
Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  233 
 

  

Binary Code Disassembly for Reverse Engineering  
 

Marius POPA 
Department of Economic Informatics and Cybernetics 

Bucharest University of Economic Studies 

ROMANIA 

marius.popa@ase.ro   

 

 
Abstract: The disassembly of binary file is used to restore the software application code in a readable and 
understandable format for humans. Further, the assembly code file can be used in reverse engineering processes 
to establish the logical flows of the computer program or its vulnerabilities in real-world running environment. 
The paper highlights the features of the binary executable files under the x86 architecture and portable format, 
presents issues of disassembly process of a machine code file and intermediate code, disassembly algorithms 
which can be applied to a correct and complete reconstruction of the source file written in assembly language, 
and techniques and tools used in binary code disassembly. 
 
Key-Words:  disassembly, reverse engineering, native, intermediate code. 

 

 

1   Binary code and file formats 
 

The modern computer programs are 

developed in programming languages that 

are a human readable form [2], [3], [4], 

[5]. The source code written by software 

developers is compiled into a binary 

format. In software development, there 

are two classes of binaries: 

 Machine code – is not directly 

understandable by software developer, 

but it is directly executed by the 

machine; it is generated by compiler 

depending on the hardware 

characteristics; 

 Intermediate code – like machine code, 

is not directly understandable by 

software developer and is not directly 

executed by the machine; the 

executable code is obtained after an 

interpreting process performed by a 

specialized component called virtual 

machine; the most known and used 

virtual machines are Java Virtual 

Machine and Common Language 

Runtime (CLR) [10], [11]. 

The computer programs delivered in the 

machine code format are more difficult to 

be maintained because of the difficulty to 

understand the executable format. To 

implement the maintainance activities, the 

software developer need the source code 

and documentation. Another way to obtain 

the understandable form of the machine 

code is to convert it into assembly 

language. 

The disassembly is the process which 

converts the machine code into equivalent 

format in assembly language. During this 

process the assembly instruction set 

mnemonics are translated into assembly 

instructions that can be easily read by 

software developers. 

The practical and positive issues of the 

disassembly process and its results are 

[16]: 

 Improvement of the portability for 

computer programs delivered in 

machine code format; unlike machine 

code, the intermediate code is portable 

due to its interpreting by a virtual 

machine which must be mandatorily 

installed on the host machine; 

 The software developers determine the 

logical flows of the disassembled 

software application; the algorithms 

and other programming entities are 

extracted from the software application 

and used in other versions or 

programs; 

 Security issues are identified and can 

be patched without access to the 

original source code; 

 The old version of a computer program 

is completed with new functionalities 

and interfaces. 

The effects of the disassembly process 

implementation are quantified in terms of 



www.jmeds.eu 

 

 

  
234 

 

  

time and costs during the running of the 

computer program. 

The disassembly process is one of the 

three main classes of techniques for 

reverse engineering of software [11].  

Reverse engineering of software is the 

process for discovery the technological 

principles of a product or system based of 

analysis of its structure, function and 

operation [17]. 

The main problem of the reverse 

engineering is the intellectual propriety on 

software. As reverse engineering 

technique, the disassembly is used 

whether the machine code owners agree 

with it.  

As negative issue, the disassembly process 

can be carried out by malicious software 

developers to discover the vulnerabilities 

and holes of the computer programs to 

hack them. Also, the discovered logical 

flows and algorithms can be used in other 

commercial computer programs without an 

agreement with the owners of the 

disassembled computer program. 

The list of the available disassemblers 

includes tools for Windows like IDA Pro, PE 

Explorer, W32DASM, BORG Disassembler, 

HT Editor, diStorm64 and Linux like 

Bastard Disassembler, ciasdis, objdump, 

gdb, lida linux interactive disassembler, 

ldasm. 

During the disassembly process, the most 

difficult issues is to separate the code from 

data, especially when data are inserted in 

code segment or code is inserted in data 

segment. 

The assembly process removes the text-

based identifiers and code comments. This 

issue together with the mix of data and 

code make more difficult the 

understanding of the assembly code 

obtained after the disassembly process. 

The machine code is generated for a 

particular processor or family of 

processors. In addition, operating systems 

check that the machine code file has a 

valid executable file format. For example, 

the most known executable files are COM 

for CP/M and MS-DOS, Portable Executable 

(PE) for 32-bit and 64-bit version of 

Windows, Executable and Linkable Format 

(ELF) for Linux and versions of Unix, and 

Mach Object (Mach-O) for Mac OS X. 

The executable file COM contains x86 

instructions in binary format and has the 

following features: 

 The binary code has not an 

organization format; 

 The file execution starts from the first 

byte, after Program Segment Prefix; 

 The COM file has a length less than 

64KB; 

 The content of the COM file is the 

image of the program in the memory. 

Program Segment Prefix is a data 

structure used to store the state of a 

program and has the following features: 

 It is loaded by operating system before 

the machine code stored in COM file; 

 It contains data necessary to operating 

system; 

 It has the length of 256 bytes. 

The contents of segment registers for x86 

family of processors are depicted in figure 

1. 

 

 
 

Figure 1 The contents of the segment registers 
for COM files 

 

The first executed instruction has always 

the address CS:0x0100. 

For the machine code stored in a COM file 

and depicted in figure 2 the disassembled 

code can be viewed in figure 3 when the 

COM file is debugged by MS-DOS 

application td.exe. 

 
B80700BB090003D88BC3B8004CCD2100 

0024313624 

 
Figure 2 Binary executable code of the COM file 

 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  235 
 

  

 
 
Figure 3. Disassembled code of the COM file in 

td.exe 

 

After the assembly instruction int 21h, the 

next 6 bytes are used to store data in the 

COM file. The application td.exe considers 

the 6 bytes as operation codes for binary 

instructions and it tries to disassemble the 

bytes used for data storing. The assembly 

instructions generated on the 6 bytes are: 

 
Table 1 Disassembled code from data area of 
the COM file 

 

Binary code Assembly code 

0000 add [bx+si],al 

2431 and al,31h 

362400 and ss:al,00h 

 

Because the sequence of bytes 0x3624 has 

not an equivalent in assembly code, td.exe 

application adds the next byte and the 

disassembled code is and ss:al,00h. 

