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Automated Malware Invariant Generation
Arnaldo V. Moura, and Rachid Rebiha,

Abstract—In our days, any social infrastructure relies on computer security and privacy: a malicious intent to a computer
is a threat to society. Our project aims to design and develop a powerful binary analysis framework based on formal
methods and employ the platform in order to provide automatic in-depth malware analysis. We propose a new method
to detect and identify malware by generating automatically invariants directly from the specified malware code and use it
as semantic aware signatures that we call malware-invariant. Also, we propose a host-based intrusion detection systems
using automatically generated model where system calls are guarded by pre-computed invariant in order to report any
deviation observed during the execution of the application. Our methods provides also technics for the detection of
logic bugs and vulnerability in the application. Current malware detectors are “signature-based” but is it well-known that
Malware writers use obfuscation to evade current detectors easily. We propose automatic semantic aware detection,
identification and model extraction methods, hereby circumventing difficulties met by recent approaches.

Index Terms—Formal Methods, Security, Forensic Computer Science, Static and Dynamic Binary Analysis, Malware/In-
trusion/Vulnerability Detection, Identification and Containment.
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1 INTRODUCTION

Invariant properties are assertions (expressed in
a specified logic), that hold true on every pos-
sible behaviors of the system. A malware is a
program that has malicious intent. Examples of
such programs include viruses, trojans horses,
and worms. Malicicous intent to computers are
virulent threat to society. We deeply need to
understand the malicious behavior in details. All
present security systems (anti-virus, detection
systems...) suffer form the lack of automation
in their malware analysis. In order to provide
automatic in-depth malware analysis and pre-
cise detection systems, one need to be able to
extract automatically the malicious behaviors
and not only its syntaxic signature.

We propose a new method to detect and
identify malware by generating automatically
invariants directly from the specified malware
code and use it as semantic aware signatures that
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we call malware-invariant. To do so, one need to
adapt formal methods currently use to verify and
proof statically systems correctness.

Current malware detectors are “signature-
based”: the presence of the malicious behavior is
detected if the malicious code matches matches
byte-signatures. These current malware detec-
tors are based on sound methods as, if the
executable matches byte-signatures located in
a database of regular expressions that specify
byte or instructions sequences.

But the main problem is that malware writers
can then use Obfuscation [26] to evade current
detectors easily. To evade detection, hackers
frequently use obfuscation to morph malware
and evade detections by injecting code into
malwares that preserves malicious behavior
and makes the previous signature irrelevant.

The number of derivative malwares by ob-
fuscation increases exponentially each time a
new malware type appear. Malware writers can
easily generate new undetected virus and then
the anti-virus code has to update its signature
database frequently to be able to catch the
new virus. The main difficulty remain in the
updates procedures because the new malware
needs to be analyzed precisely and the new
signature needs to be created and distributed as
soon as it is possible to control the propagation.
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The new strategy would be to generate
quasi-static invariants directly from the spec-
ified malware code and use it as semantic-aware
signatures that we call malware-invariants. Thus,
for one familly of virus we would have only
one semantic signature.

We also show how these invariant to de-
tect intrusion. Our intrusion detection system
mathematically (no false alarm) prove and re-
port any intrusion once the violation of an
application invariant is observed during the
execution of the application. Our methods al-
lows also propose how to detect logic bugs and
vulnerability in the application..

As the main contribution, we proved that
any approach to static analysis based mal-
ware/intrusion detection will be strongly reen-
forced by the presence of pre-comptued invari-
ants and will be weakened by their absence.
In the following section we will introduce for-
mal methods and malwares. In section 3, we
present a quasi-static binary analysis. Finally
we present guarded monitor generation for in-
dtrusion detection and vulnerability auditing.

2 FORMAL METHODS AND MALWARE

2.1 Formal Methods and Verification
Formal methods aim at modeling (e.g. building
specifications expressed in a specific logic, de-
sign or code) and analysing (e.g. verification or
falsification of) a system with methods derived
from or defined by underlying mathematically-
precise concepts and their associated algorith-
mic foundations.

