An Introduction to the GNU
Compiler and Linker
William Gatliff

Table of Contents

OVBIVIBW ...ttt ettt et et e et e et ekt a4 r et e es et e s e s e e et e s be e e nnn et e s e e s nrn e e 1.
The GNU Compiler COlECION (GCC).....oouueiiiiieiiee ettt ettt et e e e e e e e e e e aeeeean 1.
The GNU IINKEE, 1 .ttt ettt e e e e e rmnme e e e e e e et eaaaeeas 7.
PUtting It All TOGEINET ...t e e ettt e e e e e smnne e e e e e e eneees 12
LCT= 111 0o €1\ PP TP 12
VA= 01U o U O U PP PP PP PP 15.
RESOUICES. ...ttt ettt ettt ettt ettt ettt ettt bt ettt et me et e et et e eeeeeeeeeseesneensnnnbnnnnes 15
L07] 0/ 1o | o] TP UPP RSP 16
ADOUL TNE AULNOT ...t e e 16
Overview

Despite their reputations as workstation application tigmaent tools, the GNU compiler and linker
excel at producing high-quality executables for embeddsgkts. The reason is only partly because an
increasing number of embedded systems are based on the &amigBocessors found in some desktop
workstations; it is mostly because the diverse, high-endkstation environment demands flexible and
powerful tools, and such tools can also be used to make grdzdded systems.

This paper describes the features of the GNU compiler akéliithat are most important for embedded
developers. It begins with a brief overview of the tools tlselaes and some of their most useful
command line options, then covers the compiler’s syntagresions, in particular its inline assembly
language support. It then introduces the linker's commanduage, and concludes with the procedure
used to build the tools from source code.

The GNU Compiler Collection (gcc)

The GNU Compiler Collectiongcc can compile programs written in C, C++, Java and severalroth
languages. It provides many useful command line optionsgntax extensions, and also serves as a
powerful frontend for the GNU linkefd.

An Introduction to the GNU Compiler and Linker

Command line options

Gcc supports a large list of command line options. In fadrelare no less than thirteeategories of
options to choose from! The following is a list of the most imnfant and immediately useful ones for
embedded development; see gcc’s online documentatiohdaest.

The - v option

This option tells gcc to print all the commands it runs durtegnpilation. It also causes gcc to emit
internal version data, and other useful troubleshootifymation.

The - g option

This command tells gcc to include debugging informatiortsroutput files. It is necessary if you intend
to use the GNU debuggegdb, to debug the application.

The - ¢ option

This command tells gcc to stop after creating an object file.

The - Sand - Wa options

The- S option tells gcc to stop after translating a source file irgseanbly language, before the
assembler is invoked. The output file is calletdi | enane>. s.

To get an annotated assembly language listing, with intexch$ource and assembly language code, use
the following commands instead o8:

$ <targetnane>-gcc -g -c¢ -W4,-alh,-L <filenane>

This statement uses th&a command to pass two options to the assemblarh (produce an annotated
source listing), andL (retain information about local variables in the listingr more information on
assembler options, see the assembler’s online docun@ntati

Annotated assembly listings can be confusing when aggeespiimizations are requested, because
sections of code may get moved or deleted during the opttioizarocess. Work with unoptimized
listings whenever possible.

The - val | option

Gcce supports a lot of options for warning message generdtidact, its syntax checking is so complete
that in many cases a separate source code scanning ukiitynli is unnecessary. Theml | option
turns on all of gcc’s most popular warning settings, of whinkre are many.

An Introduction to the GNU Compiler and Linker

The - Wast - al i gn option

This option causes gcc to issue a warning whenever a poiasécan create alignment issues. This
option is not enabled bywal | .

Many microprocessors can only access multibyte values ecifspaddress boundaries. Casting a
character pointer to an integer pointer in such architesttisks a misaligned data access when the
pointer is dereferenced, because a character isn’t netdegdaced on the same alignment boundaries as
an integer. TheWast - al i gn option causes gcc to issue a warning when a cast that riskigamant
issue is detected.

The - Wi gn- conpar e option

This option causes gcc to issue a warning when a comparisareee signed and unsigned values could
produce an incorrect result when the signed value is comdéotunsigned. ANSI C requires such
transformations during comparisons. This option is nob&thby- al | .