The executable file for Windows operating 

system has the following features: 

 Eliminates the disadvantages of the 

COM files; 

 Inserts a header used to identify and 

manage the binary code at runtime; 

 Contains information regarding 

reallocation of the memory; 

 Provides different locations for code, 

data and stack segments. 

The contents of segment registers for x86 

family of processors are depicted in figure 

4. 

The address of the first executed 

instruction is calculated using the 

information from the executable header. 

The binary content of the x86 Windows 

executable file for the same logical flow 

like in the above COM file is depicted in 

figure 5. 

 

 
 

Figure 4. The content of the segment registers 
for Windows executable files 

 

 

 
 

Figure 5. Binary executable code of the x86 
Windows executable file 

 

The binary executable code is included in 

.text section of the Windows exe file. The 

executable file has the length of 27648 

bytes (27KB). The length of the .text 

section is 12799 bytes (12KB) between the 

address offsets 0x00000400 and 

0x000035FF. 

Unlike the COM file, the Windows 

executable file in the Portable Executable 

(PE) format is structured and contains 

metadata regarding the internal 

organization and code reallocation at 

runtime. 

The PE file format structure has the 

following elements [1]: 

1. MS-DOS information: used to keep 

information to MS-DOS and to treat 



www.jmeds.eu 

 

 

  
236 

 

  

cross attempts to launch MS-DOS and 

Windows executables: it includes DOS 

header and MS-DOS stub program; 

2. Windows information: has the role to 

manage the internal virtual memory 

space allocated for the EXE file by 

Windows operating system; the 

components are: the PE signature (the 

string “PE”), file header and optional 

header; 

3. Section information: includes section 

headers and sections; a section has a 

specific type in the table 2. 

 
Table 2 Section names in Windows PE file [13] 

 

Name Content 

.bss 
Uninitialized data (free 

format) 

.cormeta 

CLR metadata that 

indicates that the object file 

contains managed code 

.data 
Initialized data (free 

format) 

.debug$F 

Generated Frame Pointer 

Omission (FPO) debug 

information (object only, 

x86 architecture only, and 

now obsolete) 

.debug$P 
Precompiled debug types 

(object only) 

.debug$S 
Debug symbols (object 

only) 

.debug$T Debug types (object only) 

.drective Linker options 

.edata Export tables 

.idata Import tables 

.idlsym 

Includes registered 

Structured Exception 

Handler (SEH) (image only) 

to support Interface 

Definition Language (IDL) 

attributes.  

.pdata Exception information 

.rdata Read-only initialized data 

.reloc Image relocations 

.rsrc Resource directory 

.sbss 

Global Pointer (GP)-relative 

uninitialized data (free 

format) 

.sdata 
GP-relative initialized data 

(free format) 

.srdata 
GP-relative read-only data 

(free format) 

.sxdata Registered exception 

handler data (free format 

and x86/object only) 

.text 
Executable code (free 

format) 

.tls 
Thread-local storage 

(object  only) 

.tls$ 
Thread-local storage 

(object only) 

.vsdata 

GP-relative initialized data 

(free format and for ARM, 

SH4, and Thumb 

architectures only) 

.xdata 
Exception information (free 

format) 

 

The section names explained in table 2 are 

available for binary executable files and 

object files under the Windows family of 

operating systems. 

In [12], the Win32 Portable Executable file 

format is explained in-depth.  

For 64-bit Windows system, the PE file 

format has few modifications aiming the 

widening of certain fields from 32 bits to 

64 bits. The 64-bit PE file format is called 

PE32+. 

Dynamic-Link Library (DLL) files have the 

same format like executable files. There is 

a single bit that indicates a different 

treatment of two kinds of file.  

The content of PE file sections stored on 

disk is the same with the content loaded at 

run time into memory. PE file loading 

makes a mapping of PE section into the 

address space. Mapping makes a 

translation from disk offset to memory 

offset as it is explained in [12]. 

After mapping in the memory, each PE file 

section starts at a memory page boundary. 

For x86 system, the memory pages are 4 

KB aligned, and 64-bit system the memory 

pages are 8 KB aligned.  

 

2   Issues of Disassembly 
Process 
 

Disassembly process transforms the 

machine code into assembly instructions 

readable by humans (software developer 

and other interested users). The main task 

of a disassembler tool is to identify the 

byte sequences corresponding to an 

assembly instruction. 

Some features of x86 binary executables 

make the disassembly process more 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  237 
 

  

difficult. These features aim the following 

[14]: 

 Code and static data can be insert in a 

section in a mixed manner; 

 Using of variable length and unaligned 

instruction encodings. 

The two above features are a big issue to 

identify the instructions hidden in or the 

bypass to other instruction’s encoding or 

data bytes. So, the x86 executable format 

is easier to be used for hiding the 

malicious code in binary executables. 

Identification of assembly instructions is 

made on code patterns delimited within 

the binary executable. The x86 code 

patterns are detailed in [16]. The 

structures and assembly entities are 

explained below. 

Stack. It is a data structure used in x86 

architecture to store data temporarily; the 

esp register points to the top of stack; the 

operating system monitors the stack to not 

be in a condition like underflow or 

overflow; the stack is a computer memory 

area where data are linearly stored; other 

memory area where data can be allocated 

is the heap memory; in heap, data are 

non-linear and variable in number and in 

size; 

Functions and stack frames. Each function 

runs on its partition on the stack called 

stack frame; a subroutine uses the 

function parameters and automatic local 

variables allocated in the stack frame; a 

stack frame is created at the current esp 

location; the following assembly code is 

standard for a function entry: 

 
push ebp 

mov ebp, esp 

sub esp, X 

 

X represents the number of bytes allocated 

for the automatic variables used by the 

function. 

