache.cassandra.db.marshal.*;
import hpcas.c03.*;
import java.nio.ByteBuffer;
import org.apache.cassandra.thrift.*;
import org.apache.cassandra.utils.ByteBufferUtil;

Coding and Internals

202

class PlayerBean {
 String position, name;
 int rushingyards, receivingyards;

 public PlayerBean(){}

2.	 Create a method that writes this instance to a ByteBuffer:
 public ByteBuffer writeToBuffer() {
 return ByteBufferUtil.bytes(position + "|" + name +"|"
 + rushingyards + "|" + receivingyards);
 }

3.	 Create a method that returns an instance of PlayerBean from a ByteBuffer:
 public static PlayerBean readFromBuffer(ByteBuffer bb){
 String s = ByteBufferUtil.string(bb);
 String [] parts = s.split("\\|");
 PlayerBean pb = new PlayerBean();
 pb.position= parts[0];
 pb.name=parts[1];
 pb.rushingyards=Integer.parseInt(parts[2]);
 pb.receivingyards=Integer.parseInt(parts[3]);
 return pb;
 }

 public String toString(){
 return name +" "+position+" "+rushingyards+" "+receivingyards;
 }
}

4.	 Create a class that extends AbstractType:
 public class USFootballPlayerType extends AbstractType{

5.	 Statically initialize an instance of the class:
 public static final USFootballPlayerType instance =

 new USFootballPlayerType();

 USFootballPlayerType(){}

6.	 Override the getString method, which controls the display in the
command-line interface:
 public String getString(ByteBuffer bb) {
 PlayerBean pb = PlayerBean.readFromBuffer(bb);
 return pb.toString();
 }

Chapter 9

203

7.	 Also, define a compare method, which is used to sort entries:
 public int compare(ByteBuffer o1, ByteBuffer o2) {
 return ByteBufferUtil.compareUnsigned(o1, o2);
 }

 public void validate(ByteBuffer bb) throws MarshalException {
 }

8.	 Create a main method that creates a new keyspace and a column family. Set
the validation_class of the new column family to the type were created
hpcas.c09.USFootballPlayerType:
public static void main(String[] args) throws Exception {
 FramedConnWrapper fcw = new FramedConnWrapper(Util.
envOrProp("host"),
 Integer.parseInt(Util.envOrProp("port")));
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 client.set_keyspace("football");
 try {
 KsDef ksD = new KsDef();
 ksD.setname("football");
 CfDef cfD = new CfDef();
 cfD.setDefault_validation_class("hpcas.c09.
USFootballPlayerType");
 cfD.setName("teams");
 client.system_add_keyspace(ksD);
 cfD.setKeyspace("football");
 client.system_add_column_family(cfD);
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

9.	 Create an entry and insert it:
 PlayerBean pb = new PlayerBean();
 pb.name = "Ahmad Bradshaw";
 pb.position = "RB";
 pb.receivingyards = 413;
 pb.rushingyards = 1235;
 ColumnParent cp = new ColumnParent();
 cp.setColumn_family("teams");
 Column c = new Column();
 c.setName(ByteBufferUtil.bytes(pb.name));
 c.setValue(pb.writeToBuffer());
 client.insert(ByteBufferUtil.bytes("Giants"), cp, c,
ConsistencyLevel.ONE);
 fcw.close();
 }
}

Coding and Internals

204

10.	 Build the project and copy the resulting JAR to the <cassandra_home>/lib
directory on all nodes. Then, restart Cassandra:
$ host=127.0.0.1 port=9160 ant -DclassToRun=hpcas.c09.
USFootballPlayerType run

11.	 List the column family from the command-line interface:

[default@unknown] use football;
Authenticated to keyspace: football
[default@football] assume teams comparator as ascii;
Assumption for column family 'teams' added successfully.
[default@football] list teams;
RowKey: Giants
=> (column=Ahmad Bradshaw, value=Ahmad Bradshaw RB 1235 413,
timestamp=0)

How it works...
By creating types, users can control how columns are sorted by writing custom
implementations of the compare method. This type uses a byte-level comparison. Display is
controlled by providing a custom implementation of getString. This type removes the pipe
characters used as delimiters for a display that is easier to read.

See also...
The next recipe, Using the validation to check data on insertion.

Using the validation to check data
on insertion

Column Families can optionally support validation. A default validation class can be
specified for a column family. The validation class can be overridden for columns of specific
names. This recipe shows how to create a sub class of AbstractType and use this as a
validation class.

Getting ready
This recipe is an enhancement on the previous recipe, Creating your own type by sub classing
abstract type.

Chapter 9

205

How to do it...
1.	 Edit src/hpcas/c09/USFootballPlayerType.java in a text editor. Add the

highlighted code to detect invalid data:
public class USFootballPlayerType extends AbstractType{
...
 public void validate(ByteBuffer bb) throws MarshalException {
 PlayerBean pb = PlayerBean.readFromBuffer(bb);
 if (!(pb.position.equalsIgnoreCase("QB")
 || pb.position.equalsIgnoreCase("RB"))){
 throw new MarshalException("bad position");
 }
 }
}

2.	 Inside the main method, set the position to LB. This value will cause a
validation failure:
public static void main(String[] args) throws Exception {
 ...
 PlayerBean pb = new PlayerBean();
 pb.name = "Ahmad Bradshaw";
 //pb.position = "RB";
 pb.position = "LB";

3.	 Build the project and copy the hpcas.jar to the lib directory of Cassandra. Restart
the instance if it is already running:
$ cd <hpc_home> ; cd ant
$ cp dist/lib/hpcas.jar /home/edward/hpcas/apache-
cassandra-0.7.3-1/lib/

4.	 Build and run the application:

$ host=127.0.0.1 port=9160 ant -DclassToRun=hpcas.c09.
USFootballPlayerType run
[java] InvalidRequestException(why:[football][teams]
[41686d6164204272616473686177] = [4c427c41686d61642042726164736861
777c313233357c343133] failed validation (bad position))

How it works...
If a validation class is enabled, during an insert the data being inserted is passed to the
validate method. If the data is valid, the method should return. If the data is invalid, the
method should throw a MarshalException and supply information as to why the validation
failed. The ability to validate data on insertion helps incorrect data from being inserted. This
technique can be used to enforce restrictions on the length or content of data.

Coding and Internals

206

Communicating with the Cassandra
developers and users through IRC and e-mail

Cassandra has a vibrant community of users and developers. E-mail and IRC allows people
across the world to collaborate. Amazingly, most of the project coordination is done over these
mediums. This makes Cassandra more than just code with an open source license; anyone
can become involved and become part of the project. This recipe shows how to connect with
the community.

How to do it...
Connect via Internet Relay Chat: irc://chat.us.freenode.net:6667, and join any of
the channels you may be interested in.

Channel Description
#cassandra General talk about Cassandra or other related topics
#cassandra-dev Discussion related to the Cassandra code base
#cassandra-ops Channel for discussing performance or installation characteristics

Other Channels of interest: #solandra, #thrift, #hive.

There are several mailing lists; send an e-mail to the specified addresses and a reply e-mail
will be sent to you with further instructions on joining the list.

List Name E-mail Description
Users user-subscribe

@cassandra.apache.org
General questions and announcements

Developer dev-subscribe
@cassandra.apache.org

Discussions on development of the
Cassandra code base

Commits commits-subscribe@cassandra.
apache.org

Auto-generated e-mails on commits to
the source code

Clients
development

client-dev-subscribe@cassandra.
apache.org

High-level clients such as Thrift, Hector,
or clients for other languages

How it works...
Always attempt to search for the answer first before asking a question on a mailing list or IRC.
Many questions have been asked and answered before. Remember, most people on the lists
are enthusiasts and are volunteering their time to help.

Chapter 9

207

For those interested in developing or fixing features in Cassandra, it is common to join the dev
mailing list and chat room. Typically, the key committers have insights into the problem and
the code base and help code get committed faster.

Generating a diff using subversion's
diff feature

Subversion is a popular revision control system. Any changes made to the source code after
checkout will be tracked. Subversion can produces diff files. A diff is a file that stores the
changes made. diffs are exchanged between developers so that they can share code
without having entire copies of the project. This recipe shows how to use subversion
to create diff files.

How to do it...
1.	 Use svn stat to determine if any files have changed since the code was

checked out:
$ svn stat
? src/java/org/apache/cassandra/cli/CliUserHelp.java
? src/java/org/apache/cassandra/cli/CliCompleter.java
? src/java/org/apache/cassandra/cli/CliClient.java
? src/java/org/apache/cassandra/cli/Cli.g

2.	 Use the subversion add feature, svn add , to add these files to the project:
$ svn add src/java/org/apache/cassandra/cli/*.java

3.	 Generate a diff, which captures the changes you have made to the source files:

$ svn diff > /tmp/cassandra-XXX-1.patch.txt

How it works...
Subversion with diff capabilities provide a way to track changes and share code with others.

There's more...
Diff files are human readable. Lines that start with a minus sign (-) indicate a line has been
removed. Lines that start with a plus sign (+) indicate a line has been added. Lines above the
change are also stored in the file. This can help resolve issues when the patch offsets do not
match exactly due to other changes since the diff had been generated.

$ svn diff | head -11
Index: src/java/org/apache/cassandra/cli/CliUserHelp.java

Coding and Internals

208

===
--- src/java/org/apache/cassandra/cli/CliUserHelp.java	 (revision
1082028)
+++ src/java/org/apache/cassandra/cli/CliUserHelp.java	 (working
copy)
@@ -325,7 +325,11 @@
 state.out.println("example:");
 state.out.println("assume Users comparator as
lexicaluuid;");
 break;
-
+ case CliParser.NODE_CONSISTENCY_LEVEL:
+ state.out.println("consistencylevel as <level>");

See also...
The next recipe, Applying a diff using the patch command shows how to apply a diff to your
copy of the code.

Applying a diff using the patch command
A diff file represents the comparison of a file before and after a change. Unreleased
source code updates or patches typically come in the form of diff files. This recipe shows
how to use the patch command with a diff file to apply changes to a branch of Cassandra
source code.

Before you begin...
Ensure the software being patched is the exact same revision of the software the patch was
based on. Patches may apply incorrectly if it is not applied to the correct source. The output of
the previous recipe, Generating a diff using subversion's diff feature can be applied with this
recipe. If the patch did not apply correctly, svn revert will restore the contents of files back
to the repository state.

How to do it...
1.	 Navigate to the Cassandra source directory. Ensure the source code is clean, run svn

stat, and ensure it produces no output:
$ cd <cassandra_source_home>
$ svn stat

Chapter 9

209

2.	 Run the patch command and use the shell's input redirection to feed it the contents
of the patch file:

$ patch -p0 < /tmp/cassandra-2354-3.patch.txt
patching file src/java/org/apache/cassandra/cli/CliUserHelp.java
patching file src/java/org/apache/cassandra/cli/CliCompleter.java
patching file src/java/org/apache/cassandra/cli/CliClient.java
patching file src/java/org/apache/cassandra/cli/Cli.g

Problems patching

If any messages are displayed such as 'skipping hunk', this means that
the diff file is not applying cleanly. It was probably generated from a
different source.

How it works...
The patch command takes the content of a diff file and applies those changes to the local
code. diff and patch files allow users to share and review code changes. All the updates to
the Cassandra code base are always done by generating diff files.

Using strings and od to quickly search
through data files

A user may wish to review Cassandra data files directly. This is a fast alternative to searching
through data with range scanning using the API or exporting the data to JSON format. Because
the Cassandra data files are written in a binary format, using standard text editing tools can
be difficult. Two command-line tools that are helpful in this process are the command-line
octal dump utility, od, and the strings utility, which displays human readable strings inside
binary files. This recipe show how these tools can be used.

How to do it...
1.	 Run strings against a file in your data directory that matches the pattern '*Data*':

$strings /home/edward/hpcas/data/1/football/teams-f-1-Data.db
Giants
Ahmad Bradshaw
RB|Ahmad Bradshaw|1235|413

Coding and Internals

210

2.	 Run the od command with the -a switch:

[edward@tablitha hpcbuild]$ od -a /home/edward/hpcas/data/1/
football/teams-f-1-Data.db
0000000 nul ack G i a n t s nul nul nul nul nul nul
nul _
0000020 nul nul nul dle nul nul nul etx nul nul nul soh nul nul
nul 0
0000040 nul bs nul nul nul nul nul nul nul nul nul nul nul nul
nul nul
0000060 nul nul nul nul nul nul nul soh nul so A h m a
d sp
0000100 B r a d s h a w nul nul nul nul nul nul
nul nul
0000120 nul nul nul nul sub R B | A h m a d sp
B r
0000140 a d s h a w | 1 2 3 5 | 4 1
3
0000157

How it works...
Command-line tools such as od and strings are a fast way to extract data when
troubleshooting, while tools such as SSTable2JSON have the startup overhead involved in
sampling the index files. Od and strings can be combined with other command-line tools
such as pipelines or grep. Command-line utilities to hex or octal dump still have shortcomings
in their ability to decode data as they require a lower-level understanding of data files. The
format of these files is also subject to change.

Customizing the sstable2json export utility
The sstable2json utility is designed to produce output that can be used with its
counterpart program json2sstable. However, this is not very friendly for end users.
This recipe shows how to customize the sstable2json program to output data in a
user-defined format.

How to do it...

This recipe is only applicable when your data is ASCII or UTF-8.

Chapter 9

211

1.	 Run sstable2json against an SSTable file. The data is output as hex strings:
$ <cassandra_home>/bin/sstable2json
$ <cassandra_home>/data/1/football/teams-f-1-Data.db

{

"4769616e7473": [["41686d6164204272616473686177", "52427c41686d616
42042726164736861777c313233357c343133", 0, false]]

}

2.	 Copy the SSTableExport.java file from the Cassandra source code to the project
source home:
$ <cassandra_src>/cassandra-0.7/src/java/org/apache/cassandra/
tools/SSTableExport.java <hpc_home>/src/java/hpcas/c09/

3.	 Change the package name to hpcas.c09. Search the file for calls to the
bytesToHex method and replace them with the ByteBufferUtil.string
method:
package hpcas.c09;
...
 private static void serializeColumn(IColumn column,
PrintStream out)
 {
 try{
 out.print("[");
 out.print(quote(ByteBufferUtil.string(column.name())));
 out.print(", ");
 out.print(quote(ByteBufferUtil.string(column.value())));
 ...
 } catch (CharacterCodingException ex) { }

 private static void serializeRow(SSTableIdentityIterator row,
 DecoratedKey key, PrintStream out)
 {
 ColumnFamily columnFamily = row.getColumnFamily();
 boolean isSuperCF = columnFamily.isSuper();

 //out.print(asKey(bytesToHex(key.key)));
 try{
 out.print(asKey(ByteBufferUtil.string(key.key)));
 } catch (CharacterCodingException ex) { }

Coding and Internals

212

4.	 Copy the sstable2json file. Edit it to invoke the class this recipe creates:
$ cp <cassandra_home>/bin/sstable2json <cassandra_home>/bin/
sstable2nicejson

$JAVA -cp $CLASSPATH -Dstorage-config=$CASSANDRA_CONF \

 -Dlog4j.configuration=log4j-tools.properties \

 hpcas.c09.SSTableExport "$@"

5.	 Invoke the sstable2nicejson script. The output of the application should
now be strings:

$ <cassandra_home>/bin/sstable2nicejson <cassandra_home>/data/1/
football/teams-f-1-Data.db

{

"Giants": [["Ahmad Bradshaw", "RB|Ahmad Bradshaw|1235|413", 0,
false]]

}

How it works...
The default export program outputs data as Hex encoded strings. This recipe uses the helper
functions in the ByteBufferUtil class to convert byte data into strings. This assumption is
not a good valid if the data stored is binary data.

There's more...
This application could be easily customized to produce XML, an SQL file to be bulk loaded, or
a batch of inserts to replicate the data to another Cassandra cluster.

Configure index interval ratio for lower
memory usage

The index_interval controls the sampling of row keys for each SSTable. The default value
of 128 means one out of every 128 keys are held in memory. Index sampling happens during
node startup and that data stays in memory until the SSTable is removed. The memory used
by index_interval is independent of the key cache.

Chapter 9

213

How to do it...
1.	 Edit <cassandra_home>/casandra.yaml and increase index_interval from

128 to 256:
index_interval: 256

2.	 Restart Cassandra for this change to take effect.

How it works...
Raising the index_interval uses less memory, but makes the index less effective. A
common use of this feature is systems that store a large amount of data but do not have
much RAM memory. This knob is also useful because different use cases have different key
size, key count, and key-to-row ratio. Raising the ratio can also help a node start up faster.

Increasing phi_convict_threshold for less
reliable networks

The failure detector monitors gossip traffic, and if a node has not participated in the
process for an interval, it marks the node as dead. This recipe shows how to increase the
phi_convict_threshold for unstable environments.

How to do it...
1.	 Edit <cassandra_home>/conf/cassandra.yaml and change the

phi_conviction_threshold:
phi_convict_threshold: 10

Cassandra must be restarted for this change to take effect.

How it works...
The higher the phi_conviction_threshold is set, the less chance of getting a false
positive about a failure. However, it also takes longer to detect a failure. This setting should
be changed when networks are unstable or with virtual machines that sometimes have
resources stolen by other instances on the same hardware.

There's more...
The value of phi_conviction_threshold is not a number of seconds. The default value of
eight is about nine seconds, while 10 is about 14 seconds.

Coding and Internals

214

Using the Cassandra maven plugin
With maven, it is simple to create a software project that has Cassandra support built in.
The Cassandra maven plugin fetches all the dependencies and provides goals for starting
and stopping Cassandra. This is an easy way to create self-contained projects that work with
Cassandra. This recipe shows how to use the Cassandra maven plugin.

Getting ready
The recipe in this chapter, Installing common development tools is a pre-requisite.

How to do it...
1.	 Run the maven command with the archetype:generate argument:

$ mvn archetype:generate
110: remote -> maven-archetype-webapp
Choose a number: 107: 110
Choose version:
1: 1.0
Choose a number: 1: 1
Define value for property 'groupId': : hpcas.ch09
Define value for property 'artifactId': : webapp
Define value for property 'version': 1.0-SNAPSHOT:
Define value for property 'package': hpcas.ch09:
Confirm properties configuration:
groupId: hpcas.ch09
artifactId: webapp
version: 1.0-SNAPSHOT
package: hpcas.ch09
Y: y
[INFO] ---

[INFO] BUILD SUCCESSFUL

[INFO] ---

2.	 Modify webapp/pom.xml with a text editor:
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/maven-v4_0_0.xsd">

Chapter 9

215

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.apache.wiki.cassandra.mavenplugin</groupId>
 <artifactId>webapp</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>webapp Maven Webapp</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>me.prettyprint</groupId>
 <artifactId>hector-core</artifactId>
 <version>0.7.0-25</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>webapp</finalName>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

3.	 Create the following directories:
$ mkdir -p webapp/src/cassandra/cli

$ mkdir -p webapp/src/main/resources
$ mkdir -p webapp/src/main/webapp/WEB-INF

The Cassandra maven plugin will automatically execute the content in webapp/src/
cassandra/cli/load.script.

create keyspace WebappKeyspace with replication_factor=1;
use WebappKeyspace;
create column family Example with column_type='Standard' and
comparator='UTF8Type';

Coding and Internals

216

4.	 Execute maven specifying the cassandra:start goal:

$ mvn cassandra:start -Dcassandra.jmxPort=7199
[INFO] Cassandra cluster "Test Cluster" started.
[INFO] Running /home/edward/arch/webapp/src/cassandra/cli/load.
script...
[INFO] Connected to: "Test Cluster" on 127.0.0.1/9160
[INFO] 30a5bc5b-8028-11e0-9b86-e700f669bcfc
[INFO] Waiting for schema agreement...
[INFO] ... schemas agree across the cluster
[INFO] Finished /home/edward/arch/webapp/src/cassandra/cli/load.
script.