The - Wonver si on option

Similar to the- V&i gn- conpar e option,- Weonver si on tells gcc to issue a warning if a negative
integer constant expression is implicitly converted to asigned type. Statements that produce such
transformations can be difficult to spot, and the result ahsaiconversion is almost always incorrect.
This option is not enabled byal | .

The - f ver bose- asmoption

Often used in conjunction with thes option, and occasionally in place of the assemblediish option,

-f ver bose- asmtells gcc to put extra comments into generated assembly Tilesextra information
includes the memory or register locations of local variap$tack sizes, and argument passing
conventions. This information is extremely useful for toteshooting binary interface or code generation
issues.

The - f fi xed- <r eg> option

This option tells gcc to leave registeeg alone. This is useful when you want to reserve a register for
exclusive RTOS use, for example. In most cases, use of thigmopwill require recompilation of runtime
libraries and other code that depends on a binary interface.

The - f pack- enumand - f pack- st ruct options

These options tell gcc to use the smallest representatmsstpe for enumerations and structures, rather
than using their default sizes. The resulting objects magXpeessed in less space, but the assembly
code required to access them will usually be slower and maomgticated.

An Introduction to the GNU Compiler and Linker

-Q0,-0,-01, -2, and - 3

These options tell gcc to perform varying levels of optinima on output files. The O option produces
the least optimization, whileO3 produces aggressively optimized code. Tl8 option tells gcc to not
perform any optimizations at all (the default if no optintipa level is specified). TheGs option tells
gcc to only perform optimizations that don’t negativelyeaff program size.

The- g x] options affect the inclusion or exclusion sts of optimization strategies. Gec's online
documentation lists the flags to control the use of specifitropation algorithms.

The -fomi t-frane- poi nter option

This option tells gcc to omit frame pointer creation in fuoos that don’t need it--- functions that have
no local variables, for example.

The - W4, <command> and - W, <command> options

These options pass command line switches to the GNU asseamuldinker, respectively.

Syntax extensions

Gcc provides several language syntax extensions, ingudiime assembly language, assembly
language generation controls, objetttibutes, and a long long object type.

Inline assembly language

The most basic inline assembly statement supported by gtwisn inFigure 1 This statement simply
jams an assembly language instruction into the compilertput stream when it is encountered.

Figure 1. A basic inline assembly language example.

printf ("Hello, world!'\n");
asm("nov rl, r2");
printf ("RL noved to R2.\n");

Obviously, this instruction will have disastrous resultsem the values af1 andr 2--- perhaps the

values of two local variables--- aren’t what the programorezompiler was expecting. This would be
the likely case if the compiler’s optimization levels chadgfter the code was written, or if the code was
ported to a variant of the same processor family.

In these situations, gccperand constraints syntax comes to the resclggure 2is an example that
uses the m68k’sinx instruction to compute the value oésul t fromangl e. The "=f" and "f" tell gcc
that it must use floating-point registers for the operandd,that thefsinx instruction modifies the
register assigned toesul t .

An Introduction to the GNU Compiler and Linker

Figure 2. An example using operand constraints.

float fsin (float angle)

{

float result;
asm("fsinx %, %" : "=f" (result) : "f" (angle));
return result;

}

Because operand constraints express concisely how gcconsttuct the arguments to the opcode, gcc
can properly structure any prologue or epilogue to theurcsion needed to move its arguments into
position. If gcc allocates the storage farsul t on the stack, for example, then the constraints tell gcc
that it must move the contents of the register chosen for th@fgument back to the stack after the
opcode runs.

Gcc’s operand constraint syntax prevents inline asserablydage from disrupting the compiler’s
normal optimization processes. Consider the codédunre 3 The assembly language is copyintp a,
and so the return value is alwayg. With optimizations turned offgccemits code that does that
explicitly, as shown irFigure 4 With optimizations turned on, however(Q3 -fomit-frame-pointer),
the code looks very different, as you can se€igure 5

During optimization, gcc apparently detects the constatotrn value created by the inline assembly
language, and emits code to capitalize on that. Gcc doesve#r10 intor 0 directly, however, because
gccnever eliminates code emitted via inline assembly languagersinés.

Figure 3. A simple, optimizable inline assembly language exnple.

int foo (int a)

{
int b = 10;
a = 20;
asm("mov %, %" : "=r" (a) : "r" (b)); /* sets a = b */
return a;
}

Figure 4. The output from Figure 3, compiled without optimizations. The code emits the requeed
opcode without modification. (Comments added by author.)