The assembly code for the standard exit 

sequence is: 

 
mov esp, ebp 

pop ebp 

ret 

 

For the C code presented in chapter 1, the 

entry point in main function has the 

assembly code: 

 

Table 3 Standard entry point of the main function 
Code 

offset 

Machine code Assembly 

instructions 

; void main(){ 

00000 

00001 

00003 

55 

8B EC 

81 EC E4 00 00 

00 

push ebp 

mov ebp,esp 

sub esp,228 

 

The stack frame of the main function has 

228 bytes as length. 

For the same function, the standard exit 

sequence is: 

 
Table 4 Standard exit sequence of the main 
function 
Code 

offset 

Machine code Assembly 

instructions 

00041 

00043 

00044 

8B E5 

5D 

C3 

mov esp,ebp  

pop ebp 

ret 0 

 

The non-standards stack frames aim the 

following situations [16]: 

 Using of uninitialized registers; 

external functions store data in 

registers before the subroutine calling; 

 Establishing the function scope by 

using the static keyword; the external 

functions cannot interface with the 

static subroutine; 

 Using other types of local variables, 

like static variables. 

Calling conventions. They specify the rules 

regarding the calling of a subroutine. The 

rules aim the following: 

 The way in which the arguments are 

passed to the function; 

 The way in which the result or results 

are passed back by a function; 

 The call of a function; 

 Management of the stack and the stack 

frame by a function. 

For example, for a function named funct 

having two arguments x and y, the 

assembly code for its call can be: 

 
push x 

push y 

call funct 

 

The x and y arguments have 32 bits, 

according to x86 architecture to be stored 

on the stack frame of the func function. 

For example, it considers the C code for 

func function: 



www.jmeds.eu 

 

 

  
238 

 

  

 
int func(int a, int b){ 

 int c=0; 

 c=a+b; 

 return c; 

} 

 

The assembly instructions generated from 

the machine code for func routine call 

written in C compiler under Visual Studio 

2010 are: 

 
Table 5 Parameter transfers and func routine call 
Code 

offset 

Machine 

code 

Assembly instructions 

00033 

 

00036 

00037 

 

0003A 

0003B 

8B45EC 

 

50 

8B4DF8 

 

51 

E80000 

0000 

mov eax, DWORD PTR 

_y$[ebp]  

push eax 

mov ecx, DWORD PTR 

_x$[ebp] 

push ecx 

call ?func@@YAHHH@Z 

 

Branches. In high-level programming 

languages, the using of goto instructions is 

recommended to be avoided. The reason is 

that those programming languages have 

been implemented the branching 

structures into branching instructions. 

The x86 assembly language has not been 

implemented complex branching 

instructions. It uses jump instructions to 

control program flow.  

For example, it considers the C code for 

the func routine written in C compiler 

under Visual Studio 2010: 

 
int func(int a, int b){ 

 int c=0; 

 if(a<b) 

  c=a+b; 

 else 

  c=a-b; 

 return c; 

} 

 

The disassembled code for If-Then-Else 

branch structure is: 

 
Table 6 If-Then-Else branch structure 
Code 

offset 

Machine 

code 

Assembly instructions 

; if(a<b) 

00025 

 

00028 

 

0002B 

8B4508 

 

3b450C 

 

7D0B 

mov eax, DWORD PTR 

_a$[ebp]  

cmp eax, DWORD PTR 

_b$[ebp] 

jge SHORT $LN2@func 

; c = a + b; 

0002D 

 

00030 

 

00033 

8B4508 

 

03450C 

 

8945F8 

mov eax, DWORD PTR 

_a$[ebp] 

add eax, DWORD PTR 

_b$[ebp] 

mov DWORD PTR 

_c$[ebp], eax 

; else 

00036 eb09 jmp SHORT $LN1@func 

; c = a - b; 

 

00038 

 

0003B 

 

0003E 

 

8B4508 

 

2B450C 

 

8945F8 

$LN2@func: 

mov eax, DWORD PTR 

_a$[ebp] 

sub eax, DWORD PTR 

_b$[ebp] 

mov DWORD PTR 

_c$[ebp], eax 

; return c; 

 

00041 

 

8B45F8 

$LN1@func: 

mov eax, DWORD PTR 

_c$[ebp] 

 

The TRUE branch is the sequence of 

instructions between code offsets 0x0002D 

and 0x00037, and the FALSE branch is 

delimited by the code offsets 0x00038 and 

0x00040. 

Avoidance of some assembly instruction 

blocks is possible due to using the jump 

instructions and labels assigned to next 

instruction to be executed after a jump in 

the logical flow of the computer program. 

Loops. They are implemented for repetitive 

operations. To identify the loop structure 

in a machine code file, the following 

elements must be established: 

 The value of condition to repeat the 

operation set; 

 The value of condition to exit the loop 

structure; 

 The point to start the operation set; 

 The point to end the loop structure; 

 The operation set. 

