

Arduino Robotic Projects

Build awesome and complex robots with the
power of Arduino

Richard Grimmett

BIRMINGHAM - MUMBAI

Arduino Robotic Projects

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1070814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-982-9

www.packtpub.com

Cover image by Maria Cristina Caggiani (mariacristinacaggiani@virgilio.it)

www.packtpub.com

Credits
Author

Richard Grimmett

Reviewers
Jimmy Hedman

Pradumn Joshi

Sudar Muthu

Karan Thakkar

Commissioning Editor
Julian Ursell

Acquisition Editor
Sam Wood

Content Development Editor
Akshay Nair

Technical Editors
Manal Pednekar

Ankita Thakur

Copy Editors
Alisha Aranha

Roshni Banerjee

Gladson Monteiro

Karuna Narayanan

Adithi Shetty

Project Coordinators
Mary Alex

Akash Poojary

Proofreaders
Maria Gould

Paul Hindle

Indexers
Hemangini Bari

Mehreen Deshmukh

Rekha Nair

Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv

Disha Haria

Abhinash Sahu

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Richard Grimmett has always been fascinated by computers and electronics from
his very first programming project that used FORTRAN on punch cards. He has a
Bachelor's and Master's degree in Electrical Engineering and a PhD in Leadership
Studies. He also has 26 years of experience in the Radar and Telecommunications
industries and even has one of the original brick phones. He now teaches Computer
Science and Electrical Engineering at Brigham Young University-Idaho, where his
office is filled with his many robotic projects. He has authored two books, BeagleBone
Robotic Projects and Raspberry Pi Robotic Projects, for Packt Publishing.

I would certainly like to thank my wife, Jeanne, and my family
for providing me with a wonderful, supportive environment that
encourages me to take on projects like this one. I would also like
to thank my students; they show me that amazing things can be
accomplished by those who are unaware of all the barriers.

About the Reviewers

Jimmy Hedman is a professional high performance computing (HPC) geek
who works with large systems where size is measured in number of racks and cores.
In his spare time, he goes in the opposite direction and focuses on smaller things,
such as BeagleBone Blacks and Arduinos. He is currently employed by South Pole
AB, the biggest computer server manufacturer in Sweden, where he is a Linux
consultant with HPC as his main focus. This is the first book Jimmy has worked on,
but hopefully not the last.

I would like to thank my understanding wife who lets me go on with
my hobbies like I do. I would also like to thank Packt Publishing
for letting me have this much fun with interesting stuff to read and
review, and not to forget, Stockholm Robotförening (Stockholm
Robot Club), which opened my eyes to how easy it is to actually
build a robot.

Pradumn Joshi is currently pursuing his Bachelor's degree in Electrical
Engineering from NIT, Surat. He is an avid elocutionist, tinkerer, and debate
enthusiast. He is also interested in economics, freelance writing, and western
music. His area of technical interest lies in open source hardware development
and embedded systems.

I would like to thank my best friends and brothers, Rahul
and Parikshit.

Sudar Muthu builds robots as a hobby, and Arduino is his playground. He
discovered the joy of hardware programming through Arduino around 4 years back,
and since then, he has been using it for his various pet projects. He has created a lot
of libraries for Arduino and also currently maintains a Makefile for Arduino that
helps you do professional Arduino development.

He conducts workshops about Arduino and robotics and has given talks
at various conferences about hardware programming. He blogs about his
experience in hardware programming and also about his various projects at
http://hardwarefun.com.

I would like to dedicate this book to my parents, who gave me life,
to my wife, who made it happier, and to my son, Arul, who made it
worth living.

Karan Thakkar is a hybrid mobile developer at Tata Consultancy Services
Ltd., with experience in a variety of enterprise projects based on cross-platform
frameworks/libraries such as EnyoJS, Sencha Touch, Backbone.js, and PhoneGap.
He graduated from Shivaji University with a degree in Electronics and
Telecommunication. His blog can be found at http://karanjthakkar.wordpress.
com/blog/. He has written a couple of interesting and highly viewed articles on
OpenCV and Arduino. Being a robotics enthusiast, he rarely stops boasting about
how he had the chance to tinker with the humanoid robot, Aldebaran Nao, during
an internship.

http://hardwarefun.com
http://karanjthakkar.wordpress.com/blog/
http://karanjthakkar.wordpress.com/blog/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Powering on Arduino	 7

Selecting the right Arduino board	 7
A brief history of Arduino	 7
Introducing the different versions of Arduino	 8

Arduino Uno R3	 9
Arduino Mega 2560 R3	 10
Choosing the Arduino Mega	 10
Arduino Due	 11
Arduino Micro	 11
Adafruit FLORA	 12
Adafruit Gemma	 13
Adafruit Trinket	 14
Other options with Arduino	 14

Powering up Arduino	 15
Unveiling your Arduino	 15
Connecting to Arduino	 16

Installing the FLORA IDE	 17
Summary	 17

Chapter 2: Getting Started with the Arduino IDE	 19
Using a Windows machine to develop with Arduino	 19
Running the IDE for Uno	 20

Setting the IDE to your board	 22
Selecting the proper COM port	 23
Opening and uploading a file to Arduino	 23

Running the IDE for Mega	 26
Running the IDE for the Adafruit FLORA	 27

Installing the Adafruit drivers	 28
Selecting the Adafruit boards	 30

Table of Contents

[ii]

Selecting the COM port	 30
Coding an LED flash on the FLORA	 31

Using a Mac to develop using Arduino	 33
Summary	 34

Chapter 3: Simple Programming Concepts Using the
Arduino IDE	 35

Creating, editing, and saving files on Arduino	 36
Basic C programming on Arduino	 40
Basic programming constructs on Arduino	 47

The if statement	 48
The for statement	 50

Summary	 52
Chapter 4: Accessing the GPIO Pins	 53

The GPIO capability of Arduino	 53
The first external hardware connection	 57
The Arduino IDE and LED code	 60
Summary	 64

Chapter 5: Working with Displays	 65
A simple serial display	 65
Enabling the serial display in the IDE	 67
Connecting a display using the SPI interface	 72
Enabling the SPI display in the IDE	 74
An LCD shield	 77
Enabling the LCD display in the IDE	 78
Summary	 81

Chapter 6: Controlling DC Motors	 83
The basics of DC motor	 83
Connecting a DC motor directly to Arduino	 84

Using Arduino code to control the speed of the DC motor	 86
Connecting a DC motor using an H-bridge and Arduino	 87

Using Arduino code to control the direction of the DC motor	 89
Controlling the DC motor using a shield	 90
The Arduino code for the DC motor shield	 94
Summary	 96

Chapter 7: Controlling Servos with Arduino	 97
The basics of a servo motor	 97
Connecting a servo motor directly to Arduino	 98
Controlling the servos with a program	 100

Table of Contents

[iii]

Connecting a servo motor shield to Arduino	 102
Controlling the servo motor shield with a program	 102
Summary	 110

Chapter 8: Avoiding Obstacles Using Sensors	 111
An overview of the sensors	 111

Sonar sensors	 112
Infrared sensors	 113

Connecting a sonar sensor to Arduino	 114
Accessing the sonar sensor from the Arduino IDE	 114
Connecting an IR sensor to Arduino	 117
Accessing the IR sensor from the Arduino IDE	 118
Creating a scanning sensor platform	 120
Summary	 122

Chapter 9: Even More Useful Sensors	 123
Connecting a digital compass to Arduino	 123
Accessing the compass from the Arduino IDE	 125
Connecting an accelerometer/gyro to Arduino	 127
Accessing the accelerometer from the Arduino IDE	 129
Connecting an altimeter/pressure sensor to Arduino	 132
Accessing the altimeter/pressure sensor from the Arduino IDE	 133
Summary	 135

Chapter 10: Going Truly Mobile – the Remote Control
of Your Robot	 137

Connecting a simple RF interface to Arduino	 138
Enabling a simple RF interface in the Arduino IDE	 140
Connecting an XBee interface to Arduino	 144
Enabling an XBee interface in the Arduino IDE	 150
Connecting a Bluetooth shield to Arduino	 153
Connecting a Wi-Fi shield to Arduino	 154
Enabling the Wi-Fi shield in the Arduino IDE	 154
Connecting a GSM/GPRS shield to Arduino	 156
Summary	 156

Chapter 11: Using a GPS Device with Arduino	 157
GPS tutorial	 157
Connecting a GPS device directly to Arduino	 160
Accessing the GPS device from the Arduino IDE	 161
Connecting a GPS shield to Arduino	 163
Accessing the GPS shield from the Arduino IDE	 164
Summary	 166

Table of Contents

[iv]

Chapter 12: Taking Your Robot to Sea	 167
Building an automated sailing platform	 167
Building an Arduino-powered underwater ROV	 171

Building an ROV	 171
Controlling brushless DC motors with Arduino	 172

Connecting a LAN shield to Arduino	 176
Accessing a camera for your project	 185

Summary	 187
Chapter 13: Robots That Can Fly	 189

Building an Arduino-operated plane	 189
Building a quadcopter platform	 196
Summary	 201

Chapter 14: Small Projects with Arduino	 203
Small robots and Arduino	 203
Wearable Arduino projects	 211
Summary	 218

Index	 219

Preface
We live in a wonderful time where we have access to marvelous chunks of
technology that inspire our creativity. The personal computer, smart phone, web
cam—all of these make our lives easier, but more importantly, more creative. These
new inventions invite us to not only become users, but also developers and creators,
adding our own adaptions to the wide range of applications available.

This ability for the average person to become a developer is also true in the robotics
world. One of the tools that makes this available is Arduino, a processor board that
was built to allow almost anyone to create amazing projects with little cost and even
less technical expertise. This small, inexpensive, powerful board has been used in a
wide range of projects. With its success, has come an entire community of developers
who not only provide help in the area of software development, but also provide
hardware add-ons and even new form factors for the processor board itself.

It can, however, still be a bit intimidating to start using Arduino in your projects.
This book is designed to help anyone, even those with no programming background
or experience, be successful in building both simple but also quite complex robotic
projects. The book is designed to lead you through the process step by step so that
your robotic designs can come to life.

Hopefully, this book will inspire those with the imagination and creative spirit to
build those wildly inventive designs that are swirling around in their heads. One
day, robots will be as pervasive as cell phones are today. So, start creating!

What this book covers
Chapter 1, Powering on Arduino, covers the selection of the right Arduino board for
your project and how to be successful the first time you add power.

Chapter 2, Getting Started with the Arduino IDE, shows you how to download, install,
and use the environment for your specific Arduino.

Preface

[2]

Chapter 3, Simple Programming Concepts Using the Arduino IDE, introduces basic
programming constructs and how to use them within the Arduino IDE.

Chapter 4, Accessing the GPIO Pins, shows you the details of how to both send
information to as well as get information from the outside world through the
available GPIO capabilities.

Chapter 5, Working with Displays, shows you several different types and sizes of
displays and also details how to add them to your project.

Chapter 6, Controlling DC Motors, shows you how to connect DC motors for robots
that use wheels or tracks to move.

Chapter 7, Controlling Servos with Arduino, shows you how to control servos to build
walking robots.

Chapter 8, Avoiding Obstacles Using Sensors, shows you how to add sensors to avoid
or, perhaps, find objects.

Chapter 9, Even More Useful Sensors, shows you how to add different types of sensors
to your project.

Chapter 10, Going Truly Mobile – the Remote Control of Your Robot, covers how to
communicate with your robot wirelessly.

Chapter 11, Using a GPS Device with Arduino, shows you how to add a GPS device so
that you always know where your robot is. This is important because if your robot
gets truly mobile, it might get lost.

Chapter 12, Taking Your Robot to Sea, shows you some robots that can sail and explore
under water.

Chapter 13, Robots That Can Fly, introduces you to robots that can fly.

Chapter 14, Small Projects with Arduino, shows you how to adapt other toy robots
using Arduino or add a bit of flash to your current robotic projects using LEDs.

What you need for this book
The most important piece of software required for this book is the Arduino IDE,
which is available at http://www.arduino.cc/. The only other software that will be
required is the software drivers associated with the hardware that you might add to
your project; these will be detailed in the individual chapters themselves.

http://www.arduino.cc/

Preface

[3]

Who this book is for
This book is for anyone with a little programming interest, a bit of imagination, and
the desire to create their own amazing robotic projects. The book is designed to start
by teaching beginners the basics of Arduino and programming. You'll tackle more
and more challenging projects until you have the know-how to build your own
complex robots that can sail, swim, and fly.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Arduino will then move to the loop() function and begin executing the
statements there."

A block of code is set as follows:

// Pin D7 has an LED connected on FLORA.
// give it a name:
int led = 7;
// the setup routine runs once when you press RESET:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}
// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on
 delay(100); // wait for a second
 digitalWrite(led, LOW); // turn the LED off
 delay(1000); // wait for a second
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
the TFTDisplayText example by navigating to Examples | TFT | Arduino |
TFTDisplayText."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/9829OS_ColoredImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/9829OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9829OS_ColoredImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Powering on Arduino
Welcome to the wonderful world of Arduino! This small but powerful processor
board has become a staple with the robotic hobbyist community, and many have
provided open source software to enhance its capabilities. Unfortunately, many,
especially those new to embedded systems and programming, can end up so
discouraged that the processor board can end up on the shelf gathering dust. The
purpose of this first chapter is to help you decide which of the many different
Arduinos is right for your application. Then, you'll walk through the steps to get
your Arduino powered up and working so that you can begin working on all those
amazing robotic projects you've always wanted to create.

Selecting the right Arduino board
Before we connect power and start programming, you'll need to decide which of the
different Arduinos is right for your project.

A brief history of Arduino
First, let's understand a little history and a few definitions. Arduino began in
2005 with a few brave folks at a school in Italy deciding that providing a simple,
inexpensive, easy-to-work-with hardware (HW) and software (SW) platform would
be a wonderful endeavor so that their students could work on their own embedded
systems projects. They started with the Atmel series of processors and then added
four key elements.

First, they provided an easy-to-use hardware connection to the processor so that
users didn't need to purchase expensive and difficult-to-use additional HW for this
task. Initially, this connection was done via a serial port; now, it is almost universally
done through USB.

Powering on Arduino

[8]

Second, they provided a boot program (the program that runs when the processor
powers on) that would configure the hardware and get the entire system to a known
state so that users would have a standard set of hardware with which they can work.
This also enables the contribution of the third key, which is the Arduino integrated
development environment (IDE). It is a piece of SW that runs on a host computer
and allows developers to develop their projects and then upload them easily to the
target Arduino development board. The program can then be run, debugged, and
modified through the IDE. Then, when the program is completed, you disconnect
Arduino from the host system and it will run without any connection to the
development system.

The last contribution is a set of Input/Output (I/O) pins in a standard configuration.
This makes documentation easy, but more importantly, it has allowed for an entire
set of additional capability to be provided by what are called shields. These shields
fit on top of Arduino, plug directly into the pins, and are supported by a code library
that allows the user to easily access the increased functionality.

Introducing the different versions of Arduino
Initially, there was only a single board, which made selection easy. However, as
the community of Arduino users has grown, so have the many different needs for
different sizes, capabilities, and form factors. There are now many different Arduino
versions and even Arduino clones. There are also chips that allow you to create your
very own Arduino-like systems. There are many well-known and popular versions
of Arduino for you to consider for your project. However, they are too many to be
listed and discussed here.

There are some that are very powerful but also have a much larger form factor and
are more expensive. There are some that are extremely small and inexpensive, but
they are somewhat limited in the size of programs and interfaces. Here are some of
the most popular versions of Arduino.

Chapter 1

[9]

Arduino Uno R3
Perhaps the current most popular version of Arduino is the Arduino Uno R3 (or
Rev3). The following is an image of the unit:

Choosing the Arduino Uno R3
This is a standard choice for many Arduino projects. It has 32 KB of space for
programs, which is a relatively adequate amount for most small-to medium-size
programs. It has an ATmega328 processor running at 16 MHz and the standard
Arduino set of I/O pins, 14 digital I/O pins, six analog inputs, and one serial
communication port. It takes a USB A Male to B Male cable, as shown in the
following image:

Powering on Arduino

[10]

Arduino Mega 2560 R3
Another popular choice, especially when additional program space and
programming power is needed, is the Arduino Mega 2560 R3. The following
is an image of this Arduino:

Choosing the Arduino Mega
The Arduino Mega is Arduino of choice for larger projects that require more
programming space, a more powerful processor, more I/O, or all of these. It uses an
ATmega2560 processor, which runs programs faster than the ATmega328 processor.
The biggest difference, perhaps, is the larger program size. It has a total of 256 KB of
memory, which can store much larger programs than the standard Arduino Uno. It
also has more analog and digital I/O pins.

The add-on shields are boards that can fit on top of Arduino to add more
functionalities. However, it is important to note that they are made to fit
the Arduino Uno may not fit the Arduino Mega. For each shield you are
considering, make sure it will work with your particular Arduino.

Spotting a counterfeit or clone
There is one more thing to note here. Where it says Mega, you'll notice that there
is no Arduino trademark on the board. The Arduino team restricts the usage of its
trademark for manufacturers that pay a license fee and work with the team to ensure
quality. In this case, this board is almost assuredly not an official Arduino Mega.
Go to http://arduino.cc/en/Products/Counterfeit#.UxkWsfldVHI to find out
more about how to spot a counterfeit.

http://arduino.cc/en/Products/Counterfeit#.UxkWsfldVHI

Chapter 1

[11]

As the hardware for Arduino is also open source, some manufacturers take this
design and provide new and different designs form factors. These are considered
Arduino clones. You will need to rely on the quality of the manufacturers of these
clones, so consider that before purchasing.

Arduino Due
If you need even more processing speed, the most powerful of all the Arduino lines
is the Arduino Due. The following is an image of this product:

Choosing the Arduino Due
The Arduino Due is truly at the top of the line as far as processing power is
concerned. This unit uses the AT91SAM3X8E7 processor, which is an ARM Cortex
processor. It is the same type of processor that many cell phones use. It also offers
512 KB of memory and lots of analog and digital I/O pins. Shields that are made to
fit the Arduino Mega or Uno often will fit the Arduino Due, but it is always good
to check before purchase. For most starter projects, you'll not need the power of the
Arduino Due.

Arduino Micro
If you need to go smaller, the Arduino line also offers opportunities with much
smaller packages in a number of different form factors. One of the more popular
units is the Arduino Micro. The Micro is a very small form factor; yet, it has a
processor with the appropriate boot parameters so that you can run the Arduino
IDE, the USB connector, and the exposed I/O pins, even though they are much fewer
than those found in the Arduino Uno.

Powering on Arduino

[12]

The following is an image of this unit:

Choosing the Arduino Micro
This unit comes with an ATmega328 processor, the same processor that comes with
the Arduino Uno, but runs at half the clock rate. It comes with the same 32 KB of
memory as the Uno but with much fewer I/O pins. For this unit, and the others
that I will present here, you'll need to use a mini-USB B cable, as shown in the
following image:

Adafruit FLORA
As noted earlier, as Arduino designs and parts are openly available, some companies
have taken the standard Arduino and given it a different look. If you are looking for
a much different form factor, you can try the Adafruit FLORA, offered by Adafruit at
www.adafruit.com. The following is an image of this unit:

www.adafruit.com

Chapter 1

[13]

Choosing the Adafruit FLORA
The Adafruit FLORA is part of a wearable line of Arduino clone processors. It is 1.75
inches in diameter, but still has the USB connection, connectivity to the Arduino
IDE, and exposed pins, but much fewer than any of the other Arduinos we have
discussed. It uses the Atmega32u4 processor and also uses a mini-USB B cable.

Adafruit Gemma
If you like the FLORA form factor but want something even smaller, you can
purchase the Gemma from Adafruit. In the following image, this unit is on the
right-hand side of the FLORA:

Powering on Arduino

[14]

Choosing the Adafruit Gemma
Amazingly, the Adafruit Gemma still has the USB connector, uses the same Arduino
IDE, and has some I/O pins still available. As it has an ATtiny85 processor running
at 8 MHz, only 8 KB of memory, and far fewer I/O pins, it can only be used in
limited applications. However, it is an interesting form factor.

Adafruit Trinket
Finally, another small form factor Arduino from Adafruit is the Trinket. The
following is an image of it with the FLORA and Gemma in the background:

Choosing the Adafruit Trinket
The trinket is very similar in performance with the Gemma, with the same processor,
memory, and I/O.

Other options with Arduino
There are also other possible Arduino configurations. As you can purchase a chip
that has the Arduino processor and Boot ROM configuration, you can build a custom
Arduino configuration. The http://www.instructables.com/id/Paperduino-20-
with-Circuit-Scribe/ website even shows you how to print your own Arduino
circuit on paper.

http://www.instructables.com/id/Paperduino-20-with-Circuit-Scribe/
http://www.instructables.com/id/Paperduino-20-with-Circuit-Scribe/

Chapter 1

[15]

Powering up Arduino
There is nothing as exciting as ordering and finally receiving a new piece of
hardware; yet, things can go poorly even in the first few minutes. This chapter will
hopefully help you avoid the pitfalls that normally accompany unpacking and
configuring your Arduino. We'll step through the process, answer many of the
different questions you might have, and help you understand what is going on. If
you don't get through this chapter, you'll not be successful at any of the others, and
your HW will go unused, which would be a real tragedy. So, let's get started.

One of the most challenging aspects of writing this guide is to decide to what level I
should describe each step. Some of you are beginners, others may have some limited
experience, and others will know significantly more in some of these areas. I'll try to
be brief but still detail the steps to take in order to be successful.

The items you'll need for this chapter's projects are as follows:

•	 An Arduino
•	 A USB cable to go between your Arduino and the host computer
•	 A host computer running a Windows, Mac, or Linux operating system

Unveiling your Arduino
Before plugging anything in, inspect the board for any issues that might have
occurred during shipping. This is normally not a problem, but it is always good to
do a quick visual inspection. You should also acquaint yourself with the different
connections on the board. In the following image, the connections on the board are
labelled for your information:

Powering on Arduino

[16]

The Arduino Mega is very similar; it just has more I/O pins. However, the FLORA is
a bit different. The following image shows the connections:

Connecting to Arduino
Before you connect the board, download the appropriate SW for your computer
(Windows, Mac, or Linux from http://arduino.cc/en/main/software#.UxoUA_
ldUvs). Install the SW by following the instructions for your board and operating
system. This will also install the drivers for the board. Then, connect the board to the
computer. To do this, you'll need to go through the USB-client connection. This is
achieved by performing the following steps:

1.	 Connect the USB connector end of the cable to the board.
2.	 Connect the other end of the USB connector to the USB port of the PC.

When you plug the board in, the PWR LED should constantly be green. The
following image shows the location of the LED so that you're certain which
one to look for:

http://arduino.cc/en/main/software#.UxoUA_ldUvs
http://arduino.cc/en/main/software#.UxoUA_ldUvs

Chapter 1

[17]

The Arduino Uno is also preloaded with a simple blink program; the yellow LED
should also be turning on and off every second. The Mega will look very similar to
the Arduino Uno.

Installing the FLORA IDE
If you are using the FLORA Arduino, you should get your Arduino IDE from
http://learn.adafruit.com/getting-started-with-flora/download-
software. Unzip the file and place it in a directory where you can get to it later.
Then, use the USB cable to connect the device to the computer. When the device is
connected, it should look like the following image when powered on:

Don't worry yet about the blinking red LED; I'll explain this in Chapter 2, Getting
Started with the Arduino IDE.