_foo:

/+ frame pointer setup */
mov.| ri14, @r15

add #-8,r15

mov rl15,r14

mov.|l r4, @14

/* set b to 10 */
mov #10,r1
mov.| rl, @4,r14)

/+ set ato 20 */

An Introduction to the GNU Compiler and Linker

mov #20,r1
mov.|l rl1, @14

/* get b into a register
per the operand constraints */
nmov.l @4,rl14),r2

/* copy the b into a
(redundant, but the inline asm
we supplied requires this) =/
mov r2, r2

/* wite the result back to a */
mov.|l r2, @14

[* return a */
mv.l @14,r1
mov rl,r0
bra L1

nop

/* clean up the stack, and return */
.align 2
L1: add #8,r14
mov rl14,r15
mov.| @ 15+, r14
rts

Figure 5. Output for Figure 3, compiled with optimizations. The optimizer exploits the onstant
return value created by the inline assembly language.

_foo:
mov #10,r1
mov rl, rO
rts

Operand constraints are documented inEkieended Asm section of the gcc user’s manual.

Controlling names used in assembler code

Occasionally the need arises to have C access to an assemgiialge object, but the object of interest
isn’t named in a C-friendly fashion. The codeRigure 6¢creates the C obje€bo_i n_Cas an alias for
the pathogenically-named assembly language syiintmldat a, which lacks a leading underscore and
therefore can’t normally be accessed in C.

An Introduction to the GNU Compiler and Linker

Figure 6. Declaring a C-friendly alias for an assembly langage object.
extern int foo_in_ C __asm ("foo_data");

The same syntax is used to declare objectEidlure 7 a C symbol calledbar is assighed the name
bar _none in the emitted assembly language Higure 8 whenever a function calleitho() is
referenced or declared, it gets the naaseenbl y_f oo in the emitted assembly code.

Figure 7. Declaring a C object with a different name in assemly language.

int bar __asm_("bar_none");

Figure 8. Declaring a C function with a different name in assenbly language.

extern int foo (void) _ _asm _ ("assenbly_foo");

Object attributes

Gcece provides the _attri but e keyword to control object-specific settings. Some attebubhat can
be specified are alignment, packing, and section names.ddeinFigure 9emits the object on a
sixteen-byte boundary. The declaratiorFigure 10tells gcc to pack structure y as tightly as possible.

Figure 9. Allocating a variable to an aligned address.

int x __attribute__ ((aligned(16))) = O;

Figure 10. Packing a structure.

struct { char a; int b; } my_struct __attribute_ ((packed));

The statement ifrigure 11allocates to thesect i on_nane section. With the corresponding statements
in a linker command filez can be assigned to a specific memory address.

Figure 11. Assigning an object to a named memory section.

int x __attribute__ ((section("section_nanme")));

long long object

Gcc provides a 64-bit object type for most targets. This tgrebe used just about anywhere any other
integer type is valid. For targets where this type is notvedisupported, gcc’s runtime library provides
an emulation.

long long a_big value = 10;

An Introduction to the GNU Compiler and Linker

The GNU linker, Id

The GNU linker is a powerful application, but in many case=¢his no need to invoke Id directly-- gcc
invokes it automatically unless you use the(compile only) option.

Like many commercial linkers, Id’s functionality is conllierd using a combination of command line
options and linker command files.

Command line options

--oformat= <format >

The GNU linker supports several output formats. Some clsaice: srec (Motorola S records), coff-sh,
and coff-m68k (COFF formats for SH and m68k targets, resgeg). Once you've installed gcc, you
can find out what formats it supports for your target usingftilewing command:

$ <targetname>-obj dunp -i

--output= <filename >

This option tells the linker what name to use for the outpet fil

--print-map

This command tells the linker to create a map file.

--cref

This tells the linker to add cross-reference informatiothemap file. This information is useful for
determining why a particular module or object was linkea ittte executable.

-T<filename >

This command tells Id to use the command filei | ename>.

Linker command scripts

Linker command scripts are by far the most effective way taticd Id’s behaviorFigure 12is an

example linker command script that | will discuss in detaiéothe next several paragraphs. In summary,
this script defines four memory regions callegtt , r om r amandcache, and five output sections
calledvect,text, bss,init, andst ack.