[INFO] Cassandra started in 5.3s

How it works...
Maven projects are controlled by pom files. A pom file contains information on the project,
including dependencies and plugin configuration information. Maven repositories across the
Internet store project JARs and information on their dependencies. The Cassandra plugin
for maven provides goals to start and stop Cassandra without having to explicitly bring
Cassandra-related libraries into the project. This makes it easy to prototype and distribute
an application using Cassandra.

There's more...
More information on the Cassandra maven plugin can be found at
http://mojo.codehaus.org/cassandra-maven-plugin/

10
Libraries and
Applications

In this chapter, you will learn

ff Building the contrib stress tool for benchmarking

ff Inserting and reading data with the stress tool

ff Running the Yahoo! Cloud Serving Benchmark

ff Hector, a high-level client for Cassandra

ff Doing batch mutations with Hector

ff Cassandra with Java Persistence Architecture (JPA)

ff Setting up Solandra for full text indexing with a Cassandra backend

ff Setting up Zookeeper to support Cages for transactional locking

ff Using Cages to implement an atomic read and set

ff Using Groovandra as a CLI alternative

ff Searchable log storage with Logsandra

Introduction
Cassandra's popularity has led to several pieces of software that have developed around
it. Some of these are libraries and utilities that make working with Cassandra easier. Other
software applications have been built completely around Cassandra to take advantage of its
scalability. This chapter describes some of these utilities.

Libraries and Applications

218

Building the contrib stress tool for
benchmarking

Stress is an easy-to-use command-line tool for stress testing and benchmarking Cassandra. It
can be used to generate a large quantity of requests in short periods of time, and it can also
be used to generate a large amount of data to test performance with. This recipe shows how
to build it from the Cassandra source.

Getting ready
Before running this recipe, complete the Building Cassandra from source recipe discussed
in Chapter 9, Coding and Internals.

How to do it...
From the source directory, run ant. Then, change to the contrib/stress directory and run
ant again.

$ cd <cassandra_src>

$ ant jar

$ cd contrib/stress

$ ant jar

...

BUILD SUCCESSFUL

Total time: 0 seconds

How it works...
The build process compiles code into the stress.jar file.

See also...
The next recipe, Inserting and reading data with the stress tool.

Inserting and reading data with the
stress tool

The stress tool is a multithreaded load tester specifically for Cassandra. It is a command-line
program with a variety of knobs that control its operation. This recipe shows how to run the
stress tool.

Chapter 10

219

Before you begin...
See the previous recipe, Building the contrib stress tool for benchmarking before doing
this recipe.

How to do it...
Run the <cassandra_src>/bin/stress command to execute 10,000 insert operations.

$ bin/stress -d 127.0.0.1,127.0.0.2,127.0.0.3 -n 10000 --operation INSERT

Keyspace already exists.

total,interval_op_rate,interval_key_rate,avg_latency,elapsed_time

10000,1000,1000,0.0201764,3

How it works...
The stress tool is an easy way to do load testing against a cluster. It can insert or read data
and report on the performance of those operations. This is also useful in staging environments
where significant volumes of disk data are needed to test at scale. Generating data is also
useful to practice administration techniques such as joining new nodes to a cluster.

There's more...
It is best to run the load testing tool on a different node than on the system being tested and
remove anything else that causes other unnecessary contention.

See also...
The next recipe, Running the Yahoo! Cloud Serving Benchmark for a more sophisticated load
testing system.

Running the Yahoo! Cloud Serving
Benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) provides benchmarking for the bases of
comparison between NoSQL systems. It works by generating random workloads with varying
portions of insert, get, delete, and other operations. It then uses multiple threads for
executing these operations. This recipe shows how to build and run the YCSB.

Libraries and Applications

220

Information on the YCSB can be found here:

http://research.yahoo.com/Web_Information_Management/YCSB

https://github.com/brianfrankcooper/YCSB/wiki/

https://github.com/joaquincasares/YCSB

How to do it...
1.	 Use the git tool to obtain the source code.

$ git clone git://github.com/brianfrankcooper/YCSB.git

2.	 Build the code using the ant.
$ cd YCSB/

$ ant

3.	 Copy the JAR files from your <cassandra_hom>/lib directory to the YCSB classpath.
$ cp $HOME/apache-cassandra-0.7.0-rc3-1/lib/*.jar db/
cassandra-0.7/lib/

$ ant dbcompile-cassandra-0.7

4.	 Use the Cassandra CLI to create the required keyspace and column family.
[default@unknown] create keyspace usertable with replication_
factor=3;

[default@unknown] use usertable;

[default@unknown] create column family data;

5.	 Create a small shell script run.sh to launch the test with different parameters.
CP=build/ycsb.jar
for i in db/cassandra-0.7/lib/*.jar ; do
 CP=$CP:${i}
done

java -cp $CP com.yahoo.ycsb.Client -t -db com.yahoo.ycsb.
db.CassandraClient7 -P workloads/workloadb \
-p recordcount=10 \
-p hosts=127.0.0.1,127.0.0.2 \
-p operationcount=10 \
-s

6.	 Run the script ant pipe the output to more command to control pagination:

$ sh run.sh | more

YCSB Client 0.1

Chapter 10

221

Command line: -t -db com.yahoo.ycsb.db.CassandraClient7 -P
workloads/workloadb -p recordcount=10 -p hosts=127.0.0.1,127.0.0.2

 -p operationcount=10 -s

Loading workload...

Starting test.

data

 0 sec: 0 operations;

 0 sec: 10 operations; 64.52 current ops/sec; [UPDATE
AverageLatency(ms)=30] [READ AverageLatency(ms)=3]

[OVERALL], RunTime(ms), 152.0

[OVERALL], Throughput(ops/sec), 65.78947368421052

[UPDATE], Operations, 1

[UPDATE], AverageLatency(ms), 30.0

[UPDATE], MinLatency(ms), 30

[UPDATE], MaxLatency(ms), 30

[UPDATE], 95thPercentileLatency(ms), 30

[UPDATE], 99thPercentileLatency(ms), 30

[UPDATE], Return=0, 1

How it works...
YCSB has many configuration knobs. An important configuration option is -P, which chooses
the workload. The workload describes the portion of read, write, and update percentage. The
-p option overrides options from the workload file. YCSB is designed to test performance as
the number of nodes grows and shrinks, or scales out.

There's more...
Cassandra has historically been one of the strongest performers in the YCSB.

Hector, a high-level client for Cassandra
It is suggested that when available, clients should use a higher level API. Hector is one of
the most actively developed higher level clients. It works as a facade over the Thrift API, and
in many cases condenses what is a large section of Thrift code into a shorter version using
Hector's helper methods and design patterns. This recipe shows how to use Hector
to communicate with Cassandra.

Libraries and Applications

222

How to do it...
Download the Hector JAR and place it in your applications classpath.

$wget https://github.com/downloads/rantav/hector/hector-core-0.7.0-26.tgz

$cp hector-core* <hpc_build>/lib

Open <hpc_build>src/hpcas/c10/HectorExample.java in a text editor.

public class HectorExample {

Hector uses serializers. The role of a Serializer is to take the encoding burden away from
the user. Internally, the StringSerializer will do something similar to "string".
getBytes("UTF-8").

 private static StringSerializer stringSerializer =
StringSerializer.get();
 public static void main(String[] args) throws Exception {

Hector has its own client-side load balancing. The host list for Hfactory.
getOrCreateCluster can be one or more host:port pairs separated by commas.

 Cluster cluster = Hfactory.getOrCreateCluster
 ("TestCluster", Util.envOrProp("targetsHost"));
 Keyspace keyspaceOperator = HFactory.createKeyspace(Util.
envOrProp("ks33", cluster);

The HFactory object has several factory methods. HFactory.createStringColumn
is a one-liner for creating columns. This is an alternative to working with the Column in a
JavaBean-like style.

 Mutator<String> mutator = Hfactory.createMutator
 (keyspaceOperator, StringSerializer.get());
 mutator.insert("bbrown", "cf33", HFactory.
createStringColumn("first", "Bob"));	

One way to read data is by using a ColumnQuery object. ColumnQuery uses a builder
pattern where set operations return an instance to the ColumnQuery object instead of void.

 ColumnQuery<String, String, String> columnQuery =
 HFactory.createStringColumnQuery(keyspaceOperator);
 columnQuery.setColumnFamily("cf33").setKey("bbrown").
setName("first");
 QueryResult<HColumn<String, String>> result = columnQuery.execute();

	 System.out.println("Resulting column from cassandra: " + result.
get());

 cluster.getConnectionManager().shutdown();
 }
}

Chapter 10

223

How it works...
Hector provides a few key things. Firstly, remember that the bindings generated by Thrift
are cross-platform and designed for compatibility. Higher level clients such as Hector bring
more abstraction and take more advantage of language features such as Java's generics.
For example, the HFactory class provides methods that reduce four lines of Thrift code to
a single line factory method call. Hector also provides client-side load balancing because
detecting and automatically failing-over between servers is important to achieve good uptime.

There's more...
The next recipe, Doing batch mutates with Hector shows how Hector's API design makes
operations such as batch mutate easier.

Doing batch mutations with Hector
In an earlier chapter, we showed how batch mutations are much more efficient than doing
individual inserts. However, the long complex method signature of the batch_mutate
method is difficult to read and assembling that structure may clutter code. This recipe
shows how to use the Hector API for the batch mutate operation.

How to do it...
1.	 Create a text file <hpc_build>src/hpcas/c10/HectorBatchMutate.java.

public class HectorBatchMutate {
 final StringSerializer serializer = StringSerializer.get();
 public static void main(String[] args) throws Exception {
 Cluster cluster = HFactory.getOrCreateCluster("test", Util.
envOrProp("target"));
 Keyspace keyspace = HFactory.createKeyspace(Util.
envOrProp("ks"), cluster);

2.	 Create a mutator as you would for a single insert and make multiple calls to the
addInsertion method.

 Mutator m = Hfactory.createMutator(keyspace,serializer);
 m.addInsertion("keyforbatchload", Util.envOrProp("ks"),
HFactory.createStringColumn("age", "30"));
 m.addInsertion("keyforbatchload", Util.envOrProp("ks"),
 HFactory.createStringColumn("weight", "190"));

Libraries and Applications

224

The writes are not sent to Cassandra until the execute method is called.
 m.execute();
 }
}

How it works...
Hector's mutator concept is more straightforward than the elaborate nested object needed to
execute a batch mutation through Thrift. Writing less lines of code to carry out a task is better
in numerous ways as there is less code to review and less chance to make a mistake.

Cassandra with Java Persistence
Architecture (JPA)

Data in memory being used by an application is typically in a different format than it's
on-disk representation. Serialization and deserialization take data from an in-memory
form and persist it to a back-end data store. This work can be done by hand.The Java
Persistence Architecture (JPA) allows you to annotate a Java object and use JPA to handle
the serialization and de serialization automatically. This recipe show how to use JPA
annotation to persist data to Cassandra.

Before you begin...
This recipe requires the mvm command provided by the maven2 package.

How to do it...
1.	 Use subversion to download the kundera source code and maven to build it.

$ svn checkout http://kundera.googlecode.com/svn/trunk/ kundera-
read-only

$ cd kundera-read-only

$ mvn install

2.	 Create a text file <hpc_build>/src/hpcas/c10/Athlete.java.
package hpcas.c10;

3.	 Apply the Entity annotation. Then, use the columnFamily annotation and supply
the column family name.
@Entity
@Index (index=false)
@ColumnFamily("Athlete")
public class Athlete {

Chapter 10

225

4.	 Use the @id annotation to signify the row key.
 @Id
 String username;

5.	 Any field with the @Column annotation will be persisted. Optionally, you can supply a
string for the column name.
 @Column(name = "email")
 String emailAddress;
 @Column
 String country;
 public Athlete() {
 }
 … //bean patterns
}

6.	 Kundera can configure itself from a Java properties file or from a Map defined in your
code. Create a file <hpc_build>src/hpcas/c10/AthleteDemo.java.
public class AthleteDemo {
 public static void main (String [] args) throws Exception {
 Map map = new HashMap();
 map.put("kundera.nodes", "localhost");
 map.put("kundera.port", "9160");
 map.put("kundera.keyspace", "athlete");
 map.put("sessionless", "false");
 map.put("kundera.client", "com.impetus.kundera.client.
PelopsClient");

7.	 EntityManager instances are created from a factory pattern.
 EntityManagerFactory factory = new EntityManagerFactoryImpl("t
est", map);
 EntityManager manager = factory.createEntityManager();

8.	 Use the find() method to look up by key. All annotated fields of the object are
automatically populated with data from Cassandra.

 try {
 Athlete athlete = manager.find(Athlete.class, "bsmith");
 System.out.println(author.emailAddress);
 } catch (PersistenceException pe) {
 pe.printStackTrace();
 }
 }
}

Libraries and Applications

226

How it works...
JPA provides methods such as find and remove. JPA takes the burden off the developer of
writing mostly repetitive serialization code. While this does remove some of the burden, it
also takes away some level of control. Since JPA can provide access to many types of data
stores such as relational databases, it also makes it easy to switch between backend storage
without having to make large code changes.

There's more...
Hector also offers a JPA solution in a subproject called hector-object-mapper.

Setting up Solandra for full text indexing
with a Cassandra backend

Solandra is a combination of Lucene, Cassandra, and Solr. Lucene is a reverse index system
designed for full text search. Solr is a popular frontend that provides a web service for Lucene
as well as caching warming and other advanced capabilities. Solandra integrates with both
tools by storing Lucene's data inside Cassandra, allowing for a high level of scalability.

How to do it...
1.	 Use git to obtain a copy of the Solandra source code and use ant to build it.

$ git clone https://github.com/tjake/Solandra.git

$ ant

2.	 Prepare a temporary directory that Solandra will use to store data. Then, run these
steps to start Solandra, download, and load sample data.
$ mkdir /tmp/cassandra-data

$ cd solandra-app; ./start-solandra.sh -b

$ cd ../reuters-demo/

$./1-download-data.sh

$./2-import-data.sh

Chapter 10

227

3.	 Open ./website/index.html in your web browser. Place text in the search box
to search for occurrences of it inside the documents loaded into Solandra.

How it works...
Solandra takes the data that Solr would normally store on local disk and instead stores
it inside Cassandra. It does this by providing custom implementations of Lucene's
IndexReader and IndexWriter and also runs Solr and Cassandra inside the same JVM.
Solandra stores this data using OrderPreservingPartitioner because Lucene supports
searching for ranges of terms (that is, albert to apple). Solandra provides a natural way to
scale Solr. Applications can read data as soon it is written.

Setting up Zookeeper to support Cages for
transactional locking

Cages API is used for distributed read and write locks. The Cages API is built around Apache
Zookeeper. This recipe shows how to set up a single instance of Zookeeper to support Cages.

Apache ZooKeeper is an effort to develop and maintain
an open source server that enables highly reliable
distributed coordination.

Libraries and Applications

228

How to do it...
1.	 Download a binary Apache Zookeeper release and extract it.

$ http://apache.cyberuse.com//hadoop/zookeeper/zookeeper-3.3.2/
zookeeper-3.3.2.tar.gz

$ tar -xf zookeeper-3.3.2.tar.gz

cd zookeeper *

2.	 Create a configuration file from the sample. Make sure to set the dataDir.
$ cp conf/zoo_sample.cfg conf/zoo.cfg

tickTime=2000
initLimit=10
syncLimit=5
dataDir=/tmp/zk
clientPort=2181

3.	 Create the dataDir directory you referenced in the preceding configuration.
$ mkdir /tmp/zk

4.	 Start the zookeeper instance.
$ bin/zkServer.sh start

JMX enabled by default

Using config: /home/edward/cassandra-dev/zookeeper-3.3.2/bin/../
conf/zoo.cfg

Starting zookeeper ...

...

STARTED

5.	 Confirm Zookeeper is running by checking for a process listening on the defined
client port 2181.

$ netstat -an | grep 2181

tcp 0 0 :::2181 :::*
LISTEN

How it works...
Apache Zookeeper provides applications with distributed synchronization. It is typically
installed on one to seven nodes so it is highly available and capable of managing a large
number of locks and watches. Cassandra and Zookeeper are an interesting pairing:
Cassandra providing high availability and high performance with Zookeeper providing
synchronization.

Chapter 10

229

See also...
The next recipe, Using Cages to implement an atomic read and set uses the zookeeper
instance setup in this recipe.

Using Cages to implement an atomic read
and set

In Chapter 5, Consistency, Availability, and Partition Tolerance with Cassandra, the
recipe Consistency is not locking or a transaction shows what can happen when multiple
applications read and update the same piece of data without synchronization. In the previous
recipe, we set up Apache Zookeeper, a system for distributed synchronization. The Cages
library provides a simple API to synchronize access to rows. This recipe shows how to
use Cages.

Getting ready
Review the recipe Demonstrating how consistency is not a lock or a transaction discussed
in Chapter 5, Consistency, Availability, and Partition Tolerance with Cassandra. To do this
recipe, you must complete the previous recipe, Setting up Zookeeper to support Cages for
transactional locking.

How to do it...
1.	 Use subversion to checkout a copy of the Cages source code and binary JAR.