Summary
Congratulations! You've completed the first stage of your journey. If you haven't
purchased your Arduino yet, feel free to go out and start your Arduino experience.
If you have, you should have your Arduino up and working. No gathering dust in
the bin for this piece of hardware. It is now ready to start connecting to all sorts of
interesting devices in all sorts of interesting ways.

Your system has lots of capabilities. Your next step will be learning how to bring
up the Arduino IDE so that you can start doing all sorts of amazing things with
your Arduino.

http://learn.adafruit.com/getting-started-with-flora/download-software
http://learn.adafruit.com/getting-started-with-flora/download-software

Getting Started with the
Arduino IDE

Now that you have Arduino connected to power, you are ready to start the IDE. In
this chapter, I'll start by covering how to use the IDE in Windows. Then, I'll cover
any specific change you might need to make if you are using a Mac.

For this chapter, the objectives are as follows:

•	 Load and configure the Arduino IDE
•	 Download and run a simple example program

As discussed previously, Arduino comes in many flavors and there are too many to
include an example for each one. Sometimes, individual boards will need a special
version of the IDE. This book will focus primarily on Uno, perhaps the most popular
of Arduino variants. Here and there I'll also throw in an example or two from Mega
and one of the small Arduino form factors, FLORA. There are two versions of the
IDE: 1.0.x and 1.5.x. Most of your work will be done with 1.0.x, but I'll show you
when to use 1.5.x for some newer versions of Arduino. You don't need a board to
experiment with the IDE, but it will make much more sense if you have one.

Using a Windows machine to develop
with Arduino
If you are using a newer version of Microsoft Windows and the Arduino Uno, when
you plug Arduino into the system, it will automatically try to install the drivers.
If the device fails to install, you may have to tell it where the drivers are. You will
know when this happens—you will be prompted with an error message saying
Device driver software was not successfully installed. If you get this error, follow
the directions at http://Arduino.cc/en/Guide/Windows#.UxoWXPldUvt.

http://Arduino.cc/en/Guide/Windows#.UxoWXPldUvt

Getting Started with the Arduino IDE

[20]

When your drivers are installed, you should see the following device when you
navigate to Start Menu | Devices and Printers:

In this case, the device is connected to COM port 23. Note down the COM port
Arduino is connected to as you'll need that in a minute. If you are using an Apple
Mac or Linux machine, follow the instructions at arduino.cc/en/Guide/MacOSX for
Mac and playground.arduino.cc/Learning/Linux for Linux on how to determine
your USB port connection.

Running the IDE for Uno
Now that the device is installed, you can run the IDE. Select the IDE icon that should
have been installed on the desktop as shown in the following screenshot:

arduino.cc/en/Guide/MacOSX
playground.arduino.cc/Learning/Linux

Chapter 2

[21]

When you select this icon, the IDE should start and you should see something like
the following screenshot:

This is the environment you will use to develop your applications. The IDE will then
make it easy to compile the code, upload it to the device, and run it.

Getting Started with the Arduino IDE

[22]

Setting the IDE to your board
First, you'll need to set the IDE to create code for the proper processor because
different Arduino boards have slightly different hardware configurations.
Fortunately, the IDE lets you set that by choosing the correct board. To do this,
navigate to Tools | Board | Arduino Uno as shown in the following screenshot:

Chapter 2

[23]

Selecting the proper COM port
The next step is to select the proper COM port. To do this, navigate to Tools | Serial
Port | COM23 (the port you noted earlier), as shown in the following screenshot:

The IDE should now indicate that you are using the Arduino Uno on COM23 in the
lower-right corner of the IDE, as seen in the preceding screenshot.

Opening and uploading a file to Arduino
Now you can open and upload a simple example file. It is called the Blink
application. It has already been written for you, so you won't need to do any coding.

Getting Started with the Arduino IDE

[24]

To get a Blink application, perform the following steps:

1.	 Navigate to File | Examples | 01.Basics | Blink as shown in the
following screenshot:

2.	 You should then see the Blink code in the IDE window:

Chapter 2

[25]

3.	 Select the Upload button as shown in the following screenshot:

4.	 Once you have uploaded the file, it will give you an indication in the
lower-left corner of the IDE display that the file has been uploaded:

Getting Started with the Arduino IDE

[26]

5.	 When the program is uploaded, it will automatically start running and the
orange LED on the Arduino Uno will blink:

You have now successfully uploaded your first code to your Arduino!

Running the IDE for Mega
If you are using Mega, it will be very similar. Connecting the unit via USB and then
navigating to Start Menu | Devices and Printers will show the following device:

Note that in this case, Mega is connected to COM port 24. The port that Arduino will
be connected to is selected by the computer and is not the same for all Arduinos. The
only difference between the instructions for using Mega and Uno is that you will
need to set the correct board type for Mega. To do this, navigate to Tools | Board |
Arduino Mega 2560 or Mega ADK as shown in the following screenshot:

Chapter 2

[27]

If you have a different COM port number, make sure you set that by navigating to
Tools | Serial Port. You can now upload the Blink code, and the orange LED should
be blinking on Mega.

Running the IDE for the Adafruit FLORA
When connecting the FLORA device, you'll need to have the Adafruit version of
the IDE installed. You can download this from learn.adafruit.com/getting-
started-with-flora/download-software. Follow the directions on this site to
download and install the IDE. Since the FLORA device is not standard Arduino,
this will add another selection to the Board type for the Arduino IDE.

learn.adafruit.com/getting-started-with-flora/download-software
learn.adafruit.com/getting-started-with-flora/download-software

Getting Started with the Arduino IDE

[28]

Installing the Adafruit drivers
When plugging in the device, if it fails to install, you may have to tell it where to find
the drivers. You will know if this happens—you will get an error message saying
Device driver software was not successfully installed. If you get this error, follow
the directions at http://Arduino.cc/en/Guide/Windows#.UxoWXPldUvt; only
point your driver to the directory from where you downloaded the Adafruit IDE.
For example, in my case, I am running 64 bit Windows, so I will select windows as
shown in the following screenshot:

It will probably complain about an unsigned driver, but accept the driver anyway.
In the end, you should be able to see the FLORA device when you navigate to
Start Menu | Devices and Printers as shown in the following screenshot:

http://Arduino.cc/en/Guide/Windows#.UxoWXPldUvt

Chapter 2

[29]

When you select this device and look at its properties, you should see something like
the following screenshot:

Note the device COM port; in this case, it is COM25. Now, you should open the
Adafruit Arduino IDE by going to the directory where you unzipped the files and
select the Arduino IDE. Just a note, since I often use both types of Arduino devices,
I have a separate directory for the standard Arduino IDE and a different location
for the Adafruit Arduino IDE. To open the Adafruit Arduino IDE, I go to the file
browser and select the Arduino IDE executable:

Getting Started with the Arduino IDE

[30]

Selecting the Adafruit boards
The Arduino IDE should start and look very much like it did for Arduino Uno or
Mega. However, when you select board by going to Tools | Board, you should see
four new selections at the bottom:

Selecting the COM port
Now that your board is selected, you'll need to select the COM port. Do this by
navigating to Tools | Serial Port | COM25 as shown in the following screenshot:

Chapter 2

[31]

Coding an LED flash on the FLORA
Now you should be able to upload a file. You can't use the earlier Blink example as
we don't have the same I/O pins. So, type the following code into the IDE interface:

// Pin D7 has an LED connected on FLORA.
// give it a name:
int led = 7;
// the setup routine runs once when you press RESET:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}
// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on
 delay(100); // wait for a second
 digitalWrite(led, LOW); // turn the LED off
 delay(1000); // wait for a second
}

Getting Started with the Arduino IDE

[32]

Downloading the example code
You can download the example code files for all the Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed to you.

Don't worry about specific code details yet, but this code will flash the LED on
FLORA. Upload the code by clicking on the Upload button as follows:

When you have uploaded the file, you should get an indication in the lower-left
corner of the IDE. Now the red LED should be flashing much faster. You can change
the delay(1000) value and see different flash timing.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[33]

Using a Mac to develop using Arduino
Using a Mac or a Windows machine is absolutely fine; however, you'll just need to
follow a couple of different steps. First, as noted earlier, download and install the
Mac software from http://Arduino.cc/en/guide/macOSX#.UxpobfldVHI. When
you plug in your Arduino Uno or Mega, the system will recognize it and establish a
connection. The green power LED should turn on. Now, open the Arduino IDE and
select the proper board as shown previously.

You will also need to select the serial port. When you navigate to the Tools | Serial
Port, you should see the following screenshot:

Select the option that begins with tty.usbmodem. You may need to remove Arduino
to see if you have other devices connected to the port and how this selection changes
to identify which port is connected to Arduino. You'll then be connected to the
device. You should now be able to open the Blink example, run the code, and see the
orange LED flash.

If you are using FLORA, Gemma, or Trinket, you'll need to go to https://learn.
adafruit.com/getting-started-with-flora/download-software and follow
the instructions to download and install the SW. Then, go to Tools | Serial Port as
shown earlier for Arduino Uno and Mega.

http://Arduino.cc/en/guide/macOSX#.UxpobfldVHI
https://learn.adafruit.com/getting-started-with-flora/download-software
https://learn.adafruit.com/getting-started-with-flora/download-software

Getting Started with the Arduino IDE

[34]

Summary
You've completed the next stage of your journey. You have your Arduino up and
talking to your external computer and you know how to connect to the IDE to
develop code. Your next step will be to learn some programming basics so that you
can start doing all sorts of amazing things with your Arduino. You'll be able to build
robots that can move and sense their environment.

Simple Programming
Concepts Using the

Arduino IDE
Now that you have downloaded, installed, and initiated the Arduino IDE, in this
chapter, you'll learn some basic programming concepts. If you are already comfortable
with programming, especially the C programming language, you can skip this chapter.
If you're not, or need a quick review, this chapter discusses some simple programming
examples on how to program Arduino. At the end of the chapter, I'll cover additional
important programming constructs.

To get started, open your Arduino IDE and make sure your Arduino is connected to
your development environment via its USB cable. You may want to open and run
the Blink example from Chapter 2, Getting Started with the Arduino IDE. When you
have uploaded the file successfully, the IDE should tell you by displaying Done
uploading in the lower-left corner of the IDE.

The program should also be running on Arduino and the orange LED blinking. If all
of this seems clear and natural, you may consider skipping this chapter. If, however,
this all feels new to you, welcome to Chapter 3, Simple Programming Concepts Using
the Arduino IDE! In this chapter, you'll learn about creating, editing, and running
programs on Arduino.

Simple Programming Concepts Using the Arduino IDE

[36]

Creating, editing, and saving files on
Arduino
You know how to start the IDE, but you've not been introduced to all the available
functionalities. So let's take a quick tour of the IDE. Again, here is what the IDE
should look like when you first start it up:

Note that at the top of the IDE, there are five topic menus: File, Edit, Sketch, Tools,
and Help. Each of these tabs holds a set of functionalities that you'll need. If you
select the File tab, you should see the following screenshot:

Chapter 3

[37]

These selections let you create, open, upload, and print files in the Arduino IDE.
Once you click on File, you will get the following options:

•	 New: This is straightforward; you use this if you want to create a new file.
•	 Open…: This is equally clear; select this if you want to open a file that you

created earlier.
•	 Sketchbook: This is probably a new term, one with which you are not

familiar. Arduino programs are called sketches, and Sketchbook keeps track
of sketches you have created. You'll also find sketches placed there if you
have downloaded libraries associated with additional HW shields you may
have purchased.

•	 Examples: This selection has a treasure trove of example programs created
by the Arduino community. The IDE comes with a number of basic
examples, but as an additional functionality associated with HW, others can
place examples there as well. Chapter 4, Accessing the GPIO Pins, will cover
this in more detail.

•	 Close: This is self-explanatory; it will close the open sketch.
•	 Save and Save As…: These allow you to save a sketch to a file. Generally,

these will be appended with the .ino extension to differentiate them from
other files.

•	 Upload: You've already used the Upload menu; it has the same function as
clicking the Upload button directly on the IDE. This will compile and send
your code to your Arduino.

•	 Upload Using Programmer: This is used only when you want an external
programmer to upload code to Arduino. This is sometimes used when you
have access to an external programmer and don't want to use the Arduino
bootloader. To know more about this case, visit http://Arduino.cc/en/
Hacking/Programmer#.Uyhr_IUXdNp.

•	 Page Setup and Print: These allow you to set up and print your sketch.
•	 Preferences: This brings up a set of selections to set defaults, including where

to store your sketches, the default language, and other settings that you
normally don't need to change.

http://Arduino.cc/en/Hacking/Programmer#.Uyhr_IUXdNp
http://Arduino.cc/en/Hacking/Programmer#.Uyhr_IUXdNp

Simple Programming Concepts Using the Arduino IDE

[38]

If you click on the Edit tab, you will see the following options:

I'll not cover each of these options in detail; they are standard edit-type commands. If
you click on the Sketch tab, you should see the following screenshot:

Chapter 3

[39]

Under the Sketch tab, you will get the following options:

•	 Verify / Compile: This allows you to compile and verify your code. This
checks whether your code can actually be turned into a program that can be
run on Arduino before you try and upload it to the hardware.

•	 Show Sketch Folder: This will open a window that shows all of the sketches
in the default directory.

•	 Add File…: This allows you to add a file to your sketch. Now that may seem
odd because you may have assumed that a sketch is a file. But a sketch can
contain code that is not just in one file but in several files. We will cover this
feature later in the chapter.

•	 Import Library…: This is an important option as it allows you to bring in
code capabilities that someone else developed; often this is associated with
additional hardware that you want to access. Arduino already comes with
a large number of functions that you have access to. You don't have to write
these sets of code because they are available for you to simply call. You can also
add to this set of functionalities by importing additional libraries. Additional
HW normally comes with code libraries that provide access to its features.
Instead of having to cut and paste this code into your code window or add the
files to your sketch, importing these files as libraries allows you to access the
functionalities as if they were in files already associated with your sketch.

The next menu is the Tools tab. When you click on it, you should see the
following screenshot:

Simple Programming Concepts Using the Arduino IDE

[40]

You've already used the Board and Serial Port selections. The other choices under
the Tools tab are as follows:

•	 Auto Format: This automatically formats the code in the current sketch,
placing indents where it thinks they should be.

•	 Archive Sketch: This takes the sketch and file associated with it and places
them in a *.zip file in the same directory.

•	 Fix Encoding & Reload: This will sometimes clean up files that are encoded
with characters that can't be displayed correctly.

•	 Serial Monitor: This opens a serial connection between you and Arduino.
You can use this to communicate with the board via a USB connection
that acts like a serial port. You'll need to have the serial communication
commands in your code.

•	 Programmer and Burn Bootloader: These allow you to access an Arduino
system without the bootloader. However, since you won't be requiring these,
we'll not cover them here.

The last menu, Help, provides help selections. It's simple and self-explanatory, so
you can explore the help system on your own. Now that you know your way around
the IDE, you can start programming your Arduino.

Basic C programming on Arduino
In this section, you'll learn about the C programming language, the language
supported by the Arduino IDE. In this section, we are going to cover some basic
concepts. If you are new to programming, there are a number of different websites that
provide tutorials. If you'd like to practice some of the basic programming concepts in
C, try www.cprogramming.com/tutorial.html or http://www.learn-c.org/.

In this section, we'll cover how to create a basic sketch. We'll also cover how to enter
some C code, compile the code, and upload the code to your Arduino.

www.cprogramming.com/tutorial.html
http://www.learn-c.org/

Chapter 3

[41]

To open a new sketch from the IDE that contains the minimum basic code, navigate
to File | Examples | 01.Basics | BareMinimum. You should now see this in your
sketch as shown in the following screenshot:

This basic sketch provides two functions; a function is simply an organized set of
instructions that Arduino will execute. When Arduino is powered on, it begins
to execute a list of instructions one by one. These start in the bootloader that
configures everything and gets Arduino to a state that you can use it. Once Arduino
has completed executing the bootloader, it looks for the setup() function. In this
function, you will specify any additional setup activity that you need Arduino to do.
Arduino will then move to the loop() function and begin executing the statements
there. This loop() function will be run not once, but over and over again until the
power is turned off.

Simple Programming Concepts Using the Arduino IDE

[42]

Now that you have context, you can actually start writing some code in the setup()
and loop() functions. Start by putting something in the setup() function. Change
the setup() function to look like the code in the following screenshot:

There are two changes that should have been made. The first change is adding the
int led = 13; statement. This statement sets up a storage location in the memory
named led and puts the value 13 into this variable. Since this variable is declared
outside of any function, it is a global variable. Global variables are available to all
functions. This particular variable will hold the value of the output pin that will
light up your LED. Note that you need to declare the type of variable that tells
Arduino how big a storage location to set aside for the variable. There are many
types available but you'll use just a few; int for the value that has no decimal, float
for values that have a decimal, char for character variables, and bool for values that
are just true or false. The second change is adding the pinMode(led, OUTPUT);
statement. This statement calls the pinMode function and passes led and OUTPUT to
the values in the function's argument.

Chapter 3

[43]

Now you might be a bit confused because the pinMode(led, OUTPUT) function is
nowhere to be found in your code. This is a library function provided by the Arduino
system. This particular function takes two arguments: the value of the pin to be set
and the INPUT or OUTPUT state. In this case, you want pin 13 (the value stored in
LED) to be an OUTPUT. The GPIO pin on Arduino can be configured as input or
output, that is, they can either accept or send a signal.

Now you can compile and verify your code. However, save your code under the
file name first. To do this, click on File and then click on Save As.... This will open
a dialog window, enter first, and then click on Save. Your IDE should now look
something like this:

Simple Programming Concepts Using the Arduino IDE

[44]

Now compile and verify your code, just to make sure you've typed in everything
correctly. To do this, navigate to Sketch | Verify / Compile, as shown in the
following screenshot:

You should see something like this:

Chapter 3

[45]

When the compile is complete, you should see something like the
following screenshot:

You could also upload and run your program, but it won't do anything yet, as you
have not added enough functionality. You've only defined pin 13 (the one connected
to the LED) as OUTPUT. To actually see something on your Arduino, you'll need to
add some code to the loop() function. Now add the code shown in the following
screenshot to the loop() function:

Simple Programming Concepts Using the Arduino IDE

[46]

You have added the digitalWrite(led, HIGH); statement to your loop. This is
another function that is available from the standard Arduino library. This will, each
time through the loop, tell the pin 13 (defined with the pinMode(led, OUTPUT);
statement) to go high or low. Save your file, and this time you can compile and upload
your code by navigating to File | Upload. You can also use the Upload button.

This selection will compile your code and upload it to Arduino. If everything went as
it should, your Arduino's orange LED should be solidly lit. Now, you can add a bit
more code to make it blink. Change your code and add the following lines of code to
the loop() function:

The delay(1000); function is another function that is provided by the standard
Arduino library and this pauses the program for 1000 msec (there are a 1000 msec
in a second). The digitalWrite(led, LOW); function then writes a 0 to the output
pin, which should turn the LED off. The delay(1000); function pauses the program
again. The 1000 in the parentheses is an excellent example of an argument that
you pass to a function. In this case, each time you call the delay() function you
send it a number that tells it how long to pause. This loop() function will be called
continually, so this should turn the LED on and off. Upload this code as you did the
last time, and you will now see the orange LED flash on and off.

Chapter 3

[47]

It might be helpful to show you what happens when you make a mistake. If I type
LO instead of LOW in the second digitalWrite(led, LO); function and tried the
upload, I would see something like the following screenshot:

Note that the yellow band shows me the line I mistyped, and tells me:
'LO' was not declared in this scope. Misspellings are one of the biggest
reasons why your code might not compile, so check your spellings
when you see something like this.

You now know the details behind your first sketch! Play with different values of the
argument in the delay(1000) function, and your LED should flash at different rates.

Basic programming constructs on
Arduino
Now that you know how to enter and run a simple C program on Arduino, let's look
at some additional programming constructs. Specifically, you'll see what to do when
you want to decide between two instructions to execute and how to execute a set of
instructions a number of times.

Simple Programming Concepts Using the Arduino IDE

[48]

The if statement
As you have seen, your programs normally start with the first line of code and then
continue executing the next line until your program runs out of code. This is fine, but
what if you want to decide between two different courses of action? We can do this
in C using an if statement. The following screenshot shows some example code:

You'll need to make several changes this time. The first is to add another global
variable, int whichLED = 1; at the top of your program. Then, you'll need to add
several statements to your loop() function. The line-by-line details are as follows:

Chapter 3

[49]

•	 if (whichLED == 1): This is the if statement. The if statement evaluates
the expression inside the parentheses. This is the check statement. If it is true,
it executes the next statement or a set of statements enclosed by {}. Note that
we use the == operator instead of a single = operator. A single = operator in C
is the assignment operator, which means the storage location on the right is
assigned the value on the left. The == operator is a comparison operator, and
returns true if the two values are equal and false if they are not.

•	 {: This begins the set of statements the program will execute if the
comparison statement is true.

•	 digitalWrite(led, HIGH);: The four statements that turn the LED on
and off at a 100 msec rate are delay(100);, digitalWrite(led, LOW);,
delay(100);, and whichLED = 0;.The whichLED variable is assigned a
value of 0. This will make sure the next time through the loop it will execute
the else statement.

•	 }: This ends the set of statements that will be executed if the comparison
statement is true.

•	 else: This statement, which is optional, defines a statement or set of
statements that should be executed if the comparison statement is false.

•	 {: This begins the set of statements the program will execute if the
comparison statement returns false.

•	 digitalWrite(led, HIGH);: The four statements that turn the LED on
and off at a 1000 msec rate are delay(1000);, digitalWrite(led, LOW);,
delay(1000);, and whichLED=1;. The whichLED variable is assigned a
value of 1. This will make sure that next time it will execute the if statement
through the loop.

When you have this code typed in, you can upload it. When it is uploaded, you
should see a short flash of the LED, followed by a longer flash, much like a heartbeat.

Simple Programming Concepts Using the Arduino IDE

[50]

The for statement
Another useful construct is the for construct; it will allow us to execute a set of
statements over and over for a specific number of times. The following screenshot
shows an example using this construct:

The code in the preceding screenshot looks very similar to the code you've used
before, but we've added two examples of the for construct. Some details of the
loop() function are as follows:

Chapter 3

[51]

•	 for (int i = 0; i < 5; i++): This loop consists of three elements.
The int i = 0; is the initializer statement. It is only done once when you
first execute the loop. In this case, the initializer statement creates a storage
location named i and puts the value of 0 in it. The second part of the loop
statement is the check statement. In this case, the check statement is i < 5.
If the statement is true, the loop executes. If it is false, the loop stops and the
program goes to the next statement after the for loop. The final part of the
for loop is a statement that is executed at the end of each loop. In this case,
the statement i++ simply means the processor will add one to the i value at
the end of each loop. This will be looped five times for i equals to 0, 1, 2, 3,
and 4. The check statement will fail when i equals 5 and the loop will stop.

•	 {: This bracket defines the start of the statements that may be looped.
•	 digitalWrite(led, HIGH);: The statements that will be executed each

time through the loop and flash the LED light quickly are delay(100);,
digitalWrite(led, LOW);, and delay(100);.

•	 }: This ends the loop. When this statement is reached each time through the
loop, the loop statement is executed and the execution goes back to the top
of the loop, where the check statement is evaluated. If it is true, the statement
is executed again. If it is false, the loop stops and the statement following the
loop is executed.

•	 for (int i = 0; i < 5; i++): This is another loop, just like the previous
one, except it flashes the LED for a long time. Just like the first loop, it is
executed five times.