An Introduction to the GNU Compiler and Linker

Figure 12. An example linker command script.

/+ alist of files to link
(others may be supplied on the command |ine) x/
INPUT(libc.a libg.a libgcc.a libc.a |libgcc. a)

/* output format
(can be overridden on command |ine) =*/
OUTPUT_FORNAT(" cof f-sh")

/* output filenane
(can be overridden on command |ine) =/
OUTPUT_FI LENAME(" mai n. out ")

/* our program s entry point; not useful
for much except to make sure the S7 record
is proper, because the reset vector actually
defines the "entrypoint" in nost enbedded systens =/
ENTRY(_start)

/+ list of our nenobry sections */

VEMORY
{
vect o=0, | =1k
rom o = 0x400, | = 127k
ram 0 = 0x400000, | = 128k
cache : o = Oxfffff000, | = 4k
}

/+* how we’' re organi zi ng nenory sections
defined in each nodul e */

SECTI ONS
{

/* the interrupt vector table */

.vect

{

__vect_start = .
*(.vect);
__vect_end = .
} > vect

/+* code and constants =*/
.text
{
__text_start = .
*(.text)
*(.strings)
__text_end = .;
} > rom

/* uninitialized data */
. bss :

{

An Introduction to the GNU Compiler and Linker

__bss _start = . ;
*(. bss)
* (COMMON)
__bss end = . ;
} > ram

/+ initialized data =/
.init @ AT (__text_end)
{

__data_start = .;
*(.data)
__data_end = .;

} > ram

/+ application stack =*/
.stack :

{

__stack_start = .;
*(. stack)
__stack_end = .;

} > ram

}

Note that Id will use a default command file unless you tebhitlb otherwise. To instruct Id to use your
command file instead of its own, give gce®& , T<f i | ename> command during compilation.

The OUTPUT_FORVAT command

This command controls the format of the output file. A varietjormats are supported, including
S-records (srec), binary (binary), Intel Hex (ihex), andesal debug-aware formats, like COFF (coff-sh
for SH-2 targets, coff-m68k for CPU32, etc.). Use tiigdump utility to find out which formats are
supported by your target’s version of the linker. For morebjdump, see the section on building the
tools from source code.

The MEMORY command

The MEMORY command describes the target system’s memory Tregse memory spaces are then
used as targets for statements in the SECTIONS comand.

The typical syntax is simple:

MEMORY {
nane : o = origin, I =length
nane : o = origin, I =1length
}

Usually, there is a one-to-one relationship between setesrin the MEMORY command and the
number of uniform, contiguous memory regions supportedbytarget hardware. A frequent exception,
however, is the processor’s reset vector, along with thieeeinterrupt vector table in some cases. The

10

An Introduction to the GNU Compiler and Linker

reset vector is usually declared as an independent sedtithrasits location in the output image can be
strictly controlled.

The SECTI ONS command

Statements in a SECTIONS command describe the placemeatloffamed output section, and specify
which input sections go into them. You are only allowed on€3EONS statement per command file,
but it can have as many statements in it as necessary.

In the example, the statement:

/* code and constants =/
. text

starts the definition for a section calledext . The statements inside the subsequent curly braces ihstruc
the linker to:

- create a symbol called t ext _st art, and place it at the beginning of the section,
- merge all. t ext and. stri ngs sections from the input files into this section, and,

- create a symbol called t ext _end, and place it at the end of the section.

Finally, the statement:
} > rom

tells the linker to locate the section in the memory spadedabmwhich, according to the MEMORY
command, begins at addre»s400.

The list of input sections can also be file-specific. For eXaipyou added a line like:

foo.o (.special section)

to the. t ext section definition, then the linker would also merge intext the section named
. speci al secti on from the filef 0o. o.

The AT directive

The AT directive tells the linker to load a section’s dataaangwhere other than the address it is located
at. This feature is designed specifically for generating R@slges, something that’s obviously
important for embedded systems.

The best way to understand the AT directive is by examplec&uasider an application that has only one
initialized global variable:

int a_global = 102;

During compilation, gcc will declare an integer objecyl obal with the valuel02 in the module’s
. dat a section. By supplying an AT directive fodat a sections during linking, we tell the linker to

11

An Introduction to the GNU Compiler and Linker

assigna_gl obal an address in one location (typically RAM), but place it$igdivalue somewhere else
(i.,e. __text end, typically in ROM).