$ svn checkout http://cages.googlecode.com/svn/trunk/ cages-read-
only

2.	 Copy the cages and zookeeper JARs to the library directory of the build root.
$ cp cages-read-only/Cages/build/cages.jar <hpc_build>/lib/
$ cp zookeeper-3.3.2/zookeeper-3.3.2.jar <hpc_build>/lib

3.	 Using the code from the Chapter 5 recipe, Demonstrating how consistency is not a
lock or a transaction, <hpc_build>/src/java/hpcas/c05/ShowConcurrency.
java by adding imports for cages and zookeeper packages and classes.
import org.apache.cassandra.thrift.*;
import org.wyki.zookeeper.cages.ZkSessionManager;
import org.wyki.zookeeper.cages.ZkWriteLock;

Libraries and Applications

230

4.	 Next, add a reference to the ZkSessionManager, the object used to connect
to Zookeeper.
public class ShowConcurrency implements Runnable {
 ZkSessionManager session;
 String host;

5.	 Initialize the session instance in the constructor.
 public ShowConcurrency(String host, int port, int inserts) {
 this.host = host;
 this.port = port;
 this.inserts = inserts;
 try {
 session = new ZkSessionManager("localhost");
 session.initializeInstance("localhost");
 } catch (Exception ex) {
 System.out.println("could not connect to zookeeper "+ex);
 System.exit(1);
 }
 }

6.	 Zookeeper has a hierarchical data model. The keyspace represents the top directory
and the column family represents the second level. The third level is the row key to
be locked. After instantiating the lock object, use the acquire() method, perform
the operations inside the critical section, and when done working with the lock,
call release().
 for (int i = 0; i < inserts; i++) {
 ZkWriteLock lock = new ZkWriteLock("/ks33/cf33/count_col") ;
 try {
 lock.acquire();
 int x = getValue(client);
 x++;
 setValue(client, x);
 } finally {
 lock.release();
 }
 }

7.	 Run hpcas.c05.ShowConcurrency using four threads doing 30 inserts each.

$ host=127.0.0.1 port=9160 inserts=30 threads=4 ant
-DclassToRun=hpcas.c04.ShowConcurrency run

...

Chapter 10

231

 [java] wrote 119

 [java] read 119

 [java] wrote 120

 [java] read 120

 [java] The final value is 120

How it works...
Cages and Zookeeper provide a way for external processes to synchronize. When each thread
is initialized, it opens a Zookeeper session. The critical section of the code reads, increments,
and finally updates a column. Surround the critical section of the code with a Zookeeper
Write Lock that prevents all other threads from updating this value while the current thread
operates on it.

There's more...
Synchronization incurs extra overhead; it should only be used when necessary. Zookeeper
does scale out to several nodes, but it does not scale out indefinitely. This is because writes
to Zookeeper have to be synchronized across all nodes.

Using Groovandra as a CLI alternative
Groovy is an agile and dynamic language for the Java Virtual Machine. Groovandra is a library
designed to work with Groovy for rapid exploration of data in Cassandra. It can be used for
tasks the Cassandra CLI cannot do and that coding and deploying a Java application may not
make much sense. Code can be written line by line or in Groovy scripts that do not need to be
compiled and packaged before running.

How to do it...
1.	 Download a release of Groovy and extract it.

$ wget http://dist.groovy.codehaus.org/distributions/groovy-
binary-1.8.0.zip

$ unzip groovy-binary-1.8.0.zip

2.	 Create a startup script that adds the JAR files in the cassandra/lib and the
groovandra.jar to the classpath and then starts Groovy.
$ vi groovy-1.8.0/bin/groovycassandraCASSANDRA_HOME=/home/edward/
hpcas/apache-cassandra-0.7.3-1/lib
GROOVANDRA_JAR=/home/edward/encrypt/trunk/dist/groovandra.jar
CLASSPATH=${GROOVANDRA_JAR}:$CLASSPATH

Libraries and Applications

232

for i in ${CASSANDRA_HOME}/*.jar ; do
 CLASSPATH=${CLASSPATH}:$i
done
export CLASSPATH
/home/edward/groovy/groovy-1.8.0/bin/groovysh

$ chmod a+x groovy-1.8.0/bin/groovycassandra

3.	 Start the Groovy shell.

$ sh <groovy_home>/bin/groovycassandra

bean=new com.jointhegrid.groovandra.GroovandraBean()

===> com.jointhegrid.groovandra.GroovandraBean@6a69ed4a

groovy:000> bean.doConnect("localhost",9160);

===> com.jointhegrid.groovandra.GroovandraBean@6a69ed4a

groovy:000> bean.withKeyspace("mail").showKeyspace()

===> KsDef(name:mail, strategy_class:org.apache.cassandra.locator.
SimpleStrategy, replication_factor:1, ...

How it works...
Groovandra is a simple way to interact with Cassandra without having to go through the steps
of compiling, deploying, and running Java applications. Groovy allows users to approach the
application line by line. This allows ad hoc programming and debugging and is helpful for
accessing the features of Cassandra that are not accessible from the CLI such as setting up
a call to the multiget_slice method, which requires numerous parameters to be set.

Searchable log storage with Logsandra
Logsandra is a project based around log storage in Cassandra. Logsandra is a project that
provides a set of tools to parse logs, store them in Cassandra in a searchable fashion, and
search for or graph the occurrence of keywords in logs. Logsandra includes two processes.
The first parses logs and stores them in Cassandra. The second runs a web server that
allows you to search for occurrences of keywords in logs or graph their frequency.

Getting ready
Logsandra needs a running instance of Cassandra to connect to and store data. This recipe
also requires Python and the Python installer pip.

$ yum install python python-pip

Chapter 10

233

How to do it...
1.	 Obtain a copy of the Logsandra source code using git and install Logsandra's

dependencies using pip.
$ git clone git://github.com/thobbs/logsandra.git

$ cd logsandra

2.	 Elevate to root to install the requirements and then drop back to a standard user.
$ su

cat requirements.txt | xargs pip-python install

python setup.py install

exit

3.	 Next, set up Logsandra's keyspace and load sample data.
$ python scripts/create_keyspace.py

$ python scripts/load_sample_data.py

Loading sample data for the following keywords: foo, bar, baz

4.	 Start the web server.
$./logsandra-httpd.py start

5.	 Open http://localhost:5000/ and search for 'foo', which was added by
load_sample_data.py.

Libraries and Applications

234

Logsandra presents a graph with occurrences of this keyword over time.

How it works...
Logsandra creates and uses a keyspace name logsandra with a column family inside it
named keyword. It primarily retrieves events by looking up all logs containing a keyword from
a range of time.To make this efficient, the event timeline is denormalized to produce one
timeline per keyword. For each keyword that appears in a log, a separate copy of the log event
will be appended to the corresponding timeline. Each timeline gets its own row, and within the
row, each column holds one log event. The columns are sorted chronologically, using unique
IDs (UUIDs) for column names to avoid clashes. Although this denormalization strategy uses
more space on disk, a lookup query by Logsandra will only read a single contiguous portion of
one row in Cassandra, which is very efficient.

[default@logsandra] show keyspaces;

Keyspace: logsandra:

 ...

Chapter 10

235

 Column Families:

 ColumnFamily: keyword

 Columns sorted by: org.apache.cassandra.db.marshal.TimeUUIDType

Logsandra shows a versatile way to store and access log data in Cassandra. It is also
important to note that Logsandra is written in Python, which demonstrates adoption for
Cassandra outside the Java world.

There's more...
Inside the logsandra/conf directory, the logsandra.yaml file can be used to control
which host and port the Logsandra web interface binds to, host and port information
to connect to the Cassandra cluster, and directives that instruct it as to which folders
to watch for log events.

11
Hadoop and

Cassandra

In this chapter, you will learn the following recipes:

ff A pseudo-distributed Hadoop setup

ff A Map-only program that reads from Cassandra using ColumnFamilyInputFormat

ff A Map-only program that writes to Cassandra using the ColumnFamilyOutputFormat

ff A MapReduce program that uses grouping with Cassandra input and output

ff Setting up Hive with Cassandra Storage Handler support

ff Defining a Hive table over a Cassandra Column Family

ff Joining two Cassandra Column Families using Hive

ff Grouping and counting column values with Hive

ff Co-locating Hadoop Task Trackers on Cassandra nodes

ff Setting up a "Shadow" data center for running only MapReduce jobs

ff Setting up DataStax Brisk the combined stack of Cassandra, Hadoop, and Hive

Introduction
The Apache Hadoop project develops open source software for reliable, scalable, and
distributed computing. Hadoop includes two sub-projects.

ff HDFS: A distributed file system that provides high throughput access to
application data

ff MapReduce: A software framework for distributed processing of large data sets on
compute clusters

Hadoop and Cassandra

238

Hadoop is commonly used to store and process huge data sets. Cassandra integrates
with Hadoop by implementing Input Format and Output Format interfaces. This allows
MapReduce programs in Hadoop to read from and write to Cassandra. The pairing of Hadoop
and Cassandra complement each other because Cassandra excels at low latency reading and
writing and Hadoop provides a system to perform data mining and advanced searching.

A pseudo-distributed Hadoop setup
A production Hadoop cluster can span from a single node to thousands of computers. Each
cluster has one of each of these components:

ff NameNode: Component that stores the file system metadata

ff Secondary NameNode: Checkpoints the NameNode

ff JobTracker: Component in charge of Job Scheduling

These components are installed on multiple machines:

ff TaskTracker: Component that runs individual tasks of a job

ff DataNode: Component that stores data to disk

The communication between the components is depicted in the following image:

For Hadoop to be effective at grid computing, it needs to be installed on multiple machines,
but the stack can be set up on a single node in a pseudo-distributed cluster. This recipe
shows how to set up a pseudo-distributed cluster.

How to do it...
1.	 Determine the hostname of your system. Then, download and extract a

Hadoop release:
$ hostname
tablitha.jtg.pvt
$ cd ~

Chapter 11

239

$ wget http://apache.mirrors.pair.com//hadoop/core/hadoop-0.20.2/
hadoop-0.20.2.tar.gz
$ tar -xf hadoop-0.20.2.tar.gz
$ cd hadoop-0.20.2

2.	 Edit <hadoop_home>/conf/core-site.xml. Use your hostname (tablitha.
jtg.pvt in this example) in the value of fs.default.name:
<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://tablitha.jtg.pvt:9000</value>
 </property>
</configuration>

3.	 Edit <hadoop_home>/conf/mapred-site.xml. Use your hostname (tablitha.
jtg.pvt in this example) in the value of mapred.job.tracker:
<configuration>
 <property>
 <name>mapred.job.tracker</name>
 <value>tablitha.jtg.pvt:9001</value>
 </property>
</configuration>

4.	 Edit <hadoop_home>/conf/hdfs-site.xml. Since this test cluster has a single
node, the replication should be set to one:
<configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
</configuration>

5.	 Edit <hadoop_home>/conf/hadoop-env.sh to set the JAVA_HOME variable:
JAVA_HOME=/usr/java/latest

6.	 Format the NameNode (only do this once per install):
$ bin/hadoop namenode -format
11/03/09 19:09:01 INFO namenode.NameNode: STARTUP_MSG:
11/03/09 19:09:01 INFO common.Storage: Storage directory
/tmp/hadoop-edward/dfs/name has been successfully formatted.
/**
SHUTDOWN_MSG: Shutting down NameNode at tablitha.jtg.
pvt/192.168.1.100
**/

Hadoop and Cassandra

240

7.	 Start all the Hadoop components:
$ bin/hadoop-daemon.sh start namenode
$ bin/hadoop-daemon.sh start jobtracker
$ bin/hadoop-daemon.sh start datanode
$ bin/hadoop-daemon.sh start tasktracker

$ bin/hadoop-daemon.sh start secondarynamenode

8.	 Verify the NameNode and DataNode(s) are communicating by looking at the
NameNode web interface and confirming one Live Node:

9.	 Verify that the JobTracker and TaskTrackers are communicating by looking at the
JobTracker web interface and confirming one node listed in the Nodes column:

Chapter 11

241

10.	 Use the hadoop command-line tool to test the file system:

$ hadoop dfs -ls /
$ hadoop dfs -mkdir /test_dir
$ echo "some info to test" > /tmp/myfile
$ hadoop dfs -copyFromLocal /tmp/myfile /test_dir
$ hadoop dfs -cat /test_dir/myfile
some info to test

How it works...
Each Hadoop component uses information in core-site.xml and either mapred-site.
xml or hdfs-site.xml to bootstrap itself. For example, a DataNode uses the value of
fs.default.name to locate and communicate with the NameNode.

There's more...
Hadoop is a large complex project. There are hundreds of configuration knobs for Hadoop and
many features.

Hadoop and Cassandra

242

A Map-only program that reads
from Cassandra using the
ColumnFamilyInputFormat

The ColumnFamilyInputFormat allows data stored in Cassandra to be used as input for
Hadoop jobs. Hadoop can then be used to perform many different types of algorithms on the
data. This recipe shows how to use a map-only job to locate any key with a specific column
and convert the value of the column to uppercase.

Big Data Ahead!

The ColumnFamilyInputFormat scans through all the
data on all nodes!

How to do it...
1.	 Create a file <hpc_build>/src/java/hpcas/c11/MapOnly.java:

package hpcas.c11;
import hpcas.c03.Util;
import java.nio.ByteBuffer;
import java.util.*;
import org.apache.cassandra.hadoop.ColumnFamilyInputFormat;
import org.apache.cassandra.hadoop.ConfigHelper;
import org.apache.cassandra.thrift.SlicePredicate;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

Entry point programs for Hadoop typically extend Configured and implement Tool.
This allows Hadoop to auto-configure settings and inherit features:
public class MapOnly extends Configured implements Tool {
 public static final String CONF_COLUMN_NAME = "columnname";
 public static void main(String[] args) throws Exception {
 System.exit(ToolRunner.run(new Configuration(), new
MapOnly(), args));
 }
 public int run(String[] args) throws Exception {

Chapter 11

243

 //Column names will be specified by the user.
 getConf().set(CONF_COLUMN_NAME, Util.envOrProp("columnname"));
 //Instantiate a job instance. 'Uppercase' will be the name of
the job.
Job job = new Job(getConf(), "Uppercase");
 job.setNumReduceTasks(0);
 job.setJarByClass(MapOnly.class);

A Mapper processes key-value pairs from the InputFormat. The mapper produces
intermediate key-value pairs that are Text type. The UpperCaseMapper will be
described in more detail in the following code:
 job.setMapperClass(UpperCaseMapper.class);
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(Text.class);
 //The output directory inside HDFS will be chosen by user
input.
 FileOutputFormat.setOutputPath(job, new Path(Util.
envOrProp("output")));

The ColumnFamilyInputFormat requires information to connect to a Cassandra
cluster initially. After connection, the split information is calculated. Splitting is
the process by which MapReduce divides the input to be processed in parallel by
multiple mappers.
 job.setInputFormatClass(ColumnFamilyInputFormat.class);
 ConfigHelper.setRpcPort(job.getConfiguration(), "9160");
 ConfigHelper.setInitialAddress(job.getConfiguration(),
"localhost");
 ConfigHelper.setPartitioner(job.getConfiguration(),
 "org.apache.cassandra.dht.RandomPartitioner");
 ConfigHelper.setInputColumnFamily(job.getConfiguration(),

Users will provide the keyspace and column family information as well as the column
they are interested in.
 Util.envOrProp("KS"), Util.envOrProp("CF"));
 SlicePredicate predicate = new SlicePredicate().setColumn_
names(
 Arrays.asList(ByteBuffer.wrap(Util.
envOrProp("column").getBytes())));
 ConfigHelper.setInputSlicePredicate(job.getConfiguration(),
predicate);

 job.waitForCompletion(true);
 return 0;
 }
}

Hadoop and Cassandra

244

2.	 Create a file <hpc_build>/src/java/hpcas/c11/MapOnly.java:
package hpcas.c11;

import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.SortedMap;
import org.apache.cassandra.db.IColumn;
import org.apache.cassandra.utils.ByteBufferUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;

The signature of a Mapper allows the framework to know what Java types are input
and output from the map method.
public class UpperCaseMapper extends
 Mapper<ByteBuffer, SortedMap<ByteBuffer, IColumn>, Text,
Text> {
	 /*

 During a Map Reduce Job, the map method will be called many
times. Save
 object instantiation and cleanup by declaring class level
objects. */
 private Text akey = new Text();
 private Text value = new Text();
 private ByteBuffer sourceColumn;

The setup method is called once when the Mapper is initialized. Fetch the wanted
column information here rather than in the map method since this data will not
change for the entire run of the program.
 @Override
 protected void setup(org.apache.hadoop.mapreduce.Mapper.
Context context)
 throws IOException, InterruptedException {
 sourceColumn = ByteBuffer.wrap(context.getConfiguration()
 .get(MapOnly.CONF_COLUMN_NAME).getBytes());
 }

Chapter 11

245

Data from the InputFormat is sent to the map method. Both the key and the value
are treated as Strings and a conversion to uppercase is applied. The calculated
values are then written to the context. Since no reducer has been defined, data is
written directly to HDFS.
 public void map(ByteBuffer key, SortedMap<ByteBuffer,
IColumn> columns,
 Context context) throws IOException,
InterruptedException {
 IColumn column = columns.get(sourceColumn);
 if (column == null)
 return;
 value.set(ByteBufferUtil.string(column.value()).
toUpperCase());
 akey.set(ByteBufferUtil.string(key).toUpperCase());
 context.write(akey, value);
 }
 }

3.	 Run the application supplying the name of a keyspace, column family, and column
to process (this is a single command):
$ ant dist
$ columnname=favorite_movie column=favorite_movie \
KS=ks33 CF=cf33 output=/map_output \
<hadoop_home>/bin/hadoop jar \
<hpc_home>/dist/lib/hpcas.jar \
hpcas.c11.MapOnly \

4.	 Use the -libjars switch and specify a comma-separated list of JAR files that are
distributed with the job:
-libjars \
<cassandra_home>/lib/apache-cassandra-0.7.3.jar, <cassandra_home>/
lib/libthrift-0.5.jar,
<cassandra_home>/lib/guava-r05.jar,
<cassandra_home>/lib/commons-lang-2.4.jar

11/03/12 12:50:20 INFO mapred.JobClient: Running job:
job_201103091912_0034
...
11/03/12 12:50:41 INFO mapred.JobClient: Map input records=3
11/03/12 12:50:41 INFO mapred.JobClient: Spilled Records=0
11/03/12 12:50:41 INFO mapred.JobClient: Map output records=3

Hadoop and Cassandra

246

5.	 Confirm the results by using the <hadoop_home>/bin/hadoop dfs -cat, which
streams files on HDFS to the local console:

$ <hadoop_home>/bin/hadoop dfs -cat /map_output/*
STACEY	DRDOLITTLE
ED	 MEMENTO
BOB	 MEMENTO

How it works...
Each time the ColumnFamilyInputFormat is run, the entire column family is used as input.
This means that processing large column families can take a long time and be very intensive.
The ColumnFamilyInputFormat first connects to Cassandra to plan the job. The result of
this planning is a list of splits. Each split is processed by a TaskTracker. The larger the cluster,
the more splits that can be processed in parallel.

See also...
The next recipe, A Map-only program that writes to Cassandra using the CassandraOutputFormat
to write data from Hadoop directly to Cassandra.

A Map-only program that writes to
Cassandra using the CassandraOutputFormat

The default OutputFormat writes objects to human-readable text files. Cassandra also
implements a Hadoop OutputFormat allowing the results of MapReduce jobs to be written
data directly to Cassandra. This recipe shows how to read data from Cassandra, update it,
and then write it back using MapReduce.