For example, in the func routine written in 

C language under Visual Studio 2010, the 

Do-For loop is implemented: 

 
int func(int a, int b){ 

 int c=0, i; 

 for(i=1; i<=10; i++) 

  c=a+b; 

 return c; 

} 

 

After disassembling, the assembler 

instructions corresponding to Do-For loop 

structure are: 

 

 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  239 
 

  

Table 7 Do-For loop structure 
Code 

offset 

Machine 

code 

Assembly instructions 

; for(i=1; i<=10; i++) 

00025 

 

 

0002C 

 

0002E 

 

00031 

00034 

 

 

00037 

 

0003B 

C745EC  

010000 

00 

EB09 

 

8B45EC 

 

83C001 

8945EC 

 

 

837DEC  

0A 

7F 0B 

mov DWORD PTR 

_i$[ebp], 1 

 

jmp SHORT $LN3@func 

$LN2@func: 

mov eax, DWORD PTR 

_i$[ebp] 

add eax, 1 

mov DWORD PTR 

_i$[ebp], eax 

$LN3@func: 

cmp DWORD PTR 

_i$[ebp], 10 

jg SHORT $LN1@func 

; c=a+b; 

0003D 

 

00040 

 

00043 

 

00046 

8B4508 

 

03450C 

 

8945F8 

 

EBE6 

mov eax, DWORD PTR 

_a$[ebp] 

add eax, DWORD PTR 

_b$[ebp] 

mov DWORD PTR 

_c$[ebp], eax 

jmp SHORT $LN2@func 

; return c; 

 

00048 

 

8B45F8 

$LN1@func: 

mov eax, DWORD PTR 

_c$[ebp] 

 

Besides the code patterns, the data 

patterns can be delimited in a binary 

executable. Below, some techniques to 

identify data in a machine code file are 

explained [16]. 

Variables. They are memory areas of a 

computer program where data to be 

processed are stored. There are classified 

two types of variables: 

 Local variables – are defined in 

subroutines and are stored in stack 

frames; they are accessed as an offset 

from esp or ebp; the static variables 

are not allocated on the stack frame; 

 Global variables – are accessed via a 

hardcoded memory address; they are 

not allocated in the stack and are not a 

limited scope. 

After disassembling a machine code file, it 

observes that the local variables are 

allocated in the stack frame of a function 

within .text section, and the global 

variables are defined and allocated in .data 

section. The roles of .text and .data 

sections are explained in table 2. 

The disassembled machine code for local 

and global variables is: 

 

Table 8 Disassembled code for local and global 
variables 
Code 

offset 

Machine 

code 

Assembly instructions 

; global variable definition and 

allocation 

; int x = 7; 

; int y = 9; 

  PUBLIC ?x@@3HA  

PUBLIC ?y@@3HA 

  

_DATA SEGMENT 

     ?x@@3HA DD 07H 

     ?y@@3HA DD 09H 

_DATA ENDS 

; local variable allocation 

 

0001e 

 

 

 

00025 

 

c745f8  

000000 

00 

 

c745ec  

0a0000  

00 

; int c = 0; 

mov DWORD PTR _c$[ebp], 

0 

 

; int i = 10; 

mov DWORD PTR _i$[ebp], 

10 

 

Constants. They are memory areas that do 

not change their content during the 

machine code running.  

“Volatile” memory. “Volatile” variables can 

be accessed from external or concurrent 

processes. The hint to identify a "volatile” 

variable is a frequent access of the 

memory and update of its values. 

Simple accessor methods. They are used 

to restrict the access to a variable. They 

receive no parameter and return the value 

of a variable. 

Simple setter (manipulator) methods. 

Similar to simple accessor method, a 

simple setter method alters the value of a 

given variable. 

The most part of the computer programs 

use complex data objects. The data 

structures that must be identified by a 

disassembler are arrays, structures and 

advanced structures [16]. 

Arrays are designed to allocate and access 

multiple data objects of the same type. 

Structures are implemented to allocate 

and access data objects of different data 

types. 

Advanced structures are implemented as 

support for complex operations of the 

computer program logical flow.  

Other issues regarding the data patterns 

aim object-oriented programming 

(identification of classes and objects) and 

floating point numbers (using of floating 

point stack). 



www.jmeds.eu 

 

 

  
240 

 

  

Code optimization is a stage during the 

compilation process. The stages of 

optimization are: 

 Intermediate representation 

optimization – data flow and code flow 

optimizations; 

 Code generation optimization – using 

the fast machine instructions,  

During disassembly process, the control 

flow graph is built on sequences of 

instructions encoded in machine code. In 

[9], the control flow reconstruction is split 

in two parts: 

 Call graph – relationship between 

routines are highlighted; the routines 

are the nodes, and the calls and 

returns are the edges; 

 Control flow graph – jumps in the 

routine are highlighted, and it can be 

built for each routine; the nodes are 

called basic blocks, and the edges are 

jumps and fall-through edges; the 

basic blocks contain one-step executed 

instructions. 

The reconstruction of control flow graph 

faces to the following problems [9]: 

 Determination of the branch targets; 

 Difficulties to establish the basic blocks 

boundaries; 

 The end of a routine is difficult to be 

established; 

 Complicated analysis because of 

guarded code; 

 More operations assigned to 

instructions; 

 Handling multiple entry points and 

external routines; 

 Interlocked or overlapping procedures 

(optimizing compilers, hand-written 

assembly); 

 Code blocks can contain data blocks. 

The control flow graph is approximated 

after a static analysis on the initial control 

flow graph.  

Compiler and link-time optimizations 

introduce variable instruction sequences in 

the machine code. This issue leads to a 

difficult detection of the function entry 

points based on patter-matching.  

 

3. Techniques and Tools Used in 
Reverse Engineering 
 

There are different techniques and tools in 

reverse engineering applying for the 

software based on Windows platforms. In 

[8], some of these methods are presented 

as it follows: 

 Debugging; 

 Disassembly; 

 Hex-editing; 

 Unpacking; 

 File analysis; 

 Registry monitoring; 

 File monitoring. 

The software developers use debuggers to 

fix bugs of the software under 

development. Debuggers are used to 

verify the control flows and memory area 

evolution during program execution for a 

specific test input data. These futures 

facilitate understanding of the algorithms 

and finding the content of the sensitive 

memory areas.  

The disassembly process is presented in 

previous chapter together with its issues. 