Formal methods research aims at discovering
mathematical techniques and design
algorithms to establish the correctness of
software/hardware/concurrent/embed-
ded/hybrid systems, i.e. to prove that
the considered systems are faithful to their
specification. On large or infinite systems (with
a huge or infinite numbers of reachable state in
any of its possible behaviors) total correctness
is usually not practically possible. That is
why we could restrict our focus on safety
and liveness properties that any well behaved
engineered critical systems must guarantee
(e.g. by using static program analysis, one could

prove a software free of buffer overflow,
segmentation fault or non-termination.).

Static Analysis are used to generate and
infer invariant properties, which are assertions,
that hold true on every possible behaviors of
the system. Thus static analysis provides prov-
able guarantees that the most exhaustive and
rigorous testing methods could not reach.

In infinite state systems, safety properties can
be proved by induction. Actually the verifica-
tion problem of safety properties is reduced
to the problem of invariant generation. First,
an inductive invariant has to be obtained for
the system. This means that the invariant holds
in the initial state (initiation condition) of the
system and every possible transition preserves
it (consecution conditions). That is, if the in-
variant holds in some state then it continues
to hold in every successor state as well. Now
if the inductive invariant implies the desired
property then the proof is complete. Finding
inductive invariants automatically is an essen-
tial part in proving safety (such as in program
analysis) and liveness properties.

The Floyd-Hoare [10], [11] inductive asser-
tion technique depends on the presence of
loop invariants to establish total correctness.
Invariants are essential to prove and establish
safety properties, (such as no null pointer def-
erenciation, buffer overflows, memory leak or
outbounds array access,...), liveness properties
(such as progress or termination.).

In order to tackle the recent most virulent
attacks and vulnerabilities, we show how the
precision of malware/intrusion detection/i-
dentification systems depends on the ease with
which one can automate the discovering of non
trivial invariants in the application.

2.2 Malware and Virus Charaterisation
A malware is a program that has malicious
intent. Examples of such programs include
viruses, trojans horses, and worms. These mali-
cious intent are structured by a three recurrent
behavior:

1) following some infection strategies,
2) executing a set of malicious actions, pro-

cedures which is called the malware pay-
load,
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Type Active Propa. Inst. Evolution Context-free
Virus yes > 0 no
Worm yes > 0 yes

Spyware no 0 yes
Adware no 0 yes
Trojan no 0 no

Back Door no 0 partially
Rabbit yes 0 yes

Logic Bomb no 0 partially

TABLE 1
Charaterisation for malware types.

3) evaluating some boolean control condi-
tions, called triggers to defined when the
payload will be activate.

A classification of malware with respect to their
goals and propagation methods is proposed in
[23]. Also, [24] [25] shown that the research
security community will deeply need a math-
ematical formalisms that could serve as scien-
tific basis for the classification of malware. We
could distinguish three properties that chara-
terise a class of a considered malware:

∙ A malware could be propagate passively
or actively using self-instance replication
and/or self-modification active propagation.

∙ A malware could be characterise by the
evolution of the number of malware in-
stance instance population evolution

∙ in order to perform its malicious intent,
a malware could depend on external con-
text, e.g. it could require other executable
code like binary/interpreted code, or a
pre-compilation step (context-free).

We give the classification of some types of
malware using these three properties in table
1. Some other hybrid types and the network-
based denial-of-service types (botnet, zombie net-
work, ...) could be also considered with com-
bined/extended properties. In the following
section 3 we will defined more specific chara-
terisation properties (obfuscation, encryption
technics,... ) that we use in our framework for
automated analyse of malware.

3 QUASI-STATIC BINARY ANALYSIS

3.1 Identifying Malware Concealment Be-
haviours
Current malware detectors are “signature-
based”. These current malware detectors are
based on sound methods as, if the executable
matches byte-signatures, then it guarantees
the presence of the malicious behavior. They
are equipped with a database of regular ex-
pressions that specify byte or instructions se-
quences that are considered malicious.