Getting ready
This recipe will make modifications to the program in the previous recipe, A Map-only program
that reads from Cassandra using CassandraInputFormat.

How to do it...
1.	 Add the highlighted lines to the following: <hpc_build>/src/java/hpcas/c11/

MapOnly.java
 ConfigHelper.setInputSlicePredicate(job.getConfiguration(),
predicate);

Chapter 11

247

 job.setMapOutputKeyClass(ByteBuffer.class);
 job.setMapOutputValueClass(List.class);
 job.setOutputFormatClass(ColumnFamilyOutputFormat.class);
 ConfigHelper.setOutputColumnFamily(job.getConfiguration(),
 Util.envOrProp("KS"), Util.envOrProp("CF"));

 job.waitForCompletion(true);

The output format accepts a ByteBuffer and a list of Mutation objects. Comment the
existing context.write() call and replace it.
 //context.write(akey, value);
 context.write(key, Collections.singletonList(getMutation(source
Column, value)));
}

2.	 Construct a new mutation using the column name and the new value in uppercase:
 private static Mutation getMutation(ByteBuffer word, Text value)
{
 Column c = new Column();
 c.name = word;
 c.value = ByteBuffer.wrap(value.getBytes());
 c.timestamp = System.currentTimeMillis() * 1000;

 Mutation m = new Mutation();
 m.column_or_supercolumn = new ColumnOrSuperColumn();
 m.column_or_supercolumn.column = c;
 return m;
 }

3.	 Rebuild the hpc_build project and run the code again:
$ cd <hpc_build>
$ ant

The OutputFormat uses Avro and more JARs are required to run the job. Add the
following files to the -libjar list and run the program again.

�� avro-1.4.0-fixes.jar

�� jackson-core-asl-1.4.0.jar

�� jackson-mapper-asl-1.4.0.jar

4.	 Confirm that the values of the column are in uppercase:

[default@ks33] list cf33;
Using default limit of 100

RowKey: stacey

Hadoop and Cassandra

248

=> (column=favorite_movie, value=DRDOLITTLE,
RowKey: ed
=> (column=favorite_movie, value=MEMENTO,
RowKey: bob
=> (column=favorite_movie, value=MEMENTO,
3 Rows Returned.

How it works...
The OutputFormat receives data from MapReduce and writes the data to Cassandra.
Having support for both InputFormat and OutputFormat allows users to mix and match
how they approach problems. This job reads from Cassandra, processes using Hadoop, and
then writes the data back to Cassandra. However, users can read data from Hadoop and write
to Cassandra or vice-versa.

Using MapReduce to do grouping and
counting with Cassandra input and output

Many types of grid computing systems can divide a problem into smaller sub-problems and
distribute this across many nodes. Hadoop's distributed computing model uses MapReduce.
MapReduce has a map phase, a shuffle sort that uses a Partitioner to guarantee that
identical keys go to the same reducer, and finally a reduce phase. This recipe shows a
word_count application in the Cassandra contrib. Grouping and counting is a problem
ideal for MapReduce to solve.

More information on MapReduce can be found on
http://en.wikipedia.org/wiki/MapReduce.

Getting ready
The complete code for this example is found here: http://svn.apache.org/repos/asf/
cassandra/branches/cassandra-0.7/contrib/word_count/.

How to do it...
The mapper takes a column and breaks it into tokens (individual words) using
StringTokenizer, a class that splits strings on common tokens such as spaces and columns.

 public static class TokenizerMapper extends
 Mapper<ByteBuffer, SortedMap<ByteBuffer, IColumn>, Text,
IntWritable>

Chapter 11

249

 {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 private ByteBuffer sourceColumn;

 public void map(ByteBuffer key, SortedMap<ByteBuffer, IColumn>
columns,
 Context context) throws IOException, InterruptedException
 {
 IColumn column = columns.get(sourceColumn);
 if (column == null)
 return;
 String value = ByteBufferUtil.string(column.value());
 StringTokenizer itr = new StringTokenizer(value);
 while (itr.hasMoreTokens())
 {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

Equal keys are guaranteed to be processed by the same reducer. This reducer counts how
many times a given key occurs.

 public static class ReducerToFilesystem extends
 Reducer<Text, IntWritable, Text, IntWritable>
 {
 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException,
InterruptedException
 {
 int sum = 0;
 for (IntWritable val : values)
 sum += val.get();
 context.write(key, new IntWritable(sum));
 }
 }

How it works...
MapReduce can efficiently parallelize many common algorithms. Grouping and counting
is one such application. This application counts the number of times words appear in text.
However, much of this code can be used to count hits to a website, or build a reverse index
storing the positions of words in a body of text.

Hadoop and Cassandra

250

Setting up Hive with Cassandra Storage
Handler support

Hive is a data warehouse infrastructure built on top of Hadoop that provides tools to enable
easy data summarization, ad hoc querying, and analysis of large data sets stored in Hadoop
files. It provides a mechanism to put structure on this data and provides a simple query
language called Hive QL, which is based on SQL and which enables users familiar with SQL
to query this data.

Hive has an API for Storage Handlers that allows data in other systems outside of HDFS
to be used as input or output. This recipe shows how to set up Hive with the Cassandra
Storage Handler.

Getting ready
You will need to have a working Hadoop deployment. Refer to the recipe A pseudo-distributed
Hadoop setup in this chapter for more information. The Cassandra Storage Handler has not
yet been integrated into a Hive release. You can either build hive from source: http://wiki.
apache.org/hadoop/Hive/GettingStarted#Building_Hive_from_Source and
apply the latest patch: https://issues.apache.org/jira/browse/HIVE-1434 or you
can follow the recipe Setting up DataStax Brisk the combined stack of Cassandra, Hadoop,
and Hive to get a binary version hive with Storage Handler support.

How to do it...
1.	 Download and extract Hive release from http://hive.apache.org:

$ cd ~
$ wget <tar.gz for latest release>
$ tar -xf hive-0.8.0.tar.gz
$ cd hive-0.8.0

2.	 Copy all the JAR files from your Cassandra distribution to auxlib. Remove libraries
that are not needed and may conflict with Hive versions:
$ mkdir auxlib
$ cp <cassandra_home>/lib/*.jar auxlib/
$ rm auxlib/antlr*
$ rm auxlib/commons-cli*

3.	 Export the environmental variable HADOOP_HOME to the directory of your
Hadoop installation:
$ export HADOOP_HOME=~/hadoop-0.20.2

Chapter 11

251

4.	 Start Hive:

$ bin/hive
hive>

How it works...
Hive is built on top of Hadoop. The HADOOP_HOME environment variable needs to be exported
so Hive can use it to find required libraries as well as site-specific Hadoop settings such as the
hostname and port of the NameNode and JobTracker.

The Cassandra Storage handler requires many libraries from Cassandra to be on the classpath
since it uses classes such as the ColumnFamilyInputFormat provided by Cassandra.

See also...
ff In this chapter, the recipe Defining a Hive table over a Cassandra Column Family

shows you the next step in the Hive Cassandra integration

ff In this chapter, the recipe Joining two Cassandra Column Families using with Hive

ff In this chapter, the recipe Grouping and counting column values with Hive shows how
to use the Storage handler for Analytic queries

Defining a Hive table over a Cassandra
Column Family

Hive is designed on the concept that rows in the same table have a fixed number of columns,
while a Cassandra row has multiple key value pairs associated with it. You can think of the
process of overlaying Hive on Cassandra as turning a map into a fixed array based only on
certain key value pairs in the map.

For this recipe, columns such as favorite_book will not be accessible. Additionally, if a row
does not have a required column such as favorite_movie, a null value will be returned.

Hadoop and Cassandra

252

Getting ready
The recipe Setting up Hive with Cassandra Storage Handler support for information on
installing and configuring Hive.

How to do it...
Tables that use the Cassandra Storage Handler must be external. External tables are not
physically removed when they are dropped from Hive:

hive> CREATE EXTERNAL TABLE IF NOT EXISTS

1.	 Name the table cf33 and specify two columns key of type string and favorite_
movie of type string:
> cf33 (key string, favorite_movie string)

The special STORED BY clause instructs Hive to use the external storage handler:
> STORED BY 'org.apache.hadoop.hive.cassandra.
CassandraStorageHandler'

The cassandra.columns.mapping maps the Hive columns to Cassandra
columns. The format is column_family:column_name and the special:key,
which means to use the row key:
> WITH SERDEPROPERTIES
> ("cassandra.columns.mapping" = ":key,cf33:favorite_movie" ,

2.	 Specify the column family name:
> "cassandra.cf.name" = "cf33" ,

3.	 Specify the initial contact host and the RPC port:

> "cassandra.host" = "127.0.0.1" , "cassandra.port" = "9160",

4.	 Specify the partitioner being used:
"cassandra.partitioner" = "org.apache.cassandra.dht.
RandomPartitioner")

5.	 In the table properties, specify the keyspace name:
TBLPROPERTIES ("cassandra.ks.name" = "ks33");

6.	 After the table is set up, run a simple query that should select all rows and then order
the results by the key:

hive> SELECT * FROM cf33 ORDER BY key;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...

Chapter 11

253

bob	 memento
ed		 memento
stacey	drdolittle
Time taken: 37.196 seconds

How it works...
The parameters specified when the table is created are stored as the definition of the Hive
table. Many of these parameters such as cassandra.ks.name, cassandra.cf.name,
cassandra.host, cassandra.port, and cassandra.partitioner are passed
internally to the ColumnFamilyInput format. Hive uses the cassandra.columns.
mapping property to map the columns as they may have different names between the
two systems.

Hive uses multiple mappers to fetch all the contents of the column family in parallel. The
result of the map phase is then passed into a single reducer; the outputs of a reducer are
naturally sorted.

See also...
ff The next recipe, Joining two Column Families with Hive.

ff The recipe Grouping and Counting column values with Hive in this chapter.

Joining two Column Families with Hive
Joining two data sets on a value is a common operation. This operation is typically done in
SQL databases where data is in a normalized form. Data in Cassandra is typically stored in a
de-normalized form; however, there are many cases where a user wishes to join columns from
two-column families together on a key.

Getting ready
The recipe Setting up Hive with Cassandra Storage Handler support is a prerequisite.

How to do it...
1.	 Create entries in two column families that have the same row key:

$ <cassandra_home>/bin/cassandra-cli
[default@ks33] set cfcars['ed']['car']='viper' ;
[default@ks33] set cfcars['stacey']['car']='civic';
[default@ks33] set ed cf33['ed']['favorite_movie']='memento'
[default@ks33] set ed cf33['stacey']['favorite_
movie']='drdolittle'

Hadoop and Cassandra

254

2.	 Ensure a table is created for each column family:
$ <hive_home>/bin/hive
hive> show tables;
OK
cf33
cfcars
Time taken: 0.145 seconds

3.	 Issue a JOIN clause to combine both data sets on the row key:

hive> SELECT cf33.key, cf33.favorite_movie, cfcars.car FROM cf33
JOIN cfcars ON cf33.key = cfcars.key;
...
OK
key	 favorite_movie	 car
ed	 memento	 viper
stacey	 drdoolittle	 civic
Time taken: 41.238 seconds

How it works...
The Cassandra Storage Handler allows Hive to read data from Cassandra. After this data is
read, it is no different than any other data from Hive. It can be joined with another Cassandra
table as is done in this example, or it can be joined with a table of HDFS data. Equality joins
are efficient in MapReduce as data produced from the map phase is naturally moved to a
reducer based on the key.

Grouping and counting column values
with Hive

Once a schema is defined inside Hive, many different ad hoc queries can be run against it.
Based on the submitted query, Hive generates a plan that may be one or more MapReduce
jobs. This recipe shows how to group and count on the values of a specified column using Hive.

How to do it...
1.	 Insert some entries ensuring that the 'favorite_movie' column is populated:

[default@ks33] set cf33['ed']['favorite_movie']='memento';
[default@ks33] set cf33['stacey']['favorite_movie']='drdolittle';
[default@ks33] set cf33['bob']['favorite_movie']='memento';

Chapter 11

255

2.	 Create an HQL query that will count values of the favorite_movie column and
then order the counts in ascending order:

hive> SELECT favorite_movie,count(1) as x FROM cf33 GROUP BY
favorite_movie ORDER BY x;
...
OK
drdolittle	 1
memento	 2

How it works...
Those familiar with Structured Query Language will notice that Hive has the SELECT, GROUP
BY, and ORDER BY constructs.

Comparing this recipe with the recipe A MapReduce program that uses grouping with
Cassandra input and output demonstrates the benefit of the code generation capability of
Hive. Coding, compiling, testing, and deploying a MapReduce program can sometimes be
replaced by a two-line Hive query!

See also...
In this chapter, the recipe A MapReduce program that uses grouping with Cassandra input
and output.

Co-locating Hadoop Task Trackers on
Cassandra nodes

When multiple applications are run on the same hardware, they affect the performance of
each other by competing for the same resources. MapReduce jobs commonly run from several
minutes to hours while processing gigabytes of data. Cassandra requests are low latency
operations on small amounts of data.

One of the important concepts leveraged by Hadoop is that moving data is more intensive
than moving processing. When a Hadoop job is divided into tasks, the scheduler attempts
to run the task on a node where the data is. This is referred to as data locality.

This recipe shows how to achieve data locality when using Hadoop and Cassandra, as well
as configuration suggestions so they run on the same hardware while isolating them from
each other.

Hadoop and Cassandra

256

How to do it...
If your system has multiple disks, consider isolating the TaskTracker to its own disk(s).

1.	 Edit <hadoop_home>/conf/mapred-site.xml:
<property>
 <name>mapred.temp.dir</name>
 <value>/mnt/hadoop_disk/mapred/temp</value>
</property>

2.	 Set the values of *.task.maximum to low numbers:
<property>
 <name>mapred.tasktracker.reduce.tasks.maximum</name>
 <value>1</value>
</property>
<property>
 <name>mapred.tasktracker.map.tasks.maximum</name>
 <value>3</value>
</property>

3.	 Set the -Xmx size of forked processes:
<property>
 <name>mapred.child.java.opts</name>
 <value>-Xmx150m</value>
</property>

4.	 Restart the TaskTracker for the changes to take effect.

How it works...
MapReduce jobs are IO intensive. They work with large amounts of data, and during
operations repeatedly spill data to disk. Having dedicated disks serve as the mapred.temp.
dir is desirable as it isolates the disk traffic from Cassandra and Hadoop.

Both Cassandra and Hadoop will also compete for the CPU of the system. To control this from
the Hadoop side, set mapred.tasktracker.reduce.tasks.maximum and mapred.
tasktracker.map.tasks.maximum to low values. For example, if a system has eight CPU
cores, you may only want to dedicate four of them to the TaskTracker, leaving the remaining
four for Cassandra.

The mapred.child.java.ops property is used an argument when map and reduce
tasks are forked. When setting the Xmx value in this property, multiply it by (mapred.
tasktracker.reduce.tasks.maximum + mapred.tasktracker.map.tasks.
maximum) to determine the maximum memory that can be used at a given time. Balance
this out with the memory dedicated to Cassandra.

Chapter 11

257

See also...
The next recipe, Setting up a "Shadow" data center for running only MapReduce Jobs shows
how to use Cassandra's built-in replication to partition a cluster with nodes dedicated for
ETL-type workloads and others dedicated for serving low-latency requests.

Setting up a "Shadow" data center for
running only MapReduce jobs

MapReduce and other Extract Translate Load (ETL) processing can be intensive, which can
interfere with the ability of Cassandra to serve other requests promptly. This recipe shows
how to set up a second Cassandra data center for ETL, as depicted in the following image:

Getting ready

Review the chapter on Multi datacenter deployments for recipes on multi-data centers setups.

How to do it...
1.	 Create a keyspace that is replicated three times in DC1, but only once in DC2:

[default@unknown] create keyspace ks33 with
placement_strategy = 'org.apache.cassandra.locator.
NetworkTopologyStrategy' and strategy_options=[{DC1:3,DC2:1}];

2.	 Open <cassandra_home/conf/cassandra-topology.properties in your text
editor. Create an entry for each host. Put hosts 1-5 in DC1 and hosts 6-8 in DC2:
10.1.2.1=DC1:rack1 #cas1
10.1.2.2=DC1:rack1
10.1.2.3=DC1:rack1

Hadoop and Cassandra

258

10.1.2.4=DC1:rack1
10.1.2.5=DC1:rack1
10.2.5.9=DC2:rack1 #cas6
10.2.3.4=DC2:rack1 #cas7
10.2.3.9=DC2:rack1 #cas8

3.	 Edit <cassandra_home>/conf/cassandra.yaml in your text editor:
endpoint_snitch: org.apache.cassandra.locator.PropertyFileSnitch

How it works...
This design leverages the multi-data center capability of Cassandra. Application servers
(app1-3) communicate exclusively with Cassandra servers in DC1 (cas1-5), while the Hadoop
cluster communicates with DC2 (cas6-8). This division of resources allows ETL-type processes
to run without having an impact on the nodes that serve requests to application servers.

There's more...
The hardware in the Shadow data center does not have to be the same class of hardware
used for request serving. Also, the number of physical servers may be less. For example, the
primary data center might have ten servers with fasts SCSI disks and large amounts of RAM
to handle user requests. However, in your shadow data center, three servers with large SATA
drives and less RAM may be sufficient for MapReduce or ETL workloads.

Setting up DataStax Brisk the combined
stack of Cassandra, Hadoop, and Hive

Brisk contains versions of Cassandra, Hadoop, and Hive that are combined into a single
package. This makes it fast and easy to deploy and manage these components as one entity.

How to do it...
1.	 Download and extract brisk:

$ mkdir brisk
$ cd brisk
$ wget --no-check-certificate https://github.com/downloads/
riptano/brisk/brisk-1.0~beta1-bin.tar.gz
$ tar -xf brisk-1.0~beta1-bin.tar.gz

Chapter 11

259

2.	 Start brisk using the -t argument to start the Cassandra and Hadoop stack:
$ bin/brisk cassandra -t
 INFO 01:12:10,514 Started job history server at: localhost:50030
 INFO 01:12:10,514 Job History Server web address: localhost:50030
 INFO 01:12:10,519 Completed job store is inactive
 INFO 01:12:10,532 Starting ThriftJobTrackerPlugin
 INFO 01:12:10,549 Starting Thrift server
 INFO 01:12:10,553 Hadoop Job Tracker Started...

3.	 Execute hadoop dfs commands form inside the shell:
$ bin/brisk hadoop dfs -ls /
Found 1 items
drwxrwxrwx - edward edward 0 2011-05-27 01:12 /tmp

4.	 Start Hive from the brisk shell:

$ bin/brisk hive
Hive history file=/tmp/edward/hive_job_log_
edward_201105270113_823009135.txt
hive>

How it works
Brisk removes the need to run separate NameNode, SecondaryNameNode, and DataNodes
components by storing data directly in Cassandra File System (CFS), which works as a
drop-drop-in replacement for HDFS. The Hive metadata, typically stored in a relational
datastore, is also stored directly in Cassandra. Brisk is ideal for those wishing to use
Cassandra and who do not wish to manage Hadoop components separately.