There are two major classes of 

disassembly techniques [15]: 

 Static disassembly – the binary file is 

not executed; the instruction stream is 

parsed as it is found in the machine 

code file to establish or approximate 

the computer program behavior; 

 Dynamic disassembly – the binary file 

is executed, and its execution is 

monitored to identify the instruction 

actions and behavior; the execution is 

made for some input sets, and as 

effect some instruction streams of the 

binary file can be avoided. 

The issues of static disassembly aim the 

following [15]: 

 Variable length instructions – as it can 

see in the previous chapter, the 

sequences of operation codes of the 

instructions have variable lengths; the 

length of each binary instruction is 

counted on code offsets; 

 Indirect control transfers – is 

implemented by dynamic linking, jump 

tables and so forth; 

 Data are interleaved with code streams 

– data blocks can be inserted in binary 

code sections making the disassembly 

more difficult because the disassembly 

tool must identify the data blocks as 

not being part of the binary code. 

The algorithms applied in static 

disassembly are [15]: 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  241 
 

  

 Linear traversal disassembly – has the 

following features: 

 Starts at the first byte of the .text 

section; .text section contains the 

binary code of the executable as it 

can see in chapter 1; 

 Instructions are decoded one after 

another; 

 Recursive traversal disassembly – 

consists of the following steps: 

 Starts at the first byte of the .text 

section; 

 Whenever a branch instruction is 

identified, the following actions are 

done: 

o Determination of the addresses 

where the branch instruction 

blocks begin; 

o The branch instruction blocks 

are disassembled; 

 Other algorithms – identification of 

jump tables, speculative disassembly, 

hybrid disassembly. 

The linear traversal disassembly algorithm 

is presented in [6], and the linear 

disassembly procedure has the following 

content: 

 
while (startAddr ≤ addr ≤ endAddr) { 

    I = decode instruction at address 

addr; 

   addr += length(I); 

} 

*) according to [6] 

 

The linear disassembly procedure 

considers as input the address of the 

function entry point and it is executed until 

the end of the function calculated as: 

 
endAddr = startAddr + sizeCode 

 

where: 

 startAddr – the address of the function 

entry point; 

 sizeCode – length of the .text section; 

 endAddr – the address of the function 

end. 

The linear traversal disassembly algorithm 

does not take into account the control flow 

of the program and data embedded in the 

executable code.  

As result, other disassembly algorithm is 

implemented to remove the linear 

disassembly disadvantages. The algorithm 

is presented in [6] and it has the following 

content: 

 
while (startAddr ≤ addr ≤ endAddr){ 

   if (addr has been visited already) 

return; 

   I = decode instruction at address 

addr; 

   mark addr as visited; 

   if (I is a branch or function call) 

      for each possible target t of I do 

         call disassembly rocedure for 

t; 

       } 

   else addr += length(I); 

} 

*) according to [6] 

 

The recursive disassembly procedure is 

called for the address of the function entry 

point, and the address of the function end 

calculated as with the linear disassembly 

procedure. 

The weaknesses of the recursive traversal 

algorithm aim [6]: 

 Assumption that the control transfer 

has a reasonable behavior; for 

example, a conditional branch has two 

passible targets, the function call 

returns to the fallowing instruction 

after the call instruction; 

 Difficulty to identify the set of possible 

targets of indirect control transfers; 

indirect jumps are approached by ad –

hoc techniques and speculative 

disassembly. 

The disassembly algorithms works with the 

following elements identified or 

constructed on binary code [7]: 

 Function entry points – functions are 

instruction blocks that can be 

independently identified and 

disassembled; the binary code is made 

by functions related to each other; the 

disassembly tool must identify the 

function entry points to bound the 

parts of the binary code file; 

identification of the function is made on 

instructions usually used to set up a 

new stack frame; also, the function call 

instruction can be used to identify de 

binary modules of the computer 

program; 

 Control flow graph – this graph is made 

by nodes and edges; the nodes 

represent basic blocks and an edge 

represents a possible control flow from 



www.jmeds.eu 

 

 

  
242 

 

  

a basic block to another; a basic block 

has not jumps or jump targets in the 

middle; a possible control flow is 

implemented by function calls, 

conditional or unconditional jumps, or 

return instructions, all these packing 

the control transfer instructions; a 

control flow graph can be built for each 

function; the traditional approach for 

intra-procedural control flow graph 

starts with the function entry point and 

instructions are disassembled until a 

control transfer instruction is 

encountered. 

Because the x86 instructions have variable 

length and they are not aligned in 

memory, for each code address or code 

offset the disassembly algorithm tries to 

decode the binary code into an assembly 

instruction. As result, a list of potential 

assembly instructions is generated. A valid 

instruction set is extracted from the 

potential instruction list. 

Dynamic disassembly aims snapshots of 

software applications at run time. Unlike 

static disassembly, the dynamic 

disassembly analyses only parts of the 

binary file which are to be converted into 

assembly code.  

A static disassembler used together with 

debugger becomes a tool of dynamic 

disassembly.  

In dynamic disassembly the speed of 

disassembly is not affected by the size of 

the executable file. In static disassembly, 

the speed of disassembly is directly 

proportional to the size of the executable 

file. 

The software development technologies 

have evolved considering the portable 

requirements of the modern software 

applications. The code generated by such 

compilers has a different format from the 

machine code. The code is called 

intermediate and examples of intermediate 

code file are PE format for Windows-based 

development technologies and class type 

files for Java technologies. 

The intermediate code is interpreted by a 

virtual machine at run time in order to be 

executed by Central Processing Unit (CPU). 

Also, in reverse engineering processes, the 

intermediate code is disassembled using 

software applications like Intermediate 

Language Disassembler (ILDASM) for 

Windows application or javap for Java 

applications. 

In the below paragraphs some examples of 

intermediate code disassembly are offered 

as techniques of reverse engineering for 

software application that have 

intermediate code representation. 