But the main problem is that this method
is not complete. Malware writers can then
use Obfuscation [26] to evade current detectors
easily. To evade detection, hackers frequently
use obfuscation to morph malware. Malware
detectors that use a pattern-matching approach
(such as commercial virus scanners) are suscep-
tible to obfuscations. In other words, one can
evade detections form current syntactic signa-
tures by injecting code into malwares that pre-
serves malicious behavior and makes the previ-
ous signature irrelevant (the regular expression
would not match the modified binary). For in-
stance, polymorphism and metamorphism are
two common obfuscation techniques. A virus
could morph itself by encrypting its malicious
payload and decrypting it during its execution.
A polymorphic virus obfuscates such decryp-
tion loop using several transformations (e.g.
junk code, ... ). Moreover, metamorphic viruses
evade detection by changing their code in a
variety of ways when they replicate.

Once a new type of malware appears, the
number of derivative malwares by obfuscation
increases exponentially. Malware writers can
easily generate new undetected virus and then
the anti-virus code has to update its signature
database frequently to be able to catch the new
virus the next time it appears.

3.1.1 Encryption Strategies for Infection Mech-
anisms, Triggers and Payloads
The malware could be encrypted, i.e. all body
parts (Infection Mechanisms, Triggers and Pay-
loads) could be first in an encrypted form
to avoid detection. But it can not be entirely
encrypted to be exacutable, it needs a dencryp-
tion loop, which decrypt the many malware
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body in a specific memory location. Also the
dencryption could use a (random) key which
vary at any iteration. Also, it could use en-
cryption library which contains cryptographic
algorithms. The encrypted part would de very
difficult to detect that is why anti-virus, mal-
ware detectors concentrate on the detection of
dencryption loop.

3.1.2 Semantic Obfuscation Technics and
Polymorphism
The unchanging part of an encrypted virus
which randomly modify its key for each in-
stance is the dencryption loop. To avoid detec-
tion, a polymorphic virus modify thier deencyp-
tion loop at each instance (a virus could easily
generate billion of loop version [27]). To modify
the loop, a malware use a mutation engine which
could rewrite the loop with other semantically
equivalent sequences of instructions, renaming
register or memory location, reordering the
sequences of instruction by an equivalente one,
using unconditional jump, using interpreters,
inling/outlining the body of function code, us-
ing new function calls, junk code, using treaded
version, ... .

3.2 Malware Invariant as Semantic Aware
Signature
To be able to reason directly from unknown
vulnerable binary code, one needs an interme-
diate C-like representation [28] of the binary in
order to use our static and dynamic analysis.
In [29], [30], [31], malware-detection algorithms
try to incorporate instruction semantics to de-
tect malicious behavior. Semantic properties
are more difficult to morph in an automated
fashion than syntactic properties. The main
problem of these approaches is that they relay
on semantic information too abstract e.g. def-use
information.

Instead of dealing with regular expressions
they try to match a control flow graph enriched
with def-use information to the vulnerable bi-
nary code. Those methods eliminate a few
simple techniques of obfuscation as it is very
simple to obfuscate def-use information (by
adding any junk code or reordering operations

that would redefine or use the variables present
in the def-use properties).

The new strategy would be to generate
quasi-static invariants directly from the spec-
ified malware code and use it as semantic-aware
signatures that we call malware-invariants. Now
consider a suspicius code. We would like to
check if there is one assertion in the malware-
invariant data base that holds in one of the
reachable program states. To do so, we can use
our new formal methods for invariant genera-
tion. This will complicate in a serious way the
possiblity for the hacker to evade the detection
using comon obfuscation technics.

Thus, for one familly of virus we would
have only one semantic signature. In order
to have a strong malware-invariant signature,
one needs to identify self-modified behaviors,
de-encryption loops and invariants left by the
(de-)encryption algorithms used by the mal-
ware. We propose to use/combine and com-
pose many static and dynamic tools to gen-
erate automatically binary invariants which
are semantic-aware signatures of malwares, i.e.
malware-invarant.