12
Collecting and

Analyzing Performance
Statistics

In this chapter, you will learn the following recipes:

ff Finding bottlenecks with nodetool tpstats

ff Using nodetool cfstats to retrieve column family statistics

ff Monitoring CPU utilization

ff Adding read/write graphs to find active column families

ff Using Memtable graphs to profile when and why they flush

ff Graphing SSTable count

ff Monitoring disk utilization and having a performance baseline

ff Profiling the effectiveness of caches with cache graphs

ff Monitoring compaction by graphing its activity

ff Using nodetool compaction stats to check the progress of compaction

ff Graphing column family statistics to track average/max row sizes

ff Using latency graphs to profile time to seek keys

ff Tracking the physical disk size of each column family over time

ff Using nodetool cfhistograms to see the distribution of query latencies

ff Tracking open networking connections

Collecting and Analyzing Performance Statistics

262

Cassandra offers built-in support for performance counters that provide in-depth information
into how the system is doing. Recording the information from these counters is an invaluable
asset when troubleshooting and capacity planning. Cassandra provides access to this
information through standard JMX MBeans (Java Management eXtension Managed Bean).
MBeans make it possible for a variety of applications to collect, report, and alert on this
information. This chapter looks in depth at techniques for both standard system monitoring
and Cassandra-specific monitoring. It shows which information is important to capture and
how to analyze this information.

Some of the recipes in this chapter use the Cacti network management system
(http://www.cacti.net) and cassandra-cacti-m6 http://www.jointhegrid.com/
cassandra/cassandra-cacti-m6.jsp to collect and graph performance counters from
Cassandra's JMX.

Finding bottlenecks with nodetool tpstats
The Cassandra server internals are designed with SEDA (Staged Event Driven Architecture).
Rather than spawning a thread per request, the requests are transferred between queues
of bounded size called thread pools. If thread pools are filled, requests get backlogged
and clients will begin experiencing delays or exceptions. A good first step in diagnosing a
performance problem is running tpstats (thread pool stats) and determining if any stage
is backlogged.

How to do it...
Use nodetool tpstats to connect to the JMX port of the server you would like to gather
statistics on.

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 tpstats

Pool Name Active Pending Completed

ReadStage 0 0 8

RequestResponseStage 0 0 210271

MutationStage 0 0 333208

ReadRepairStage 0 0 0

GossipStage 0 0 92134

AntiEntropyStage 0 0 0

MigrationStage 0 0 2

MemtablePostFlusher 0 0 5

StreamStage 0 0 0

FlushWriter 0 0 4

MiscStage 0 0 0

Chapter 12

263

FlushSorter 0 0 0

InternalResponseStage 0 0 3

HintedHandoff 0 0 2

How it works...
Any stage that has a non-zero number in the Active or Pending column is backlogged.
A healthy system shows near zero at most times in all stages for both the Active and
Pending states.

There's more...
The ReadStage and RequestResponseStage search data and return the results to the client.

Some stages such as the AntiEntropyStage are entered by administrative actions such as
running nodetool repair.

The FlushStage happens periodically when Memtables hit their thresholds and flush to disk.
Sustained non-zero values for active and pending inside this stage are rare. Since flushing
to disk is a serial operation, this would indicate an extremely overburdened disk subsystem.

MutationStage is the stage that handles write operations. Because the write stage is highly
optimized, backlog in this stage would indicate either an extreme volume of write activity and
that the disk with the commit log cannot sustain the write traffic.

Using nodetool cfstats to retrieve column
family statistics

Each column family has a number of performance counters that provide in-depth diagnostics.
The cfstats (column family statistics) option shows a high level summary of the column
family information.

How to do it...
Use nodetool cfstats to retrieve the column family information.

$ <hpcas>/bin/nodetool -h 127.0.0.1 -p 8080 cfstats

Keyspace: Keyspace1

 Read Count: 0

 Read Latency: NaN ms.

 Write Count: 333208

 Write Latency: 0.020031103694989314 ms.

Collecting and Analyzing Performance Statistics

264

 Pending Tasks: 0

 Column Family: Standard1

 SSTable count: 0

 Space used (live): 0

 Space used (total): 0

 Memtable Columns Count: 1666040

 Memtable Data Size: 84968040

 Memtable Switch Count: 0

 Read Count: 0

 Read Latency: NaN ms.

 Write Count: 333208

 Write Latency: 0.020 ms.

 Pending Tasks: 0

 Key cache capacity: 200000

 Key cache size: 0

 Key cache hit rate: NaN

 Row cache: disabled

 Compacted row minimum size: 0

 Compacted row maximum size: 0

 Compacted row mean size: 0

How it works...
Some values in the cfstats output represent values that are a current size such as SSTable
count. Other fields such as Write Count represent counters that need to be sampled over
time to determine a rate. Each column family has its own set of values. Averages of specific
variables such as Read Count are used to summarize the activity of the keyspace.

See also...
Further information on many of these fields is described in other recipes across this chapter.

Monitoring CPU utilization
The CPU activity is one of the most important factors of performance. This recipe shows the
CPU graph and describes how to interpret the following CPU graph:

Chapter 12

265

How to do it...
The following table lists descriptions of the major CPU states:

State Description
user Shows the percentage of CPU utilization that occurred while executing at the user level

(application).
system Shows the percentage of CPU utilization that occurred while executing at the system

level (kernel).
idle Shows the percentage of time that the CPU or CPUs were idle during which the system

had an outstanding disk I/O request.
IOWait Shows the percentage of time that the CPU or CPUs were idle and the system did not

have an outstanding disk I/O request.

With this graph:

ff Track each state and compare the results over time

ff Ensure sufficient IDLE cycles for future growth

ff Track IOWait to look out for disk and network bottlenecks

How it works...
Every workload is different. Sites that use Cassandra in a caching role have small data sets
compared to RAM size. Under load, they will typically see the User and System states increase
and become a bottleneck. For sites that use Cassandra to store significantly more data than
RAM, IOWait will usually become the limiting factor.

Collecting and Analyzing Performance Statistics

266

The Java garbage collection process utilizes multiple threads to sweep through memory
often and avoids pauses. Generally, if a system is spending time in Idle state there is spare
capacity. However, the IOWait state, wa when using the top command, indicates the system
is waiting on disk or network IO. Because the system is waiting on those resources, it can not
fully utilize the CPU.

Make sure to collect IOWait and Idle information

Some NMS systems provide CPU graphs that do not record IOWait and
other system states. High IOWait will prevent you from fully utilizing your
CPU. Those only recording a few states such as User, System, and Idle
could look at a graph showing 200 percent User, 700 percent Idle and
wonder why Cassandra is not fully utilizing their processor. That reason
could be that 300 percent of the CPU time is spent waiting for IO!

See also...
High IOWait usually means that your disk subsystem is overworked. Review the Monitoring
disk utilization and having a performance baseline recipe to learn how to monitor hard
disk activity.

Adding read/write graphs to find active
column families

Each column family tracks the read and write requests to it. This recipe describes the
CFStores Read/Write graph and the information it provides, which is depicted as follows:

Chapter 12

267

How to do it...
In this graph, the ReadCount is represented as an area in blue and the WriteCount is an
area in green stacked above it. The more requests on a given column family, the more system
resources are being used. Use this information to:

ff Correlate with Disk and CPU usage graphs to determine approximately how many
operations per second a system can support

ff Track these values over time to monitor usage patterns

How it works...
Tracking, trending, and having a baseline for your read and write activity is critical. For
example, a software release could accidentally triple read operations, and without knowing
the normal rate, detecting the issue would be difficult. Knowing which column families are
the most active is important when deciding where to allocate larger caches.

There's more...
The hinted handoff stores records that were destined to downed nodes. Currently, hinted
handoff reads from the source system to find the data that needs to be replayed to the other
nodes. This causes read traffic to temporarily increase on the nodes storing hints after a failed
node comes back online.

Using Memtable graphs to profile when and
why they flush

Memtables are in-memory sorted structures that data is written to. The Memtables flush
when their time, size, or activity thresholds are triggered. This recipe describes how to
interpret activity from the following Memtable graph:

Collecting and Analyzing Performance Statistics

268

How it works...
In this graph, the orange area represents MemtableDataSize, which is the size of the
Memtable including all keys and columns. The blue area, MemtableColumnsCount, is
the number of columns in the Memtable. The size of the table grows until a flush to disk is
triggered and the size and column count are reset to zero. Use this graph to:

ff Ensure the saw tooth action of this graph is periodic
ff Examine the cause of Memtable flushes
ff Compare Memtable size with memory usage and ensure large Memtable settings

are not causing memory contention

There's more...
If a column is written twice to a Memtable, it will be overridden. If Memtable settings are
set higher, Memtables will flush less. This increases the chances that data will not be written
to disk multiple times. Flushing often creates multiple SSTables, which may in turn trigger
more compaction. If this disk is flushing and compacting often, it has less resources to
spend responding to user's requests.

See also...
In Chapter 4, Performance Tuning, the recipe Memtable tuning for write-heavy workloads.

The recipe Monitoring compaction by graphing its activity in this chapter.

Graphing SSTable count
Cassandra's SSTables are written once and never modified. For an active column family with
frequent writes and/or deletes, new SSTables are created often. The compaction manager
has thresholds that are triggered and combine multiple SSTables into one. This recipe shows
how to interpret the data from the SSTable graph, which is shown as follows:

Chapter 12

269

How to do it...
The blue area represents the LiveSSTableCount. Each SSTable also has an Index and Bloom
Filter file. Each read may have to check for data in all the SSTables in a column family. Having
more SSTables slows down the read path. SSTables that have to be part of a snapshot may
still exist on disk, but are not counted by this graph. Use this graph to:

ff Ensure that the SSTable count stays low (single digits)

ff Compare the SSTable count with historical information

There's more...
The compaction thresholds try to ensure that the SSTable count stays low. It may grow
temporarily during a large compaction, or possibly if compaction is disabled for a bulk load.
However, if SSTable count begins to grow, it may be time to tune Memtable or compaction
settings, or get more hardware.

Monitoring disk utilization and having a
performance baseline

For deployments where the data on disk is larger than the amount of RAM on system, disk
performance becomes a larger factor in performance. This recipe shows how to monitor the
activity of a hard disk, as depicted in the following graph:

Collecting and Analyzing Performance Statistics

270

How to do it...
The area of the graph in blue is bytesRead that represents the bytes read from disk per
second. The area stacked on top of bytesRead in green is bytesWritten, the bytes written
to disk per second. Use this graph to:

ff Keep track of disk utilization over time

ff Ensure disk activity is not maxed out during peak times

ff Correlate the activity of this graph with the Cache Activity graph to determine the I/O
savings that different cache configurations provide

How it works...
Disks on platters are capable of reading and writing fast serially. However, seeking across disk
is slower. The majority of use cases exhibit a random read pattern. Random reads cause the
hard disk to spend more time seeking than reading and thus limit throughput.

There's more...
Solid State Drives (SSD) offer an interesting solution to random read challenge. A solid state
drive has no moving parts and never has to seek access to any data location. This technology
is new and more expensive than standard spinning disks.

See also...
See the recipes Using a dedicated commit log disk, Choosing a high performing RAID Level,
and File system optimization for hard disk performance in Chapter 4, Performance Tuning
for information on tuning physical disks.

How to do it...
Towards the bottom of the graph, the Cache Hit Rate represents the number of Requests
divided by the number of Cache Hits. The higher the Cache Hit Rate, the more effective the
cache. Use this graph to:

ff Compare the cache hit ratio with yesterday or last week and ensure changing traffic
patterns are not affecting the hit rate

ff Correlate the activity of this graph with the Device I/O graph to determine how much
I/O savings different cache configurations provide

ff Ensure caches are not growing large when they are set as a percentage rather than
a fixed size

Chapter 12

271

How it works...
Caching can make a drastic difference in performance if the situation is right and the caches
are employed correctly. Understanding the concept of active set is helpful. Active set can
be considered as the portion of your data that is in use at a given time. As a hypothetical
example, a node has 400 GB of data storing information on 100,000,000 users. At any
given time, a small portion of those users may be active, such as five percent. If you employ
correctly sized caches, a small amount of memory can effectively cache the five percent of
active users, making the service responsive for them.

Cache tuning involves making caches large enough to achieve a high hit rate. The goal is
to keep as much of the active set in memory as possible as this lowers disk activity.

The law of diminishing returns may apply to cache sizes. For example, a 50,000 item cache
might achieve a 90 percent hit rate, while a 100,000 item cache may achieve a 92 percent hit
rate. It may not make sense to double the memory in that case to achieve only a two percent
higher rate.

See also...
In Chapter 4, Performance Tuning the recipes Boosting read performance with the Key Cache
and Boosting read performance with the Row Cache

Monitoring compaction by graphing its
activity

Compaction is a necessary process in the life cycle of the data in Cassandra's structured
log format. Compaction removes old data and optimizes the data on disk. Rows marked for
deletion with tombstones are candidates to be removed entirely. This recipe shows how to
monitor compaction graphically.

Collecting and Analyzing Performance Statistics

272

Network Management Systems typically monitor at five-minute intervals.
Due to the way compaction counters are kept, it is possible that a graph
sampling at five-minute intervals could miss a compaction event. However,
generally these smaller compactions are not performance impacting.

How it works...
When a compaction starts, the red line in the graph records BytesTotalInProgress, which
is the amount of data that needs to be compacted. The blue area renders ByteCompacted,
which is the current progress. When the blue area meets with the red line, the compaction is
done. An absence of graph elements indicate no compaction is happening at that time.

ff Review this graph periodically and ensure your system is not compacting often
ff Find slow periods to do long compaction operations such as repairs and joins

There's more...
Compaction should not be looked at as a negative. After all, compaction removes old data
and optimizes the data on disk. However, if systems are in a compaction state often, user
requests will have more latency. In most cases, it is desirable for compactions to finish as
quickly as possible, and short quick spikes in the compaction graph show just that. A health
system should be able to compact many gigabytes of data in a short time period. If a system is
beginning to become overloaded, its compaction process could become long and drawn out.

Adjusting your Memtable settings so that they flush less should cause less compaction. It is
also possible to manually run major compaction at specified times. This lowers the chance
a larger compaction will automatically trigger during peak request load.

See also...
In Chapter 4, Performance Tuning the recipe Setting compaction thresholds shows how
to change the criteria that cause compaction.

The next recipe, Using nodetool compaction stats to check the progress of compaction for
a command-line alternative to this graph.

Using nodetool compaction stats to check
the progress of compaction

Nodes can compact for several reasons. They can compact automatically when the compaction
thresholds are reached. A major compaction is a compaction of all the SSTables for a column
family that is triggered by the user. Joining and leaving nodes trigger anti compactions, as does
anti entropy repairs . This recipe shows how to check and monitor compaction using nodetool.

Chapter 12

273

How to do it...
The nodetool compactionstats command allows you to quickly see if a compaction is
in progress.

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 compactionstats

compaction type: Major

column family: standard1

bytes compacted: 49925478

bytes total in progress: 63555680

pending tasks: 1

How it works...
This command is a quick way to determine if a node is compacting and monitoring how
close it is to finishing. Use this to determine if a compaction is the reason for performance
degradation or to see how a node join is progressing.

Graphing column family statistics to track
average/max row sizes

Rows can have between a single column and up to two billion columns inside them. During
compaction, information is collected about the rows that were compacted. This recipe shows
how to interpret this graph and the implications of row size in Cassandra, which is depicted
as follows:

Collecting and Analyzing Performance Statistics

274

How to do it...
The red, green, and blue lines represent max, mean, and min row compacted size. These
values are the raw byte size of rows. That is, a key and all its columns.

ff Use MaxRowCompactedSize to ensure that rows are not growing larger
than expected

ff Use the MeanRowCompactedSize to help determine how much space a particular
cache will use

Row cache and large rows

Using the row cache creates memory pressure when rows
are very large. Remember that all the columns of a row must
be cached when using the row cache.

Using latency graphs to profile time to
seek keys

Latency is an important factor when serving data to clients. Cassandra tracks latency, which
does not include the network latency; it counts time the request is received to the time it is
found or inserted to disk. This recipe shows how to interpret the graph.

Chapter 12

275

How to do it...
During read operations, Cassandra tracks information on the cumulative time spent searching
for data and makes this available as TotalReadLatencyMicros. When this value is divided
by the read count, the result is average read latency per request. This graph displays that
calculated value. Use this information to:

ff Ensure that latency stays within acceptable values

ff Compare this latency with results from yesterday or last week

Because the write path of Cassandra involves writing to a sorted-in memory table and
serially to a disk, write operations typically have very low latency and are constant. Constant
low values are typically not useful to graph.

How it works...
Latency is a function of many things: data size, disk search speed, load from other requests,
and caching. This means that smaller column families will search faster than larger ones.
Disks capable of more Revolutions Per Minute, such as SCSI, will search faster than SATA
disks. More simultaneous requests will cause more contention and more latency. Caching in
the form of Cassandra's built-in key cache and row cache as well as VFS cache (system RAM)
reduce latency by serving some or possibly all of the data from memory.

Tracking the physical disk size of each
column family over time

It is common to graph your system's total disk usage. Each column family has its own
statistics that record disk size. This recipe shows how to interpret data from the Column
Family Store graph, as depicted in the following graph:

Collecting and Analyzing Performance Statistics

276

How to do it...
The blue area, LiveDiskSpaceUsed, represents storage being used by Data, Index, and Bloom
Filter files. The green line, TotalDiskSpaceUsed, also tracks temporary files being created
by compaction.

ff Track the size of column families and project the growth rate

ff Ensure that during compaction that TotalDiskSpaceUsed is not filling the disk

How it works...
Column Family size is also important to the performance of read and write operations. As
a hypothetical example, on a given server it may be possible to serve 1,000 requests per
second when the column family size is 10 GB, but only 750 requests per second when the
column family size is 15 GB. Thus, it is important to be able to correlate column family size
with other information such as latency and request rate.

Using nodetool cfhistograms to see the
distribution of query latencies

Nodetool provides the cfhistograms command to display the latency information of
requests. This is helpful for determining the performance of requests without having
to record information in an external NMS.

How to do it...
Run nodetool cfhistograms command.

$<cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 cfhistograms
testkeyspace testcf | awk '{print $1 $3 $5}'

Offset Read Latency Column Count

1 0 0

2 1 4

3 998 7

4 7729 4

5 22844 15

6 44439 10

Chapter 12

277

How it works...
Histograms are useful for seeing the distribution of request times. This is helpful in cases
where knowing the average request time is not enough. For example, a request hitting the
row cache may have low latency where requests not cached may be considerably slower.

See also...
In this chapter, the recipe Using latency graphs to profile time to seek keys shows a way
to visualize latency information such as the cfhistogram stats.