With the initial value successfully stored in ROM, the gimsiarises as to how to get it into the proper
place in RAM. The code ifrigure 13initializesa_gl obal , along with any other initialized global data
in an application. This code uses the symbalsxt _end, _dat a_st art and_dat a_end to find the
initial value, determine its size, and place it at its prgplace in RAM.

Figure 13. Code for initializing global data.

extern const char _text_start, _text_end;
extern char _data_start, _data_end;
void __main (void)

{

mencpy(& data_start, & text_end, & data_end - & data_start);
return;

}

For most targets, the best place to put the codéguare 13is in a function called _n=i n() . Gce
usually emits a silent call to_mai n() in the prologue for an applicationmi n() function. (Use gcc's
- Sto see if this is the case for your target.)

Putting It All Together

The following command line tells the ARM version of gcc to quite a filemai n. ¢, and then link it
using the command fileai n. cnd. The output file will use the ELF debugging format.

$ armelf-gcc -g -W,-Tmain.cnd nain.c

Getting GNU

In contrast to other vendors, GNU development tools arehgdiped as source code. To use the tools, you
must firstbuild them for the intended host and target.

The build process for GNU tools presumes the existence ofigen@ compiler and linker, so the best
way to get started with GNU tools is to buy and install a GNW(k distribution CD. With this approach
you get a working Linux environment with a preinstalled wvatGNU compiler and linker, plus a
debugger and other tools. The Cygwin environment is alsqpéiom, if you intend to use a Win32
development host.

The next sectionThe build script, contains the basic commands for building a GNU crosscanaiid
linker. The most important part of the process is decidingtt@irget to build the tools for. The example
uses thear m el f target, which supports various flavors of the ARM micropsswe family and outputs
images using the ELF file format by default. Some other tawgébns are:

« m68k-elf (68k and CPU32 family)

12

An Introduction to the GNU Compiler and Linker

« powerpc-elf (PowerPC family)

« sh-elf (Hitachi SH family)

Note that this is not a comprehensive list, by far. See théimgdist archives for the latest information
on targets supported by the GNU tools.

GNU tools are distributed from the GNU website, at http:/fmgnu.org (http://www.gnu.org/). A
popular C runtime library used in the example script is neywiihich is available from
http://sources.redhat.com/newlib. The build script hesrbtested with the following files:

« binutils-2.11.2.tar.gz
« gcc-2.95.3.tar.gz
- newlib-1.9.0.tar.gz

The build script

First, log in as the root user (if necessary) and set up atdingstructure in which to build the tools.
Copy thet ar . gz files into it, then set up some environment variables thdtsaile typing later and
make sure that the arguments used during the rest of thegsrace consistent--- a source of common
errors.Figure 14describes the commands, just type them in as they appear(thait the leading '$’,
which represents the Cygwin or unix command prompt).

Figure 14. Setting up the build environment.

cd

nkdi r buil d-crossgcc & cd crossgcc
cp ~/*.tar.gz .

nmkdir build-binutils

nmkdi r buil d-gcc

nkdir build-newib

export TARGET=armel f

export PREFI X=/usr/| ocal

export PATH=${ PREFI X}/ bi n: ${ PATH}

o e R R A

The value ofTARGET is an argument that specifies the ARM microprocessor versitime tools, using
the ELF debugging formaPREFI X specifies the topmost directory under which the GNU toolslvel
installed. The last command adds the GNU installation tiirgcdo the search path, so that we can run
the tools after they are built and installed.

Decompress the source code for the tools themselves.

$ tar xzvf binutils-2.11.2.tar.gz
$ tar xzvf gcc-2.95.3.tar.gz
$ tar xzvf newlib-1.9.0.tar.gz

13

An Introduction to the GNU Compiler and Linker

Building the binutils package

The commands to configure and install the assembler and latkeshowrFigure 15 These commands
do the following:

+ Run theconfigure script included with the binutils package, to set up the sewode to build for the
ARM target.

- Invoke themake program to actually compile and install binutils. The outfram makeis captured
and stored in the fileake. | og.