As NET-based disassembly example, the 

following C# source code is considered: 

 
using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

 

namespace AngajatApplication 

{ 

    class Angajat 

    { 

        public String Nume; 

        public int id; 

 

        public Angajat(String aNume, 

int nr) 

        { 

            Nume = aNume; 

            id = nr; 

            prelDate(aNume, nr); 

        } 

 

        public String NumeAngajat() 

        { 

            return this.Nume; 

        } 

 

        public int IDAngajat() 

        { 

            return this.id; 

        } 

 

        public void prelDate(String 

sNume, int snr) { } 

 

        public static void Main() { 

} 

    } 

} 

 

The first part of the intermediate file 

generated by .NET compiler is presented in 

figure 6. 

 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  243 
 

  

 
 

Figure 6 Intermediate code of the .NET 
application 

 

In figure 6, the 0x4D5A bytes 

corresponding to “MZ” string in ASCII 

encoding and 0x5045 corresponding to 

“PE” string in ASCII encoding can be 

observed as signature of an executable file 

in portable format. 

For NET intermediate code disassembly, 

the ILDASM application is used. Figure 7 

highlights the .NET application loaded by 

ILDASM. 

 

 
 

Figure 7 .NET application loaded by ILDASM 
disassembler 

 

For .NET application loaded in ILDASM, the 

following dump options are set out: 

 

 
 

Figure 8 Dump options set out for .NET 
application 

 

After dumping, a human-readable code 

from intermediate file is generated and the 

metadata assigned to PE format are 

presented in the restored file. 

Because the restored file is very large, the 

below presentation contains restored code 

of the class Angajat. 

 
// =============== CLASS MEMBERS 

DECLARATION =================== 

 

.class /*02000002*/ private auto 

ansi beforefieldinit 

AngajatApplication.Angajat 

       extends 

[mscorlib/*23000001*/]System.Object/

*01000001*/ 

{ 

  .field /*04000001*/ public string 

Nume 

  .field /*04000002*/ public int32 

id 

  .method /*06000001*/ public 

hidebysig specialname rtspecialname  

          instance void  

.ctor(string aNume, 

                               int32 

nr) cil managed 

  // SIG: 20 02 01 0E 08 

  { 

    // Method begins at RVA 0x2050 

    // Code size       33 (0x21) 

    .maxstack  8 

    .language '{3F5162F8-07C6-11D3-

9053-00C04FA302A1}', '{994B45C4-

E6E9-11D2-903F-00C04FA302A1}', 

'{5A869D0B-6611-11D3-BD2A-

0000F80849BD}' 

// Source File 'D:\Aplicatii 

CSharp\SECITC2012-4Sol\SECITC2012-

4Proj\Program.cs'  

    .line 13,13 : 9,45 



www.jmeds.eu 

 

 

  
244 

 

  

'D:\\Aplicatii CSharp\\SECITC2012-

4Sol\\SECITC2012-4Proj\\Program.cs' 

//000013:         public 

Angajat(String aNume, int nr) 

    IL_0000:  /* 02   |                  

*/ ldarg.0 

    IL_0001:  /* 28   | (0A)000011       

*/ call       instance void 

[mscorlib/*23000001*/]System.Object/

*01000001*/::.ctor() /* 0A000011 */ 

    IL_0006:  /* 00   |                  

*/ nop 

    .line 14,14 : 9,10 '' 

//000014:         { 

    IL_0007:  /* 00   |                  

*/ nop 

    .line 15,15 : 13,26 '' 

//000015:             Nume = aNume; 

    IL_0008:  /* 02   |                  

*/ ldarg.0 

    IL_0009:  /* 03   |                  

*/ ldarg.1 

    IL_000a:  /* 7D   | (04)000001       

*/ stfld      string 

AngajatApplication.Angajat/*02000002

*/::Nume /* 04000001 */ 

    .line 16,16 : 13,21 '' 

//000016:             id = nr; 

    IL_000f:  /* 02   |                  

*/ ldarg.0 

    IL_0010:  /* 04   |                  

*/ ldarg.2 

    IL_0011:  /* 7D   | (04)000002       

*/ stfld      int32 

AngajatApplication.Angajat/*02000002

*/::id /* 04000002 */ 

    .line 17,17 : 13,33 '' 

//000017:             

prelDate(aNume, nr); 

    IL_0016:  /* 02   |                  

*/ ldarg.0 

    IL_0017:  /* 03   |                  

*/ ldarg.1 

    IL_0018:  /* 04   |                  

*/ ldarg.2 

    IL_0019:  /* 28   | (06)000004       

*/ call       instance void 

AngajatApplication.Angajat/*02000002

*/::prelDate(string, 

                                                                                                                      

int32) /* 06000004 */ 

    IL_001e:  /* 00   |                  

*/ nop 

    .line 18,18 : 9,10 '' 

//000018:         } 

    IL_001f:  /* 00   |                  

*/ nop 

    IL_0020:  /* 2A   |                  

*/ ret 

  } // end of method Angajat::.ctor 

 

  .method /*06000002*/ public 

hidebysig instance string  

          NumeAngajat() cil managed 

  // SIG: 20 00 0E 

  { 

    // Method begins at RVA 0x2074 

    // Code size       12 (0xc) 

    .maxstack  1 

    .locals /*11000001*/ init ([0] 

string CS$1$0000) 

    .line 21,21 : 9,10 '' 

//000019:  

//000020:         public String 

NumeAngajat() 

//000021:         { 

    IL_0000:  /* 00   |                  

*/ nop 

    .line 22,22 : 13,30 '' 

//000022:             return 

this.Nume; 

    IL_0001:  /* 02   |                  

*/ ldarg.0 

    IL_0002:  /* 7B   | (04)000001       

*/ ldfld      string 

AngajatApplication.Angajat/*02000002

*/::Nume /* 04000001 */ 

    IL_0007:  /* 0A   |                  

*/ stloc.0 

    IL_0008:  /* 2B   | 00               

*/ br.s       IL_000a 

 