Tracking open networking connections
Cassandra is a client server application. Each client that connects uses resources. In the
operating system, each open socket requires CPU and memory to manage it. Inside the virtual
machine each thread uses resources as well. This recipe shows how to interpret what the
following TCP connection graphs are showing. The first shows current established connections:

The second graph shows how many connections are listening:

Collecting and Analyzing Performance Statistics

278

How to do it...
In the Current Established graph, the tcpCurrEstab area shows how many sockets are open
across the system. Use this information to do the following:

ff Ensure open connections are not exceeding operating system thresholds.

ff Ensure that connections are not being left open by clients.

ff In the Opened connections graph, the passiveOpens line shows the number of
times TCP connections have made a direct transition to the SYN-RCVD state from the
LISTEN state. Use the information to monitor how many listening sockets are open on
the system.

How it works...
The Management Information Base for the Transmission Control Protocol (TCP) provides a
spec that systems implementing TCP should implement. Numerous counters are available
that can be used to get performance information and troubleshoot the TCP stack. This
information is important to Cassandra because of the high request rate and amount of
internode communication.

There's more...
The SNMP Management Information Base file, which describes the information that can be
monitored: https://www.ietf.org/rfc/rfc4022.txt.

13
Monitoring Cassandra

Servers

In this chapter, you will learn:

ff Forwarding Log4j logs to a central server

ff Using top to understand overall performance

ff Using iostat to monitor current disk performance

ff Using sar to review performance over time

ff Using JMXTerm to access Cassandra JMX

ff Monitoring for Garbage Collection Events

ff Using tpstats to find bottlenecks

ff Creating a Nagios Check Script for Cassandra

ff Keep an eye out for large rows with compaction limits

ff Reviewing network traffic with IPTraf

ff Keep on the lookout for Dropped Messages

ff Inspecting Column Families for dangerous conditions

Introduction
Getting Cassandra running at maximum efficiency involves understanding how it is utilizing
the hardware and the operating system. It also requires understanding the inner workings of
Cassandra to know when things are working non-optimally. This chapter focuses on applying
conventional and Cassandra-specific monitoring techniques.

Monitoring Cassandra Servers

280

Forwarding Log4j logs to a central sever
The faster a problem can be diagnosed and corrected, the better. In environments with only
a few systems, connection to the server over SSH and using command-line tools to examine
logfiles is usually sufficient. Since a Cassandra cluster can range from one to a few hundred
nodes, a better way to aggregate and review logs is needed. This recipe shows how to
configure Cassandra’s logging mechanism, Log4J, to send events to its local logfile as
well as a remote syslog server.

Getting ready
Syslog is a simple text-based protocol designed to transfer log messages over UDP. Modern
Linux distributions have a syslog server installed by default. Designate a system as a syslog
server and prepare it to accept remote messages.

1.	 Edit /etc/syslog.conf:
Provides UDP syslog reception
$ModLoad imudp.so
$UDPServerRun 514

2.	 Restart the rsyslog service:
/etc/init.d/rsyslog restart

Shutting down system logger: [OK]

Starting system logger: [OK]

3.	 Check to make sure the UDP port 514 is listening.
netstat -nl | grep 514

udp 0 0 0.0.0.0:514 0.0.0.0:*
udp 0 0 :::514 :::*

How to do it...
The Log4j messages in Cassandra do not always contain the hostname of the system
generating the message. The ${HOSTNAME} environment variable is available on Linux
systems. Capture the hostname by adding the following line in cassandra-env.sh
to use later:

JVM_OPTS=”$JVM_OPTS -Dlogging.hostname=${HOSTNAME}”

1.	 Add an appender named SYSLOG_LOCAL1 to the log4j-server.properties file:
INFO,stdout,R,SYSLOG_LOCAL1

Chapter 13

281

2.	 Configure the SYSLOG_LOCAL1 appender to send messages to syslog:
log4j.appender.SYSLOG_LOCAL1=org.apache.log4j.net.SyslogAppender
log4j.appender.SYSLOG_LOCAL1.threshold=INFO
log4j.appender.SYSLOG_LOCAL1.syslogHost=sylogserver.domain.pvt
log4j.appender.SYSLOG_LOCAL1.facility=LOCAL1
log4j.appender.SYSLOG_LOCAL1.facilityPrinting=false
log4j.appender.SYSLOG_LOCAL1.layout=org.apache.log4j.PatternLayout

3.	 Use the logging.hostname variable defined in cassandra-env.sh to ensure
each log includes the hostname of the system that generated:
log4j.appender.SYSLOG_LOCAL1.layout.conversionPattern=[%p]
${logging.hostname} %c:%L - %m%n

4.	 Restart Cassandra for these changes to take effect:

How it works...
Log4j is a versatile logging framework that is used by numerous projects. Log4j uses Java
property files for configuration and has many options to control how logs are formatted
and how large they can get before a new one is created. Log4j also has a number of built-
in appenders such as the SyslogAppender used in this recipe. The SyslogAppender
transmits messages using Syslog protocol to a remove logging host. By aggregating logs from
multiple Cassandra servers to a single host, events from multiple servers can be correlated
when troubleshooting.

There’s more....
Syslog is a simple protocol for sending text-based log messages over UDP. UDP messages
have less overhead compared to TCP; however, there are no transmission guarantees. This
means that syslog messages could be lost. There are more advanced syslog servers that have
more features such as syslog-ng. Another interesting tool is Splunk (http://www.splunk.
com/download), which indexes logs and offers a web-based interface to search. It is seen in
the following screenshot:

Monitoring Cassandra Servers

282

Using top to understand overall performance
top gathers a variety of performance information from across the system. It uses this
information and updates the console display on an interval. This information combined with
knowledge of Cassandra’s inner workings is invaluable in understanding how to optimize your
deployment. This recipe shows how to use top to determine how Cassandra is operating.

How to do it...

The section demonstrates top output on two separate server
class machines with the same RAM, disk, and CPU running
Cassandra. For the purpose of this example, the second system
either has more data or is seeing more requests.

1. 	 Run top from the command line. This was run against a server with moderate load:
$ top

top - 21:51:59 up 6 days, 8:30, 1 user,

Chapter 13

283

Each OS calculates this differently. However, it is generally described as the number of
active processes. Load averages below one indicate there is ample spare processing.
load average: 0.74, 0.92, 0.81

Tasks: 223 total, 1 running, 222 sleeping, 0 stopped, 0
zombie

Low user (us) and low wait (wa) indicate that the system is not CPU or disk-bound.
This should mean that your node can handle more requests than it currently is
handling.
Cpu(s): 1.2%us, 0.2%sy, 0.0%ni, 97.0%id, 1.5%wa, 0.0%hi,
0.1%si, 0.0%st
Mem: 16410904k total, 14979268k used, 1431636k free,
 29192k buffers
Swap: 0k total, 0k used, 0k free,

VFS caches files data in memory. Cache is not removed until other programs need
memory or other items are added to the cache. Any disk information in cache can be
read from memory instead of the hard disk.
 9435876k cached

 PID USER PR NI VIRT RES SHR
S %CPU %MEM TIME+ COMMAND
20181 cassandr 20 0 244g 8.3g 3.7g S 29.6 52.8 804:55.01 java

2.	 Run top in thread mode. The following is the output against a server with heavy load:
$top -H

top - 22:10:31 up 6 days, 10:03, 1 user,

The load averages are higher than one.

load average: 7.64, 9.08, 9.85

In the thread mode, top displays thread counts instead of process counts. Two
threads are running in this output.

Tasks: 472 total, 2 running, 470 sleeping, 0 stopped, 0
zombie

While the user state (us) looks low, the wait is 12 percent. This means that the
processor cannot be fully utilized.

Cpu(s): 5.3%us, 1.0%sy, 0.5%ni, 80.6%id, 12.2%wa, 0.0%hi,
 0.3%si, 0.0%st
Mem: 16411688k total, 16351132k used, 60556k free,
 2592k buffers
Swap: 0k total, 0k used, 0k free,

Monitoring Cassandra Servers

284

3.	 The Cassandra process has consumed more memory. This has limited the cache
memory available:
 7256672k cached
 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
COMMAND
28569 cassandr 16 0 536g 11g 4.0g S 16.6 73.3 0:54.39 java

4.	 Processes in the D state are in an unimplementable sleep state. These are likely to be
threads waiting for data from the disk. These contribute to the wait as seen previously:
29190 cassandr 20 4 536g 11g 4.0g D 12.9 73.3 126:52.95 java
28551 cassandr 16 0 536g 11g 4.0g D 9.2 73.3 0:52.12 java
10201 cassandr 16 0 536g 11g 4.0g S 7.4 73.3 38:46.43 java

How it works...
Top gathers information from numerous sources and displays it in a display that refreshes
every few seconds. Top is one of the best ways to determine what resources are being used
and by which processes.

There's more...
For terminals that are capable of displaying color and have other advanced features, the htop
command can be used in combination with top.

Using iostat to monitor current disk
performance

The iostat command uses counter information from the /proc file system to calculate
system utilization. For those using Cassandra for data sets significantly larger them main
memory, disk performance is a major factor in the read and write throughput of Cassandra.
This recipe shows how to use the iostat command to examine disk performance.

Getting ready
Ensure the sysstat package is installed.

rpm -qa sysstat

sysstat-7.0.2-3.el5_5.1

If the package is not installed, install it with yum (or similar package fetch tools).

yum install sysstat

Chapter 13

285

How to do it...
Run iostat at five-second intervals for three intervals; use awk to limit the columns displayed:

iostat -xd 5 3 sda | awk ‘{print $6” “$7” “$10” “$12}’

rsec/s wsec/s await %util

34078.47 2582.45 4.46 76.44

rsec/s wsec/s await %util

20982.40 67.20 10.91 76.42

rsec/s wsec/s await %util

17952.00 588.80 10.57 66.06

How it works...
The first output from iostat is the sum of information since system startup. After that,
the statistics are calculated by the interval specified (five seconds). The columns rsec and
wsec show blocks read and written per second respectively. Await represents the average
milliseconds a disk request takes. %util represents the portion of time the disk is working
over the time it is idle.

As the disk utilization becomes closer to 100 percent servicing, read and write requests will
begin to take longer. Short bursts of high disk activity are normal during compaction. However,
systems with high utilization may not have enough disk IO. Solutions to high disk utilization
may include dedicating more memory to caching. It also may be an indication that new nodes
need to be added to the cluster, or that the current cluster nodes need a high performing
disk subsystem.

See also...
The next recipe, Using sar to review performance over time

Using sar to review performance over time
Most sites have traffic patterns that vary throughout the day and week. The system
activity data collector, sadc, collects and stores performance information over
time. The sar command allows users to view this data. This recipe shows how to use sar
to understand Cassandra system utilization over time.

Monitoring Cassandra Servers

286

Getting ready
The data collection may not be enabled by default. Creating a file /etc/cron.d/sysstat
allows crontab to manage the collection of this data.

Run system activity accounting tool every 10 minutes
*/10 * * * * root /usr/lib64/sa/sa1 -S DISK 1 1
0 * * * * root /usr/lib64/sa/sa1 -S DISK 600 6 &
Generate a daily summary of process accounting at 23:53
53 23 * * * root /usr/lib64/sa/sa2 -A

How to do it...
Run the sar command. %nice and %steal columns have been omitted:

sar -u | tail -5

02:00:01 AM CPU %user %system %iowait %idle

02:00:01 PM all 3.51 1.05 6.18 89.26

02:10:01 PM all 4.29 0.98 6.00 88.74

02:20:01 PM all 3.78 0.98 5.87 89.37

02:30:01 PM all 3.97 1.07 6.40 88.56

Average: all 3.71 0.95 4.12 91.13

How it works...
The sar utility shows processor utilization over time. The information provided by sar can be
used in several ways. First, it can help determine if CPU or IOWait is high during times of the
day. The best time to schedule intensive operations such as joining new nodes, scheduling
major compaction, or running anti-entropy repair is during lulls so they have the lowest impact.

Using JMXTerm to access Cassandra JMX
JMX uses RMI for communication. Because of the design of RMI, it typically has issues
working across Network Address Translation Devices, Tunnels, or VPNs. This recipe shows how
to use JMXTerm to connect to a JMX application and retrieve statistics from it.

Getting ready
JMXTerm can be found at http://www.cyclopsgroup.org/projects/jmxterm/.

Chapter 13

287

How to do it...
1.	 Start JMXTerm:

java -jar jmxterm-1.0-alpha-4-uber.jar

Welcome to JMX terminal. Type “help” for available commands.

2.	 Open a connection to a Cassandra server on the JMX port:
$>open 127.0.0.1:8080

#Connection to 127.0.0.1:8080

 is opened

3.	 JMX objects are organized into domains. Use the domains command to list them:
$>domains

#following domains are available

org.apache.cassandra.concurrent

org.apache.cassandra.db

...

4.	 Choose the org.apache.cassandra.db domain:
$>domain org.apache.cassandra.db

#domain is set to org.apache.cassandra.db

5.	 List the beans/objects inside the domain:
$>beans

org.apache.cassandra.db:type=Commitlog

org.apache.cassandra.db:type=CompactionManager

6.	 Select the Commitlog bean:
$>bean org.apache.cassandra.db:type=Commitlog

#bean is set to org.apache.cassandra.db:type=Commitlog

7.	 Get information on the bean with the info command:
$>info

#mbean = org.apache.cassandra.db:type=Commitlog

#class name = org.apache.cassandra.db.commitlog.
PeriodicCommitLogExecutorService

attributes

 %0 - ActiveCount (int, r)

 %1 - CompletedTasks (long, r)

 %2 - PendingTasks (long, r)

#there’s no operations

#there’s no notifications

Monitoring Cassandra Servers

288

8.	 Retrieve a value using the get operation:
$>get ActiveCount

#mbean = org.apache.cassandra.db:type=Commitlog:

ActiveCount = 1;

How it works...
Because JMXTerm can be run on a machine without a windowing subsystem, it can typically
be run from the machine Cassandra is running on or another node on the same local network.
It provides a way to access all the same JMX attributes and call JMX operations that can be
accessed with JConsole.

See also...
In Chapter 1, Getting Started the recipe Connecting to Cassandra with JConsole.

Monitoring the garbage collection events
In Java programs do not explicitly deallocate or free objects from memory. Garbage collection
is a background process that navigates the objects in memory to determine which are no
longer reachable. Objects no longer reachable can then be removed. If the object creation
rate exceeds the object delete rate, the JVM might have a pause, often called stop-the-world.
These pauses cause Cassandra to stop responding to requests. This recipe shows how to
watch logs for garbage collection events.

How to do it...
Use grep to look for the string “GC inspection” inside the Cassandra log.

$ grep “GC inspection” /var/log/cassandra/system.log

 INFO [GC inspection] 2010-11-15 18:06:44,137 GCInspector.java (line
129) GC for ConcurrentMarkSweep: 49428 ms, 1306542968 reclaimed leaving
7482369272 used; max is 9773776896

How it works...
Cassandra has options in the conf/cassandra-env.sh that cause Java to print garbage
collection messages to the logfile. When the JVM garbage collector returns from a pause, it
logs a message containing the information on how long the garbage collection took as well
as how much memory was freed during the collection. If these events happen often, this
indicates that the system may be overworked.

Chapter 13

289

There’s more...
A solution for avoiding pauses is assigning Cassandra more heap memory. However, garbage
collections may be caused by inadequate Memtable, cache, or other settings.

Using tpstats to find bottlenecks
Cassandra is written using a SEDA architecture. This architecture is designed to control
resource utilization in a high concurrency environment. This recipe shows how to use the
tpstats command to diagnose performance bottlenecks in your cluster.

You can learn more about SEDA from http://www.eecs.
harvard.edu/~mdw/proj/seda/.

How to do it...
Use the nodetool tpstats command to supply the hostname and JMX port:

$ <cassandra_home>/bin/nodetool -h 127.0.0.1 -p 8080 tpstats

Pool Name Active Pending Completed

FILEUTILS-DELETE-POOL 0 0 224

STREAM-STAGE 0 0 0

RESPONSE-STAGE 0 0 88445499

ROW-READ-STAGE 1 1 14665446

LB-OPERATIONS 0 0 0

MISCELLANEOUS-POOL 0 0 0

GMFD 0 0 814173

LB-TARGET 0 0 0

CONSISTENCY-MANAGER 0 0 1181879

ROW-MUTATION-STAGE 0 0 69218180

MESSAGE-STREAMING-POOL 0 0 0

LOAD-BALANCER-STAGE 0 0 0

FLUSH-SORTER-POOL 0 0 0

MEMTABLE-POST-FLUSHER 0 0 322

FLUSH-WRITER-POOL 0 0 322

AE-SERVICE-STAGE 0 0 0

HINTED-HANDOFF-POOL 0 0 161

Monitoring Cassandra Servers

290

How it works...
In a healthy cluster, the Active and Pending columns should be near zero at all times. If any
column has a high number of pending operations, this generally indicates a bottleneck.

A high number of pending operations ROW-READ-STAGE could indicate the hard disk is
over-utilized. Buildup in the ROW-MUTATION-STAGE would mean the write path is
bottlenecked. Activity in the HINTED-HANDOFF-POOL stage shows other nodes in the cluster
are under load and hints are being stored on other nodes. If multiple Memtables are being
flushed to disk, MEMTABLE-POST-FLUSHER stage will be higher than zero.

See also...
ff In this chapter, the recipe Using iostat to monitor current disk performance

ff Chapter 4, Performance Tuning the recipe Tuning concurrent readers and writers for
throughput if READ-STAGE or MUTATION-STAGE is high but disk is not over-utilized

Creating a Nagios Check Script for
Cassandra

Nagios is the de facto standard Network Monitoring System (NMS). Nagios uses executable
programs or scripts to probe the state of services and typically sends e-mails if the services
are down. This recipe shows how to build an executable that can be used by Nagios to
check Cassandra. Even if you are not using Nagios, you may be able to use this script with
your system.