3.3 Automatic Generation of Malware In-
variant
3.3.1 Static Analysis for Detection and Identi-
fication
We say that an analysis is static when the anal-
ysis do not run the code. Anti-virus use a data
base of signatures and a scanning algorithms to
look efficiently for several patterns at a time.
Each of these patterns representing several dif-
ferent signatures. As we saw in the previous
sections, present malware writter evades such
pattern-matching technics.

To be able to reason directly from unknown
vulnerable binary code, one needs an inter-
mediate binary representation expressed in a
logic suitable for our Invariant Generation and
model construction methods. We would ex-
press the semantics of binary instructions in a
C-like notation.

Example 1 Intermediate representation.
1

2 ... //...
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3 dec ecx //ecx <-- ecx -1
4 jnz 004010 B7 //If (! ecx =0 ) goto 004010 B7
5 mov ecx , eax //ecx <-- eax
6 shl eax , 8 //eax <-- eax << 8
7 ... //...

The right most column shows the semantics of
each x86 Executable instruc- tions using a C-like
notation.

We could generate static invariants directly
from the specified malware code and use it
as a semantic-aware signature that we call
Malware- Invariants. Those malware-invariant
could be computed directly using ours invari-
ant generations together with all other invari-
ants computed using technics from a different
nature and provided by tools connected into a
communicational framework. We will see that
one could ease their computation using a com-
bination of other adapted invariant generation
methods and tools. We are able to generates
invariant express in several possible logic:

∙ Non-linear loop invariant with inequality
which are assertions, non-linear formulae
over inter-relationship values of registers,
memory locations, variables, system call
attributes. Consider the following piece
of code obtain from our intermediate
representation transformation. Using our
methods we were able to generate the
following invariant: �0(1− �0) ∗ ��� ∗ ��� ∗
���2 + ��� ∗ ��� ∗ ��� ∗�1 + ��� ∗ ��� ∗�2

1 −
���∗���∗���−2���∗���∗�1+���∗���∗ = 0

1

2 // initialization
3 ...
4 int_ u_0;
5 ...
6 ((M > 0)&&( Z = 1)&&( U = u_0 )...)
7 ...
8 While ((eax >=1) || (ebx >= z_0 )){
9 ...

10

11 If(Y > M){
12 eax = ebx / (eax + ebx);
13 ebx = eax / (eax + 2 * eax);
14 }
15

16 Else {
17 ecx = ecx * (R_1 + 1);
18 R_1 = R_1ˆ2;
19 }
20 }

21 ...

∙ Linear logic with uninterpreted function
(in order to handle system and function
calls)and inequality.

∙ Heap logic, to generates heap invariant
and aliasing.

∙ We could cite here all logic which has an
associated invariant generation technics

The main contribution here is that most of
all obfuscation technics presented in section ??
will not change the computed invariants.

3.3.2 Quasi-Static Malware Analysis
On the other hand, we propose a new method
that allows computation of exact invariants
using likely invariants, properties that are true
on all execution trace observed in a training pe-
riod. We could then generate likely invariants
(property true at any program points in the
observed execution trace) using Test methods.

Then we could turn likely invariants into in-
variants using Verification methods like asser-
tion checkers [32]. Some of the likely-invariants
computed by a Dynamic Analysis are real in-
variants. They hold in all possible executions
of the pro- gram. For instance, using theorem
provers or assertions checkers, one could check
if the proposed properties during the Dynamic
analysis are invariant.

These computed malware-(likely)invariants
will be considered as Signatures. And we will
use our adapted pushdown model checking
techniques, theorems proving methods dis-
cussed in section 2 combined with program
verification tools and methods. Then, using the
mentioned verification methods we will be able
to detect the presence of malicious behavior
described by our malware invariants (e.g. if the
malware-invariants describe reachable states
spaces in the ver- ification process, then we
would guarantee that the software contains the
suspicious behavior).