•	 {: This bracket defines the start of the statements that may be looped.
•	 digitalWrite(led, HIGH);: The statements that will be executed each time

through the loop and will flash the LED light quickly are delay(1000);,
digitalWrite(led, LOW);, and delay(1000);.

•	 }: This ends the loop.

Now you can upload the program and see that there are five long flashes of the
orange LED followed by five short flashes.

Simple Programming Concepts Using the Arduino IDE

[52]

Summary
In this chapter, you've learned how to interact with the Arduino IDE and create,
edit, upload, and run programs on Arduino. You have also been exposed to the C
programming language. If this is your first experience with programming, don't
be surprised if you are still uneasy with programing in general and the if and for
statements in particular. You probably felt just as uncomfortable with your first
introduction to the English language; you just may not remember it.

It is always a bit difficult to try new things. However, I will try to give you explicit
instructions on what to type so that you can be successful. There is one major
challenge when working with computers. They always do exactly what you tell them
to do and not necessarily what you want them to do. So, if you encounter problems,
check several times to make sure that your code matches the example exactly. In the
next chapter, you'll learn to access the GPIO pins to interface with the outside world.

Accessing the GPIO Pins
Now that you are familiar with the Arduino IDE and how to create, edit, and
upload a program, this chapter will now turn your focus to the HW. You'll get a
chance to learn how to connect to and access the capabilities of the general purpose
input/output (GPIO) pins from the SW. In this chapter, I'll start by explaining the
GPIO pins, what they can and can't do, and then show you how to make Arduino
access the outside world with the help of some very basic circuits and very simple
programming examples.

The GPIO capability of Arduino
Arduino was built to access the outside world. Much of that access is through the
GPIO pins. Each Arduino board has a different set of GPIO pins, so in this section, I'll
provide details on the GPIO pins available on the most common variant of Arduino:
Arduino Uno. Then, I'll also document the additional capability of the Arduino
Mega. Finally, I'll show the GPIO capability of a more limited Arduino:
Arduino FLORA.

First, let's focus on the Arduino Uno. As described in Chapter 1, Powering on Arduino,
the Arduino Uno comes with a set of 14 digital and six analog I/O pins, along with
some additional pins to provide power and serial I/O.

Accessing the GPIO Pins

[54]

Fortunately, the pins are actually well labeled on the board itself, as shown in the
following image:

The following table shows a list of pins that are available and a brief description
of what each pin can do, starting at the upper-right side of the board and going
clockwise. A more in-depth description of these pins will come later as you actually
use them in some example projects:

Arduino Pin Description
AREF This pin provides a reference voltage for the analog inputs. The values on

the analog pins will be reported in reference to this voltage. You'll also use
this in some applications to provide a reference voltage for some sensing
devices. You can also provide an external reference value to this pin, which
means that the numerical values of the inputs will be scaled according to
the value supplied on this pin.

GND This pin provides a ground reference for the AREF pin.
Digital
((PWM~)
13/2

These 11 pins can be used to either read or write digital values. If defined
as an input, the value will be read as either 0 or 1 based on the voltage level
at the input. If defined as an output, the value will be set to either a 0 or
1 logic voltage level. (The actual voltage will depend on the voltage logic
level of your Arduino. Some are 5 V logic level, while others are 3.3 V
logic level.)

Digital TX->1 This pin and the RX pin next to it provide a serial interface that can be used
to communicate with other devices.

Digital RX->0 This pin and the TX pin next to it provide a serial interface that can be used
to communicate with other devices.

Chapter 4

[55]

Arduino Pin Description
Analog IN
A5/A0

These pins do double duty. Normally, they would be used as A/D inputs
to Arduino to read continuous voltage values and turn them into integer
values. However, they can also be used as digital I/O, very similar to the
digital I/O pins.

Power Vin You can power your Arduino from this pin. This can be especially useful
after you have uploaded your program; you can then disconnect the USB
port, and when you apply voltage to this pin, your Arduino will boot and
run the uploaded program. You can use a voltage value from 7 to 12 volts, so
a wide variety of DC power adapters or battery configurations can be used.

Power GND This pin is the ground connection associated with the Power Vin connection.
Power GND This is a ground connection normally associated with the Power 5 V and

Power 3.3 V outputs.
Power 5 V This is a voltage output set to 5 V.
Power 3.3 V This is a voltage output set to 3.3 V.
RESET This pin will reset the processor, which will cause the program to be run

from the beginning.
IOREF This provides either a 3.3 V or 5 V reference, indicating the logic level of

the board.

The Mega provides a bit more from an I/O pin perspective. The following image
shows the Arduino board:

Accessing the GPIO Pins

[56]

You'll first notice that the pins on the left side of the Arduino Mega are labeled the
same as with the Arduino Uno. And they do have the same functionality. However,
you'll also notice some additional pins on the right side of the board. The following
table provides a brief explanation of the most useful pins, starting at the upper-right
side of the board and going clockwise:

Arduino Mega pin Description
Communication TX3/RX3/
TX2/RX2/TX1/RX1

These pins add three more serial I/O ports. Mega supports
four serial I/O ports.

SDA/SDL These pins support the I2C I/O port. This is a special
purpose communication that supports addressing, so you
can talk to more than one device.

Digital I/O pins 44-46 Additional digital I/O pins that can be used to either read
or write digital values. If input, the value will be read as
either a 0 or 1 based on the voltage level at the input. If
output, the value will be set to either a 0 or 1 logic voltage
level. (The actual voltage will depend on the voltage logic
level of your Arduino. Some are 5 V logic level, while
others are 3.3 V logic level.)

Digital 50-53 These pins provide an SPI interface, particularly useful
for video.

Analog In 6-15 These are additional analog DSP inputs that operate the
same as the A0 to A6 pins.

The FLORA, being a much smaller package, provides a different set of pins.
The following image shows the FLORA:

Chapter 4

[57]

The following table gives a description of the pins available, starting at the
upper-left side of the board just above the USB connector:

Arduino FLORA pin Description
3.3 V This is a voltage output set to 3.3 volts. There are two of these pins

available on the Arduino FLORA.
Digital I/O pins D10,
D9, D6, D12

These pins can be used to either read or write digital values. If
defined as an input, the value will be read as either a 0 or 1 based
on the voltage level at the input. If defined as an output, the value
will be set to either a 0 or 1 logic voltage level. The FLORA uses
3.3 V for 1 and 0 V for 0.

GND There are three GND pins on the FLORA. The one closest to the
white battery connector (the connector opposite the USB port) is
normally used as the ground connection from the battery. The
other two GND pins can be used for the digital I/O pins or the
3.3 V outputs.

VBATT You can power the Arduino FLORA from this pin. This can be
especially useful after you have uploaded your program; you
can then disconnect the USB port, and when you apply voltage
to this pin, your Arduino FLORA will boot and run the uploaded
program. You can use a voltage value from 7 to 16 volts, so a wide
variety of DC power adapters or battery configurations can be used.

Digital TX->1 This pin, and the RX pin next to it, provide a serial interface that
can be used to communicate with other devices.

Digital RX->0 This pin, and the TX pin next to it, provide a serial interface that
can be used to communicate with other devices.

SDA/SDL These pins support the I2C I/O port. This is a special purpose
communication that supports addressing, so you can talk to more
than one device.

The first external hardware connection
Now that you are aware of all of the GPIO capabilities, you can start putting them to
work. In order to do this, it is best to purchase a small breadboard and some jumper
wires; this will make connecting to the outside world easier.

Accessing the GPIO Pins

[58]

They are easy to find. You can purchase one at almost any electronics store or on
any online electronics site. The jumper wires you want are male-to-male solderless
jumper wires.

These jumper cables plug easily into the header pins on the Arduino
Uno or Mega and the breadboard. If you are working with FLORA,
you will want to purchase some alligator clip style wires. These will
make connecting to FLORA easy.

There are also many starter kits which come with breadboards and jumper cables,
along with additional sensors and HW capabilities that you can use with your
Arduino board. There are too many to list here; simply search Arduino starter kits
on the Internet and you'll get an idea of the many choices. Just make sure they come
with a breadboard and male-to-male solderless jumper wires.

Your first project will use the digital I/O pins to light up an LED. To do this, you'll
need to gather two more hardware pieces. The first is a light emitting diode (LED).
This is a small part with two leads that lights up when voltage is applied to it. They
come in a wide variety of colors. If you want to buy them online, search for a 3 mm
LED. You can also get them at most electronics shops.

You'll also need a resistor to limit the current to the LED; a 220 ohm resister would
be the right size. Again, you can get them online or at most electronics shops.

If you get three LEDs and three resistors, you can exercise several of the digital
I/O pins.

Now that you have all the bits and bobs, let's build our first hardware project.
Before you plug anything in, let's look at the breadboard for a moment so that you
can understand how you are going to use it to make connections. You'll be plugging
your wires into the holes on the breadboard. The holes on the breadboard are
connected in a unique way to make the connections you desire.

In the middle of the board, the holes are connected across the board. So, if you
plug in a wire, and another wire in the hole right next to it, these two wires will be
connected, as shown in the following image:

Chapter 4

[59]

The two rows on each side of the board are generally designed to
provide power, so they are connected up and down.
So, let's place the electronic parts on the breadboard. Place the LEDs
so that one wire is on one side of the middle split of the breadboard.
The direction of the LED is important; make sure the longer of the two
wires is on the left side of the hole.
Now, place the resisters on the holes on one side. The direction of the
resistor does not make any difference, but make sure the second wire
lead is placed in the row of holes at the end of the board.

These will all be connected together, and will be connected to the GND of your
Arduino using one of the jumper cables, as shown in the following image:

Accessing the GPIO Pins

[60]

Finally, use jumper wires to connect the digital I/O pins 13, 12, and 11 to the holes
on the breadboard, as shown in the following image:

Now that the HW is configured correctly, you'll need to add code to activate the LEDs.

The Arduino IDE and LED code
To create the LED code, start the Arduino IDE. Then, recall the code you wrote in
Chapter 1, Powering on Arduino. The IDE should look like the following screenshot:

Chapter 4

[61]

In this code, setting led 13 lit the orange LED on the board. It turns out that the led
output pin 13 is also the connection to pin 13 on the connector of the Arduino Uno.
If you upload and run this program, the LED connected to pin 13 should flash at the
same rate as the LED on the Arduino Uno, as shown in the following image:

You'll need to add a similar bit of code to get the LEDs connected to pins 12 and 11.
Add the code snippet that can be seen in the following screenshot to the sketch on
the Arduino IDE:

Accessing the GPIO Pins

[62]

Here, you are replicating the code for the led connected to pin 13 to the second led1
connected to pin 12 and the third led2 connected to pin 13. You then program them
all to be output pins, and then in the main loop, toggle between high and low. Note
that I have two toggling together (pins 13 and 11) with the other (pin 12) toggling in
the exact opposite sequence. First, the two outer LEDs should light for one second,
and then the inner LED should light.

If one or more of the LEDs don't light, check to make sure that they are pushed firmly
down into the board. You can also change the direction of the LED; perhaps you have
the leads in the wrong direction on the board.

You can do the same thing with the FLORA board, but you'll need to use alligator clips
to connect from FLORA to the breadboard. To do this, build the breadboard as shown
earlier. Then, connect the first alligator clip to the right side of one of the resistors on
the breadboard. After this, connect it to the GND connector on FLORA. Then, connect
the alligator clips to LED 10 and the left side of the top of
the breadboard.

Once you have done that, connect the other two LEDs to the LED 12 and LED 9
pins, as shown in the following image:

Chapter 4

[63]

Now, bring up the Arduino IDE associated with FLORA. Create the code shown
in the following screenshot, patterned after the code you created in Chapter 1,
Powering on Arduino:

In this case, you are going to use D12, D10, and D9 to flash the LEDs on the
breadboard. On the IDE, make sure that Adafruit FLORA is set up on the
correct COM port. Upload the code and you should see your flashing LEDs.

Accessing the GPIO Pins

[64]

Summary
That's it! You've completed your very first hardware project. You can play with
different patterns of LED sequences by using for loops and different wait states.
Now that you have created your very first HW project, in the next chapter, we'll
cover how to add HW capabilities using an HW shield, a piece of HW that plugs
directly into the I/O connectors of your Arduino.

Working with Displays
In Chapter 4, Accessing the GPIO Pins, you learned how to connect with the outside
world using jumper wires, breadboards, and components. In this chapter, you'll
learn different connection approaches to show how you can connect an additional
capability to Arduino using hardware shields designed for Arduino. Specifically, I'll
cover two topics: how to add a functionalities by adding hardware that is designed
to plug into Arduino or shields and how to connect several types of displays to
Arduino. We'll use several different types of display shields to illustrate the different
communication modes that can be used to address the different types of hardware.

A simple serial display
In order to understand how to use a shield, let's start with one of the most basic of
the display modules available for Arduino: the serial LCD display. There are several
different versions out there, but most provide a simple 2 x 16 character display that
can be driven by the serial port on Arduino. This particular display is manufactured
by a company called SeeedStudio; other manufacturers make a similar display. It
is important that the device documents are compatible with Arduino. This means
that the manufacturer has evaluated the unit and is suggesting that it is electrically
and mechanically compatible with Arduino. These displays are available at most
locations where Arduinos are offered.

Working with Displays

[66]

The following image shows a picture of the display:

In order to connect this display to your Arduino, perform the following steps:

1.	 First, you'll need some cabling. In order to connect the LCD to your Arduino,
you'll need to add one more cable; this is a four-wire cable that should come
with your display, as shown in the following image:

2.	 Now, you'll need to connect the display to Arduino using these jumper
wires. The following image shows a picture of the connection you'll need on
the display:

Chapter 5

[67]

3.	 The preceding image shows the four pins you need to connect to the display.
They are GND and VCC pins, and RX and TX pins from Arduino. The VCC
and GND will come from the 5 V and GND pins on Arduino. The RX and TX
will come from two pins that you will specify in the code. In this case, looking
at the documentation, the code will use pin 11 as RX and pin 12 as TX. So, to
connect your Arduino to the display, first plug the four-wire connector into the
display; then, use the male-to-male jumpers to connect the four connectors to
the proper connections on the board, as shown in the following image:

This should complete the hardware connections to the board. You should see
the green and red LEDs on the display. This particular type of communication
connection is a simple serial connection. The data will be transmitted onto the two
pins that you will select in a serial fashion. The display will then take this serial data
and translate it to the electrical drive signals needed for the display.

Enabling the serial display in the IDE
Now, let's bring up the Arduino IDE. Before you start coding, you'll need to get the
library associated with your display and install it in the IDE.

For this display, the library is found at http://www.seeedstudio.
com/wiki/Grove_-_Serial_LCD. If you go to this website and select
the library, it will take you to another web page that will allow you to
download a .zip file with the library.

http://www.seeedstudio.com/wiki/Grove_-_Serial_LCD
http://www.seeedstudio.com/wiki/Grove_-_Serial_LCD

Working with Displays

[68]

Here are the steps:

1.	 Download the library. The .zip file should then exist in your Downloads
directory. Now, you'll need to place these files in the libraries directory of
your Arduino installation. The following screenshot shows the directory
structure of the most common installation of the Arduino IDE:

2.	 Note the location of this directory. Now, go to your Downloads directory
and unzip the .zip file that holds your library. When it asks for the directory
to unzip to, select this directory. When complete, this library should
be added as a subdirectory in your libraries directory, as shown in the
following screenshot:

Chapter 5

[69]

3.	 Note that the files are in the libraries directory under SerialLCD. If you'd
like to do this automatically, open the Arduino IDE. Select Sketch, click
on Import Library…, and then click on Add Library…, as shown in the
following screenshot:

Working with Displays

[70]

4.	 This will open up a file dialog box. Go to the directory where you
downloaded the file and select the .zip file. Once the library is installed,
go back to the main IDE screen and you should be able to select one of the
examples from the SerialLCD library, for example, the HelloWorld example,
as seen in the following screenshot:

5.	 This should open the sketch of the HelloWorld example. It should look like
the following screenshot:

Chapter 5

[71]

Note that the slcd.print("hello, world!"); statement is the way to send
a string text to the serially connected LCD. The slcd.setCursor(0, 1);
command sets the cursor to the start of the second line of the display. The
slcd.print(millis()/1000); statement is an example of how to print a
number to the display, in this case, the number of seconds.

Working with Displays

[72]

6.	 Now upload the sketch and you should see the hello, world! statement on
the display, as shown in the following image:

Now, you can add all sorts of text by simply editing the slcd.print("hello,
world!"); line in the setup() function or adding this same function to the loop()
function. Make sure that if you place a message in the loop, use the delay(2000)
function after it to give the user some time to read the display before you change it.

Connecting a display using the SPI
interface
While the serial display is interesting, it has some limitations. It is difficult to display
pictures or graphics, and it is somewhat slower than other interfaces available to
you. So, let's add a display with a different communications interface. The following
image shows a picture of a small, 1.8 inch LCD module with a micro SD card
interface that can be connected to your Arduino:

Chapter 5

[73]

This particular display is available from a company called SainSmart; it is available
directly from the company or other online retailers such as Amazon.com. There are
others that are very similar. Finding support for these displays can be difficult, as the
interface is significantly more complex; so, check to make sure the libraries are also
supplied with the display. To connect to this display, perform the following steps:

1.	 The first step is to connect the display to your Arduino. The following image
shows a picture of the back of the display that will help you connect to the
SPI interface on your Arduino:

2.	 This display uses the SPI interface, so you'll be connecting to the top seven
pins shown here. The SI interface is a serial interface but is synchronous, so
it provides a more robust communication path. Here is the wiring table that
shows which pins to connect to between your Arduino and the display:

Arduino pin Display pin
+5 VCC
GND GND
Pin 13 SCL
Pin 11 SDA
Pin 9 RS/DC
Pin 8 RESET
Pin 10 CS

3.	 To make these connections, you'll want a different type of jumper wire, one
with a female connection at one end and a male connection at the other. You
can purchase these types of jumper wires at most electronics stores or online.

4.	 Once the two devices are connected, you can plug your Arduino into the USB
cable and the USB cable into your computer; once done, you should see the
LCD light up. Now you're ready to add the code.

Amazon.com

Working with Displays

[74]

Enabling the SPI display in the IDE
Just as in the case of SerialLCD, you'll need to add the supporting code library for
your device. For this device, the library is found at http://www.sainsmart.com/
sainsmart-1-8-spi-lcd-module-with-microsd-led-backlight-for-arduino-
mega-atmel-atmega.html. In order to do so, perform the following steps:

1.	 Go to the site and then click on the Download link. This will download the
TFT18.rar file. Use an archive tool such as 7-Zip to unpack this file to the
libraries directory.

2.	 Now the library will be available for use. You will need to make one change.
Go to the library directory where you installed TFT18 and look for a file
called ST7735.h, as shown in the following screenshot:

http://www.sainsmart.com/sainsmart-1-8-spi-lcd-module-with-microsd-led-backlight-for-arduino-mega-atmel-atmega.html
http://www.sainsmart.com/sainsmart-1-8-spi-lcd-module-with-microsd-led-backlight-for-arduino-mega-atmel-atmega.html
http://www.sainsmart.com/sainsmart-1-8-spi-lcd-module-with-microsd-led-backlight-for-arduino-mega-atmel-atmega.html

Chapter 5

[75]

3.	 You're going to edit the ST7735.h file. You can do that in Notepad if you are
working on a Windows system. You are going to change one line, as follows:

4.	 You are going to comment out the line that reads #include <WProgram.h>
using two // characters. Then, you will add the #include <Arduino.h> line
as shown in the preceding screenshot. This change is required for the newer
Arduino IDE versions.

Working with Displays

[76]

5.	 When you have made the change, go back and navigate to File | Examples
| TFT18 | graphicstest. This will open an example program that will run
on your Arduino and drive the display. Upload this, and you should see a
graphical set of test patterns on the display, as shown in the following image:

By the way, you may need to exercise a bit of patience; it can take some time for the
graphics to display. Now, you can present information on your display. You can also
use the example programs under the TFT library as well. Select the TFTDisplayText
example by navigating to Examples | TFT | Arduino | TFTDisplayText. This
example program shows you how to display text and a simple number on your
display. Here is what this example will look like on the display:

Chapter 5

[77]

An LCD shield
There is yet another option available to add a display to your projects. The unique
part of this solution is that this shield will connect directly to your Arduino, making it
a single hardware unit. The concept of a shield is a hardware capability that connects
directly into an Arduino board at the header pins available. Connecting this unit is as
simple as pressing its connections into the connections on your Arduino. The other
nice characteristic of this display is that it comes with a joystick for user input. This
unit is available from Amazon.com or other online retailers. The following image shows
an LCD shield:

The following image shows a side view of the shield installed into an Arduino board:

Amazon.com

Working with Displays

[78]

Note how the connections on the shield exactly match the proper pins on Arduino.
Now that the HW is connected, you can add some code to access the functionality of
the shield. Plug your Arduino into the USB cable and the USB cable into the computer.
The shield should light up and indicate that power is applied, as shown in the
following image:

Enabling the LCD display in the IDE
As with the last two shields, the first step is to add library support for the device.
Finding a functional set of libraries for this particular shield is a bit difficult, as this
particular shield has been available for some time. Some versions of the libraries for
this shield are for older versions of the IDE.

The correct libraries for Version 1.05 of the Arduino IDE are
available at http://www.dfrobot.com/wiki/index.php/
LCD4884_Shield_For_Arduino_%28SKU:DFR0092%29.

http://www.dfrobot.com/wiki/index.php/LCD4884_Shield_For_Arduino_%28SKU:DFR0092%29
http://www.dfrobot.com/wiki/index.php/LCD4884_Shield_For_Arduino_%28SKU:DFR0092%29

Chapter 5

[79]

To work with this device and the IDE, perform the following steps:

1.	 Go to the previously mentioned page and navigate to the Sample Code
section. Right below this is a library selection that, if you select it, will
download the library.

2.	 Now, open the Arduino IDE and select Sketch. Click on Import Library…
and then click on the LCD4884 V1.2.zip file. This will import this library
into the IDE.

3.	 Now you can use one of the example programs in your Arduino. To bring
up the simplest of these example programs, navigate to File | Examples |
LCD4884 | int_to_String_display, as shown in the following screenshot:

Working with Displays

[80]

4.	 This is the simplest set of code to drive the display, and it shows how to
display both a string and a number, as shown in the following screenshot:

Chapter 5

[81]

In the preceding example, there are two statements that interface with the
graphical display:

•	 lcd.LCD-clear();: This statement initializes and clears the LCD.
•	 lcd.LCD_write_string(MENU_X, MENU_Y, "test screen", MENU_

HIGHLIGHT): This function writes the test screen string to the display.
The MENU_X and MENU_Y variables set where the string will be written and
the MENU_HIGHLIGHT variable causes the string to be in the highlight mode
(with a black background and light text).

Here is what the display should look like while running this function:

Now you can use your display to interact with the world. Feel free to check out
the other two example programs for more display capabilities and also examples
of how to use the joystick.

Summary
That's it! You've learned how to add a display capability to your Arduino projects
using serial displays, SPI displays, and a shield with a graphical display. You should
experiment with adding all kinds of data, and even using the joystick on the shield.
You'll use these same concepts in later chapters to add other types of functionalities.
In fact, in the next chapter, you'll use these concepts to control DC motors.

Controlling DC Motors
One of the best ways to use Arduino is to add it to a small mobile platform and
control the speed and direction of the wheels. In this chapter, you'll learn how to use
the basic capability of Arduino to control a small DC motor. You'll then take this to
the next level, learning how to add more functionality using a shield to control the
speed and direction of more powerful DC motors. Then, we'll build a wheeled robot
whose speed and direction are controlled by Arduino.