How to do it...
1.	 Create <hpc_build>/src/java/hpcas/c13/NagiosCheck.java with

a text editor:
package hpcas.c13;
import hpcas.c03.FramedConnWrapper;
import hpcas.c03.Util;
import org.apache.cassandra.thrift.*;

public class NagiosCheck {
 public static void main(String[] args) {
 String host = Util.envOrProp(“host”);
 String sport = Util.envOrProp(“port”);
 String expected = Util.envOrProp(“clusterName”);
 if (host == null || sport == null || expected == null) {

Chapter 13

291

 System.out.println(“Cassandra Fail: specify host port
clustername”);
 System.exit(1);
 }
 int port = Integer.parseInt(sport);
 String gotName = null;

2.	 Connect to the cluster and for a test attempt to read its name:
 try {
 FramedConnWrapper fcw = new FramedConnWrapper(host, port);
 fcw.open();
 Cassandra.Client client = fcw.getClient();
 gotName = client.describe_cluster_name();
 fcw.close();

If the code takes the exception branch, the operation failed.
 } catch (Exception ex) {
 System.out.println(“Cassandra FAILED: got exception: “ +
ex);
 System.exit(2);
 }

3.	 If the name retrieved from the server equals the user supplied name, print an OK
message and then return 0:
 if (expected.equalsIgnoreCase(gotName)) {
 System.out.println(“Cassandra OK: “ + gotName);
 System.exit(0);
 }

4.	 If the name does not match the expected name, print an error condition:
else {
 System.out.println(“Cassandra FAILED: Expected:” + expected
+ “ got:” + gotName);
 System.exit(2);
 }
 }
}

5.	 Test the script against a live node:
$ host=127.0.0.1 port=9160 clusterName=”Test Cluster” ant
-DclassToRun=hpcas.c13.NagiosCheck run

 [java] Cassandra OK: Test Cluster

Monitoring Cassandra Servers

292

6.	 Test to see if the failure code works as expected by running the program with the
wrong cluster name:
$ host=127.0.0.1 port=9160 clusterName=”Test Clusterdfd” ant
-DclassToRun=hpcas.c13.NagiosCheck run

 [java] Cassandra FAILED: Expected:Test Clusterdfd got:Test
Cluster
 [java] Java Result: 2

7.	 Supply the wrong connection settings and ensure the test fails:
$ host=127.0.0.13 port=9160 clusterName=”Test Clusterdfd” ant
-DclassToRun=hpcas.c13.NagiosCheck run

 [java] Cassandra FAILED: got exception: org.apache.thrift.
transport.TTransportException: java.net.ConnectException:
Connection refused
 [java] Java Result: 2

Keep an eye out for large rows with
compaction limits

In some use cases, a row can have several columns. However, in other use cases such as time
series data, a row can have thousands or millions of columns. This recipe shows how to check
if the in_memory_compaction_limit_in_mb is being reached.

How to do it...
Use the grep command to search for the string Compacting large row inside the
Cassandra logfile.

$ grep “Compacting large row” /var/log/cassandra/system.log

Compacting large row null (103343904 bytes) incrementally

How it works...
The default value for in_memory_compaction_limit_in_mb is 64. This value is set in
conf/cassandra.yaml. For use cases that have fixed columns, the limit should never be
exceeded. Setting this value can work as a sanity check to ensure that processes are not
inadvertently writing to many columns to the same key. Keys with many columns can also be
problematic when using the row cache because it requires the entire row to be stored
in memory.

Chapter 13

293

Reviewing network traffic with IPTraf
Issues that manifest on one system are sometimes caused by another. These type of issues
include clients not closing connections, faulty network cards, and applications unintentionally
degrading the service by over-utilizing it. This recipe gives a basic introduction to IPTraf. IPTraf
is a ncurses-based application to view network statistics in real time.

Getting ready
IPTraf is a popular utility and likely packaged with your distribution. More information on IPTraf
can be found at http://iptraf.seul.org/.

How to do it...
Set up a filter to monitor all traffic to the Cassandra Thrift port 9160 and the Cassandra store
port 7000.

Monitoring Cassandra Servers

294

Apply these filters and begin monitoring network traffic. The result is an interactive display that
shows network activity.

How it works...
IPTraf allows users to filter traffic and display the results in real time.

Keep on the lookout for dropped messages
Cassandra has a concept of back pressure. Back pressure is a technique used in staged
SEDA architectures in which, if a stage is already full of requests, it will not accept requests
from earlier stages. As a result of back pressure, Cassandra will drop already timed-out
requests without processing, and log an error. This recipe shows how to search for this error.

How to do it...
Use grep to search for the string “DroppedMessageLogger” in the Cassandra logs:

$ grep “DroppedMessagesLogger” /var/log/cassandra/system.log

WARN [DroppedMessagesLogger] 2010-11-15 16:09:17,691 MessagingService.
java (line 501) Dropped 67 messages in the last 1000ms

WARN [DroppedMessagesLogger] 2010-11-15 16:09:18,693 MessagingService.
java (line 501) Dropped 90 messages in the last 1000ms

Chapter 13

295

How it works...
Clients' requests throw TimedOutException when messages are dropped. Clients receiving
this exception should try the failed operation again. If dropped messages appear frequently in
logs, this indicates that the server is not able to keep up with the request load.

Inspecting column families for dangerous
conditions

One optimization for doing bulk inserts is to set both the minimum and maximum
compaction threshold to 0. This prevents multiple compaction operations on the same data.
If compaction does not become re-enabled, this can end up being bad for performance
as multiple sstables slow down the read path. This recipe shows how to check for these
dangerous conditions.

How to do it...
1.	 Create <hpc_build>/src/hpcas/c04/RingInspector.java in a text editor:

package hpcas.c13;
import hpcas.c03.Util;
import java.util.*;
import java.util.Map.*;
import org.apache.cassandra.db.ColumnFamilyStoreMBean;
import org.apache.cassandra.tools.NodeProbe;

public class RingInspector {
 public static void main(String[] args) throws Exception {
 String host = Util.envOrProp(“host”);
 String sport = Util.envOrProp(“port”);
 int port = Integer.parseInt(sport);

2.	 Here, we connect using JMX rather than Thrift:
 NodeProbe probe = new NodeProbe(host, port);

3.	 Next, we iterate across all of the column families:
 Iterator<Map.Entry<String, ColumnFamilyStoreMBean>> cfamilies
=
 probe.getColumnFamilyStoreMBeanProxies();
 while (cfamilies.hasNext()) {
 Entry<String, ColumnFamilyStoreMBean> entry = cfamilies.
next();
 ColumnFamilyStoreMBean cfsProxy = entry.getValue();

Monitoring Cassandra Servers

296

4.	 Check for conditions that could be harmful to performance such as too many
sstables, large rows, or compaction being disabled:
 if (cfsProxy.getLiveSSTableCount() > 20) {
 System.out.println(cfsProxy.getColumnFamilyName() +” “
 +cfsProxy.getLiveSSTableCount() + “ sstables”);
 }	
 if (cfsProxy.getMaximumCompactionThreshold() == 0) {
 System.out.println(“maxCompactionThreshold is off.”);
 }
 if (cfsProxy.getMinimumCompactionThreshold() == 0) {
 System.out.println(“minCompactionThreshold is off.”);
 }
 if (cfsProxy.getMaxRowSize() >10000000){
 System.out.println(“row larger than 10,000,000 bytes”);
 }
 }
 }
}

5.	 Run this program again with the JMX information:
$ host=127.0.0.1 port=8080 clusterName=”Test Clusterdfd” ks=ks22
cf=cf22 ant -DclassToRun=hpcas.c13.RingInspector run

Successful runs produce no output.

How it works...
Nodetool uses Remote Method Invocation (RMI) to invoke methods on the server. This
program calls methods from the ColumnFamilyStoreMBean object. With an instance of the
ColumnFamilyStoreMBean, it is possible to obtain information about the column families
on the server, including read latency, write latency, and Memtable information.

Index
Symbols
@BeforeClass 55
<cassandra_src>/bin/stress command 219
-p option 221

A
acquire() method 230
active column families

searching, by read/write graphs addition 266,
267

activity
interpreting, with memtable graphs 268

addInsertion method 223
Ant 19
anti compactions 272
anti-compacts 161
Anti-Entropy Repair

about 162, 167
nodes, joining without auto-bootstrap 167
Replication Factor, raising 167
using 167
working 167

anti entropy repairs 272
AntiEntropyStage 263
apache-ant build tool

URL 15
Apache Cassandra Project 7
Apache Hadoop project

about 237
HDFS subproject 237
MapReduce subproject 237

assume keyword
about 39
working 40

atomic read

implementing, with Cages 229-231
auto_bootstrap 162

B
back pressure 294
bandwidth

ensuring, between switches 191, 192
batch_mutate method 223
batch mutate operation

performing, with Hector 223, 224
batch mutations

about 69, 71
working 71

benchmarking
stress tool, building for 218

Bloom Filter file 269
Bloom Filters 170
Bonnie++ 83
bottlenecks

searching, with nodetool tpstats 262, 263
build.xml file 16
ByteBuffer 247
ByteBufferUtil class 212

C
cache effectiveness

profiling, with cache graphs 270, 271
cache graphs

cache effectiveness, profiling with 270, 271
cache tuning 271
Cacti network management system

URL 262
Cages

atomic read, implementing with 229-231
supporting, for Zookeeper set up 228

298

data, reading with CLI 34, 35
data, reading with map-only-program 242-

245
data, serializing into large columns 130, 131
data, writing with CLI 33, 34
data, writing with map-only-program 246, 247
diff, applying using patch command 208, 209
diff files, creating using subversion 207
disk utilization, monitoring 269, 270
distributed caching 145
downed node, removing 159
DroppedMessageLogger, searching 294
dynamic snitch, troubleshooting using

jconsole 188
edge graph data, searching 147-150
edge graph data, storing 147-150
environment setup 15-19
excess data, removing 176
file system optimization 83
formula for strong consistency, working with

102-104
garbage collection events, monitoring 288
garbage collections, tuning to avoid JVM

pauses 95, 96
gc_grace, lowering 169
Hector, communicating with 221-223
hinted handoff mechanism, disabling 106
Ideal Initial Tokens, calculating 20-22
Ideal Initial Tokens, calculating 196, 197
index interval ratio, configuring for lower

usage 212, 213
Initial Tokens, selecting for using with

Partitioners 22, 23
in_memory_compaction_limit_in_mb,

checking 292
iostat command, using 284, 285
IP addresses, selecting 182, 183
IPTables, using for simulating complex

network scenarios 181
Java Virtual Machine, selecting 79
Jconsole connection 24
Jconsole connection, over SOCKS proxy 26
Jconsole, using 185-187
JMXTerm, using 286-288
keyspace, creating 49-51
keyspace or column family, dropping 37, 38
large objects, storing 142-144

CAP theorem 102
Cassandra

about 8, 262
Anti-Entropy Repair, using 167
Application Programmer Interface 48
bandwidth, ensuring between switches 191,

192
batch mutations 69, 70
bottlenecks, searching with nodetool tpstats

262, 263
building, from source 200, 201
cache effectiveness, profiling with cache

graphs 270, 271
CLI functions, using 41
column families, inspecting 295, 296
column family, creating 49-51
column family statistics, graphing 274
column family statistics, retrieving with

nodetool cfstats 263, 264
columns of key, iterating 66, 67
Commit Log disk, using 80
Commit Log disk, working 81
common development tools, installing 200
community, connecting with 206, 207
compaction, monitoring 272
compaction thresholds, setting 94, 95
complex network scenarios, simulating using

IPTables 181
Concurrent Readers and Writers, tuning 92,

94
connecting, CLI used 30
connecting, with Java and thrift 27, 28
consistency ANY, using 121, 122
consistency, demonstrating 122-125
consistency level ALL, using 120, 121
consistency level ONE, using 114-117
consistency levels TWO and THREE 194-196
consistency QUROUM levels, mixing 119, 120
consistency QUROUM, using 118, 119
CPU utilization, monitoring 265
custom type, creating by extending

AbstractType 201-203
datacenter, determining 185
data directories, cleaning up 56, 57
data directory, coping to new hardware 164
data exporting, to JSON with sstable2json

175

299

read path, debugging 180, 181
read repair chance, adjusting 107, 108
Replication Factor 137
rows and columns, deleting from CLI 35, 36
rows, listing in column family 36, 37
rows, paginating in column family 36, 37
rpc timeout, increasing 192
running, in foreground 19
running, with specific debugging levels 19
sar command, using for reviewing

performance over time 285, 286
schema agreement, confirming across cluster

109, 110
secondary data orderings or indexes,

developing 150-153
secondary indexes, working with 74
seed nodes, defining for Gossip

communication 156
single node installation 8-10
slice columns order, reversing 68
snapshot, restoring 174
snapshots, clearing with nodetool

clearsnapshot 173
source data, storing in separate column family

145, 147
SSH key pair, generating 162, 163
sstable2json export utility, customizing 210-

212
SSTable count, graphing 268, 269
stopping, from using swap 89
Storage Proxy API, using 59-61
strings, using 209, 210
Super Columns 134
Super Columns, using 134-136
Swap Memory, disabling 88
test data, reading and writing using CLI 10,

11
thrift bindings, generating 58
time series data, storing 131-134
timestamp value, supplying with write

requests 105
top, using 282-284
tpstats command, using for finding

bottlenecks 289
TTL,using for creating columns with self-

deletion time 72-74
two data sets, joining with Hive 253, 254

latency graphs, using 275
live node, removing 160, 161
Log4j logs, forwarding to central server 280,

281
low level client, generating using thrift 58
major compaction, forcing 177
major compaction, scheduling 170, 171
MapReduce, using 248, 249
Memory Mapped IO, enabling 89
memory, saving on 64-bit architectures with

compressed pointers 92
Memtable, tuning 90, 91
multiget, using 51-53
multiple datacenter installation, scripting

183-185
multiple instance installation, scripting 13, 14
multiple instances, running on single machine

11-13
Nagios Check Script, creating 290, 291
natural endpoints, determining 185
network traffic, reviewing with IPTraf 293,

294
node join, achieving using external data copy

methods 165, 166
node position, adjusting with nodetool move

157-159
nodes, joining with auto_bootstrap set to false

161
nodetool drain, using 168
Nodetool Move 157, 159
nodetool snapshot, using for backups 171,

172
od command, using 209, 210
open file limit, raising 97, 98
open networking connections, tracking 277,

278
operating system, selecting 78
performance baseline, monitoring 269, 270
performance, increasing by scaling up 98
performance tuning 78
phi_convict_threshold, increasing 213
physical disk size, tracking 275, 276
property file snitch, configuring 187
quorum operations, in multi data center

environments 189, 190
rack for key, determining 185
RAID levels, selecting 81

300

using, for connecting Cassandra 30
working, with Super Columns 38

CLI alternative
Groovandra, using as 232

CLI functions
using 41

CLI statements
loading, from file 45, 46

CMSInitiatingOccupancyFraction 96
CMSParallelRemarkEnabled 96
column families

inspecting 295, 296
column family

about 31, 84
creating 49-51
creating, with CLI 31, 32
rows, listing 36, 37
rows, paginating 36, 37

ColumnFamilyInputFormat
about 242
using 242-245

Column Family Meta Data 87
column family statistics. See cfstats
column meta data

using 42, 43
columns, of key

iterating 66-68
column values

grouping and counting, with Hive 254, 255
command-line interface. See CLI
Commit Log disk

using 80
working 81

common development tools
installing 200

community
connecting with 206, 207

compaction
about 90, 271
monitoring 272

compaction progress
verifying, with nodetool compaction stats 273

compaction thresholds
settings 94, 95

Comparator 131
complex network scenarios

simulating, IPTables used 181

unit tests, writing with server 53-55
URL 8
validation, using for checking data on

insertion 204, 205
working, with JPA 224, 225

cassandra-cacti-m6
URL 262

Cassandra datacenter
setting up, for ETL 257, 258

Cassandra instances
connecting, using Jconsole 23-25
disk space, saving by using small column

names 128, 129
Cassandra JMX

accessing, JMXTerm used 286-288
Cassandra maven plugin

about 214
using 214, 215
working 216

CassandraOutputFormat 246
Cassandra server

connecting to 48, 49
Cassandra Storage handler 251
Cassandra Storage Proxy

using 59-62
CentOS 79
cfhistograms command

about 276
using, for distribution of query latencies 276,

277
cfstats

about 263
column family statistics, retrieving with 263,

264
graphing, to track average row size 274
graphing, to track max row sizes 274
retrieving, nodetool cfstats used 263, 264

clean target 17
CLI

about 10, 11
assume keyword, using 39
column meta data, using 42, 43
consistency level, changing 43, 44
help statement 44, 45
keyspace, creating 30, 31
rows and columns, deleting 35, 36
Time To Live (TTL), providing 40

301

inserting, with stress tool 219
reading, with CLI 34, 35
reading, with stress tool 219
serializing, into large columns 130, 131
writing, with CLI 33, 34

dataDir directory 228
data directories

cleaning up 56, 57
data directory

coping, to new hardware 164
data locality 255
data resurrection 169
DataStax Brisk 259

setting up 258
working 259

DateFormat classes 132
decommission 160
describe_cluster_name() 28
describe keyspace command 32
describe_keyspace method 108, 139
describe_schema_versions() 110
diff

about 207
applying, patch command used 208, 209
creating, subversion used 207

different hash algorithms
using 142

disk performance testing 83
disk space

saving, by using small column names 128,
129

disk utilization
monitoring 269, 270

distributed caching 145
distribution, of query latencies

viewing, with nodetool cfhistograms 276, 277
DroppedMessageLogger

searching 294
dynamic proxy 26
dynamic snitch

about 188
troubleshooting, jconsole used 188

E
EACH_QUROUM 189
echo command 11

Composite Key 132
ConcurrentMarkSweep 96
Concurrent Readers and Writers

tuning 92, 94
consistency

demonstrating 122-125
consistency ANY

using 121, 122
working 122

consistency level
changing, from CLI 193, 194

consistency level ALL
about 120, 138
drawback 121
using 120

consistency level , CLI
changing 43, 44

consistency level ONE 193
about 114
using 114-117
working 117, 118

Consistency Level Quorum 138
consistency levels TWO and THREE

using 194-196
consistency QUROUM

levels, mixing 119, 120
using 118, 119

Consistent Hashing 20, 157
context.write() 247
continuous integration 53
Counter class 132, 133
CPU activity 264
CPU states

idle 265
IOWait 265
system 265
user 265

CPU utilization
monitoring 265

custom type
creating, by extending AbstractType 201-203

Cygwin 26

D
data

exporting, to JSON with sstable2json 175

302

pseudo distributed cluster, setting up 238-
241

hadoop command line tool 241
hadoop dfs command 259
Hadoop job 255
Hadoop Task Trackers

co-locating, on Cassandra nodes 255, 256
working 256

handleResults() method 64
Hardware RAID 82
Heap Memory 91
Heap Size 92
Hector

batch mutate operation, performing with 223,
224

communicating, with Cassandra 221-223
hector jar

downloading 222
help statement, CLI 44, 45
HFactory object 222
Hinted Handoff 159
hinted handoff mechanism

disabling 106
histograms 277
Hive

about 250
setting up, with Cassandra Storage Handler

support 250
working 251

Hive QL 250
Hive table

defining, over Cassandra Column Family 251,
252

working 253
hpcas directory 12

I
Ideal Initial Tokens

calculating 196, 197
Index 269
index_interval 212
index interval ratio

configuring, for lower usage 212, 213
IndexReader 227
IndexWriter 227

edge graph data
earching 147-150
storing 147-150

EmbeddedCassandraService
using 53

Endpoint Snitch 198
eventual consistency 117
excess data

removing, nodetool cleanup used 176
EXT4 file system

about 83
configuring 83

extra_info 147

F
file system optimization

about 83
working 84

find() method 225
FlushStage 263
Free-Form project 19
full text search

performing, with Solandra 226, 227

G
garbage collection events

monitoring 288
Garbage Collections

tuning, to avoid JVM pauses 95, 96
Garbage-First garbage collector (G1) 97
gc_grace

lowering 169
GCGracePeriod 169
GCGraceSeconds 169
getString method 202
git 226
Gossip 156
Groovandra

about 231
using, as CLI alternative 232

Groovy 231

H
Hadoop

about 237, 238

303

JUnit jar
URL 15

Just a Bunch Of Disks (JBOD) 82
JVM 95
JVM (Java Management Extensions) 23
JVM pauses 95

K
Key Cache

about 84
using, for boosting read performance 84-86

keyspace
about 48
creating 49-51
creating, from CLI 30, 31
describing 32
working 31, 33

Keyspace 81
keyspace or column family

dropping 37, 38
kundera source code 224

L
large objects

storing 142-144
latency

about 274
troubleshooting, traceroute used 190

latency graphs
using 275

Link Aggregation Groups (LAG) 192
Linux 78
live node

nodetool decommission used 160, 161
LOCAL_QUORUM 189
Log4j

about 280
working 281

Log4j logs
forwarding, to central server 280, 281

Logsandra
about 232, 234
working 234, 235

logsandra keyspace 234
logsandra.yaml file 235
Long Comparator 133

Initial Tokens
about 20, 157
calculating 20-22
selecting, for using with Partitioners 22, 23

in_memory_compaction_limit_in_mb
checking 292

inode 84
iostat command

using, for monitoring current disk performance
284, 285

IOWait state 266
IOZone 83
IP addresses

selecting, to work with RackInferringSnitch
182, 183

IPTables
about 181, 182
working 182

IPTraf 293, 294

J
Java Management eXtension Managed Bean.