When this process finishes, you will see a number of prograrsgPREFI X} / bi n. The assembler is
arm-elf-as, and the linker iarm-elf-ld . arm-elf-objcopy is a utility that translates files to different
formats (from ELF to S Record, for example), aamain-elf-objdump is a utility that can dissect the
components of a file, to show you things like symbol addreardsa disassembly of the file’s object
code.

Figure 15. Instructions to build binutils

$ cd build-binutils

$../binutils-2.11.2/configure --target =3TARCET - - pr ef i x=$PREFI X
$ make all install 2>&1 | tee nake.log

$cd ..

Building a bootstrap cross compiler

Now that we have an assembler and linker, we can build andlitise GNU C/C++ compiler. The initial
step in the procedure yieldsoaotstrap compiler that can only be used to build runtime libraries and
header files. We will use this compiler to build the arm-elfsien of the newlib C runtime library. Once
that’s done, we will rebuild the compiler completely, inding internal libraries that need target-specific
header files from newlib in order to be compiled properly.

The commands to make the boostrap compiler are showigure 16

Figure 16. Instructions to build a bootstrap gcc.

$ cd build-gcc

$../gcc-2.95.3/configure --target =$TARGET - - prefi x=$PREFI X \
--with-newlib --wthout-headers --wi th-gnu-as \
--wi th-gnu-1d --disabl e-shared --enabl e-| anguages=c

$ neke all-gcc install-gcc 2>&1 | tee nake.log

$cd ..

At this point we have a bootstrap compiler calkaan-elf-gcc, located in${ PREFI X} / bi n.

14

An Introduction to the GNU Compiler and Linker

Building the newlib C runtime library

The procedure, shown FFigure 17 should seem pretty familiar by now.

Figure 17. Instructions to build newlib.

$ cd build-newlib

$../newib-1.9.0/configure --target =3TARGET - - pr ef i x=$PREFI X
$ make all install 2>&1 | tee neke.log

$cd ..

Building a complete cross compiler

Now that we have ARM header files and libraries from newlib,oar build a complete cross compiler
setup for C/C++ development. The steps are showsigare 18

Figure 18. Instructions to build gcc.

$ cd build-gcc & rm-rf =

$../gcc-2.95.3/configure --target =$TARGET - - prefi x=$PREFI X \
--wi th-gnu-as --with-gnu-1d --enabl e-l anguages=c, c++

$ make all install 2>&1 | tee neke.log

$cd ..

Wrapup

As you can see, the GNU tools have a lot to offer for embeddeedldpment. If you give them a try, you
are likely to find that their power and flexibility makes thelme {perfect choice for your next embedded
product. | did!

Resources

- http://www.billgatliff.com
Additional information on GNU programming for embeddedteyss.
- http://sources.redhat.com/ml/crossgcc
The CrossGCC mailing list archives.
- http://sources.redhat.com/cygwin
The Cygwin unix emulation package.
- http://sources.redhat.com/binutils

The Binutils homepage.

15

An Introduction to the GNU Compiler and Linker

- http://gcc.gnu.org
The GNU Compiler Collection homepage.
- http://sources.redhat.com/gdb
The GNU debugger homepage.
- http://sources.redhat.com/newlib
The Newlib homepage.
- http://www.gnu.org
The Free Software Foundation’s GNU website.
- http://sourceforge.net/projects/gdbstubs
Homepage for the gdbstubs project.

Copyright

This article is Copyright (c) 2002 by Bill Gatliff. All rigigt reserved. Reproduction for personal use is
encouraged as long as the document is reproduced in itegntircluding this copyright notice and
author contact information. For other uses, contact thiecaut

About the Author

Bill Gatliff is a freelance embedded developer and trairdingsultant with almost ten years of
experience of using GNU and other tools for building embedaestems. His product background
includes automotive, industrial, aerospace and medisiiimentation applications.

Bill specializes GNU-based embedded development, andiiig asd adapting GNU tools to meet the
needs of difficult development problems. He welcomes thedppity to participate in projects of all
types.

Bill is a Contributing Editor for Embedded Systems Prograngmagazine
(http://www.embedded.com/), a member of the Advisory Peorehe Embedded Systems Conference
(http://www.esconline.com/), maintainer of the Crossga®), creator of the gdbstubs
(http://sourceforge.net/projects/gdbstubs) projend, @ noted author and speaker.

Bill welcomes feedback and suggestions. Contact informnas on his website, at
http://www.billgatliff.com.

16