Another method is used to first generate
Malware invariant ����� as described just above
and then use similar (likely) invariant genera-
tion over the vulnerable executable code being
inspected to generate an invariant ����. Then
one could check if ���� ⇒ ����� using a theorem
prover.
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The malware detector method described just
above is sound with respect to the signature
being considered as the malicious behavior
representation. As our methods of signature
generation always over-approximate the exact
malicious behavior, one needs to consider the
case where the malware detection is spurious.
In that case, one could be able to re

ne the malware invariant.
On the other hand, we would be able to

describe malicious behavior using a pushdown
system representation. We will call such push-
down system a Malware Pushdown System.
One could use our technique to generate in-
variants over pushdown systems and use the
same methods. Or we could

Also, we propose to combine these computed
invariant with the one that are based on data
analysis generated from a dencryption.

4 GUARDED MONITOR

Host-based intrusion detection systems mon-
itor an application execution and report any
deviation from its statically built model [33],
[34], [35]. The weakness of these systems is that
they often rely on overly abstracted models
that reflect only the control flow structure of
programs and, therefore, are subject to the so-
called mimicry attacks [36], [37].

More data flow information of the program
is necessary in order to prevent non-control-
data attacks. We proposed to use automatically
generated invariants to guard system calls. We
were able to detect mimicry attacks by com-
bining control flow and data flow analysis. Our
model can also tackle the non-control-data flow
attacks [38]. Our model is built automatically
by combining control flow and data flow anal-
ysis using state-of-the-art tools for automatic
generation and propagation of invariants.

These attacks are all detectable by our model
because it capture in a very precise manner the
semaantics of the application being protected.
During the execution of the application, the
associated model simulation will detect any
mimicry and non-control-data as they inevitably
violate an invariant specified in the model. We
use invariant generation and assertion check-
ing technics to build our model which could

be describe as a control flow graph where each
program control point is annotated with a set
of predicates and logic assertions that has to
remain true at that location. It is an abstract
state graph that captures both the control and
the data flow properties of a program.

We use these statically built model to monitor
an application execution and report any devi-
ation from it (i.e. we report any behaviors that
are not possible to simulate by our model).

These monitors are Visibly Pushdown Au-
tomaton [39]. In our monitor, invariants are
checked through the image of the process be-
fore any system call. As we discuss in [14],
our method is much more secure while the
overhead is reduced drastically compared to
Dyck models [40] (which needs to add null sys-
tem calls at any function call site). In Table ??,
we could find some real world attacks, which
avoids state-of-the arts host based intrusion
detectors that was detected automatically by
our built models (monitors).

We propose the same formal methods for
detection of Worm by generation of malware
invariant from the input and output behavior
at the network perimeter.

5 VULNERABILITY AUDITING

The problem of generation automatically vul-
nerability of a binary can be reduce to the prob-
lem of reachability in program verification. Ba-
sically, any program verificatin methods check-
ing for safety properties in source code could
directly be applied once the binary code has
been interpreted in a higher language (here we
don’t need decompilation, we just need an in-
termediate representation for the extraction of
the model). As for any decision procedure that
could be encoutered during our static analysis,
we would choose decision procedures based on
Sat Modulo theory tools.

6 CONCLUSION

The new strategy propose to generate invari-
ants directly from the specified malware code
and use it as semantic-aware signatures that we
call malware-invariants.

Consider a suspicius code, we could check if
there is one assertion in the malware-invariant
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data base that holds in one of the reachable pro-
gram states. To do so, we can use our new for-
mal methods combined with the classical ones
that served for program verification. This will
complicate in a serious way the possiblity for
the hacker to evade the detection using comon
obfuscation technics. Thus, for one familly of
virus we would have only one semantic aware
signature.

In order to have a strong malware-invariant
signature, one needs to identify self-modified
behaviors, de-encryption loops and invariants
left by the (de-)encryption algorithms used by
the malware.

We propose to use/combine and compose
many static and dynamic tools to gener-
ate automatically binary invariants which are
semantic-aware signatures of malwares, i.e.
malware-invarant. Any intrusion detection sys-
tem and mawalre analysis will be weakened by
the absence of such invariants.
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