The basics of DC motor
Before you get started with connecting everything and making it all move, let's
spend some time understanding some of the basics of DC motor control. Whether
you chose a two or four wheeled mobile platform or a tracked platform, the basic
movement control is the same. The unit moves by engaging the motors. If the desired
direction is straight, the motors are run at the same speed. If you want to turn the
unit, the motors are run at different speeds. The unit can actually turn in a circle if
you run one motor forward and one backward.

DC motors are fairly straightforward devices. The speed and direction of the motor
is controlled by the magnitude and polarity of the voltage applied to its terminals.
The higher the voltage, the faster the motor will turn. If you reverse the polarity of
the voltage, you can reverse the direction the motor is turning.

However, the magnitude and polarity of the voltage is not the only factor that is
important when you think about controlling your motors. The power that your
motor can apply to move your platform is also determined by the voltage and the
current supplied at its terminals.

There are actually GPIO pins on Arduino that you could use to create the control
voltage and drive your motors directly. The challenge with this method is that
Arduino cannot normally source enough current and voltage, and your motors will
not be able to generate enough power to move a mobile platform.

Controlling DC Motors

[84]

There are several solutions to this problem. The first is to use a simple transistor
circuit and an external voltage source. You'll use this solution in the first example
of this chapter. Another solution is to use an H-bridge, a chip that Arduino can
control but which is connected to a power source and can provide enough current.
The second example in this chapter will show you how to use this sort of chip. The
third solution to the problem is to use a shield that contains all the circuitry and can
connect to an external power source input so that your Arduino can provide both
voltage and current and your platform can move reliably. The last example in this
chapter will use a motor controller shield designed for Arduino to make DC motor
control simple.

Connecting a DC motor directly to
Arduino
The first step in connecting a DC motor to Arduino is to actually obtain a DC motor.
The motors that you will be dealing with here are simple, small DC motors. The
motors must not require much current because Arduinos cannot supply more than
40 mA of current directly. For this example, you can use a small 6 V DC motor
available at most electronics or hobby stores. The following figure shows one
such motor:

In order to connect this motor to your Arduino, you'll need some additional parts.
You'll need two male-to-male solderless jumper cables and two alligator clip jumper
cables. You'll also need a transistor, a TIP120 to be specific. In this case, the transistor
will act like an electronic switch; when you send a control signal to it, the power will
flow from the battery. You'll also need a diode, the 1N4004 diode. The diode is a
device that protects from reverse power flow. You'll need a 1000 ohm resistor;
this will translate the control signal out of Arduino to the proper current for
the transistor.

Chapter 6

[85]

You'll also add a 1 microfarad ceramic capacitor; this capacitor filters out some of the
switching noise that can appear on the wires that control the motor. These last four
parts should be available at almost any electronics store or online. These parts should
be very inexpensive. To control this motor, you'll connect one motor connector to
digital pin 11 and the other connector to GND on Arduino. You could use one of
the voltage sources on Arduino, but some DC motors can draw lots of current, more
than what our Arduino can supply. A safer way is to connect the DC motor supply
to a battery holder with four AA batteries.

Connect Arduino, transistor, diode, resistor, and power supply as shown in the
following figure:

Controlling DC Motors

[86]

When plugged into the breadboard, the preceding circuit will look like the
following figure:

Now, you can start the Arduino IDE and enter a program to send a control signal to
the DC motor.

Using Arduino code to control the speed of
the DC motor
Now, you'll need to type the following code into the Arduino IDE:

Chapter 6

[87]

Now, upload the code to your Arduino. Your motor should start running. Once
you have uploaded the code, you'll want to open up the Serial Monitor tab so that
you can command your motor to run at different speeds. To do this, perform the
following steps:

1.	 First, navigate to Tools | Serial Monitor. When you open this, you should
see a pop-up window that displays the text from your program as shown in
the following screenshot:

2.	 Enter a value, for example, 255, and then click on Send. Your motor should
speed up. Now, enter another number, for example, 0, and then click on
Send. Your motor should stop. Numbers between these two should adjust
the speed of your DC motor. Unfortunately, the motor can only go in one
direction. The value 255 sends an output to the motor controller that should
drive it to its maximum speed, whereas the value 0 sends an output that
corresponds with a speed of 0.

The next example will provide a solution if you'd like bidirectional control for your
DC motor.

Connecting a DC motor using an
H-bridge and Arduino
The next step is to add a bit more functionality with a new type of chip, an H-bridge.
An H-bridge is a fairly simple device. It basically consists of a set of switches and
adds the additional functionality of allowing the direction of the current to be
reversed so that the motor can either be run in the forward or the reverse direction.

Controlling DC Motors

[88]

Let's start this example by building the H-bridge circuit and controlling just one
motor. To do this, you'll need an H-bridge. One of the most common is the L293 dual
H-bridge chip. This chip will allow you to control the direction of the DC motors.
These are available at most electronics stores or online. You'll also need a capacitor;
you can use the 1 microfarad capacitor from the previous example, if you'd like. The
capacitor limits the fast changes in the signals that are sent to the motor. Once you
have your H-bridge, build the following circuit with Arduino and a breadboard:

The following table shows Arduino and H-bridge pins and you should connect the
pins on Arduino to the pins on the H-bridge:

Arduino pin H-bridge pin
9 1
4 2
3 7

Once you have the connections, you can test the system. To do that, you'll need to
add some code to the code you typed in for example 1.

Chapter 6

[89]

Using Arduino code to control the direction
of the DC motor
Open the Arduino IDE and type in the following code:

Controlling DC Motors

[90]

This code sets up the three pins 3, 4, and 9 to enable the chip and control the
direction of the motor. As you did earlier, you can navigate to Tools | Serial
Monitor to send data to the program. Sending a value of 0 sets pin 3 to HIGH and
pin 4 to LOW, causing the motor to spin in one direction. Sending a value of 1 sets
pin 3 to LOW and pin 4 to HIGH, causing the motor to spin in the other direction.

Now, you know how to build circuits to control both the speed and the direction
of DC motors. However, instead of procuring all the parts and building the circuits
yourself, you can buy a DC motor control shield.

Controlling the DC motor using a shield
For this final example, let's graduate from a simple DC motor control circuit to
a hardware shield that can control one or two DC motors. For this example,
you'll control two DC motors on a wheeled platform. There are several simple,
two-wheeled robotic platforms; in this example, you'll use one that is available
from several online electronics stores as shown in the following figure:

To make this wheeled robotic platform work, you need to control the two DC motors
connected directly to the two wheels. You'll want to control both the direction and
the speed of the two wheels to control the direction of the robot.

Chapter 6

[91]

You'll do this with an Arduino shield designed for this purpose. There are several
available; the shield you'll use here is the one available on the Arduino website at
www.arduino.cc. The following figure shows the shield:

Specifically, you'll care most about the connections on the front corner of the
shield, which is where you will connect the two DC motors. This is shown in the
following figure:

www.arduino.cc

Controlling DC Motors

[92]

It is these three connections that you will use in this example. First, however, place
the board on top of Arduino, in the same way that you placed the display shield
from the example in Chapter 5, Working with Displays. Then, mount the two boards to
the top of your two-wheeled robotic platform, as shown in the following figure:

In this case, I used a large cable tie to mount the boards to the platform and used the
foam that came with the motor shield between Arduino and the metal platform. This
particular platform comes with a four AA battery holder, so you'll need to connect
this power source, or whatever power source you are going to use, to the motor
shield. The positive and negative terminals are inserted into the motor shield by
loosening the screws, inserting the wires, and then tightening the screws, as shown
in the following figure:

Chapter 6

[93]

Now, you need to connect the motor shield to the motors. If you don't want to
solder wires to the motors, you can use the alligator clip wires as shown in the
following figure:

The final step is to connect the alligator clip wires to the motor controller shield. I
did this with the male-to-male solderless jumper wires. First, insert the cables into
the motor shield screw connectors. There are two sets of connections—one for each
motor. Then, attach the alligator clips to the other ends of these wires as shown in the
following figure:

Insert some batteries, and then connect Arduino to the computer via the USB cable.
Now, you are ready to start programming to control the motors.

Controlling DC Motors

[94]

The Arduino code for the DC motor
shield
Now that the HW is in place, bring up the Arduino IDE; make sure that the proper
port and device are selected and enter the following code:

Chapter 6

[95]

The code is straightforward. It consists of the following three blocks:

•	 The declaration of the six variables that connect to the proper Arduino pins
are as follows:
int pwmA = 3;
int pwmB = 11;
int brakeA = 9;
int brakeB = 8;
int directionA = 12;
int directionB = 13;

•	 The setup() function, which sets the directionA, directionB, brakeA, and
brakeB digital output pins:
pinMode(directionA, OUTPUT);
pinMode(brakeA, OUTPUT);
pinMode(directionB, OUTPUT);
pinMode(brakeB, OUTPUT);

•	 The loop() function. This is an example of how to make the wheeled robot
go forward and then turn to the right. At each of these steps, you'll need to
use the brake to stop the robot. The code is as follows:

// Move forward
digitalWrite(directionA, HIGH);
digitalWrite(brakeA, LOW);
analogWrite(pwmA, 255);
digitalWrite(directionB, HIGH);
digitalWrite(brakeB, LOW);
analogWrite(pwmB, 255);

delay(2000);

digitalWrite(brakeA, HIGH);
digitalWrite(brakeB, HIGH);

delay(1000);

//Turn right
digitalWrite(directionA, LOW); //Establishes backward direction of
Channel A
digitalWrite(brakeA, LOW); //Disengage the Brake for Channel A
analogWrite(pwmA, 128); //Spins the motor on Channel A at half
speed

Controlling DC Motors

[96]

digitalWrite(directionB, HIGH); //Establishes forward direction of
Channel B
digitalWrite(brakeB, LOW); //Disengage the Brake for Channel B
analogWrite(pwmB, 128); //Spins the motor on Channel B at full
speed
delay(2000);
digitalWrite(brakeA, HIGH);
digitalWrite(brakeB, HIGH);

delay(1000);

Once you have uploaded the code, the program should run in a loop. If you want to
run your robot without connection to the computer, place batteries into the battery
holder, disconnect the USB cable connecting Arduino to the computer, and then
press the RESET button. Your robot can move all by itself!

Summary
By now, you should be feeling a bit more comfortable with configuring HW and
writing code for Arduino. Hopefully, your wheeled platform is moving around and
is controlled by Arduino. You've learned the basics of DC motor control, and in the
process, you also learned how to send control signals to the external hardware.

In the next chapter, you'll change this platform from one based on DC motors to one
based on servos, and you'll build a robot that can walk.

Controlling Servos
with Arduino

In this chapter, you'll learn how to use the basic capability of Arduino to control
servo motors.

Servo motors are important because you can use them to create all kinds of useful
arms, legs, or even pan-and-tilt mechanisms to make really cool robots that can walk,
or pick up things, or move sensors around. You'll then take this to the next level,
learning how to add more functionality using a shield to control the speed
and direction of a whole set of servos to build a walking hexapod robot.

The basics of a servo motor
Before you begin, you'll need some background on servo motors. Servo motors are
somewhat similar to DC motors; however, there is an important difference. While
DC motors are generally designed to move in a continuous way—rotating 360
degrees at a given speed—servos are generally designed to move within a limited set
of angles. In other words, in the DC motor world, you generally want your motors to
spin with continuous rotation speed that you control. In the servo motor world, you
want your motor to move to a specific position that you control.

Controlling servos is fairly simple. The device has three wires connected to it: one for
the ground connection, one for the drive voltage, and the third is a control signal that
expects a pulse-width modulated (PWM) signal. The signal is a square wave that is
turned on and off at a set rate, normally at around 500 Hz. The ratio of the length of
the time the signal is on to the time the signal is off determines the desired angle of
the servo.

Controlling Servos with Arduino

[98]

Arduino can control servos using two different approaches. The first is to connect
your servos directly to Arduino. You'll use this solution in the first example of this
chapter. Unfortunately, if you have a lot of servo motors, they can sometimes draw
more current than Arduino can provide, which is 40 mA. To solve this problem,
you'll need to use a shield that can connect to an external power source. Then, your
Arduino and shield can provide both voltage and current so that you can control
many servos. The second example in this chapter will use this servo controller shield
designed for Arduino to control 12 servos on a hexapod robot.

Connecting a servo motor directly to
Arduino
The first step in connecting a servo motor to Arduino is to actually obtain a servo
motor. The following figure shows a typical servo motor, the Hitec HS-311, available
at most hobby or RC Control stores:

Chapter 7

[99]

In order to connect this servo motor to your Arduino, you'll need some of those
male-to-male solderless jumper cables that you used in the previous chapters.
You'll notice that there are three wires coming from the servo. Two of these supply
the voltage and current to the servo. The third provides a control signal that tells
the servo where and how to move. You'll connect these three wires to the pins on
Arduino. The black wire on the servo is ground; you'll connect that to the GND pin
on Arduino. The red wire on the servo is the VCC connection; connect that to the
5 V pin on Arduino. The orange pin is the control pin on the servo; connect that to
one of the DIGITAL (PWM~) pins on Arduino, for example, pin 11, as shown in the
following figure:

Just a word of caution, this works well with a single servo; you will not want to use
the method for more than just one or two servos. Now that you have made these
connections, you are ready to write the code to make your servo move.

Controlling Servos with Arduino

[100]

Controlling the servos with a program
Now that the hardware is connected, you'll need to supply the control signal to make
your servos move. To control your servo, bring up the Arduino IDE. Make sure that
the proper Arduino and port are chosen. Then enter the lines of code as shown in the
following screenshot:

This code uses the Servo library that is installed with the standard Arduino IDE. The
three sections of code that you'll need to understand are as follows:

Chapter 7

[101]

•	 The global variables servo, servoPin, and angle are used by the program.
The Servo data type adds a set of functions so that you can control
your servo. This includes the servo.attach(servoPin) and servo.
write(angle) functions, which you will use in this program to send the
servo to a specific angle. To find out all the different functions that are
available, visit http://arduino.cc/en/reference/servo.

•	 The setup() function connects the servo functionality to the proper pin and
then initializes the serial port.

•	 The loop() function reads the serial port, and then uses that data to send the
servo to the proper angle by using servo.write(angle).

When you have entered the code, upload the program. When it runs, navigate to
Tools | Serial Monitor. You can then enter the desired angle, as shown in the
following screenshot:

Now you can imagine adding a whole set of servos, one controlled by a different
digital output pin on Arduino. However, Arduino itself will soon run out of the
ability to supply enough current to control more servos. So if you have projects that
require more than just one or two servos, you'll probably want to go with a servo
motor shield.

http://arduino.cc/en/reference/servo

Controlling Servos with Arduino

[102]

Connecting a servo motor shield to
Arduino
The servo motor shield we'll use in this example is available at most online retailers
who sell Arduino Uno, and is made by AdaFruit. The following figure shows the
servo motor shield connected to the servo wires:

This particular shield can handle up to 16 servos. The important characteristic of
this servo shield is the connection on the right-hand side of the shield. In the GND
and VCC connections, you'll place your external voltage and current input, allowing
Arduino to control many more servos.

Controlling the servo motor shield with
a program
Now that your hardware is ready, you'll need to program Arduino to send the
proper control signals. To control this shield, you'll need to download a library
from Adafruit.

The library for the motor shield can be downloaded from https://
learn.adafruit.com/adafruit-16-channel-pwm-slash-
servo-shield/using-the-adafruit-library.

https://learn.adafruit.com/adafruit-16-channel-pwm-slash-servo-shield/using-the-adafruit-library
https://learn.adafruit.com/adafruit-16-channel-pwm-slash-servo-shield/using-the-adafruit-library
https://learn.adafruit.com/adafruit-16-channel-pwm-slash-servo-shield/using-the-adafruit-library

Chapter 7

[103]

Once you have downloaded the library, you'll need to rename it to install it into the
IDE. Look for the Adafruit-PWM-Servo-Driver-Library-master.zip file in the
directory you downloaded the file from, and unzip this to the directory where your
Arduino library is stored, as shown in the following screenshot:

The Adafruit-PWM-Servo-Driver-Library-master directory should now be
in the library directory. You'll need to change the name of this directory to
AdafruitServoDriver. The library and its examples are now available. You can
open the servo example by navigating to File | Examples | AdafruitServoDriver |
servo, as shown in the following screenshot:

Controlling Servos with Arduino

[104]

Then, you should be able to see the code snippet as shown in the
following screenshot:

This code is well documented, and shows you how to drive each individual servo.
However, this isn't the most exciting application. What you really want is to build a
legged quadruped robot to exercise all of these servos.

Chapter 7

[105]

To complete this project, you'll first need to buy some parts so you can build your
quadruped robot. There are several possibilities out there, but one set I personally
like is a set of Lynxmotion parts available from the online retailer robotshop.com.
To build your quadruped robot, you'll need two sets each of the two leg parts, and
then one set each of a body part. The following table illustrates the parts as they are
listed on the website:

Quantity Description
1 Lynxmotion Symmetric Quadrapod Body Kit-Mini QBK-02
2 Lynxmotion 3'' Aluminum Femur Pair
2 Lynxmotion Robot Leg "A" Pair (No Servo) RL-01
4 Lynxmotion Aluminum Multi-Purpose Servo Bracket Two

Pack ASB-04

Once you have these parts, you'll also need 12 standard size servos. I personally like
the Hitec servos; they are a very inexpensive servo that you can get at most hobby
shops and online electronics retailers. You may need quite a powerful servo, so buy
at least the HS-422. When you get the parts, perform the following steps:

1.	 Put two right legs together, as shown in the following figure:

robotshop.com

Controlling Servos with Arduino

[106]

2.	 Now, put two left legs together as shown in the following figure:

3.	 The next step is to build the body kit. There are some instructions at
www.lynxmotion.com/images/html/sq3u-assembly.htm, but it should
look like the following figure:

www.lynxmotion.com/images/html/sq3u-assembly.htm

Chapter 7

[107]

4.	 And then connect each leg to the body kit. The important part of this step
is to make sure you use a bearing on the underside connection of the leg, as
shown in the following figure:

5.	 The final step is to mount the batteries and Arduino to the body kit, as shown
in the following figure:

Controlling Servos with Arduino

[108]

I like to use an RC LiPo battery for my robotic projects; they are available from most
RC stores or online. You can certainly use standard alkaline AA batteries, but they
are not rechargeable and don't last very long. Using rechargeable AA batteries solves
the rechargeable problem, so it is certainly a better choice. I find the RC LiPo batteries
last the longest and recharge quickest. If you are going to use a LiPo battery, choose
a 2S battery; this will provide 7.4 V, which will then be regulated by the Arduino and
can drive both Arduino and servos. Your kit is now ready to move. Let's start with
a simple program that sets all of the servos to their middle position, and then takes
in a command to move just one of the servos to a specific angle. This will help you
understand how your robot is configured, as shown in the following screenshot:

The preceding code includes a significant number of Serial.println() functions;
these are there to show you what is happening. The key statement for servo control
is pwm.setPWM(servo, 0, pwmValue);. This statement sends out a PWM signal that
the servo motor uses to determine the desired angle. The servo variable selects the
servo to control, the 0 variable sets when the PWM pulse starts (you'll use 0 for this
application), and the pwmValue variable sets the length of the pulse. You can now see
how your robot can be programmed to be moved by performing the following steps:

Chapter 7

[109]

1.	 One step you'll probably want to do is adjust the mechanical position of your
servos. To do this, run the program so that all of the servos are set to their
middle location.

2.	 Then, unscrew the screw at the center of each horn connected to the servo,
and turn it so that it is now in the middle location on the robot for that
particular servo.

When your robot is centered, you can now begin to program your robot to do things.
First, let's add a command that waves one of the front legs. From the Arduino sketch,
change your loop() function, and add the home() and wave() functions, as shown
in the code snippet in the following screenshot:

Controlling Servos with Arduino

[110]

The code is very simple; the setup() function establishes your access to the servo
shield and the loop simply takes in a command from the serial port, and when it sees
from the Serial Monitor tab, it moves the front leg up and down three times.

You can really take advantage of the SW that is available out there, as there is a set
of SW capabilities that have been created by enterprising individuals that will allow
your quadruped robot to do a number of different actions based on the input from
the serial port. One example is at letsmakerobots.com/node/35354 and another at
blog.oscarliang.net/arduino-quadruped-robot-stalker/.

Summary
You have learned how to control a single servo and an entire set with a servo control
shield. Now you can not only build robots that role, but you can also build robots
that walk. You know how to easily add even more servos to act as arms, or any
number of other functions. However, your robot really can't sense the outside world
yet, and is reliant entirely upon someone to control it.

In the next chapter, you'll add sensors so that your robot can avoid/find obstacles
and other objects.

letsmakerobots.com/node/35354
blog.oscarliang.net/arduino-quadruped-robot-stalker/

Avoiding Obstacles
Using Sensors

Now that your robot can move, it is important to make sure it won't run into walls or
other barriers. In this chapter, you'll learn the following topics:

•	 How to add sensors to your projects
•	 How to add a servo to your sensor

An overview of the sensors
Before you begin, you'll need to decide which sensors to use. You require basic
sensors that will return information about the distance to an object, and there are
two choices—sonar and infrared. Let's look at each.

Avoiding Obstacles Using Sensors

[112]

Sonar sensors
The sonar sensor uses ultrasonic sound to calculate the distance to an object. The
sensor consists of a transmitter and receiver. The transmitter creates a sound wave
that travels out from the sensor, as illustrated in the following diagram:

The device sends out a sound wave 10 times a second. If an object is in the path of
these waves, the waves reflect off the object. This then returns sound waves to the
sensor, as shown in the following diagram:

Chapter 8

[113]

The sensor measures the returning sound waves. It uses the time difference between
when the sound wave was sent out and when it returns to measure the distance to
the object.

Infrared sensors
Another type of sensor is a sensor that uses infrared (IR) signals to detect
distance. An IR sensor also uses both a transmitter and a receiver. The transmitter
transmits a narrow beam of light and the sensor receives this beam of light. The
difference in transit ends up as an angle measurement at the sensor, as shown in
the following diagram:

The different angles give you an indication of the distance to the object.
Unfortunately, the relationship between the output of the sensor and the distance is
not linear, so you'll need to do some calibration to predict the actual distance and its
relationship to the output of the sensor. This will be discussed later in this chapter.

Avoiding Obstacles Using Sensors

[114]

Connecting a sonar sensor to Arduino
 Here is an image of a sonar sensor, HC-SR04, which works well with Arduino:

These sonar sensors are available at most places that sell Arduino products,
including amazon.com. In order to connect this sonar sensor to your Arduino, you'll
need some of those female-to-male jumper cables that you used in the previous
chapters. You'll notice that there are four pins to connect the sonar sensor. Two of
these supply the voltage and current to the sensor. One pin, the Trig pin, triggers the
sensor to send out a sound wave. The Echo pin then senses the return from the echo.