See JMX Mbeans
Java Native Access (JNA) jar 89
Java Native Architecture

about 78
installing 89

Java Persistence Architecture. See JPA
Java SDK

URL 15
Java SE JVM 79
Java Virtual Machine

selecting 79
Jconsole

about 23
using 185

Jconsole connection
over SOCKS proxy 26

JMX (Java Management Extensions) 12
JMX Mbeans 262
JMX port 9
JMXTerm

using, for accessing Cassandra JMX 286, 288
JPA

about 224
Cassandra, working with 224, 225

304

scripting, with OOP 142
multiple instances

running, on single machine 11-13
MutationStage 263
mvm command 224

N
Nagios 290
Nagios Check Script

creating, for Cassandra 290, 291
Natural Endpoints 162
Network Management Systems (NMS) 131
Network Time Protocol (NTP)

about 99
enabling 99
working 100

NetworkTopologyStrategy 196
network traffic

reviewing, with IPTraf 293, 294
NMS systems 266
node join

achieving, using external data copy methods
165, 166

node position
adjusting, nodetool move used 157, 158

nodes
about 272
joining, with auto_bootstrap set to false 161
removing, nodetool removetoken used 159,

160
nodetool 276, 296
nodetool cfstats 85, 87
nodetool cleanup

using 176
nodetool clearsnapshot command 173
nodetool compact 177
nodetool compaction stats

compaction progress, verifying with 273
nodetool decommission

using 160
working 161

nodetool drain command
about 168
using 168
working 168

nodetool info 84

M
main() method 61
major compaction

about 272
forcing 177
scheduling 170
working 171

Makefile 16
map-only program

using 242-245
working 246

Mapper 243
MapReduce

about 248
using 248, 249
working 249

maven2 package 224
MaxCompactionThreshold 95
md5 checksum 140
md5hash() method 142
memory

saving, on 64-bit architectures with
compressed pointers 92

Memory Mapped IO
enabling 89

Memtable
about 80
criteria for flushing 90
threshold criteria 90
tuning 90, 91

memtable_flush_after_mins variable 90
memtable graphs

activity, interpreting with 268
benefits 268

memtable_operations_in_millions variable 90
memtables 267
memtable_throughput_in_mb variable 90
MinCompactionThreshold 95
multiget

about 51
using, to limit round trips and overhead 51-53

multiget_slice method 232
multiple datacenter installation

scripting 183-185
multiple instance installation

scripting 13, 14

305

tracking, of each column family over time
275, 276

pip 232
placement_strategy 31
property file snitch

configuring 187
pseudo distributed cluster, Hadoop

DataNode 238
JobTracker 238
NameNode 238
NSecondary NameNode 238
setting up 238
TaskTracker 238

Q
Quorum 111, 167
quorum operations

in multi data center environments 189, 190

R
Rack Aware Strategy 156
RackInferringSnitch 182
Rack Unaware Strategy 156
RAID-1 82
RAID-5 82
RAID-10 82
RAID level

selecting 81
Random Partitioner (RP) 138
range scans

using, for finding and removing old data 62-
65

read path
debugging 180, 181

read performance
boosting, with Key Cache 84-86
boosting, with Row Cache 86, 87

read repair chance
adjusting 107, 108
disabling 109
lowering 109

Read Repair process 162
ReadStage 263
read/write graphs

adding, for active column families search
266, 267

Nodetool Move
about 159
working 159

nodetool program 9
nodetool removetoken

using 159
nodetool repair 167, 263
nodetool ring

running 157
nodetool setcachecapacity command 87
nodetool snapshot

using, for backups 171, 172
NotFoundCount events 122
ntp server pools 99

O
od command

using 210
open file limit

raising 97, 98
OpenJDK 80
open networking connections

tracking 277, 278
OpenSSH 26
OpenSSL tools 162
operating system

selecting 78
Order Preserving Partitioner (OPP)

about 138, 139, 227
using 138-141

Ordinary Object Pointer (OOP) 92

P
ParNewGC 96
Partitioner 138
patch command 209
performance baseline

monitoring 269, 270
performance, Cassandra

increasing, by scaling up 98
performance tuning 76
phi_convict_threshold

about 213
increasing 213
working 213

physical disk size

306

Solandra
about 226
full text search, performing with 226, 227

Solaris 78
Solid State Drives (SSD) 99, 270
Solr 227
source data

storing, in separate column family 145, 147
split brain scenario 181
splits 246
SSH key pair

generating 162, 163
sstable2json

specific keys, excluding 175
specific keys, extracting 175
using 175

sstable2json export utility
customizing 210-212

SSTable count
about 264
graphing 268, 269

SSTables 81
Staged Event Driven Architecture. See SEDA
StorageProxy 62
strategy_options 31
streams 161
stress.jar file 218
stress tool

about 218
building, for benchmarking 218
data, inserting with 219
data, reading with 219
running 219

strings
using 209

StringTokenizer class 248
striping 81
Subversion (SVN) 201
Super Columns

about 38, 134
CLI operations 38
using 134, 135, 136
working 137

Swap Memory
about 88
disabling 88

swapoff command 88

RedHat Enterprise Linux 79
Remote Method Invocation (RMI) 26, 296
Replication Factor

about 10, 30, 81, 137, 160
adjusting, to work with quorum 111-114
using, for disk space saving 137
using, for performance enhancements 137

RequestResponseStage 263
resurrection 169
Ring 156
Row Cache

about 86
using, for boosting read performance 86, 87

rpc timeout
increasing 192

rsync command 164

S
sar command

using, for reviewing performance over time
285, 286

SATA 99
schema agreement

confirming, across cluster 109, 110
SCSI 275
searchFrom method 152
secondary data orderings or indexes

developing 150-153
secondary indexes

working with 74
SEDA 92, 262
seed nodes

defining, for Gossip communication 156
IP address, using in seed list 156
seed list, synchronizing 157

Seeds 156
setTimestamp method 105
setup() method 55
single node Cassandra installation 8, 9, 10
slice results order

reversing 68, 69
snapshot

clearing, with nodetool clearsnapshot 173
restoring 174

socks proxy 26
software RAID 82

307

Transmission Control Protocol. See TCP
tunable consistency 118
two data sets

joining, with Hive 253, 254

U
Ubuntu 79
unit tests

writing, with embedded Cassandra server
53-56

UpperCaseMapper 243
UseCMSInitiatingOccupancyOnly 96
user_info 147

V
validate method 205
validation

using, for checking data on insertion 204,
205

VFS Cache (Virtual File System Cache) 91

W
Windows 78

X
xxd command

using, for decoding hex values 176

Y
Yahoo! Cloud Serving Benchmark. See YCSB
YAML™

URL 9
YCSB

running 220, 221
URL, for info 220

Z
Zookeeper

setting up, for supporting Cages 228

Swapping 88
Syslog 280, 281
System.getCurrentlTimeMillis() 133
system_update_column_family method 108

T
TaskTracker 246
TCP 278
test data

reading and writing, command-line interface
used 10, 11

test environment
setting up 15-19

thread pools 262
thread pool stats. See tpstats
thrift 58
thrift bindings

generating, for other languages 58, 59
Thrift port 9
time series data

storing 131-134
timestamp 99
timestamp value

supplying, with write requests 105
Time To Live (TTL)

about 40
providing 40
using, for creating columns with self-deletion

time 72-74
Token Ring 162
tombstone 169, 170
top command

about 282
using, for understanding overall performance

282-284
TProtocol 49
tpstats

about 262
bottlenecks, searching with 262, 263
using, for finding bottlenecks 289

traceroute
about 190
using, for troubleshooting latency 190
working 191

Thank you for buying

Cassandra High Performance Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Plone 3.3 Site Administration
ISBN: 978-1-847197-04-7 Paperback: 240 pages

Alex Clark's book will get you managing and enhancing
your Plone website like a seasoned expert

1.	 Covers Plone basics from a site administrator's
perspective

2.	 Learn how to use Buildout to develop, deploy, and
maintain a modern Plone site

3.	 Enhance the functionality and appearance of your
web site by using third-party add-ons

4.	 Features many useful Buildout recipes from the
Python Package Index

MySQL for Python
ISBN: 978-1-849510-18-9 Paperback: 440 pages

Integrate the flexibility of Python and the power of MySQL
to boost the productivity of your Python applications

1.	 Implement the outstanding features of Python's
MySQL library to their full potential

2.	 See how to make MySQL take the processing
burden from your programs

3.	 Learn how to employ Python with MySQL to power
your websites and desktop applications

4.	 Apply your knowledge of MySQL and Python
to real-world problems instead of hypothetical
scenarios

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started
	Introduction
	A simple single node Cassandra installation
	Reading and writing test data using the command-line interface
	Running multiple instances on
a single machine
	Scripting a multiple instance installation
	Setting up a build and test environment for tasks in this book
	Running in the foreground with
full debugging
	Calculating ideal Initial Tokens for use with Random Partitioner
	Choosing Initial Tokens for use with
Partitioners that preserve ordering
	Insight into Cassandra with JConsole
	Connecting with JConsole over a SOCKS proxy
	Connecting to Cassandra with Java and Thrift

	Chapter 2:
The Command-line Interface
	Connecting to Cassandra with the CLI
	Creating a keyspace from the CLI
	Creating a column family with the CLI
	Describing a keyspace
	Writing data with the CLI
	Reading data with the CLI
	Deleting rows and columns from the CLI
	Listing and paginating all rows
	in a column family
	Dropping a keyspace or a column family
	CLI operations with super columns
	Using the assume keyword to decode
column names or column values
	Supplying time to live information when
inserting columns
	Using built-in CLI functions
	Using column metadata and comparators for type enforcement
	Changing the consistency level of the CLI
	Getting help from the CLI
	Loading CLI statements from a file

	Chapter 3:
Application Programmer Interface
	Introduction
	Connecting to a Cassandra server
	Creating a keyspace and column family
from the client
	Using MultiGet to limit round trips and
overhead
	Writing unit tests with an embedded
Cassandra server
	Cleaning up data directories before
unit tests
	Generating Thrift bindings for other
languages (C++, PHP, and others)
	Using the Cassandra Storage Proxy
"Fat Client"
	Using range scans to find and remove
old data
	Iterating all the columns of a large key
	Slicing columns in reverse
	Batch mutations to improve insert
performance and code robustness
	Using TTL to create columns with
self-deletion times
	Working with secondary indexes

	Chapter 4:
Performance Tuning
	Introduction
	Choosing an operating system and
distribution
	Choosing a Java Virtual Machine
	Using a dedicated Commit Log disk
	Choosing a high performing RAID level
	File system optimization for hard disk
performance
	Boosting read performance with
the Key Cache
	Boosting read performance with the
Row Cache
	Disabling Swap Memory for predictable
performance
	Stopping Cassandra from using swap
without disabling it system-wide
	Enabling Memory Mapped Disk modes
	Tuning Memtables for write-heavy workloads
	Saving memory on 64bit architectures with compressed pointers
	Tuning Concurrent Readers and Writers for throughput
	Setting compaction thresholds
	Garbage collection tuning to avoid JVM pauses
	Raising the open file limit to deal with
many clients
	Increasing performance by scaling up

	Chapter 5:
Consistency, Availability, and Partition Tolerance with Cassandra
	Introduction
	Working with the formula for strong
consistency
	Supplying the timestamp value with write requests
	Disabling the hinted handoff mechanism
	Adjusting read repair chance for less
intensive data reads
	Confirming schema agreement across
the cluster
	Adjusting replication factor to work with quorum
	Using write consistency ONE, read
consistency ONE for low latency operations
	Using write consistency QUORUM, read
consistency QUORUM for strong consistency
	Mixing levels write consistency QUORUM, read consistency ONE
	Choosing consistency over availability
consistency ALL
	Choosing availability over consistency with write consistency ANY
	Demonstrating how consistency is not a lock or a transaction

	Chapter 6:
Schema Design
	Introduction
	Saving disk space by using small
column names
	Serializing data into large columns for
smaller index sizes
	Storing time series data effectively
	Using Super Columns for nested maps
	Using a lower Replication Factor for disk space saving and performance enhancements
	Hybrid Random Partitioner using Order
Preserving Partitioner
	Storing large objects
	Using Cassandra for distributed caching
	Storing large or infrequently accessed data in a separate column family
	Storing and searching edge graph data in Cassandra
	Developing secondary data orderings or
indexes

	Chapter 7:
Administration
	Defining seed nodes for Gossip
Communication
	Nodetool Move: Moving a node to a specific ring location
	Nodetool Remove: Removing a downed node
	Nodetool Decommission: Removing a live node
	Joining nodes quickly with auto_bootstrap set to false
	Generating SSH keys for password-less
interaction
	Copying the data directory to new hardware
	A node join using external data copy
methods
	Nodetool Repair: When to use anti-entropy repair
	Nodetool Drain: Stable files on upgrade
	Lowering gc_grace for faster tombstone cleanup
	Scheduling Major Compaction
	Using nodetool snapshot for backups
	Clearing snapshots with nodetool
clearsnapshot
	Restoring from a snapshot
	Exporting data to JSON with sstable2json
	Nodetool cleanup: Removing excess data
	Nodetool Compact: Defragment data and
remove deleted data from disk

	Chapter 8:
Multiple Datacenter Deployments
	Changing debugging to determine where read operations are being routed
	Using IPTables to simulate complex network scenarios in a local environment
	Choosing IP addresses to work with
RackInferringSnitch
	Scripting a multiple datacenter installation
	Determining natural endpoints, datacenter, and rack for a given key
	Manually specifying Rack and Datacenter configuration with a property file snitch
	Troubleshooting dynamic snitch using
JConsole
	Quorum operations in multi-datacenter
environments
	Using traceroute to troubleshoot latency
between network devices
	Ensuring bandwidth between switches in multiple rack environments
	Increasing rpc_timeout for dealing with
latency across datacenters
	Changing consistency level from the CLI
to test various consistency levels with
	multiple datacenter deployments
	Using the consistency levels TWO and THREE
	Calculating Ideal Initial Tokens for use with Network Topology Strategy and
	Random Partitioner

	Chapter 9:
Coding and Internals
	Introduction
	Installing common development tools
	Building Cassandra from source
	Creating your own type by sub classing
abstract type
	Using the validation to check data
on insertion
	Communicating with the Cassandra
developers and users through IRC and e-mail
	Generating a diff using subversion's
diff feature
	Applying a diff using the patch command
	Using strings and od to quickly search through data files
	Customizing the sstable2json export utility
	Configure index interval ratio for lower
memory usage
	Increasing phi_convict_threshold for less
reliable networks
	Using the Cassandra maven plugin

	Chapter 10:
Libraries and Applications
	Introduction
	Building the contrib stress tool for
benchmarking
	Inserting and reading data with the
stress tool
	Running the Yahoo! Cloud Serving
Benchmark
	Hector, a high-level client for Cassandra
	Doing batch mutations with Hector
	Cassandra with Java Persistence
Architecture (JPA)
	Setting up Solandra for full text indexing with a Cassandra backend
	Setting up Zookeeper to support Cages for transactional locking
	Using Cages to implement an atomic read and set
	Using Groovandra as a CLI alternative
	Searchable log storage with Logsandra

	Chapter 11:
Hadoop and Cassandra
	Introduction
	A pseudo-distributed Hadoop setup
	A Map-only program that reads
from Cassandra using the
	ColumnFamilyInputFormat
	A Map-only program that writes to
Cassandra using the CassandraOutputFormat
	Using MapReduce to do grouping and
counting with Cassandra input and output
	Setting up Hive with Cassandra Storage Handler support
	Defining a Hive table over a Cassandra
Column Family
	Joining two Column Families with Hive
	Grouping and counting column values
with Hive
	Co-locating Hadoop Task Trackers on
Cassandra nodes
	Setting up a "Shadow" data center for
running only MapReduce jobs
	Setting up DataStax Brisk the combined stack of Cassandra, Hadoop, and Hive

	Chapter 12:
Collecting and Analyzing Performance Statistics
	Finding bottlenecks with nodetool tpstats
	Using nodetool cfstats to retrieve column family statistics
	Monitoring CPU utilization
	Adding read/write graphs to find active
column families
	Using Memtable graphs to profile when and why they flush
	Graphing SSTable count
	Monitoring disk utilization and having a
performance baseline
	Monitoring compaction by graphing its
activity
	Using nodetool compaction stats to check the progress of compaction
	Graphing column family statistics to track average/max row sizes
	Using latency graphs to profile time to
seek keys
	Tracking the physical disk size of each
column family over time
	Using nodetool cfhistograms to see the
distribution of query latencies
	Tracking open networking connections

	Chapter 13:
Monitoring Cassandra Servers
	Introduction
	Forwarding Log4j logs to a central sever
	Using top to understand overall performance
	Using iostat to monitor current disk
performance
	Using sar to review performance over time
	Using JMXTerm to access Cassandra JMX
	Monitoring the garbage collection events
	Using tpstats to find bottlenecks
	Creating a Nagios Check Script for
Cassandra
	Keep an eye out for large rows with
compaction limits
	Reviewing network traffic with IPTraf
	Keep on the lookout for dropped messages
	Inspecting column families for dangerous conditions

	Index