    .line 23,23 : 9,10 '' 

//000023:         } 

    IL_000a:  /* 06   |                  

*/ ldloc.0 

    IL_000b:  /* 2A   |                  

*/ ret 

  } // end of method 

Angajat::NumeAngajat 

 

  .method /*06000003*/ public 

hidebysig instance int32  

          IDAngajat() cil managed 

  // SIG: 20 00 08 

  { 

    // Method begins at RVA 0x208c 

    // Code size       12 (0xc) 

    .maxstack  1 

    .locals /*11000002*/ init ([0] 

int32 CS$1$0000) 

    .line 26,26 : 9,10 '' 

//000024:  

//000025:         public int 

IDAngajat() 

//000026:         { 

    IL_0000:  /* 00   |                  

*/ nop 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  245 
 

  

    .line 27,27 : 13,28 '' 

//000027:             return 

this.id; 

    IL_0001:  /* 02   |                  

*/ ldarg.0 

    IL_0002:  /* 7B   | (04)000002       

*/ ldfld      int32 

AngajatApplication.Angajat/*02000002

*/::id /* 04000002 */ 

    IL_0007:  /* 0A   |                  

*/ stloc.0 

    IL_0008:  /* 2B   | 00               

*/ br.s       IL_000a 

 

    .line 28,28 : 9,10 '' 

//000028:         } 

    IL_000a:  /* 06   |                  

*/ ldloc.0 

    IL_000b:  /* 2A   |                  

*/ ret 

  } // end of method 

Angajat::IDAngajat 

 

  .method /*06000004*/ public 

hidebysig instance void  

          prelDate(string sNume, 

                   int32 snr) cil 

managed 

  // SIG: 20 02 01 0E 08 

  { 

    // Method begins at RVA 0x20a4 

    // Code size       2 (0x2) 

    .maxstack  8 

    .line 30,30 : 53,54 '' 

//000029:  

//000030:         public void 

prelDate(String sNume, int snr) { } 

    IL_0000:  /* 00   |                  

*/ nop 

    .line 30,30 : 55,56 '' 

    IL_0001:  /* 2A   |                  

*/ ret 

  } // end of method 

Angajat::prelDate 

 

  .method /*06000005*/ public 

hidebysig static  

          void  Main() cil managed 

  // SIG: 00 00 01 

  { 

    .entrypoint 

    // Method begins at RVA 0x20a7 

    // Code size       2 (0x2) 

    .maxstack  8 

    .line 32,32 : 35,36 '' 

//000031:  

//000032:         public static void 

Main() { } 

    IL_0000:  /* 00   |                  

*/ nop 

    .line 32,32 : 37,38 '' 

    IL_0001:  /* 2A   |                  

*/ ret 

  } // end of method Angajat::Main 

 

} // end of class 

AngajatApplication.Angajat 

 

As Java disassembly example, the 

following Java source code is considered: 

 
import java.*; 

import java.lang.*; 

 

class Angajat extends 

java.lang.Object { 

 

public String Nume; 

public int id; 

 

public Angajat(String aNume,int nr){ 

 Nume = aNume; 

 id = nr; 

 prelDate(aNume, nr); 

} 

 

public String NumeAngajat(){ 

 return this.Nume; 

} 

 

public int IDAngajat(){ 

 return this.id; 

} 

 

public void prelDate(String 

sNume,int snr){ } 

} 

 

The bytecode file generated by Java 

compiler has the content highlighted in 

figure 9. 

 

 
 

Figure 9 Bytecode content of class file 

 



www.jmeds.eu 

 

 

  
246 

 

  

After disassembly process of the class file, 

the restored code in the human-readable 

format has the following form: 

 
Compiled from Angajat.java 

class Angajat extends java.lang.Object { 

    public java.lang.String Nume; 

    public int id; 

    public 

Angajat(java.lang.String,int); 

    public int IDAngajat(); 

    public java.lang.String 

NumeAngajat(); 

    public void 

prelDate(java.lang.String, int); 

} 

 

Method Angajat(java.lang.String,int) 

   0 aload_0 

   1 invokespecial #3 <Method 

java.lang.Object()> 

   4 aload_0 

   5 aload_1 

   6 putfield #4 <Field java.lang.String 

Nume> 

   9 aload_0 

  10 iload_2 

  11 putfield #5 <Field int id> 

  14 aload_0 

  15 aload_1 

  16 iload_2 

  17 invokevirtual #6 <Method void 

prelDate(java.lang.String, int)> 

  20 return 

 

Method int IDAngajat() 

   0 aload_0 

   1 getfield #5 <Field int id> 

   4 ireturn 

 

Method java.lang.String NumeAngajat() 

   0 aload_0 

   1 getfield #4 <Field java.lang.String 

Nume> 

   4 areturn 

 

Method void prelDate(java.lang.String, 

int) 

   0 return 

 

After disassembly process, the human-

readable code is analyzed to apply reverse 

engineering techniques or to classify the 

computer program as malign or benign for 

the computer systems. 

Hex editors are software applications used 

to find the binary content of a file, 

including an executable one. A strong 

feature of the hex editors is permission to 

modify the content or to inject new 

content in the binary form. As effect, the 

behavior of the software application is 

observed after consecutive changes or 

code injections. There is hex editing 

software having complex functions to help 

its user to find quicker the executable file 

areas in which the user has an interest. 

That hex editor software can be used by 

any kind of user, including the users with 

low knowledge in software programming.  

File packing is the process consisting of 

reduction the size of a software 

application, being made by a tool called 

file packer. At run time, software called file 

unpacker is launched to decompress or 

unpack the executable file in memory. 

Reverse engineering process needs the 

unpacked form of the executable file. A 

packed executable file is identifying based 

on its header which is modified. Manual 

techniques or automatic techniques like 

file unpacking software can be used to 

unpack the executable file. The main 

problem of the automatic techniques is to 

find the unpacking software to be used for 

a successful unpacking. 