To access the sensor with Arduino, make the following connections using the
male-to-female jumper wires:

Arduino pin Sensor pin
5V Vcc
GND GND
12 Trig
11 Echo

Accessing the sonar sensor from the
Arduino IDE
Now that the HW is connected, you'll want to download a library that supports
this sensor. One of the better libraries for this sensor is available at https://code.
google.com/p/arduino-new-ping/. Download the NewPing library and then
open the Arduino IDE. You can include the library in the IDE by navigating to
Sketch | Import Library | Add Library | Downloads and selecting the NewPing
ZIP file. Once you have the library installed, you can access the example program
by navigating to File | Examples | NewPing | NewPingExample as shown in the
following screenshot:

amazon.com
https://code.google.com/p/arduino-new-ping/
https://code.google.com/p/arduino-new-ping/

Chapter 8

[115]

You will then see the following code in the IDE:

Avoiding Obstacles Using Sensors

[116]

Now, upload the code to Arduino and open a serial terminal by navigating to Tools
| Serial Monitor in the IDE. Initially, you will see characters that make no sense; you
need to change the serial port baud rate to 115200 baud by selecting this field in the
lower-right corner of Serial Monitor, as shown in the following screenshot:

Now, you should begin to see results that make sense. If you place your hand in
front of the sensor and then move it, you should see the distance results change, as
shown in the following screenshot:

You can now measure the distance to an object using your sonar sensor.

Chapter 8

[117]

Connecting an IR sensor to Arduino
One popular choice is the Sharp series of IR sensors. Here is an image of one of the
models, Sharp 2Y0A02, which is a unit that provides sensing to a distance of 150 cm:

To connect this unit, you'll need to connect the three pins that are available on the
bottom of the sensor. Here is the connection list:

Arduino pin Sensor pin
5V Vcc
GND GND
A3 Vo

Unfortunately, there are no labels on the unit, but there is a data sheet that you
can download from www.phidgets.com/documentation/Phidgets/3522_0_
Datasheet.pdf. The following image shows the pins you'll need to connect:

www.phidgets.com/documentation/Phidgets/3522_0_Datasheet.pdf
www.phidgets.com/documentation/Phidgets/3522_0_Datasheet.pdf

Avoiding Obstacles Using Sensors

[118]

One of the challenges of making this connection is that the female-to-male connection
jumpers are too big to connect directly to the sensor. You'll want to order the
three-wire cable with connectors with the sensor, and then you can make the
connections between this cable and your Arduino device using the male-to-male
jumper wires. Once the pins are connected, you are ready to access the sensor via
the Arduino IDE.

Accessing the IR sensor from the
Arduino IDE
Now, bring up the Arduino IDE. Here is a simple sketch that provides access to the
sensor and returns the distance to the object via the serial link:

The sketch is quite simple. The three global variables at the top set the input pin to
A3 and provide a storage location for the input value and distance. The setup()
function simply sets the serial port baud rate to 9600 and prints out a single line to
the serial port.

Chapter 8

[119]

In the loop() function, you first get the value from the A3 input port. The next
step is to convert it to a distance based on the voltage. To do this, you need to
use the voltage to distance chart for the device; in this case, it is similar to the
following diagram:

There are two parts to the curve. The first is the distance up to about 15 centimeters
and then the distance from 15 centimeters to 150 centimeters. This simple example
ignores distances closer than 15 centimeters, and models the distance from 15
centimeters and out as a decaying exponential with the following form:

Thanks to teaching.ericforman.com/how-to-make-a-sharp-ir-sensor-
linear/, the values that work quite well for a cm conversion in distance are 30431
for the constant and -1.169 as the exponential for this curve.

teaching.ericforman.com/how-to-make-a-sharp-ir-sensor-linear/
teaching.ericforman.com/how-to-make-a-sharp-ir-sensor-linear/

Avoiding Obstacles Using Sensors

[120]

If you open the Serial Monitor tab and place an object in front of the sensor, you'll
see the readings for the distance to the object, as shown in the following screenshot:

By the way, when you place the object closer than 15 cm, you should begin to see
distances that seem much larger than should be indicated. This is due to the voltage
to distance curve at these much shorter distances. If you truly need very short
distances, you'll need a much more complex calculation.

Creating a scanning sensor platform
While knowing the distance in front of your robotic project is normally important,
you might want to know other distances around the robot as well. One solution is to
hook up multiple sensors, which is quite simple. However, there is another solution
that may be a bit more cost effective. Instead of multiple sensors, you can place a
single sensor on a servo and then use the concepts that you learned in Chapter 7,
Controlling Servos with Arduino, to move the servo and allow the sensor to scan a set
of different distances.

To create a scanning sensor of this type, take a sensor of your choice (in this case,
I'll use the IR sensor) and mount it on a servo. I like to use a servo L bracket for this,
which is mounted on the servo Pas follows:

Chapter 8

[121]

You'll need to connect both the IR sensor (as described earlier in this chapter) as well
as the servo to Arduino (as explained in Chapter 7, Controlling Servos with Arduino).

Now, you will need some Arduino code that will move the servo and also take the
sensor readings. The following screenshot illustrates the code:

Avoiding Obstacles Using Sensors

[122]

The preceding code simply moves the servo to an angle and then prints out the
distance value reported by the IR sensor. The specific statements that may be of
interest are as follows:

•	 servo.attach(servoPin);: This statement attaches the servo control to the
pin defined

•	 servo.write(angle);: This statement sends the servo to this angle
•	 inValue = analogRead(inputPin);: This statement reads the analog input

value from this pin
•	 distance = 30431 * pow(inValue, -1.169);: This statement translates

the reading to distance in centimeters

If you upload the sketch, open Serial Monitor, and enter different angle values, the
servo should move and you should see something like the following screenshot:

Summary
Now that you know how to use sensors to understand the environment, you can
create even more complex programs that will sense these barriers and then change
the direction of your robot to avoid them or collide with them. You learned how to
find distance using sonar sensors and how to connect them to Arduino. You also
learned about IR sensors and how they can be used with Arduino.

In the next chapter, you'll learn how to add even more interesting sensors, such as a
digital compass, so that you can plan your travel routes even more efficiently.

Even More Useful Sensors
Your projects may want to do more than just avoiding barriers. In this chapter,
we'll go through the following topics:

•	 How to add a digital compass so that your projects can sense direction.
•	 How to add an accelerometer/gyro to your project so that you can sense

the tilt and movement of your projects.
•	 How to add an altimeter/pressure sensor to your project so that you can

sense your altitude. These can also be useful in weather prediction.

Connecting a digital compass to Arduino
One of the important pieces of information that might be useful for your robot is
its direction of travel. This could be given by a GPS unit, and we will cover how to
connect one of those in Chapter 11, Using a GPS Device with Arduino. However, a GPS
unit can be expensive, and it often doesn't work well inside buildings, because the
GPS satellite signals don't penetrate buildings well. So, let's learn how to hook up a
digital compass to Arduino.

Even More Useful Sensors

[124]

There are several chips that provide digital compass capability; one of the most
common ones is the HMC5883L 3-Axis Digital Compass chip. This chip is packaged
onto a module by several companies, but almost all of them result in a similar interface.
Here is a picture of one by a company called SainSmart, and it is available at a number
of online retailers:

This type of digital compass uses magnetic sensors to discover the earth's magnetic
field. The output of these sensors is then made accessible to the outside world
through a set of registers that allow the user to set things such as the sample rate
and continuous or single sampling. The x, y, and z directions are output using
registers as well.

The connections to this chip are straightforward; the device communicates with
Arduino using the I2C bus, a standard serial communications bus.

The I2C interface is a synchronous serial interface and provides
more performance than an asynchronous Rx/Tx serial interface.
The SCL data line provides a clock, while the data flows on the
SDA line. The bus also provides addressing so that more than one
device can be connected to the master device at the same time.

Chapter 9

[125]

On the back of the module, the connections are labeled as follows:

The following are the connections that you'll need to make between Arduino and
the device:

Arduino pin Sensor pin
5V 5V
GND GND
A5 SCL
A4 SDA

Notice that you will not connect the 3.3V or DRDY (data ready) lines. Our Arduino
supplies power through the 5V line instead of the 3.3V line, and the DRDY line is not
needed by this library. Now, you are ready to talk with the device using the IDE.

Accessing the compass from the
Arduino IDE
The first step in accessing the compass capability from the IDE is to install a library.
Finding a library that supports the module is a bit difficult, but one that works
well is available at www.emartee.com/product/42254/HMC5883L%203%20Axis%20
Digital%20Compass%20Module.

www.emartee.com/product/42254/HMC5883L%203%20Axis%20Digital%20Compass%20Module
www.emartee.com/product/42254/HMC5883L%203%20Axis%20Digital%20Compass%20Module

Even More Useful Sensors

[126]

The following are the steps to install the library and run the example:

1.	 Select the Arduino Library for HMC5883L link on the previously mentioned
page, and it will take you to a set of library selections.

2.	 You need to select the HMC5883L / HMC5883L Library For Arduino.rar
link at the bottom of this page, and it will download a .rar file that holds
the library.

3.	 Unzip this file into the libraries directory of your Arduino installation.
4.	 Now, bring up the Arduino IDE and select the Examples option under the

File menu, and you should be able to select the HMC5883L library example,
as shown in the following screenshot:

5.	 Once you have selected this example, upload it to your Arduino and open
the Serial Monitor. You may have to resize the monitor to get a good look at
the results, but you should see something similar to the following screenshot:

Chapter 9

[127]

The Raw data is the x, y, and z data that is coming directly from the compass and is
related directly to the earth's magnetic field. The Scaled values are those that are
scaled to reflect true north. The Heading value is expressed in degrees and radians.
Now, you can add direction to your project! As you move the device around, you
should see the Heading value change. These readings should give you an indication
of the heading of your project. This is very useful to help you give direction to your
robotic projects. However, you may want to use even more information, such as
speed and tilt. Fortunately, there are sensors for this as well.

Connecting an accelerometer/gyro to
Arduino
The ability to measure speed and tilt is important in many robotic applications. You'll
need to add an accelerometer/gyro sensor for this. This device measures the tilt using
very small gyros, devices that spin and resist changes in orientation. When these
changes occur, the resistance to change can be measured. The device also measures
movement using an accelerometer. An accelerometer measures movement in one
direction using very small (MEMS) machines that respond to motion by outputting a
small signal.

Providing this information can help you know how your device is moving.
Fortunately, there are chips that can provide this functionality. One of them is
the MPU-6050 chip, which provides a complete set of information on movement,
including the acceleration and tilt. There are several different manufacturers who
place this chip on a small board accessible from Arduino.

Even More Useful Sensors

[128]

One of these is the SparkFun version, the SparkFun SEN-11028, available at
sparkfun.com. It is shown in the following image:

The interface to the board is quite simple, with only one issue. One of the ways
to connect this particular chip is to solder header pins to the board to connect the
jumper wires to Arduino. You can purchase these at sparkfun.com as well; just
search for the Arduino stackable header, 8-pin version. Once the header is soldered,
the device will look as follows:

sparkfun.com
sparkfun.com

Chapter 9

[129]

Now, you can use a male-to-male jumper cable to connect between Arduino and the
board. The following table shows the connections:

Arduino pin Sensor pin
3.3V VDD
GND GND
A5 SCL
A4 SDA
3.3V VIO

You'll notice that you need to make two connections to the 3.3V supply, so you may
want to create a male-to-male jumper cable with two connections on one end. This
can be done using three male-to-male cables. For this, we need to cut off one end
and strip back the insulation, then solder the three cables together, and then wrap the
solder connection in electrical tape.

Accessing the accelerometer from the
Arduino IDE
Now that the two devices are connected, you'll need to bring up the Arduino IDE
and add a library so that you can access the functionality from the SW. Follow
these steps:

1.	 Go to github.com/jrowberg/i2cdevlib and look on the right-hand side of
the page for the download link. This will download the entire library.

From the SparkFun page on the device at www.
sparkfun.com/products/11028, you'll find a GitHub
repository that supports not only this device, but a
number of devices that use the I2C interface.

github.com/jrowberg/i2cdevlib
www.sparkfun.com/products/11028
www.sparkfun.com/products/11028

Even More Useful Sensors

[130]

2.	 Now, you should unzip the file to a handy location; I unzipped mine in
the Downloads directory. What you want is just the files associated with
Arduino, so go to the directory that supports those files, as shown in the
following screenshot:

3.	 Even though you won't need all of these libraries right now, you can just
copy all of these to your Libraries directory of your Arduino for future use.
You'll notice, by the way, that there is a duplicate of the HMC5883L library
you installed earlier, so you can decide to merge these directories.

4.	 Once you have these directories installed, bring up the Arduino IDE. Before
you bring up the example program for the device, open the Serial Monitor and
set the baud rate to 38400. Now, bring up the example program that reads
the raw values of the accelerometer and gyro by navigating to Examples |
MPU6050 | Examples | MPU6050_raw, as shown in the following screenshot:

Chapter 9

[131]

This will open a sketch that provides the code to read the raw data from your sensor.
When you upload the code and open the Serial Monitor, you should see something
similar to the following screenshot:

Even More Useful Sensors

[132]

The first three numbers are the x, y, and z raw accelerometer readings, and the
last three are the x, y, and z angle readings from the gyroscope. If you mount the
device flat in your project, the x, y, and z readings would be associated with the
yaw, pitch, and roll of the device respectively. As you move the device around, you
should see these readings change. This data can then be used to sense when your
device is moving, in what direction, and how it is positioned. The device has a lot
of capabilities, including the ability to calibrate itself so that a particular position is
the "zero" position. For more information about these capabilities, feel free to look at
both example programs provided by the library. In Chapter 13, Robots That Can Fly,
you'll learn how to use this device in a quad-copter application.

Connecting an altimeter/pressure sensor
to Arduino
The final sensor that you'll learn about in this chapter is the altimeter/pressure sensor.
An altimeter measures the barometric pressure, and as this pressure decreases with
rising elevation, it can indicate elevation. This is particularly useful when you want
to build a robot that can fly. First, you'll need to select a device. One device that can
provide this information is the SainSmart BMP085 Module Digital Barometric Pressure
Sensor, available at many online retailers. It looks as follows:

It looks very similar to the digital compass, and just like the earlier two devices,
it connects via the I2C interface. You can even use the same libraries you just
downloaded for the accelerometer/gyro for I2C support.

Chapter 9

[133]

The connections between Arduino and the device will be the same as the digital
compass, as demonstrated in the following table:

Arduino pin Sensor pin
5V 5V
GND GND
A5 SCL
A4 SDA

The connections, just like those of the digital compass, are clearly marked on the
back of the device, and you can use female-to-male jumpers to make the connections.

Accessing the altimeter/pressure sensor
from the Arduino IDE
The following are the steps associated with connecting this device to Arduino:

1.	 The first step in accessing the device is to download the appropriate library.
Here, you have a choice. You can use the library described in the Connecting
an accelerometer/gyro to Arduino section, or you can download a library just for
this device. The library supplied for the accelerometer/gyro is a more general
library designed to communicate with many different I2C devices. The
library for this device supports only this device. If you want to download
the library for this device, go to www.sainsmart.com/sainsmart-bmp085-
digital-pressure-sensor-module-board.html and select the Download
Link selection at the bottom of the link. This will download a .rar file that
will include an example sketch. I personally prefer to use the I2C library
version; it is more up to date, so I will follow that example here.

www.sainsmart.com/sainsmart-bmp085-digital-pressure-sensor-module-board.html
www.sainsmart.com/sainsmart-bmp085-digital-pressure-sensor-module-board.html

Even More Useful Sensors

[134]

2.	 Open the example by navigating to File | Examples | BMP085 | Examples |
BMP085_basic, as shown in the following screenshot:

3.	 You should now set the Serial Monitor baud rate to 38400 if you haven't
already done so, as this is the baud rate set by the example program. Now,
you can upload the sketch of Arduino, and when you open the Serial
Monitor, you should see something similar to the following screenshot:

Chapter 9

[135]

You can see not only the altitude, but the temperature and pressure as well. Now,
this altitude is not an absolute value, but a relative one. It will change with a change
in weather, as the barometric pressure is dependent on weather pattern changes.
This particular reading is, therefore, really only useful when you want to measure
the relative changes in altitude, for example, when you want to know how far your
flying project has either gone up or done from a reference position.

Summary
There are many more sensors that we could have covered in this chapter, but
hopefully, you have a feel of how you might be able to add them after following
the instructions for these sensors. Your robot should now have lots of possible
capabilities, but you are still tethered to the computer.

In the next chapter, you'll learn how to communicate with your robot wirelessly
so that it won't need a cable to accept commands.

Going Truly Mobile – the
Remote Control of

Your Robot
Now that your robot is mobile and has several ways of sensing the outside world,
you'll want to disconnect it from the tether cable that you have been using to
communicate with it. In this chapter, you'll learn how to communicate wirelessly
with your robot. Depending on your choice of method, you'll be able to communicate
across the room or across a distance of up to a mile. Specifically, we'll cover the
following topics:

•	 Connecting Arduino to a simple radio frequency (RF)
transmitter/receiver pair

•	 Connecting Arduino to an XBee transmitter/receiver pair
•	 Connecting Arduino to a Bluetooth transmitter/receiver pair
•	 Connecting Arduino to a Wi-Fi network using a Wi-Fi shield

As your Arduino will now be remote, you'll need to power it with an external source.
Your Arduino will need at least 250 mA, but you might want to consider providing
500 mA to 1 A based on your project. To supply this from a battery, you can use
one of several different choices. One choice is a 4 AA battery pack, like the one used
to power the DC motors on the wheeled robot in Chapter 6, Controlling DC Motors.
Alternatively, you can also use an RC LiPo 2S battery, like the one you used to power
the quadruped robot in Chapter 7, Controlling Servos with Arduino.

Going Truly Mobile – the Remote Control of Your Robot

[138]

You can also use a simple USB battery, like the ones used to charge cell phones
during an emergency, as shown in the following image:

Connecting a simple RF interface to
Arduino
Let's start by connecting to Arduino with a simple RF interface. For this exercise,
it will be easiest if you connect your development machine to Arduino with an RF
interface and then connect to another Arduino with a similar RF transceiver. There
are some very inexpensive modules available at online retailers such as ebay.com,
but you will need to be a bit careful and watch what frequency your devices use, as
they may violate your country's frequency usage rules. Each country regulates who
can use what frequencies. For more information, visit www.wired.com/2010/09/
wireless-explainer/. For example, 433 MHz is fine for Europe, but can't be used
in the US unless you have the proper amateur radio license. 915 MHz is available in
the US but not in Europe. 2.4 GHz is fine in either case, so you might want to go with
a transceiver that operates at 2.4 GHz.

ebay.com
www.wired.com/2010/09/wireless-explainer/
www.wired.com/2010/09/wireless-explainer/

Chapter 10

[139]

The following is an image of a 2.4 GHz device, which is the nRF24L01+ 2.4 GHz
wireless transceiver, available at many online retailers, including amazon.com:

You will want to purchase two of these devices. Initially, to try the example, connect
each of the pair to your Arduino. You will also need to connect each device to a
host computer so that you can monitor the Serial Monitor port. Eventually, when
you have the system up and working, disconnect one of the devices from the host
computer and connect it to a battery so that it can run without a host connection. To
connect the devices to Arduino, connect to the pins on the back of the device. The
following is an image of the connections on the back of the device:

amazon.com

Going Truly Mobile – the Remote Control of Your Robot

[140]

The following table shows the connections between the device and Arduino:

Arduino pin Receiver pin
5 V 5 V
GND GND
12 MISO
11 MOSI
13 SCK
8 CE
7 CSN

Connect the second Arduino in the same way as the first. Now, you are ready to
access two Arduino IDEs, one for each of these two Arduinos.

Enabling a simple RF interface in the
Arduino IDE
Let's start with Arduino that will receive the RF signal. You'll need to plug it into the
host computer via a USB cable in order to upload a program. In order to debug both
of these devices, you will also need two computers, one to run an Arduino IDE for
both the transmit and receive device. You can also do this with a single computer
and two USB ports (for more information on how to do this, visit http://forum.
arduino.cc/index.php?topic=407.0). However, once you've created the program,
you can disconnect the remote Arduino from the computer and power it from a
battery. In this example, you'll use the example programs from the library to send
data from the client (Arduino connected to the PC) to the server (the standalone
Arduino) and then have it echo back.

As you did earlier, you'll first need to install the library. There are a couple of
possible libraries, but the one that is the most full featured is the RF24 library, which
is available at https://github.com/maniacbug/RF24/. To get the full library, select
the Download ZIP button on the right side of the screen. Unzip the archive into a
directory and then copy the directory to the libraries directory of your Arduino
installation. You'll also need to rename this directory; I renamed mine RF24. To do
this demo, you'll need two host computers, one for each RF device.

http://forum.arduino.cc/index.php?topic=407.0
http://forum.arduino.cc/index.php?topic=407.0
https://github.com/maniacbug/RF24/

Chapter 10

[141]

On both computers, open the Arduino IDE and bring up the server code by
navigating to File | Examples | RF24 | GettingStarted, as shown in the
following screenshot:

This Arduino will now have the code to configure the interface. When you bring up
Serial Monitor, you should see something like the following screenshot:

Going Truly Mobile – the Remote Control of Your Robot

[142]

This shows the configuration of the first device. If you receive 0 for all values, you
probably have your device connected incorrectly. Initially, this first device will be
in receive mode, listening for a message, and when it receives one, it will send this
message back to the sender.

Now, do the exact same thing on the second Arduino. The code you have will run
and will also be waiting to send some information. On this second device, type the
character T in the input field at the top of Serial Monitor and then hit Send. Now,
you should begin to see the results on the send Serial Monitor, as shown in the
following screenshot:

If you check the first device's Serial Monitor tab, you should see that it is
now receiving the sending device's message. It should look something like
the following screenshot:

Chapter 10

[143]

Now, you can disconnect the receive Arduino; it will retain this program and run it
each time the unit is powered on. Connect this Arduino to a battery by plugging the
battery GND and VCC to the GND and VIN pins on this receive Arduino. If you are
using a cell phone's USB charger, you can connect it to the USB port on Arduino, as
shown in the following image:

The LED on the receive Arduino should be flashing, indicating that the two
Arduinos are communicating.

To change the code to send a command byte, look for the following code
that gets the milliseconds from the time function and sends it out to the
other Arduino:

// Take the time, and send it. This will block until
complete
 unsigned long time = millis();
 printf("Now sending %lu...",time);
 bool ok = radio.write(&time, sizeof(unsigned
long));

Now, change the code on the sending Arduino so that instead of sending
the time, it sends a command byte that you define. Then, on the receive
Arduino, look for the following code:

// Grab the response, compare, and send to debugging
spew
 unsigned long got_time;
 radio.read(&got_time, sizeof(unsigned long));
 // Spew it
 printf("Got response %lu, round-trip delay: %lu\
n\r",got_time,millis()-got_time);

Finally, change this code to take the command byte that you defined and
then trigger some action.

Going Truly Mobile – the Remote Control of Your Robot

[144]

Connecting an XBee interface to Arduino
One of the most popular and well-documented ways of connecting to Arduino via an
RF connection is to use an XBee device. This device uses a technology called ZigBee,
and it is made for long-range wireless communications. These types of devices can
work up to a range of 1 mile.

The ZigBee standard is built upon the IEEE 802.15.4 standard, a standard that was
created to allow a set of devices to communicate with each other to enable low data
rate coordination of multiple devices.

The other standard that you might hear as you try to purchase or use devices
like these is XBee. This is a specific company's implementation, Digi, of several
different wireless standards with standard hardware modules that can connect in
many different ways to different embedded systems. They make several devices
that support ZigBee standard. The following image shows the type of device that
supports ZigBee attached to a small XBee-specific shield that provides a USB port:

The advantage of using this device is that it is configured to make it very easy to
create and manage a simple link between two XBee series 1 devices. To make this
work, you'll need the following four items:

•	 Make sure you have two XBee devices that support ZigBee series #1.
•	 You'll also need to purchase a small XBee-specific shield that provides a USB

port connection to one of the two devices. This will provide communication
from a host computer.

Chapter 10

[145]

•	 You'll also need to buy a shield that plugs into your Arduino so that you
can interface with the XBee devices. The following is an image of the shield
plugged into Arduino with the XBee device plugged in:

Now, let's start to configure your two devices to talk. You'll need to configure both
devices by plugging them into your host computer. Plug one of the devices into
the small XBee-specific USB shield and then connect the shield to your personal
computer. Your computer should find the latest drivers for the device. You should
see your device when you select the Devices and Printers selection from the Start
menu, as shown in the following screenshot:

Going Truly Mobile – the Remote Control of Your Robot

[146]

The device is now available to communicate via the IEEE 802.15.4 wireless
interface. We could set up a full ZigBee-compliant network, but we're just going to
communicate from one device to another directly. So, we'll just use the device as a
serial port connection. Double-click on the device and then select the Hardware tab;
you should see the following screenshot:

Note that the device is connected to the COM20 serial port. We'll use this to
communicate with the device and configure it. You can use any terminal emulator
program; I like to use PuTTY. If you don't have PuTTY, you can download it from
www.chiark.greenend.org.uk/~sgtatham/putty/download.html. This will
provide an executable file that you can run to talk with and configure the devices.

Perform the following steps to configure the device:

1.	 Open up PuTTY and select the Serial selection and, in this case, the COM20
port. The following screenshot shows you how to fill in the PuTTY window:

www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Chapter 10

[147]

2.	 Configure the terminal window and set the following parameters:
°° Speed (baud) as 9600
°° Data bits as 8
°° Stop bit as 1
°° Parity as None

Going Truly Mobile – the Remote Control of Your Robot

[148]

3.	 Make sure that you also select Force on in the Local echo option and check
the Implicit CR in every LF and Implicit LF in every CR checkboxes
(available under the Terminal tab in the Category selection), as shown in the
following screenshot:

4.	 Connect to the device by selecting Open.
5.	 Enter the following commands to the device through the terminal window:

Chapter 10

[149]

The OK response comes back from the device as you enter each command. The first
device is now configured. Remove it from the small XBee-specific shield and plug it
into the Arduino XBee shield.

Now, plug the second device into the small XBee shield and then plug it into the
PC. Note that it might choose a different COM port; go to the Devices and Printers
selection, double-click on the device, and select the Hardware tab to find the COM
port. Follow the same steps to configure the second device, except that there are
two changes. The ATMY value will be 2, and the ATDL value will be 1. The following
screenshot shows the terminal window for these commands:

The two devices are now ready to communicate.

Going Truly Mobile – the Remote Control of Your Robot

[150]

Enabling an XBee interface in the
Arduino IDE
Let's first set up the Arduino IDE for XBee that will be connected to your Arduino.
Once you have connected all the shields to your Arduino, simply connect your
Arduino with the USB cable to one of the computers. Bring up the Arduino IDE and
then type in the following code into the sketch window:

Chapter 10

[151]

This sketch is quite simple; you can turn on the on-board LED with remote
commands, 1 to turn it on and 0 to turn it off. Once you have compiled and uploaded
this code, disconnect the USB cable from the computer. You'll need to physically
change a switch setting on the wireless shield so that the device will now accept
commands from your XBee controller. It is on the opposite end of the shield and
looks like the following image:

When you are programming the device, you'll want this switch to be in the USB
location. When you are ready to communicate with the device, you'll want to
switch this to the MICRO setting. So, change it to the MICRO setting once your
sketch has finished compiling and uploading to Arduino. Then, connect your
Arduino to a battery.

Going Truly Mobile – the Remote Control of Your Robot

[152]

Now, connect the other XBee device via the small Xbee-specific USB shield to the
computer. Open PuTTY or any other terminal emulator window. Make sure that you
set the terminal emulator data rate to 9800 baud. In PuTTY, your configuration will
look like the following screenshot:

Now, open the terminal window. You should now be able to type 1 and the LED on
the remote Arduino will turn on. Typing 0 should turn off the LED. Your PuTTY
window should look like the following screenshot if you select Force on in the Local
echo option and if the Implicit CR in every LF and Implicit LF in every CR options
are checked:

Now, if your system is not working, there are a couple of ways to try and determine
what is going wrong. First and foremost, make sure Arduino is turned on and is
executing the correct code. Second, check to see that characters are being typed in the
PuTTY window. Third, check the baud rate of the PuTTY window. If this is too high,
you will see characters come through the system, but they will not be interpreted
correctly on Arduino.

Chapter 10

[153]

Connecting a Bluetooth shield to Arduino
Another way of communicating wirelessly with Arduino is through a Bluetooth link.
Bluetooth is a standard communications protocol that also works at 2.4 GHz. To
read more about the Bluetooth protocol, visit http://www.bluetooth.com/Pages/
Fast-Facts.aspx. There are several possible ways to connect your Arduino using
Bluetooth, but the most reliable one is a Bluetooth shield, which is available at
www.adafruit.com. The following is an image of the shield:

Unfortunately, you'll need to solder header pins onto the shield to mount it on your
Arduino, but then, you'll need no additional connections. You'll also need a USB
module if you want to communicate with your PC. The following is an image of an
adapter that is also available at www.adafruit.com:

The learn.adafruit.com/introducing-bluefruit-ez-link/overview website
will lead you through the details of how to get the shield up and working, paired
with your Bluetooth dongle, and communicating with your other Bluetooth devices.

http://www.bluetooth.com/Pages/Fast-Facts.aspx
http://www.bluetooth.com/Pages/Fast-Facts.aspx
www.adafruit.com
www.adafruit.com
learn.adafruit.com/introducing-bluefruit-ez-link/overview

Going Truly Mobile – the Remote Control of Your Robot

[154]

Connecting a Wi-Fi shield to Arduino
The final method you might consider to connect your Arduino wirelessly is with a
wireless LAN shield. I will not cover Wi-Fi in detail, but rather just show you how
to connect to Wi-Fi and point you in the general direction. Wi-Fi is clearly the most
complex of the different ways to communicate, but it is a very common wireless
communication tool used today. To know more about Wi-Fi, visit www.squidoo.
com/what-is-wifi or www.radio-electronics.com/info/wireless/wi-fi/
ieee-802-11-standards-tutorial.php.

In order to connect to a wireless network, you'll need a Wi-Fi shield. The following is
an image of the standard Arduino Wi-Fi shield:

Place the shield onto the Arduino Uno and you are ready to connect to a
wireless network.

Enabling the Wi-Fi shield in the
Arduino IDE
Now that the shield is attached, you can access the standard library examples for
Wi-Fi. Navigate to Examples | WiFi and you'll see a number of useful example
programs, as shown in the following screenshot:

www.squidoo.com/what-is-wifi
www.squidoo.com/what-is-wifi
www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11-standards-tutorial.php
www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11-standards-tutorial.php

Chapter 10

[155]

These are all very useful examples. Just to make sure that your shield works,
you can select ScanNetworks. Run this program and open Serial Monitor. This
program scans for available networks and should show a set of networks that are
possible to connect to.

However, if you want to configure your Arduino as a Wi-Fi web server, you can
access it via the Internet and get or send information to your Arduino via the Wi-Fi
network. An excellent example to get you started is SimpleWebServerWiFi. Here,
you enter your SSID and password and you can turn on an LED. I would suggest
that you change the LED to pin 13, and you can then turn on and off the on-board
LED via the instructions at the top of the file.

Going Truly Mobile – the Remote Control of Your Robot

[156]

Connecting a GSM/GPRS shield to
Arduino
There is one more way to connect remotely with Arduino, and this is via a GSM/
GPRS shield. You'll also need access to a phone plan and a SIM card. I will not
cover this in this chapter, so for more information, visit arduino.cc/en/Guide/
ArduinoGSMShield.

Summary
As you now know, there are several useful ways of connecting wirelessly with your
Arduino. You can choose a simple, inexpensive RF interface, a long-range XBee
interface, or a standard interface such as Wi-Fi. Now, your robot can go untethered,
needing only an occasional battery charge to keep it up and running.

In the next chapter, you'll learn how to connect a GPS device to your Arduino so that
you can find out where you are and plan your next move.

arduino.cc/en/Guide/ArduinoGSMShield
arduino.cc/en/Guide/ArduinoGSMShield

Using a GPS Device
with Arduino

You've got quite a set of tools now to build amazing robots. One part that is not yet
covered, however, is giving your robot an idea of where it is in the world. This is
particularly useful for autonomous robots that might have to travel long distances.
Keeping track of its location would be useful, so you can not only know where your
robot is, but also plan where it should go. In this chapter, you'll learn the following:

•	 How to connect a GPS device with Arduino using the I2C bus
•	 How to connect GPS capability using an Arduino shield

Let's get started with a brief GPS tutorial.

GPS tutorial
The Global Positioning System (GPS) is a system of satellites that transmits signals.
GPS devices use these signals to calculate a position. There are a total of 24 satellites
that transmit signals all around the earth at any given moment, but your device can
only see the signal from a much smaller set of satellites.

Each of these satellites transmits a very accurate time signal that your device can
receive and interpret. It receives the time signal from each of these satellites, and
then, based on the delay (the time it takes the signal to reach the device), it calculates
the receiver's position using a technique called triangulation.

Using a GPS Device with Arduino

[158]

The following two diagrams illustrate how the device uses the delay differences from
three satellites to calculate its position:

T1

GPS device

T2

T3

The GPS device is able to detect the three signals and the time delays associated with
receiving these signals.

Time delay refers to the time difference between the travel
time of each of these three signals.

In the following diagram, the device is at a different location, and the time delays
associated with the three signals have changed:

T1

GPS device

T2

T3

Chapter 11

[159]

The time delays of the signals T1, T2, and T3 can provide the GPS with an absolute
position using a mathematical process called triangulation. Triangulation works like
this: since the position of the satellites is known, the amount of time that the signal
takes to reach the GPS device is also a measure of the distance between that satellite
and the GPS device. To simplify, let's show an example in two dimensions. If the
GPS device knows the value of the distance to one satellite based on the amount of
time delay, you can draw a circle around the satellite at that distance and know that
your GPS device is on that sphere, as shown in the following diagram:

distance to edge
of circle

T1 =

If you have two satellite signals and know the distance between the two, you can
draw two circles as shown in the following diagram:

distance to edge
of circle

T2 =

distance to edge
of circle

T1 =

Using a GPS Device with Arduino

[160]

However, since you know that you can only be at points on the circle, you must be
at one of the two points that are on both circles. Adding an additional satellite would
eliminate one of these two points, thus providing you with an exact location. You
need more satellites if you are going to do this in all three dimensions.

Now that you know how a GPS device works, let's connect one to Arduino.

Connecting a GPS device directly to
Arduino
The first step is to find a suitable GPS device. There are many choices, but what you
are looking for is a GPS device that can communicate via a bus that is available on
Arduino. One possible device is VPN1513 GPS Receiver w/ Antenna, marketed by
Parallax and available on their online store, www.parallax.com. The following is an
image of the device:

Fortunately, this unit comes with its very own antenna, and you'll connect this to
the RF (gold) connector on the board. This particular device interfaces using the
I2C interface, one that your Arduino supports. In order to connect the device, you
connect the pins to the board. The following is an image of these pins:

www.parallax.com

Chapter 11

[161]

You'll connect your Arduino using the following connections:

Arduino pin GPS cable pin
5V 5V
GND GND
4 TX
3 RX

Now that the two devices are connected, you can access the device via the
Arduino IDE.

Accessing the GPS device from the
Arduino IDE
Now that your device is connected, you'll want to access the information from it
programmatically. To do this, perform the following steps:

1.	 Copy the libraries and example programs for Arduino from
www.parallax.com/downloads/vpn1513-gps-receiver-w-antenna-
arduino-example-code.

2.	 Install the TinyGPS library into the libraries directory of Arduino.
3.	 Then, open the test_with_gps_device example, as shown in the

following screenshot:

www.parallax.com/downloads/vpn1513-gps-receiver-w-antenna-arduino-example-code
www.parallax.com/downloads/vpn1513-gps-receiver-w-antenna-arduino-example-code

Using a GPS Device with Arduino

[162]

4.	 When you run that program and open the Serial Monitor tab, you should see
the following display:

The information shows the status of the GPS receiver as well as the position, speed,
time, date, and direction information. The status indication is the first column of data
for each reading. This is important as it will tell you whether your device is reading
enough satellites to get a valid positional calculation. This particular output indicates
that even with your antenna, you are not getting a valid output. This means that your
device cannot sense enough satellites to accurately calculate your current position.

Take the unit outside or at least near a window, and your device should be able to
connect to enough satellites to get a value reading. Also, your display will change to
the one seen in the following screenshot:

Chapter 11

[163]

The following table offers an explanation of the important columns of data:

Column heading Explanation
Stats This is the number of satellites that the unit is receiving. This will

need to be three for the GPS unit to get a valid position.
Latitude This is the current latitude reading.
Longitude This is the current longitude reading.
Alt This is the current altitude reading.
Course (from GPS) This is the current course reading from the GPS.
Speed (from GPS) This is the current speed reading from the GPS.

For more information on the TinyGPS library, the data it gets from the GPS, and the
purpose of all of the columns, visit arduiniana.org/libraries/tinygps/.

Connecting a GPS shield to Arduino
Now that you have an idea of how to connect a GPS device through the I/O pins
on Arduino, let's look at a different way to provide GPS information to Arduino,
through a GPS shield. There are several shields available, including one from Dexter
Industries that is available at many online retailers, such as www.amazon.com.

To connect to Arduino, simply push the shield on your Arduino device so that it
looks like the following image:

You can use the pin labels to match the pins on Arduino. Now, it is securely on top
of your Arduino device; let's look at how to access the device via the SW.

arduiniana.org/libraries/tinygps/
www.amazon.com

Using a GPS Device with Arduino

[164]

Accessing the GPS shield from the
Arduino IDE
The GPS shield provides the hardware interface to the GPS device. Now, you
can access the GPS data from inside the Arduino IDE. To do this, perform the
following steps:

1.	 As with most devices, the first step is to download the appropriate libraries.
For this device, you'll find the libraries at www.dexterindustries.com/
manual/arduino-shields/gps-shield/ under the Arduino GPS Shield
Drivers (zip) selection.

2.	 Unzip the dGPS file and copy the dGPS file folder to your Arduino's libraries
directory. You'll also need to download another three examples from this
page. These aren't really set up to put in the Examples directory of dGPS
and open automatically using the File | Examples process, but you can
simply open them by navigating to File | Open command.

3.	 Once you have the library installed, let's write a simple program that reads
the values from the GPS device. Open the Arduino IDE and type in the
following code:

www.dexterindustries.com/manual/arduino-shields/gps-shield/
www.dexterindustries.com/manual/arduino-shields/gps-shield/

Chapter 11

[165]

4.	 Now, upload the preceding code to Arduino and then open Serial Monitor.
You should see something like the following screenshot:

These are the GPS readings from the device. As noted in the previous section, Status
tells you whether or not your device is locked to enough satellites. In this case, V
indicates that our device is not. You may need to go outside a building to connect
with enough satellites to get a valid reading. A valid reading would look like the
following screenshot:

Using a GPS Device with Arduino

[166]

The library for this device is quite extensive, and you can get back much more than
your position. In fact, Example 2: Calculating GPS distance to destination, azimuth (angle
of travel) to destination. (zip) that you can download from www.dexterindustries.
com/manual/arduino-shields/gps-shield/ will show you how to use the library
to enter a desired latitude and longitude value and return the distance as well as the
angle of travel to the desired location.

Summary
In this chapter, you've learned how to connect your robot to the GPS system.
Now, your robot will have a sense of where it is. It should also be able to roll or
walk, sense its surroundings, and even communicate with a remote computer.
However, GPS is particularly useful when you build sailing or flying robots. In the
upcoming chapters, you'll use these capabilities to build robots than can fly and
even go under water.

www.dexterindustries.com/manual/arduino-shields/gps-shield/
www.dexterindustries.com/manual/arduino-shields/gps-shield/

Taking Your Robot to Sea
Now that you have the set of tools, let's build some amazing robots. Let's start by
exploring robots that can go either in or under water. I won't cover every detail in
this chapter, but I will discuss some additional capabilities that you'll need in order
to complete these more advanced projects. In this chapter, you'll learn the following:

•	 How to build a sailing robot
•	 How to build a remote operated vehicle (ROV) using Arduino that can

explore underwater

Let's start by sailing!

Building an automated sailing platform
Certainly, one of the most impressive ways to navigate the waters is in a sailing
vessel. Let's start with an RC sailboat. These are available at many hobby stores,
either retail or online. The following is an image of one such platform:

Taking Your Robot to Sea

[168]

This sailboat is ready to sail via radio control. This means that it has two servos
mounted inside: one to control the sail and the other to control the rudder. The
following is an image of these two servos that are connected to the sail and rudder:

In order for your sailboat to sail itself, it will need several key capabilities. First, it
should be able to control the servos; you'll use the techniques you learned in
Chapter 7, Controlling Servos with Arduino, to move the rudder and trim the sails. You
might want to add the GPS capability that you discovered in Chapter 11, Using a GPS
Device with Arduino. You will want to control the system without a wired connection,
so you can use the principles that you learned in Chapter 10, Going Truly Mobile – the
Remote Control of Your Robot.

One additional item that you might want to add for a fully automated system is a
wind sensor. The following is an image of a wind sensor. A fairly inexpensive one is
available at www.moderndevice.com:

www.moderndevice.com

Chapter 12

[169]

You can mount the wind sensor on the mast if you'd like; I used a small piece
of heavy-duty tape and mounted it on the top of the mast, as shown in the
following image:

To add this to your system, you'll also need a way to take the analog input from
the sensor and send it to Arduino. Notice that the device has three connections that
you'll be using: GND, +V, and Out. Connect your Arduino to the wind sensor using
the following connections:

Arduino pin Wind sensor pin
5V +V
GND GND
A1 RV
A0 TMP

Taking Your Robot to Sea

[170]

Accessing the device in a sketch is straightforward; in fact, the manufacturer has
included an example sketch at github.com/moderndevice/Wind_Sensor. Unzip,
open, and upload the WindSensor sketch. Then, open Serial Port, set the baud
rate to 57600 baud, and blow with your mouth on the sensor. You should see
something like the following screenshot:

Now you have a way to measure the wind!

By the way, here is where you can take advantage of the stackable nature of the
devices. The following is an image of my Arduino board, the Wireless SD shield with
an XBee device, and the GPS shield, all connected:

github.com/moderndevice/Wind_Sensor

Chapter 12

[171]

The wind sensor is connected to the holes available on the Wireless SD shield.
You'll also need to add the servo control, but now, you have all the capabilities you
need to build your Arduino-controlled sailing vessel. However, Arduino is not
limited to just sailing above the water. Let's see how you can build a robot that can
go under water.

Building an Arduino-powered underwater
ROV
An ROV offers an entirely different way to use Arduino to explore a new world. This
project is a bit different in two ways. First, there is quite a bit of mechanical work to
do, and second, it is almost impossible to send wireless signals through water. So,
you are going to use a tethered control line to give your robot direction.

Building an ROV
There are several possible approaches to building your ROV. Although controlled
by a different processor, the mechanical design at openrov.com/page/openrov-2-0
is quite elegant, and you could certainly build the HW yourself and then integrate
your Arduino. At openrov.com/page/open-rov-designs-1 is a simpler yet similar
design that incorporates Arduino. Another design that is very different from the
first one is available at www.instructables.com/id/Underwater-ROV/. Both could
certainly use Arduino as the motor control.

My physical design is based more on the latter design that mostly uses plastic piping,
as shown in the following image:

openrov.com/page/openrov-2-0
openrov.com/page/open-rov-designs-1
www.instructables.com/id/Underwater-ROV/

Taking Your Robot to Sea

[172]

One of the most important components of your ROV is the clear plastic casing, as
you need to be able to use a camera to see the world underwater. The following is
an image of the one I used:

This came from a company called EZ Tops and can be ordered online at
www.eztopsworldwide.com/smalldomes.htm. I put this on the other end of my
ROV, assembled with a gasket and some small bolts. Whether you use a round
design or a more traditional square design, you'll want a clear plastic so that you
can get a good view of the underwater world.

Controlling brushless DC motors with Arduino
Whatever physical design you choose, you'll need to control the motors, and
Arduino is well suited for this task. In this case, I chose fairly standard brushless
DC motors and then fitted them with RC boat propellers. These motors work just
fine underwater and are easy to control with RC electronic speed controllers (ESCs).

For this project, you'll need four brushless DC motors and four ESC controllers.
You'll need to make sure that the ESCs will be able to control the motors to go both
forward and backward. The following is an image of one such unit:

www.eztopsworldwide.com/smalldomes.htm

Chapter 12

[173]

This particular unit is a Turnigy Trackstart 25A ESC, made normally for an RC car
and available at many RC outlets, both retail and online. The connections on this
unit are straightforward. The red and black wires with plugs go to an RC battery, in
this case, a 2S 7.4 volt LiPo RC battery. The other three plugs go to the motor. This
particular ESC comes with a switch; you won't use it in this particular project. The
last connection is a three-wire connector, similar to a servo connection. You'll connect
this to Arduino. The following diagram shows the connections:

Taking Your Robot to Sea

[174]

For details on the connection between the ESC and brushless DC motor, check your
ESC documentation. Now that you've connected your motor, a simple sketch to
control the motor is shown in the following screenshot:

Note that you will use the servo control process to control the speed of your motor.
With these ESCs, 0 will be full speed backward, 180 will be full speed forward, and
90 will stop the motor. The setup() function sets the initial speed to 90, just so that
your motors won't take off right from the start.

Chapter 12

[175]

Now, open the Serial Monitor tab and enter a speed value close to 90; you'll see the
following screenshot:

The motor should spin both forward and backward. You don't necessarily need to do
so, but ESCs can also be programmed. I won't cover that in this chapter; check your
ESC documentation for the additional HW required. The ESC may also want to be
calibrated. The procedure will change based on your particular ESC, but the basic
steps are as follows:

1.	 Disconnect your motor.
2.	 Power up the ESC by applying maximum forward throttle; in this case,

speed = 180.
3.	 You'll hear a tone and some beeps. Then, after a few seconds, you will hear

a confirmation tone, and the LED will blink a few times. This means that the
ESC has calibrated maximum throttle.

4.	 Now, apply minimum throttle, or speed = 0. The unit should emit some
tones, and the LED will blink. Now, minimum throttle has been calibrated.

5.	 Now, go to the middle throttle, or speed = 90 in this case, and the unit will
emit some tones and blink. Your unit is now calibrated.

Taking Your Robot to Sea

[176]

You'll use four of the digital I/O pins, one for each motor. Controlling the speed
and direction of each of these motors will allow you to move your ROV forward,
backward, up, and down, as well as turn your ROV. How much speed you apply
will depend on both the size of your ROV and the size of your motors.

Now, your ROV is maneuverable. To complete your ROV project, you'll need two
additional capabilities. The first is a LAN shield for your Arduino so that you can
control and communicate with your ROV via the LAN cable that will run from your
ROV to the surface. The second is a way to see underwater. Let's tackle the control
problem first.