File analyzers are software used to identify 

the packer employed to get a packed file. 

Identification is made on the signature 

byte and it aims the compiler or 

programming language used to develop 

the packed software application.  

Tools like registry monitors supervise the 

access to registry keys by software 

programs. Software application makes 

readings from and writings to registry keys 

to restore or change a configuration. 

Useful information for reverse engineering 

is obtained from the access of software 

application to registry keys. 

File monitoring consists of supervision the 

access of software applications to files 

stored on disk. The accessed file can 

contain sensitive information like security 

algorithms used in application, access data 

or procedures to some functions and so 

forth. The file content is a valuable source 

of information for the reverse engineering 

process. 

 

Acknowledgement  
Parts of this paper were presented by the 

author at “5th International Conference on 

Security for Information Technology and 

Communications”, Bucharest, Romania, 31 

May – 1 June 2012. 

 



Journal of Mobile, Embedded and Distributed Systems, vol. IV, no. 4, 2012 

ISSN 2067 – 4074 

 

  247 
 

  

4. Conclusion 
 

Specific techniques and tools depending on 

development platform and technology 

must be considered in order to implement 

a reverse engineering process. The paper 

content has focused on software 

application developed on Windows systems 

highlighting the specific approaching of 

reverse engineering for software 

applications developed on it.  

As techniques in reverse engineering, 

disassembly process is used to generating 

the human-readable format for the 

computer programs delivered as machine 

code or intermediate code files. There are 

disassembly traversal algorithms to 

generate the assembly code from the 

machine code even if there is not a 100% 

covering of the machine code flows by the 

assembly code flows.  

Based on the assembly language, a 

software specialist can implement reverse 

engineering techniques to investigate the 

software vulnerabilities of a computer 

program. 

The main problem remains the intellectual 

property. Firstly, the software engineers 

must deal this problem with the computer 

program owners. On the other hand, a 

malicious user can break computer 

programs to use them for commercial 

advantages or to exploit their 

vulnerabilities to get information and other 

advantages unlawfully.  

 

References 
[1] Ashkbiz Danehkar, Inject your code to 

a Portable Executable file, 27 

December 2005, 

http://www.codeproject.com 

[2] Cătălin Boja, Security Survey of 

Internet Browsers Data Managers, 

Journal of Mobile, Embedded and 

Distributed Systems – JMEDS, vol. 3, 

no. 3, 2011, pp. 109 – 119 

[3] Cătălin Boja, Mihai Doinea, Security 

Assessment of Web Based Distributed 

Applications, Informatica Economică, 

vol. 14, no. 1, 2010, pp. 152 – 162 

[4] Cristian Toma, Security Issues for 2D 

Barcodes Ticketing Systems, Journal 

of Mobile, Embedded and Distributed 

Systems – JMEDS, vol. 3, no. 1, 2011, 

pp. 34 – 53 

[5] Cristian Toma, Sample Development 

on Java Smart-Card Electronic Wallet 

Application, Journal of Mobile, 

Embedded and Distributed Systems – 

JMEDS, vol. 1, no. 2, 2009, pp. 60 – 

80 

[6] Cullen Linn, Saumya Debray, 

Obfuscation of Executable Code to 

Improve Resistance to Static 

Disassembly, Proceedings of the 10th 

ACM Conference on Computer and 

Communications Security, ACM New 

York, NY, USA, 2003, pp. 290 – 299 

[7] Giovanni Vigna, Static Disassembly and 

Code Analysis, Malware Detection. 

Advances in Information Security, 

Springer, Heidelberg, vol. 35, 2007, 

pp. 19 – 42 

[8] Hardik Shah, Software Security and 

Reverse Engineering, 

http://www.infosecwriters.com/text_r

esources/pdf/software_security_and_r

everse_engineering.pdf 

[9] Henrik Theiling, Extracting Safe and 

Precise Control Flow from Binaries, 

Proceedings of the Seventh 

International Conference on Real-Time 

Systems and Applications, IEEE 

Computer Society Washington, DC, 

USA, 2000, pp. 23 – 30 

[10] Marius Popa, Techniques of Program 

Code Obfuscation for Secure Software, 

Journal of Mobile, Embedded and 

Distributed Systems – JMEDS, vol. 3, 

no. 4, 2011, pp. 205 – 219  

[11] Marius Popa, Characteristics of 

Program Code Obfuscation for Reverse 

Engineering of Software, Proceedings 

of the 4th International Conference on 

Security for Information Technology 

and Communications, Bucharest, 17 – 

18 November 2011, ASE Publishing 

House, Bucharest, pp. 103 – 112 

[12] Matt Pietrek, An In-Depth Look into 

the Win32 Portable Executable File 

Format, msdn magazine, 

http://msdn.microsoft.com /en-

us/magazine/cc301805.aspx 

[13] Microsoft Portable Executable and 

Common Object File Format 

Specification, Revision 8.2, 21 

September 2010   

[14] Richard Wartell, Yan Zhou, Kevin W. 

Hamlen, Murat Kantarcioglu, and 

Bhavani Thuraisingham, 



www.jmeds.eu 

 

 

  
248 

 

  

Differentiating Code from Data in x86 

Binaries, Proceedings of the 2011 

European Conference on Machine 

Learning and Knowledge Discovery in 

Databases - Volume Part III, Springer-

Verlag Berlin, Heidelberg, 2011, pp. 

522 – 536 

[15] Roberto Paleari, Static disassembly 

and analysis of malicious code, 5 July 

2007, 

http://roberto.greyhats.it/talks.html 

[16] The Wikibook of x86 Disassembly 

Using C and Assembly Language, 

Wikimedia Foundation Inc., 14 

January 2008 

[17] http://en.wikipedia.org/wiki/ 

Reverse_engineering 

 

 

 

 

 

 

 

 

 