Connecting a LAN shield to Arduino
The ROV will be controlled from a computer on the surface through a very long
LAN cable. This will require you to add LAN capability to your Arduino, so you will
need to add a LAN shield to your project. There are several shields available; the
following is an image of a standard Arduino LAN shield available at arduino.cc:

arduino.cc

Chapter 12

[177]

When you have obtained the shield, attach it to the top of your Arduino. Now, you
can open the Arduino IDE, and the first example you'll use is a simple web page
access of data. To do this, open the WebServer example by navigating to File |
Examples | Ethernet | WebServer, as shown in the following screenshot:

Using a web server will allow you to access your Arduino via the LAN cable that
will be connected to your ROV from a web browser on a computer at the surface.
To connect with the device, you'll need to set the appropriate address for the
Arduino web page.

Taking Your Robot to Sea

[178]

To do this, run ipconfig from the command prompt (under the Accessories
folder) on your computer. When you run this, you should see something like
the following screenshot:

You'll now need to edit the WebServer sketch to set a new address that uses the same
first two numbers in the address. This is where you'll change the code as follows:

Chapter 12

[179]

Open the Serial Monitor tab and you should see the following screenshot:

Now, open a web page and type in the IP address you set in the sketch, and you
should see the following screenshot:

You'll need two additional capabilities to control your ROV. The first is the ability
to use the LAN connection to control your motors. You can do this through a web
page interface.

The tutorials at startingelectronics.com/tutorials/arduino/ethernet-
shield-web-server-tutorial/ and www.instructables.com/id/Arduino-
Ethernet-Shield-Tutorial/ provide lots of details on how to access your Arduino
via a web page, and www.power7.net/arduinoethernet.html shows how to
incorporate even more examples of control using a web page.

startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/
startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/
www.instructables.com/id/Arduino-Ethernet-Shield-Tutorial/
www.instructables.com/id/Arduino-Ethernet-Shield-Tutorial/
www.power7.net/arduinoethernet.html

Taking Your Robot to Sea

[180]

In this example, you'll use some simple code to control the speed of the four motors:
two to move the ROV forward and backward and two to move the ROV up and
down. The following screenshot shows the first part of the Arduino sketch, the
initialization part:

Chapter 12

[181]

This sets up the web configuration and declares all of your servos to control the four
motors. The next part is the web server part of the code in the loop() function, as
shown in the following screenshot:

Taking Your Robot to Sea

[182]

This part parses the input from the web page and calls the functions that cause your
ROV to go forward, backward, up, down, or stop. The final part of the loop creates
these controls, as shown in the following screenshot:

Chapter 12

[183]

The final part of the sketch is a function to create the header for the web page and the
functions to control the motor, as shown in the following screenshot:

Taking Your Robot to Sea

[184]

You can now run this sketch by first opening the Serial Monitor tab and then
opening a web page and typing the address at the top of the web page. You should
then see the following interface to control the ROV:

In the Serial Monitor tab, you should see the commands come through, as shown in
the following screenshot:

Chapter 12

[185]

If your motors are connected to the control pins, as covered earlier in the chapter,
your motors should be ready to drive your ROV up, down, backward, forward, or
stop all motors. You may have to adjust the settings based on the direction of your
motors' spin and also the desired speed.

Accessing a camera for your project
Now that you have established connection via a LAN connection, the second
capability you'll need is to access a camera to see where you are going. One of the
most significant questions is whether or not connecting a camera to Arduino will work
in this application. There are several cameras that can be accessed either through a
standard UART RX/TX or I2C interface. The following is an image of one such unit,
available from RadioShack:

There are two ways to connect the camera. The first is through a UART interface,
the other is through an I2C interface. Connecting the camera and getting it to
write the images to the SD card interface is a bit daunting, but there is an example
sketch available at www.radioshack.com. There is also a tutorial that looks
promising at http://makezine.com/projects/crittergram-capture-cam/.
Be forewarned that getting this to work is not easy; there is a significant amount of
configuration required.

You will also find that the refresh rate on any Arduino-based camera system will be
marginal at best. The challenge is that there is no high-speed bus between the camera
and Arduino, and you'll be saving the pictures on the SD card for later transmission.

www.radioshack.com
http://makezine.com/projects/crittergram-capture-cam/

Taking Your Robot to Sea

[186]

For this application, I chose a different solution: I purchased an IP camera that
I could connect to the LAN cable. The following is an image of the unit:

I chose this particular camera because it is inexpensive, less expensive than camera
shields available for Arduino, and its small size made it easy to mount on the ROV.
With this particular unit, you can issue commands to turn it from side to side and up
and down, and turn on LED lighting, which would make it a good choice for dark
situations. If you go with this choice, you will have to add a switch to your ROV so that
both the motor control and the camera can connect to the LAN cable from the surface.

Your surface computer will now have two web pages, one to access and control the
camera and the web page you just created to control the motors. The following is an
image of the motor control web page:

Chapter 12

[187]

Note that you can change the direction of the camera right from the web page, and
you can also turn on the lights. You're now ready to go underwater. Just a word of
advice: be prepared to add significant weight to your ROV. I had to add 25 pounds
of lead to mine to get it to do anything but bob on top of the surface!

Summary
In this chapter, you've tackled a sailing robot and a robot that can go underwater.
You've learned how to add unusual sensors such as the wind sensor on the
sailboat. You've also learned how to control a project via a LAN connection across
a significant distance with the ROV project. In the next chapter, you'll move on to
projects that can fly.

Robots That Can Fly
In this chapter, we'll cover robots that can fly. As with the last chapter, we won't
cover every detail in this chapter, but we will again discuss how to bring all the
different capabilities that we have covered to our new projects. We'll also discuss the
additional capability that you will need. In this chapter, you'll learn the following:

•	 How to build an Arduino-operated RC airplane
•	 How to build an Arduino-operated quadcopter

Let's get started!

Building an Arduino-operated plane
At this point, you have all the tools you need to add Arduino to an RC-controlled
airplane. So, let's tackle that project. You're going to add control so that you can
control your RC plane from a phone, tablet, or any device with Bluetooth capability.
Then, you'll learn how to add some of the additional sensors you've used in
other projects, such as GPS, to make your RC plane even more intelligent by
making it autonomous.

Robots That Can Fly

[190]

First, find an RC airplane. They are available at most RC hobby stores and online.
I ordered this one from amazon.com:

You could use one of the many different makes and models of RC planes for this
project, as long as they meet a few requirements. If you are new to RC airplanes and
how they operate, you might first read about them at www.instructables.com/
id/Beginners-Guide-to-Radio-Control-Airplanes/. The first requirement for
this project is that the plane must be RC controlled and the RC unit must control
the servos and speed of the unit. The second requirement is that it should be large
enough so that Arduino can fit on the plane without taking up too much room. As
the programming required for this project is minimal, you can use a fairly small
Arduino to control the plane. Finally, I chose a plane with a rear-facing propeller.
We have found that many times, the plane will come down nose first, and having
a rear-facing propeller helps the plane survive more crash landings. You will have
several of those.

If this is your first project, you may want to order an RC airplane with simple
controls, perhaps with two control surfaces and a speed control. These will often
be referred to as 3 Channel RC airplanes.

The first step will be to locate your control servos, speed control, and the wires that
are connected to them. In this particular airplane, the servos are integrated with the
receiver, so you'll need to remove the entire board and replace it with two micro
servos. A suitable micro servo is the HS-55 from Hitec, available at many hobby
stores and most electronics online retailers.

amazon.com
www.instructables.com/id/Beginners-Guide-to-Radio-Control-Airplanes/
www.instructables.com/id/Beginners-Guide-to-Radio-Control-Airplanes/

Chapter 13

[191]

I placed my micro servos using velcro, and they fit very nicely in the opening.
The following image shows all the control connections for this particular RC
airplane after replacing the servos:

You'll need to connect the two servos, the red and black wires from the motor, and
the red and black wires from the battery to your Arduino. The control signals you'll
need to provide with your Arduino are the two servos for the control surfaces, and
the DC motor that is attached to your propeller is the control for speed.

Now, you'll need to add your Arduino. You can certainly use one of the
standard Arduinos that you've used in the previous projects, but there are also
some special-purpose Arduinos that are excellent for this particular application.
One in particular is small and comes with wireless communication; it is called
the RFduino.

Robots That Can Fly

[192]

This device uses Bluetooth technology to communicate with other devices. It is
available at several online electronics retailers. The following is an image of the unit:

You'll also need a couple of the shields that are available for the RFduino, in
particular, the USB development shield, the battery shield, and the servo control
shield. The following is an image of all three:

Chapter 13

[193]

Each shield performs an important function, as follows:

•	 USB development shield: This will allow you to develop on the RFduino
platform using a standard computer

•	 Battery shield: This will supply the power when you are flying your airplane
•	 Servo Control shield: This will interface with the RC plane servos

and speed controller

So, let's start building.

First, plug the RFduino into the USB shield, and then plug the servo control shield
into the RFduino. Now, plug the USB into the USB port of your computer. Then,
follow the instructions at www.rfduino.com/wp-content/uploads/2014/04/
RFduino.Quick_.Start_.Guide_.pdf to get the entire system up and connected.
You'll need to download a beta version of the Arduino IDE, Version 1.5; however,
you may want to keep the current released version as well. Just make sure you
remember which version is in which location.

For your application, let's start by opening a simple example program that allows
the RFduino to control the servos. To do this, navigate to Examples | RFduinoBLE |
Servo as shown in the following screenshot:

www.rfduino.com/wp-content/uploads/2014/04/RFduino.Quick_.Start_.Guide_.pdf
www.rfduino.com/wp-content/uploads/2014/04/RFduino.Quick_.Start_.Guide_.pdf

Robots That Can Fly

[194]

The code is very simple, and it is as follows:

The sketch takes in the Bluetooth input and then translates it into a selection to
control the servo. If you need to, review the information in Chapter 7, Controlling
Servos with Arduino. You'll be controlling your servos using the servo controller,
setting the servo and the angle desired by your RC plane. For the speed, you'll also
use the servo controller; plug the black ground connection into the GND on the servo
controller and the red control signal into the control signal connector spot on the
servo controller. Just remember that 0 to 180 is the speed control value.

Chapter 13

[195]

You'll now need an application on your tablet or phone to control the RFduino over
the Bluetooth link. If you are adventurous enough to develop your own application,
visit http://www.rfduino.com/download-rfduino-library/ for example
programs. Most of these example programs are already created and on the iPhone
app page. To test your control, you can download these apps and run them. The
RFduino servo control app should allow you to control your servos and speed so
that you can control your plane remotely.

The RFduino team has not yet created an Android app, but if you have an Android
device, there are already several Android BT Arduino control applications on the
Google Play store that can be of use. For example, the Arduino BT Joystick PRO app
can be used to communicate with your device. You'll need to translate the Bluetooth
commands as they come in from the Bluetooth interface and then send control
signals to the various control surfaces of your airplane, but this will give you more
control over your airplane.

This will take a bit of Android development programming, and you'll need to make
changes so that the up, down, left, and right arrows adjust the control surfaces of
your airplane appropriately. Also, be careful; Bluetooth does have a limited range.
So, don't get much more than 50 meters from your plane, or it might just fly away.

Once you have your plane flying, you can add the digital compass discussed in
Chapter 9, Even More Useful Sensors. If you know direction and calibrate your speed,
your Arduino can even have a sense of where it is. You could even, in the absence of
any control commands from the Bluetooth interface, fly your airplane in circles.

Even more interesting would be to add the accelerometer/gyro capability from
the same chapter. Connecting and calibrating the device would give your Arduino
information on when the airplane was flying level or when it is going up or down
or rolling on its side. You can then use your controls to force the plane back into the
desired position. The specifics on this type of control are too complex to detail in
this chapter, so for more information, visit www.instructables.com/id/Intro-to-
Model-Airplane-Autopilot/ and hacknmod.com/hack/make-a-uav-spyplane-
using-the-arduino/.

http://www.rfduino.com/download-rfduino-library/
www.instructables.com/id/Intro-to-Model-Airplane-Autopilot/
www.instructables.com/id/Intro-to-Model-Airplane-Autopilot/
hacknmod.com/hack/make-a-uav-spyplane-using-the-arduino/
hacknmod.com/hack/make-a-uav-spyplane-using-the-arduino/

Robots That Can Fly

[196]

Building a quadcopter platform
Quadcopters are a unique subset of flying platforms that have become very popular in
the last few years. They are a flying platform that utilize the same vertical lift concept
as helicopters; however, they employ not one but four motor/propeller combinations
to provide an enhanced level of stability. The following is an image of such a platform:

The quadcopter has two sets of counter-rotating propellers, which simply means that
two of the propellers rotate clockwise and the other two rotate counter-clockwise
to provide thrust in the same direction. This provides a platform that is inherently
stable. Controlling the thrust of all four motors allows you to change the pitch, roll,
and yaw of the device. The following is an image that may be helpful:

Changing thrust equally
on all four motors -
altitude changes

Changing thrust on two
motors - yaw changes

Changing thrust on one
motor - roll/pitch
changes

Chapter 13

[197]

As you can see, controlling the relative speeds of the four motors allows you to
control the various ways in which the device can change position. To move forward,
or really in any direction, we would combine a change in roll/pitch with a change in
thrust so that instead of going up, the device would move forward, as shown in the
following diagram:

Applying thrust to all
motors, but more on
one motor - roll/pitch
changes and the
platform moves forward

In a perfect world, you might know exactly how much control signal to apply to
get a certain change in the roll/pitch/yaw or altitude of your quadcopter, as you
know the components you used to build your quadcopter. However, there are
simply too many aspects of your device that can vary to know this well enough to
rely on a fixed set of signals. Instead, this platform uses a series of measurements of
its position, pitch/roll/yaw, and altitude and then adjusts the control signals to the
motors to achieve the desired result. We call this feedback control. The following is a
diagram of a feedback system:

Desired altitude +
-

Change in
motor control

Actual altitude

In a feedback system, the desired altitude is compared to the
actual altitude, and the amount of difference then drives the
control signals to the motors to change the actual altitude.

As you can see, if your quadcopter is too low, the difference between the desired
altitude and the actual altitude will be positive, and the motor control will increase
the voltage to the motors, thus increasing the altitude. If the quadcopter is too high,
the difference between the desired altitude and the actual altitude will be negative,
and the motor control will decrease the voltage to the motors, thus decreasing the
altitude. If the desired altitude and the actual altitude are equal, the difference
between the two will be zero, and the motor control will be held at its current value.
Thus, the system stabilizes even if the components aren't perfect or if a wind comes
along and blows the quadcopter up or down.

Robots That Can Fly

[198]

One application of Arduino in this type of robotic project is to actually coordinate
the measurement and control of the quadcopter's pitch/roll/yaw and altitude. To
accomplish this task, there are two approaches. First, configure Arduino and hook
up the gyroscope, altimeter, GPS, and magnetic direction-finding sensors, and code
all of the control algorithms yourself. The detail for all of this is beyond the scope of
this book, but there are several excellent sites that support this. They can be found
at aeroquad.com/content.php?s=f2b480cc710c1d5611dd3dbe254cee9c and
jbquad.blogspot.com/2013/02/intro-to-project-quadcopter.html. You can
also visit github.com/baselsw/BlueCopter, which provides a sketch that you
could start with.

The second and certainly the easier one of the two approaches is to choose ArduPilot
as a flight-control system; Arduino designed it specifically for this application. The
following is an image of this unit:

This flight system uses a flight version of Arduino to do the low-level feedback
control we talked about earlier. The advantage to this system is that you won't need
to create and debug lots of Arduino kit.

Either way, you'll need to build a quadcopter:

•	 Purchase a kit and construct it yourself
•	 Purchase a quadcopter that is already assembled

There are a number of assembled quadcopters available that use the ArduPilot
flight controller. One place to start is at ArduPilot.com. This will give you some
information on the flight controller, and the store has several quadcopters that are
already assembled. If you are thinking that assembling a kit is the right approach,

aeroquad.com/content.php?s=f2b480cc710c1d5611dd3dbe254cee9c
jbquad.blogspot.com/2013/02/intro-to-project-quadcopter.html
github.com/baselsw/BlueCopter
ArduPilot.com

Chapter 13

[199]

try www.unmannedtechshop.co.uk/multi-rotor.html or www.
buildyourowndrone.co.uk/ArduCopter-Kits-s/33.htm, as each of these not only
sell assembled quadcopters, but kits as well.

If you'd like to assemble your own kit, there are several good tutorials about
choosing all the right parts and assembling your quadcopter. Visit blog.
tkjelectronics.dk/2012/03/quadcopters-how-to-get-started, blog.
oscarliang.net/build-a-quadcopter-beginners-tutorial-1/ and
http://www.arducopter.co.uk/what-do-i-need.html.

All of these links have excellent instructions. The following is an image of a
quadcopter that we built; it uses the ArduPilot:

No matter which path you choose, another excellent source for information is
http://code.google.com/p/arducopter. This gives you some information on how
the ArduPilot works and also talks about Mission Planner, the open source control
SW that will be used to control the ArduPilot on your quadcopter. This SW runs on
your PC and communicates with the quadcopter in one of two ways: either directly
through a USB connection or through a radio connection.

The first step in working in this space is to build your quadcopter and get it working
with an RC radio. When you allow Arduino to control it later, you may still want to
have the RC radio handy, just in case things don't go quite as planned.

www.unmannedtechshop.co.uk/multi-rotor.html
www.buildyourowndrone.co.uk/ArduCopter-Kits-s/33.htm
www.buildyourowndrone.co.uk/ArduCopter-Kits-s/33.htm
blog.tkjelectronics.dk/2012/03/quadcopters-how-to-get-started
blog.tkjelectronics.dk/2012/03/quadcopters-how-to-get-started
blog.oscarliang.net/build-a-quadcopter-beginners-tutorial-1/
blog.oscarliang.net/build-a-quadcopter-beginners-tutorial-1/
http://www.arducopter.co.uk/what-do-i-need.html
http://code.google.com/p/arducopter

Robots That Can Fly

[200]

When the quadcopter is flying well based on your ability to control it using the RC
radio, you should then begin to use the ArduPilot in the autopilot mode. To do this,
download the Mission Planner SW from ArduPilot.com/downloads. You can then
run the SW, and you should see something like the following screenshot:

You can then connect your ArduPilot to the SW and click on the CONNECT button
in the upper-right corner of the screen. You should then see something like the
following screenshot:

ArduPilot.com/downloads

Chapter 13

[201]

We will not walk you through how to use the SW to plan an automated flight path;
there is plenty of documentation for that on the ArduPilot.com website. If you
connect a GPS device to the unit, you can even ask your quadcopter to fly to
specific points.

Summary
In this chapter, you learned how to build an Arduino-controlled airplane. You also
learned how to build an Arduino-controlled quadcopter. Now, your robot can sail,
go underwater, and even fly. In the next chapter, I'll introduce you to a number of
smaller projects that can be done quickly and very inexpensively but produce some
amazing results.

ArduPilot.com

Small Projects with Arduino
We've covered all kinds of mobile robots. In this chapter, for a change of pace, you'll
learn how to build small Arduino-based projects. By small, I mean not only small in
size, but small in effort. In this chapter, you'll learn the following topics:

•	 How to modify a small, walking robot by adding Arduino
•	 How to build wearable projects that can add style and flair to your robot

First, let's build some really small robots with Arduino.

Small robots and Arduino
We covered some large robots in the earlier chapters; in this section, you'll build
much smaller robots. You can build these small robots from scratch, but I've found
that it is much easier and less expensive to take toy robots, which provide the basic
capabilities, and add Arduino to them to make them significantly more powerful.

In this first project, you will start with a commercially available robot without a lot of
autonomous capability, and then, you'll add Arduino and a sonar sensor and expand
the capability of the robot. The robot you'll start with is the Hexbug Spider, which is
available at many toy stores and from most online retailers. For specifics, here's the
website: www.hexbug.com/mechanical/spider/.

www.hexbug.com/mechanical/spider/

Small Projects with Arduino

[204]

The following is an image of one such unit:

As this robot is very small, you're going to need a very small Arduino so that
you don't load the system down too much. One possible choice is an extremely
small implementation of Arduino, the TinyDuino. This is available at www.tiny-
circuits.com. The following is an image of the TinyDuino processor board with a
standard USB connector to give you some idea of the size:

www.tiny-circuits.com
www.tiny-circuits.com

Chapter 14

[205]

You'll need to order the USB programmer board as well so that you can program your
TinyDuino. You'll also need some other additional pieces to complete this project.
The Hexbug operates by controlling two motors. The first motor spins the top of the
device, and when it stops, the spider will go in the new direction as defined by the
new location. The other motor moves the spider forward and backward. Although the
motors can go both directions, the motor that moves the top of the device goes a full
360 degrees, so you can drive both motors in the forward direction and your Hexbug
can still go in any direction you'd like it to go. So, you can drive the Hexbug directly
from Arduino (although if you'd like, you can add the motor driver board from
TinyCircuits). You will need a proto board so that you can connect to the motors and
access the sonar sensor. The TinyDuino provides one of these as well. You'll stack this
on top of the TinyDuino and the USB interface board.

Perform the following steps to add Arduino to the Hexbug:

1.	 The first step is to open up the spider and disconnect the control board. Do
this by first unscrewing the top plate in the same way you'd unscrew it to
change the batteries on the spider. Then, take out the three screws that are
part of the top plate and expose the insides of the robot. You'll find a small
controller board with six connections. Two of these connections, the white
and black wire combinations, go to the two motors that control the direction
and the forward/backward motion of the spider. From the top plate comes a
red and black wire that supplies the power. Cut these wires. This is what the
bottom part of the robot should now look like:

Small Projects with Arduino

[206]

2.	 You'll want to add extension wires onto each of the six wires, so you can
connect them to the TinyDuino that you'll mount on top of the robot. Once you
have done this, route these wires out the hole to the left by removing the small
controller board, and then reattach the top of the robot and the top plate.

3.	 You'll mount your TinyDuino and the associated shields on the top of the
robot. You can do this by mounting the TinyDuino shields together using the
TinyDuino mounting kit available at tinycircuits.com. However, you'll
first want to solder some wires to the proto shield so that you can talk to the
other sensors you'll want on the robot. For this project, you'll need to control
two DC motors and the sonar sensor. The specifics for the sonar sensor
were covered in Chapter 8, Avoiding Obstacles Using Sensors. Based on this
information, you'll need access to pins 9 and 10 for the two motors and VCC,
GND, and pins 12 and 11 for the sonar sensor.

4.	 You'll need to solder wires to the proto shield. The following is an image of
the shield, which will give you an indication of where to add the wires:

tinycircuits.com

Chapter 14

[207]

5.	 When you have these wires attached to the proto board, you can connect
all the TinyCircuits parts together. Now, you can start connecting the
Hexbug to the TinyDuino. Let's start by controlling the two motors. You'll
need to connect the rotating motor to pin 9 and GND and then connect the
movement motor to pin 10 and GND on the proto board. You'll need to
make several connections to the GND connection on the proto board, four
to be exact, so you may want to make a four-to-one wire connector for this
purpose. The following is an image of the board mounted and connected to
the two motors:

Small Projects with Arduino

[208]

Now, let's try and see whether the spider's movement is again functional—this time,
driven by the TinyDuino. To do this, you'll need to create just a bit of code:

When you upload the code, your robot should move forward slightly, then turn,
move forward again, then turn, and so on. You can adjust the amount of movement
and turn by changing the delay (500); statement in the code. Now, your robot can
move around.

If you put a battery into the holder on the TinyDuino, your robot can even move
when disconnected from the computer. I like to keep my USB connection board in
this configuration; it makes it easier to hook up and modify the code.

Now, you can move around, but you'll certainly still bump into barriers. So, let's add
the sonar sensor. To add the sensor, make the following connections:

Arduino pin Sensor pin
5 V VCC
GND GND
12 Trig
11 Echo

Chapter 14

[209]

You can mount your sonar sensor on the front of your Hexbug using velcro. The
following is an image of the Hexbug with the sensor mounted:

Now, let's see whether the sensor is functional. Navigate to Examples | NewPing |
NewPingExample. Select the Serial Monitor tab, and you should see the
following screenshot:

Small Projects with Arduino

[210]

You can now sense barriers. It is straightforward to create a sketch that uses the
motor control and sonar sensor. The following is a simple sketch that combines
program statements for both, the DC motor control and sensor control:

The NewPing sonar(TRIGGER_PIN, ECHO_PIN, MAX_DISTANCE); statement sets
up the sonar sensor so that it knows about the proper trigger and echo pins. In
the setup() function, you are going to set the OUTPUT mode for the two pins that
will control the DC motors and then turn one motor on (the motor that powers the
walking) and the other motor off (the motor that turns the device).

Chapter 14

[211]

The loop() function checks the sonar sensor using the sonar.ping() command.
When the distance is greater than 0 and less than 5, you will turn the walking motor
off, turn the turning motor on for one second, and then turn the turning motor off
and turn the walking motor back on. When the spider encounters an object, the
program should turn the walking motor off, turn the spider by about 90 degrees, and
then turn the walking motor back on.

Now, upload your program. Your robot should now move forward, and when
it senses a barrier, it stops and turns and then moves in the new direction. Your
robot can move around and sense barriers! Implementing the intelligence to go
between points A and B while avoiding barriers is an interesting and complex
problem that you can now explore. There are algorithms that show how to program
your robot to respond when it senses a barrier by moving efficiently around it.
For more information on this, see research.ncl.ac.uk/game/mastersdegree/
gametechnologies/aipathfinding/AI%20Pathfinding%20Tutorial.pdf and
biorob.epfl.ch/files/content/users/175246/files/Public/Pictures/
ReportMaster.pdf.

Now that you have learned how to build small robots, let's turn to an entirely
different application for Arduino—fashion.

Wearable Arduino projects
In this section, you'll build projects that you'll wear as a part of your clothing or
accessories. Hopefully, this will expand your concept of where you might be able
to creatively use Arduino. Let's get started.

The project for this section is a wearable pin that will indicate your direction
through a circular LED set. You could wear this type of device on an armband, like a
watch, or pin it on your clothes, just to prove that you are not only technically savvy,
but have a keen fashion sense. However, as we are talking about robots, you can
actually add these wearables to your robot to give the outside world some indication
of what the robot is thinking.

research.ncl.ac.uk/game/mastersdegree/gametechnologies/aipathfinding/AI%20Pathfinding%20Tutorial.pdf
research.ncl.ac.uk/game/mastersdegree/gametechnologies/aipathfinding/AI%20Pathfinding%20Tutorial.pdf
biorob.epfl.ch/files/content/users/175246/files/Public/Pictures/ReportMaster.pdf
biorob.epfl.ch/files/content/users/175246/files/Public/Pictures/ReportMaster.pdf

Small Projects with Arduino

[212]

To start, you'll need an Arduino board built for fashion. For this project, you'll use
the FLORA. This was introduced in Chapter 1, Powering on Arduino. It has a different
form factor; it looks like the following image:

The Arduino FLORA unit is interesting for a couple of reasons. Its form factor
is certainly one of them, but it is also designed to go into wearable applications
and is even washable (but don't try it with the battery attached). In this particular
application, you'll be using the FLORA with two of its accessories to build a device
that can indicate direction. To do this, you'll need both a way of finding the direction
as well as a way of indicating direction. To find direction, you'll add the FLORA
Accelerometer/Compass module, the LSM303, available at www.adafruit.com. The
following is an image of this device, with the FLORA on the right-hand side for
size comparison:

www.adafruit.com

Chapter 14

[213]

This module was specifically designed to be used with the FLORA processor. For the
indicator, you'll use the NeoPixel ring, which is also available at www.adafruit.com.
This ring provides lighting in different colors. The following is an image of the ring,
again with the FLORA on the right-hand side for size comparison:

Perform the following steps to get the NeoPixel ring working with the FLORA:

1.	 First, make the following connections between the FLORA and the
NeoPixel ring:

Flora pin NeoPixel ring pin
VBATT Power 5 V DC
GND Power signal ground
D6 Data input

2.	 Now, you'll need to download, if you have not already done so, the Arduino
IDE designed to work with the FLORA. You can download it from learn.
adafruit.com/getting-started-with-flora/download-software.

3.	 After you have done this, you'll need to download the library from github.
com/adafruit/Adafruit_NeoPixel.

4.	 Install this into the library directory of your Adafruit Arduino IDE.
5.	 Now, bring up a simple example program by navigating to Examples |

Adafruit_Neopixel | strandtest.

www.adafruit.com
learn.adafruit.com/getting-started-with-flora/download-software
learn.adafruit.com/getting-started-with-flora/download-software
github.com/adafruit/Adafruit_NeoPixel
github.com/adafruit/Adafruit_NeoPixel

Small Projects with Arduino

[214]

Upload this program, and your NeoPixel ring should start displaying various colors.
Now that the ring is working, let's add a digital compass to the project. Here are
the steps:

1.	 You'll need to connect the digital compass to the FLORA. The following are
the connections:

FLORA pin LSM303
3.3 V 3 V
GND Po
SDA SDA
SCL SCL

2.	 Now that you have made the connections, you'll need to download the
library that supports the LSM303 device from github.com/adafruit/
Adafruit_LSM303DLHC.

3.	 You'll also need to download and install Adafruit's sensor library from
github.com/adafruit/Adafruit_Sensor.

4.	 When you have installed these, upload the digital compass example program
by navigating to Examples | Adafruit_LSM303DLHC | magsensor. When
you open the Serial Monitor tab, you should see the following screenshot:

github.com/adafruit/Adafruit_LSM303DLHC
github.com/adafruit/Adafruit_LSM303DLHC
github.com/adafruit/Adafruit_Sensor

Chapter 14

[215]

The device is reporting information on the direction. A more useful way to look at
this data is provided by Adafruit at learn.adafruit.com/lsm303-accelerometer-
slash-compass-breakout/coding. At the bottom of this page is a listing that will
show the actual direction when the device is held flat. Unfortunately, you'll need to
make just a couple of changes because of the updates to the drivers. The following is
the new sketch:

learn.adafruit.com/lsm303-accelerometer-slash-compass-breakout/coding
learn.adafruit.com/lsm303-accelerometer-slash-compass-breakout/coding

Small Projects with Arduino

[216]

Specifically, you'll need to change #include <Adafruit_LSM303.h> to #include
<Adafruit_LSM303_U.h>. You'll also need to change Adafruit_LSM303_Mag mag
= Adafruit_LSM303_Mag(12345); to Adafruit_LSM303_Mag_Unified mag =
Adafruit_LSM303_Mag_Unified(12345);.

When you upload and run this program, and open the Serial Monitor tab, you
should see the following screenshot:

Now, you have access to Compass Heading. The final step is to merge the NeoPixel
code with the Compass Heading code. The following is a simple example that
changes color based on the direction:

Chapter 14

[217]

And there you have it! As you move your device around, you should see the color
of the ring change. The only step left is to package the device. You can put the pieces
together on a button or a write strap, or connect them directly to your robot, and
your LED will give you an indication of the direction in which the robot is heading.
You could easily change the sensor to one that measures temperature, distance, or
light; the possibilities are almost endless.

Small Projects with Arduino

[218]

Summary
That's it, but not really. There are so many more projects you can now tackle as
you have the basic capability in hand. You learned how to build simple robots that
can roam around on wheels and even walk on legs. You built robots that can sense
barriers and communicate with the outside world wirelessly. You also built robots
that can sail, swim underwater, and even fly. However, you've really only just
begun. There is plenty of help out there as well and almost as many different forms
of Arduino as there are projects. So, feel free to create.

Index
A
accelerometer

accessing, from Arduino IDE 129-132
connecting, to Arduino 127-129

Adafruit
boards, selecting 30
drivers, installing 28, 29
reference link 215
URL 12
URL, for downloading 27

Adafruit FLORA
about 12
Arduino IDE, running for 27
selecting 13

Adafruit Gemma
about 13
selecting 14

Adafruit library, motor shield
URL 102

Adafruit's sensor library
reference link 214

Adafruit Trinket
about 14
selecting 14

altimeter sensor
accessing, from Arduino IDE 133-135
connecting, to Arduino 132

Amazon
URL 73, 163

Arduino
accelerometer, connecting to 127-129
adding, to Hexbug 205-207
altimeter sensor, connecting to 132
and H-bridge, used for connecting

DC motor 87, 88

Bluetooth shield, connecting to 153
brushless DC Motors,

controlling with 172-176
connecting to 16, 17
connecting, to DC motor 84-86
digital compass, connecting to 123-125
GPIO capability 53-57
GPS device, connecting to 160, 161
GPS shield, connecting to 163
GSM/GPRS shield, connecting to 156
gyro, connecting to 127-129
history 7, 8
IR sensor, connecting to 117, 118
LAN shield, connecting to 176-185
options 14
powering up 15
pressure sensor, connecting to 132
selecting 7
servo motor, connecting to 98
servo motor shield, connecting to 102
simple RF interface, connecting to 138-140
sonar sensor, connecting to 114
starting 15
URL 91
URL, for downloading 16
versions 8
Wi-Fi shield, connecting to 154
XBee interface, connecting to 144-149

Arduino-based projects
building 203
small robots, building 203-211
wearable Arduino projects,

building 211-217
Arduino code

DC motor direction, controlling 89, 90

[220]

DC motor speed, controlling 86, 87
for DC motor shield 94-96

Arduino Due
about 11
selecting 11

Arduino FLORA pin
3.3 V 57
Digital I/O pins D10, D9, D6, D12 57
Digital RX->0 57
Digital TX->1 57
GND 57
SDA/SDL 57
VBATT 57

Arduino GPS Shield Drivers
URL 164

Arduino IDE
accelerometer, accessing from 129-132
altimeter sensor, accessing from 133-135
C programming 40
digital compass, accessing from 125-127
Edit tab 38
files, creating 37-40
files, editing 37-40
files, saving 37-40
File tab 37
GPS device, accessing from 161-163
GPS shield, accessing from 164-166
Help tab 40
IR sensor, accessing from 118-120
LCD display, enabling in 78-81
LED code, creating 60-63
Mac machine, used for developing 33
pressure sensor, accessing from 133-135
programming constructs 47
running, for Adafruit FLORA 27
running, for Mega 26, 27
running, for Uno 20, 21
serial display, enabling in 67-72
simple RF interface, enabling in 140-143
Sketch tab 38
sonar sensor, accessing from 114-116
SPI Display, enabling in 74-76
Tools tab 39
URL, for libraries 78
Wi-Fi shield, enabling in 154, 155
Windows machine, used for

developing 19, 20

XBee interface, enabling in 150-152
Arduino IDE, running for Adafruit FLORA

Adafruit boards, selecting 30
Adafruit drivers, installing 28, 29
COM port, selecting 30
LED flash, coding on FLORA 31, 32

Arduino IDE, running for Uno
COM port, selecting 23
file, opening 23-26
file, uploading to Arduino 23-26
IDE, setting to board 22

Arduino Mega
Arduino IDE, running for 26, 27
clone, spotting 10, 11
counterfeit, spotting 10, 11
selecting 10

Arduino Mega 2560 R3 10
Arduino Mega pin

Analog In 6-15 56
Communication TX3/RX3/TX2/RX2/TX1/

RX1 56
Digital 50-53 56
Digital I/O pins 44-46 56
SDA/SDL 56

Arduino Mini
about 11
selecting 12

Arduino-operated plane
building 189-195

Arduino Pin
Analog IN A5/A0 55
AREF 54
Digital ((PWM~) 13/2 54
Digital RX->0 54
Digital TX->1 54
GND 54
IOREF 55
Power 3.3 V 55
Power 5 V 55
Power GND 55
Power Vin 55
RESET 55

Arduino-powered underwater ROV
building 171, 172

Arduino Uno R3
about 9
selecting 9

[221]

Arduino, versions
Adafruit FLORA 12
Adafruit Gemma 13
Adafruit Trinket 14
Arduino Due 11
Arduino Mega 2560 R3 10
Arduino Mini 11
Arduino Uno R3 9

automated sailing platform
building 167-171

B
Battery shield 193
Bluetooth protocol

URL 153
Bluetooth shield

connecting, to Arduino 153
brushless DC Motors, controlling with

Arduino
about 172-176
camera, accessing for project 185-187
LAN shield, connecting to Arduino 176-185

C
circuit on paper printing, Arduino

URL 14
clone spotting, Arduino Mega 11
counterfeit spotting, Arduino Mega

URL 10
C programming, on Arduino IDE

basic sketch, creating 41-47

D
DC motor

basics 83, 84
connecting, H-bridge and

Arduino used 87, 88
connecting, to Arduino 84-86
controlling, shield used 90-93
direction, controlling with

Arduino code 89, 90
speed, controlling with

Arduino code 86, 87

DC motor shield
Arduino code 94-96

delay(1000); function 46
digital compass

accessing, from Arduino IDE 125-127
connecting, to Arduino 123-125
URL 126

display
connecting, SPI interface used 72, 73

E
electronic speed controllers (ESCs) 172
external hardware connection 58-60

F
files

creating, on Arduino IDE 37-40
editing, on Arduino IDE 37-40
saving, on Arduino IDE 37-40

File tab, Arduino IDE
Close option 37
Examples option 37
New option 37
Open… option 37
Page Setup and Print option 37
Preferences option 37
Save and Save As... option 37
Sketchbook option 37
Upload option 37
Upload Using Programmer option 37

FLORA 212
FLORA IDE

installing 17
URL, for downloading 17

for statement 50, 51

G
general purpose input/output (GPIO)

pins 53
Global Positioning System (GPS) 157
GPIO capability, Arduino 53-58
GPS device

about 158
accessing, from Arduino IDE 161-163

[222]

connecting, to Arduino directly 160, 161
working 158-160

GPS shield
accessing, from Arduino IDE 164-166
connecting, to Arduino 163

GSM/GPRS shield
connecting, to Arduino 156

gyro
connecting, to Arduino 127-129

H
H-bridge

and Arduino, used for connecting
DC motor 87, 88

Hexbug
adding, to Arduino 205-207

Hexbug Spider
about 203, 204
URL 203

history, Arduino 7, 8
HMC5883L 3-Axis Digital

Compass chip 124

I
I2C interface 124
if statement 49
infrared (IR) 113
Input/Output (I/O) pins 8
installation, Adafruit drivers 28, 29
installation, FLORA IDE 17
integrated development

environment (IDE) 8
IR sensor

accessing, from Arduino IDE 118-120
connecting, to Arduino 117, 118

L
LAN shield

connecting, to Arduino 177-185
LCD display

enabling, in Arduino IDE 78-81
LCD shield

overview 77
LED 58

LED code
creating 60-63

LED flash
coding, on Adafruit FLORA 31, 32

light emitting diode. See LED
loop() function 95, 211
LSM303

reference link 214
Lynxmotion parts set 105

M
Mac machine

used, for developing Arduino IDE 33
MPU-6050 chip 127

N
NeoPixel ring

reference link 213
working, with FLORA 213

P
Parallax

URL 160
pressure sensor

accessing, from Arduino IDE 133-135
connecting, to Arduino 132

program
servo motor, controlling 100, 101
servo motor shield, controlling 102-110

programming constructs, on Arduino IDE
for statement 50, 51
if statement 48, 49

pulse-width modulated (PWM) signal 97
PuTTY

URL, for downloading 146
pwmValue variable 108

Q
quad copter platform

building 196-201

R
radio frequency (RF) 137

[223]

RC airplanes
reference link 190

RC LiPo battery
using 108

remote operated vehicle. See ROV
RF24 library

URL 140
RFduino

URL, for guide 193
URL, for library 195

ROV 167

S
SainSmart

about 73, 124
reference link, for library 133
URL 74

scanning sensor platform
creating 120-122

SCL data line 124
SeeedStudio

about 65
URL, for library 67

sensors
infrared sensor 113
overview 111
sonar sensor 112, 113
URL, for library 114

serial display
enabling, in Arduino IDE 67-72
overview 65-67

Servo Control shield 193
servo motor

basics 97, 98
connecting, to Arduino 98, 99
controlling 97
controlling, with program 100

servo motor shield
connecting, to Arduino 102
controlling, with program 102-110

servo variable 108
setup() function 95, 110, 210
shield

about 8
used, for controlling DC motor 90-93

simple RF interface
connecting, to Arduino 138-140
enabling, in Arduino IDE 141-143

Sketch tab
Add File… option 39
Import Library… option 39
Show Sketch Folder option 39
Verify / Compile option 39

Sketch tab, Arduino IDE
Add File option 39
Import Library option 39
Show Sketch Folder option 39
Verify / Compile options 39

sonar sensor
about 112, 113
accessing, from Arduino IDE 114-116
connecting, to Arduino 114

SparkFun
URL 128
URL, for products 129

SparkFun SEN-11028 128
SPI Display

enabling, in Arduino IDE 74-76
SPI interface

used, for connecting display 72, 73

T
TinyDuino

URL 204
TinyGPS library

URL 163
Tools tab, Arduino IDE

Archive Sketch option 40
Auto Format option 40
Fix Encoding & Reload option 40
Programmer and Burn

Bootloader option 40
Serial Monitor option 40

U
Uno

Arduino IDE, running for 20, 21
USB development shield 193

[224]

V
versions, Arduino

Adafruit FLORA 12
Adafruit Gemma 13
Adafruit Trinket 14
Arduino Due 11
Arduino Mega 2560 R3 10
Arduino Mini 11

W
wearable Arduino projects

building 211-217
Wi-Fi

URL, for tutorial 154

Wi-Fi shield
connecting, to Arduino 154
enabling, in Arduino IDE 154, 155

Windows machine
used, for developing Arduino IDE 19, 20

X
XBee interface

connecting, to Arduino 144-149
enabling, in Arduino IDE 150-152

Thank you for buying
Arduino Robotic Projects

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

C Programming for Arduino
ISBN: 978-1-84951-758-4 Paperback: 512 pages

Learn how to program and use Arduino boards
with a series of engaging examples, illustrating
each core concept

1.	 Use Arduino boards in your own electronic
hardware and software projects.

2.	 Sense the world by using several sensory
components with your Arduino boards.

3.	 Create tangible and reactive interfaces with
your computer.

4.	 Discover a world of creative wiring and
coding fun!

Raspberry Pi Home Automation
with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1.	 Learn how to dynamically adjust your living
environment with detailed step-by-step
examples.

2.	 Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3.	 Revolutionize the way you interact with your
home on a daily basis.

Please check www.PacktPub.com for information on our titles

Internet of Things with the
Arduino Yún
ISBN: 978-1-78328-800-7 Paperback: 112 pages

Projects to help you build a world of smarter things

1.	 Learn how to interface various sensors and
actuators to the Arduino Yún and send this
data in the cloud.

2.	 Explore the possibilities offered by the Internet
of Things by using the Arduino Yún to upload
measurements to Google Docs, upload pictures
to Dropbox, and send live video streams to
YouTube.

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1.	 Get to grips with robotic systems.

2.	 Communicate with your robot and teach it to
detect and respond to its environment.

3.	 Develop walking, rolling, swimming, and
flying robots.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Powering on Arduino
	Selecting the right Arduino
	A brief history of Arduino
	Introducing the different versions of Arduino
	Arduino Uno R3
	Arduino Mega 2560 R3
	Choosing the Arduino Mega
	Arduino Due
	Arduino Micro
	Adafruit FLORA
	Adafruit Gemma
	Adafruit Trinket
	Other options with the Arduino

	Powering up the Arduino
	Unveiling your Arduino
	Connecting to the Arduino
	Installing the FLORA IDE

	Summary

	Chapter 2: Getting Started with the Arduino IDE
	Using a Windows machine to develop with Arduino
	Running the IDE for Uno
	Setting the IDE to your board
	Selecting the proper COM port
	Opening and uploading a file to Arduino

	Running the IDE for Mega
	Running the IDE for the Adafruit FLORA
	Installing the Adafruit drivers
	Selecting the Adafruit boards
	Selecting the COM port
	Coding an LED flash on the FLORA

	Using a Mac to develop using Arduino
	Summary

	Chapter 3: Simple Programming Concepts Using the
Arduino IDE
	Creating, editing, and saving files on the Arduino
	Basic C programming on Arduino
	Basic programming constructs on Arduino
	The if statement
	The for statement

	Summary

	Chapter 4: Accessing the GPIO Pins
	The GPIO capability of Arduino
	The first external hardware connection
	The Arduino IDE and LED code
	Summary

	Chapter 5: Working with Displays
	A simple serial display
	Enabling the serial display in the IDE
	Connecting a display using the SPI interface
	Enabling the SPI display in the IDE
	An LCD shield
	Enabling the LCD display in the IDE
	Summary

	Chapter 6: Controlling DC Motors
	The basics of DC motor
	Connecting a DC motor directly to Arduino
	Using Arduino code to control the speed of the DC motor

	Connecting a DC motor using an H-bridge and Arduino
	Using Arduino code to control the direction of the DC motor
	Controlling the DC motor using a shield
	The Arduino code for the DC motor shield
	Summary

	Chapter 7: Controlling Servos
with Arduino
	The basics of a servo motor
	Connecting a servo motor directly to Arduino
	Controlling the servos with a program
	Connecting a servo motor shield to Arduino
	Controlling the servo motor shield with
a program
	Summary

	Chapter 8: Avoiding Obstacles
Using Sensors
	An overview of the sensors
	Sonar sensors
	Infrared sensors

	Connecting a sonar sensor to Arduino
	Accessing the sonar sensor from the Arduino IDE
	Connecting an IR sensor to Arduino
	Accessing the IR sensor from the Arduino IDE
	Creating a scanning sensor platform
	Summary

	Chapter 9: Even More Useful Sensors
	Connecting a digital compass to Arduino
	Accessing the compass from the
Arduino IDE
	Connecting an accelerometer/gyro to Arduino
	Accessing the accelerometer from the Arduino IDE
	Connecting an altimeter/pressure sensor to Arduino
	Accessing the altimeter/pressure sensor from the Arduino IDE
	Summary

	Chapter 10: Going Truly Mobile – Remote Control of Your Robot
	Connecting a simple RF interface to Arduino
	Enabling a simple RF interface in the Arduino IDE
	Connecting an XBee interface to Arduino
	Enabling an XBee interface in the Arduino IDE
	Connecting a Bluetooth shield to Arduino
	Connecting a Wi-Fi shield to Arduino
	Enabling the Wi-Fi shield in the
Arduino IDE
	Connecting a GSM/GPRS shield to Arduino
	Summary

	Chapter 11: Using a GPS Device
with Arduino
	GPS tutorial
	Connecting a GPS device directly to Arduino
	Accessing the GPS device from the Arduino IDE
	Connecting a GPS shield to Arduino
	Accessing the GPS shield from the Arduino IDE
	Summary

	Chapter 12: Taking Your Robot to Sea
	Building an automated sailing platform
	Building an Arduino-powered underwater ROV
	Building an ROV
	Controlling brushless DC motors with Arduino
	Connecting a LAN shield to Arduino
	Accessing a camera for your project

	Summary

	Chapter 13: Robots That Can Fly
	Building an Arduino-operated plane
	Building a quadcopter platform
	Summary

	Chapter 14: Small Projects with Arduino
	Small robots and Arduino
	Wearable Arduino projects
	Summary

	Index

